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Activity Recognition

Wearable ECG recorders (W-ECG) provide a practical solution for ambula-
tory cardiac monitoring. W-ECGs are increasingly being used by people suf-
fering from cardiac abnormalities, who also choose to lead an active lifestyle.
From the discussions in the previous chapters regarding W-ECG, we can now
understand that the challenge presently is that the ambulatory ECG signal is
influenced by motion artifacts induced by body movement activity (BMA) of
the wearer. The usual practice is to develop effective filtering algorithms which
can eliminate the motion artifacts. However, due to spectral overlap between
the motion artifact signal and the cardiac signal the complete elimination of
the motion artifact from the ambulatory ECG signal is not possible without
unduly affecting the cardiac signal component. Therefore, instead of filtering
we would like to identify the presence of the motion artifact and the type of
body movement from the analysis of the ambulatory ECG signal itself. We
have already addressed the issue of detecting BMA transitions from the ECG
signal in the previous chapter. The method proposed for the transition de-
tection is an unsupervised learning approach which only looks for any abrupt
changes in the nature of the motion artifact signal due to changes in BMA.
However, a particular BMA is not yet characterized from the analysis of ECG
in the previous chapter. In this chapter we focus on the BMA recognition
from the ambulatory ECG signal for which we will use BMA classifiers with
certain specific types of BMA classes. The classification approach for BMA
recognition requires supervised training of the specified BMA classes using
the corresponding ECG data during the specified BMA. For this purpose we
have recorded the ECG signals during specified BMA, e.g. sitting still, walk-
ing, movements of arms and climbing stairs, etc. with a single-lead W-ECG
as described in Section 5.2. The collected ECG signal during the BMA is
presumed to be an additive mix of signals due to cardiac activities, motion
artifacts and sensor noise as per the mathematical model given in Section 1.5.
We have successfully used the mathematical model of the ambulatory ECG in
the previous chapter for the transition detection from the ambulatory ECG
signal. Here we follow the same model of the ambulatory ECG signal for the

© Springer Science + Business Media, LLC 2009
S. Chaudhuri et al., Ambulation Analysis in Wearable ECG, DOI: 10.1007/978-1-4419-0724-0_7, 79



80 7 Activity Recognition

analysis which leads to the recognition of different types of BMA from the
ECG itself. According to the mathematical model, the motion artifact signal
is one of the components of the ambulatory ECG signal which depends on
the type of BMA and hence the BMA recognition should be possible from the
analysis of the ECG signal. The motion artifact signal can be derived from the
ambulatory ECG by suppressing the cardiac signal and the sensor noise. We
hypothesize that a similar type of BMA induces a similar type of motion arti-
fact whereas different types of BMA induce different types of artifact. If this
is true then we can train a classifier to detect the type of BMA class using the
motion artifact signal. As per the mathematical model in Section 1.5, we first
derive the motion artifact signal by estimating the cardiac signal. The derived
motion artifact signal can be used for the BMA recognition. We use classifiers
trained for different BMA classes in which there are two types of represen-
tations: one is a nonparametric representation and the other is a parametric
representation. In the nonparametric BMA classifiers each of the BMA classes
is represented by a set of vectors derived from the ambulatory ECG data for
the specific BMA class during training. Whereas in the parametric BMA clas-
sifiers, the individual BMA class is modeled by certain parameters derived
from the ambulatory ECG data available for only that particular BMA class.
Both kinds of representations obtained by the supervised learning are then
used for classification of the ambulatory ECG signals to recognize the BMA
class during testing. Here we use the derived motion artifact signal for su-
pervised training of the BMA classifiers and the classification of BMA types,
which requires some preprocessing on the ambulatory ECG signals recorded
by W-ECG. The details of preprocessing and analysis are presented in this
chapter.

7.1 Introduction

The ECG signal collected by the W-ECG is contaminated by BMA induced
artifacts owing to disturbances at the skin electrode interface and noise due to
muscular activities, collectively known as motion artifacts. For the W-ECG
to handle motion artifacts occurring naturally during its intended use is a
challenge. The motion artifacts have a significant overlap in frequency with
ECG signal, so filtering based on spectral separation is of limited use [5].

In the earlier chapters we have provided a brief introduction to the problem
of motion artifact in W-ECG. Any body movement activity (BMA) of the
wearer causes motion artifacts and we have shown from the BMA transition
detection in the previous chapter that different types of BMA induce different
kinds of motion artifact. Using the BMA transition detection method, it is
possible to segment the ECG signal temporally in order to separate each of
the signal segments containing just one type of BMA. Since BMA influences
the ECG output, we propose to determine the BMA from the motion artifacts
in the ECG signal. The possibility of recognition of the BMA from ECG data
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is yet to be fully studied in the literature. We also show that BMA recognition
can help in improving the automated analysis of the ambulatory ECG signal
in W-ECG. This will be helpful eventually in pervasive monitoring of cardiac
activity of a patient and determining if any BMA is having a deleterious effect.
The possibility of such a classification has initially been explored in [93]. Here
the ECG signals are analyzed using a wavelet transform and a neural network.
However, the reported performance is not very satisfactory as the wavelet
based representation does not separate the in-band BMA signal from the
ECG. In other works related to BMA analysis from non-ambulatory ECG,
body position changes are detected for ischemia monitoring in [9, 37, 52].
In [37, 52], Karhunen-Loeve transform of the ECG beats are analyzed to
detect position changes. A synthesized vectorcardiograph based approach has
been proposed in [9, 37], where a series of angles for the three orthogonal
leads X, Y and Z are derived using a loop alignment method [9, 122]. The
sequence of angles is then analyzed to detect the changes in body position.
However, this method requires a comprehensive 12-lead ECG signal to be able
to synthesize the three vectorcardiograph leads and is currently restricted
to a clinical environment. The single-lead system that we have used is less
informative but enables long term cardiac monitoring and is also preferable
from the standpoint of wearer’s comfort and cost.

In this chapter we characterize the motion artifacts induced by the fol-
lowing specific BMAs: sitting still, up and down movement of left, right and
both arms, walking on a level floor, and climbing stairs up and down, using
two different supervised learning approaches. In the first approach we use a
non-parametric classification technique based on principal component analy-
sis (PCA). The second approach is a parametric classification technique based
on hidden Markov models (HMM). In both the approaches we test for classi-
fiability of the motion artifacts based on the characterization obtained using
the supervised learning. For this purpose we build various BMA classifiers for
different BMA classes where each class is either a distinct BMA or a combina-
tion of two or more different BMAs as specified above. If two specified BMAs
are not quite separable using the proposed characterization of motion arti-
facts, they are both combined into a single BMA class. Here we demonstrate
that it is indeed possible to recognize several BMA classes accurately from the
ECG signal itself. Since the proposed non-parametric classification technique
is based on the PCA of motion artifacts in the ECG signal, it follows that class
specific PCA-based filtering can also be used for removal of motion artifacts.
Accordingly, we have demonstrated the usefulness of the PCA-based filtering
technique by locating the P and T waves in the ECG signal in the presence
of body movement.

Here we have restricted our studies to only people with no known cardiac
abnormalities but under multiple settings (laboratory and outdoors). Since
the motion artifact is caused at the superficial level at the skin, it is under-
stood that the possibility of the BMA recognition shown here for the healthy
subjects should also be applicable for cardiac patients except the fact that the
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proposed PCA-based method may not be suited for cardiac patients with fre-
quent rhythmic disturbances. However, for patients with infrequent rhythmic
disturbances, it is possible to detect such abrupt episodes using the RPCA
method proposed in the previous chapter following a post-processing step of
arrhythmia classification using some standard method.

The organization of the chapter is as follows. We discuss a nonparametric,
supervised learning-based classifier using PCA in Section 7.2. There we discuss
the mathematical model for the ambulatory ECG signal recorded by the W-
ECG, required preprocessing steps for implementation of the proposed method
on ECG signal, basics of PCA, supervised learning and classification of BMA.
We also explain how the BMA classification can be used for removal of the
motion artifacts. We explain a parametric, supervised learning-based classifier
using hidden Markov models (HMM) in Section 7.3. The results of the BMA
classification obtained by the two algorithms are presented in Section 7.4. We
discuss about the conclusions of our experiments on BMA recognition from
ambulatory ECG signal in Section 7.5.

7.2 Nonparametric Classification

According to the mathematical model of the ambulatory ECG signal given in
the earlier chapters, the recorded ECG signal has three components: cardiac
signal due to normal heart activity, motion artifacts due to body movement
and sensor noise introduced by the W-ECG. Following the BMA transition
detection results presented in the previous chapter and some preliminary re-
sults regarding BMA recognition using the wavelet based method in [93], we
hypothesize that each type of body movement induces a particular type of
motion artifacts in the ECG signal. An ECG signal for the ith class of BMA
is modeled as

ri(n) = qi(n) + si(n) + η(n), (7.1)

where ri is a recorded ECG signal, qi is a cardiac signal of a normal heart
during BMA specified by ith class, si is an additive motion artifact due to
ith class of BMA and η is the sensor noise present in the ECG signal. It is
noted that the cardiac cycle qi is denoted for the specific BMA to emphasize
that the cardiac cycle can be more accurately represented and estimated when
considered separately for an individual BMA class.

