
IX

Constructive Universe and Computation

1 Introduction: A Categorical View of Computation

1.1. Words and integers: two constructive worlds. (a) In Chapters I and
II we have studied alphabets, words (finite sequences of letters of an alphabet),
expressions (certain syntactically well formed words such as terms and formulas
defined in I.2.3), deductions (finite sequences of formulas defined in II.5.1).

Let us fix an alphabet of a first-order language and denote by W ⊃ F the
sets of words and formulas respectively.

Studying deducibility, we have implicitly introduced the set D ⊂ F of all
formulas deducible from, say, a fixed finite set of formulas (axioms). This whole
set D can be systematically generated and well ordered following a finitely
describable procedure that, say, first totally orders the alphabet, then totally
orders elementary steps of deductions etc., prescribing in what order to apply
them iteratively to the axioms and already deduced formulas.

In this way we get a bijection Z+ → D that is intuitively “computable,”
together with the inverse bijection. Of course, it is a simple particular case of
numbering defined in VII.1.2 and studied later on in VII.1. See also II.11 for a
useful numbering of all formulas in the Smullyan language.

Having achieved in this way the encoding of certain linguistic constructions
by arithmetic ones, we have been able in Part III to reduce many problems of
syntax (and partly semantics) of formal languages to number theory.

(b) We could have considered Z+ as a set of certain words in a finite
alphabet as well, for example, as the set of binary strings whose first bit is 1.
Then the whole theory of computability in Chapter V could have been based on
the notion of Turing machine(s), in place of elementary arithmetic. This view-
point, leading to the “same” notion of computability and the same supply of
computable (partially recursive) functions, nevertheless enriches our intuition
in two essential respects.

(i) Whereas before Alan Turing, the most common mental image of math-
ematical reasoning was related to some form of (written) language, Turing
represented computation as the dynamical evolution of an idealized physical
system.

285Yu. I. Manin, A Course in Mathematical Logic for Mathematicians, Second Edition,
 Graduate Texts in Mathematics 53, DOI 10.1007/978-1-4419-0615-1_9,
© Yu. I. Manin 2010

286 IX Constructive Universe and Computation

This dethroning of the linguistic metaphor and its replacement by a metaphor
grounded in science was a great breakthrough, and a premonition of the age of
computers.

Among other developments, Turing’s metaphor broke the ground for
(at first mental) replacement of the classical computing machine by a quan-
tum one. The burgeoning theory of quantum computers owes Turing this debt
of gratitude.

(ii) Turing’s insight allowed him to undertake a microscopic analysis of the
intuitive idea of algorithmic computation. In a sense, he found its genetic code.
The atom of information is one bit, the atomic operators can be chosen to act
upon one/two bits, and to produce changes in the output of the same restricted
size. Finally, the sequence of operations at each step is strictly determined
by the local environment of bounded size, again several bits. Needless to say,
mathematically “the same” idea can be described in purely linguistic terms. In
fact, Markov’s normal algorithms do just that. But as we argued above, this
would constitute a philosophical regression.

One goal of this chapter is to go in the reverse direction, and to present
a “macrocosm” of the classical theory of computation.

The sets Z+, W , F , D are examples of what we will call below constructive
worlds. Elements of these sets—integers, words, formulas, deducible formulas—
are constructive structures of the respective kind. Other examples include worlds
of finite graphs, finite groups, finite rings (up to isomorphism, or “all” in a fixed
countable universe of sets).

Each of these worlds is countably infinite, but it is natural to allow also
finite constructive worlds, such as all binary strings of restricted length.

In Sections 2 and 3 below we will unite different constructive worlds into a
constructive universe. It will be a category, with constructive worlds as objects,
and semicomputable functions as morphisms. Church’s thesis will get a very
natural reformulation:

Categorical Church’s Thesis: Any two constructive universes are
equivalent.

For more detailed explanations, see Section 2 below, especially
Comments 2.3.

1.2. Languages as categories. In Sections 4 and 5 of this chapter, we explain
that there exist natural constructive worlds that are themselves categories, and
at the same time languages, that are more convenient for describing morphisms
between constructive worlds than conventional languages, discussed in Chapters
1 and 2 of this book.

