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Preface

We live in a fast-paced world today and, very often, we do not even have
enough time for ourselves to recuperate fully after suffering from ailments.
We also suffer from many lifestyle diseases, inconveniencing us slowly and
silently. These are proving to be a big burden to our health care system.
Quite naturally, researchers in the health care sector are trying their best to
come up with technologies that provide help to those who would like to live
a normal life despite their health problems.

Pervasive health care in the area of cardiac abnormalities is perhaps the
most important one. One requires constant monitoring of the cardiac condition
of a subject who is known to have had difficulties earlier. Holter monitoring
had been one of the major steps in this direction, although it is not meant
to be a fully wearable yet pervasive system. Over the last decade, attempts
are being made to build a device which is truly wearable and provides various
pre- and post-processing facilities.

Electrocardiography is the simplest non-invasive method of collecting sig-
nal from the beating heart that provides extremely useful information to the
doctors. Hence ECG data collection is almost routine in any clinic dealing with
heart patients. The procedure is highly standardized and the recorder is well
calibrated so that any doctor anywhere in the world can interpret the data.
The protocol requires that the patient lies down and be completely immobile
so that skin to electrode contact is never disturbed. Any such disturbance will
produce spurious signals in the ECG data obliterating the true interpretation
by the doctor, making ECG presumably unsuitable for wearable applications.

Efforts have been made to improve the quality of ECG recorders. The
weight and size have come down drastically. Data storage and on-chip pro-
cessing power have improved manifold. The power consumption level has been
reduced substantially such that the battery life is now prolonged to several
days. The functionality now also includes wireless connectivity among others.
All these recent developments make the wearable ECG recorder an ideal can-
didate for 24×7 monitoring of cardiac patients trying to maintain an active
lifestyle.
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Notwithstanding above, various types of body movement activities, called
BMA in this monograph, continue to plague the usefulness of such recorders
due to the motion artifact it generates in the collected ECG data. The skin
stretches and contracts due to body movement, changing the contact resis-
tance at the electrode. Any change in skin humidity would also affect the re-
sistivity of the skin but it is not considered in this monograph. The recorded
signal is thus very different from the sedentary ECG when the subject is under
ambulation. Since the true ECG signal and the motion artifact overlap in the
spectrum, it is not possible to filter out these artifacts without affecting the
morphology of the ECG signal.

Is pervasive cardiac monitoring using W-ECG recorder at all feasible? This
is the key focus of this monograph. Although the industry focus has primarily
been in developing such recorders, the signal processing aspects of the corre-
sponding recordings have been mostly overlooked and the corresponding area
is still largely unexplored. Needless to say, the final utility of such devices
would depend on how useful are these signals to the clinicians.

We observe that most physical activities involve certain repetitive motions
of our muscles and hence there must be some structure to the motion artifact
signal which is superposed on the true cardiac signal. We ask the question
if such a structure can at all be discovered from the recorded ECG signal.
If it is so then that particular body movement can be recognized from the
recorded ambulatory ECG signal itself. If the structure of the artifact signal
is known for a given activity, this should also help us in cleaning the corrupted
ECG signal. Further, in order that the above statement makes sense to the
clinicians, there has to be some experimental validation that must bring out
explicit correlation between this structured noise or artifacts and the actual
motion (as measured by some device, say, an accelerometer) of the limb(s).
The primary aim of the monograph is to demonstrate through development
of appropriate signal processing techniques and experimental procedures that
it is, indeed, possible to develop a truely pervasive, W-ECG based, cardiac
monitoring system.

As mentioned earlier, the current state of research in this area of ambu-
latory ECG analysis is still in its infancy. A lot remains to be done before a
firm recommendation of the new technology can be made for absorption by
the health care industry. This book is meant to initiate the necessary dialog
among researchers and practicing engineers to carry the concept further.

Any technical document in the form of a book or a monograph may suffer
from the problem of being superfluous and unsubstantiated as there is very
little opportunity for complete reviewing by peers. In order to avoid such a
problem we made sure that the key concepts are first peer reviewed in the form
of publications in appropriate journals. The publications that overlap with the
contents of the book are given in the references [99, 100, 101, 102, 103]. We
have modified and enhanced them to suit the demand of this book. Needless to
say, the copyrights of various figures reproduced from our earlier publications
rest with the original publishers.



Preface IX

The book is addressed to a broad audience. It should be useful to both
practitioners and researchers in the area of biomedical engineering. We have
tried to make the book self-contained and hence there is no specific pre-
requisite. Any one with basic familiarity with digital signal processing and
linear algebra, will find the content quite readable. In order to bridge the gap
between hardware and algorithmic developments, we have included chapters
that specifically discuss the hardware aspects and the corresponding calibra-
tion issues. We have invited our colleagues who have actually developed such
a hardware to write a chapter on hardware details. This particular aspect
should be specifically useful to the practitioners in technology development.

We hope that the readers will find the book useful. We welcome comments
and suggestions from readers.

Mumbai Subhasis Chaudhuri
March 2009 Tanmay Pawar

Siddhartha Duttagupta
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1

Introduction

A surface electrocardiogram (ECG) is a plot of surface bio-potential caused
due to electrical activity of the heart. It is a noninvasive tool widely used for
many years for basic cardiac monitoring in a clinical set-up. With advances
in technology, the ECG recording equipment are available in a smaller form-
factor with some useful features like digital storage and wireless transmission
of the recorded signals. Due to this improvement it is now practically possible
to develop wearable ECG equipment for cardiac monitoring in ambulatory
conditions. In this chapter we provide some background on electrocardiogram
(ECG) signal and the relevant topics in the work related to analysis of ambula-
tory ECG signal. A brief summary on electrocardiogram (ECG), a discussion
on a distinct set of artifacts in ECG signal, challenges in analysis of ECG
due to the motion artifacts, a mathematical model of ambulatory ECG sig-
nal adopted in this work, and a tour of the monograph are given here in the
subsequent sections.

1.1 Basics of Electrocardiogram (ECG)

A surface electrocardiogram (ECG) is a temporally evolving bio-potential
signal caused due to the electrical activity of the cardiac muscles of the heart.
This signal, called ECG, is recorded from the body surface itself by placing
Ag/AgCl electrodes (for making electrical contacts with the skin surface) at
specific locations without requiring any invasion. A human heart under normal
conditions beats 72 times per minute. Under normal conditions, during every
beat the cardiac muscles go through specifically ordered electrical activities
which are distinctly identifiable from the patterns in the ECG signal. Thus
the ECG signal is very important in cardiac monitoring. Moreover, it is the
most simple, non-invasive and cost effective method and hence it is being used
as a primary tool for cardiac monitoring.

Many types of cardiac disorders can be detected from the patterns in the
ECG signal, in particular, those due to improper electric conduction through

1
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damaged cardiac muscles. Some of the abnormal patterns in the ECG sig-
nal can be visually identified by a qualified professional and related to the
damages in certain region of the heart. It is thus required to analyze signals
from different leads of the ECG for determining the location of the damaged
region. Here the lead refers to the signal acquired from a specific pair of ECG
electrodes placed at predefined locations on the body. Thus every ECG lead
looks at the specific area of the heart and, in order to cover different areas of
the heart, different ECG leads are required. The ECG equipment commonly
uses the standard 12-lead configuration. This standard configuration has three
primary limb leads called lead - I (right arm (RA) with respect to left arm
(LA)), II (RA with respect to left leg (LL)) and III (LA with respect to LL),
which follow the triangular law of vector addition in the frontal plane, for
example, ECGII = ECGI + ECGIII . There are three other leads derived in
the frontal plane called augmented leads, aVR, aVL and aVF. The speciality
of the augmented leads is that the potential at one of the RA, LA and LL
locations is measured with respect to the middle potential of the rest of the
two locations. This way the electrical vectors of the augmented leads are ro-
tated by 30◦ (and also that their amplitudes are enhanced) with respect to
that of the primary leads in the frontal plane. Thus the signals from six limb
leads represent six different views of the cardiac cycle which are taken from
the angles equally spaced by 30◦ in the frontal plane. This helps to locate
the exact orientation of the cardiac cycle in the frontal plane. The remaining
six leads are called chest or pre-cordial leads: V1, V2, V3, V4, V5 and V6,
which are placed on the chest with respect to a negative terminal derived as
the central potential point of RA, LA and LL, also known as Wilson’s central
terminal. The limb leads look into the frontal vertical plane whereas the pre-
cordial leads look into the azimuth (horizontal or transverse) plane. The leads
V1, V2, V3 are called right pre-cordial leads and V4, V5 and V6 are called left
pre-cordial leads. The basics of the electrocardiography discussed above are
explained in more detail in [75, 138].

As we have seen, the ECG signal is acquired from a pair of specific lo-
cations on the body and Ag/AgCl electrodes are used for making electrical
contact with the skin surface. There are two types of electrodes that can be
used for acquiring ECG: reusable suction electrodes, and disposable foam pad
electrodes. For long term continuous monitoring applications, pre-gelled foam
pad electrodes are preferred due to the ease in usage. Suction electrodes are
used for saving cost over multiple usage for short time periods as they can be
reused after cleaning them. However, the use of suction electrodes is limited
to the sedentary and short time recording/monitoring applications due to the
following reasons.

1. In a suction electrode, the electrolyte gel applied on the contacting sur-
face dries out quickly and hence it is unreliable for long term cardiac
monitoring.
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2. The suction against the skin can be sustained for a short while only.
Therefore, the suction electrodes cannot be held in a fixed position for a
long time.

3. The suction type electrode is bulky as compared to a foam pad electrode
and hence for a wearable device the foam pad electrodes are more com-
fortable for the patient.

Thus from reliability and patient comfort view points the disposable foam pad
electrodes are preferred in long term cardiac monitoring applications. A pic-
ture of a disposable foam pad adhesive ECG electrode is depicted in Fig. 1.1.
The silver colored center in front is a male snap provided for connecting the
lead wire with a female snap. The rear side of the connector is pre-gelled. The
adhesive on the white foam on the rear side helps the electrode to be held at
a fixed position on the skin.

Fig. 1.1. A pre-gelled foam pad electrode for acquiring ECG signal from the body.

A typical cardiac cycle (ECG beat) in the ECG signal has the following
distinct characteristic segments called P wave, QRS complex and T wave
occurring in a sequence as depicted in Fig. 1.2, which are important for in
depth analysis. This particular cardiac cycle is acquired from ECG signal of
lead II. Here the constant horizontal level of the line segments in between
the ECG waves is called the baseline signal of the ECG and usually it is at
an isoelectric level. Each of the ECG waves in a cardiac cycle represents a
physiological activity of the heart. The cycle of the electrical activity of the
heart starts with P wave, which represents atrial depolarization (contraction).
Typically, the P wave is of less than 110ms duration. Some the abnormalities
related to the atria like left/right atrial hypertrophy, atrial premature beat,
etc. can be detected from the the P wave. There is a horizontal line segment
at isoelectric level followed by the Q wave, called PQ (or PR when Q is
absent) interval. Typically, the PQ interval is of 120-200ms duration. Some of
the heart diseases (like Wolf-Parkinson-White syndrome or first degree heart
block) may cause a shorter or longer PR interval. Next to the PQ wave in the
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Fig. 1.2. A typical cardiac cycle of ECG signal, captured in a sedentary condition
by a wearable ECG recorder.

graph is QRS complex which is with a sharp peak at middle, called R wave.
The QRS complex represents the ventricular depolarization which may be
typically of 60-100ms duration. In fact, the atrial repolarization (deactivation)
occurs during the same interval but it is not noticeable. Many ailments like
cardiac arrhythmias, myocardial infarction, conduction abnormalities can be
detected from the QRS complex. Since QRS complex is the most dominant
feature of the ECG cycle, it is used for determining the heart rate for a
normal cardiac rhythm. The next important wave representing the ventricular
repolarization is called T wave. The interval between the start of QRS complex
and peak of the T wave is called absolute refractory period. The segment
between the end of the QRS complex and the beginning of the T wave is
called ST segment which lies at the same level as PQ segment. ST segment
has a normal duration of 80-120ms. ST and T waves are analyzed for detection
of myocardial infarction and ischemia.

For a normal functioning heart the cardiac cycle repeats continuously in
the same ordered manner and time of repetition of the cardiac cycle determines
the heart rate, which is variable due to many different physiological aspects,
for example, respiration rate, physical stress, anxiety, etc.

The morphology of an ECG beat is specific to a particular lead since each
of the leads represents a specific view of the electric field due to the cardiac
activity. A trained expert (cardiologist) can visually detect most abnormalities
in the morphology of the ECG and thereby diagnoses the nature of ailment.
Since the spectrum of the ECG signal lies in the range of 0.05Hz to 130Hz
(approximately), the ECG equipment should have the specified bandwidth for
diagnostic purposes. A more detailed introduction to the electrocardiography
can be found in [75, 138].
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1.2 Artifacts in ECG

The ECG signal includes numerous artifacts. The origin and nature of these
artifacts are of considerable interest, particularly for long term monitoring
applications. Some of the artifacts are caused due to physiological reasons like
electromyograph (EMG or muscular activity) noise and slow baseline wan-
dering due to respiration. There are some artifacts which are due to non-
physiological reasons, for example, 50 or 60Hz powerline interference and mo-
tion artifacts in ECG. The presence of the artifacts will make any morphology
based diagnosis problematic. The main sources of ECG artifacts are discussed
next.

1.2.1 EMG Noise

Any muscular activity in the body produces a bio-potential signal which is
also known as the electromyograph (EMG) signal. The peak amplitude of the
EMG signal on the surface of the body is in the range from 0.1 to 1mV and the
spectrum is concentrated on the frequency range from 5 to 500Hz. Since the
EMG and ECG signals have partly overlapping spectra, the muscular activity
may cause interference in the ECG signal. This type of noise is known as EMG
noise. During clinical testing, the patient is usually in a rest condition and
hence the chances of EMG noise occurring are rare. Moreover, both the patient
activity and ECG trace are monitored so that such a noisy episode in ECG
trace can be recognized as an EMG interference. For short time monitoring
purposes only a few cycles of ECG signals are required. However, for long
term monitoring under ambulatory conditions the presence of high frequency
EMG noise is problematic.

1.2.2 Baseline Wandering

We have seen in the previous section that the baseline of the ECG should
ideally be at a constant level referred to as the isoelectric level. However, vari-
ations in lung volume (diaphragm) due to respiration alter the path impedance
between the ECG electrodes which results in a slowly varying potential dif-
ference for a constant current. Slow motion of the electrodes can also cause a
non-steady baseline. The artifact produced by motion of electrodes is known
as motion artifact which is discussed in Section 1.2.4. During the rest ECG
for short time monitoring in clinics the motion of the patient is restricted and
hence the motion artifact is not expected. However, the baseline wandering
and EMG noise explained above are quite common in long term ECG mon-
itoring. The slow wandering of the baseline can be eliminated by selecting a
frequency value greater than 1Hz as the lower cutoff frequency of the ECG
amplifier. However, the low frequency contents of the ECG signal (from 0.05
to 2Hz) like P and T waves are distorted due to this type of filtering.
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1.2.3 Powerline Interference

The powerlines and the lead wires of the ECG recorder are coupled through
capacitive paths. Hence a 50/60Hz current flows in each of the lead wires
depending on the amount of coupling. The currents take path from the cor-
responding lead wires through the body to the common ground. Assuming
the distance between any two leads to be very small, the powerline currents
in both the leads would be the same. This common mode powerline inter-
ference can be rejected by a front end difference amplifier with a very high
common mode rejection ratio (CMRR). However, due to the impedance dif-
ference (∆Z) in the paths taken through the body for both the currents, there
will be an additional voltage difference (i∆Z) caused by the powerline. This
voltage signal is further amplified along with the ECG signal by the difference
amplifier which is referred as powerline interference. This type of interference
appears as a 50 or 60Hz noise.

1.2.4 Motion Artifacts

As described previously, the artifact caused due to motion of electrodes is
known as motion artifact. The electrode used for providing electrical contact
between the skin and the lead cable can be modeled as a network of equivalent
resistors and capacitors representing electrical parameters of different layers
of the skin and the skin electrode interface [138]. The values of these electrical
parameters may be altered due to relative motion of the electrodes or skin
stretch or contract. This means that the equivalent impedance of the skin
and the skin electrode interface gets disturbed due to any such action which
results in an artifact known as motion artifact. Unfortunately, the motion
artifact has a significant overlap with the spectrum of the ECG signal in the
frequency range 1-10Hz and hence it is very difficult to handle this type of
artifact. It is noted that the motion artifact is more abrupt and distinct in
nature as opposed to the slow baseline wander caused due to respiration. The
motion artifact poses a major challenge in the long term (ambulatory) cardiac
monitoring using a wearable ECG equipment.

1.3 Ambulatory Monitoring

Long term monitoring of ECG is recommended for people who have been di-
agnosed with mild versions of a cardiac disorder but who still lead an active
lifestyle. Currently, this situation applies to a substantial body of people all
over the world. Long term monitoring is also a necessity for an improved,
post operative life span of a cardiac patient. However, such monitoring has
not been given due importance in practice. It is mostly avoided because of the
time and resource constraints, and due to the fact that protocols for remote
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monitoring of cardiac patients are not yet in place. An ambulatory ECG mon-
itor is a practical solution to prevent this situation. With the miniaturization
of electrical circuits and components, very small size, light weight, wearable
ECG recorders (W-ECG) are now available for ambulatory cardiac monitor-
ing. One such W-ECG has been developed by Baghini et al. [117, 134] at the
Department of Electrical Engineering at IIT Bombay, and the corresponding
wearable recorder is called locket. A prototype of the locket which can record
ECG from any one of the primary leads continuously for 48 hours into an
inbuilt flash memory cell is depicted in Fig. 1.3.

Fig. 1.3. A single-lead wearable ECG recorder called locket, developed by Baghini
et al. [117] at IIT Bombay, placed by the side of a 15cm ruler. ( c©2007 IEEE)

W-ECG is a variant of the standard ECG in the sense that the electrode
placements are on frontal trunk approximating the positions on the limb sites
in the standard ECG [12]. Some W-ECG may have fewer leads in order to
reduce the number of electrodes and complexity. A commonly used lead II
configuration for W-ECG is shown in Fig. 1.4. The purpose of W-ECG is long
term monitoring of the heart while the patient is allowed to perform his/her
routine activities. Infrequent or irregular symptoms of heart disorders that
may not be detected during brief clinical check-ups may be detected through
long term monitoring. However, a major difficulty with any skin electrode
based physiological monitoring is that motion of electrodes induces artifacts
in the recorded signal. This type of artifact arising due to a non-physiological
reason and at a superficial level of the skin is called motion artifact.
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W-ECG

RA

LLRL

II

Fig. 1.4. A wearable ECG worn in lead II configuration. The electrodes are placed
on trunk proximate to the positions for standard lead II ECG indicated by RA, RL
and LL. RA, RL and LL stand for right arm, right leg and left leg positions of the
electrodes, respectively.

1.4 Challenges in Ambulatory ECG Processing

The problem of elimination of motion artifacts is non-trivial since the energy
contents of both the motion artifact and ECG signals share a common spectral
band of 1-10Hz and hence it cannot be removed using a linear filter without
distorting the ECG features like P and T waves. Moreover, motion artifacts
can mimic a cardiac event in the ECG such as elevation or depression in P
or T wave and ST segment, etc. This will be clear from an example of an
ECG waveform depicted in Fig. 1.5, which is recorded while the wearer is
involved in twisting of body from the waist upwards. Here, the R peaks are
clearly seen indicating five heart beats, yet it is difficult to determine correct
locations and amplitudes of P and T waves because of the interference due
to the motion artifact signal. Accordingly, interpretation of the raw ECG
signal will be prone to error and some techniques should be adopted that can
characterize and isolate the motion artifact signal.

The quality of the recorded ECG signal is affected by the motion artifact.
If the signal power of motion artifact is high then the cardiac signal gets sup-
pressed under the motion artifact, making interpretation of the ECG signal
very difficult. Similarly, the recorded signal in absence of any motion artifact,
genuinely represents the cardiac signal and is considered suitable for diagnosis
purposes. Unfortunately, there is no authenticity measure of the absence of
motion artifacts in the ECG signal hence the ECG signals only during seden-
tary (rest) condition that ensures absence of motion artifact, are considered
useful for clinical interpretations. Even filtered signal after the artifact removal
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Fig. 1.5. An example of ECG signal captured while the wearer is twisting the upper
trunk from waist. The R peaks are visible indicating the presence of heart beats but
the other ECG features like P and T waves are contaminated severely due to the
motion artifact.

is not considered adequate due to possible distortion of cardiac features like
P, T waves and ST segment.

In long term monitoring a huge volume of ECG data is generated and
hence it is ideally suited for computer aided analysis (CAA). However, most
of the CAA algorithms are suitable only for artifact-free ECG taken under
rest conditions and are not adequate to handle the motion artifact generated
in ambulatory monitoring. Therefore, during ambulatory monitoring, it is
a practice to maintain the account of all physical activities for post event
analysis of the recorded ECG signal for quality assurance. The useful parts of
the ECG signal can thus be segmented from the noted time of start and end
of every body movement performed by the user. This requires a human expert
(interpreter) which is not a practical solution to analyze the voluminous ECG
data.

If the extent of the motion artifact in the ECG signal is known automati-
cally then it can help in the cardiac interpretation. For example, the physician
can decide whether the elevation in T wave is due to ischemia or due to the
motion artifact provided the information regarding the motion of the patient
is available. However, it may not be so easy to know the exact level of motion
artifact from the recording of the patient activities either by motion sensors
or video.

1.5 Mathematical Model of Ambulatory ECG Signal

The purpose of ambulatory monitoring is to capture the cardiac activity of the
heart taking place while the user (subject) is performing all kinds of routine
physical activities. However, during the ambulatory monitoring the induced
motion artifact in the recorded ECG signal due to body movements poses a
great challenge as we have seen in the previous section. Thus the recorded ECG
signal is not just the cardiac signal but a composite ECG signal containing
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motion artifacts. Since the generation of the motion artifact is at a superficial
level, it is safe to assume that the cardiac cycle itself is not affected by the
motion artifact for moderate physical activities. In other words, the composite
ECG signal is superposition of two independent events: the cardiac signal and
the motion artifact signal induced due to the body movement activity (BMA).
Since the W-ECG recorder performs amplification, filtering and digitization
of the acquired electrical signal from the electrodes, an additive random noise
arising out of the device electronics may be present in the digitized ECG
signal. This signal is referred as sensor noise. Therefore, the ambulatory ECG
signal r(n) in digital form can be modeled as sample wise addition of three
different signal components

r(n) = q(n) + s(n) + η(n), (1.1)

where q(n), s(n) and η(n) are cardiac signal, motion artifact signal and sensor
noise, respectively. Since the recorder (called locket) is calibrated for the dc
bias in the output, the sensor noise η(n) has zero mean. It is also ensured by
selection of suitable design and reliable circuit components, that the sensor
noise η(n) is very low (< rms 6 µV) compared to the other two components
in the model. The mathematical model in Eq. (1.1) represents the composite
signal in a single lead of ECG in general and can be extended for ECG signals
from multiple leads. The main aim here is to analyze the single lead ECG
signal for better interpretations for long term cardiac monitoring in presence of
motion artifact. The model in Eq. (1.1) has been adopted to represent the ECG
signal recorded by the locket. It is further noted that such an additive model
is widely used in generating composite ECG signals artificially for testing the
performance of various filtering and analysis algorithms [5, 110, 120]. However,
here we extract the motion artifact signal from the composite ECG signal
available from subjects in real life, involved in physical activities. We use the
motion artifact signal to recognize the physical activities. We will present in
this monograph some of our experimental results based on the ECG signals
captured from the subjects in real life.

1.6 Tour of the Book

Since the cause of generation of the motion artifact is stretching or contraction
of skin due to body movement, the induced motion artifact contains informa-
tion regarding the body movement. Moreover, different body movements are
performed in different manners, therefore, the generated motion artifacts due
to different body movements are different in nature. It has been observed that
different pace levels of the BMA have different impact on the generation of
motion artifact in ECG. With this rationale we want to show that the body
movement activity (BMA) can be recognized from the motion artifact itself.
However, the motion artifact signal is not available separately but contained in
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the composite ECG signal as we have explained in Section 1.5. Therefore, we
have to devise suitable methods that can separate the motion artifact signal
from the composite ECG signal and extract the BMA information contained
in the motion artifact signal. The focus here is on deriving some useful infor-
mation regarding BMA from a single lead ECG itself without requiring any
additional sensors. Moreover, it is interesting to quantify the impact of BMA
on motion artifact generation. In this monograph some useful techniques for
BMA recognition from ECG and impact analysis of BMA on ECG signal are
discussed. The accuracy of these techniques have been tested based on real life
ambulatory ECG data. Our work shows quite satisfactory results but leaves
room for further improvement. Here we briefly highlight the main topics of
the monograph.

• The locket (W-ECG) used to acquire ECG data is a very compact and
sophisticated device. It has been designed in-house by a few colleagues of
ours and a brief exposure to the actual design of the hardware is provided.
Various specifications which are crucial to the design of portable ECG
recorder are also provided. Since the human heart beat follows a very
regular cyclic rhythm, it is necessary that such a recorder is calibrated
in terms of the sampling rate so that the acquired data can actually be
related to the cardiac cycle. A simple method of calibration using power-
line signal interference is suggested in the monograph. This would allow
the practitioners to repeat all experimentations performed in their study,
when the corresponding data is acquired by their own recorder. Finally,
we also discuss in details the experimental protocol used throughout in
this monograph. Such a protocol is a must if any technology is envisaged
to be of any practical use in health sciences.

• As stated previously, the motion artifacts induced due to different types of
BMA are different in nature. This hypothesis has been tested successfully
on the ECG signals collected from subjects in real life while performing
various types of BMA with transitions among different types of BMA.
The corresponding ECG signal is analyzed beat by beat using a recursive
principal component analysis (RPCA) [72] based method. The proposed
RPCA based method can follow the slowly time varying changes in cardiac
cycle as well as changes in motion artifact signal due to the same type of
BMA, while detecting abrupt changes in motion artifact signal due to the
transition to a different type of BMA. This demonstrates that the motion
artifact signals induced due to different types of BMA are distinct. The
detection of BMA transitions is useful for temporal segmentation of ECG
beats with respect to the type of BMA.

• Next, the separability of motion artifacts due to different types of BMA is
tested by posing a problem of BMA recognition from the ECG signal itself
using the separation between the different motion artifact signals. ECG
signals, while subjects performing certain specific types of commonplace
BMA encountered in routine daily activities, e.g., hand movements, walk-
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ing, climbing stairs, etc., are collected such that each ECG signal contains
just one of the specified BMAs. The cardiac cycle in the ECG signal is
estimated by arithmetic mean of collected and appropriately time warped
ECG beats. The cardiac component is suppressed by subtracting the es-
timated mean of the cardiac cycle from each of the beats in the recorded
ECG signal. The residual signal after mean subtraction mostly contains
the motion artifact component. These residual motion artifact signals in
each of the BMA classes are analyzed using a principal component analysis
(PCA) based method which computes the eigenvectors of the covariance
matrix of the motion artifact signal for each of the BMA classes. A set of
top few eigenvectors is used for representing the artifact subspace of the
particular BMA class. The BMA class of a test ECG beat is recognized
using the criterion of minimum error in reconstruction by the correspond-
ing sets of eigenvectors. Here we also discuss a scheme of motion artifact
removal from ECG using a class specific PCA based filtering technique. In
this class specific filtering, the BMA class of the ECG beat is recognized
using the PCA based technique and then the motion artifact components
are removed using the corresponding set of eigenvectors for that particular
BMA class. The usefulness of this scheme is shown in terms of improve-
ments in detection of P and T waves using some standard methods, since
the motion artifact contaminates these two ECG waves severely due to the
spectral overlap with the P and T waves.

• Thus far, we have shown that it is possible to detect the changes in dif-
ferent types of BMA and to recognize them as individual classes from the
ECG itself using the separability of the motion artifact signals induced due
to different types of BMA. Next, we explore the possibility of BMA recog-
nition by taking a very different approach of classification. Likewise the
PCA based method, we use a supervised learning technique for the classi-
fication. However, instead of using a nonparametric classifier we consider
parametric classifiers based on a hidden Markov model (HMM). HMM is a
well-known technique for modeling of processes having inherent temporal
dependence [24, 106]. First, we separate the motion artifact signal from the
recorded ECG by using an adaptive filter. Then the derived motion arti-
fact signals are modeled through an HMM using their temporally localized
energy contents in different frequency bands. Since the energy of motion
artifact signal is concentrated in a low frequency band of 1-10Hz, we ana-
lyze this band using Gabor filter banks of 10 different, equally spaced local
frequency components at any given instant of time. Based on this Gabor
filter we compute the energy features in each of the spectral bands. The
spectral energy features of the motion artifact signal are used for modeling
the corresponding BMA class. After having modeled each BMA class with
a single HMM based on the derived energy features, the BMA class of a
test sequence is recognized based on the maximum likelihood criterion.

• Till now the ECG signals are analyzed from the point of view of sepa-
rability of the induced motion artifacts due to different types of BMA,
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performed at a nearly constant, normal pace for each individual subject.
The ECG signal under the impact of body movement is now further ana-
lyzed to study and quantize the impact of different pace levels involved in
performing the same BMA. The ECG signal is collected while performing
a particular BMA at three different pace levels: slow, medium and fast, in
order to quantify the difference in the generated motion artifact due these
levels. The pace levels are measured quantitatively in terms of the acceler-
ation signals captured by the motion sensors placed at suitable positions
on the body. The goal of this work is to find how the different pace levels
of the same type of BMA affect the ECG signal differently and their im-
pact on generation of motion artifacts. The RPCA error signal is derived
from the resulting ECG signal as a measure of impact of different pace
levels on ECG signal, simply referred to as an impact signal. The impact
signal and acceleration signals are analyzed in synchronization to demon-
strate that the impact signal alone can correctly represent the different
pace levels in most of the BMAs considered in this work. We found a very
high correlation between the impact signal and the acceleration signals,
suggesting that the level of BMA can be determined from the ECG signal
itself without requiring any motion sensors.

In this chapter we have provided a basic introduction to ECG, common
artifacts in the ECG signal, motion artifact in ambulatory ECG, the challenges
in processing ambulatory ECG and a mathematical model of ambulatory ECG
signal which is adopted in this monograph for analyses in the forthcoming
chapters. The main topics of the monograph are also briefly listed.

The organization of the subsequent chapters in the monograph is as fol-
lows. First we discuss some of the relevant works in the literature regarding
processing of the ECG signal starting from QRS detection to analysis of phys-
ical activities in ECG in Chapter 2. In Chapter 3 we provide hardware design
details for the locket. We have invited our peers who are experts in the hard-
ware design to write the chapter for completeness of the treatment and for
the benefit of all readers. In Chapter 4 we discuss a simple procedure for cali-
bration of the sampling rate of the locket which can be used for any electronic
ECG recorder in general. We describe the protocols followed for collecting
the experimental data in Chapter 5. We discuss a technique for detection of
transitions of BMA in Chapter 6. In Chapter 7 we show that BMA can be
recognized from ECG signals based on classification of motion artifact signals.
We discuss here both nonparametric and parametric classification techniques
for BMA recognition. In Chapter 8 we study impact of BMA in ECG from
two different types of experiments, one using a treadmill and the other using
motion sensors. Finally, we note our conclusions in Chapter 9.
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Review of ECG Analysis

In 1887, Augustus D. Waller published the first human electrocardiogram
(ECG) recorded with a capillary electrometer. Subsequently, Willem Einthoven
invented a more sensitive galvanometer for producing ECG using a fine quartz
string coated in silver. He invented the lead system for ECG recording and
identified the five deflection points in the cardiac cycle by naming them P, Q,
R, S and T which are still being used in the present standards (see Fig. 1.2).
Einthoven also started transmission of ECG from hospital to his laboratory
on telephone lines [33]. Since then a huge knowledge base has been generated
covering clinical and engineering aspects of electrocardiography. Since last few
decades electronic recorders have been developed for digital recording of the
ECG signal. In recent years the ECG recorders are available in a much com-
pact form so that the user can wear it for ECG recording without much of
obstruction in the routine activities. Recently, the wearable ECG recorders
(W-ECG) are becoming very popular because of their low cost, long term
recording capability and ease of use.