Here we discuss a nonparametric approach of classification for recognition
of BMA from the ambulatory ECG signal based on principle component anal-
ysis (PCA) technique. We segment the ambulatory ECG signal contiguously
as a sequence of ECG beats. Each of the ECG beats in the sequence will be
represented as a vector of a fixed dimension for the PCA-based analysis for
BMA recognition.

Let the vector representations of the corresponding signals captured during
a single period of heart beat be ri, q

i
, si and η, respectively. All vectors used for
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the classification are column vectors. As mentioned earlier, the dimension M0

of these vectors depend on the beat period and the sampling frequency. If one
considers N consecutive heart beats together as a signal then the dimension of
the signal would be NṀ0. Following are the various assumptions made while
developing the nonparametric PCA-based classifiers.

1. The cardiac signal qi is assumed to be representing normal cardiac activity
only and it remains stable in the presence of a specific BMA.

2. Since cardiac activity is by nature involuntary, it is independent of vol-
untary muscular activities and motion of electrodes. Hence BMA induced
motion artifacts si are independent of the cardiac signal qi, i.e., qi ⊥ si.

3. The sensor noise η present in the ECG signal is due to ambient conditions
of recording like power line interference, device temperature, skin humid-
ity, etc. and, therefore, it is assumed to be independent of both cardiac
signal and the motion artifact, i.e., η ⊥ qi and η ⊥ si.

4. In the preprocessing steps described next (Section 7.2.1), the dc bias esti-
mated from the isoelectric level of the ECG signal is set to zero. Therefore,
the sensor noise is assumed to be of zero mean, i.e., E[η] = 0.

5. Rank(E[riri
T ]) ≈ Mi, where Mi ≤ M0, signifying that the actual infor-

mation in the recorded ECG signal can be compactly represented by only
top Mi eigenvectors.

6. The energy of the motion artifact signal si is concentrated into a top few
(say Ki where Ki � Mi) eigenvectors of E[sisi

T ], and that the composite
signal ri is sufficiently excitatory.

7. There is greater correlation between signals due to same type of body
movement than that for any two different types of body movement. That
is, si and sk are highly correlated if i = k (at different time instants) and
nearly uncorrelated if i 6= k.

8. The signal component due to motion artifacts is smaller compared to the
strength of the cardiac signal, but much greater than the sensor noise, i.e.,
|η| � |si| < |q

i
|, ∀i.

Based on the mathematical model and the assumptions discussed above,
we will extract the signature of a specific BMA (si) by eliminating the cardiac
signal (qi) and the sensor noise (η).

The cardiac signal is characterized by a stable rhythm of heart beats.
Following assumption (1), the cardiac rhythm stays nearly constant over the
heart beats within the observation window. An arithmetic mean of several
epochs of heart beats provides an estimate of the constant cardiac rhythm
and hence the cardiac signal [5, 49]. For a specific BMA class, this estimate is
averaged over the entire training data set for a particular class and is termed
as class mean of the BMA. If the class mean is a correct estimate of the cardiac
signal then according to Eq. (7.1), the motion artifacts component (also sensor
noise) is derived by removing the class mean from the ECG signal.
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The sensor noise component is suppressed by elimination of the dc bias
during the preprocessing step described next. Accordingly, the motion arti-
facts component will dominate as per assumption (8).

In the nonparametric classification, an unknown ECG beat is classified into
a specific BMA class according to the best reconstruction criterion. A partic-
ular BMA class is represented by a set of top few eigenvectors of the training
BMA data belonging to that BMA class. The eigenvectors are obtained from
eigen decomposition of the correlation matrix of the training BMA data. The
test ECG beat is reconstructed using the set of eigenvectors in conjunction
with the class mean for each BMA class. The BMA class for which the er-
ror between the reconstructed signal and the test ECG beat is minimum is
determined as the true BMA class for the unknown ambulatory ECG data.

The eigen decomposition technique described above is optimal for the as-
sumed data representation model because the eigenvectors are orthogonal.
Thus, after preprocessing, if the artifact signal (si) is corrupted by an un-
correlated noise signal (η) then the top few eigenvectors represent mostly the
signal component due to BMA as the signal to noise ratio (SNR) is consid-
ered to be high in these components and the remaining eigenvectors mostly
represent the noise subspace, thus isolating the BMA signal from noise.

Thus the method applied here is a nonparametric supervised technique
for body movement classification. However, in order to be able to use the
technique and for suppressing the sensor noise η, certain preprocessing steps
are required to handle both intra-personal and inter-personal variations in the
cardiac signal (qi).

7.2.1 Preprocessing

It is assumed that the heart is not stressed during the activities that are
being performed in this study. However, certain parameters like the coupling
between skin and electrodes, and the variability in the heart rate have multi-
parameter dependence. The coupling between skin and electrodes depends
mostly on the skin humidity levels and also if the setting is indoors or outdoors.
Similarly, a small variation of heart rate during ambulatory activity is present
even in healthy subjects. Finally, there are person specific variations in the
above two parameters. While the coupling between skin and electrodes affects
the amplitude (scale) of the ECG beat data, the heart rate affects the time
interval of the ECG beat data.

The arithmetic mean as an estimate of the cardiac signal (q
i
) and eigen de-

composition for extraction of the motion artifact component (si) are both sen-
sitive to translation, variations in amplitude and time scales of the data [52].
Thus it is necessary to perform the following preprocessing steps that involve
proper alignment, amplitude scaling and time warping of the data as shown
in Fig. 7.1.

The data is processed as a batch of ECG beat epochs collected over about
one minute duration after appropriate beat alignment. This implicitly assumes
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that the collected beat epochs in this short time duration, may have nearly
constant amplitudes and time periods.

of ECG beats

Time warping

for dc bias

Correction Amplitude

scalingECG Signal

Collected

ECG beats
ECG beats

alignment of

Detection of
R−peak and Normalized

Fig. 7.1. Preprocessing applied to the ECG signal captured by the W-ECG. ( c©2007
IEEE)

Detection of R peak and alignment of ECG beats

The R peak is the most prominent feature of the ECG signal that can be
detected easily even in the presence of motion artifacts, and is used for calcu-
lating the heart rate. The R peaks in the ECG signals are detected using the
Pan-Tompkins method [96]. The method for detection of R peaks in ECG has
been explained in the previous chapter. The duration between the current R
peak and the preceding one is considered as the current ECG beat interval,
i.e., jth beat interval is given by duration between (j − 1)th and jth R peaks.
The average interval of the ECG beats is estimated from the number of R
peaks detected over a period of one minute. If there are a total of N ECG
beats over the given period then the ECG signal is partitioned into N ECG
beat epochs. The R peak in each epoch is aligned to the exact middle position.
This strategy ensures the alignment of ECG beats even after time warping is
applied to the data.

Time warping of ECG beats

As explained above, the ECG beat intervals may vary due to change in the
heart rate. Accordingly, the number of samples recorded for each ECG beat
epoch may vary. Since the given PCA-based method is applicable only to
vector observations in a space of fixed dimension, it is required to equalize the
dimensions (M0) of all the ECG beats. A simple technique to achieve this is
linear time warping and is implemented as follows. The ECG beat is resampled
by a rational factor a/b, where a is the fixed number of samples after the time
warping, and b is the number of samples in the ECG beat being resampled.
This is performed through MATLAB r© using a polyphase implementation of
resampling and a linear phase anti-aliasing filter with finite impulse response.
Following the application of time warping, all the ECG beat observations are
of equal length.
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Correction for dc bias

The constant voltage level of the flat portion of ECG beat segment that lies
between the end of P wave and the beginning of Q wave is termed as the
isoelectric level of the ECG beat [49]. Ideally, the isoelectric level should be
at ground potential. The dc bias is estimated by calculating the arithmetic
mean of isoelectric levels of all ECG beat observations collected during a one
minute interval. This dc bias is then subtracted from the ECG signal. Thus
any dc bias introduced due to sensor noise or otherwise is removed during
this step. The shape of the recorded ECG signal remains unchanged at this
point of time and the sensor noise in ECG signal has now zero mean as per
assumption (4).

Amplitude scaling

This is the last stage of preprocessing. As discussed earlier, the coupling be-
tween skin and electrodes can affect the amplitude of the signal. Since the
proposed method calculates the arithmetic mean of the ECG beats for esti-
mating the cardiac signal component, all the ECG beats should represent the
cardiac activity with the same amplitude. The R wave peak with respect to
the isoelectric level is considered here to represent the full signal strength.
A normalization factor is estimated by averaging of R wave amplitudes with
respect to the corresponding isoelectric levels from all ECG beats over a pe-
riod of one minute. Thus the amplitude of the ECG data over the period is
normalized and the estimate of average R wave amplitude with respect to the
corresponding isoelectric level becomes unity.