Roughly speaking, we can base the theory of recursive functions on a con-
structive world of descriptions of these functions, whereas the set of functions
themselves does not form a constructive world.

This raises a challenge: to find a well-structured world of descriptions faith-
fully reflecting properties of recursive functions as morphisms.

Our suggestion elaborated in Section 3 is motivated, on the one hand, by
progress in general algebra, the theory of (generalized) operads, and on the

1 Introduction: A Categorical View of Computation 287

other hand, by the recent paper by N. Yanofsky (math.LO/0602053), who has
constructed a specific operad acting on primitive recursive functions.

We may and will treat operads as functors on appropriate categories of deco-
rated graphs. Such graphs themselves form constructive worlds, with effectively
computable finite sets of morphisms. If we admit these categories as new types
of languages, then a functor defined on such a category becomes the categorical
version of a model of this language.

The decorated graphs are idealized versions of flowcharts, which are quite
popular in the description of various computational processes. Already in the
1960s, Dana Scott, among others, used an appropriately formalized version
of them. He united them into a lattice which can be treated as a category
satisfying strong additional restrictions: see his survey paper “The lattice of
flow diagrams” in Springer Lecture Notes in Math, vol. 188 (1971).

This, and the return to the Turing philosophy, complemented by the
progress of quantum physics, motivates the last subject matter of this chapter:
Introduction to the theory of quantum computation.

1.3. Why quantum computation? Information processing (computation) is
the dynamical evolution of a highly organized physical system produced by
technology (computer) or nature (brain). The initial state of this system is
(determined by) its input; its final state is the output.

Physics describes nature in two complementary modes: classical and quan-
tum. Up to the 1990s, the basic mathematical models of computing mimiced
classical automata, although the first suggestions for studying quantum models
date back at least to 1980.

Roughly speaking, the motivation to study quantum computing comes from
several sources: physics and technology, cognitive science, and mathematics. We
will briefly discuss them in turn.

(i) Physically, the quantum mode of description is more fundamental than
the classical one. In the 1970s and 1980s it was remarked that because of the
superposition principle, or quantum entanglement, it is computationally infea-
sible to simulate quantum processes on classical computers. Roughly speaking,
in quantizing a classical system with N states we obtain a quantum system
whose state space is an (N − 1)-dimensional complex projective space whose
volume grows exponentially with N. One can argue that the main preoccupation
of quantum chemistry is the struggle with the resulting difficulties. Reversing
this argument, one might expect that quantum computers, if they can be built
at all, will be considerably more powerful than classical ones.

Serious preoccupation with quantum computing has also been stimulated
by rapid progress in the microfabrication techniques of modern computers. It
has already led us to the level where quantum noise becomes an essential hin-
drance to the error-free functioning of microchips. It is only logical to start
exploiting the essential quantum-mechanical behavior of small objects in
devising computers, instead of neutralizing it.

288 IX Constructive Universe and Computation

(ii) As another motivation, one can invoke highly speculative, but intriguing,
conjectures that the “wetware” of brains in fact somehow relies upon quantum
computations.

Even without subscribing to this idea wholeheartedly until more experimen-
tal data are generated, we must be aware of the great quantitative discrepancy
between the information processing capacity of the brain and our understanding
of how it might do what it does.

For example, the IBM Deep Blue chess computer, which in 1996–1997
played at the level of the world champion Kasparov, could evaluate about
108 positions per second and search the game tree to a depth of about 10
moves/countermoves, and up to 40 in exceptional cases.

Since the characteristic time of neuronal processing is about 10−3 sec, it is
very difficult to explain how the classical brain could possibly do the job and
play chess as successfully. Existing models of neural networks cannot pass this
test by very wide margin.

A less spectacular, but no less a resource-consuming task, is speech
generation and perception, which is routinely done by billions of human brains,
but still presents a formidable challenge for modern computers using classical
algorithms.