Since a huge volume of ECG data is generated by the W-ECG, automated
methods are preferred for analysis of the ECG signal. The ECG data may
be composed of single-lead or multiple-lead ECG signals depending upon the
type and configuration of the ECG recorder. Accordingly, the method of anal-
ysis is also different. Single-lead ECG waveform analysis includes wave shapes
(morphologies), spectra and repeatability of the cardiac cycle. On the other
hand, multi-lead ECG processing algorithms can utilize additional informa-
tion like simultaneous features from other leads. This may lead to a greater
immunity against interference signals. The disadvantage of multiple leads lie
in increased patient discomfort and stress, especially for ambulatory testing.
For the purpose of basic cardiac monitoring during ambulatory testing, it
is desirable to have fewer leads and hence single-lead algorithms are more
suitable for W-ECG applications. In this chapter we will review some of the
existing techniques developed for analysis of single-lead ECG signals.

© Springer Science + Business Media, LLC 2009
S. Chaudhuri et al., Ambulation Analysis in Wearable ECG, DOI: 10.1007/978-1-4419-0724-0_2, 15
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2.1 QRS Detection Methods

As we have seen in Chapter 1, ECG is a pseudo-periodic signal in the sense
that the cardiac cycle repeats according to heart rate. However, the heart
rate may not remain constant. The components of cardiac cycles appear in
a regular sequence P-QRS-T. The variations in the heart rate may affect the
durations of PQ and ST segments while the durations of P wave, QRS com-
plex and T wave may still remain the same for a normal heart. The R peak in
the QRS complex is the dominant feature of the cardiac cycle, which can be
distinctly recognized from the sharp edges and a high amplitude as we have
seen in Fig 1.2. Therefore, it is relatively easy to locate the QRS complex in
the ECG even in the presence of low frequency noise (like baseline wandering
due to respiration) and hence this is used for determining the current heart
beat. The QRS detection forms the basis of most ECG analysis algorithms,
particularly those used for arrhythmia monitoring [19, 77, 127]. The current
heart rate may be determined by calculating the time period between the two
consecutive R peaks. Moreover, specific ECG parameters can be derived us-
ing the R peak locations. For example, ST segment is measured at a certain
predefined time interval from the end of the QRS complex [121] and the cor-
rected QT interval is derived by well known Bazzet’s formula using the current
QT and RR intervals [14]. This explains the importance of QRS detection in
cardiac monitoring using ECG.

QRS detection algorithms, in general, use the relatively high energy con-
tents of the QRS complex that lie in 5-25Hz band [63, 96, 128]. The more com-
plex QRS detection algorithms involve application of neural network, hidden
Markov model (HMM), syntactic methods, etc. [22, 48, 124, 133], but they
are rarely used in low cost W-ECG applications. Further details of the QRS
detection methods and the comparisons of their performances in presence
of noise and their computational complexities can be found in [35, 63, 95].
Most of the simple QRS detection algorithms are based on one of the fol-
lowing methods: derivatives, filter-banks, wavelets, mathematical morphology
and correlation [35, 63]. Here a few of the approaches in literature for QRS
complex detection are discussed in brief.

The characteristic of higher slopes of the QRS complex inspires one to use
temporal derivatives for its detection. In the derivative based methods, the
ECG signal is first smoothed with an appropriate moving average filter for
suppressing any high frequency noise outside the 5-25Hz band. The smoothed
signal is differentiated to emphasize the high slopes and to suppress smooth
ECG waves and baseline wanders. The overall response of these two simple
arithmetic operations results in a bandpass filter to match the spectral band
of the QRS while suppressing the relatively low frequencies in P and T waves.
The squared magnitude of the derivative signal is used to enhance further
the high derivatives of the QRS complex. A moving average integration filter
with the window length matching the duration of QRS complex is applied
after the squaring operation. The integrated signal is then searched for the
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local maxima exceeding an appropriate threshold value. The search is further
refined by eliminating the points which occur within the refractory period of
a ventricular activity [41, 94, 96].

Wavelet based methods for QRS detection use the principle of singularity
detection in the wavelet coefficients [74]. Wavelet coefficients of the ECG signal
at several scales are analyzed [11, 59, 70, 71, 111] to find the local maxima and
positions of matching in two consecutive scales to locate QRS positions. This is
based on the assumption that the energy of the QRS complex is continuously
spread over the spectral bands as well as the temporal scales. The noise in
the signal may not have this kind of property and hence false alarms due to
such noise can be reduced using this multiscale approach.

In a filter bank approach of QRS detection, subbands at different scales
are combined to confirm the positions of the local maxima [4]. The filter bank
approach is based on the fact that the QRS complex has simultaneous presence
in the subbands, whereas other ECG waves and noise may not exhibit this
characteristic behavior. This is similar to the wavelet based approach of QRS
detection. In [15, 123], a generalized class of filter with a transform having two
factors, (1 − z−K)(1 + z−1)L is given: the first implements a difference with
integer delay K and the other is for a lowpass filter with band width controlled
by an integer parameter L. The integer parameters (K,L) are determined
depending upon the sampling rate. At a sampling rate of 100Hz, (K,L) =
(1, 2) is found to be most suitable choice in [123]. In [25], (K,L) = (5, 4) is
used at the sampling rate of 250Hz.

In morphology based QRS detection approach, morphological operators
like opening and closing are used to enhance the particular shape of the
QRS complex. The QRS complex contains abrupt positive and negative peaks,
therefore, using a peak-valley extractor [76], the QRS complexes are enhanced
and the other parts of the signal such as P and T waves as well as noise are
suppressed [132]. Peak-valley (PV) extractor is a morphological operation used
for mapping smooth parts of a signal to corresponding zero amplitude flat seg-
ments to extract peaks and valleys in the signal. In PV extractor, a smoothed
signal is derived from the opening followed by closing of the input signal by
a horizontal structuring element. The structuring element, which is a hori-
zontal line segment of unit amplitude, does not form the basis for the peak
and valley and hence, the peaks and valleys of the input signal are mapped
to zeros in the smoothed signal. Next, the smoothed signal is subtracted from
the input signal itself to yield a PV extracted signal containing only peaks
and valleys of the input signal. This approach has previously, been used in [21]
for suppression of impulsive noise and baseline correction in ECG signals.

In [146], a curve length transform is used for the detection of QRS complex.
The curve length is defined as the sum of distances (Euclidean) between pairs
of consecutive sample points in the ECG signal. The curve length of the ECG
signal depends on the increments in the sample values and the sampling time
of the ECG. For uniform sampling in time the curve length is a measure of the
increments in sample values. For QRS detection the curve length of the ECG
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signal is evaluated in a window with the length matching with the widest
possible QRS complex. When the window is in perfect alignment with the
onset of QRS complex it produces the local maximum in the curve length
feature and that is utilized for locating the onsets of the QRS complex. A
lowpass filter with 3dB cut-off at 16Hz is used as a preprocessing step to
suppress noise.

In [110], a real time, microprocessor based QRS detection method is given.
An analog filter with a pass band of 0.5-35Hz, and automatic gain derived from
the signal envelope is used as a pre-processing stage. The signal is digitized
at a sampling rate of 500Hz and further processed through a 0.5-40Hz band-
pass filter and a 50Hz notch filter for suppressing the baseline wander, high
frequency noise and the power line noise. A 128 tap matched filter is derived
from a noise free, bandpass filtered QRS complex, which is used for detection
of QRS complexes in the ECG signal. We found the method to be suitable for
the analysis of ambulatory ECG also.

2.2 Delineation of Wave Boundaries

In the previous section we have reviewed some of the QRS detection techniques
in the literature. For automated analysis of the ECG, detections of P and T
waves are also important as the P wave represents atrial activity and the T
wave is related to repolarization of ventricles. In a cardiac cycle the sequence
of occurrence of these waves is P-QRS-T. Therefore, we can search for P
and T waves in appropriate time windows after the QRS complex is located.
However, it is recommended in [66] that any fibrillation condition should be
detected before proceeding with waveform analysis using procedures proposed
in [129].

The T wave is the wave with the next highest level of energy in cardiac
cycle. The location of T wave from the R peak depends on the current beat
period, measured as the time interval between two consecutive R peaks which
is simply called RR interval. In [67], the search window for T wave is defined
from the R peak position in the interval from 140 to 500ms if mean(RR
interval) > 700 ms and for smaller RR intervals the search window is defined
in the range 100ms to 0.7*RR interval (in ms). The ECG deflection points
Q, R, S and T are located using a lowpass filter from the differentiated ECG.
In [78, 79], a quadratic spline wavelet is used at four dyadic scales starting
from the scale of 2 at a sampling rate of 250Hz. The first two scales are used
for detecting QRS and the next two scales are used for detecting P and T
waves in appropriately chosen time windows with respect to the location of R
peak in the QRS complex.

In [34], assuming that P wave occurs in a specified time window of 240
to 400ms preceding the R wave of the QRS complex in each cardiac cycle,
three different P wave detection algorithms are discussed. These techniques
are based on the derivatives of the ECG signal in a specified window. First
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method in [34] is called the amplitude and first derivative based algorithm.
This technique subjects the first derivative of the ECG signal in a specified
time window to a predefined threshold value. The criterion applied for P wave
detection is: the positive derivative at three consecutive points in the window
should exceed the threshold followed by two consecutive points having the
negative derivative crossing the threshold within 48ms, and all the sample
values in the signal in between these two crossing points must exceed a prede-
fined amplitude threshold. The second technique just searches for a point in
the time window at which the negative derivative exceeds the threshold value
and in the third method a combination of second derivative and a smoothed
first derivative signal is subjected to a threshold value for detection of P wave.

There are model based approaches for analysis of different segments of
the cardiac cycle, i.e., P, QRS and T waves. In [55], P, QRS, ST and T are
expressed as linear combinations of Hermite functions. This modeling required
2, 7, 2 and 4 Hermite coefficients to represent P, QRS, ST and T, respectively.
In [88], a discrete cosine transform based modeling is proposed for delineation
of P, QRS and T waves. The biphasic functions given by pole-zero model of
order (2,2) are used in this representation. It is shown in [88] that P and T
each has a single biphasic function whereas QRS can be represented as two
or three biphasic functions. These segmentations of ECG waves are useful for
further analysis and compression of ECG signals.

The level and slope of the ST segment are sensitive to levels of physical ac-
tivity. The ST level is measured with respect to the baseline or isoelectric level
of the ECG which can be detected by searching for the flattest line segment
between P and Q waves [46, 140]. A method for determining the measurement
point for the ST level in terms of current heart rate is given in [46]. In [140],
the ST level is measured at J + 80ms where J is the first inflection point
after the S wave. In order to provide immunity against motion artifacts, the
ST levels are measured after taking average from several consecutive beats
with similar morphology and perfect alignment. A few methods for ECG beat
alignment from the literature are described in the next section.

A different approach of ECG segmentation uses a fixed number of func-
tions where the middle and end points of the functions are matched with the
wave shapes in ECG signal [98]. This kind of segmentation is used for recog-
nition of ST segments in [119]. A similar approach using a piecewise linear
approximation is given in [135]. Here a line segment is initiated from the start
of the cardiac cycle and is extended up to the point for which the error in
approximation of the ECG segment is less than a fixed empirical value. A new
segment is started from the end point of the previous segment. The advantage
of this method is that the cardiac cycle can be described in terms of fewer
parameters like slopes and lengths of the line segments.
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2.3 Beat Alignment

Certain measurements like levels of ST and T waves and morphology of P-
QRS-T complex in the cardiac cycle are important for diagnosis of any ab-
normality. However, the presence of noise can hamper the readability of the
ECG and hence can produce errors in estimating these cardiac parameters.
In order to reduce the impact of noise, the cardiac cycle should be derived as
an average of several epochs of ECG beats. Such estimates using mean com-
posite, median composite, etc., are presented in [5]. This kind of estimation of
the cardiac cycle requires correct alignment of corresponding cardiac features
like P, QRS and T waves in the ECG beats.

There are various methods for alignment of ECG beats in the literature
namely, the double level method, normalized integral method and matched
filtering method, etc. These techniques are reviewed in [56, 58]. In the double
level method, crossings of a fixed threshold level by the signal in upward and
downward directions are measured as time t1 and t2, respectively. The mean
of these two, ta = (t1 + t2)/2 is used as the temporal point of alignment. In
the normalized integral method proposed in [58], a measure called normalized
integral of a non-negative function is defined. The integral of a non-negative
function is always monotonically increasing and hence it can uniquely repre-
sent the time corresponding to a particular amplitude. If we consider a finite
delay between two non-negative functions with the same shape and amplitude,
then the area under the difference signal between the corresponding integral
signals represents the amount of delay. The normalized integral is defined as
the running integral divided by the final value of the integral of the function.
Therefore, irrespective of the amplitude scales of the function, the normalized
integral monotonically increases from 0 to 1 for a non-negative function. Thus,
as explained above, the delay can be determined even though the waveforms
may have different amplitude scales. The only requirement is that the wave-
forms should be non-negative to maintain the unique relation of time and
amplitude. Since the ECG signal may go below the isoelectric level it may
have negative valued samples which are to be replaced by zeros for applying
this technique. In the matched filter based technique a noise-free ECG beat
forms an impulse response of the matched filter. The local maxima in the
output of the matched filter signal indicate positions of the alignment of the
beat in the input ECG signal. This is similar to finding cross-correlation of
the new beat with the reference beat for their alignment. In [64], a multiscale
cross-correlation based approach is proposed for beat alignment. The cross-
correlation between a template beat and the current ECG beat is calculated
at five different scales and the median of the locations of the maxima, at all
the scales is used as the fiducial point for alignment.

In [27], the beat alignment is performed after searching for R peak. The
first zero crossing after the R peak is marked as a fiducial point for alignment.
Any dc bias and slow baseline wanders are to be removed to ensure that
the zero crossing takes place as desired. Therefore, the signal is preprocessed



2.4 Noise Reduction in ECG 21

through a highpass filter with a cut-off at 3Hz. Respiration causes a significant
beat to beat variation in amplitude of QRS complex. Hence normalization of
the QRS amplitudes is used in [114] for minimizing errors in alignment. A mul-
tiple loop alignment approach is proposed in [122] using vectorcardiographic
leads which is not applicable to ambulatory cardiac monitoring. A similar ap-
proach of multiple loop alignment is used in [10] for studying beat to beat
variability.

2.4 Noise Reduction in ECG

It has been noted previously that noise from various sources like muscular ac-
tivities, 50/60Hz powerline, skin stretching and electrode motion, movement
of heart due to respiration, etc. can contaminate the ECG signal and hence
affect the interpretation of ECG signal. In particular, an automated analysis
requires noise free ECG signal for correct interpretation. However, it is dif-
ficult to control the environment and prevent the interference due to some
physiological events like breathing. Reduction of noise due to most common
sources is addressed in [137].

Thakor et al. have presented several adaptive filtering approaches in [130]
for noise cancellation in ECG signals. An adaptive filter with a single weight
has been proposed here for reducing slow wandering of baseline. A constant
is used as the reference signal and the composite ECG signal with baseline
wandering is the primary input. At every sample of the ECG signal, the error
produced by the difference between the constant reference and the filter weight
multiplied by the previous input sample (since it is a single weight filter) is
used for updating the filter weight according to the least mean squares (LMS)
algorithm as w[n + 1] = w[n] + 2µe[n], where e[n] is error signal, w[n] is the
filter weight at nth sample and µ is the adaptation parameter. The output of
the filter is the error signal e[n]. If we consider the relation between the input
ECG and the output error signal, the filter acts as a notch at zero frequency.

The transfer function of this filter in s domain can be derived as s/(µfs/π)
1+s/(µfs/π) ,

where fs is the sampling frequency. The bandwidth of the notch is given as
(µ/π)fs, which should not exceed the fundamental frequency of the heart rate
(≈ 0.8Hz) as indicated in [7, 54]. Due to this limit the adaptive filter can track
the slow baseline wander but cannot remove abrupt motion artifact signal due
to physical movement.

Powerline is another most usual source of interference in the ECG record-
ing. This kind of interference is caused due to powerline cords nearby and its
effect can be minimized by moving aways from such sources of this noise. How-
ever, there must be provision in the wearable ECG equipment to minimize
the interference. As we know that the powerlines have a specific frequency
of either 50 or 60Hz. Therefore, the interference can be removed by using a
narrow stopband filter centered at the powerline frequency in the frequency
response of the ECG equipment, which is usually from 0.05-100Hz. The notch



22 2 Review of ECG Analysis

filter for powerline is acceptable by the guidelines provided in [28] for exercise
monitoring ECG equipment. In [7], authors proposed a technique for remov-
ing the powerline interference using a non-recursive finite impulse response.
A design of infinite impulse response notch filter is proposed in [104] which
can be useful for filtering of ECG signals. Adaptive filtering techniques are
applied for cancellation of powerline and the electromyograph (EMG) interfer-
ence in [130]. The powerline interference appears as the common mode signal
to the ECG amplifier and available from the right leg electrode. Hence the
signal from the right leg electrode is used as the reference input signal to the
adaptive filter for cancellation of powerline noise. Here it should be noted that
in many places the powerline frequency may often deviate from the specified
value (either 50 or 60Hz) in the range of ±2Hz. In this case, the adaptive
filtering technique can be more effective [69]. Moreover, it has been shown
in [39], the adaptive implementation introduces less noise in measurement of
the ST segment in comparison to that by a non-adaptive notch filter.

As we have seen in Section 1.2, the EMG signal due to muscular activity
may interfere with the ECG signal. The EMG signal seen on the skin surface
is quite localized in nature. Due to this property, the EMG interference in
different ECG leads may be uncorrelated because the different leads are placed
at different locations on the body. With this rationale an adaptive filtering
technique has been proposed in [130]. It suggests that for removal of the
EMG from one particular lead of the ECG signal which acts as the primary
input, the signals from the orthogonal ECG leads can be used as the reference
input of the adaptive filter. Thus by using multiple leads of ECG, the EMG
interference can be suppressed using this adaptive cancellation technique.

The motion artifact induced due to relative motion of electrodes is more
prevalent during ambulatory conditions. It is still a challenging problem to
remove motion artifact reliably without affecting the cardiac components of
the ECG signal. For reduction of motion artifact, an adaptive recurrent filter
(ARF) [130] is suggested that uses the repetitions of the cardiac cycle. Here
a cardiac cycle of a fixed length is estimated by the proposed ARF. The
ARF coefficients are adapted once in every cycle of ECG so that the impulse
response of the filter represents the P-QRS-T complex of the fixed length.
Here the estimate of the fixed length of the P-QRS-T complex may leave
some temporal gap between the two cycles which can be filled in by using a
linear interpolation of the two end points of the gap. The ARF is modified
in [105], to have a variable length filter according to the current RR interval so
that the filter itself can handle variable heart rates without leaving any gaps.
In another approach for removal of motion artifact, in [73], a signal across two
extra electrodes placed near right biceps muscle with a separation of 5mm, is
used as the reference input whereas the composite ECG signal is the primary
input of the adaptive filter. In [73], a recursive least squares (RLS) adaptation
is considered to be more suitable than the least mean squares (LMS) algorithm
for faster convergence. In [40], it is shown that an impedance variation due
to electrode deformation, measured across two electrodes using an ac current,
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can be used as a reference signal for an adaptive filter for the removal of
the motion artifact. It is also reported that the variations in the impedance
due to skin/electrode stretching are captured better when the reference signal
frequency is 120Hz. The sensitivity of the impedance signal toward electrode
deformation drops with increasing frequency of the supplied current. In [40],
it has also been shown that the signal acquired from an optical sensor placed
at the electrode site can represent the deformation in shape of electrode due
to motion and hence can be used for removal of motion artifact. A method
of deriving a reference signal using a magneto-resistive sensor and a 3-axes
accelerometer for adaptive filtering of motion artifact are proposed in [131].

Apart from adaptive filtering, there are several other techniques used for
calculating an estimate of the cardiac cycle by suppressing the noise. In [5],
several ECG beat epochs are used in alignment to find an estimate of ECG
beat using arithmetic mean, median, a hybrid of both mean and median,
trimmed mean, and fixed incremental based methods. In [5], a filter bank
approach is also proposed for processing of ECG signal in subbands, utilizing
the spectral and temporal properties of the cardiac cycle.

2.5 Detection of Body Posture Changes

Body position changes (BPC) cause angular shifts in the axis of the heart
which may result in suppression or elevation of ST segment of the cardiac
cycle [53]. These changes in the level of the ST segments due to BPC might
be falsely interpreted as ischemia, a cardiac disorder which is characterized by
transient changes in ST segment. In order to prevent this kind of false alarms
in ischemia monitoring, researchers have tried to detect the BPC from the
ECG signal itself. In [49], a method for detecting BPC is proposed based on
the fact that BPCs are abrupt and cause step like changes in the ST level. In
order to detect a step like change in ST signal three measures are defined for
the flatness at a given point: average of a fixed number of samples prior to
the given point, called backward region, average of a fixed number of samples
after the given point, called forward region and difference between the averages
of the forward and backward regions. A step like behavior is determined by
appropriate thresholds on these three measures.

In [50, 51, 52], the BPCs are detected by showing that BPC affects both
the QRS and ST segments abruptly whereas during ischemia episodes mainly
the ST segment is affected gradually. Karhunen-Loeve transform (KLT) co-
efficients are used to demonstrate this and for detecting this characteristic
difference between ischemic and BPC related changes in ST segment. The
area under QRS [57] and the width of R wave [115] have also been used to
characterize BPC.

In [37], BPC is detected using a Bayesian approach with two conditional
probability density functions for the observations in three orthogonal vector-
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cardiographic leads. The observations can be KLT coefficients for QRS and
ST segments or rotation angles derived from the vectorcardiographic leads.

2.6 Overview of Wearable ECG Recorders

Ambulatory ECG recording technology has continuously evolved and matured
over time. Originally, Holter had proposed a wearable system that would
record the ECG signal in analog form and transmit the recorded ECG sig-
nal using a wireless link. This type of system was proposed for ambulatory
applications [26, 44, 45].

The state-of-the-art W-ECG recorders are very light weight (< 80gms) and
portable, can record long term ECG signal in digital form with a variety of (or
programmable) sampling rates as high as 1kHz. Many of them are equipped
with wireless transceivers, microprocessors with on board analysis algorithms
for calculating cardiac parameters and displaying them on LCD displays and
also generating warnings for clinical attention, if necessary. This is made pos-
sible due to miniaturization of electronics components, customized chip design
for specific analog processing, availability of high speed microcomputers and
ECG analysis algorithms [47, 113, 117, 134]. We provide the hardware details
of one such W-ECG in the next chapter.

W-ECG uses pre-defined ECG leads which are to be connected to the
ECG electrodes appropriately placed on the body. In the standard 12-lead
ECG the primary leads are connected to the limbs and hence also referred as
limb leads. However, in ambulatory applications the limb leads may obstruct
the usual activities of the user (wearer) and hence a modified placement of
electrodes is used, called proximal limb leads. In the proximal limb leads the
electrode placements are on frontal trunk approximating the positions on the
limb sites in the standard ECG [12].

For wearable applications the type of ECG electrodes should be easy to use,
compact in size and be able to provide reliable connection for a long duration.
Disposable foam-pad adhesive Ag/AgCl electrodes fulfill all such requirements
of W-ECG and hence they are preferred in W-ECG. Previously, a large num-
ber of studies have focused on electrodes and impact of their placement on
ECG applications. In order to reduce the number of electrodes, feasibility of
ground-free ECG recording with two electrodes has been investigated in [125].

Skin preparation prior to ECG recording is a standard practice in hospi-
tals in order to reduce the artifacts. This involves removal of hair from the
electrode sites, scrubbing of the sites with alcohol (spirit) wipes, and abra-
sion with abrasive pads. This can help for a short term (for a few minutes)
monitoring. However, it has been concluded from the studies carried out on
effect of skin preparations on generation of motion artifacts in [126] that the
skin preparations are not very helpful for reducing the motion artifact in long
term monitoring. Thus the motion artifact cannot be easily prevented and it
is a serious problem in a long term monitoring using W-ECG.
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2.7 Analysis of Ambulation in ECG

In Section 2.5, we have noted how BPC during sleep may affect the ECG
signal. In ambulatory conditions the ECG signal manifests many abnormal
and abrupt changes due to motion artifact caused by body movement activities
(BMA) of the subject. To interpret the ECG signal correctly in ambulatory
conditions, efforts are made to characterize and eliminate the motion artifact
signal from ECG.

In [86], a wearable system that can simultaneously record the ECG signal
and 2-axes acceleration is developed. The heart rate and the activity levels are
compared. The system could not detect the heart rate correctly due to motion
artifacts at activity levels which exhibited high acceleration values. From this
work it can be concluded that the level of activity in terms of acceleration
determines the quality of the ECG captured.

Another such system for recording ECG and 2-axes acceleration signal has
been developed in [145]. The heart rate, respiratory rhythm, postural behav-
ior and activity of the subject are computed from the recorded signals. The
study reveals that the RR interval, respiration, posture, behavior and activity
are very much inter-dependent. Therefore, the information regarding various
activities undertaken by the subject must also be used in the ambulatory
cardiovascular analysis.

A prototype for wearable ECG monitoring system capable of recording
and transmitting continuous ECG and accelerometer data is presented in [43].
Here it is reported that the algorithm used for computing the heart rate from
the captured ECG becomes inaccurate at high activity levels as measured by
the accelerometer. Thus the measurement of acceleration should be considered
while considering the reliability of the estimate of heart rate reported by the
automated algorithm.

In [17], a study is performed on the use of wearable devices for monitor-
ing the patient movement. From analysis of simultaneous traces of ECG and
acceleration signals shown in [17], we conclude that the motion artifacts are
generated in the ECG signal when there is an abrupt and significant change
in the acceleration signal due to patient ambulation.

Though the above studies have not quantitatively reported the impact
of the levels of the body movement on the generation of motion artifacts in
the ECG signal in ambulatory conditions, a reasonable conclusion is that the
amount of motion artifact should be proportional to the level of the BMA in
terms of body accelerations. We discuss this issue as one of the main topics
in this monograph.

Apart from the above works related to the ambulation studies in ECG,
a BMA specific characterization of motion artifacts has been proposed using
a wavelet transform and a neural network [92, 93]. The signatures of three
typical movement patterns are extracted by characterizing the low frequency
artifacts from the ECG signal itself. However, the reported performance is
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not very satisfactory as the wavelet based representation does not separate
the in-band BMA signal from the ECG.

We have seen in this review that many useful and accurate algorithms
are available in the literature for automated analysis of ECG signal. However,
they fail under subject ambulation due to the contamination of the ambulatory
ECG signal by the motion artifacts. The context of ambulation can be useful
in interpretation of automated analysis of the signal in W-ECG. However,
there is no standard reference database of ECG with ambulation information
available for carrying out the studies on impact of BMA on the ambulatory
ECG signals. In the remaining chapters of the monograph we will focus on
the W-ECG and the analysis of the ambulatory ECG signal. We will perform
some experiments on using motion artifacts in ambulatory ECG signal as a
source of information, while encountering the real life situation, when the
wearer is performing all kinds of daily activities like walking, climbing stairs,
etc. In the next chapter we provide some of the hardware details and useful
specifications of the W-ECG used for this work.
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3.1 Introduction

Personal healthcare devices find many applications where noninvasive mon-
itoring of biopotential signals is required. Among physiological parameters
ECG (Electrocardiogram) is one of the most important vital signals because
it directly reflects the heart condition. Wearable devices used for recording
ECG related information may continuously record heart rate and/or ECG for
several hours or days and store it on the system memory. The stored ECG
can then be used by cardiologists for subsequent analysis and diagnosis. Holter
monitors, developed for the first time by N. J. Holter [44], are commonly used
for this purpose. Event monitors record ECG for short periods which are set
by the user control [87]. More functionality may be incorporated into the
monitoring device by providing interface to PC (Personal Computer), mobile
phone and PDA (Personal Data Assistant) through USB (serial Bus Interface)
or other standards. In advanced monitors short range transceivers send stored
ECG to the control center in the hospital.

Meeting medical standards, size, weight, power dissipation and cost are
important factors in battery-operated personal or portable ECG monitoring
devices. These specifications imply special care in the design and implemen-
tation of the internal hardware. In this chapter common functional modules
of the signal conditioning Electronics in these devices are introduced. In gen-
eral, system may be implemented using commercially available chips or special
purpose integrated circuits. In either case the device may be a single lead or
multi-lead depending on the requirements. Detailed circuits will be given for
each module based on the prototypes developed by a design team in IIT (In-
dian Institute of Technology) Bombay.

*An invited chapter.
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3.2 Basics of Personal ECG Instruments

3.2.1 System Modules and Operation

A personal ECG monitoring system, called Silicon Locket, has been devel-
oped in IIT Bombay. Block diagram of Silicon Locket is shown in Fig. 3.1.
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ADCDAC
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Fig. 3.1. Block diagram of Silicon Locket, a personal ECG monitoring device.
Interfacing modules may be different among different products.

To be able to understand the requirements of the hardware we should start
from ECG itself. ECG signals from electrodes are inherently low voltage ana-
log potentials, ranging from 0.1mV to 4mV [142]. These signals are more often
mixed with common mode noise which naturally exist on the human body.
An example of such common mode noise is mains supply interference which
is induced on the body due to coupling capacitances between the body and
AC power boards. Amplitude of the common mode noise is normally large
compared to the amplitude of ECG signal. Therefore an INA (instrumenta-
tion amplifier) is required at the input stage of the ECG acquisition system
to attenuate the common mode noise and amplify the ECG signal which is
a differential mode signal, without adding additional noise. Number of ECG
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channels, varying from one to twelve channels, determines the number of re-
quired instrumentation amplifiers if simultaneous acquisition of ECG through
all channels is required. Otherwise a multiplexing scheme at the input may
be used.

Typical bandwidth of ECG signal is from 0.05Hz to 150Hz and maximum
up to 200Hz [142, 91]. Therefore it should pass through a bandpass filter.
However it is possible to highpass filter the signal before or inside INA it-
self [116, 117]. INA is then followed by an active bandpass/lowpass filter, as
shown in Fig. 3.1. In case of heart beat detection cut-off frequency of the
lowpass filter can be as low as 40Hz [42].

To store the ECG signal for further processing it is digitized. High resolu-
tion ADCs (analog to digital converter) with sampling frequencies not more
than few KHz are used for this purpose. Usually a low power microcontroller
provides all control signals for multiplexing, sampling and digitization, inter-
facing with memory and heart beat detection. Nowadays ADCs are also in-
tegrated on the microcontroller chips. Limited ECG processing for detection
of abnormalities may be also implemented by the microcontroller. Recorded
ECG can be sent through a wireless link to a base station or through a data
transmission link to PC (personal computer) and/or mobile phone or it can
be easily stored on a memory card.

3.2.2 System Requirements

Summary of main performance requirements for electrocardiographs is given
in [139]. However all of them are not applicable to wearable ECG recorders
because these devices are battery operated. For these devices some important
performance requirements are given in table 3.1.

Table 3.1. Some of the main performance requirements for wearable ECG recorders

Parameter Value

Minimum range of input signal ±5mV

Minimum tolerable input DC offset voltage ±300mV

Maximum Gain error 5%

Minimum upper cut-off frequency (-3dB) 150Hz

Maximum DC current flowing through each patient electrode 1µA

Minimum input impedance at 10Hz (each lead) 2.5MΩ

Minimum CMRR (common mode rejection ratio) at 60Hz 86dB

3.3 Electrodes

As it was explained in the introduction chapter, Ag/AgCl electrodes are com-
mon type of electrodes used for sensing ECG signals. A picture of a single
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disposable foam-pad adhesive ECG electrode has been shown in Fig. 1.1.
Generally electrolyte gel is used to maintain a good contact between the elec-
trode and the skin. A biopotential electrode in contact with the gel and skin
can be represented by an equivalent circuit. The equivalent circuit, briefly is
a parallel RC impedance in series with a dc voltage source, called half-cell
potential [139]. To reduce the magnitude of the impedance, electrodes should
have proper contact with the gel and hence with the skin. Since ECG sig-
nals are recorded in differential-mode half-cell potential appears as a dc input
offset voltage. Value of this offset voltage can be as high as ±300mV [139].
Therefore ECG signal conditioning circuit should tolerate such a high value
of input DC offset voltage.