7.2.2 Principal Component Analysis (PCA)

We propose to use a nonparametric classification technique for recognition of
BMA from the ECG signal. Since we focus in this work on W-ECG devices
which may provide only a single lead ECG signal at a time, we choose a tech-
nique for a suitable nonparametric representation of the signals. The technique
we consider here is known as PCA. Here the data set is organized in such a
way that each point in the data lies in a fixed dimensional space and each
element of the data is along a specific orientation (axis) in the space. That is
to say that each data can be represented as a vector in the fixed dimensional
space. In this representation let M be the fixed dimension of the space and
the data be represented in a column vector form of dimension M×1. Thus the
complete vector space can be defined by a basis which is a set of independent
vectors in <M . Since the dimension of the vector space is M , there must be
at most M such independent vectors in the basis. Each of the elements in the
column vector is the projection corresponding to a basis vector in an ordered
manner.
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The PCA is a technique used for finding the most suitable bases to rep-
resent the given data. This is because there may be some redundancy in the
data and therefore, the dimension can be reduced. In this case the bases would
be such that even a few of the vectors from the bases can represent the data
satisfactorily without much loss in terms of the errors in reconstruction. Using
PCA the vectors forming such bases can be found in an ordered manner. Here
the vectors found by the PCA are called eigenvectors which are orthogonal to
one another and also normalized to yield the signal power of each vector to
be unity. Therefore, one can say the derived bases form an orthonormal set of
bases. There is no redundancy in this representation due to the orthogonality
of the basis. Moreover, the eigenvectors are found in such a manner that the
first eigenvector captures the maximum signal power in the data along any
direction. The next eigenvector will be in an orthogonal direction to the pre-
viously found eigenvector(s) that captures the next highest amount of signal
power from data along all other possible (orthogonal) directions. According
to the signal power captured by each of the eigenvectors, it is assigned an
eigenvalue which represents the weight of the particular eigenvector for the
given data. Thus the eigenvectors are arranged in a non-ascending order of
eigenvalues. In most practical applications the first few eigenvectors are able
to capture most of the signal power in the data and the remaining eigenvec-
tors only represent a small residual which is either considered as noise or can
be neglected without much loss in data reconstruction. Thus a graceful trade-
off between the number of eigenvectors and the loss in data reconstruction is
achieved using the PCA.

Let a set of data contain a total of N observation points from a fixed
dimensional space, ri(n), i = 1, 2, . . . , N observations where ∀ri(n) ∈ <M .
Here M is the fixed dimension of the space under consideration. We want to
apply PCA to the given data set.

First, the data set is centered to zero by subtracting the arithmetic mean
of the data. The arithmetic mean of the original data is computed as

r =
1

N

N∑

i=1

ri. (7.2)

The corresponding vector after mean subtraction is denoted by r′ where

r′i = ri − r, i = 1, 2, . . . , N. (7.3)

The covariance matrix is computed from the mean subtracted data as

C =
1

N

N∑

i=1

(r′i)(r
′
i)

T , (7.4)

where C is the covariance matrix for the given data and (·)T is matrix trans-
pose. Here C is an M ×M matrix and its eigen decomposition gives a total of
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M eigenvectors [e1, e2, . . . , eM ], arranged in a non-ascending order of the cor-
responding eigenvalues, denoted by λ1 ≥ λ2 ≥ . . . ≥ λM . For details of eigen
decomposition the interested reader may refer to [38]. Let E = [e1, e2, . . . , eK ],
K � M be a set of first K eigenvectors with the largest eigenvalues that rep-
resents a smaller K dimensional subspace in the M dimensional space of the
given data. In many practical applications a suitable choice of K will yield
an almost perfect reconstruction with a very small residual error. Hence the
PCA technique is used for reducing the dimensionality of the given problem.
Moreover, in most cases the residual errors are from the noise subspace which
one would like to suppress from the data. Therefore, the PCA is also used for
noise removal.

The dimensionality reduction helps to shrink certain useful subspaces in
the data which characterize the conditions under which the observations are
recorded. We may expect that the corresponding subspaces derived from dif-
ferent data sets recorded under different conditions will be quite separate. This
separation of subspaces for different conditions may help to solve the classi-
fication problem. One can first derive the corresponding subspace from the
training data given for each specific pre-defined condition and then try to find
the distance of a test data from the derived subspace. The point may be allo-
cated the condition (or class) represented by the nearest subspace. However,
the PCA itself does not guarantee the separability of the subspaces and hence
it is not necessarily always the preferred technique for solving the problem of
classification. For details of various techniques of classification, the interested
reader may refer to [24]. For certain types of data the PCA can indeed be
applied successfully for classification purposes. We discuss a technique based
on PCA for BMA recognition from the ECG signal in this chapter.

7.2.3 Supervised Learning of Body Movement

Following the mathematical model of the ambulatory ECG signal adopted
for the analysis, the ECG signal comprises of the cardiac signal (qi), motion
artifacts (si) and sensor noise (η). The ECG beats segmented after the prepro-
cessing will be considered for training and subsequent classification of BMA.
As explained above, the vector representation of the jth ECG beat observation
in the training data of ith BMA class is rij and the vector representations of
the corresponding cardiac signal, motion artifact and sensor noise components
are q

ij
, sij and η

ij
, respectively.

We plan to use a supervised approach of training a BMA classifier using
the processed ECG beat, rij , i = 1, 2, . . . , c and j = 1, 2, . . . , Ni, where c
is the number of BMA classes in a classifier and Ni is the number of ECG
beats used for training of ith BMA class. In this nonparametric classification
approach each BMA class is represented by a class mean and a set of eigenvec-
tors computed using the PCA of all training observations. The class mean is
computed from the arithmetic mean of the training data rij , j = 1, 2, . . . , Ni
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of the ith BMA class. The eigenvectors for the BMA class are obtained from
the corresponding data after subtracting the class mean.

The class mean of ith BMA class is calculated as follows

q̃
i
=

1

Ni

Ni∑

j=1

(rij), (7.5)

which approximates the average cardiac signal for the given BMA class [49].
The average cardiac component q̃

i
is subtracted from the signal rij to derive

mean subtracted BMA vectors (residual signal) for the ith BMA class

r′ij = rij − q̃
i
' sij + η′

ij
, (7.6)

where η′

ij
is comprised of the sensor noise plus the noise arising in the es-

timation of the cardiac component due to inter-personal variation (refer to
multi-subject testing, classifiers VI-X in Section 7.4.1). The BMA vectors
with regards to signal power, contain predominantly the motion artifact sij ,
along with the noise η′

ij
.

Next, PCA is applied on the BMA vectors r′ij to compute the significant
eigenvectors of the training data for each BMA class. An eigenvalue corre-
sponding to an eigenvector is a measure of signal strength in the data in the
direction of the eigenvector. As per assumption (8), the motion artifact com-
ponent dominates the residual signal. Thus, if the eigenvectors of this data are
arranged in a non-ascending order of the respective eigenvalues, the first few
eigenvectors will represent the motion artifacts by neglecting the noise compo-
nents. For the ith BMA class, the eigenvectors and eigenvalues are computed
by eigen decomposition of the covariance matrix of the training residual signal
r′ij , given by

Ci =
1

Ni

Ni∑

j=1

(r′ij)(r
′
ij)

T , (7.7)

where Ci is the covariance matrix for the ith BMA class. If the data oc-
cupies an M dimensional space then Ci is a M × M matrix and its eigen
decomposition gives a total of M eigenvectors [ei1, ei2, . . . , eiM ], arranged
in the non-ascending order of the corresponding eigenvalues, denoted by
λi1 ≥ λi2 ≥ . . . ≥ λiM for the ith BMA class. Let Ei = [ei1, ei2, . . . , eiKi

],
Ki � M be a set of first Ki eigenvectors with the largest eigenvalues that
represent the motion artifacts. Here Ei forms a basis for a small Ki dimen-
sional motion artifact subspace in the M dimensional space of the data for the
ith class. As per assumption (7) the motion artifacts due to any two different
types of BMA are nearly uncorrelated, eigen functions for any two different
motion artifacts are also expected to be nearly uncorrelated.

For each BMA class, a class mean and a set of eigenvectors are computed
from the training observations, which represent the characteristics of motion
artifacts for the particular BMA and is used as the basis of the BMA classifier.
Thus we have obtained a non-parametric representation of each BMA class.



90 7 Activity Recognition

7.2.4 Activity Classification

Based on the nonparametric representation obtained in the previous section
for each of the specified BMA classes in a classifier, we discuss a BMA classifi-
cation procedure in this section. Let p

u
be a test ECG beat extracted after the

preprocessing steps given in Section 7.2.1, where u is the label of the BMA
class of p

u
which is unknown to the BMA classifier but can be any one of

BMA class labels i = 1, 2, . . . , c; where c is the total number of BMA classes
in the classifier. To classify p

u
, i.e., to recognize the class label u, the following

procedure is applied. First, the corresponding class mean q̃
i
is subtracted from

p
u

for all the BMA classes i = 1, 2, . . . , c to get

p′
i
= p

u
− q̃

i
, (7.8)

where p′
i

is a mean subtracted residual BMA vector for the candidate ith

BMA class. The BMA vector p′
i

is reconstructed from projections on the

computed set of eigenvectors Ei to capture its contents in the ith motion
artifact subspace defined by Ei in the prior training as

p̃′
i
= (EiE

T
i )p′

i
, (7.9)

where p̃′
i

is the reconstructed ith motion artifact.

A measure of error in reconstruction in ith motion artifact is denoted by
error(i) and defined as

error(i) = |p̃′
i
− p′

i
|2. (7.10)

To recognize the BMA class of the ECG beat, u is assigned the class label
from i = 1, 2, . . . , c for which the error in reconstruction is the minimum

u = arg min
i

error(i). (7.11)

The above derivation is valid when one is trying to classify motion artifacts
using the ECG signal for a single beat duration. However, one can have l
number of consecutive ECG beats during a particular BMA. The use of l beats
instead of a single beat can lead to a better classification accuracy. Hence, for
the BMA classifier, the given method of classification can be generalized for a
test sequence of l ECG beats {p}u = {p

u1
, p

u2
, . . . , p

ul
}, where p

uj
is jth test

ECG beat and u is the single label for all the test ECG beats in the sequence.
The error in reconstruction given in Eq. (7.10) for the test ECG beats p

uj
,

is denoted by errorj(i) for j = 1, 2, . . . , l in the given sequence. Finally, the
following measure of error is computed

error(i) =
l∑

j=1

errorj(i). (7.12)

The class label corresponds to i for which error(i) is minimum.
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7.2.5 Removal of Motion Artifacts

The classification procedure as derived above can also be applied to eliminate
motion artifacts in ECG due to body movements. The BMA class for an ECG
beat under test is recognized by the BMA classifier and the corresponding
artifact components are removed. Let p

i
be an ECG beat where i is the rec-

ognized BMA class, and the set of eigenvectors Ei represents the artifacts in
p

i
due to the recognized BMA. For artifact removal, the ECG beat is recon-

structed by removing the components of the corresponding mean subtracted
observation p′

i
= p

i
− q̃

i
, in the artifact subspace spanned by Ei as

p̃
i
= p

i
− (EiE

T
i )p′

i
, (7.13)

where q̃
i
is the class mean of the recognized BMA class as defined in Eq. (7.5)

and p̃
i

is the reconstructed ECG beat. We expect such a signal to be more
useful to clinicians. We demonstrate this by analyzing this signal to obtain
more accurate results in the detection of P and T waves. This is given in
Section 7.4.1.

7.3 Parametric classification

In the previous section we have discussed nonparametric classification of BMA
from the ambulatory ECG signal. In this section we provide a very differ-
ent approach of BMA classification. The parametric, supervised classification
technique is based on hidden Markov models (HMM). Here we overcome some
of the limitations in using the PCA-based technique discussed in the previous
section. The ECG beat alignment procedure required in the PCA-based tech-
nique can distort the motion artifact signal if there is a significant variation in
the heart rate. Here we prevent this situation by proposing an adaptive filter
as a preprocessing step for separating the motion artifact signal from the ECG
signal. The derived motion artifact signal is then processed further for clas-
sification of various types of BMA. The classification of BMA is performed
using different HMMs for different BMA classes. Like the previously pro-
posed PCA-based technique, this method is also a supervised learning based
classification method. However, since the parameters of the HMM model are
estimated from the training signals, the method is a parametric classification
technique as opposed to the PCA-based method which is a non-parametric
classification technique. At the end of this chapter we compare the BMA
classification results obtained using both the methods. It is noted that the
HMM-based method, though computationally a bit more expensive, outper-
forms the PCA-based method. However, this is predominantly a classification
scheme as opposed to the PCA-based method which is a subspace based re-
construction scheme where artifact removal is obtained as a by-product. For
the HMM-based method, once a BMA is recognized, the corresponding PCA
for the class should be used if noise removal is required.
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In the PCA-based method different sets of principal components and the
mean cardiac cycle are computed from the training data to represent the cor-
responding BMA classes. The PCA-based method provides a good dimension-
ality reduction and can be applied even when only a single-lead ECG signal
is available. However, the PCA-based method requires alignment of cardiac
features for separation of cardiac and motion artifact signal subspaces. The
problem of alignment is partially solved by resampling of the ECG beats in
accordance with the heart rate. However, the resampling process introduces
artifacts in the QRS complex and distortion in the spectra of the motion ar-
tifact signal. Since the cardiac cycle in PCA is computed from the average of
time-warped ECG beats, the artifacts caused due to resampling of the QRS
complexes, also affect this estimate. The severity of the distortion is propor-
tional to the amount of resampling, which is determined by the variability
of the heart rate. Due to this reason the method is restricted to the cases
where the heart rate variability in the individual BMA class is not significant.
Therefore, it is necessary to devise a new method for BMA recognition, in
which this kinds of distortion can be prevented.

To circumvent the problems due to resampling, we separate the motion
artifact signal from the ECG initially using an adaptive filter. This is done
in order to suppress any cardiac signal components which are common in all
types of BMA and which may overwhelm the modeling effort by the HMM,
and hence may not help in the BMA classification. We assume that since
each BMA is performed in a different manner the spectral features of the
motion artifact signal will exhibit some specific kind of temporal behavior.
If this assumption is true then the specific temporal characteristic can be
modeled using an HMM for each individual BMA class. The time-localized
features derived from spectral energy of the motion artifact signals can be
computed for each specific BMA class using Gabor filters and they will be
simply referred to as Gabor features from here on. The details of computing
the Gabor features from the motion artifact signals will be explained later in
this chapter.

We explore the feasibility of BMA recognition using HMM, which is con-
sidered here also due to its inherent temporality [24, 106]. For this purpose,
parameters of an HMM for each BMA class will be determined by using a
supervised learning approach, from the Gabor features of the corresponding
motion artifact signals reserved for training. The parameters of an individual
HMM are initialized by random choice and then updated for maximizing the
likelihood of the data from the corresponding BMA class during this train-
ing. After the training, all the HMMs with known parameters will be used
for calculating likelihood of each of the data provided for testing. The BMA
class of the test data is recognized based on the maximum likelihood criterion
over all the trained HMMs. The details of the implementation of the adaptive
filter, Gabor feature extraction and the HMM-based classification method are
provided in the following subsections.
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7.3.1 Pre-processing

The ECG signal acquired during a specific BMA is contaminated by the in-
duced motion artifact signals. Preprocessing is required to separate the motion
artifact signals from the composite ECG recordings. This is required so that
the HMM can be trained on the artifact signal alone and the training is not
overwhelmed by the dominant cardiac signal. We use an adaptive filter that
is conceptually similar to the adaptive recurrent filter (ARF) given in [130]
for cancellation of motion artifacts.

In [130], an ARF is provided to obtain the impulse response w of the
desired signal spanning over a fixed length M0. In this case the desired signal
is the recurring cardiac cycle (P-QRS-T complex) in the ECG signal which
should be estimated by the filter impulse response w = [w1 w2 · · · wM0

]T .
An impulse train is used as an input to the ARF, in which an impulse (unit
sample) occurs at a specified point of each cardiac cycle (ECG beat). This
specific point should preferably be at the starting of the ECG beat. This can
be determined from the location of the R peak in the particular ECG beat.
The length of the filter should be the same as the length of the ECG beat in
order to estimate the complete cardiac cycle. The kth filter coefficient wk is
adaptively modified by a least mean squares (LMS) algorithm at the incidence
of the kth sample of the current cardiac cycle based on the error between the
kth sample and the filter output.

Though the ARF, given in [130] is able to capture the cardiac cycle effec-
tively, it is sensitive to the time synchronization of the impulses at the specified
starting points of the cardiac cycles. Since the starting point is determined
with respect to the R peak of the cardiac cycle the method is very sensitive
to any error in locating the R peaks, which is likely to occur in presence of
noise.
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Fig. 7.2. A block diagram of the adaptive filter inspired by the ARF, given in [130].

Here in order to estimate the cardiac cycle more robustly we use a con-
ventional adaptive filter [141] in which, as opposed to the ARF, all the filter
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coefficients w = [w1 w2 · · · wN ]T are adaptively modified simultaneously at
every sample. A block diagram of the adaptive filter is given in Fig. 7.2. A
reference signal rs(n) is synthesized from a noise free ECG beat. This noise
free ECG beat is acquired while the subject is in a sedentary condition. Next,
the reference beat length is equalized with the current ECG beat length r(n)
such that the R peak positions of both the beats are perfectly aligned. This
time synchronization of the R peaks of both the signals is performed by the
synthesis block based on the R peak locations detected in the ambulatory
ECG signal r(n) using the R peak detector block. Thus the synthesized refer-
ence signal rs(n) exhibits the same heart rate as that of the ambulatory ECG
signal r(n) and the R peaks of both the signals are aligned. The coefficients
of adaptive filter w = [w1 w2 · · · wN ]T are updated by the LMS algorithm
given in [141] using the error signal e(n) computed as the difference between
the desired signal r(n) and the filtered signal y(n). The weights at nth instant
are updated using the error e(n) = r(n) − y(n) as

wn+1 = wn + µe(n)xn, (7.14)

where xn = [rs(n − N + 1) rs(n − N + 2) · · · rs(n)]T is an input vector
to the filter at nth instant, µ is a parameter controlling the adaptation and
convergence rate of the LMS algorithm, and N is the length of the filter.
After the convergence, the adaptively filtered signal y(n) estimates the desired
cardiac signal component of the acquired ambulatory ECG signal r(n) and
the error signal e(n) approximates the motion artifact signal s(n).