3.4 Signal Conditioning

Performance of any personal biomedical system depends on the performance
of analog signal conditioning. Signal conditioning includes extraction and am-
plification of differential signals from sensors, with maximum amplitude of
a few mV, from a noisy environment. These tasks are mainly achieved by
INAs (instrumentation amplifiers) followed by gain and filter stages. Often
conditioned signals will be converted into digital form for further digital pro-
cessing. In the context of ECG main analog signal conditioning modules for a
multi-lead ECG acquisition system are shown in Fig. 3.2 [89]. In Fig. 3.2 each

Fig. 3.2. Basic ECG signal conditioning modules.
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input i (1≤i≤ N) comes from a single ECG electrode on the body. An analog
demultiplxer (DeMux module in Fig. 3.2) selects the electrode of which ECG
signal should be applied to the input of INA. Another input of INA either re-
ceives ECG signal from another electrode (in the case of limb leads) or receives
average of two/three ECG signals (for example Wilson central terminal).

3.4.1 Implementation Using General-Purpose ICs

It is always possible to implement a signal conditioning circuit using avail-
able general-purpose ICs. INA as the main module of signal conditioning
may be implemented using opamps (operational amplifiers) and resistors.
Fig. 3.3 shows a commonly used three-opamp configuration for implement-
ing an INA [139].

The INA, shown in Fig. 3.3, constitutes three operational amplifiers and
seven resistors comprising three matched pairs and one single resistor R1.
Direct connection of input differential voltage to the opamp terminals provides
an effective high input impedance for INA. Therefore loading of INA on the
sensor will be almost negligible. However sometimes bias resistors at the input
of INA are provided to establish a DC bias voltage at the input of INA. In
this case value of resistors should be high enough to provide a high input
resistance, e.g. at least 2.2MΩ.

Fig. 3.3. Three-opamp configuration for INA implementation.
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It is straightforward to derive the input-output characteristics of the INA,
shown in Fig. 3.3. Considering ideal opamps the input-output voltage rela-
tionship is given by Eq. (3.1).

Vout − Vref

Vin+ − Vin−
=

2R2 + R1

R1

R4

R3
(3.1)

Eq. (3.1) is in fact input-output equation for a differential amplifier. As
shown in table 3.1 high CMRR (common mode rejection ratio) is one of the
main specifications of INAs. The value of CMRR often should be more than
90dB for wearable ECG recorders. Opamps used in three-opamp should have
high CMRR. Still three-opamp INA needs accurate matching of the resistor
pairs that implement the feedback networks (Fig. 3.3). CMRR degrades by
the amount of 6dB for every 2% mismatch between resistor values. For a dis-
crete implementation resistors with accuracy matching better than 1% and
opamps with CMRR better than 90dB are required. Since equivalent input
noise voltage of two input opamps appears directly at the input of instrumen-
tation amplifier these opamps must be low noise. For a proper design RMS
(root mean square) value of the input noise voltage of each opamp over ECG
frequency band should not exceed 5µV.

General-purpose INA ICs overcome the matching requirements of three-
opamp configuration by integrating the entire circuit in one IC. Therefore
system developers may use these available INA ICs directly on the ECG signal
conditioning board.

Mains power supplies cause interference currents flow through the human
body [85]. The interference current is induced due to coupling capacitances
between the human body and power lines as well as between human body and
ground. There are different paths for this interference current to flow. Some
part of the current flows through the body, which generates a common mode
signal, at frequency of 50Hz (or 60Hz), on the body. Some part of the current
may flow through the input impedance of INA if INA is AC-coupled. AC-
coupled INA is desired because INA should tolerate at least ±300mV input
DC offset voltage.

If all components between the body and input terminals of the instrumen-
tation amplifier are matched still CMRR of the signal conditioner module is
a finite value and hence a small portion of the induced common mode signal
appears as 50Hz (or 60Hz) noise in the recorded ECG. This noise disturbs the
ECG, specifically P-Wave and T-Wave part of it. Using a sharp notch filter
with center frequency of 50Hz (or 60Hz) seems to be a solution for reducing the
interference. However care should be taken to avoid ECG distortion. Therefore
interference reduction is an important practical implementation issue even for
portable ECG monitoring devices which are operated by batteries. One of the
common ways of attenuating the common mode noise is to drive the right leg
using a common mode negative feedback circuit as shown in Fig. 3.4. Right
leg drive circuit is also used in bedside electrocardiograph systems [139].
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Fig. 3.4. Right leg drive circuit(Used with permission from Biosemi Inc. [85])

For further amplification and filtering of ECG signals more often INA is fol-
lowed by a LPF (lowpass filter). This lowpass filter is an active filter made by
on-chip opamps or OTAs (operational transconductance amplifiers) and dis-
crete resistors and capacitors. The cut-off frequency of the filter is set around
150Hz as specified in table 3.1. However it can be programmable. The overall
gain of the analog ECG signal conditioning module is also programmable,
usually in the range of 200 to 1000.

Wearable ECG recorders are often interfaced with personal computers, mo-
bile phones or removable memory cards through USB (universal serial bus),
IrDA (Infrared interface) or RS232 ports [136]. Therefore digitization of cap-
tured ECG signal is required. A low power microcontroller with on-chip ADC
(analog to digital converter) is a good choice for digitization of conditioned
ECG signal.

3.4.2 ASIC (Application-Specific Integrated Circuit) Design for
Signal Conditioning

To reduce the cost, weight and power compact design of personal medical
instruments is desired. These requirements motivate development of custom
signal conditioning chips. The ultimate goal is the ASIC design as per the
recommended specifications for personal health care devices, integration of
more functionalities into the chip and compact design of the final monitoring
device.
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ASIC development for medical instruments is not recent. In fact in 80s re-
search had already started for the development of micropower personal moni-
toring devices. For example a comprehensive test chip was reported in 1988 for
the acquisition of physiological signals [84]. An integrated micropower heart
rate indicator with power supply voltage of 10V, developed in 3µ CMOS pro-
cess, was reported in 1989 [109]. This heart rate monitor was designed for the
continuous monitoring of the heart rate. In heartbeat detectors exact retrieval
of ECG waveform is not a concern. The detector must only precisely detect
QRS peaks to provide a base for counting heart beats. Therefore bandpass
filter of analog front end is designed in such a way to attenuate frequencies be-
low 10Hz or above 60Hz. In 1996 a CMOS nine channel ECG measurement IC
with complete data acquisition was published [23]. The ASIC was developed
in 2µm CMOS process for general measurement purpose, operating at 10V
power supply with power consumption of 270mW. Hayes-Gill et al. reported
a generic ASIC again comprising analog modules and ADC in [42]. As CMOS
technology advanced more functionalities were incorporated in the integrated
circuits aimed for biomedical instruments. An example of such test chips was
published by Chih-jen, et al. in 1999 [143]. The test chip included analog sig-
nal processing unit, transmitter, receiver and digital processing unit. Analog
processing unit constituted instrumentation amplifiers implemented using op-
amps and analog filters. Transmitter included amplitude modulators, analog
adder, frequency modulator and RF transmitter. In the continuation of that
work an analog processor IC for wireless bio-signal monitor was reported in
2003 [144].

The research has continued in different directions, for example reducing
power dissipation or covering more number of physiological signals or im-
proving noise performance and finally making the chip specifications quite
robust using programmable gain, filtering and base line drift compensa-
tion [68, 91, 117, 142, 144]. High-performance CMOS biomedical signal con-
ditioning ASICs are not usually developed in nano regime technologies due to
low frequency operation, stringent noise and offset requirements, and cost. In
this regard 0.35µm and 0.5µm CMOS technologies are attractive technologies.

Instrumentation Amplifiers

Instrumentation amplifier (INA) is a key module among all signal conditioning
modules. In low power personal health monitoring devices, biopotential INAs
with high common mode rejection ratio (CMRR), low input-referred noise
voltage and low offset voltage as well as very low power consumption are
required. As it was discussed in Section 3.4.1 monolithic implementation of
INA using traditional three opamp configuration needs accurate matching
of the resistors used in its feedback network to achieve high CMRR. Also
this structure is not a proper solution for very low power design. Another
approach for the design of integrated ECG INAs is to use current balancing
technique [80, 108]. Fig. 3.5 shows the basics of current-balancing technique.
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At the transconductance stage, the input difference voltage is converted into
a differential current ig, flowing through resistor Rg. Current ig is mirrored
to the transimpedance section with the unity gain. The mirror current, called
is, is converted into the voltage by flowing through a resistor Rs. Referring
to Fig. 3.5, expression (3.2) applies.

ig = is ⇒
Vout − Vrefinternal

Vin+ − Vin−
=

Rs

Rg
(3.2)

Fig. 3.5. Basics of current balancing technique. (Reprinted with permission from M.
Shojaei Baghini, S. Nag, R. K. Lal, D. K. Sharma, ”An Ultra Low-Power Current-
Mode Integrated CMOS Instrumentation Amplifier for Personal ECG Recorders”,
Journal of Circuits, Systems, and Computers (JCSC) Vol: 17, Issue: 6, c©2008 World
Scientific Publishing Co. Pte. Ltd, Singapore.)

Although current balancing technique is a known method, suitability of
this technique for achieving ultra low power ECG signal conditioning chips
was reported for the first time in [116]. Integrated INA reported in [116, 118]
consumes only 9µA. The circuit has been implemented in a test chip and fab-
ricated in 0.35µm CMOS technology with supply voltage range of 2.8V to 4V.
The circuit schematic of the implemented INA is shown in Fig. 3.6. In Fig. 3.6
transistors ML1 and ML2 act as active loads for input transistors M1 and M2.
Transistors MGm1 and MGm2 make an internal transconductance amplifier
with feedback path to the input stage through cascode current mirrors. This
feedback path keeps drain currents of M1 and M2 almost constant. When a
differential voltage is applied, output currents of the transconductance ampli-
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fier become unbalanced in order to maintain the drain currents of M1 and M2
equal. Therefore input voltage will drop across Rg. At the transimpedance
stage transistors M7 and M8, linearized by the internal opamp, convert the
input current into a voltage across resistor Rs. Thus input voltage is ampli-
fied at the output by the amount of Rs/Rg. Cascode current mirror is used
to obtain high CMRR [29].

Fig. 3.6. The circuit schematic of ultra low power CMOS INA reported in [116,
117, 118]. ( c©2004, 2005 IEEE)

Amplifiers and Filters

With current balancing technique it is possible to implement main analog
signal conditioning functions by the instrumentation amplifier (INA) itself
and so complexity, power and cost of the whole analog circuit reduces. For
example, in Fig. 3.6 two external capacitors CHPF and CLPF determine the
lower and higher cutoff frequency of the amplifier, respectively [117]. Typical
range for corner frequency of lowpass filtering is 150Hz to 200Hz. Typical
range for corner frequency of highpass filtering is from 0.05Hz to 0.5Hz. For
heart beat detection applications corner frequency of lowpass filtering can be
reduced to 40Hz. Programmability of both lowpass and highpass filtering is
desired. For example in [118] two control bits program frequency response
of HPF. Also by setting both control bits to zero HPF will be disabled and
reference voltage of the transimpedance stage will be connected to Vref. It
should be noted that highpass filtering also remove out-of-band slow motion
artifacts. However for very fast motion artifacts it will take a long time for
the base line to recover. In this case to restore the base line to the normal
level, on-chip internal switches across input transistors M1 and M2 (switch
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S2 in Fig. 3.6) and across CHPF (switch S0 in Fig. 3.6) are used to rapidly
discharge external capacitors of INA.

Ultra low power INAs with bandpass frequency response are the main
modules for compact integrated analog signal conditioning [116, 117]. In ad-
dition to that since amplitude of ECG QRS complex changes from person to
person adjustable gain for each channel of ECG signal conditioning is always
desired. One simple programmable gain stage after instrumentation amplifiers
provides the desired range of channel gains. Typical values of channel gain is
from 200 to 1000. The signal conditioning circuit reported in [117] draws DC
current of 22µA from 3.3V battery supply voltage for each ECG channel. The
front-end differential stage is AC coupled to the body through 1µF capacitors.

Block diagram of one channel of the compact and low power CMOS sig-
nal conditioning chip, called SLAC1.1, which is designed in IIT Bombay, is
shown in Fig. 3.7(a) [117]. Off-chip components are also shown in the figure.
In Fig. 3.7(a) INA, bias generator module and each operational amplifier of
the chip draw 9µA, 10.5µA and 8µA dc current from 3.3V battery supply volt-
age, respectively. Operational amplifiers have phase margin of 70 degree while
driving 40pF load capacitor. Unity gain frequency of the opamps was mea-
sured 130kHz suited for low frequency biopotential signals. Fig. 3.7(b) shows
the chip photo. Table 3.2 shows measured specifications of each channel on
the chip [117].

Table 3.2. Performance specifications of each ECG channel achieved by custom
ECG signal conditioning chip reported in [117].

Parameter Value

Vdd 3V≤Vdd≤ 4V

Voltage gain of the channel 200

Input voltage range for high linearity ±6mV

Tolerable input DC offset voltage Any value due to AC-coupling

Input referred noise voltage (RMS) 6 µV (BW=200Hz)
(INA noise plus thermal noise of bias resistors)

CMRR 100dB (at 60Hz)

Input impedance of each channel at 10Hz Very high due to AC-coupling

HPF cut off frequency 0 to 0.07Hz (programmable)

LPF cut off frequency 170Hz
(adjustable by external capaci-
tors)

Interference Issues

Recording of bioelectric signals is always liable to electrically induced and
magnetically induced interference. Mains power supply is a common cause of
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(a)

(b)

Fig. 3.7. One channel of SLAC1.1 reported in [117], (a) ultra low power CMOS
ECG signal conditioning chip and (b) chip photo of SLAC1.1. ( c©2005 IEEE)
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interference for both bedside and personal monitoring devices. The capaci-
tances between the patient and mains power supply cables (or boards) cause
an interference current, typically in the range of few µA, to flow through
the body [85]. This interference current exists even in personal battery op-
erated ECG monitoring instruments. A part of the interference current flows
through right leg drive electrode and enters into the ECG recording device. In
return common mode voltage of the ECG instrument changes with frequency
of 50Hz (or 60Hz), which appears as common mode noise on the reference
level of ECG signal. Therefore INAs with high CMRR (more than 90dB) are
required. In addition to common mode noise there is possibility of differential
mode noise as well. This is due to the inherent mismatch between impedance
of ECG electrode skin interface for every two electrodes. 50/60Hz interference
signal on the body is converted into a small differential voltage due to this
mismatch. This differential voltage appears at the input of ECG lead, which
in turn is amplified and appears as noise on the ECG signal at the output of
ECG channel. Fig. 3.8(a) shows recorded Limb lead I ECG using SLAC1.1
under strong 50Hz interference but with proper shielding. Similar ECG was
then recorded without shielding considerations to demonstrate the effect of
mains supply interference on the ECG signal as shown in Fig. 3.8(b).

Mains supply interference cannot be easily filtered from ECG because
its frequency is in the band of ECG signal. Therefore cables and the entire
Electronics of ECG device should be shielded to reduce this noise. Shields
should be driven by appropriate signals. The best way is to drive a shield
with the signal at the inner wire [85]. However for each input signal an extra
shield drive amplifier is required. For example for a simultaneous three lead
ECG recording device, three shield drives are required. For higher number
of leads, analog demultiplexing reduces the required number of shield drives.
For example for a 12 lead arrangement, shown in Fig. 3.2, eight additional
op-amps are required for buffering and shield drive purposes. Fig. 3.9 shows
the schematic of Wilson Central Terminal generation, guarding and right leg
drive circuits for a 64 channel ECG amplifier [85].

3.5 Analog to Digital Converter

ECG is a common non-invasive diagnostic tool for monitoring and detecting
cardiac diseases. Main motivation for continuous monitoring of the patients’
ECG is to detect transient arrhythmias or transient distortion in ECG wave-
form, which may not be present during short-time ECG tests in the hospital.
ECG is not only analyzed by the cardiologist but also in automatic post-
processing ECG analysis systems which act as an assistant to the cardiolo-
gist. For example, heart rate variability and ST segment deviations can be
automatically detected by post processing of ECG data [18, 61, 110]. This is
specially crucial in ambulatory situations. Signal conditioned ECG should be
digitized for the purpose of post processing.
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(a)

(b)

Fig. 3.8. ECG signal traces from lead-I, using custom ASIC SLAC1.1, designed
in IIT Bombay, (a) clean ECG signal (b) effect of strong 50Hz interference on ECG
signal

Post processing of ECG data is not only used for detection of abnormali-
ties but also sometimes for further noise and artifact removal, specifically in
portable and personal health care devices. For example, mains supply interfer-
ence or motion artifacts can be savior when the patient prefers more freedom
in mobility and movements.

Resolution of ADC (Analog to digital converter) in personal ECG moni-
toring devices depends on the amount of information which will be extracted
from recorded ECG or accuracy the cardiologist requires. Resolutions up to
16 bits and sampling rates up to 2k samples/s are used when sophisticated
post processing like ST-T micro-variabilities need to be detected [61]. It has
been shown that beat-to-beat micro-variations of the T wave, are related to
arrhythmia [61]. However these micro-variations are not visually apparent
from ECG. On the other hand if sophisticated analysis is not required and
noise removals like removal of motion artifacts are concerned resolutions max-
imum to 12 bits with sampling frequencies as low as 256 samples/s are usually
enough [40, 100, 103].
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Fig. 3.9. A typical Wilson Central Terminal generation, guarding and driven right
leg circuits in front end of a multi-channel ECG signal conditioning circuit (Used
with permission from Biosemi Inc. [85])
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3.6 Digital Modules

In standard monitoring sophisticated signal processing is not necessary. There-
fore the device may display the heart rate or provide crucial but limited
functionalities like continuous recording and storage of ECG with or with-
out wireless link and detecting vital abnormalities like arrhythmia. As far as
standard monitoring is concerned the entire control and processing tasks can
be handled by a low power microcontroller. However diagnostic monitoring
needs advanced and highly-accurate DSP algorithms to be embedded into the
device. This will drastically increase the power consumption of the medical
gadget much beyond the rate at which a battery-operated instrument can
work continuously at least for 24 hours. As a result diagnostic monitoring is
handled by the base station or central processing unit in the medical control
center.

Main digital modules in a personal ECG monitoring device are as follows.

1. Microcontroller (more often with built in data converters)
2. Clock generator
3. Memory modules for storing application software (usually compiled in

assembly code), patient data and digitized ECG
4. Display driver (some ECG monitoring devices do not have display)
5. Data transfer interface like USB interface or serial link
6. Data transmission interface like interface with short range ECG wireless

transmitter like infrared and Bluetooth.

3.6.1 Microcontroller

Main digital modules of Silicon Locket are shown in Fig. 3.1. Low power
microcontroller MSP430F149 from TI (Texas Instrument) was used in the first
prototype of Silicon Locket [90]. This microcontroller has an internal 12 bit
ADC with reference voltage of 2.5V. MSP430F149 consumes 280µA current
at 1 MHz operational frequency with standby current of 1.6µA [2]. On-chip
60KB flash memory is used for temporary storage of digital data as ECG is
acquired and digitized in Silicon Locket [90].

3.6.2 Data Storage

In many cases real time transmission of ECG data is not required. Instead
cardiologist needs latest ECG data from the patient recorded, say for 24 hours.
One of the best ways of storing ECG data is SD (secure digital) card [3]. SD
card is a non-volatile memory card which can be easily plugged into portable
electronic devices such as cameras, mobile phones, etc. Capacity of the card
may change from few Mega bytes to tens of Giga bytes. As shown in Fig. 3.1
Silicon Locket uses a removable SD card interface. Patient can easily carry
the stored data any time she/he visits the doctor.
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3.6.3 Data Retrieval

Data storage, transmission and retrieval are crucial in wearable healthcare
instruments. In the context of ECG, data retrieval methods depend on the
storage media. For example ECG retrieval from SD card can be addressed
in two ways. One way is to provide a removable SD card interface to the
instrument and then use a media-card reader. Another way is to provide a
reader based on one of the commonly used connectivity standards, such as
USB or Bluetooth [60]. In latter case additional conversion chips are required
to interface the microcontroller to the peripheral devices. In case monitor-
ing should be real time or acquired ECG should be sent to a base station
with minimum delay low power wireless transceivers supporting short range
connectivity standards such as IEEE 802.15.4 may be used.

3.7 Discussion

Personal health monitoring technologies provide medical facilities in small de-
vices. The device can be like a mobile phone so that a person can easily carry
it or will be inserted in proper textiles so that the person can wear it. Low cost
wearable or mobile personal healthcare devices record vital physiological sig-
nals or provide standard measures of health. Many of these devices are already
available in the market. However to make these devices reliable and affordable
for every body research is going on to provide solutions with more functional-
ities, better performance, less energy consumption, less size and lower price.
In this chapter an example of a low cost power efficient custom IC for signal
conditioning of simultaneously three channel ECG was presented. From hard-
ware side integration of sensor, signal conditioning, data conversion, control
and processing modules all in one chip will significantly improve the perfor-
mance, cost, size, price and energy consumption of the device. Development of
special microcontrollers and processors for wearable healthcare devices plays
a vital role in embedding more algorithms for annotation and post processing
of recorded or measured signals.
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Calibration of Locket

In Chapter 3 we have seen the hardware details and specifications of the locket
which we have used for acquisition of ECG signals. Here we reproduce some of
the important features and measured performance parameters of the analog
processing part of the locket in Table 4.1 (from [117]) for convenience.

Table 4.1. Specifications of the analog processing part of the locket. Reproduced
from [117].

Feature/Parameter Value

ECG-lead Single, primary lead

Battery Voltage 3.7V

Supply current for a single-channel 22µA

Voltage gain 600

Input voltage dynamic range 6mV

Input referred noise voltage (rms) 6µV (0<BW<200Hz)

Common mode rejection ratio 100dB (at 60Hz)

Output signal slew rate 50mV/µs

Input impedance 3.2MΩ

High-pass cut-off frequency 0.05Hz

Low-pass cut-off frequency 106Hz

Quantization 12 bits/sample in the range 0-2.5V

Memory 32MB SD card

File formates binary, ASCII

Computer interface serial port data transfer, on-line and off-line

The battery voltage 3.7V matches with the commercially available Li-ion
rechargeable, BL-5C battery. The supply current specification gives an idea
how frequently the battery needs to be recharged. For example, the BL-5C
battery permits the locket to record single channel ECG data continuously
for more than 10 hours. The voltage gain is set to amplify the analog signal
captured by the electrodes sufficiently for analog to digital conversion. For the

© Springer Science + Business Media, LLC 2009
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specified operating voltage and gain the amplifier is able to cover the dynamic
range of 6mV, which is considered suitable for surface ECG. Typically, the
ECG signal has an amplitude of 1mV at the skin surface but it can be as high
as 3mV for some subjects. The rms level of noise is as low as 6µV as indicated
in Table 4.1, which accounts for the thermal noise of resistors at the input
of the amplifier. The common mode rejection ratio indicates capability of the
amplifier to reject the common mode input signal such as powerline noise.
The slew rate represents the highest rate of change in the input signal and
hence the maximum amplitude of the signal at a specified frequency that the
amplifier can handle. The input impedance of the amplifier matches with the
skin electrode impedance for optimal capture of the ECG signal from the skin
surface. The highpass and lowpass cut-off frequencies determine the frequency
range of the amplifier and the selected bandwidth is considered suitable for
the ECG signal for clinical applications.

The detailed specifications of the locket related to the analog part such as
frequency response, noise level, common mode rejection ratio, slew rate, etc.,
have been characterized and reported in [117]. However, the sampling rate
which is determined from the crystal frequency and the multiplier set in the
firmware, is adjustable. This is preferred over a fixed sampling rate to suit
the needs of different applications and limitations imposed by the number of
channels and the available memory storage, particularly at the development
stage of the recorder. For the prototype used in this work the sampling rate
is pre-set and kept the same for all data recorded for the same purpose.

In this chapter we discuss a simple calibration procedure performed to con-
firm the pre-set sampling rate of the locket with respect to a standard analog
to digital converter (ADC). The sampling rate is useful when the ECG signal
is required to be analyzed with respect to other signals such as accelerometer
data.

4.1 Calibration Requirements

It is important to know the sampling rate for physical understanding and
interpretation of the signals recorded in digital form. The sampling rate can
provide the exact time instance of a particular event in the digital signal and
also allows us to compare the signals from several different sensors working at
different sampling rates. For example, in Chapter 8 we use body acceleration
signals recorded using a stand-alone motion sensor system with a sampling
rate different from that of the locket. Thus the collected acceleration and ECG
signals are at different sampling rates. To analyze the ambulation activities
in time we must have a common time reference for both the signals which is
possible only if the sampling rates for both the systems are known.

A pulse with a very stable amplitude, frequency and duty cycle is required
as the input for the calibration of the sampling rate of the locket. The number
of samples during ON time of the pulse can be counted to know the exact
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sampling rate. There are, however, some limitations on the calibration pulse:
the amplitude of the pulse should be less than 1mV in order to prevent the
device from going into saturation due to high amplifier gain and the ON time
of the pulse should be integer multiple of sampling period to avoid the error
in counting of number of samples per second. Considering the difficulties in
generating the calibration pulse with the strict specifications for the method
given above, we instead show here a practical approach to estimate or con-
firm the exact sampling rate of the locket with an analog to digital converter
(ADC). In this method we require an analog ECG processor (amplifier) and
an ADC with known sampling rate. We use the powerline interference as a
reference signal for both the systems, the locket and the ADC.

4.2 Experimental Set-up

Since we wish to use the powerline signal as a common reference signal for the
ADC as well as the recorder to be calibrated, we allow the powerline interfer-
ence to occur in both the channels. It is known that there is increased power-
line interference if the lead cables of the ECG amplifiers are not shielded [137].
Therefore, for the signal acquisition process during the calibration, we use
unshielded cables and choose an environment like an electronics laboratory,
where significant powerline interference is known to occur. Care has to be
taken that the level of the interference signal does not saturate the ECG am-
plifier. This is practically achieved by keeping an appropriate distance from
the source of the interference like a switch or a power supply regulator. This
method is different from the impedance measurement using a current sup-
plied across the electrode at a specified frequency, since there is no active
source connected to the electrode itself. Since the skin electrode impedance is
sensitive to the skin stretch at the lower frequencies (below 200Hz) [40], we
restrict any body movements activity (BMA) during the ECG acquisition to
prevent undesired artifacts. Thus according to the model given in Eq. (1.1)
of the recorded ECG signal, r(n) = q(n) + s(n) + η(n), we try to enhance the
sensor noise η(n) with the characteristic of a very narrow spectrum, centered
at ≈50Hz in this experiment, while minimizing the motion artifact signal s(n).
Ideally, s(n) = 0 in absence of any BMA. A set-up of the experiment is given
in Fig. 4.1, in which two parallel channels of the lead-II ECG acquisition are
depicted. The two channels for the lead-II configuration are obtained by plac-
ing a pair of electrodes side-by-side with a separation of 1.5cm, for each of the
paired locations as shown in Fig. 4.1. The upper channel is connected to an
ECG amplifier followed by an ADC, NI-USB-6009 from National Instruments
(NI). The NI-USB-6009 is configured to sample the analog signal in the single
ended mode with a common ground (the same as the amplifier ground), unity
gain and quantization of 12 bits/sample. Further details about connections
and configuration of NI-USB-6009 are provided in [1]. The digitized data is
transferred to the computer through a universal serial bus (USB) in real-time
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Fig. 4.1. Experimental set up for the calibration of the sampling frequency of the
wearable ECG recorder.

using a software interface. The sampling frequency of the device was software
controlled using the NI-DAQmx Base 1.4 driver programmed through the NI
Labwindows CVI 7.1 interface. The other channel in Fig. 4.1, is connected to
the locket. Since the data in both the channels are being recorded separately
without any time synchronization, the recordings in both the channels are
started with a minimum possible delay between the two channels.

4.3 Calibration Technique

From the experimental set-up described in the previous section, we have seen
that there are two ECG signals recorded separately but from the same location
configured for the lead-II: one using the locket and the other using the ADC
(NI-USB-6009). Let us denote the recorded signal in locket as x1 and that
recorded in the ADC as x2. Let the sampling rates of the signals x1 and x2

be f1 and f2, respectively. Here f1 is unknown and f2 is pre-programmed in
the ADC using the software.

It is known that the powerline interference is dominant in both the
recorded signals, which is centered at a frequency ≈ 50Hz. However, the exact
value of the frequency fp may deviate by ±2Hz. Moreover, the value of fp

may not remain steady over a long period of time. Thus we cannot adopt the
method of counting the number of samples per cycle of the interference wave
for calculating the sampling rate. Instead, we acquire a reference signal using
an ADC for which the sampling rate is known. Here, we use the fact that
both the ADC and the locket signals are being recorded simultaneously, hence
the line frequency fp remains the same for both the signals. A block diagram
of the processing steps involved in this method is given in Fig. 4.2. First, in
the DFT block the magnitude spectrum of the input signal is computed over
a fixed window using discrete Fourier transform (DFT). Since the frequency
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Fig. 4.2. Processing steps in the calibration method.

resolution of the DFT is related to the number of samples in the window as
well as the sampling rate, we should choose a reasonably high number of sam-
ples. The powerline frequency component is dominant in both the signals x1

and x2 and hence it produces corresponding peaks in the computed spectra.
Since f1 is unknown, the locations of the peaks are detected on a normalized
frequency axis 2fO/f2, where fO is frequency observed in the DFT at the
sampling rate of f2. Therefore, fO is the actual frequency for x2, whereas
the actual frequency for x1 is given by (fOf1)/f2. The unknown sampling
frequency f1 is estimated in Fig. 4.2 as follows.

Let us denote the locations of the peaks on a normalized frequency axis
2fO/f2 as p1 and p2 for the signals x1 and x2, respectively. The actual power-
line frequency fp corresponding to both the peaks is the same. However, the
observed frequency fO is related to the actual frequency in each signal in a
different way as explained above.

Therefore we have,

fp = p1

2
f1

f2

= p2

2

⇒ f1 = f2
p2

p1

. (4.1)

Since we know the variables in the right hand side of the above equation, we
can calculate the sampling frequency of the locket f1. We can also calculate
the powerline frequency fp for the given data.

4.4 Results and Discussion

Following the technique given in the above section, the magnitudes of DFT
(spectra) of the signals x1 and x2 against normalized frequency values 2fO/f2

are plotted in Fig. 4.3(a), where f2 = 256Hz. A distinct peak in the spectrum
of each of the signals is found as shown in Fig. 4.3(a), which is attributed to
the powerline interference. However, the locations of the peaks in both the
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spectra are shifted because of difference in the frequency scales for both the
signals. The shift is more clearly visible in the cross-correlation function of
the two spectra, plotted in Fig. 4.3(b). The half-width of the lobe produced
in the cross-correlation represents the variance in the frequency estimation,
which is < 0.2Hz. We have found the values of f1 = 242Hz and fp = 48.9Hz
using Eq. (4.1) from the recorded data in this experiment.
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Fig. 4.3. (a) Observed spectra of powerline interference with sampling rate
f2=256Hz and unknown f1. (b) The shift in the observed powerline frequencies
using cross-correlation of the two spectra.