It may be noted that for all the BMAs considered in this experiment,
the quality of the acquired ECG signals from lead-II, despite the presence
of motion artifacts, was such that it allowed a reliable detection of the R
peak using the Pan-Tompkins algorithm [96]. Fig. 7.3 illustrates the cleaning
of ECG signal acquired during a twisting at waist activity performed by a
subject. The acquired ECG signal is depicted in Fig. 7.3(a). The cleaned
ECG signals by the given adaptive filter and the ARF discussed in [130] are
shown in Fig. 7.3(b) and Fig. 7.3(c), respectively. The filtered ECG signals are
representatives of the cardiac signal component of the acquired ECG signal
which is contaminated by the motion artifact. The P-QRS-T complex is clean
and clearly visible in both the filtered ECG signal. The signal obtained by the
adaptive filter has the P-QRS-T complex similar to that obtained by the ARF
method [130]. Moreover, the length of the P-QRS-T complex is not required
to be fixed in the given adaptive filter. Therefore, it can handle variation in
the heart rate in an automated manner. Thus we obtain a good estimate of the
cardiac signal component from an ambulatory ECG signal contaminated by
motion artifact. However, the quality of the signal has not yet been examined
for its use in clinical purposes. The filtering is performed just for obtaining
the motion artifact signal s(n) for further analysis of ambulation in this study.
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(a)

(c)

(b)

Fig. 7.3. Illustration of cleaning of ECG signal. (a) Original ECG signal while
twisting at waist, computed ECG signal obtained with (b) the scheme of using noise
free ECG beat reference, and (c) the ARF method in [130].

7.3.2 Feature Extraction

While preprocessing, an adaptive filter for obtaining the motion artifact signal
s(n) from the acquired ECG during a BMA is discussed. Since we are plan-
ning to use temporal relations among time localized frequency features for the
modeling, the motion artifact signal s(n) is analyzed into various subbands
using Gabor filters. Gabor transform is known to have good time-frequency lo-
calization properties [36]. The different, equally spaced frequency components
of the motion artifact signal s(n) are computed by

ŝl(n) = e−α2(n/fs)2e(j2πnlf0/fs) ∗ s(n), (7.15)

where ∗ is convolution operator, fs is sampling frequency, α, and f0 are con-
stant “sharpness” and “frequency” parameters [36], respectively, ŝl(n) is a
component of the motion artifact signal s(n) and l is the index of a frequency
component or subband. The envelopes of the impulse responses of the Gabor
filters used for first three subbands are depicted in Fig. 7.4. The impulse re-
sponses span over 2 seconds and the center frequency lf0 of the lth subband
filter increases proportionately to the value of index l, i.e., 1Hz, 2Hz and 3Hz,
respectively for l= 1, 2 and 3 and f0 = 1Hz.

Since the energies of the motion artifact signal are concentrated in 1-10Hz
band, the number of subbands is selected through a suitable choice L to cover
this frequency band, i. e., l = 1, 2, . . . , L. An estimate of the energy in each of
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Fig. 7.4. Envelopes of the impulse responses of the Gabor filters used for first three
subbands, l=1, 2 and 3.

these L frequency components ŝl(n) is computed by a moving average of the
windowed function as

gl(n) =
1

W + 1

n+W/2∑

k=n−W/2

|ŝl(k)|2, (7.16)

where W is the width of the moving window. An example of the energy
features for the analyzed signals in first four subbands is depicted in Fig. 7.5.
It is noted that the signal power drops down with the increasing number of
the subband.

For activity recognition, the feature vector G(n) = [g1(n) g2(n) . . . gL(n)]T

is formed by L frequency components. This feature corresponds to the prop-
erties of the artifact signal at a given time instant. In order to consider the
properties over a duration of N0 consecutive samples, we put them as subse-
quent columns and construct the corresponding feature matrix

F (n,N0) = [G(n − N0 + 1) G(n − N0 + 2) · · · G(n)], (7.17)

computed over N0 contiguous samples of the motion artifact signal s(n). This
is used for the training and classification of BMA classes using an HMM-based
technique. The dimension of the feature matrix F (n,N0) is L × N0.
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Fig. 7.5. Gabor feature signals gl(n), for first four subbands, l=1, 2, 3 and 4.

7.3.3 Hidden Markov Model (HMM) and Training

We provide an HMM-based classification technique for BMA recognition. In
this technique, each of the BMA classes will be represented by an HMM. Since
we are exploring the feasibility of using the HMM for BMA classification using
the Gabor features derived in the previous section, we use the standard (also
called fully connected or ergodic) HMM with finite mixtures of continuous
observation probability density functions as given in [106]. To define the HMM,
the number of states and the number of components in the mixture in each
of the states are to be specified along with the associated parameters. For
simplicity, we choose the same number of states in all the HMMs used for
representing various BMA classes. Similarly, we choose the same number of
mixture components for all the states. Let us denote the number of states in
any HMM as Q and the number of mixture components in any state of the
HMM as M. The parameters of the HMM are:

• State transition probability A = {aij}, 1 ≤ i ≤ Q, 1 ≤ j ≤ Q, where aij

is the state transition probability from ith state to jth state.
• Prior state probability distribution π = {πi}, 1 ≤ i ≤ Q, where πi is the

probability of the initial state of the system to be the ith state Si.
• Observation probability distribution B = {bj}, 1 ≤ j ≤ Q, where bj is

a probability distribution for the observations when the system is in jth

state. The observation probability distribution for the jth state bj is mod-
eled by a finite number of mixture components of continuous observa-
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tion probability density functions with the mixture weight coefficients cjm,
mean vectors ujm and covariance matrices Σjm for mth mixture.

A finite mixture takes the form of the observation probability density bj

for the jth state

bj(G(n)) =
M∑

m=1

cjmN (G(n)|ujm, Σjm), (7.18)

where G(n) is the observation being modeled, N is a Gaussian probability
density with mean vector ujm and covariance matrix Σjm for the mth mix-
ture component, and cjm are mixture weight coefficients. The mixture weight
coefficients cjm, satisfy the conditions:

1.
∑M

m=1 cjm = 1, 1 ≤ j ≤ Q, and
2. cjm ≥ 0, 1 ≤ j ≤ Q, 1 ≤ m ≤ M.

In a short form the model is specified as

Λ = (π,A,B), (7.19)

where π, A, and B are model parameters as defined above.
Let us define γn(i), the probability of being in state Si at an instant n given

the model Λ and the observation sequence F (n,N0) defined in Eq. (7.17)

γn(i) = P (qn = Si|F (n,N0), Λ), (7.20)

where qn is a variable indicating state at the instant n. Therefore, the prob-
ability of being in state Si at instant n with the mth mixture component
accounting for the observation G(n)

γn(i,m) = γn(i)
cjmN (G(n)|ujm, Σjm)

∑M

m=1 cjmN (G(n)|ujm, Σjm)
. (7.21)

Let us define ζn(i, j), the probability of being in state Si at instant n and in
state Sj at instant n + 1, given the model Λ and the observation sequence
F (n,N0)

ζn(i, j) = P (qn = Si, qn+1 = Sj |F (n,N0), Λ). (7.22)

It has been shown by Baum et al. [13] that the probabilities γn(i), γn(i,m)
and ζn(i, j) as defined in equations (7.20), (7.21) and (7.22), respectively, can
be used to reestimate the model parameters from the observation sequence
F (n,N0) and the initial model Λ. They have shown that the reestimated model
parameters define a new model Λ = (π,A,B) which can either be the same as
the initial model Λ or can have greater likelihood of the observation sequence
F (n,N0), i. e., P (F (n,N0)|Λ) ≥ P (F (n,N0)|Λ). The model parameters can
be updated by iteratively replacing the initial model Λ by the new model
Λ to increase the likelihood of the given observation sequence F (n,N0) till
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a limiting point at which there is no significant gain in the likelihood. This
procedure of parameter reestimation from a given observation sequence and
the initial model is known as Baum-Welch reestimation method [106]. The
reestimation formula due to this method for prior state probability πi, state
transition probability aij and the mixture density parameters cjm, ujm and
Σjm are

πi = γ1(i), (7.23)

aij =

∑N0−1
n=1 ζn(i, j)

∑N0−1
n=1

∑M

m=1 γn(i,m)
, (7.24)

cjm =

∑N0

n=1 γn(j,m)
∑N0

n=1

∑M

m=1 γn(j,m)
, (7.25)

ujm =

∑N0

n=1 γn(j,m) · G(n)
∑N0

n=1

∑M

m=1 γn(j,m)
, (7.26)

Σjm =

∑N0

n=1 γn(j,m) · (G(n) − ujm)(G(n) − ujm)T

∑N0

n=1

∑M

m=1 γn(j,m)
. (7.27)

Following the details of HMM provided above, we represent each BMA
class through an HMM for the classification purpose. Let us add a subscript
k to the notations as defined above to define the HMM for kth BMA class
as Λk = (πk, Ak, Bk). If a total of c different BMA classes are used to form
a classifier then 1 ≤ k ≤ c. A part of the set of feature sequences F (n,N0)
defined in Section 7.3.2 for each BMA is reserved for training purpose. For kth

BMA class these training sequences will be indicated as Fk(n,N0). We train
the HMM representing kth BMA class using the training data Fk(n,N0). In
this training, the parameters of all the HMM Λk, 1 ≤ k ≤ c are derived in
order to maximize the likelihood of their corresponding training sequences
Fk(n,N0), 1 ≤ k ≤ c using the Baum-Welch method [106] described above

Λk = arg max
Λ

P (Fk(n,N0)|Λ), 1 ≤ k ≤ c. (7.28)

The parameters Λk, 1 ≤ k ≤ c, obtained after this supervised training will be
used for classification of feature sequences reserved for the testing purpose.