It is worth explaining here, why the cross-correlation based technique
should work in estimating the sampling frequency of the locket. Ideally, spec-
tra of both the signals x1 and x2 are nearly identical as both are acquired from
(almost) the same lead-II positions of the ECG electrodes. The difference in
peak in Fig. 4.3(a) is due to different choice of sampling frequencies in two
channels. Ideally, one would like to dilate or contract one of the power spectral
densities (PSD) to estimate the exact frequency. Since we have selected the
reference frequency f2, very close to the locket frequency f1, the expression
Eq. (4.1) can be simplified as

f1 = f2
p2

p1

≈ f2
p1+δ

p1

≈ f2 + δ
p1

f2
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≈ f2 + ∆f, (4.2)

where ∆f is the shift in frequency. Cross-correlation of the PSD of these two
signals, thus, gives us the frequency offset required to calculate the sampling
frequency of the locket.
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Fig. 4.4. Temporal synchronization of the two signals using the covariance of RR
interval sequence. (a) Cross-covariance function of the two RR interval sequences,
(b) the two RR interval sequences after alignment and (c) the ECG signals after
alignment.

Now, the sampling rate of the locket is known, which can be used for
resampling of the signal x1 so as to match it with the sampling rate of x2.
The signal x1 is resampled by a rational factor of f2/f1 as indicated by ↑f2

(upsampling) followed by ↓ f1 (down sampling) in Fig. 4.2. Let us denote
the resampled version of signal x1 as x′

1. The resampled signal x′
1 and the

signal x2 have the same sampling rate but they may not be exactly time-
synchronized. At this stage we cannot use cross-correlation between these
two signals for time-synchronization because the powerline noise as well as
ECG signal are both periodic in nature and may produce several peaks in
the cross-correlation function creating ambiguity in finding the exact delay
between the two signals. Instead, we use the cross-covariance function of RR
interval obtained from QRS detection in both x′

1 and x2. We also verify that
the error between the corresponding pairs of RR interval values for both the
signals is very small after time synchronization. The cross-covariance function
of the RR interval series is shown in Fig. 4.4(a). A distinct peak at a shift of
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16 beats indicates the delay between the two signals. A part of RR intervals
for both the signals after the alignment is shown in Fig. 4.4(b), indicating
a perfect match. The ECG signals after time-synchronization are shown in
Fig. 4.4(c). The spectra of both the signals are shown in Fig. 4.5. At the lower
frequency band of 0-25Hz, both the spectra are matching very well, the faster
roll-off for spectrum of signal x2 is due to the 50Hz high frequency cut-off (as
opposed to 106Hz for the locket) of the ECG amplifier used in the experiment.
The peaks of the powerline are produced at fp = 48.9Hz in both the spectra.
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Fig. 4.5. The spectra of two ECG signals after achieving the alignment. The peak
at powerline frequency is in perfect alignment for both the signals.

In this chapter, we have presented a simple yet effective method for cal-
ibrating the sampling rate of a W-ECG using powerline interference. The
experimental set-up for the calibration is very simple to implement in the
laboratory. The method is also useful for calculating the exact powerline fre-
quency over a short period of time and hence can be used for generating a
reference signal for adaptive noise removal applications. Since the method is
based on DFT, peak detection and cross-correlation operations are easy to
implement on micro-computers, and hence it can be easily adapted for W-
ECG.



5

Data Acquisition

In previous chapters we have provided some background on ECG and dis-
cussed issues such as calibration those are specific to wearable ECG recorders.
In the remaining part of the monograph we shall discuss various signal process-
ing techniques for analysis of ambulatory ECG signal. We shall demonstrate
their usefulness through a number of experimental results. All experiments
have been conducted in real life situations. In this chapter we discuss the var-
ious data acquisition procedures. The same experimental protocol is followed
everywhere in this monograph.

5.1 Introduction

Motion artifact is a major problem in the analysis of ambulatory ECG signals.
Though the motion artifact is undesirable, it cannot be removed completely
from the ECG signal using any linear filtering methods because of the spec-
tral overlap. Our aim is to extract information regarding the body movement
activities (BMA) from the ambulatory ECG signal itself. Once the motion ar-
tifact signal s(n), in Eq. (1.1), has been well characterized, it can be eliminated
and the true ECG signal q(n) can be recovered under certain restrictions.

In ECG acquired at rest there is no movement of the subject and hence
the motion artifact is not present. However, when we consider the ECG signal
recorded by a wearable ECG device (W-ECG) then motion artifact is preva-
lent whenever the user (wearer) performs any kind of body movement. Since
the purpose of the W-ECG is to monitor the cardiac signal of the wearer
while the routine activities are being performed unrestrictively, one may be
interested in analyzing the ECG signal from the activity view point.

The various body movement activities (BMA) that have been considered in
this study, influence the ECG signal in some ways that are similar, yet in other
respects in different and unique manners. For example, consider the following
two activities: (i) walking on a level floor and (ii) walking down stairs. Both
these activities are different, however, in as much they influence the ECG
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signal, there are a lot of similarities and this will be shown in subsequent
chapters. Therefore, it is practically very difficult to distinguish all the types
of BMA from the ambulatory ECG signal itself. However, in our experiments
we find that classifiability improves drastically with training. Our analysis of
ambulatory ECG signal involves transition detection, BMA recognition and
impact analysis and these are presented in the Chapters 6-8. First of all we
consider commonplace BMAs like walking, climbing stairs, etc. and acquire
the ECG signal during the specific BMA. The ECG signal itself is qualitatively
described by the corresponding BMA label. In the next section, we acquire
ECG signals during the transitions among any two BMAs. Finally, we acquire
both the ambulatory ECG signal and the motion sensor signals during various
BMAs. The motion sensors are attached to different body parts to measure
the acceleration signals due to the BMA. Using these data we can study the
impact of the variation of the activity levels on the motion artifact signal in
ECG. Impact analysis has also been performed on ECG data acquired from
subjects undergoing multiple levels of activities on a treadmill. In this chapter
we discuss the various data acquisition procedures as well as the protocols for
various ambulatory ECG experiments.

5.2 Commonplace Body Movement Activities

The intended use of the locket or a W-ECG is that the user should be able to
perform all routine activities with not too many constraints. Hence we wish
to analyze the ECG signal during such activities in order to detect any unique
pattern specific to an activity. We consider some of the most commonplace
body movement activities (BMA) like movements of left, right and both hands,
walking on level floor, climbing on stairs, etc. The ECG signal is acquired when
only one of the specified BMA is being performed continuously. In this sense
each of the ECG signal in this data set qualitatively represents a specific BMA
and can be recognized by the particular BMA label.

A single-lead W-ECG is used for acquisition of the ECG signals in lead-II
configuration at a sampling frequency of 242Hz. The detailed specifications
of the W-ECG are summarized in Chapter 4 [117]. The lead-II configura-
tion [12] is chosen for all the recordings in this study for consistency. In this
experiment, certain commonplace BMAs such as sitting, walking, movement
of arms, and climbing up and down stairs are recorded. Stair climbing is cho-
sen as it is a routine activity in urban life. Also, it is perhaps one of the most
demanding activities which will cause strain on the heart at a high activity
level and should be carefully monitored. The activities are performed over
a short duration followed by sufficient rest so that the effect of a particular
BMA subsides before the next activity is initiated. Thus, care has been taken
not to unduly stress the heart during the BMA. Since climbing up the stairs
may cause stress, this is restricted to only up to three floors and is performed
at a relaxed pace. Since we are exploring the feasibility of BMA recognition
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from a single-lead ECG signal, thus as a precaution, testing is restricted to
subjects with no known cardiac disorders as a precautionary measure. Again,
all subjects were intentionally chosen to be right-handed males in order to
preclude variations arising out of possible gender and orientation effects. In
addition, there were no instances of dextrocardia. The subjects volunteered
to perform all of the following defined classes of body movement activities:

1. sitting still on a chair,
2. up and down movement of left arm, at a rate of approximately 25 cycles

of the up-down movement per minute,
3. up and down movement of right arm, at a similar pace,
4. similar up and down movement of both arms,
5. walking at a gentle pace with an average speed of about 3 km/hour on a

level floor,
6. twisting left-right-left body movement at the waist while standing, at a

rate of approximately 25 cycles per minute, as a common body stretching
activity,

7. climbing down stairs at an average rate of 100 steps per minute or equiv-
alently coming down at an average speed of 30 cm/s,

8. climbing up stairs at an average rate of 85 steps per minute or equivalently
gaining a height at an average speed of 25 cm/s.

A total of 23 healthy subjects were chosen in the age group of 22 to 50
years with an average age of 29 years and a standard deviation of 7 years.
A part of the data collected was used for training purposes and the other
part was reserved for performance evaluation of the proposed technique. The
ground truth with regards to type of BMA is known for the entire dataset.

5.3 Activity Transition

In the previous section ambulatory ECG signals have been acquired which
represent certain specific types of BMA. In this section we consider the same
set of BMA as above. However, the goal is to detect transitions among any two
different types of BMA on the basis of the differences in the induced motion
artifact signal due to different types of BMAs. In order to study transition de-
tection we acquired ECG signals while the subject switches from one activity
to another. The specific BMA sequence and the exact time of the transition in
the ECG signal is recorded by a passive observer to obtain the ground truth.

The specifications of the locket [117] used for ECG data acquisition in
this study are the same as above. Here in the proposed experiment, activities
such as sitting down, standing up, movement of arm(s), walking, climbing on
stairs, twisting motion at waist, and some transitions among some common
body postures during sleep such as left lateral, supine and right lateral are
performed. We also included a few examples of yawning during data collection
as this involves a significant expansion of chest, introducing its own form of
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motion artifact in the ECG data. Care has been taken not to unduly stress the
heart during the BMA and hence all the BMAs are performed at a normal
relaxed pace. The ECG signals are collected from normal subjects with no
known cardiac disorders, containing different types of BMA transitions given
in Table 5.1. The total number of each type of BMA transitions is indicated
in the next column in Table 5.1.

Table 5.1. Summary of the dataset acquired from various subjects for the purpose
of detecting the activity transitions.

BMA Transition Number of Transitions

Still→Twisting 21
Twisting→Still 10
Still→Walking 50
Walking→Still 5
Still→Climb up 23
Climb up→Still 9
Still→Climb down 18
Climb down→Still 8
Still→Arm movement 73
Arm movement→Still 18
Arm movement→Walking 6
Walking→Arm movement 13
Turning while walking 62
Sit→Stand 22
Stand→Sit 22
Supine→Left-lateral 6
Left-lateral→Supine 7
Supine→Right-lateral 6
Right-lateral→Supine 6
Still→Yawning 5

Total 390

A total of 27 healthy subjects were chosen in the age group of 22 to 40 years
with an average age of 28 years and a standard deviation of 6 years. Again,
all subjects were intentionally chosen to be right-handed males without any
instances of dextrocardia. Apart from these healthy subjects, one 62 years old
male cardiac patient with a prosthetic aortic valve and a left bundle branch
block (LBBB) has also participated in this experiment. This particular subject
has been chosen to verify that the proposed method works satisfactorily even
if the QRS morphology is very different. In this example, the positive R peak is
smaller as compared to the negative S peak and hence the S peak is dominating
in QRS complex instead of the usually dominating R peak.
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5.4 Motion Sensing

In the data sets mentioned in the previous two sections, we have described
the type of body movement qualitatively with labels. Here, all the BMAs
have been performed by maintaining a moderate and almost constant pace.
This is because the goal has been recognition of any differences in the motion
artifacts due to different types of body movements. Obviously, these kind of
experiments do not tell anything about the impact of variations in the pace
levels for the same type of body movement.

One way to represent the level of body movement is by measuring the
acceleration signals from appropriate locations on the body. This also helps
to quantify the activity levels rather than just describing them qualitatively
as slow, medium or fast. For determining various pace levels of the physical
activities, we have recorded both the ECG and acceleration signals. The ac-
celeration signals are acquired to establish/verify the ground truth. The ECG
signals are acquired with the locket. The lead-II configuration is chosen in
all the experiments. In this section we explain data collection using motion
sensors and processing of the collected acceleration data.

5.4.1 Data Collection using Accelerometer

Accelerations of various body parts have been measured using MTx r© motion
trackers from Xsens Motion Technologies r© placed at appropriate positions on
the body. The MTx r© motion tracker senses linear acceleration along 3 axes.
It also senses the 3D rotations of the sensor co-ordinate system in a fixed local
co-ordinate system (LCS). The fixed LCS has its positive (+ve) X pointing
toward the local magnetic North, +ve Y toward the West and +ve Z pointing
up wards. All accelerations and rotations were measured at 32 bit resolution
and sampled at 25Hz. A bluetooth wireless interface was used to transmit
data. Recently, a similar data acquisition system has been used for ambulation
analysis and assessment of human ankle and foot posture [112].

Motion sensors are placed on the upper arm(s), right thigh and the frontal
waist of test subject. The sensor at waist measures the local acceleration at
the waist while twisting, and the resultant acceleration of the subject’s body
during other activities. The accelerometers at the arm(s) and on the thigh
measure local accelerations in these parts. Motion trackers are tightly strapped
on the subject’s body to prevent slippage or any relative motion between the
sensor and the body. However, it is also ensured that the subject faced minimal
discomfiture after wearing the ECG electrodes and the motion sensors, such
that the usual body movement of the subject remains unaffected. For better
understanding of events recorded by motion sensors as well as for post facto
verification, all activities of the subjects are time stamped and recorded using
a video camera. The start and end times for ECG and motion recordings are
noted down. The experimental setup is illustrated in Fig. 5.1, with the motion
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sensor apparatus and electrodes of the W-ECG firmly secured at appropriate
locations on the body of a subject.

Fig. 5.1. Illustration of the experimental setup. Motion trackers (small orange
objects) are strapped on the upper arms and the waist. The bigger object hanging
at the waist where the left hand touches is the bluetooth interface for motion sensors.
The single lead ECG recorder is attached to the front right side of the waist. The
entire experiment is recorded on video to capture stray events not recorded by the
motion sensor.

In the first set of experiments involving motion sensors, each of the fol-
lowing BMA is performed at three different levels of pace: slow, normal and
fast.

1. Change in posture from sitting on a chair to standing up, and vice versa.
2. Up-down movement of one of the two arms, left or right, parallel to the

sagittal plane, with the other hand at rest.
3. Walking on a level floor.
4. Twisting the torso at the waist while standing, as a common body stretch-

ing activity.
5. Climbing up and down the stairs.

A total of 5 healthy male subjects in the age group of 22 to 27 years and
2 cardiac patients of ages 31 and 62 years participated in this experiment.
The subjects are requested to avoid undue tightening of muscles to avoid
extra EMG noise due to muscle stiffness. It should be noted that though the
activities in the list above are apparently similar to those that have been
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done in the previous sections, here the experiments and the purpose both are
different. Here we introduce different levels of pace of performing the BMA
for the purpose of impact analysis. This is in contrast with previous studies
where the BMA have been performed at a nearly constant, slow or normal pace
without any variations in the levels as the objective was BMA recognition.

5.4.2 Processing of Accelerometer Data

Here we describe the procedure followed for computing local acceleration sig-
nals at a given position with reference to the body. The motion sensor system
described above records accelerations in sensor axes and rotations of the sen-
sor axes in the fixed local co-ordinate system (LCS). Since the sensor axes
are rotating during the body movements, all accelerations are converted to
the fixed LCS using the rotation matrix of direction cosines for each indi-
vidual sensor. Let Rk(n) be the 3 × 3 rotation matrix in the fixed LCS and
ak(n) = [akx(n) aky(n) akz(n)]T be the 3-axes acceleration vector recorded
at nth sample for the kth accelerometer (at a suitable body position), respec-
tively. The corresponding accelerations a′

k(n) = [akX(n) akY (n) akZ(n)]T in
the LCS can be computed as

a′
k(n) = Rk(n)ak(n). (5.1)

Measured accelerations a′
k have static components due to gravity and general

translation of the body, as well as dynamic components associated with local
limb motion. To account for only the local limb movements, the static com-
ponents are suppressed by local mean subtraction, calculated over a moving
time window of 8 seconds, from each element of the acceleration a′

k(n). The
acceleration of the kth limb is given by

a′′
k(n) = a′

k(n) −
1

8fs + 1

n+4fs∑

j=n−4fs

a′
k(j), (5.2)

where fs=25Hz is the sampling frequency for the motion sensor. The move-
ment of the kth limb (sensor) is quantified in terms of the norm of the acceler-
ation vector βk(n) = |a′′

k(n)|. In this chapter, k=1 refers to the sensor at the
right arm, k=2 is the right leg sensor, k=3 is the sensor at the frontal waist
and k=4 refers to the sensor on the upper left arm. Our objective is to relate
the impact signal in the recorded ECG to the limb motion signal βk(n) and
show that these are strongly correlated.

To study the behavior of motion artifacts with respect to the extent of
movement, the displacements of individual sensors need to be recorded. The
extent is defined as the distance between two extreme positions during limb
movement. The relative position of the kth sensor at the nth sample, p′′

k
(n) is

computed by discrete integration of the corresponding accelerations a′′
k twice

in time using the trapezoidal rule.
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The extent of a body movement from the initial position is computed as the
norm of vector p′′

k
(n), as δk(n) = ‖p′′

k
(n)‖. The envelope of δk(n) gives the

extent of the body movement. While βk(n) is a measure of the instantaneous
motion of a limb, δk(n) could be viewed as a measure of the combined effect
of physical stretching of the surrounding skin along with contraction of the
associated limb muscles.

5.5 Variation of Activity Levels

In previous sections we discussed about various types of BMA and the data
collection process for the specified types of BMA. We have also quantified the
activity levels using the acceleration data collected from the body using the
motion sensors. We can broadly categorize the levels of the activities as slow,
medium and fast. Of course there may be variations in the acceleration values
for the specified activity level because very fine control of the movement can-
not be expected from the human subjects without any mechanical assistance.
However, we observe that the corresponding acceleration values recorded by
the motion sensors for the three different levels of the same BMA are quite
distinct from one another, as compared to the BMA for the same level. We
have already mentioned that the motion artifacts are induced due to BMA.
Hence it is interesting to know about the impact of variations in the levels of
BMA.

The cause of the motion artifact is relative motion of the skin and the elec-
trode. The skin area under the electrode is stretched or contracted in certain
directions due to BMA. The amount of the skin stretch or contraction depends
on the level of the BMA. Hence it is likely that any variation in the level of
the BMA will be reflected on the amplitude of the motion artifact signal.
Thus, the BMA performed at higher levels of pace should induce motion arti-
facts with higher amplitudes. However, we still need to verify this hypothesis
experimentally. Hence we have acquired the ambulatory ECG signals during
various BMAs performed at the three different levels. In this experiment we
consider certain routine BMAs like movement of arms, walking, twisting at
waist, etc. The acceleration data is used as the ground truth.

We have also used treadmill to achieve a controlled variation of the pace
of walking. Since the speed of the treadmill is constant for a particular level,
the subject synchronizes the walking speed accordingly. We can obtain the
ground truth from the treadmill speed settings following a set of protocols
which are noted below.

5.6 Protocols for Treadmill Tests

In the previous section we discussed about the experiments related to the
variations of the BMA levels. For the same purpose the ECG of a subject is
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monitored while walking at controlled speeds for fixed durations on a treadmill
(Quinton r©). Lead-II ECG signals are acquired from five healthy volunteers
in the age group from 22 to 26 years and 9 cardiac patients in the age group
from 39 to 63 years. In the case of patients, treadmill testing is done using
the Bruce protocol in the clinical setup under strict medical supervision, with
simultaneous monitoring of vital parameters such as heart rate and blood
pressure, and other stipulations in accordance with the guidelines provided
by American Heart Association (AHA) [32]. The Bruce protocol subjects the
patients to increasing levels of stress by increasing the speed and gradient
(treadmill inclination), as given in Table 5.2. For the cardiac patients, the
test is terminated as soon as the target heart rate is reached, or when signs
of instability are observed in the ECG or in the other parameters.

Table 5.2. The Bruce protocol

Level Time(mins) Speed(kmph) Gradient(%)

1 0-3 2.74 10

2 3-6 4.02 12

3 6-9 5.47 14

4 9-12 6.76 16

5 12-15 8.05 18

6 15-18 8.85 20

7 18-21 9.65 22

Stress test ECG signals from the healthy volunteers are obtained using
a treadmill exercise protocol that is physically less taxing than the conven-
tional Bruce protocol. The protocol is devised taking into consideration pa-
tient safety issues in a non-clinical set up. The gradient is set to zero through-
out the test, and each stage of the test is limited to two minutes as compared
to three minutes in the Bruce protocol. There are 5 stages in all for a to-
tal duration of 10 minutes, with treadmill speed ranging from 3 km/hr to 7
km/hr at increments of 1 km/hr in every stage. The heart rate of the sub-
ject is monitored continuously, using a pressure sensor attached to the chest,
communicating via infrared to a display device. Accelerometers are not con-
nected during the treadmill exercise since the motion of the subject is directly
measurable from the treadmill, and to ensure patient comfort.

In this chapter we have provided the details of data acquisition proto-
cols for various ambulatory ECG experiments. We shall present the complete
analysis of our results in the subsequent chapters.
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Detection of Activity Transition

In an ambulatory cardiac monitoring system using wearable ECG recorders
(W-ECG), the motion artifact is generated in the ECG signal due to body
movement activity (BMA) of the subject. This is because, as explained earlier,
BMA causes the skin to stretch or contract and hence the interface between
ECG electrodes and the skin is disturbed. Based on such a dependence of
motion artifact on BMA we hypothesize that a specific class of BMA will
result in a specific signature of the artifact. As a corollary any abrupt change
in the BMA should also be reflected as an abrupt change in the motion artifact
signal. To test these hypotheses we analyze the ECG beat-by-beat in temporal
continuation and try to detect abrupt changes in the motion artifact signal
due to the abrupt changes or transitions in the types of BMA.

The purpose of the monograph is to explain how one can build a wearable
system for ambulatory cardiac monitoring. The key signal that the medical
practitioners would like to have is the true ECG signal, extricated out of mo-
tion artifacts. Since the motion artifacts are spectrally overlapping with the
ECG signal, and since different types of BMAs introduce different artifacts,
we show in the next section a clean ECG signal can be obtained if the BMA
can be recognized from the corrupted ECG signal. However, in order to rec-
ognize a particular BMA, we need ECG data from a few cycles of heart beat
contiguously (this will be explained in the next chapter) while performing a
specific BMA. In our daily life we perform several routine activities (BMA)
one after another. Hence it is essential that we temporally segment the various
BMA segments automatically. This calls for detection of activity transitions,
which is discussed in this chapter.

Here every recorded ECG beat is considered in a vector form. A single
ECG beat vector represents a cardiac cycle. However, in our case due to
the impact of BMA the cardiac signal has the motion artifact component.
Since the motion artifact signal itself is not available separately, it is derived
as the residual signal after the subtraction of the estimated mean cardiac
cycle from the current ECG beat vector. Thus the motion artifact vectors are
computed over all the cardiac cycles for each type of BMA. The details of the
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analysis and processing steps are provided in this chapter. The motion artifact
vectors are considered to belong to a particular subspace which is different
for each type of BMA. We propose to use a recursive principal component
analysis (RPCA) based method to learn the BMA subspaces. The principal
components are continuously updated to follow the smooth variations in the
ECG signal due to the usual physiological reasons such as variability of the
heart rate, breathing, etc. Based on the nature of BMA classes that were
selected, there appears to exist a significant separation between two different
subspaces corresponding to two different types of BMA.

In this chapter, we aim to show that based on the above hypothesis it is
possible to detect the transitions among different types of BMA. First, we
give a brief introduction to the problem and some of the relevant work for
motivation. Next we explain the signal analysis method and processing steps
involved in detail. Finally we present the experimental results in terms of
accuracies in detecting the BMA transitions from the ECG signal itself.

6.1 Introduction

In Chapter 1, we have introduced a model of composite ECG signal recorded
during ambulatory cardiac monitoring. It has also been mentioned that the
body movement activity (BMA) of the subject distorts the collected ECG
by inducing motion artifacts and hence the ECG signal contains a motion
artifact component. All other kinds of noise present in the ECG due to the
device itself and the environment, are represented as sensor noise. Thus the
ECG signal has three components: cardiac signal, motion artifacts and sensor
noise. The motion artifact signal induced in the ECG is due to skin stretching
and contracting while performing any physical activity and has a significant
spectral overlap with the cardiac signal itself. Therefore, motion artifact is
considered as a serious problem in ECG recording, particularly, in ambulatory
monitoring where the physical activities of the patient should not be restricted.
The focus of most studies to remove the motion artifact component from ECG
signal met with a limited success. It is understood that this component cannot
be removed completely from the ECG signal due spectral overlap by using any
digital filtering method.

In practice, the ECG is visually analyzed by a human expert for diagnosis
purposes. The human expert, in most cases, can identify the segments where
motion artifacts are dominant visually and discard those parts while deriving
cardiac parameters. However, in W-ECG application for long term monitor-
ing a huge volume of the data is collected and therefore the analysis should
preferably be automated. Most automated methods perform accurately for
ECG under rest conditions but fail miserably while encountering the real,
ambulatory situations because of their limitations in detecting the superficial
distortions in the ECG that are not related to any cardiac event.
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Previously, one such problem of automated analysis for detecting body
position changes for ischemia monitoring at rest (while lying in bed) has been
addressed in [8, 9, 37, 52]. The changes in body positions cause angular shifts
in the axis of heart and hence affect the cardiac cycle such that the changes
in ST segment are often detected as ischemia episodes by the automated
monitoring system. The methods in [8, 9, 37, 52], are devised in order to
reduce the frequency of the false alarms due to body position changes by
correctly identifying them from the ECG signal itself. These methods were
developed based on the fact that the heart axis will shift with the selected
three different body postures at rest: supine, right lateral and left lateral.
Multi-lead ECG signal analysis is required for finding these shifts in the axis
of the heart. This requires algorithms that are computationally more complex.
This is useful when critical monitoring of the hospitalized patient is required.

As an alternate approach, one can consider the problem of detecting body
position changes by using the induced motion artifact signal. In this approach,
even a single lead ECG is sufficient for detection of the body position change,
thus minimizing complexity. We present an example of posture change de-
tection using the motion artifact signal in this chapter, where the subject is
performing transitions between sitting and standing postures without any sig-
nificant shift in the heart axis. However, our work is not limited to detection
of posture changes only. We will also demonstrate how to detect transitions
among different kinds of physical activities from the motion artifact signal
itself using a single-lead ECG. The goal of this work is to facilitate automated
analysis of ECG for ambulatory cardiac monitoring with W-ECG by deriving
some useful information from the collected ECG itself.

Recently, an approach of movement specific characterization of the motion
artifacts in ECG signal using a wavelet transform and a neural network has
been discussed in [93]. The ECG signal is analyzed for extracting the motion
artifact signal using wavelet transform and the corresponding wavelet coeffi-
cients are used for training a neural network for recognition of different types
of motion artifacts. In this chapter, we are investigating the feasibility of the
detection of changes within the motion artifact signal caused due to abrupt
changes of the different kinds of BMAs.

In previous works related to detection of transitions in the signal, Fancourt
and Principe [30] have provided a method for segmentation of a nonstation-
ary signal into stationary segments using a learnt time delay neural network.
Khalil et al. [62] have provided an unsupervised solution to the above prob-
lem for the specific case of analyzing uterine electromyograph (EMG) signal.
Recently, Assaf [6] has proposed a supervised, multi-resolution based method
for detecting transitions in muscular activities from the myoelectric signal.
The purpose is to develop intelligent prosthetic aids.

The effect we consider here is the change in skin resistance due to stretching
and contraction as opposed to the previous studies which are based on shift in
the axis of heart. The disturbance caused in the skin electrode interface due
to body movement is very superficial. Moreover, the motion artifact signal
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appears to be random in nature because of a huge variety in the types of
BMAs and the manner and pace in which they can be performed. However,
the direct link between the type of BMA and the skin disturbance provides
the basis for characterizing the motion artifact signal in a more systematic
manner which we will see in the next chapter. This kind of analysis of motion
artifact signal is specific to the particular ECG lead or electrode positions
and also to the particular person. However, the person specific analysis is not
necessarily problematic in the context of W-ECG as the main objective here
is personalized health care.

In this chapter we show how the BMA transitions can be detected auto-
matically from the ECG signal itself without any supervised learning. Since
different BMAs will affect the skin electrode interface in a different manner, a
transition between any two different BMAs will cause abrupt changes in mo-
tion artifacts patterns. We use a recursively updating PCA (RPCA) [72] to
detect sudden discontinuities in the motion artifacts. To study the feasibility
of BMA transition detection using the RPCA technique, continuous ECG sig-
nals are recorded while the wearer performs various physical activities using
a W-ECG developed by Baghini et al. [117] and discussed in Chapter 5.

6.2 Transition Detection

In Chapter 1, the collected ECG signal r(n) is modeled as an additive mixture
of the cardiac signal, the motion artifact signal and the sensor noise. Here we
repeat the model of the ECG signal for convenience,

r(n) = q(n) + s(n) + η(n), (6.1)

where q(n), s(n) and η(n) are cardiac signal, motion artifact signal and sensor
noise, respectively.

We assume that the sensor noise is very small as compared to the other two
components of the collected ECG signal and has zero mean. We also assume
that the cardiac cycle is stable in the sense that no rhythm disturbances
or arrhythmia are present. However, the cardiac cycle may be subjected to
smooth usual changes such as those due to normal breathing, etc..

We adopt the signal model given in Eq. (6.1) for representing the recorded
signal over one cardiac cycle of the heart. Therefore, the ith ECG beat can be
modeled in a vector form as

r̃(i) = q̃(i) + s̃(i) + η̃(i), (6.2)

where r̃(i), q̃(i), s̃(i) and η̃(i) are the column vectors of the same dimension
RR(i)× 1, where RR(i) is the number of samples under the ith cardiac cycle.
Since the duration of a cardiac cycle is not fixed but varying according to the
heart rate, the dimension RR(i) is not same for all the cardiac cycles (ECG
beats). We can compute RR(i) from the value of R to R interval at the ith
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ECG beat, defined as the sample interval between the R peak in the ith ECG
beat and that in the previous ECG beat.

Here we show that the motion artifact vector s̃(i) in the present ECG beat
r̃(i) as given in the vector model of the ECG beat in Eq. (6.2), can be rep-
resented in terms of a few eigenvectors of the motion artifact subspace deter-
mined by the motion artifact vectors in the recent past {. . . , s̃(i−2), s̃(i−1)},
provided that there is no abrupt change in the BMA. An error in reconstruc-
tion in this representation is a measure of difference between the motion ar-
tifact vector in the present beat and the preceding beats. If the error signal
remains below a threshold value then there is no change in BMA and if it
crosses the threshold value this will mean that a different activity is being
initiated. Thus transition detection in BMA should be possible from the ECG
signal itself, even without any person specific training. The bases for the sub-
spaces of currently ongoing BMA are learnt adaptively from the signal itself.

We discuss a recursive principal component analysis (RPCA) based algo-
rithm to detect abrupt changes in motion artifacts due to BMA transition.
Since the RPCA algorithm, like any PCA based algorithm is sensitive to
feature alignment and since it requires the data vectors to have the same di-
mension, the ECG beats are time synchronized with respect to R peak in each
beat and resampled to equalize each beat to a fix length of M0 samples. The
value of M0 is chosen based on the normal heart beat duration and the given
sampling rate of the ECG recorder. The choice of R peak for the purpose of
heart beat alignment is due to the fact that the R peak is the most promi-
nent feature of the ECG signal that can be detected easily even in presence
of significant motion artifacts. The R peaks in the ECG signals are detected
using the Pan-Tompkins method [96].

Bandpass
filter

5−12Hz
2x

Derivative
x3 Squaring

x4
integration
window
Moving x5signal

ECG

Fig. 6.1. Block diagram of Pan-Tompkins method for QRS detection in ECG [96].

This QRS detection algorithm is implemented through some simple pro-
cessing steps provided in [96] as shown in Fig. 6.1. Here we describe the
processing steps in brief. The rationale for using such steps can be found
in [96].

• A bandpass filter with a passband of 5-12Hz is implemented using a low-
pass filter with cutoff at about 12Hz followed by a highpass filter with
cutoff at about 5Hz. The difference equation used for the lowpass filter is

y(n) − 2y(n − 1) + y(n − 2) = x(n) − 2x(n − 6) + x(n − 12), (6.3)

and the difference equation for the highpass filter is
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y(n) + y(n − 1) = −x(n) + 32x(n − 16) + x(n − 32). (6.4)

The bandpass filtered signal is indicated as x2 in Fig. 6.1.
• A derivative with nearly a linear frequency response between 0-30Hz is

implemented by the difference equation

y(n) =
1

8
[−x(n − 2) − 2x(n − 1) + 2x(n + 1) + x(n + 2)]. (6.5)

The derivative signal is indicated as x3 in Fig. 6.1.
• The derivative signal x3 is passed through a sample-wise squaring opera-

tion
x4(n) = [x3(n)]2. (6.6)

• A moving window integration signal x5(n) is derived from x4(n) using a
window length N matching to the widest QRS complex in the ECG as

x5(n) =
1

N
[x4(n − (N − 1)) + x4(n − (N − 2)) + · · · + x4(n)]. (6.7)

• The QRS locations are searched in a specific time interval by applying an
initial threshold on the integration signal x5. If QRS is not found then
a second threshold, which is half of the first threshold is applied in the
same time interval. The threshold values are computed adaptively from
the previous estimates and current values of detected peaks in the signal
due to QRS complex and noise.

• A similar procedure of searching QRS complex using adaptive thresholds,
is also applied to the bandpass filter signal x2.

• The QRS is claimed to be located where both the procedures recognized
it in the given time interval.

• Two different, average RR estimates are maintained. The first one is calcu-
lated as a mean of RR intervals of the preceding eight beats. The second
one is calculated as the mean of selected preceding eight RR intervals
which are within the specified limits of 92% to 116% of the previous, sec-
ond average RR estimate.

• If the first average RR estimate is within the specified limits of 92% to
116% of the second average RR estimate, then the rhythm is considered
regular. The next QRS complex is searched in a time interval of 166%
of the second average RR estimate from the most recently detected QRS
complex.

The time duration between the current R peak and the preceding one is
considered as the current ECG beat interval. In order to account for occa-
sional instances of atrial extra systoles (AES) and missed R peaks, the ECG
beat interval is estimated as the median of the five most recent RR intervals.
Thus for the ith beat, the length of current beat period M(i) is estimated as
median of RR(i), RR(i − 1), RR(i − 1), RR(i − 2), RR(i − 3), RR(i − 4),
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where RR(i) is the computed beat period for the ith beat. For length equal-
ization, the ith beat with estimated beat period M(i) is resampled by a factor
of M0/M(i). The dimension M(i) depends on the beat period and the sam-
pling frequency. For example, for a normal heart rate of 72/min and a sampling
rate of 256Hz, the dimension M(i) = 256 × 60/72 ≈ 213. A small variation
in heart rate is quite natural during body movement and hence this requires
that the lengths of the ECG beats be resampled so that a PCA based tech-
nique can be used. The resampling may generate a certain amount of noise
in the QRS complex. The use of dc padding circumvents this problem. How-
ever, since our interest lies in studying the motion artifacts prevailing over
the entire beat period and not just in the QRS complex and since the effect
of distortion in QRS complex due to resampling is small, we have used the
resampling technique for length equalization.

The ith length normalized ECG beat r(i) is represented as the addition of
two components in a column vector format

r(i) = q(i) + s(i) + η(i) = r′(i) + η(i), (6.8)

where r′(i) is the composite signal component of dimension M0×1, The motion
artifact s(i) is riding on the cardiac cycle q(i) and η(i) is the noise. As we
shall demonstrate, the composite signal for a given BMA can be represented
by a few principal components (eigenvectors) only.

In order to estimate the principal components, the covariance matrix Ci

is recursively computed as

Ci =

i∑

k=1

α(i−k)r(k)rT (k) = αCi−1 + r(i)rT (i), (6.9)

where α, 0 < α < 1 is the forgetting factor. A smaller value of α results in
a faster forgetting of the past data. The application of the forgetting factor
α prevents any possible buffer overflow and hence memory constraints in a
hardware implementation of the given technique. A set of top L eigenvectors
of the covariance matrix Ci at ith ECG beat is derived using Eq. (6.9). Let
Ei = [ei1 ei2 . . . eiL]M0×L be the set of top L eigenvectors arranged in a
non-ascending order of magnitudes of the corresponding eigenvalues, |λi1| ≥
|λi2| ≥ . . . ≥ |λiL| till the ith beat, where eik and λik are kth eigenvector and
eigenvalue, respectively.

To detect changes in motion artifacts present in the next ECG beat r(i+1),
we obtain the component that lies in the span {ei1, ei2, . . . , eiL}. The error
in approximation

ε(i) = |r(i + 1) − (EiE
T
i )r(i + 1)| (6.10)

provides a measure of departure from the nearest BMA signal of the same
class. If the error is large it corresponds to initiation of different BMA by the
user. Hence the BMA transition is detected as a binary signal T (i)
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T (i) = 1, if ε(i) ≥ θ

= 0, if ε(i) < θ, (6.11)

where θ is an appropriate threshold, chosen empirically to be 2.5 times the
error magnitude ε(i) averaged over a running window of 15 beats. This in-
troduces a delay of 15 beats in detecting the transition which corresponds to
about 12s delay in detection which is quite acceptable from the health mon-
itoring point of view. One may instead select a fixed threshold θ when there
would be no delay. But the choice of θ would then be subjective as the gen-
erated motion artifacts are often person specific, due to the nature of skin in
contact with the electrode. It may be noted that the RPCA method is quite
different from the two-step adaptive PCA based method [107] as we are not
explicitly solving the time series segmentation problem.

6.3 Experimental Results

Continuous single-lead ECG signals are recorded with various types of BMA
transitions as described in Section 5.3. The ground truth regarding all BMA
transitions are obtained by a passive observer and reinforced through simulta-
neous video recording. The RPCA algorithm as given in the previous section
is applied to all the available ECG signals. The ECG beats are time aligned
and length equalized to a uniform length of 160 sample point duration as ex-
plained in Section 6.2. The complete ECG signal is marked beat-by-beat for
the BMA transitions in terms of the binary transition signal T (i).

Initially, we consider four different types of BMA episodes: movement of
right arm, twisting motion at waist, standing up and walking. A rest period
of 1.5 min was enforced after each episode so that the artifacts may subside
before the next episode is performed. The duration of each of the ECG signals
thus collected is around 7.5 min. There are overall 36 (9×4) BMA episodes
for a duration of 67.5 (9×7.5) min. Fig. 6.2(a) and 6.2(b) depict RR interval
and transition detection of the four BMA episodes in a single ECG signal.
A significant correlation between the variation in RR interval and the BMA
transition can be seen in Fig. 6.2. However, some deviations are also noted,
and hence the RR interval itself cannot be fully indicative of a BMA transition
(see Fig. 6.3). The ECG beats near a detected BMA transition are shown in
Fig. 6.2(c).

Next, walking transitions are performed as a single step of walking, fol-
lowed by a rest period of 1-1.5 min. There were 9-12 transitions in each ECG
signal of 12 min duration. Three ECG signals were collected under this proto-
col, thus there are a total of 27 walking transitions over a duration of 36 (3×12)
min. Fig. 6.3(a) and 6.3(b) show the corresponding RR interval and detection
of the walking transitions. Here the correlation between RR intervals and the
BMA transitions is not at all apparent. However, all the transitions are de-
tected correctly by the RPCA method. A marked portion of the ECG signal
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Fig. 6.2. Illustration of transition detection of four different BMAs from an ambu-
latory ECG recording using the RPCA based method. (a) Estimated RR interval in
seconds, (b) RPCA error signal and threshold detection of BMA transitions from the
RPCA error signal (dotted line corresponds to threshold θ), and (c) corresponding
ECG signal for one of the detected BMA transitions. ( c©2007 IEEE)

corresponding to one of the walking transitions is depicted in the Fig. 6.3(c).
In all our experiments we have chosen the number of eigenvectors L = 8 and
value of forgetting factor α = 0.8. This allows rapid learning of the subspace
of the new BMA artifacts (4-8 heart beats).

Next, we have applied this technique to detect BMA transitions when cer-
tain commonplace BMAs like, sitting and standing, hand movements, walking,
climbing stairs, twisting at waist, etc. are performed in a sequence to verify
the BMA transition detection by the RPCA method. There were 10-12 transi-
tions in each ECG signal of 7-8min duration. A total of five ECG signals were
collected for this purpose. An example of detection of turning while walking
is shown in Fig. 6.4. Except for the case of continuous right arm movement,
the method worked satisfactorily for all other BMA transitions. The difficulty
with the right arm motion is due to the close proximity of the electrode to the
moving limb, where the EMG signal dominates over the ECG signal making
the approximation of the BMA subspace of the ECG inaccurate.

We have also applied this method for detection of posture changes. Three
common positions during sleep are considered: left lateral, supine and right
lateral and the ECG is recorded while the subject is sleeping in bed and
alternating among these three positions. Any change in the position induces
motion artifact in the ECG and therefore, changes in the sleeping positions are
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Fig. 6.3. Illustration of transition detection from ambulatory ECG recording during
changes in walking stride using the RPCA based method. (a) Estimated RR interval
in seconds, (b) RPCA error signal and threshold detection of BMA transitions from
the RPCA error signal (dotted line corresponds to threshold θ and ‘×’ sign indicates
three detected atrial extra-systoles), and (c) corresponding ECG signal for one of
the detected BMA transitions. ( c©2007 IEEE)
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Fig. 6.4. Illustration of detection of turning while walking by plotting RPCA error
signal. ‘×’ signs indicate the locations of three missed detections. ( c©2007 IEEE)
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Fig. 6.5. Illustration of transition detection from ambulatory ECG recording during
sleep positions: left lateral, supine and right lateral changes. (a) RPCA error signal
and threshold detection of BMA transitions from the RPCA error signal, and (b)
corresponding ECG signal for one of the detected position change. The rise in the
R peak amplitude after this transition is attributed to the shift in heart axis.
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Fig. 6.6. Illustration of transition detection from ambulatory ECG recording during
sitting, standing and supine posture changes. (a) RPCA error signal and threshold
detection of BMA transitions from the RPCA error signal (‘×’ sign indicates four
detected atrial extra systoles), and (b) corresponding ECG signal for one of the
detected BMA transitions and one of the detected AES (indicated by ‘×’). ( c©2007
IEEE)
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detected using the RPCA method. One of the examples of this type of position
changes during the sleep is presented in Fig. 6.5. An angular shift in the heart
axis due to a change of position causes the change in amplitudes of certain
cardiac features. An increase in R peak amplitude can be observed clearly
in the depicted ECG segment in Fig. 6.5 after a position transition. Another
type of postural change occurs when the subject is active (not during sleep).
We have recorded the transition between sitting and standing which does not
cause a significant shift in heart axis. Next we present the detection of postural
changes among standing, sitting and sleeping in supine position in Fig. 6.6.
The changes in various body postures like sitting, standing, resting supine,
resting left lateral and resting right lateral have also been successfully detected
using the RPCA method (Figs. 6.5 and 6.6). The method is also able to
detect transitions due to yawning very accurately, as yawning leads to a large
movement of the diaphragm. The details of the number of BMA transitions in
the available ECG data and true detections by the RPCA method are given
in Table 6.1.

Table 6.1. Summary of performance for transition detection.

BMA True Missed False

Still→Twisting 21 0 6
Twisting→Still 10 0 3
Still→Walking 50 0 0
Walking→Still 5 0 0
Still→Climb up 23 0 0
Climb up→Still 9 0 0
Still→Climb down 18 0 0
Climb down→Still 8 0 0
Still→Arm movement 72 1 22
Arm movement→Still 18 0 9
Arm movement→Walking 6 0 2
Walking→Arm movement 11 2 1
Turning while walking 54 8 1
Sit→Stand 20 2 0
Stand→Sit 20 2 1
Supine→Left-lateral 6 0 0
Left-lateral→Supine 6 1 0
Supine→Right-lateral 6 0 0
Right-lateral→Supine 6 0 0
Yawning 5 0 0

Total 374 16 45

The accuracy of the RPCA technique is found to be 100× 374
374+16 = 95.9%

with false detection rate of 100× 45
374+45 = 10.7%. If we increase the threshold

θ in Eq. (6.11), the false detection rate is lowered at the expense of increased
missed detections.
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In the collected data there are quite a few instances of atrial extra systole
(AES). Since the AES represents an abrupt change in the ECG beat pattern,
it is also detected by the RPCA method. To identify the AES from the BMA
transitions we have applied an autocorrelation based detection technique on
the detected ECG beats. We have detected 70 AES episodes in the entire
recorded data, using the RPCA technique. All these detections (for exam-
ple, see Fig. 6.6) match the ground truth. Similarly, ventricular extra systoles
(VES), or in general, any ectopic beat patterns also exhibit abrupt changes in
the ECG signal and are also detected by the RPCA method. To separate
ectopic beats correctly from BMA transitions, suitable detection methods
available in the literature [65, 97] can be applied. However, these cases are
rare in our data sets. We have detected only two such instances of VES in the
processed data. But there are some other factors that affect the performance
of the algorithm such as, EMG noise due to muscular activities, 50Hz power
noise and changes in diaphragm when the subject is highly vocal.

As we have explained above, the RPCA method may not work well for
BMA transition detection for the infrequent and abrupt disturbances in the
cardiac rhythm. However, the method works well for the cardiac patients
having a very different morphology but still having a regular rhythm in ECG
signal and who are also leading an active life. Here we present a case of
one such cardiac patient who has a prosthetic aortic valve and a left bundle
branch block (LBBB). This particular subject has a larger S peak amplitude
and smaller R peak and thus a very different QRS morphology as compared
to the QRS complex for healthy subjects. We show an example of detection
of BMA transitions from the ECG signal using the RPCA method for this
subject in Fig. 6.7. Four different transitions can be seen as the spikes in
the derived RPCA signal crossing the dotted threshold line in Fig. 6.7(a).
The recorded ECG signal during the second BMA transition in this case is
presented in Fig. 6.7(b). It can be seen that the QRS morphology of the ECG
for this subject is quite different from the normal QRS morphology in lead
II. The R peak is very small and the S wave is dominant. The part of the
depicted ECG signal marked with a time window, t = 115 − 117 seconds in
Fig. 6.7(b) is corresponding to a BMA transition, which appears to be quite
noisy. However, this noise does not affect the accuracy of detection.

Next, we discuss another example of transition detection for the same sub-
ject in Fig. 6.8. In this experiment we try to detect sleep position changes. In
Fig. 6.8, the position changes: left lateral, supine and right lateral during sleep
are detected for the same patient. There are four positional transitions during
the sleep which are the peaks crossing the dotted threshold in Fig. 6.8(a). The
ECG signal during the fourth positional change is depicted in Fig. 6.8(b). Here
the position change is marked by the time window, t = 222−224 seconds. The
ECG signal is not much noisy, and the transition is detected accurately. Note
the variation in the amplitude of the S waves before and after the position
change in Fig. 6.8(b), which is attributed to shift in heart axis.
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Fig. 6.7. Illustration of transition detection of different BMAs from an ambulatory
ECG recording of a cardiac patient having a very different QRS complex morphology
using the RPCA based method. (a) RPCA error signal and threshold detection of
BMA transitions from the RPCA error signal (dotted line corresponds to threshold),
and (b) corresponding ECG signal for one of the detected BMA transitions.
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Fig. 6.8. Illustration of transition detection from ambulatory ECG recording for a
cardiac patient during sleep positions: left lateral, supine and right lateral changes.
(a) RPCA error signal and threshold detection of BMA transitions from the RPCA
error signal, and (b) corresponding ECG signal for one of the detected position
changes.
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6.4 Discussion

In this chapter we have discussed a PCA based technique to detect transitions
in various BMAs such as movement of arms, walking, twisting motion at waist
and changes in different body postures using the motion artifacts present in
ECG signals. The recursive updating of PCA technique was found to be able
to adapt to gradual changes in the ECG signal due to sustained activities (re-
sulting in slow variations in respiration and heart rate). In addition, the given
method was able to handle an increased heart rate nearly double of the heart
rate at rest. However, some spurious ECG beats like AES or ectopicity may
cause false detections, which can be rectified using suitable post processing
techniques. It is also verified from the ECG data of a cardiac patient that the
method is capable of handling the different morphology for the QRS complex.

In the next chapter we will see how the PCA based method can be used
for further analysis of ECG signals for recognition of BMA using the induced
motion artifact signals. The transition detection discussed in this chapter will
be helpful for temporal segmentation of the ECG signal in order to use a
particular ECG segment for BMA recognition. The RPCA signal derived in
this chapter is an indication of motion artifact and hence it can measure the
impact of the BMA on ECG signal. Therefore, we will use this RPCA error
signal as an impact signal for quantification of different pace levels of BMA
and will validate it by the measured acceleration signal in Chapter 8.
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Activity Recognition

Wearable ECG recorders (W-ECG) provide a practical solution for ambula-
tory cardiac monitoring. W-ECGs are increasingly being used by people suf-
fering from cardiac abnormalities, who also choose to lead an active lifestyle.
From the discussions in the previous chapters regarding W-ECG, we can now
understand that the challenge presently is that the ambulatory ECG signal is
influenced by motion artifacts induced by body movement activity (BMA) of
the wearer. The usual practice is to develop effective filtering algorithms which
can eliminate the motion artifacts. However, due to spectral overlap between
the motion artifact signal and the cardiac signal the complete elimination of
the motion artifact from the ambulatory ECG signal is not possible without
unduly affecting the cardiac signal component. Therefore, instead of filtering
we would like to identify the presence of the motion artifact and the type of
body movement from the analysis of the ambulatory ECG signal itself. We
have already addressed the issue of detecting BMA transitions from the ECG
signal in the previous chapter. The method proposed for the transition de-
tection is an unsupervised learning approach which only looks for any abrupt
changes in the nature of the motion artifact signal due to changes in BMA.
However, a particular BMA is not yet characterized from the analysis of ECG
in the previous chapter. In this chapter we focus on the BMA recognition
from the ambulatory ECG signal for which we will use BMA classifiers with
certain specific types of BMA classes. The classification approach for BMA
recognition requires supervised training of the specified BMA classes using
the corresponding ECG data during the specified BMA. For this purpose we
have recorded the ECG signals during specified BMA, e.g. sitting still, walk-
ing, movements of arms and climbing stairs, etc. with a single-lead W-ECG
as described in Section 5.2. The collected ECG signal during the BMA is
presumed to be an additive mix of signals due to cardiac activities, motion
artifacts and sensor noise as per the mathematical model given in Section 1.5.
We have successfully used the mathematical model of the ambulatory ECG in
the previous chapter for the transition detection from the ambulatory ECG
signal. Here we follow the same model of the ambulatory ECG signal for the

© Springer Science + Business Media, LLC 2009
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analysis which leads to the recognition of different types of BMA from the
ECG itself. According to the mathematical model, the motion artifact signal
is one of the components of the ambulatory ECG signal which depends on
the type of BMA and hence the BMA recognition should be possible from the
analysis of the ECG signal. The motion artifact signal can be derived from the
ambulatory ECG by suppressing the cardiac signal and the sensor noise. We
hypothesize that a similar type of BMA induces a similar type of motion arti-
fact whereas different types of BMA induce different types of artifact. If this
is true then we can train a classifier to detect the type of BMA class using the
motion artifact signal. As per the mathematical model in Section 1.5, we first
derive the motion artifact signal by estimating the cardiac signal. The derived
motion artifact signal can be used for the BMA recognition. We use classifiers
trained for different BMA classes in which there are two types of represen-
tations: one is a nonparametric representation and the other is a parametric
representation. In the nonparametric BMA classifiers each of the BMA classes
is represented by a set of vectors derived from the ambulatory ECG data for
the specific BMA class during training. Whereas in the parametric BMA clas-
sifiers, the individual BMA class is modeled by certain parameters derived
from the ambulatory ECG data available for only that particular BMA class.
Both kinds of representations obtained by the supervised learning are then
used for classification of the ambulatory ECG signals to recognize the BMA
class during testing. Here we use the derived motion artifact signal for su-
pervised training of the BMA classifiers and the classification of BMA types,
which requires some preprocessing on the ambulatory ECG signals recorded
by W-ECG. The details of preprocessing and analysis are presented in this
chapter.

7.1 Introduction

The ECG signal collected by the W-ECG is contaminated by BMA induced
artifacts owing to disturbances at the skin electrode interface and noise due to
muscular activities, collectively known as motion artifacts. For the W-ECG
to handle motion artifacts occurring naturally during its intended use is a
challenge. The motion artifacts have a significant overlap in frequency with
ECG signal, so filtering based on spectral separation is of limited use [5].

In the earlier chapters we have provided a brief introduction to the problem
of motion artifact in W-ECG. Any body movement activity (BMA) of the
wearer causes motion artifacts and we have shown from the BMA transition
detection in the previous chapter that different types of BMA induce different
kinds of motion artifact. Using the BMA transition detection method, it is
possible to segment the ECG signal temporally in order to separate each of
the signal segments containing just one type of BMA. Since BMA influences
the ECG output, we propose to determine the BMA from the motion artifacts
in the ECG signal. The possibility of recognition of the BMA from ECG data
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is yet to be fully studied in the literature. We also show that BMA recognition
can help in improving the automated analysis of the ambulatory ECG signal
in W-ECG. This will be helpful eventually in pervasive monitoring of cardiac
activity of a patient and determining if any BMA is having a deleterious effect.
The possibility of such a classification has initially been explored in [93]. Here
the ECG signals are analyzed using a wavelet transform and a neural network.
However, the reported performance is not very satisfactory as the wavelet
based representation does not separate the in-band BMA signal from the
ECG. In other works related to BMA analysis from non-ambulatory ECG,
body position changes are detected for ischemia monitoring in [9, 37, 52].
In [37, 52], Karhunen-Loeve transform of the ECG beats are analyzed to
detect position changes. A synthesized vectorcardiograph based approach has
been proposed in [9, 37], where a series of angles for the three orthogonal
leads X, Y and Z are derived using a loop alignment method [9, 122]. The
sequence of angles is then analyzed to detect the changes in body position.
However, this method requires a comprehensive 12-lead ECG signal to be able
to synthesize the three vectorcardiograph leads and is currently restricted
to a clinical environment. The single-lead system that we have used is less
informative but enables long term cardiac monitoring and is also preferable
from the standpoint of wearer’s comfort and cost.

In this chapter we characterize the motion artifacts induced by the fol-
lowing specific BMAs: sitting still, up and down movement of left, right and
both arms, walking on a level floor, and climbing stairs up and down, using
two different supervised learning approaches. In the first approach we use a
non-parametric classification technique based on principal component analy-
sis (PCA). The second approach is a parametric classification technique based
on hidden Markov models (HMM). In both the approaches we test for classi-
fiability of the motion artifacts based on the characterization obtained using
the supervised learning. For this purpose we build various BMA classifiers for
different BMA classes where each class is either a distinct BMA or a combina-
tion of two or more different BMAs as specified above. If two specified BMAs
are not quite separable using the proposed characterization of motion arti-
facts, they are both combined into a single BMA class. Here we demonstrate
that it is indeed possible to recognize several BMA classes accurately from the
ECG signal itself. Since the proposed non-parametric classification technique
is based on the PCA of motion artifacts in the ECG signal, it follows that class
specific PCA-based filtering can also be used for removal of motion artifacts.
Accordingly, we have demonstrated the usefulness of the PCA-based filtering
technique by locating the P and T waves in the ECG signal in the presence
of body movement.

Here we have restricted our studies to only people with no known cardiac
abnormalities but under multiple settings (laboratory and outdoors). Since
the motion artifact is caused at the superficial level at the skin, it is under-
stood that the possibility of the BMA recognition shown here for the healthy
subjects should also be applicable for cardiac patients except the fact that the
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proposed PCA-based method may not be suited for cardiac patients with fre-
quent rhythmic disturbances. However, for patients with infrequent rhythmic
disturbances, it is possible to detect such abrupt episodes using the RPCA
method proposed in the previous chapter following a post-processing step of
arrhythmia classification using some standard method.

The organization of the chapter is as follows. We discuss a nonparametric,
supervised learning-based classifier using PCA in Section 7.2. There we discuss
the mathematical model for the ambulatory ECG signal recorded by the W-
ECG, required preprocessing steps for implementation of the proposed method
on ECG signal, basics of PCA, supervised learning and classification of BMA.
We also explain how the BMA classification can be used for removal of the
motion artifacts. We explain a parametric, supervised learning-based classifier
using hidden Markov models (HMM) in Section 7.3. The results of the BMA
classification obtained by the two algorithms are presented in Section 7.4. We
discuss about the conclusions of our experiments on BMA recognition from
ambulatory ECG signal in Section 7.5.

7.2 Nonparametric Classification

According to the mathematical model of the ambulatory ECG signal given in
the earlier chapters, the recorded ECG signal has three components: cardiac
signal due to normal heart activity, motion artifacts due to body movement
and sensor noise introduced by the W-ECG. Following the BMA transition
detection results presented in the previous chapter and some preliminary re-
sults regarding BMA recognition using the wavelet based method in [93], we
hypothesize that each type of body movement induces a particular type of
motion artifacts in the ECG signal. An ECG signal for the ith class of BMA
is modeled as

ri(n) = qi(n) + si(n) + η(n), (7.1)

where ri is a recorded ECG signal, qi is a cardiac signal of a normal heart
during BMA specified by ith class, si is an additive motion artifact due to
ith class of BMA and η is the sensor noise present in the ECG signal. It is
noted that the cardiac cycle qi is denoted for the specific BMA to emphasize
that the cardiac cycle can be more accurately represented and estimated when
considered separately for an individual BMA class.

Here we discuss a nonparametric approach of classification for recognition
of BMA from the ambulatory ECG signal based on principle component anal-
ysis (PCA) technique. We segment the ambulatory ECG signal contiguously
as a sequence of ECG beats. Each of the ECG beats in the sequence will be
represented as a vector of a fixed dimension for the PCA-based analysis for
BMA recognition.

Let the vector representations of the corresponding signals captured during
a single period of heart beat be ri, q

i
, si and η, respectively. All vectors used for
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the classification are column vectors. As mentioned earlier, the dimension M0

of these vectors depend on the beat period and the sampling frequency. If one
considers N consecutive heart beats together as a signal then the dimension of
the signal would be NṀ0. Following are the various assumptions made while
developing the nonparametric PCA-based classifiers.

1. The cardiac signal qi is assumed to be representing normal cardiac activity
only and it remains stable in the presence of a specific BMA.

2. Since cardiac activity is by nature involuntary, it is independent of vol-
untary muscular activities and motion of electrodes. Hence BMA induced
motion artifacts si are independent of the cardiac signal qi, i.e., qi ⊥ si.

3. The sensor noise η present in the ECG signal is due to ambient conditions
of recording like power line interference, device temperature, skin humid-
ity, etc. and, therefore, it is assumed to be independent of both cardiac
signal and the motion artifact, i.e., η ⊥ qi and η ⊥ si.

4. In the preprocessing steps described next (Section 7.2.1), the dc bias esti-
mated from the isoelectric level of the ECG signal is set to zero. Therefore,
the sensor noise is assumed to be of zero mean, i.e., E[η] = 0.

5. Rank(E[riri
T ]) ≈ Mi, where Mi ≤ M0, signifying that the actual infor-

mation in the recorded ECG signal can be compactly represented by only
top Mi eigenvectors.

6. The energy of the motion artifact signal si is concentrated into a top few
(say Ki where Ki � Mi) eigenvectors of E[sisi

T ], and that the composite
signal ri is sufficiently excitatory.

7. There is greater correlation between signals due to same type of body
movement than that for any two different types of body movement. That
is, si and sk are highly correlated if i = k (at different time instants) and
nearly uncorrelated if i 6= k.

8. The signal component due to motion artifacts is smaller compared to the
strength of the cardiac signal, but much greater than the sensor noise, i.e.,
|η| � |si| < |q

i
|, ∀i.

Based on the mathematical model and the assumptions discussed above,
we will extract the signature of a specific BMA (si) by eliminating the cardiac
signal (qi) and the sensor noise (η).

The cardiac signal is characterized by a stable rhythm of heart beats.
Following assumption (1), the cardiac rhythm stays nearly constant over the
heart beats within the observation window. An arithmetic mean of several
epochs of heart beats provides an estimate of the constant cardiac rhythm
and hence the cardiac signal [5, 49]. For a specific BMA class, this estimate is
averaged over the entire training data set for a particular class and is termed
as class mean of the BMA. If the class mean is a correct estimate of the cardiac
signal then according to Eq. (7.1), the motion artifacts component (also sensor
noise) is derived by removing the class mean from the ECG signal.
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The sensor noise component is suppressed by elimination of the dc bias
during the preprocessing step described next. Accordingly, the motion arti-
facts component will dominate as per assumption (8).

In the nonparametric classification, an unknown ECG beat is classified into
a specific BMA class according to the best reconstruction criterion. A partic-
ular BMA class is represented by a set of top few eigenvectors of the training
BMA data belonging to that BMA class. The eigenvectors are obtained from
eigen decomposition of the correlation matrix of the training BMA data. The
test ECG beat is reconstructed using the set of eigenvectors in conjunction
with the class mean for each BMA class. The BMA class for which the er-
ror between the reconstructed signal and the test ECG beat is minimum is
determined as the true BMA class for the unknown ambulatory ECG data.

The eigen decomposition technique described above is optimal for the as-
sumed data representation model because the eigenvectors are orthogonal.
Thus, after preprocessing, if the artifact signal (si) is corrupted by an un-
correlated noise signal (η) then the top few eigenvectors represent mostly the
signal component due to BMA as the signal to noise ratio (SNR) is consid-
ered to be high in these components and the remaining eigenvectors mostly
represent the noise subspace, thus isolating the BMA signal from noise.

Thus the method applied here is a nonparametric supervised technique
for body movement classification. However, in order to be able to use the
technique and for suppressing the sensor noise η, certain preprocessing steps
are required to handle both intra-personal and inter-personal variations in the
cardiac signal (qi).

7.2.1 Preprocessing

It is assumed that the heart is not stressed during the activities that are
being performed in this study. However, certain parameters like the coupling
between skin and electrodes, and the variability in the heart rate have multi-
parameter dependence. The coupling between skin and electrodes depends
mostly on the skin humidity levels and also if the setting is indoors or outdoors.
Similarly, a small variation of heart rate during ambulatory activity is present
even in healthy subjects. Finally, there are person specific variations in the
above two parameters. While the coupling between skin and electrodes affects
the amplitude (scale) of the ECG beat data, the heart rate affects the time
interval of the ECG beat data.

The arithmetic mean as an estimate of the cardiac signal (q
i
) and eigen de-

composition for extraction of the motion artifact component (si) are both sen-
sitive to translation, variations in amplitude and time scales of the data [52].
Thus it is necessary to perform the following preprocessing steps that involve
proper alignment, amplitude scaling and time warping of the data as shown
in Fig. 7.1.

The data is processed as a batch of ECG beat epochs collected over about
one minute duration after appropriate beat alignment. This implicitly assumes
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that the collected beat epochs in this short time duration, may have nearly
constant amplitudes and time periods.

of ECG beats

Time warping

for dc bias

Correction Amplitude

scalingECG Signal

Collected

ECG beats
ECG beats

alignment of

Detection of
R−peak and Normalized

Fig. 7.1. Preprocessing applied to the ECG signal captured by the W-ECG. ( c©2007
IEEE)

Detection of R peak and alignment of ECG beats

The R peak is the most prominent feature of the ECG signal that can be
detected easily even in the presence of motion artifacts, and is used for calcu-
lating the heart rate. The R peaks in the ECG signals are detected using the
Pan-Tompkins method [96]. The method for detection of R peaks in ECG has
been explained in the previous chapter. The duration between the current R
peak and the preceding one is considered as the current ECG beat interval,
i.e., jth beat interval is given by duration between (j − 1)th and jth R peaks.
The average interval of the ECG beats is estimated from the number of R
peaks detected over a period of one minute. If there are a total of N ECG
beats over the given period then the ECG signal is partitioned into N ECG
beat epochs. The R peak in each epoch is aligned to the exact middle position.
This strategy ensures the alignment of ECG beats even after time warping is
applied to the data.