7.3.4 Activity Classification

We have seen that in a BMA classifier each of the specified BMA is repre-
sented by an HMM having its parameters obtained by the given supervised
training using the features from the motion artifact signal. Let c be the num-
ber of models corresponding to c different BMA classes and a feature sequence
F (n,N0) is provided for testing, which belongs to any of the c BMA classes
indexed by k = 1, 2, . . . , c. It is possible to find the likelihood of the given test
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sequence F (n,N0) for being in any of the c BMA classes. Let us denote the
likelihood of F (n,N0) computed using the kth model corresponding to the kth

BMA class, with parameters Λk = (πk, Ak, Bk) as P (F (n,N0)|Λk). The BMA
class can be recognized using the criterion of the maximum likelihood

u = arg max
k, 1≤k≤c

P (F (n,N0)|Λk), (7.29)

where u is the label of the recognized BMA class out of the possible k =
1, 2, . . . , c indices. The given test sequence is now classified to an appropriate
BMA class.

7.4 Experimental Results

7.4.1 PCA-based Recognition

The collected ECG data from the subjects is analyzed using the PCA-based
technique. The results of the PCA-based analysis are presented here in this
section. First, the results of BMA classification in terms of classification rates,
accuracy and false alarms are presented. This includes single subject classifiers
with subject specific training and multiple subjects classifiers with combined
training. Different classifiers are formed using different combinations of BMA
classes that we will explain in this section. In the second part, we present an
example of motion artifact removal using the class specific PCA-based filtering
of the ECG signal. The improvement due to the PCA-based filtering is shown
through better localization of detected P and T waves.

BMA Classification

A uniform length of 160 sample point duration is chosen for each ECG beat
during the preprocessing steps. The BMA label (ground truth) is known for
each of the ECG beats collected. The data set is divided into two parts: one for
training the classifiers and the other for classifier testing purposes. The exact
details of the population size for each of these two parts for various BMAs are
given in Table 7.1. The column ‘Single Subject’ corresponds to the case where
the classifier is trained for a particular subject (subject number one in our
experiment) and tested on the same subject. The last column corresponds to
the case when the classifier is both trained and tested for a collective pool of
subjects and not specific for a single subject. The known BMA labels in the
test data are used for performance evaluation of the classifier testing and are
not available to the classifier itself. The classification test is performed on the
sequences of 30 consecutive ECG beats (30×160 sample points).

The performance is evaluated based on two parameters: accuracy (PT )
defined as

PT = Ntrue/(Ntrue + Nmissed), (7.30)
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Table 7.1. Details of number of ECG beat streams used for training and testing of
a particular BMA.

Body movement Single Subject Multiple Subjects
activity training testing training testing

Sitting still 289 578 2927 5854
Left arm 227 454 2336 4672
Right arm 278 557 2278 4556
Both arms 224 449 1586 3112
Walking 583 1167 4120 8240
Twisting 355 711 2798 5597
Climbing down 268 536 1407 2814
Climbing up 344 688 1879 3759

Total 2568 5140 19331 38604

and false detection rates (PF ) defined as

PF = Nfalse/(Ntrue + Nfalse), (7.31)

where Ntrue is the number of true detections, Nmissed is the number of missed
detections and Nfalse is the number of false detections.

We use the following example to explain this. A classifier has three classes
namely A1, A2 and A3 and the corresponding number of test signals recorded
are 100, 90 and 80. Now, if the classifier detects 95 test signals as class A1 and
10 out of these 95 detections, actually belong to either class A2 or class A3
rather than class A1, then Nfalse = 10, Ntrue = 95 − 10 = 85 and Nmissed =
100 − 85 = 15.

A hierarchical tree structure of BMA classes is shown in Fig. 7.6. There
are five BMA classes in the top layer: (1) sitting still, (2) arm movement,
(3) walking and climbing down stairs (W&CD), (4) climbing upstairs and (5)
twisting movement at waist. The arm movement is a combined class of three
separate movements of (2a) left arm, (2b) right arm and (2c) both arms. Sim-
ilarly, W&CD is a combination of two BMA subclasses: (3a) walking and (3b)
climbing down stairs. These BMA subclasses, shown in the second layer of
the graph, demonstrate partial correlation among the corresponding motion
artifacts. As a result these subclasses are subject to more false detections.
To study this aspect of BMA classification in ECG signals, we construct five
different types of BMA classifiers (Table 7.2) formed by various possible com-
binations of BMA classes/subclasses (Fig. 7.6).

Since an artifact subspace in the given scheme of BMA classification is
represented by a corresponding set of eigenvectors, the performance of the
classifiers is studied against the number of eigenvectors used to represent
the subspace. Fig. 7.7 shows the performances of the classifiers I-V that are
trained and tested on data collected from a single subject. Here the training
is very specific to an individual subject and the performance shown here is
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Fig. 7.6. Various BMAs and possible class formation by combining two or more
BMAs into a single class. ( c©2007 IEEE)

Table 7.2. Five different classifiers for subject specific training with various com-
binations of BMA classes / subclasses in Fig. 7.6. The corresponding classifiers for
multiple subjects are VI to X.

Classifier BMA
Subject specific Subject independent

I VI 1, 2, 3 and 4

II VII 1, 2, 3a, 3b and 4

III VIII 1, 2a, 2b, 2c, 3 and 4

IV IX 1, 2a, 2b, 2c, 3a, 3b and 4

V X 1, 2a, 2b, 2c, 3a, 3b, 4 and 5

also specific to the same subject. It is noted that the accuracy improves as
the number of eigenvectors is increased from one to six, which results in a
wider span of the artifact subspace of an individual BMA class. However, the
performance saturates with further increase in the number of eigenvectors,
since this results in overlapping of the spanned subspaces for different classes.

Due to possible correlation among the eigenfunctions of the specified sub-
classes, there is a drop in accuracy with increasing number of classes. The
PT value for classifier I (4 classes) is 98%, whereas for classifier V (8 classes)
PT = 85%. Thus it is possible to accurately recognize the BMA from the
ambulatory ECG itself, but the degree of accuracy depends on separability of
the BMAs.

The complete performances of the above BMA classifiers I, II, III and IV
are presented in Fig. 7.8(a), 7.8(b), 7.8(c) and 7.8(d), respectively, showing
the confusion matrix for all classes. In all cases six eigenvectors are used for
the classification of the data collected from a single subject. In classifier I
there are four BMA classes: 1, 2, 3, and 4 (Table 7.2). The accuracy PT of
the classifier I is 98% with a false detection rate PF =1.4%. This suggests that
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Fig. 7.7. Classification accuracy as a function of number of eigenvectors for the
BMA classifiers: I, II, III, IV and V. ( c©2007 IEEE)

all these four classes of BMAs are very well separable using the PCA-based
classification technique.

In BMA classifier II, there are five BMA classes: 1, 2, 3a, 3b, and 4. Here,
the activities of walking (3a) and climbing down (3b) stairs are recognized as
separate classes. However, there is a moderate amount of confusion between
these two classes: 3a and 3b, as shown in Fig. 7.8(b), about 18% of total
known labels of climbing down stairs are misclassified as walking and 4% of
walking labels are misclassified as climbing down stairs. For these two classes,
the average PT = 90% and PF = 8.5%. The average performance for classifier
II is PT = 96% and PF = 4%. Further studies will be required to determine
if there is a fundamental limitation in separating walking and climbing down.
A possible explanation suggests that the corresponding gaits for these two
BMAs differ only in the lower limbs and the upper body gait remains similar
during both the activities. It is only the upper body gait that matters in
generating a particular type of motion artifact.

In BMA classifier III there are six BMA classes: 1, 2a, 2b, 2c, 3, and
4. Here, the movement of left arm (2a), right arm (2b) and both arms (2c)
are recognized as separate classes. However, a significant level of confusion
exists between these three classes as shown in Fig. 7.8(c). On average, 25%
of total known labels of both the classes 2b and 2c are misclassified as 2a,
and 12% of total known labels of the 2b are misclassified as 2c. For these
three classes, average PT is 77% and PF is 17%. The average performance
for classifier III is PT = 91% and PF = 7%. This suggests that, for the given
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Fig. 7.8. Confusion matrices for BMA detection for classifiers (a) I, (b) II, (c) III
and (d) IV. The horizontal axes in each case represent known and recognized BMA
classes. The vertical bars represent the classification accuracy. ( c©2007 IEEE)
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lead-II configuration, any movement of the arms (be it left or right) does affect
the ECG signal in a similar manner which reduces the differentiability of the
corresponding BMAs.

In BMA classifier IV, there are seven BMA classes: 1, 2a, 2b, 2c, 3a, 3b, and
4. Here the BMA (2a) left arm, (2b) right arm and (2c) both arms movement,
(3a) walking and (3b) climbing down stairs are recognized as separate BMA
classes. The notable aspect about the classifier IV is that all the seven different
BMA classes are recognized by a single classifier. The confusion levels between
classes are similar to that of classifier III (arm movements) and classifier II
(walking and climbing down stairs). The classifier IV demonstrates PT = 88%
and PF = 10%, which is worse than the previous cases, due to the larger
number of classes considered.

In BMA classifier V, there are now eight BMA classes: 1, 2a, 2b, 2c, 3a, 3b,
4 and 5. As compared to the classifier IV, the performance under the BMA
subclasses 2a, 2b and 2c is further deteriorated since a new BMA class of
twisting at waist introduced here also involves arm movement. The classifier
V has PT = 84% and PF = 13%.

The results given so far (Fig. 7.8) correspond to analyzing the performance
of the classifiers on a single subject (subject number one in this case). We now
compute the inter-subject variability of the obtained results by computing the
classification rates for each classifier trained and tested on individual subjects.
This is given in Table 7.3 for the classifiers I-V. It can be seen from the
table that the mean accuracy (PT ) and mean false detection rate (PF ) for
these classifiers display similar behaviors as discussed earlier. The standard
deviation for accuracy is quite low. However, the standard deviation for the
false detection rates appears to be on a slightly higher side.

Table 7.3. Inter-subject variability of classification rates (in %) of the subject-
specific classifiers over the entire subject population.

Classifier Accuracy (PT ) False detection rate (PF )
mean std. dev. mean std. dev.

I 92.44 6.71 5.95 5.38

II 86.81 8.38 9.78 6.64

III 79.85 7.11 15.23 5.52

IV 73.98 8.97 19.06 6.53

V 72.79 7.51 20.20 6.08

The results presented above were for the classifiers I to V, tested with
subject specific training. The subject specific training allowed us to shield
the classifier from possible inter-personal variability. Hence we now repeat the
experiments where principal components are learnt not from an individual
subject, but from all subjects available with us. The corresponding classifiers
VI to X (see Table 7.2) are trained on 23 different subjects to understand the
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impact of inter-personal variability on classifier performance. As mentioned
earlier, one third of the available ECG beats from each subject but pooled
together to form a common pool of training data have been used for training
purposes. The accuracy of classification for various choices of the number of
eigenvectors is plotted for the classifiers VI to IX in Fig. 7.9. As compared to
the training over a single subject the required number of eigenvectors is much
higher and the maximum PT is only 85%, as expected. The confusion matri-
ces of the classifiers VI to IX using 19 eigenvectors are plotted in Fig. 7.10.
The trends of confusions among certain classes, i.e. arm movement classes or
walking and climbing down stairs, are similar to that in the subject specific
classifiers.
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Fig. 7.9. Accuracy of the combined (multi-subject) classifiers as a function of num-
ber of eigenvectors used to represent the artifacts when the data is collected from
different subjects. Here the classifiers are VI, VII, VIII and IX. ( c©2007 IEEE)

To study further the effect of inter-personal variation in ECG data, a new
classifier, called classifier XI with four BMA classes 1, 2, 3, and 4 is trained on
22 subjects out of the total 23 subjects, leaving each time one designated test
subject. This is equivalent to employing a leave-one-out testing method. The
performance of classifier X is PT (max.)= 72% and PF (min.)= 26%. Thus,
it appears that the error signal generated due to inter-personal variation is
significant. It is therefore advisable that the classifier be customized for a
given user in order to achieve the highest accuracy. However, this should not
be a cause of alarm as the W-ECG system is meant to monitor only a specific
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Fig. 7.10. Confusion matrices for BMA detection for multi-subject classifiers (a)
VI, (b) VII, (c) VIII and (d) IX. The horizontal axes in each case represent known
and recognized BMA classes.



110 7 Activity Recognition

subject at a given time. Hence it should be possible to retrain the classifier
for each subject.

Detection of P and T Waves in Presence of BMA

Fig. 7.11(a) shows a sequence of recorded ECG beats in presence of BMA
(walking) prior to artifact removal. In Fig. 7.11(b) the component due to
motion artifacts as derived by the class specific PCA-based method using
the classifier III is shown. In Fig. 7.11(c) the reconstructed ECG signal after
subtracting the artifact signal is shown. The ECG signal after the removal of
motion artifacts is quite clean even though this has been accomplished with
a single lead W-ECG.

(a)

(b)

(c)

Fig. 7.11. Illustration of artifact removal from ambulatory ECG using the class
specific PCA-based filtering. (a) Original ECG signal before any artifact removal, (b)
artifact signal derived by the class specific PCA-based method, and (c) reconstructed
ECG signal after subtracting the artifact signal. ( c©2007 IEEE)

This artifact removal procedure helps to improve the quality of analysis of
ECG signal in presence of BMA as demonstrated here in the detection of P
and T waves in the collected ECG data. The P wave is a small and smooth
peak that occurs just before the QRS complex due to atrial activity of the
heart and the T wave occurs following the QRS complex due to the ventric-
ular activity. In order to detect the P, QRS complex and T waves, we use a
combination of two existing techniques in the literature [63, 66, 132]. First,
the ECG signal is smoothed by a low-pass filter with a 3dB cut-off at 12Hz as
recommended in [66] for P and T wave detection. Then a morphological oper-
ator for detecting P and T waves is applied which is inspired by the method
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of QRS detection in [132]. Since the R peak position is in the middle, P and T
waves are located by searching for maxima in the appropriate windows before
and after the R peak position in the output of the morphological filter.

The histograms representing the locations of P and T waves detected in the
ECG signal from a particular subject (a part of the ECG is shown in Fig. 7.11),
before and after artifact removal, are shown respectively in Fig. 7.12(a) and
7.12(b). It may be noted that since the input beats have already been resam-
pled to have the same number of samples, the samples may correspond to
different timings based on the resampling factor used earlier. In order to plot
them on an actual time unit, the locations of the detected P and T waves
are shown after correcting for the resampling operation. In Fig. 7.12(a), the
histogram without the artifact removal is broadly spread out (standard de-
viations of 46.4ms and 29.8ms, respectively, for P and T locations) while in
Fig. 7.12(b) the histogram is much narrower (standard deviations of 8ms and
11.9ms, respectively, for P and T locations). It is noted that a 12Hz pre-
filtering is applied to the ECG signal in both the cases prior to detection of P
and T waves. This shows that in the presence of BMA induced artifact, the
12Hz lowpass filter as suggested in [66] alone is not sufficient for the accurate
localization of P and T waves and the given artifact removal scheme improves
the quality of analysis.

7.4.2 HMM-based Recognition

Here we present the results of HMM-based BMA recognition from the am-
bulatory ECG signal. The ‘sitting still’ is considered here as a representative
class of the ECG data for which there in no BMA present and hence it is
free from any motion artifact. This signal is taken as the representative of the
reference signal while using the adaptive filter proposed earlier to estimate
the component due to the cardiac cycle in presence of motion artifact. The
methodology explained in the previous section is adopted for training vari-
ous BMA classifiers with different combinations of BMA classes as listed in
Table 7.2. Here we concentrate only on the subject specific cases only.

We use 80% of the available data for each individual subject for training
purposes, and the remaining 20% of the data is used for testing purposes.

First, we explore the HMM-based method for BMA recognition for testing
the accuracy of classification with subject specific training. The BMA clas-
sifiers I to V as described in Table 7.2 are trained using the data from an
individual subject. The following set of parameters is used in the feature ex-
traction step: α=1.5, f0=1Hz, L=10, and W=484 (equivalent to 2s of the data
length at fs=242Hz). The classifiers are trained using the appropriate number
of HMMs using the supervised learning method given in Section 7.3.3. The
number of states Q=4 and number of mixture components M=3 are chosen
for this experiment. The trained classifiers are used for recognition of BMA
from the test sequences collected from the same subject according to the tech-
nique given in Section 7.3.4. Here the length of each test sequences is chosen to
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Fig. 7.12. Histograms of location estimates of P and T waves with respect to the
location of R wave (a) when motion artifacts were present and (b) after artifact
removal. The horizontal axes represents actual time in seconds. ( c©2007 IEEE)
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be N0=1200 (approximately equivalent to 5 seconds of ECG recording). The
accuracy of classification PT is calculated using Eq. (7.30). This experiment of
the subject specific training is repeated for all subjects individually and with
the same parameter values as described above. The aggregate of confusion
matrices for classifiers I to IV, showing the accuracy of the classifier as well
as amount of misclassification to other classes over the actual vs. recognized
BMA classes are presented in Fig. 7.13 for these experiments for the subject
specific training. The confusion matrix for the classifier I with subject specific
training is shown in Fig 7.13(a). There are four BMA classes in the classifier I:
1. sitting still, 2. movements of arm(s), 3. walking on level floor and climbing
down on stair combined (W&CD), and 4. climbing up stairs. There are two
most significant confusions: 5.3% of ‘sitting still’ are recognized as movement
of arm(s) and 4.6% of climbing up stair are recognized as W&CD. Most of
the other confusions among the BMA classes are much less than 1%. The
aggregate accuracy of this classifier is 97.6%.

The confusion matrix for the classifier II with subject specific training is
shown in Fig 7.13(b). There are five BMA classes in the classifier II : 1. sitting
still, 2. movements of arm(s), 3a. walking on level floor, 3b. climbing down
on stair, and 4. climbing up stairs. Here the two BMA classes indicated as
3a and 3b, are separated as opposed to the classifier I in which they were
combined into W&CD class. The most significant confusion occurs at 5.6% of
the climbing down stairs being recognized as walking on level floor, which is
expected because of the similarity of the two BMAs. The aggregate accuracy
of this classifier is 97.1%.