Time warping of ECG beats

As explained above, the ECG beat intervals may vary due to change in the
heart rate. Accordingly, the number of samples recorded for each ECG beat
epoch may vary. Since the given PCA-based method is applicable only to
vector observations in a space of fixed dimension, it is required to equalize the
dimensions (M0) of all the ECG beats. A simple technique to achieve this is
linear time warping and is implemented as follows. The ECG beat is resampled
by a rational factor a/b, where a is the fixed number of samples after the time
warping, and b is the number of samples in the ECG beat being resampled.
This is performed through MATLAB r© using a polyphase implementation of
resampling and a linear phase anti-aliasing filter with finite impulse response.
Following the application of time warping, all the ECG beat observations are
of equal length.
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Correction for dc bias

The constant voltage level of the flat portion of ECG beat segment that lies
between the end of P wave and the beginning of Q wave is termed as the
isoelectric level of the ECG beat [49]. Ideally, the isoelectric level should be
at ground potential. The dc bias is estimated by calculating the arithmetic
mean of isoelectric levels of all ECG beat observations collected during a one
minute interval. This dc bias is then subtracted from the ECG signal. Thus
any dc bias introduced due to sensor noise or otherwise is removed during
this step. The shape of the recorded ECG signal remains unchanged at this
point of time and the sensor noise in ECG signal has now zero mean as per
assumption (4).

Amplitude scaling

This is the last stage of preprocessing. As discussed earlier, the coupling be-
tween skin and electrodes can affect the amplitude of the signal. Since the
proposed method calculates the arithmetic mean of the ECG beats for esti-
mating the cardiac signal component, all the ECG beats should represent the
cardiac activity with the same amplitude. The R wave peak with respect to
the isoelectric level is considered here to represent the full signal strength.
A normalization factor is estimated by averaging of R wave amplitudes with
respect to the corresponding isoelectric levels from all ECG beats over a pe-
riod of one minute. Thus the amplitude of the ECG data over the period is
normalized and the estimate of average R wave amplitude with respect to the
corresponding isoelectric level becomes unity.

7.2.2 Principal Component Analysis (PCA)

We propose to use a nonparametric classification technique for recognition of
BMA from the ECG signal. Since we focus in this work on W-ECG devices
which may provide only a single lead ECG signal at a time, we choose a tech-
nique for a suitable nonparametric representation of the signals. The technique
we consider here is known as PCA. Here the data set is organized in such a
way that each point in the data lies in a fixed dimensional space and each
element of the data is along a specific orientation (axis) in the space. That is
to say that each data can be represented as a vector in the fixed dimensional
space. In this representation let M be the fixed dimension of the space and
the data be represented in a column vector form of dimension M×1. Thus the
complete vector space can be defined by a basis which is a set of independent
vectors in <M . Since the dimension of the vector space is M , there must be
at most M such independent vectors in the basis. Each of the elements in the
column vector is the projection corresponding to a basis vector in an ordered
manner.
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The PCA is a technique used for finding the most suitable bases to rep-
resent the given data. This is because there may be some redundancy in the
data and therefore, the dimension can be reduced. In this case the bases would
be such that even a few of the vectors from the bases can represent the data
satisfactorily without much loss in terms of the errors in reconstruction. Using
PCA the vectors forming such bases can be found in an ordered manner. Here
the vectors found by the PCA are called eigenvectors which are orthogonal to
one another and also normalized to yield the signal power of each vector to
be unity. Therefore, one can say the derived bases form an orthonormal set of
bases. There is no redundancy in this representation due to the orthogonality
of the basis. Moreover, the eigenvectors are found in such a manner that the
first eigenvector captures the maximum signal power in the data along any
direction. The next eigenvector will be in an orthogonal direction to the pre-
viously found eigenvector(s) that captures the next highest amount of signal
power from data along all other possible (orthogonal) directions. According
to the signal power captured by each of the eigenvectors, it is assigned an
eigenvalue which represents the weight of the particular eigenvector for the
given data. Thus the eigenvectors are arranged in a non-ascending order of
eigenvalues. In most practical applications the first few eigenvectors are able
to capture most of the signal power in the data and the remaining eigenvec-
tors only represent a small residual which is either considered as noise or can
be neglected without much loss in data reconstruction. Thus a graceful trade-
off between the number of eigenvectors and the loss in data reconstruction is
achieved using the PCA.

Let a set of data contain a total of N observation points from a fixed
dimensional space, ri(n), i = 1, 2, . . . , N observations where ∀ri(n) ∈ <M .
Here M is the fixed dimension of the space under consideration. We want to
apply PCA to the given data set.

First, the data set is centered to zero by subtracting the arithmetic mean
of the data. The arithmetic mean of the original data is computed as

r =
1

N

N∑

i=1

ri. (7.2)

The corresponding vector after mean subtraction is denoted by r′ where

r′i = ri − r, i = 1, 2, . . . , N. (7.3)

The covariance matrix is computed from the mean subtracted data as

C =
1

N

N∑

i=1

(r′i)(r
′
i)

T , (7.4)

where C is the covariance matrix for the given data and (·)T is matrix trans-
pose. Here C is an M ×M matrix and its eigen decomposition gives a total of
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M eigenvectors [e1, e2, . . . , eM ], arranged in a non-ascending order of the cor-
responding eigenvalues, denoted by λ1 ≥ λ2 ≥ . . . ≥ λM . For details of eigen
decomposition the interested reader may refer to [38]. Let E = [e1, e2, . . . , eK ],
K � M be a set of first K eigenvectors with the largest eigenvalues that rep-
resents a smaller K dimensional subspace in the M dimensional space of the
given data. In many practical applications a suitable choice of K will yield
an almost perfect reconstruction with a very small residual error. Hence the
PCA technique is used for reducing the dimensionality of the given problem.
Moreover, in most cases the residual errors are from the noise subspace which
one would like to suppress from the data. Therefore, the PCA is also used for
noise removal.

The dimensionality reduction helps to shrink certain useful subspaces in
the data which characterize the conditions under which the observations are
recorded. We may expect that the corresponding subspaces derived from dif-
ferent data sets recorded under different conditions will be quite separate. This
separation of subspaces for different conditions may help to solve the classi-
fication problem. One can first derive the corresponding subspace from the
training data given for each specific pre-defined condition and then try to find
the distance of a test data from the derived subspace. The point may be allo-
cated the condition (or class) represented by the nearest subspace. However,
the PCA itself does not guarantee the separability of the subspaces and hence
it is not necessarily always the preferred technique for solving the problem of
classification. For details of various techniques of classification, the interested
reader may refer to [24]. For certain types of data the PCA can indeed be
applied successfully for classification purposes. We discuss a technique based
on PCA for BMA recognition from the ECG signal in this chapter.

7.2.3 Supervised Learning of Body Movement

Following the mathematical model of the ambulatory ECG signal adopted
for the analysis, the ECG signal comprises of the cardiac signal (qi), motion
artifacts (si) and sensor noise (η). The ECG beats segmented after the prepro-
cessing will be considered for training and subsequent classification of BMA.
As explained above, the vector representation of the jth ECG beat observation
in the training data of ith BMA class is rij and the vector representations of
the corresponding cardiac signal, motion artifact and sensor noise components
are q

ij
, sij and η

ij
, respectively.

We plan to use a supervised approach of training a BMA classifier using
the processed ECG beat, rij , i = 1, 2, . . . , c and j = 1, 2, . . . , Ni, where c
is the number of BMA classes in a classifier and Ni is the number of ECG
beats used for training of ith BMA class. In this nonparametric classification
approach each BMA class is represented by a class mean and a set of eigenvec-
tors computed using the PCA of all training observations. The class mean is
computed from the arithmetic mean of the training data rij , j = 1, 2, . . . , Ni
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of the ith BMA class. The eigenvectors for the BMA class are obtained from
the corresponding data after subtracting the class mean.

The class mean of ith BMA class is calculated as follows

q̃
i
=

1

Ni

Ni∑

j=1

(rij), (7.5)

which approximates the average cardiac signal for the given BMA class [49].
The average cardiac component q̃

i
is subtracted from the signal rij to derive

mean subtracted BMA vectors (residual signal) for the ith BMA class

r′ij = rij − q̃
i
' sij + η′

ij
, (7.6)

where η′

ij
is comprised of the sensor noise plus the noise arising in the es-

timation of the cardiac component due to inter-personal variation (refer to
multi-subject testing, classifiers VI-X in Section 7.4.1). The BMA vectors
with regards to signal power, contain predominantly the motion artifact sij ,
along with the noise η′

ij
.

Next, PCA is applied on the BMA vectors r′ij to compute the significant
eigenvectors of the training data for each BMA class. An eigenvalue corre-
sponding to an eigenvector is a measure of signal strength in the data in the
direction of the eigenvector. As per assumption (8), the motion artifact com-
ponent dominates the residual signal. Thus, if the eigenvectors of this data are
arranged in a non-ascending order of the respective eigenvalues, the first few
eigenvectors will represent the motion artifacts by neglecting the noise compo-
nents. For the ith BMA class, the eigenvectors and eigenvalues are computed
by eigen decomposition of the covariance matrix of the training residual signal
r′ij , given by

Ci =
1

Ni

Ni∑

j=1

(r′ij)(r
′
ij)

T , (7.7)

where Ci is the covariance matrix for the ith BMA class. If the data oc-
cupies an M dimensional space then Ci is a M × M matrix and its eigen
decomposition gives a total of M eigenvectors [ei1, ei2, . . . , eiM ], arranged
in the non-ascending order of the corresponding eigenvalues, denoted by
λi1 ≥ λi2 ≥ . . . ≥ λiM for the ith BMA class. Let Ei = [ei1, ei2, . . . , eiKi

],
Ki � M be a set of first Ki eigenvectors with the largest eigenvalues that
represent the motion artifacts. Here Ei forms a basis for a small Ki dimen-
sional motion artifact subspace in the M dimensional space of the data for the
ith class. As per assumption (7) the motion artifacts due to any two different
types of BMA are nearly uncorrelated, eigen functions for any two different
motion artifacts are also expected to be nearly uncorrelated.

For each BMA class, a class mean and a set of eigenvectors are computed
from the training observations, which represent the characteristics of motion
artifacts for the particular BMA and is used as the basis of the BMA classifier.
Thus we have obtained a non-parametric representation of each BMA class.
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7.2.4 Activity Classification

Based on the nonparametric representation obtained in the previous section
for each of the specified BMA classes in a classifier, we discuss a BMA classifi-
cation procedure in this section. Let p

u
be a test ECG beat extracted after the

preprocessing steps given in Section 7.2.1, where u is the label of the BMA
class of p

u
which is unknown to the BMA classifier but can be any one of

BMA class labels i = 1, 2, . . . , c; where c is the total number of BMA classes
in the classifier. To classify p

u
, i.e., to recognize the class label u, the following

procedure is applied. First, the corresponding class mean q̃
i
is subtracted from

p
u

for all the BMA classes i = 1, 2, . . . , c to get

p′
i
= p

u
− q̃

i
, (7.8)

where p′
i

is a mean subtracted residual BMA vector for the candidate ith

BMA class. The BMA vector p′
i

is reconstructed from projections on the

computed set of eigenvectors Ei to capture its contents in the ith motion
artifact subspace defined by Ei in the prior training as

p̃′
i
= (EiE

T
i )p′

i
, (7.9)

where p̃′
i

is the reconstructed ith motion artifact.

A measure of error in reconstruction in ith motion artifact is denoted by
error(i) and defined as

error(i) = |p̃′
i
− p′

i
|2. (7.10)

To recognize the BMA class of the ECG beat, u is assigned the class label
from i = 1, 2, . . . , c for which the error in reconstruction is the minimum

u = arg min
i

error(i). (7.11)

The above derivation is valid when one is trying to classify motion artifacts
using the ECG signal for a single beat duration. However, one can have l
number of consecutive ECG beats during a particular BMA. The use of l beats
instead of a single beat can lead to a better classification accuracy. Hence, for
the BMA classifier, the given method of classification can be generalized for a
test sequence of l ECG beats {p}u = {p

u1
, p

u2
, . . . , p

ul
}, where p

uj
is jth test

ECG beat and u is the single label for all the test ECG beats in the sequence.
The error in reconstruction given in Eq. (7.10) for the test ECG beats p

uj
,

is denoted by errorj(i) for j = 1, 2, . . . , l in the given sequence. Finally, the
following measure of error is computed

error(i) =
l∑

j=1

errorj(i). (7.12)

The class label corresponds to i for which error(i) is minimum.
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7.2.5 Removal of Motion Artifacts

The classification procedure as derived above can also be applied to eliminate
motion artifacts in ECG due to body movements. The BMA class for an ECG
beat under test is recognized by the BMA classifier and the corresponding
artifact components are removed. Let p

i
be an ECG beat where i is the rec-

ognized BMA class, and the set of eigenvectors Ei represents the artifacts in
p

i
due to the recognized BMA. For artifact removal, the ECG beat is recon-

structed by removing the components of the corresponding mean subtracted
observation p′

i
= p

i
− q̃

i
, in the artifact subspace spanned by Ei as

p̃
i
= p

i
− (EiE

T
i )p′

i
, (7.13)

where q̃
i
is the class mean of the recognized BMA class as defined in Eq. (7.5)

and p̃
i

is the reconstructed ECG beat. We expect such a signal to be more
useful to clinicians. We demonstrate this by analyzing this signal to obtain
more accurate results in the detection of P and T waves. This is given in
Section 7.4.1.

7.3 Parametric classification

In the previous section we have discussed nonparametric classification of BMA
from the ambulatory ECG signal. In this section we provide a very differ-
ent approach of BMA classification. The parametric, supervised classification
technique is based on hidden Markov models (HMM). Here we overcome some
of the limitations in using the PCA-based technique discussed in the previous
section. The ECG beat alignment procedure required in the PCA-based tech-
nique can distort the motion artifact signal if there is a significant variation in
the heart rate. Here we prevent this situation by proposing an adaptive filter
as a preprocessing step for separating the motion artifact signal from the ECG
signal. The derived motion artifact signal is then processed further for clas-
sification of various types of BMA. The classification of BMA is performed
using different HMMs for different BMA classes. Like the previously pro-
posed PCA-based technique, this method is also a supervised learning based
classification method. However, since the parameters of the HMM model are
estimated from the training signals, the method is a parametric classification
technique as opposed to the PCA-based method which is a non-parametric
classification technique. At the end of this chapter we compare the BMA
classification results obtained using both the methods. It is noted that the
HMM-based method, though computationally a bit more expensive, outper-
forms the PCA-based method. However, this is predominantly a classification
scheme as opposed to the PCA-based method which is a subspace based re-
construction scheme where artifact removal is obtained as a by-product. For
the HMM-based method, once a BMA is recognized, the corresponding PCA
for the class should be used if noise removal is required.
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In the PCA-based method different sets of principal components and the
mean cardiac cycle are computed from the training data to represent the cor-
responding BMA classes. The PCA-based method provides a good dimension-
ality reduction and can be applied even when only a single-lead ECG signal
is available. However, the PCA-based method requires alignment of cardiac
features for separation of cardiac and motion artifact signal subspaces. The
problem of alignment is partially solved by resampling of the ECG beats in
accordance with the heart rate. However, the resampling process introduces
artifacts in the QRS complex and distortion in the spectra of the motion ar-
tifact signal. Since the cardiac cycle in PCA is computed from the average of
time-warped ECG beats, the artifacts caused due to resampling of the QRS
complexes, also affect this estimate. The severity of the distortion is propor-
tional to the amount of resampling, which is determined by the variability
of the heart rate. Due to this reason the method is restricted to the cases
where the heart rate variability in the individual BMA class is not significant.
Therefore, it is necessary to devise a new method for BMA recognition, in
which this kinds of distortion can be prevented.

To circumvent the problems due to resampling, we separate the motion
artifact signal from the ECG initially using an adaptive filter. This is done
in order to suppress any cardiac signal components which are common in all
types of BMA and which may overwhelm the modeling effort by the HMM,
and hence may not help in the BMA classification. We assume that since
each BMA is performed in a different manner the spectral features of the
motion artifact signal will exhibit some specific kind of temporal behavior.
If this assumption is true then the specific temporal characteristic can be
modeled using an HMM for each individual BMA class. The time-localized
features derived from spectral energy of the motion artifact signals can be
computed for each specific BMA class using Gabor filters and they will be
simply referred to as Gabor features from here on. The details of computing
the Gabor features from the motion artifact signals will be explained later in
this chapter.

We explore the feasibility of BMA recognition using HMM, which is con-
sidered here also due to its inherent temporality [24, 106]. For this purpose,
parameters of an HMM for each BMA class will be determined by using a
supervised learning approach, from the Gabor features of the corresponding
motion artifact signals reserved for training. The parameters of an individual
HMM are initialized by random choice and then updated for maximizing the
likelihood of the data from the corresponding BMA class during this train-
ing. After the training, all the HMMs with known parameters will be used
for calculating likelihood of each of the data provided for testing. The BMA
class of the test data is recognized based on the maximum likelihood criterion
over all the trained HMMs. The details of the implementation of the adaptive
filter, Gabor feature extraction and the HMM-based classification method are
provided in the following subsections.
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7.3.1 Pre-processing

The ECG signal acquired during a specific BMA is contaminated by the in-
duced motion artifact signals. Preprocessing is required to separate the motion
artifact signals from the composite ECG recordings. This is required so that
the HMM can be trained on the artifact signal alone and the training is not
overwhelmed by the dominant cardiac signal. We use an adaptive filter that
is conceptually similar to the adaptive recurrent filter (ARF) given in [130]
for cancellation of motion artifacts.

In [130], an ARF is provided to obtain the impulse response w of the
desired signal spanning over a fixed length M0. In this case the desired signal
is the recurring cardiac cycle (P-QRS-T complex) in the ECG signal which
should be estimated by the filter impulse response w = [w1 w2 · · · wM0

]T .
An impulse train is used as an input to the ARF, in which an impulse (unit
sample) occurs at a specified point of each cardiac cycle (ECG beat). This
specific point should preferably be at the starting of the ECG beat. This can
be determined from the location of the R peak in the particular ECG beat.
The length of the filter should be the same as the length of the ECG beat in
order to estimate the complete cardiac cycle. The kth filter coefficient wk is
adaptively modified by a least mean squares (LMS) algorithm at the incidence
of the kth sample of the current cardiac cycle based on the error between the
kth sample and the filter output.

Though the ARF, given in [130] is able to capture the cardiac cycle effec-
tively, it is sensitive to the time synchronization of the impulses at the specified
starting points of the cardiac cycles. Since the starting point is determined
with respect to the R peak of the cardiac cycle the method is very sensitive
to any error in locating the R peaks, which is likely to occur in presence of
noise.
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Fig. 7.2. A block diagram of the adaptive filter inspired by the ARF, given in [130].

Here in order to estimate the cardiac cycle more robustly we use a con-
ventional adaptive filter [141] in which, as opposed to the ARF, all the filter
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coefficients w = [w1 w2 · · · wN ]T are adaptively modified simultaneously at
every sample. A block diagram of the adaptive filter is given in Fig. 7.2. A
reference signal rs(n) is synthesized from a noise free ECG beat. This noise
free ECG beat is acquired while the subject is in a sedentary condition. Next,
the reference beat length is equalized with the current ECG beat length r(n)
such that the R peak positions of both the beats are perfectly aligned. This
time synchronization of the R peaks of both the signals is performed by the
synthesis block based on the R peak locations detected in the ambulatory
ECG signal r(n) using the R peak detector block. Thus the synthesized refer-
ence signal rs(n) exhibits the same heart rate as that of the ambulatory ECG
signal r(n) and the R peaks of both the signals are aligned. The coefficients
of adaptive filter w = [w1 w2 · · · wN ]T are updated by the LMS algorithm
given in [141] using the error signal e(n) computed as the difference between
the desired signal r(n) and the filtered signal y(n). The weights at nth instant
are updated using the error e(n) = r(n) − y(n) as

wn+1 = wn + µe(n)xn, (7.14)

where xn = [rs(n − N + 1) rs(n − N + 2) · · · rs(n)]T is an input vector
to the filter at nth instant, µ is a parameter controlling the adaptation and
convergence rate of the LMS algorithm, and N is the length of the filter.
After the convergence, the adaptively filtered signal y(n) estimates the desired
cardiac signal component of the acquired ambulatory ECG signal r(n) and
the error signal e(n) approximates the motion artifact signal s(n).

It may be noted that for all the BMAs considered in this experiment,
the quality of the acquired ECG signals from lead-II, despite the presence
of motion artifacts, was such that it allowed a reliable detection of the R
peak using the Pan-Tompkins algorithm [96]. Fig. 7.3 illustrates the cleaning
of ECG signal acquired during a twisting at waist activity performed by a
subject. The acquired ECG signal is depicted in Fig. 7.3(a). The cleaned
ECG signals by the given adaptive filter and the ARF discussed in [130] are
shown in Fig. 7.3(b) and Fig. 7.3(c), respectively. The filtered ECG signals are
representatives of the cardiac signal component of the acquired ECG signal
which is contaminated by the motion artifact. The P-QRS-T complex is clean
and clearly visible in both the filtered ECG signal. The signal obtained by the
adaptive filter has the P-QRS-T complex similar to that obtained by the ARF
method [130]. Moreover, the length of the P-QRS-T complex is not required
to be fixed in the given adaptive filter. Therefore, it can handle variation in
the heart rate in an automated manner. Thus we obtain a good estimate of the
cardiac signal component from an ambulatory ECG signal contaminated by
motion artifact. However, the quality of the signal has not yet been examined
for its use in clinical purposes. The filtering is performed just for obtaining
the motion artifact signal s(n) for further analysis of ambulation in this study.
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(a)

(c)

(b)

Fig. 7.3. Illustration of cleaning of ECG signal. (a) Original ECG signal while
twisting at waist, computed ECG signal obtained with (b) the scheme of using noise
free ECG beat reference, and (c) the ARF method in [130].

7.3.2 Feature Extraction

While preprocessing, an adaptive filter for obtaining the motion artifact signal
s(n) from the acquired ECG during a BMA is discussed. Since we are plan-
ning to use temporal relations among time localized frequency features for the
modeling, the motion artifact signal s(n) is analyzed into various subbands
using Gabor filters. Gabor transform is known to have good time-frequency lo-
calization properties [36]. The different, equally spaced frequency components
of the motion artifact signal s(n) are computed by

ŝl(n) = e−α2(n/fs)2e(j2πnlf0/fs) ∗ s(n), (7.15)

where ∗ is convolution operator, fs is sampling frequency, α, and f0 are con-
stant “sharpness” and “frequency” parameters [36], respectively, ŝl(n) is a
component of the motion artifact signal s(n) and l is the index of a frequency
component or subband. The envelopes of the impulse responses of the Gabor
filters used for first three subbands are depicted in Fig. 7.4. The impulse re-
sponses span over 2 seconds and the center frequency lf0 of the lth subband
filter increases proportionately to the value of index l, i.e., 1Hz, 2Hz and 3Hz,
respectively for l= 1, 2 and 3 and f0 = 1Hz.

Since the energies of the motion artifact signal are concentrated in 1-10Hz
band, the number of subbands is selected through a suitable choice L to cover
this frequency band, i. e., l = 1, 2, . . . , L. An estimate of the energy in each of
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Fig. 7.4. Envelopes of the impulse responses of the Gabor filters used for first three
subbands, l=1, 2 and 3.

these L frequency components ŝl(n) is computed by a moving average of the
windowed function as

gl(n) =
1

W + 1

n+W/2∑

k=n−W/2

|ŝl(k)|2, (7.16)

where W is the width of the moving window. An example of the energy
features for the analyzed signals in first four subbands is depicted in Fig. 7.5.
It is noted that the signal power drops down with the increasing number of
the subband.

For activity recognition, the feature vector G(n) = [g1(n) g2(n) . . . gL(n)]T

is formed by L frequency components. This feature corresponds to the prop-
erties of the artifact signal at a given time instant. In order to consider the
properties over a duration of N0 consecutive samples, we put them as subse-
quent columns and construct the corresponding feature matrix

F (n,N0) = [G(n − N0 + 1) G(n − N0 + 2) · · · G(n)], (7.17)

computed over N0 contiguous samples of the motion artifact signal s(n). This
is used for the training and classification of BMA classes using an HMM-based
technique. The dimension of the feature matrix F (n,N0) is L × N0.
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Fig. 7.5. Gabor feature signals gl(n), for first four subbands, l=1, 2, 3 and 4.

7.3.3 Hidden Markov Model (HMM) and Training

We provide an HMM-based classification technique for BMA recognition. In
this technique, each of the BMA classes will be represented by an HMM. Since
we are exploring the feasibility of using the HMM for BMA classification using
the Gabor features derived in the previous section, we use the standard (also
called fully connected or ergodic) HMM with finite mixtures of continuous
observation probability density functions as given in [106]. To define the HMM,
the number of states and the number of components in the mixture in each
of the states are to be specified along with the associated parameters. For
simplicity, we choose the same number of states in all the HMMs used for
representing various BMA classes. Similarly, we choose the same number of
mixture components for all the states. Let us denote the number of states in
any HMM as Q and the number of mixture components in any state of the
HMM as M. The parameters of the HMM are:

• State transition probability A = {aij}, 1 ≤ i ≤ Q, 1 ≤ j ≤ Q, where aij

is the state transition probability from ith state to jth state.
• Prior state probability distribution π = {πi}, 1 ≤ i ≤ Q, where πi is the

probability of the initial state of the system to be the ith state Si.
• Observation probability distribution B = {bj}, 1 ≤ j ≤ Q, where bj is

a probability distribution for the observations when the system is in jth

state. The observation probability distribution for the jth state bj is mod-
eled by a finite number of mixture components of continuous observa-
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tion probability density functions with the mixture weight coefficients cjm,
mean vectors ujm and covariance matrices Σjm for mth mixture.

A finite mixture takes the form of the observation probability density bj

for the jth state

bj(G(n)) =
M∑

m=1

cjmN (G(n)|ujm, Σjm), (7.18)

where G(n) is the observation being modeled, N is a Gaussian probability
density with mean vector ujm and covariance matrix Σjm for the mth mix-
ture component, and cjm are mixture weight coefficients. The mixture weight
coefficients cjm, satisfy the conditions:

1.
∑M

m=1 cjm = 1, 1 ≤ j ≤ Q, and
2. cjm ≥ 0, 1 ≤ j ≤ Q, 1 ≤ m ≤ M.

In a short form the model is specified as

Λ = (π,A,B), (7.19)

where π, A, and B are model parameters as defined above.
Let us define γn(i), the probability of being in state Si at an instant n given

the model Λ and the observation sequence F (n,N0) defined in Eq. (7.17)

γn(i) = P (qn = Si|F (n,N0), Λ), (7.20)

where qn is a variable indicating state at the instant n. Therefore, the prob-
ability of being in state Si at instant n with the mth mixture component
accounting for the observation G(n)

γn(i,m) = γn(i)
cjmN (G(n)|ujm, Σjm)

∑M

m=1 cjmN (G(n)|ujm, Σjm)
. (7.21)

Let us define ζn(i, j), the probability of being in state Si at instant n and in
state Sj at instant n + 1, given the model Λ and the observation sequence
F (n,N0)

ζn(i, j) = P (qn = Si, qn+1 = Sj |F (n,N0), Λ). (7.22)

It has been shown by Baum et al. [13] that the probabilities γn(i), γn(i,m)
and ζn(i, j) as defined in equations (7.20), (7.21) and (7.22), respectively, can
be used to reestimate the model parameters from the observation sequence
F (n,N0) and the initial model Λ. They have shown that the reestimated model
parameters define a new model Λ = (π,A,B) which can either be the same as
the initial model Λ or can have greater likelihood of the observation sequence
F (n,N0), i. e., P (F (n,N0)|Λ) ≥ P (F (n,N0)|Λ). The model parameters can
be updated by iteratively replacing the initial model Λ by the new model
Λ to increase the likelihood of the given observation sequence F (n,N0) till
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a limiting point at which there is no significant gain in the likelihood. This
procedure of parameter reestimation from a given observation sequence and
the initial model is known as Baum-Welch reestimation method [106]. The
reestimation formula due to this method for prior state probability πi, state
transition probability aij and the mixture density parameters cjm, ujm and
Σjm are

πi = γ1(i), (7.23)

aij =

∑N0−1
n=1 ζn(i, j)

∑N0−1
n=1

∑M

m=1 γn(i,m)
, (7.24)

cjm =

∑N0

n=1 γn(j,m)
∑N0

n=1

∑M

m=1 γn(j,m)
, (7.25)

ujm =

∑N0

n=1 γn(j,m) · G(n)
∑N0

n=1

∑M

m=1 γn(j,m)
, (7.26)

Σjm =

∑N0

n=1 γn(j,m) · (G(n) − ujm)(G(n) − ujm)T

∑N0

n=1

∑M

m=1 γn(j,m)
. (7.27)

Following the details of HMM provided above, we represent each BMA
class through an HMM for the classification purpose. Let us add a subscript
k to the notations as defined above to define the HMM for kth BMA class
as Λk = (πk, Ak, Bk). If a total of c different BMA classes are used to form
a classifier then 1 ≤ k ≤ c. A part of the set of feature sequences F (n,N0)
defined in Section 7.3.2 for each BMA is reserved for training purpose. For kth

BMA class these training sequences will be indicated as Fk(n,N0). We train
the HMM representing kth BMA class using the training data Fk(n,N0). In
this training, the parameters of all the HMM Λk, 1 ≤ k ≤ c are derived in
order to maximize the likelihood of their corresponding training sequences
Fk(n,N0), 1 ≤ k ≤ c using the Baum-Welch method [106] described above

Λk = arg max
Λ

P (Fk(n,N0)|Λ), 1 ≤ k ≤ c. (7.28)

The parameters Λk, 1 ≤ k ≤ c, obtained after this supervised training will be
used for classification of feature sequences reserved for the testing purpose.

7.3.4 Activity Classification

We have seen that in a BMA classifier each of the specified BMA is repre-
sented by an HMM having its parameters obtained by the given supervised
training using the features from the motion artifact signal. Let c be the num-
ber of models corresponding to c different BMA classes and a feature sequence
F (n,N0) is provided for testing, which belongs to any of the c BMA classes
indexed by k = 1, 2, . . . , c. It is possible to find the likelihood of the given test
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sequence F (n,N0) for being in any of the c BMA classes. Let us denote the
likelihood of F (n,N0) computed using the kth model corresponding to the kth

BMA class, with parameters Λk = (πk, Ak, Bk) as P (F (n,N0)|Λk). The BMA
class can be recognized using the criterion of the maximum likelihood

u = arg max
k, 1≤k≤c

P (F (n,N0)|Λk), (7.29)

where u is the label of the recognized BMA class out of the possible k =
1, 2, . . . , c indices. The given test sequence is now classified to an appropriate
BMA class.

7.4 Experimental Results

7.4.1 PCA-based Recognition

The collected ECG data from the subjects is analyzed using the PCA-based
technique. The results of the PCA-based analysis are presented here in this
section. First, the results of BMA classification in terms of classification rates,
accuracy and false alarms are presented. This includes single subject classifiers
with subject specific training and multiple subjects classifiers with combined
training. Different classifiers are formed using different combinations of BMA
classes that we will explain in this section. In the second part, we present an
example of motion artifact removal using the class specific PCA-based filtering
of the ECG signal. The improvement due to the PCA-based filtering is shown
through better localization of detected P and T waves.