The confusion matrix for the classifier III with subject specific training is
shown in Fig 7.13(c). There are six BMA classes in this classifier. Here three
BMA classes are indicated as 2a, 2b and 2c, corresponding to the movements
of left, right and both arm(s), respectively. Here 10% of each of the move-
ments of left and right arm are recognized as movements of both arms. Apart
from these, 10%, 3% and 6% of 2a, 2b and 2c, respectively, are recognized
as W&CD. The result shows a significant difficulty in recognizing movements
of left arm, right arm and both arms as three different classes. The aggre-
gate accuracy of the classifier III is 92.3% which is substantially less than the
previous two classifiers.

The confusion matrix for the classifier IV with subject specific training is
shown in Fig 7.13(d). There are seven BMA classes in the classifier IV. Here
the three movements of left, right and both arm(s) indicated as 2a, 2b and 2c,
respectively, are separated along with 3a and 3b BMA classes. The types of
confusions mentioned above for the classifiers II and III, are also seen in this
classifier, hence the accuracy drops to 90.5%. However, this can be considered
quite significant with a view of having the ability to classify so many BMAs
as different classes using a single-lead of ECG.

In order to explore the ability of the BMA recognition scheme to handle
a larger number of BMAs, we introduce one more class of twisting at waist
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Fig. 7.13. Confusion matrices for BMA recognition using HMM for classifiers (a)
I, (b) II, (c) III and (d) IV under subject specific training. The horizontal axes in
each case represent known and recognized BMA classes. The notation IV2b means
- class label 2b (right arm movement) for the classifier IV.
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activity. The classifier V has eight BMA classes including the previously con-
sidered seven different BMA classes. The accuracy of the classifier V is 88.6%.

Table 7.4. Accuracies of BMA classifiers I to V for a single subject with different
numbers of states and mixture components in HMM.

BMA accuracy (%)
Classifier Q = 3, Q = 3, Q = 4, Q = 4,

M = 3 M = 4 M = 3 M = 4

I 98.6 98.0 97.8 97.1

II 96.9 97.4 97.9 94.6

III 90.8 92.9 91.8 90.2

IV 92.2 91.5 89.8 88.9

V 91.9 90.2 89.1 89.8

Since we do not know exactly what are the best numbers of states and
mixture components to choose for the HMM in the classifiers, we have selected
the same combination of numbers of states and mixtures to represent each of
the BMA classes. We have tried four different such combinations, e.g., (Q = 3,
M = 3), (Q = 3, M = 4), (Q = 4, M = 3) and (Q = 4, M = 4), for all
the five classifiers I to V. The remaining parameters are all as specified above
for the subject specific classifiers I to V. The recognition accuracies for the
classifiers I to V for the four different combinations of (Q,M) are presented
in Table 7.4. We found that there in no further gain in terms of classification
accuracy with more number of states or mixture components.

To verify the ability of classifiers I to V for handling inter-personal vari-
ability, a combined training over multiple subjects is provided to the corre-
sponding multi-subject classifiers, VI to X. We train the classifiers using the
training data collected from all the subjects. With this combined training the
classifiers are tested against possible inter-personal variations in motion arti-
fact signals for the same BMA. We had carried out similar experiments for
PCA-based method also. The aggregate confusion matrices for the BMA clas-
sifiers VI to IX using HMM are shown in Fig. 7.14. Here also, like the subject
specific training, the confusion takes place among the BMA classes of move-
ments of left, right and both arm(s). Similarly, there are confusions taking
place among walking and climbing up/down stairs classes. The classifiers VI
to X for the combined subjects training have accuracies of 94%, 91.8%, 87%,
86.2% and 85%, respectively. It is observed, as in the previous case of PCA-
based BMA classification, that the HMM-based method performs better if
the subject specific training is provided. Though the accuracies obtained with
the combined training as compared to those with subject specific training are
on lower side, the deterioration in the HMM-based method is less than that
using the PCA-based method discussed in the previous section.
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Fig. 7.14. Confusion matrices for BMA recognition using HMM for classifiers (a)
VI, (b) VII, (c) VIII and (d) IX under combined training. The horizontal axes in
each case represent known and recognized BMA classes.
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In this chapter, we have discussed two techniques for BMA recognition
from the motion artifacts in the ECG signal. Now we compare the accuracy
of BMA classification for the HMM-based method with that of the PCA-based
method. The average accuracies obtained on the data set considered in this
experiment with the classifiers I to V are presented in Table 7.5 for both HMM-
based and PCA-based methods. It is observed that the HMM-based method
has higher accuracy of classification than that of the PCA-based method for
all classifiers I to V and in both the cases with subject specific training and
with combined training for all subjects. It is also noted that the standard
deviation in the accuracy across the different individual subjects in case of
subject specific training, is very small for the HMM-based method. Thus the
HMM-based method is more consistent over the entire subject population.
The comparison of accuracies with combined subjects training for both the
techniques shows that the HMM-based technique works very well even with
the inter-personal variations in the ECG. The HMM-based method is less
sensitive to the inter-personal variations and it can handle such variation very
well as opposed to the PCA-based method.

Table 7.5. Comparison of accuracies of BMA classifiers I to X for the subject specific
(I-V) and combined (VI-X) training for PCA and HMM based methods. Accuracy
for subject specific recognition is presented in terms of mean and standard deviation
across all subjects.

method accuracy BMA Classifier
(%) I II III IV V

HMM-based mean 97.1 96.7 91.8 89.9 88.0
subject specific std. dev. 2.0 2.3 0.7 1.0 1.7

PCA-based mean 93.7 88.8 82.5 77.4 75.1
subject specific std. dev. 6.5 9.2 3.9 8.9 7.8

VI VII VIII IX X

HMM-based mean 94.0 91.8 87.0 86.2 85.0
subjects combined

PCA-based mean 84.9 79.9 78.4 73.5 65.8
subjects combined

We have also analyzed the effect of the length of the test sequence F (n,N0)
on the BMA recognition using the HMM-based classifiers. For all the classi-
fiers I to V we find that the recognition accuracy improves with the increasing
length of the test input from N0=300 samples (≈1.24s) to N0=1200 samples
(≈4.96s). The mean accuracy across the subjects along with the vertical bars
indicating the standard deviation versus the length of the test sequence is
plotted in Fig. 7.15. In order to achieve a good accuracy of BMA classifica-
tion using the HMM-based method a reasonable choice of length of the test
sequence is found to be about 5s.



120 7 Activity Recognition

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
65

70

75

80

85

90

95

100

Length of test observation (seconds)

A
cc

ur
ac

y 
(%

)

I

II

III

IV

V

Fig. 7.15. Accuracy vs. length of the test sequence for the BMA classifiers I to
V. Height of the vertical bars at each of the coordinates indicates one standard
deviation above and below at that point. Five plots correspond to five different
classifiers I-V.

7.5 Discussion

In this chapter we have studied classifiability of various BMAs like sitting
still, movement of arms, walking and climbing stairs up and down, using the
motion artifacts present in ECG signals. It is observed that different BMAs
have different separations among them and this determines the accuracy of
classification. For example, while climbing up stairs is recognized with a good
accuracy (PT = 99%), there exists a moderate confusion between walking
and climbing down stairs and a significant confusion among the movements
of left, right and both arms. When we merge two overlapping classes such as
walking and climbing down stairs into a single BMA class, the performance
expectedly improves. It would be of interest to study the confusion level if the
pace of walking/climbing downstairs is increased. Similarly, confusion levels
in the case of vigorous arm movement will be of interest. Currently, we have
refrained from such activities that may impose stress on the heart, a condition
we wanted to preclude in this preliminary study on BMA recognition from
motion artifacts.
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The performance is the best when the classifier is provided subject specific
training, meaning that personal training is recommended rather than generic
training on multiple subjects.

In order to be able to use the given PCA-based method, we had to resort
to resampling of the ECG beats to match the dimensionality, which may
introduce certain artifacts in the QRS complex. Another possible option is
to do zero padding to match the dimension. However, this would introduce
artifacts in the signal representing BMA that is prevalent over the entire
beat duration. In order to avoid that we suggested the use of HMM-based
classification.

We have shown that the time localized spectral features of the motion
artifact signal can be used for BMA recognition. We have achieved better
recognition rates using the HMM-based method as compared to PCA-based
method. We have also given a scheme using an adaptive filter for separating
motion artifact signal from the ECG which can be used for the estimation of
the cardiac cycles in the ECG signal contaminated by the motion artifact. We
have found that a 5s long recording is ideal for BMA recognition. A smaller
length of the data results in a reduced accuracy, while a longer length of the
data will add to the system delay.

We have also experimented on the effect of varying the number of states
and mixture components for the HMM. However, a much more elaborate
evaluation is needed to ascertain what would be the correct HMM model for
classification purposes.

For the given supervised learning technique, the available ground truth is
in terms of labels that qualitatively describe activities (e.g. walking gently).
However, a more precise labeling of BMA in terms of speed and rigorousness is
likely to provide a better understanding of the impact of the resultant motion
artifacts. This may be achieved by attaching a network of motion sensors
to the body and recording the motion signals synchronously with the ECG
signal. In the next chapter we will study the impact of levels of BMA on
motion artifact generation quantitatively by using the ground truth from the
acceleration signals captured from the moving body parts.
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