BMA Classification

A uniform length of 160 sample point duration is chosen for each ECG beat
during the preprocessing steps. The BMA label (ground truth) is known for
each of the ECG beats collected. The data set is divided into two parts: one for
training the classifiers and the other for classifier testing purposes. The exact
details of the population size for each of these two parts for various BMAs are
given in Table 7.1. The column ‘Single Subject’ corresponds to the case where
the classifier is trained for a particular subject (subject number one in our
experiment) and tested on the same subject. The last column corresponds to
the case when the classifier is both trained and tested for a collective pool of
subjects and not specific for a single subject. The known BMA labels in the
test data are used for performance evaluation of the classifier testing and are
not available to the classifier itself. The classification test is performed on the
sequences of 30 consecutive ECG beats (30×160 sample points).

The performance is evaluated based on two parameters: accuracy (PT )
defined as

PT = Ntrue/(Ntrue + Nmissed), (7.30)
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Table 7.1. Details of number of ECG beat streams used for training and testing of
a particular BMA.

Body movement Single Subject Multiple Subjects
activity training testing training testing

Sitting still 289 578 2927 5854
Left arm 227 454 2336 4672
Right arm 278 557 2278 4556
Both arms 224 449 1586 3112
Walking 583 1167 4120 8240
Twisting 355 711 2798 5597
Climbing down 268 536 1407 2814
Climbing up 344 688 1879 3759

Total 2568 5140 19331 38604

and false detection rates (PF ) defined as

PF = Nfalse/(Ntrue + Nfalse), (7.31)

where Ntrue is the number of true detections, Nmissed is the number of missed
detections and Nfalse is the number of false detections.

We use the following example to explain this. A classifier has three classes
namely A1, A2 and A3 and the corresponding number of test signals recorded
are 100, 90 and 80. Now, if the classifier detects 95 test signals as class A1 and
10 out of these 95 detections, actually belong to either class A2 or class A3
rather than class A1, then Nfalse = 10, Ntrue = 95 − 10 = 85 and Nmissed =
100 − 85 = 15.

A hierarchical tree structure of BMA classes is shown in Fig. 7.6. There
are five BMA classes in the top layer: (1) sitting still, (2) arm movement,
(3) walking and climbing down stairs (W&CD), (4) climbing upstairs and (5)
twisting movement at waist. The arm movement is a combined class of three
separate movements of (2a) left arm, (2b) right arm and (2c) both arms. Sim-
ilarly, W&CD is a combination of two BMA subclasses: (3a) walking and (3b)
climbing down stairs. These BMA subclasses, shown in the second layer of
the graph, demonstrate partial correlation among the corresponding motion
artifacts. As a result these subclasses are subject to more false detections.
To study this aspect of BMA classification in ECG signals, we construct five
different types of BMA classifiers (Table 7.2) formed by various possible com-
binations of BMA classes/subclasses (Fig. 7.6).

Since an artifact subspace in the given scheme of BMA classification is
represented by a corresponding set of eigenvectors, the performance of the
classifiers is studied against the number of eigenvectors used to represent
the subspace. Fig. 7.7 shows the performances of the classifiers I-V that are
trained and tested on data collected from a single subject. Here the training
is very specific to an individual subject and the performance shown here is
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Fig. 7.6. Various BMAs and possible class formation by combining two or more
BMAs into a single class. ( c©2007 IEEE)

Table 7.2. Five different classifiers for subject specific training with various com-
binations of BMA classes / subclasses in Fig. 7.6. The corresponding classifiers for
multiple subjects are VI to X.

Classifier BMA
Subject specific Subject independent

I VI 1, 2, 3 and 4

II VII 1, 2, 3a, 3b and 4

III VIII 1, 2a, 2b, 2c, 3 and 4

IV IX 1, 2a, 2b, 2c, 3a, 3b and 4

V X 1, 2a, 2b, 2c, 3a, 3b, 4 and 5

also specific to the same subject. It is noted that the accuracy improves as
the number of eigenvectors is increased from one to six, which results in a
wider span of the artifact subspace of an individual BMA class. However, the
performance saturates with further increase in the number of eigenvectors,
since this results in overlapping of the spanned subspaces for different classes.

Due to possible correlation among the eigenfunctions of the specified sub-
classes, there is a drop in accuracy with increasing number of classes. The
PT value for classifier I (4 classes) is 98%, whereas for classifier V (8 classes)
PT = 85%. Thus it is possible to accurately recognize the BMA from the
ambulatory ECG itself, but the degree of accuracy depends on separability of
the BMAs.

The complete performances of the above BMA classifiers I, II, III and IV
are presented in Fig. 7.8(a), 7.8(b), 7.8(c) and 7.8(d), respectively, showing
the confusion matrix for all classes. In all cases six eigenvectors are used for
the classification of the data collected from a single subject. In classifier I
there are four BMA classes: 1, 2, 3, and 4 (Table 7.2). The accuracy PT of
the classifier I is 98% with a false detection rate PF =1.4%. This suggests that
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Fig. 7.7. Classification accuracy as a function of number of eigenvectors for the
BMA classifiers: I, II, III, IV and V. ( c©2007 IEEE)

all these four classes of BMAs are very well separable using the PCA-based
classification technique.

In BMA classifier II, there are five BMA classes: 1, 2, 3a, 3b, and 4. Here,
the activities of walking (3a) and climbing down (3b) stairs are recognized as
separate classes. However, there is a moderate amount of confusion between
these two classes: 3a and 3b, as shown in Fig. 7.8(b), about 18% of total
known labels of climbing down stairs are misclassified as walking and 4% of
walking labels are misclassified as climbing down stairs. For these two classes,
the average PT = 90% and PF = 8.5%. The average performance for classifier
II is PT = 96% and PF = 4%. Further studies will be required to determine
if there is a fundamental limitation in separating walking and climbing down.
A possible explanation suggests that the corresponding gaits for these two
BMAs differ only in the lower limbs and the upper body gait remains similar
during both the activities. It is only the upper body gait that matters in
generating a particular type of motion artifact.

In BMA classifier III there are six BMA classes: 1, 2a, 2b, 2c, 3, and
4. Here, the movement of left arm (2a), right arm (2b) and both arms (2c)
are recognized as separate classes. However, a significant level of confusion
exists between these three classes as shown in Fig. 7.8(c). On average, 25%
of total known labels of both the classes 2b and 2c are misclassified as 2a,
and 12% of total known labels of the 2b are misclassified as 2c. For these
three classes, average PT is 77% and PF is 17%. The average performance
for classifier III is PT = 91% and PF = 7%. This suggests that, for the given
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(See next page for figure caption.)
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Fig. 7.8. Confusion matrices for BMA detection for classifiers (a) I, (b) II, (c) III
and (d) IV. The horizontal axes in each case represent known and recognized BMA
classes. The vertical bars represent the classification accuracy. ( c©2007 IEEE)
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lead-II configuration, any movement of the arms (be it left or right) does affect
the ECG signal in a similar manner which reduces the differentiability of the
corresponding BMAs.

In BMA classifier IV, there are seven BMA classes: 1, 2a, 2b, 2c, 3a, 3b, and
4. Here the BMA (2a) left arm, (2b) right arm and (2c) both arms movement,
(3a) walking and (3b) climbing down stairs are recognized as separate BMA
classes. The notable aspect about the classifier IV is that all the seven different
BMA classes are recognized by a single classifier. The confusion levels between
classes are similar to that of classifier III (arm movements) and classifier II
(walking and climbing down stairs). The classifier IV demonstrates PT = 88%
and PF = 10%, which is worse than the previous cases, due to the larger
number of classes considered.

In BMA classifier V, there are now eight BMA classes: 1, 2a, 2b, 2c, 3a, 3b,
4 and 5. As compared to the classifier IV, the performance under the BMA
subclasses 2a, 2b and 2c is further deteriorated since a new BMA class of
twisting at waist introduced here also involves arm movement. The classifier
V has PT = 84% and PF = 13%.

The results given so far (Fig. 7.8) correspond to analyzing the performance
of the classifiers on a single subject (subject number one in this case). We now
compute the inter-subject variability of the obtained results by computing the
classification rates for each classifier trained and tested on individual subjects.
This is given in Table 7.3 for the classifiers I-V. It can be seen from the
table that the mean accuracy (PT ) and mean false detection rate (PF ) for
these classifiers display similar behaviors as discussed earlier. The standard
deviation for accuracy is quite low. However, the standard deviation for the
false detection rates appears to be on a slightly higher side.

Table 7.3. Inter-subject variability of classification rates (in %) of the subject-
specific classifiers over the entire subject population.

Classifier Accuracy (PT ) False detection rate (PF )
mean std. dev. mean std. dev.

I 92.44 6.71 5.95 5.38

II 86.81 8.38 9.78 6.64

III 79.85 7.11 15.23 5.52

IV 73.98 8.97 19.06 6.53

V 72.79 7.51 20.20 6.08

The results presented above were for the classifiers I to V, tested with
subject specific training. The subject specific training allowed us to shield
the classifier from possible inter-personal variability. Hence we now repeat the
experiments where principal components are learnt not from an individual
subject, but from all subjects available with us. The corresponding classifiers
VI to X (see Table 7.2) are trained on 23 different subjects to understand the
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impact of inter-personal variability on classifier performance. As mentioned
earlier, one third of the available ECG beats from each subject but pooled
together to form a common pool of training data have been used for training
purposes. The accuracy of classification for various choices of the number of
eigenvectors is plotted for the classifiers VI to IX in Fig. 7.9. As compared to
the training over a single subject the required number of eigenvectors is much
higher and the maximum PT is only 85%, as expected. The confusion matri-
ces of the classifiers VI to IX using 19 eigenvectors are plotted in Fig. 7.10.
The trends of confusions among certain classes, i.e. arm movement classes or
walking and climbing down stairs, are similar to that in the subject specific
classifiers.
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Fig. 7.9. Accuracy of the combined (multi-subject) classifiers as a function of num-
ber of eigenvectors used to represent the artifacts when the data is collected from
different subjects. Here the classifiers are VI, VII, VIII and IX. ( c©2007 IEEE)

To study further the effect of inter-personal variation in ECG data, a new
classifier, called classifier XI with four BMA classes 1, 2, 3, and 4 is trained on
22 subjects out of the total 23 subjects, leaving each time one designated test
subject. This is equivalent to employing a leave-one-out testing method. The
performance of classifier X is PT (max.)= 72% and PF (min.)= 26%. Thus,
it appears that the error signal generated due to inter-personal variation is
significant. It is therefore advisable that the classifier be customized for a
given user in order to achieve the highest accuracy. However, this should not
be a cause of alarm as the W-ECG system is meant to monitor only a specific
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(See next page for figure caption.)
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Fig. 7.10. Confusion matrices for BMA detection for multi-subject classifiers (a)
VI, (b) VII, (c) VIII and (d) IX. The horizontal axes in each case represent known
and recognized BMA classes.
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subject at a given time. Hence it should be possible to retrain the classifier
for each subject.

Detection of P and T Waves in Presence of BMA

Fig. 7.11(a) shows a sequence of recorded ECG beats in presence of BMA
(walking) prior to artifact removal. In Fig. 7.11(b) the component due to
motion artifacts as derived by the class specific PCA-based method using
the classifier III is shown. In Fig. 7.11(c) the reconstructed ECG signal after
subtracting the artifact signal is shown. The ECG signal after the removal of
motion artifacts is quite clean even though this has been accomplished with
a single lead W-ECG.

(a)

(b)

(c)

Fig. 7.11. Illustration of artifact removal from ambulatory ECG using the class
specific PCA-based filtering. (a) Original ECG signal before any artifact removal, (b)
artifact signal derived by the class specific PCA-based method, and (c) reconstructed
ECG signal after subtracting the artifact signal. ( c©2007 IEEE)

This artifact removal procedure helps to improve the quality of analysis of
ECG signal in presence of BMA as demonstrated here in the detection of P
and T waves in the collected ECG data. The P wave is a small and smooth
peak that occurs just before the QRS complex due to atrial activity of the
heart and the T wave occurs following the QRS complex due to the ventric-
ular activity. In order to detect the P, QRS complex and T waves, we use a
combination of two existing techniques in the literature [63, 66, 132]. First,
the ECG signal is smoothed by a low-pass filter with a 3dB cut-off at 12Hz as
recommended in [66] for P and T wave detection. Then a morphological oper-
ator for detecting P and T waves is applied which is inspired by the method
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of QRS detection in [132]. Since the R peak position is in the middle, P and T
waves are located by searching for maxima in the appropriate windows before
and after the R peak position in the output of the morphological filter.

The histograms representing the locations of P and T waves detected in the
ECG signal from a particular subject (a part of the ECG is shown in Fig. 7.11),
before and after artifact removal, are shown respectively in Fig. 7.12(a) and
7.12(b). It may be noted that since the input beats have already been resam-
pled to have the same number of samples, the samples may correspond to
different timings based on the resampling factor used earlier. In order to plot
them on an actual time unit, the locations of the detected P and T waves
are shown after correcting for the resampling operation. In Fig. 7.12(a), the
histogram without the artifact removal is broadly spread out (standard de-
viations of 46.4ms and 29.8ms, respectively, for P and T locations) while in
Fig. 7.12(b) the histogram is much narrower (standard deviations of 8ms and
11.9ms, respectively, for P and T locations). It is noted that a 12Hz pre-
filtering is applied to the ECG signal in both the cases prior to detection of P
and T waves. This shows that in the presence of BMA induced artifact, the
12Hz lowpass filter as suggested in [66] alone is not sufficient for the accurate
localization of P and T waves and the given artifact removal scheme improves
the quality of analysis.

7.4.2 HMM-based Recognition

Here we present the results of HMM-based BMA recognition from the am-
bulatory ECG signal. The ‘sitting still’ is considered here as a representative
class of the ECG data for which there in no BMA present and hence it is
free from any motion artifact. This signal is taken as the representative of the
reference signal while using the adaptive filter proposed earlier to estimate
the component due to the cardiac cycle in presence of motion artifact. The
methodology explained in the previous section is adopted for training vari-
ous BMA classifiers with different combinations of BMA classes as listed in
Table 7.2. Here we concentrate only on the subject specific cases only.

We use 80% of the available data for each individual subject for training
purposes, and the remaining 20% of the data is used for testing purposes.

First, we explore the HMM-based method for BMA recognition for testing
the accuracy of classification with subject specific training. The BMA clas-
sifiers I to V as described in Table 7.2 are trained using the data from an
individual subject. The following set of parameters is used in the feature ex-
traction step: α=1.5, f0=1Hz, L=10, and W=484 (equivalent to 2s of the data
length at fs=242Hz). The classifiers are trained using the appropriate number
of HMMs using the supervised learning method given in Section 7.3.3. The
number of states Q=4 and number of mixture components M=3 are chosen
for this experiment. The trained classifiers are used for recognition of BMA
from the test sequences collected from the same subject according to the tech-
nique given in Section 7.3.4. Here the length of each test sequences is chosen to
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Fig. 7.12. Histograms of location estimates of P and T waves with respect to the
location of R wave (a) when motion artifacts were present and (b) after artifact
removal. The horizontal axes represents actual time in seconds. ( c©2007 IEEE)
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be N0=1200 (approximately equivalent to 5 seconds of ECG recording). The
accuracy of classification PT is calculated using Eq. (7.30). This experiment of
the subject specific training is repeated for all subjects individually and with
the same parameter values as described above. The aggregate of confusion
matrices for classifiers I to IV, showing the accuracy of the classifier as well
as amount of misclassification to other classes over the actual vs. recognized
BMA classes are presented in Fig. 7.13 for these experiments for the subject
specific training. The confusion matrix for the classifier I with subject specific
training is shown in Fig 7.13(a). There are four BMA classes in the classifier I:
1. sitting still, 2. movements of arm(s), 3. walking on level floor and climbing
down on stair combined (W&CD), and 4. climbing up stairs. There are two
most significant confusions: 5.3% of ‘sitting still’ are recognized as movement
of arm(s) and 4.6% of climbing up stair are recognized as W&CD. Most of
the other confusions among the BMA classes are much less than 1%. The
aggregate accuracy of this classifier is 97.6%.

The confusion matrix for the classifier II with subject specific training is
shown in Fig 7.13(b). There are five BMA classes in the classifier II : 1. sitting
still, 2. movements of arm(s), 3a. walking on level floor, 3b. climbing down
on stair, and 4. climbing up stairs. Here the two BMA classes indicated as
3a and 3b, are separated as opposed to the classifier I in which they were
combined into W&CD class. The most significant confusion occurs at 5.6% of
the climbing down stairs being recognized as walking on level floor, which is
expected because of the similarity of the two BMAs. The aggregate accuracy
of this classifier is 97.1%.

The confusion matrix for the classifier III with subject specific training is
shown in Fig 7.13(c). There are six BMA classes in this classifier. Here three
BMA classes are indicated as 2a, 2b and 2c, corresponding to the movements
of left, right and both arm(s), respectively. Here 10% of each of the move-
ments of left and right arm are recognized as movements of both arms. Apart
from these, 10%, 3% and 6% of 2a, 2b and 2c, respectively, are recognized
as W&CD. The result shows a significant difficulty in recognizing movements
of left arm, right arm and both arms as three different classes. The aggre-
gate accuracy of the classifier III is 92.3% which is substantially less than the
previous two classifiers.

The confusion matrix for the classifier IV with subject specific training is
shown in Fig 7.13(d). There are seven BMA classes in the classifier IV. Here
the three movements of left, right and both arm(s) indicated as 2a, 2b and 2c,
respectively, are separated along with 3a and 3b BMA classes. The types of
confusions mentioned above for the classifiers II and III, are also seen in this
classifier, hence the accuracy drops to 90.5%. However, this can be considered
quite significant with a view of having the ability to classify so many BMAs
as different classes using a single-lead of ECG.

In order to explore the ability of the BMA recognition scheme to handle
a larger number of BMAs, we introduce one more class of twisting at waist
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Fig. 7.13. Confusion matrices for BMA recognition using HMM for classifiers (a)
I, (b) II, (c) III and (d) IV under subject specific training. The horizontal axes in
each case represent known and recognized BMA classes. The notation IV2b means
- class label 2b (right arm movement) for the classifier IV.



116 7 Activity Recognition

activity. The classifier V has eight BMA classes including the previously con-
sidered seven different BMA classes. The accuracy of the classifier V is 88.6%.

Table 7.4. Accuracies of BMA classifiers I to V for a single subject with different
numbers of states and mixture components in HMM.

BMA accuracy (%)
Classifier Q = 3, Q = 3, Q = 4, Q = 4,

M = 3 M = 4 M = 3 M = 4

I 98.6 98.0 97.8 97.1

II 96.9 97.4 97.9 94.6

III 90.8 92.9 91.8 90.2

IV 92.2 91.5 89.8 88.9

V 91.9 90.2 89.1 89.8

Since we do not know exactly what are the best numbers of states and
mixture components to choose for the HMM in the classifiers, we have selected
the same combination of numbers of states and mixtures to represent each of
the BMA classes. We have tried four different such combinations, e.g., (Q = 3,
M = 3), (Q = 3, M = 4), (Q = 4, M = 3) and (Q = 4, M = 4), for all
the five classifiers I to V. The remaining parameters are all as specified above
for the subject specific classifiers I to V. The recognition accuracies for the
classifiers I to V for the four different combinations of (Q,M) are presented
in Table 7.4. We found that there in no further gain in terms of classification
accuracy with more number of states or mixture components.

To verify the ability of classifiers I to V for handling inter-personal vari-
ability, a combined training over multiple subjects is provided to the corre-
sponding multi-subject classifiers, VI to X. We train the classifiers using the
training data collected from all the subjects. With this combined training the
classifiers are tested against possible inter-personal variations in motion arti-
fact signals for the same BMA. We had carried out similar experiments for
PCA-based method also. The aggregate confusion matrices for the BMA clas-
sifiers VI to IX using HMM are shown in Fig. 7.14. Here also, like the subject
specific training, the confusion takes place among the BMA classes of move-
ments of left, right and both arm(s). Similarly, there are confusions taking
place among walking and climbing up/down stairs classes. The classifiers VI
to X for the combined subjects training have accuracies of 94%, 91.8%, 87%,
86.2% and 85%, respectively. It is observed, as in the previous case of PCA-
based BMA classification, that the HMM-based method performs better if
the subject specific training is provided. Though the accuracies obtained with
the combined training as compared to those with subject specific training are
on lower side, the deterioration in the HMM-based method is less than that
using the PCA-based method discussed in the previous section.
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Fig. 7.14. Confusion matrices for BMA recognition using HMM for classifiers (a)
VI, (b) VII, (c) VIII and (d) IX under combined training. The horizontal axes in
each case represent known and recognized BMA classes.



7.4 Experimental Results 119

In this chapter, we have discussed two techniques for BMA recognition
from the motion artifacts in the ECG signal. Now we compare the accuracy
of BMA classification for the HMM-based method with that of the PCA-based
method. The average accuracies obtained on the data set considered in this
experiment with the classifiers I to V are presented in Table 7.5 for both HMM-
based and PCA-based methods. It is observed that the HMM-based method
has higher accuracy of classification than that of the PCA-based method for
all classifiers I to V and in both the cases with subject specific training and
with combined training for all subjects. It is also noted that the standard
deviation in the accuracy across the different individual subjects in case of
subject specific training, is very small for the HMM-based method. Thus the
HMM-based method is more consistent over the entire subject population.
The comparison of accuracies with combined subjects training for both the
techniques shows that the HMM-based technique works very well even with
the inter-personal variations in the ECG. The HMM-based method is less
sensitive to the inter-personal variations and it can handle such variation very
well as opposed to the PCA-based method.

Table 7.5. Comparison of accuracies of BMA classifiers I to X for the subject specific
(I-V) and combined (VI-X) training for PCA and HMM based methods. Accuracy
for subject specific recognition is presented in terms of mean and standard deviation
across all subjects.

method accuracy BMA Classifier
(%) I II III IV V

HMM-based mean 97.1 96.7 91.8 89.9 88.0
subject specific std. dev. 2.0 2.3 0.7 1.0 1.7

PCA-based mean 93.7 88.8 82.5 77.4 75.1
subject specific std. dev. 6.5 9.2 3.9 8.9 7.8

VI VII VIII IX X

HMM-based mean 94.0 91.8 87.0 86.2 85.0
subjects combined

PCA-based mean 84.9 79.9 78.4 73.5 65.8
subjects combined

We have also analyzed the effect of the length of the test sequence F (n,N0)
on the BMA recognition using the HMM-based classifiers. For all the classi-
fiers I to V we find that the recognition accuracy improves with the increasing
length of the test input from N0=300 samples (≈1.24s) to N0=1200 samples
(≈4.96s). The mean accuracy across the subjects along with the vertical bars
indicating the standard deviation versus the length of the test sequence is
plotted in Fig. 7.15. In order to achieve a good accuracy of BMA classifica-
tion using the HMM-based method a reasonable choice of length of the test
sequence is found to be about 5s.
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Fig. 7.15. Accuracy vs. length of the test sequence for the BMA classifiers I to
V. Height of the vertical bars at each of the coordinates indicates one standard
deviation above and below at that point. Five plots correspond to five different
classifiers I-V.

7.5 Discussion

In this chapter we have studied classifiability of various BMAs like sitting
still, movement of arms, walking and climbing stairs up and down, using the
motion artifacts present in ECG signals. It is observed that different BMAs
have different separations among them and this determines the accuracy of
classification. For example, while climbing up stairs is recognized with a good
accuracy (PT = 99%), there exists a moderate confusion between walking
and climbing down stairs and a significant confusion among the movements
of left, right and both arms. When we merge two overlapping classes such as
walking and climbing down stairs into a single BMA class, the performance
expectedly improves. It would be of interest to study the confusion level if the
pace of walking/climbing downstairs is increased. Similarly, confusion levels
in the case of vigorous arm movement will be of interest. Currently, we have
refrained from such activities that may impose stress on the heart, a condition
we wanted to preclude in this preliminary study on BMA recognition from
motion artifacts.
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The performance is the best when the classifier is provided subject specific
training, meaning that personal training is recommended rather than generic
training on multiple subjects.

In order to be able to use the given PCA-based method, we had to resort
to resampling of the ECG beats to match the dimensionality, which may
introduce certain artifacts in the QRS complex. Another possible option is
to do zero padding to match the dimension. However, this would introduce
artifacts in the signal representing BMA that is prevalent over the entire
beat duration. In order to avoid that we suggested the use of HMM-based
classification.

We have shown that the time localized spectral features of the motion
artifact signal can be used for BMA recognition. We have achieved better
recognition rates using the HMM-based method as compared to PCA-based
method. We have also given a scheme using an adaptive filter for separating
motion artifact signal from the ECG which can be used for the estimation of
the cardiac cycles in the ECG signal contaminated by the motion artifact. We
have found that a 5s long recording is ideal for BMA recognition. A smaller
length of the data results in a reduced accuracy, while a longer length of the
data will add to the system delay.

We have also experimented on the effect of varying the number of states
and mixture components for the HMM. However, a much more elaborate
evaluation is needed to ascertain what would be the correct HMM model for
classification purposes.

For the given supervised learning technique, the available ground truth is
in terms of labels that qualitatively describe activities (e.g. walking gently).
However, a more precise labeling of BMA in terms of speed and rigorousness is
likely to provide a better understanding of the impact of the resultant motion
artifacts. This may be achieved by attaching a network of motion sensors
to the body and recording the motion signals synchronously with the ECG
signal. In the next chapter we will study the impact of levels of BMA on
motion artifact generation quantitatively by using the ground truth from the
acceleration signals captured from the moving body parts.
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Impact of Ambulation

In previous chapters we have discussed methods for detecting and recognizing
different body movement activities (BMAs) from the analysis of the ECG sig-
nal acquired under ambulation. The ECG signals have been analyzed to show
that the motion artifacts induced by various BMAs can actually be classified
into different types which allows recognition of BMA from the ECG itself.
The methods discussed so far deal with the commonplace BMAs performed
at a normal pace. The constant normal pace of activity allowed us to exclude
more complicated situations arising out of variations in the pace levels of the
same BMA. However, in real life, different pace levels of any commonplace
BMAs are usually described as slow, normal and fast. This kind of variations
in the body movement kinematics may also have some impact on the genera-
tion of the motion artifacts in the ECG signal. In this chapter, our purpose is
to determine the impact of body movement kinematics on the extent of ECG
motion artifact by defining a notion called impact signal. The impact signal
is derived from the ambulatory ECG signal itself. Two approaches have been
adopted in this chapter to validate the basic hypothesis that the impact signal
does provide a good measure of the pace of ambulation. One of them involves
measuring local acceleration using motion sensors at appropriate body po-
sitions, in conjunction with the ECG, while performing routine activities at
different pace levels. The other method consists of ECG acquisition during
treadmill testing at controlled speeds for fixed durations. Ambulatory ECG
signals and the required data about the pace of the activity have been acquired
from healthy subjects as well as patients with suspected cardio-vascular dis-
orders. In case of patients, the treadmill tests were carried out under the
supervision of a cardiologist. We demonstrate that the impact signal shows a
proportional increase with the increasing activity levels. The measured accel-
erations obtained are also found to be well correlated with the impact signal.
The impact analysis thus indicates the suitability of the proposed method for
quantification of body movement kinematics from the ECG signal itself, even
in the absence of any accelerometer sensors. Such a quantification would also

© Springer Science + Business Media, LLC 2009
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help in automated documentation of patient activity levels, which could aid
in better interpretation of ambulatory ECG.

8.1 Introduction

Ambulatory ECG analysis is adversely affected by motion artifacts induced
due to body movements. Knowledge of the extent of motion artifacts could
facilitate better ECG analysis. The context of ambulation in ECG analy-
sis plays an important role particularly for monitoring with wearable ECG
recorders (W-ECG) for which the patient ambulation is quite unencumbered.
During monitoring with W-ECG an accurate diary of physical activities is
maintained to facilitate better analysis of the ECG ‘in context’ [43]. It is
difficult to provide exact details of the physical activities just by describing
a physical activity qualitatively in words and the time stamping of various
events by a human user may be quite inaccurate. This difficulty has been
solved partially by developing W-ECG systems with evidence based patient
activity monitoring in [17, 43, 86, 145]. These systems incorporate accelerom-
eters with ECG recording apparatus, in order to provide information about
patient activity levels. However, any exact analysis of the impact of the activ-
ity levels as recorded by the accelerometers on the ECG has not been studied
yet. Since the primary goal of W-ECG is to monitor ECG signal, it is required
to derive a quantitative measure of the quality of the ECG signal rather than
just the activity levels being monitored by the accelerometer signals. Here we
quantitatively investigate the precise impact of various levels of BMA on the
generation of motion artifacts in the ECG signal.

We have shown in Chapter 6, that it is possible to detect the onsets of
body movements, or transitions from one movement to another, from the
ECG signal itself using a recursive principal component analysis (RPCA)
based method. This is based on the fact that different types of body move-
ments affect the skin electrode interface differently. In this chapter, we first
define a notion called impact signal which is derived from this RPCA and
demonstrate through a number of experiments that the proposed impact sig-
nal can be applied for impact analysis of body movement activity (BMA),
and consequently, for determining different levels of body movements from
the ECG signal itself. We show that it is a measure of induced motion artifact
on the ECG signal.

For quantifying subject activities, we perform two different sets of experi-
ments: one using the treadmill test, and the other using commercially available
accelerometers. The treadmill test, a benchmark in stress testing for cardiac
patients, is calibrated in terms of energy expenditure for standard test proto-
cols, like the Bruce protocol. The output from triaxial accelerometers on the
human body have been quantified as a function of energy expenditure in [16],
and hence the activity level of a subject. Accelerometric measurements and
treadmill speeds have been shown to be well correlated in [31]. Accelerometry
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has been used for studies of body movements in [81, 82, 83]. We report our
observations on the magnitude of the impact signal in relation to the walking
speed of the subject in the treadmill test, as well as the recorded accelerations
while performing various types of body movements at three different pace
levels: slow, normal and fast. We note that slow body movements may induce
motion artifacts of smaller magnitude whereas quick body movements are
likely to induce larger motion artifacts. At rest, there are usually no motion
artifacts at all. Thus different levels of body movements may have different
impact on the motion artifacts and hence on the ambulatory ECG signal.
We thus show that BMA levels can be quantified from the ECG signal itself
using the impact signal, without using any sophisticated motion sensors. In
other words, we demonstrate that it is, indeed, possible to have a truly unen-
cumbered ambulatory cardiac monitoring system without the use of multiple
inputs from accelerometers tethered to the body, with activity detected from
just a single lead of the ECG. This is useful for development of a simple, low
cost, ECG monitoring system which can automatically provide information
about BMA from the ECG signal.

The chapter is organized as follows. We describe a method for deriving the
impact signal is Section 8.2. In Section 8.3, it is explained how we synchronized
the free running clocks of two different systems, the W-ECG equipment and
the motion sensor system. The results obtained from various experiments with
treadmill and motion sensors are presented in Section 8.4. We discuss about
the experimental results and conclusions in in Section 8.5.

8.2 Derivation of Impact Signal

We use the RPCA error signal as derived in Section 6.2, at every R peak
locations from the analysis of appropriately time warped ECG beats. We
repeat the RPCA based algorithm here for the ease of reading.

Since we use PCA based method which is sensitive to feature alignment,
it is required that the input data vectors have the same dimension. The ECG
beats are therefore time synchronized with respect to R peak in each beat, and
resampled to a fixed length of M0 samples, to account for possible heart rate
variability (HRV). The value of M0 is chosen based on the normal heart beat
duration and the given sampling rate of the ECG recorder. In our experiments
presented here, we encountered the heart rate variations from 64 to 160 (under
the stress test) beats per minute. The R peaks in the ECG signals are detected
using a modified Pan-Tompkins algorithm [96] as discussed in Chapter 6. The
current ECG beat length is estimated as the duration between the current R
peak and the previous one.

In order to estimate the principal components, the covariance matrix Ci

is recursively computed from the ith length normalized and mean subtracted
ECG beat r(i) as
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Ci =

i∑

k=1

α(i−k)r(k)rT (k) = αCi−1 + r(i)rT (i), (8.1)

where α, 0 < α < 1 is the forgetting factor. . A set of top L eigenvectors
of the covariance matrix Ci at ith ECG beat is derived using Eq. (8.1). Let
Ei = [ei1 ei2 . . . eiL]M0×L be the set of top L eigenvectors arranged in a non-
ascending order of magnitudes of the corresponding eigenvalues. To quantify
the variation in the ECG signal due to motion artifacts, we obtain from the
next ECG beat r(i+1) the component that lies in the span {ei1, ei2, . . . , eiL}.
The error in approximation

ε(i) = |r(i + 1) − (EiE
T
i )r(i + 1)| (8.2)

provides a measure of the level of motion artifact in the ECG, i.e. the impact of
body movement in ambulatory ECG signal. The error ε(i) defined in Eq. (8.2)
is called the impact signal for the ith beat. The impact signal could be non-
uniform on the time scale due to the beat to beat variations in the heart rate.
The exact time instant of the impact signal can be calculated from the R
peak location corresponding to the beat index i in the ECG signal. Then it is
possible to compare the impact signal with the accelerometer signals at same
time instances.

8.3 Synchronization of Impact and Motion Data

We have explained how we acquire the motion data from accelerometers in
Chapter 5. We again reiterate the fact that for the impact signal, we use the
index ‘i’ to denote time axis, while we use the index ‘n’ to denote time while
measuring acceleration. This is due to the fact that

1. the impact is measured at every heart beat duration of which is variable
and

2. the sampling frequencies for the ECG and the motion sensors are different.

The two indices are related in time as n = κ(i), where κ is a function of the
time instances of occurrence of each QRS complex in the input ECG. In order
to synchronize the acceleration and impact signals, we need to calculate the
cross-correlation ρ between them.

To compensate for non-uniform sampling rate of the impact signal ε(i),
the impact signal is upsampled to 242Hz (sampling frequency of the W-ECG)
using a cubic spline interpolation. For comparison between the impact signal
and the acceleration signals, the interpolated impact signal is downsampled
to 25Hz (sampling frequency of the motion sensor). This two stage process is
required because the impact signal is non-uniformly sampled on the time scale
as the RR interval may vary with time for an individual. As the motion sensor
and ECG acquisition starting times could be slightly different, it is also es-
sential to have an automatic means to calculate the time delay between them.
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The location of the peak of the cross-correlation between the acceleration data
βk(n) [see Chapter 5 for definition of βk(n)] and the time warped impact sig-
nal ε(n) is used as a measure of this time delay to synchronize the ECG and
motion sensors. Having synchronized these two different types of sensors, the
index function κ(i) can be easily computed from the warped impact signal.
The usefulness of the function κ(i) will be clear in the next section when the
data from two different sensors are compared at a given instant of time.

8.4 Experimentations

Continuous lead-II ECG signals are recorded as described in Sections 5.4 and
5.6 for the direct motion sensing and the treadmill experiments involving the
variations in the pace levels of the BMA. The results for these two types of ex-
periments are reported separately. Data are collected from healthy subjects as
well as patients with cardiac disorders. In case of patients, ectopicity in QRS
complexes are manifested as major spikes in the impact signal, as mentioned in
Chapter 6. To obtain a correct estimate of the impact in these cases, ectopics
have to be separated from the input data stream by standard preprocessing
techniques discussed in the literature [20, 65, 97]. In [65], an adaptive, model
based technique is provided for estimation of width and shape parameters of
the QRS complex. Autoregressive modeling of envelopes of coefficients of dis-
crete cosine transform of the QRS complex is discussed in [97]. Application of
a neural network for classification of normal and abnormal ECG beats is given
in [20]. Having detected the ectopic beat, one may discard abnormal spikes
in the impact signal. However, owing to the inability in handling frequent
ectopics, the method is not found to work well in subjects where ventricular
bigeminy is observed, i.e. one normal QRS complex followed by an ectopic
one, alternately.

8.4.1 Experiments on the Treadmill

In the experiment involving the treadmill, our endeavor is to find a relation
between the impact signal and the treadmill speed for quantification of the
impact signal. Most subjects take some time to adjust to the movement on
the treadmill during the first stage of the exercise due to the sudden and
jerky start, which consequently affects their gait for reactive stabilization,
and results in increased motion artifacts. Subsequently, the subject adjusts
to the motion of the treadmill and this steady state behavior is studied in
this chapter. We report our findings for healthy subjects and cardiac patients
separately as below.

Case I (Healthy Subjects)

Data from healthy volunteers are acquired with different treadmill speeds
at zero inclination. Once the subject is settled on the treadmill, the impact
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signal ε shows an increase in amplitude with increasing treadmill speed. This
is illustrated in Fig. 8.1, in which are plotted the mean impact signal mj ,
along with the standard deviation σj , for jth treadmill speed. This clearly
demonstrates that as the human motion activity increases, it can be easily
captured from the impact signal derived from the ECG signal itself. The
discrepancy in the plot at the beginning is due to jerky start of the treadmill
as explained earlier. The variance of the strength of impact signal at a given
treadmill speed, shown in this plot, makes a very interesting observation. We
observe that, for the jth speed

mj + σj < mj+1 − σj+1.

If for a given speed of the treadmill, the impact signal is assumed to be
Gaussian distributed, this would mean that, given the measure of the impact
signal ε, one can correctly identify the treadmill speed in more than 68%
cases as the area of a Gaussian probability density function within the range
[m − σ, m + σ] is about 0.68. Given that we work with a single lead ECG
recorder, this can be considered quite an accurate measurement technique.
Computing the cross-correlation between the impact signal and the treadmill
speeds yields a typical correlation coefficient of ρ = 0.95, which also indicates
a strong collinearity among them.
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Fig. 8.1. Illustration of the relation between the impact signal and treadmill speeds
for a subject walking at different speeds on a treadmill. The large dot represents the
mean value of the impact signal (ε), with the vertical bars representing the standard
deviations around the mean. The horizontal axis is the treadmill speed in km/hr.
The first stage on the treadmill shows a larger value of ε, due to the initial discomfort
of the subject on the treadmill.

Case II (Cardiac Patients)

Patients who undertook the stress test could barely complete three stages
of the Bruce protocol. The impact signal for one such subject is shown in
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Fig. 8.2(a). As in case of normal subjects, ε increases with increasing treadmill
speed. From the plot of mean impact signal mj in Fig. 8.2(b), we find that

mj + σj < mj+1 − σj+1

described in Case I, again holds true. The discrepancy in the value of ε in
the first stage as explained earlier is also observed here. This suggests that
the impact signal provides a good estimate of treadmill speed irrespective of
whether the QRS complexes of the subjects are normal or abnormal. There
is a small treadmill inclination associated with the Bruce protocol, which
increases gradually with every stage. We ignore this inclination, as magnitude
of this slope is very small at the first few levels of the protocol.
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Fig. 8.2. Plots of the impact signal ε for a cardiac patient whose treadmill test
is terminated after 30 seconds into the fourth stage of the Bruce protocol. The
first stage in both plots shows a comparatively large value of ε, due to the initial
adjustment issues of the subject on the treadmill. (a) Plot of ε vs. time in seconds
on the treadmill. The corresponding stages are indicated by numbers at the top,
with ‘0’ indicating resting conditions. (b) Plot illustrating the relation between ε

and treadmill speeds. The large dot represents the mean value of the ε, with the
vertical bars representing the standard deviations.

The treadmill exercise involves putting the heart through a certain amount
of stress, with peak heart rates touching 150 beats per minute. Such a stress
may result in temporary morphological changes in the ECG, more so in case
of patients with an ischemic heart disease [32]. The nearly linear trend of the
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impact signal with respect to the treadmill speed despite these morphological
variations can be explained by the fact that these changes are gradual com-
pared to the motion artifact, and the RPCA method adapts itself to gradual
variations. From this we conclude that the impact signal provides a good es-
timate of activity levels even when the heart is subjected to high levels of
stress.

8.4.2 Experiments with Motion Sensors

In our experiment with motion sensors, since our objective is to evaluate the
applicability of ambulatory ECG monitoring, some typical BMAs are chosen
as explained in Section 5.4. The impact signal is derived from the ECG signal
described in Section 8.2, while the acceleration signals are analyzed accord-
ing to the procedure given in Section 8.3. The goal here is to determine a
relationship between the impact signal ε(i) with the kinematic measures like
acceleration βk(n) and displacement γk(n).
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Fig. 8.3. Illustration of ECG signal for a normal subject while different ambulation
activities. (a) sedentary ECG signal without any body movement, (b) ambulatory
ECG signal of the same subject while moving his left arm, (c) ambulatory ECG
signal of the same subject while walking. The horizontal axes are time in seconds in
all plots shown.

Before we quantify the effect of ambulation on the acquired ECG, we il-
lustrate the effect by plotting the ECG traces for a normal subject with and
without the body movement in Fig. 8.3. The sample ECG under a sedentary
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condition without any body movement is shown in Fig. 8.3(a). The corre-
sponding ECG trace for the same subject while moving his left arm is shown
in Fig. 8.3(b). Fig. 8.3(c) shows the effect of walking for the same subject.
It is quite clear from the plots that the corresponding ECG traces are very
different in terms of ambulation artifacts.
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Fig. 8.4. Illustration of impact signal ε for change in posture alternating between
sitting down and standing up three times each with three different levels: slow (0-
120s), medium (120-240s) and fast (240-360s). (a) Impact signal derived from the
ambulatory ECG signal, norm of acceleration (m/s2) for sensor attached at (b) right
leg, and (c) frontal waist. ( c©2007 IEEE)

First, we look at the impact of posture changes, requiring subjects to sit
down and stand up alternately at three different intensity levels: slow, medium
and fast, with a motion pause of nearly 20 seconds in between. The impact
signal for a subject due to these posture changes is shown in Fig. 8.4(a),
while the corresponding accelerations βk(n) are shown in Fig. 8.4(b-c). We
observe that the magnitude of the impact signal follows the pattern of the
acceleration βk(n), i.e., low, medium and high, indicating that the impact
signal is a quantitative measure of the levels of the body movement similar
to acceleration. From the plot of the impact signal, the exact instants when
the posture changes were effected can be identified very easily. This can be
verified from the accelerometer data.

Next we analyze the act of climbing up and down on a staircase of 36 steps,
again at three different intensity levels. A rest period of 30 seconds is allowed
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Fig. 8.5. Illustration of impact signal ε for climbing stairs with three different paces:
slow (18-206s), medium (244-352s) and fast (395-470s). (a) Impact signal derived
from the ambulatory ECG signal, norms of acceleration (m/s2) for sensor attached
at (b) right leg, and (c) frontal waist. ( c©2007 IEEE)

after finishing each level. The impact signal ε(n) for this activity for a subject
and the corresponding acceleration signals βk(n) are shown in Fig. 8.5. From
the amplitudes of signals in the figure and their time spans it is apparent that
the impact signal does quantify the different levels of body movement while
climbing stairs. For slow motion, both the impact signal and the acceleration
measures are less in magnitude. They both increase proportionately as the
pace increases.

We now consider rotation of the torso at the waist, with both hands firmly
at the hips (so that they do not move with respect to the trunk), at three
different intensities: slow, medium and fast, with a little rest in between.
The impact signal ε(n) for a subject and corresponding accelerations βk(n)
from the motion sensors placed at right leg and frontally at the waist are
shown in Fig. 8.6. The relative variation in amplitude across the three paces
of movement remains similar for all motion sensors. Specifically, the twisting
body movement is well represented by the sensor placed on the waist, and the
corresponding impact on ambulatory ECG is evident from the amplitudes of
the impact signal for the three different levels of motion activity.

Next, we look at the impact of the extent of body movement on the ECG
signal. Arm movements have a larger extent as compared to usual leg and
waist movements, as the shoulder joint is one of the most freely movable joints
in the human body with a large range of motion (ROM). Hence we consider
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Fig. 8.6. Impact signal ε while twisting the torso at the waist with three different
paces: slow (17-191s), medium (206-312s), and fast (326-500s). (a) Impact signal
derived from the ambulatory ECG signal, norms of acceleration (m/s2) for sensor
attached at (b) right leg, and (c) frontal waist. The troughs intervening the high
magnitude regions correspond to the resting time between consecutive action phases.
( c©2007 IEEE)

arm movement with flexion at the shoulder joint parallel to the sagittal plane
of the body. For this purpose, the subject is asked to swing one of the arms
to different angular extents: very small (±10o from rest), small (±30o), mod-
erate (+60o to −45o) and wide (+90o to maximum ROM angle backward).
Approximately the same pace is maintained throughout the different extents
of arm movement, with the other arm kept at rest by the side of the body.
An instance of the impact signal ε(n) for this activity involving the right arm,
with corresponding acceleration signal β1(n) and displacement signals δ1(n)
[see Chapter 5 for definition] of the sensor placed on the right arm are shown
in Fig. 8.7. Except in the case of very small extent of movement, the magni-
tudes of acceleration for the other extents are nearly at the same level. There
is a discernible increase in the amplitudes of the corresponding impact signal,
associated with the increasing displacement levels. That shows the impact of
extents, e.g. very small, small, moderate and wide movements of right arm
on the ECG signal. Hence, it is not just the pace (as quantified by the accel-
eration) that determines the motion artifacts, the extent of motion (such as
stride length, etc.) also plays an important role in determining the impact of
the body movement on the ECG data. A similar exercise is also performed
with the left arm. However, for the lead-II configuration, the impact signal is
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not as sensitive to left arm movements as compared to right arm movements,
as reported previously. It may be useful to adopt a different lead configuration
for this case.
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Fig. 8.7. Illustration of impact signal ε for right arm movement with four differ-
ent extents with similar pace (very small:8-48s, small:78-120s, moderate:156-200s,
wide:340-388s). (a) Impact signal derived from the ambulatory ECG signal, (b) norm
of acceleration (m/s2) for sensor attached at right arm, and (c) norm of displacement
(m) for the sensor attached at right arm.

Now we study the combined effect of the pace of motion and the extent
of the body movement on the acquired ECG data. Analysis of the impact for
different strides (extents) and speeds of walking also indicates an increase in
the amplitude of impact signal with the increase in acceleration. In addition,
one also observes that for the same pace of the stride, a longer stride results
in increased motion artifacts. A shorter but quicker stride may result in the
same walking speed as a longer but slower stride. Looking at this from the
perspective of the treadmill experiment, and considering that impact signal
ε(n) is almost proportional to treadmill speed (see Fig. 8.1), this is an ex-
pected result. An illustration of the impact of walking is given in Fig. 8.8.
The plot shows that an increased stride length (or extent of motion) has a
greater impact on the generation of motion artifact than the pace of activity.
The increased stride length while walking automatically requires an increased
movement of arms for reactive stabilization of the body and hence the skin at
electrode contact is involved in further stretching and contraction.
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Fig. 8.8. Illustration of impact signal ε for walking with three different stride-
lengths: 1, 2 and 3 ft. and at three different speeds: slow (1 ft: 25-207s, 2 ft: 265-358s
and 3 ft: 405-470s), medium (1 ft: 515-621s, 2 ft: 675-747s and 3 ft: 795-843s) and
fast (1 ft: 915-987s, 2 ft: 1035-1078s and 3 ft: 1145-1180s). (a) Impact signal derived
from the ambulatory ECG signal, norms of acceleration (m/s2) for sensor attached
at (b) right arm, and (c) frontal waist, displacement as a function of time, captured
by the motion sensor placed at (d) right arm, and (e) frontal waist. For (a), (b) and
(c): c©2007 IEEE.
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Fig. 8.9. Illustration of the impact signal ε of a cardiac patient for right arm
movements at three different speeds : slow (0-50s), medium (75-120s) and fast (144-
190s). (a) Impact signal derived from the ambulatory ECG signal, (b) norm of
acceleration (m/s2) for sensor attached at right arm, (c) a snapshot of the ECG
signal recorded during this activity. Note the abnormal QRS morphology.

The motion sensor experiment also involves patients with cardiac disorders
and anomalous QRS complexes. Since there is no existing protocol as yet and
this experiment is not conducted under medical supervision, it is ensured that
the overall intensity levels of the activity are lower for the selected patients to
avoid undue physical stress. Fig. 8.9(a-c) shows the results for the movement
of right arm as in Section 5.4 at three different speeds from a patient with
a prosthetic aortic valve and a left bundle branch block (LBBB). From the
ECG, we can observe that the QRS duration is more than twice that of a
normal subject, the R wave amplitude is smaller than normal, and the S wave
is predominant. However, the resulting trends are similar to that of healthy
subjects. The RPCA method is largely unaffected by the vastly different QRS
morphology in case of the cardiac patient data. Motion artifacts being an
external influence at the superficial level of the skin, it must have similar
effects on the ECG for both healthy subjects as well as those with cardiac
abnormalities.

In our next attempt to analyze the acquired data, we remove the time
dependence and plot the impact signal as a function of the instantaneous
acceleration. This should ideally remove the human bias as we no longer know
when a particular acceleration takes place and what the subject is actually
trying to do at that instant. The scatter plot of the impact signal for the
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Fig. 8.10. Scatter plot of the magnitude of the impact signal ε as a function of
norm of instantaneous acceleration while climbing stairs for the sensor attached at
the right leg. Note the well defined clusters around the large dots, which represent
the mean value of ε over 15 beats. The trend appears to be more or less linear, and
the vertical bars, representative of the standard deviation of ε, indicate separability
of acceleration levels at a resolution of nearly 0.2g.

experiment on climbing stairs vs. norm of acceleration in Fig. 8.10 shows
the presence of well defined clusters corresponding to different magnitudes of
acceleration, underlining the fact that ε is a proper representative of activity
levels. It is also clear that mean values of ε provide better estimates of activity
levels than instantaneous values, although instantaneous values of the impact
signal provide a fairly accurate indication of initiation or cessation of activity
periods.

An alternative representation of the impact signal and the corresponding
norm of instantaneous acceleration after temporal smoothing are illustrated in
Fig. 8.11 and Fig. 8.12, associated with the activities of walking and twisting
of torso, respectively. The linear relationship shows that the impact signal can
be used for quantification of motion. Comparing Fig. 8.11 and Fig. 8.12, we
note from the range of the impact signal that a smaller acceleration at the
waist due to stretching of the body while twisting, causes a similar impact on
the skin electrode interface, as a larger acceleration at the leg while walking.
At zero acceleration, a finite value of error (≈ 0.1) is observed, analogous to
background noise, which can be attributed to the beat to beat variability in
the human ECG even at rest.

Plotting the cross-correlation between the acceleration signal βk(n) and
the impact signal ε(n) indicates a strong correlation between the two quanti-
ties in time, with a typical correlation coefficient of 0.80. The location of the
peak on the correlation plot also proves to be a good estimate of the time de-
lay between the starting of motion and ECG data, as verified from the video
recording of the experiment. As mentioned in Section 5.4.2, this is used in
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Fig. 8.11. Plot of the magnitude of the impact signal ε as a function of norm of
instantaneous acceleration while walking for the sensor attached at the right leg.
This indicates that as the activity level goes up, so does the motion artifact. The
trend appears to be a linear one. ( c©2007 IEEE)

all plots to time synchronize the acceleration and impact signals. One of the
plots showing cross-correlation between the acceleration signal and the impact
signal while climbing stairs is shown in Fig. 8.13. In order to synchronize with
the ECG data, we observe from the plot that the accelerometer data must be
time shifted forward by 9.6s.

Presented in Table 8.1, is a summary of the global mean (µ) and standard
deviation (σ) of the coefficient of cross-correlation (ρ) and slope (ω) of the
line best fitting impact ε against acceleration data β, for climbing stairs and
walking when experimented on different subjects. The cross-correlation values
are high, while the low values of the standard deviation of ρ indicate less
inter-personal variation. In other words, the impact signal is well correlated
for most of the subjects. Standard deviation values for slope ω are marginally
higher, indicating higher interpersonal variability in this regard. This implies
that the method requires individual specific calibration for more accurate
quantification of patient activity levels.

8.5 Discussions

We have studied the impact of body movements on generation of motion
artifacts in ambulatory ECG recordings, and reported our observations on the



8.5 Discussions 139

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

β
3
 (m/s2)

ε

Fig. 8.12. Plot of the magnitude of the impact signal ε as a function of norm of
instantaneous acceleration for the twisting at waist movement for the sensor attached
frontally at the waist. Note that the acceleration values are much smaller (about
0.1-0.2g) compared to the previous plot as the movement at the waist is much slower
than that at the leg. ( c©2007 IEEE)

Table 8.1. Means (µ) and standard deviations (σ) of the coefficients, ρ and ω for
climbing up stairs and walking across different subjects. The columns hand, thigh
and waist signify the placement of the motion sensor.

Coefficients Correlation (ρ) Slope (ω)

Activity Hand Thigh Waist Hand Thigh Waist

Climb µ 0.8226 0.8090 0.8150 0.1337 0.0655 0.1297

σ 0.0195 0.0161 0.0176 0.0368 0.0222 0.0408

Walk µ 0.8517 0.8027 0.7985 0.1989 0.1548 0.1779

σ 0.0278 0.0628 0.0512 0.0599 0.0675 0.0471

quantification of body movements using the impact signal. The amplitude of
the impact signal is shown to be very well correlated with the accelerations at
the limb locations, a fact that is verified by analyzing the signal amplitudes
in time synchronization. The impact signal also shows a linear trend with
the treadmill speed in case of the stress test, further validating the idea of
motion quantification from the ECG data itself. The results from the treadmill
experiment also indicate that the impact analysis is able to successfully adapt
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Fig. 8.13. Plot of the cross-correlation between the acceleration signal β and the
impact signal ε as a function of lag (τ) in seconds for the activity of climbing stairs.
The dashed line indicates the maximum correlation, which also gives the time lag
between the two signals for the purpose of synchronization. The plot takes triangular
shape as expected since the two signals have inherent rectangular shape due to step
changes in the levels. ( c©2007 IEEE)

to stress induced morphological ECG variations, and can be applied even at
high activity levels.

The impact signal has been presently used for measuring an extraneous
activity superimposed on regular heart activity, be it normal or abnormal.
Data sets from both healthy subjects and cardiac patients have been obtained
to corroborate our hypothesis. Quantification of the impact signal from car-
diac patients requires further analysis pertaining to detections for ectopicity
and rhythm disturbances. We observe that the impact signal is unaffected by
abnormal QRS morphologies, if they are regular and periodic. However, the
method does not work in case of abnormalities like ventricular bigeminy where
ectopics occur very frequently. Also, we have restricted ourselves to subjects
with normal posture and gait, and results may be different in case of individ-
uals with defects in gait. An indication of this fact is the discrepancy observed
in the first stage of the treadmill test, where an abnormal gait results due to
difficulty in adjusting to the jerky start of the treadmill. For the chosen lead
configuration, it is found that movements of right arm have a greater impact
as compared to similar movements of the left arm.
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We have limited our studies to single lead (lead-II) observations. How-
ever, additional activities could be analyzed if more than one ECG leads are
available.



9

Conclusions

The work presented in the previous chapters is focused on deriving ambula-
tion information from the motion artifact induced due to physical activities in
wearable ECG systems (W-ECG). Various methodologies required to achieve
that have been discussed in details. We have also provided hardware and cal-
ibration details. The experimental protocol is defined for acquisition of data.
Finally we have presented results of different experiments. The conclusions
derived from this work and scopes for future work in the same area are now
discussed in this chapter.

9.1 Conclusions

In this monograph, we have studied the impact of body movement activities
(BMA) on the ambulatory ECG signal. Motion artifact in ECG signal induced
due to BMA is considered here as a source of useful information related to the
physical activities of the subject. The presented work was initiated in view of
increasing demand and popularity of W-ECG for ambulatory cardiac moni-
toring. One such W-ECG, called locket and developed at IIT Bombay, is used
for collecting the ECG signals during subject ambulation with some specific
types of BMA. The ideas generated and hypothesis like “BMA recognition is
possible from ECG signal itself” have been verified from the analysis of the
real life ECG signals.

The motivation for BMA recognition from ECG signal comes from the
fact that if the motion artifacts can be well understood from BMA point
of view then it can help us in better interpretation of automated analysis
of ECG signal. Since every BMA is performed in a different manner, BMA
specific analysis of motion artifact should be possible. We have shown that it
is possible to recognize the motion artifact from BMA specific view point.

In Chapter 6, we have shown that the changes in BMA due to activ-
ity transition can be detected from the ECG signal itself. This is useful for
temporal segmentation of ECG signal. The method used for this task is an

© Springer Science + Business Media, LLC 2009
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unsupervised learning approach based on recursive principal component anal-
ysis (RPCA) of the ECG beats and hence can be implemented on computer
based W-ECG. The BMA segmented ECG signal can be useful for automated
analysis of ECG signal.

In Chapter 7, we exploit differences in motion artifacts due to different
BMAs for recognition of a particular BMA from the ECG signal itself. The
possibility of BMA recognition using motion artifacts is verified with a su-
pervised learning approach based on principal component analysis (PCA) of
the ECG beats. Several commonplace BMAs such as movements of arm(s),
walking, climbing, etc. are recognized from the ECG signal itself. We have
attempted various class combinations for improving the recognition rates and
formed five different BMA classifiers based on that. We have searched for the
most suitable number of principal components for the BMA recognition in
order to achieve a high accuracy in recognition and to reduce the computa-
tional complexity and found that 6 to 8 eigenvectors would be a good choice
for recognition of the BMAs considered in our studies. We also investigated the
impact of inter personal variability on this method and found that the subject
specific training gives better performance in terms of accuracy in classifica-
tion. Since the goal of the study is to develop a pervasive monitoring system
for individual cardiac patients, initial study suggests that the training of the
system should be individually tuned. We have also discussed a BMA specific
PCA-based filtering method for removal of the induced motion artifact due to
the particular BMA without affecting the morphologies of P and T waves in
the cardiac cycle. The performance of the PCA-based filtering is verified by
locating P and T waves using an automated method with and without using
the proposed filtering. The improvement due to the filtering is shown using
the histograms of detected P and T wave locations.

In Chapter 7, we have also re-validated the concept of BMA recognition
from motion artifacts using a parametric, supervised learning technique based
on a hidden Markov model (HMM). We have suggested the use of an HMM to
represent each BMA class, trained from the Gabor features derived from the
motion artifact signals corresponding to that particular BMA class. We have
also suggested an adaptive filtering technique for separating the motion arti-
fact signal for that purpose. Separation of the estimated cardiac component
of the ECG from the composite signal is required to prevent the HMM classi-
fier from working with the artifact signal under the heavy bias of the cardiac
component, thus improving the classification accuracy. We have used a fully
connected HMM with a few number of states and Gaussian mixture compo-
nents. BMA classifiers with various class combinations as we found in the
earlier PCA-based method are used for recognition of the specific BMA. The
recognition rates are found to be better than that in the PCA-based method.
We have also studied the effects of length of the test data and selection of
number of states and number of mixture models. We have found a length of
5s for the test data to be sufficient for achieving a high level of accuracy in
BMA recognition. A smaller length will result in a decreased accuracy and a



9.2 Scopes for Future Work 145

longer length will add to further delay without much improvement. The effects
of number of states and the actual number of mixture components have been
studied for a limited number of combinations and require a more detailed
investigation. However, we have shown that it is possible to achieve a very
good performance even with a very few states (3-4) and mixture components
(3-4) for all the BMA classes. The effect of increasing these numbers remains
to be investigated but it will surely increase the complexity while learning the
model parameters.

Finally in Chapter 8, we have investigated a different aspect of deriving
BMA information from the ECG signal. We derived a measure of motion arti-
fact called impact signal from the ECG signal itself using the RPCA method
discussed previously for detection of BMA transitions. The impact signal is
validated using acceleration signals acquired from the motion sensors placed
on various parts of the body for measurement of the level of BMA. Three
different levels of certain commonplace BMAs are considered. The levels are
also quantitatively described in terms of acceleration values at different po-
sitions on the body. We have shown that the impact signal derived from the
ECG signal can be used for measuring the level of a BMA without requir-
ing any extra motion sensors. This is demonstrated by showing the relation
between the impact signal and the acceleration signal in terms of their cross-
correlation coefficients and the slope of best fitting line. We have also tested
the possibility of applying RPCA to ECG signal with different types of QRS
morphologies, collected from patients with known cardiac abnormalities. We
have found that the method works well irrespective of the QRS morphology
provided that the pattern itself is regularly repetitive without serious dis-
turbances in rhythm. The rhythm disturbances or infrequent arrhythmia are
manifested as very large values of impact signal and hence can be detected by
a simple analysis of RR intervals as well as by using some standard method
of arrhythmia classification.

9.2 Scopes for Future Work

In this monograph some of the very preliminary but useful methods for de-
riving BMA information from ECG signal for wearable ECG monitoring are
devised. These methods are found to be suitable even for a single-lead ECG
recorder. The lead-II configuration was adopted for the investigation of the
feasibility of the BMA recognition from ECG signal. Both the proposed PCA-
based and HMM-based methods should work for any lead configuration. How-
ever, from the experiments we have observed that the induced motion artifact
due to any specific BMA is sensitive to placement of electrodes. For example,
the lead-II configuration is more sensitive to right arm movements than that
to the similar left arm movements because of the proximity of the electrode
to the right arm. This kind of sensitivity of a specific lead to a specific type of
BMA can provide more useful information of the BMA in a multiple lead sys-
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tem. Therefore, in future we plan to study impact of various types of BMA on
different ECG lead configurations. We hope to increase the confidence levels
in recognition of BMA using the analysis of multiple ECG leads. It should also
be possible to use more sophisticated methods to take advantage of redundant
and independent components of information in multiple lead ECG signals.

After achieving a satisfactory level of accuracy in identifying all usual
BMAs, it should be possible to conduct some ergonomic studies regarding the
routine of physical activities of the cardiac patient wearing ECG recorders
without requiring any sophisticated motion sensors. This will help to increase
the utility of the W-ECG for personal health monitoring.

Every method discussed here requires detection of R peaks in ECG signal
as a preprocessing step. In this work, R peak detection was not a challenging
problem and performed in an automated way and accurately even in the pres-
ence of motion artifacts due to the various BMAs performed by the subjects.
Therefore, it should be possible to use the proposed algorithms as it is for
practical applications. However, it is of interest to know how can the R peak
detection be made more robust using ECG signals in conjunction with the
motion artifact information available from multiple leads. This should be pos-
sible because we anticipate that the ECG signal recording in only few of the
available ECG leads would be contaminated severely and hence the signals
from other less affected ECG leads can be used for detecting the R peaks.

We have discussed an HMM based technique for BMA recognition in Chap-
ter 7 which shows very promising results. However, we need to fully investi-
gate issues related to feature selection, types of HMM and numbers of states
and mixture components to further improve in terms of accuracy and com-
putational efficiency. Are the Gabor features the right feature? It requires a
thorough investigation to come out with the correct feature set which can
capture the distinguishing characteristics of the motion artifacts. Another in-
teresting study would be to relate the hidden states with the dynamics of
the body motion. Finally, it is to be recalled that all BMA recognition efforts
have been restricted to cases where the heart is not stressed due to activity.
With the induced stress, the cardiac component of the signal will also undergo
changes. Suitable modifications in the methodology are required to deal with
such cases.

In this monograph, the BMA recognition and impact analysis of ECG
signal are considered as two separate aspects. It remains to be investigated how
both the analyses can be done more efficiently in a unified manner. Moreover,
the method of the impact analysis has been tested successfully up to the
third level of the Bruce tread-mill test protocol, that is up to approximately a
walking speed of 5.5 kmph whereas the BMA recognition is tested at relaxed
or normal pace levels of BMA. However, challenges in practical applications
of these methods are required to be studied. For example, different types of
motorized vehicles have different levels of vibrations and hence can affect the
the comfort of the patient as well as W-ECG recordings differently. This kind
of motion studies can also be useful and can be done in future work. Similarly,
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impact of movement on ECG signals and motion artifact generation during
sport activities can also be studied. We have used the reconstruction error
after appopriate RPCA updating as the measure of impact. Although this
yields quite interesting results, this is quite an ad-hoc measure. Is there a
better measure of the impact? A detailed study is required in this regard.

Thus we see that the studies related to motion artifact in ECG signals
during ambulatory monitoring have wide scopes for future work. Further in-
vestigations in this area will definitely improve the analysis and the utility of
wearable ECG recorders.
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