Computational complexity of cognitive tasks has several sources: basic vari-
ables can be fields; a restricted number of small blocks can combine into expo-
nentially growing trees of alternatives; databases of incompressible information
have to be stored and searched.

Two paradigms have been developed to cope with these difficulties: logic-
like languages and combinatorial algorithms, on the one hand, and statistical
matching of observed data to an unobserved model, on the other.

In many cases, the second strategy efficiently supports acceptable perfor-
mance, but usually cannot achieve the excellence of the Deep Blue level. Both
paradigms require huge computational resources, and it is not clear how they
can be organized, unless hardware allows fast and massive parallel computing.

The idea of “quantum parallelism” (see Section 7 below) is an appealing
theoretical alternative. However, it is not at all clear that it can be made
compatible with the available experimental evidence, which depicts the central
nervous system as a distinctly classical device.

The following way out might be worth exploring. The implementation of
efficient quantum algorithms that have been studied so far can be provided by
one, or several, quantum chips (registers) controlled by a classical computer.
A very considerable part of the overall computing job, besides controlling quan-
tum chips, is also assigned to the classical computer. Analyzing a physical device
of such architecture, we would have direct access to its classical component (elec-
trical or neuronal network), whereas locating its quantum components might
constitute a considerable challenge. For example, quantum chips in the brain
might be represented by macromolecules of the type that were considered in
some theoretical models for high-temperature superconductivity.

The difficulties are seemingly increased by the fact that quantum measure-
ments produce nondeterministic outcomes. Actually, one could try to use this

2 Expanding Constructive Universe: Generalities 289

to one’s advantage, because there exist situations in which we can distinguish
the quantum randomness from the classical case by analyzing the probability
distributions and using Bell-type inequalities. With hindsight, one recognizes
in Bell’s setup the first example of the game-like situation in which quantum
players can behave demonstrably more efficiently than classical ones.

(ii) Finally, we turn to mathematics. One can argue that nowadays one
does not even need additional motivation to study quantum automata, given
the predominant mood prescribing the quantization of “everything that moves.”
Quantum groups, quantum cohomology, quantum invariants of knots, etc., come
to mind. This actually seemed to be the primary motivation before 1994 when
P. Shor devised the first significant quantum algorithm showing that prime
factorization can be done on quantum computers in polynomial-time, that is,
considerably faster than by any known classical algorithm.

Shor’s paper gave a new boost to the subject. Another beautiful result, due
to L. Grover, is that a quantum search among N objects can be done in c

√
N

steps. We briefly present these ideas in Sections 8 and 9.
Last, but not least, large-scale quantum computers do not exist as yet. The

quantum algorithms invented and studied up to now will stimulate the search
for a technological implementation that—if successful—will certainly correct
our present understanding of quantum computing and quantum complexity.

2 Expanding Constructive Universe: Generalities

In this chapter, given a category C and two of its objects X,Y , we will denote
by C(X,Y) the set of morphisms X → Y in C.

All our objects will be sets endowed with an additional structure, and
sets will lie in the initial layers of the Gödel universe L of constructible sets
(cf. IV.1).

Morphisms will be partial maps.
We choose once and for all some concrete sets, representatives of natural

numbers and Z+ in L, such as 0 = ∅, 1 = {∅}, 2 = {∅, 1}, . . . and Z+ =
{1, 2, 3, . . .}.

We will first discuss some peculiarities of categories whose morphisms are
partial maps of sets.

2.1. Category of sets and partial maps: two approaches. (a) In the first
approach, partial maps from a set X to a set Y are pairs (f,D(f)) where D(f)
is a subset of X (possibly, empty), and f : D(f) → Y is an actual map. Denote
by Par (X,Y) the set of partial maps. The composition is defined exactly as
was done for a particular case in V.2.3:

(g,D(g)) ◦ (f,D(f)) := (g ◦ f, f−1(D(g))).

One easily sees that in this way we get a category, say ParSets.

290 IX Constructive Universe and Computation

Notice that each set of morphisms Par (X,Y) is pointed, in the sense that
it has a canonical element “empty map,” say, ∅X,Y . Its composition with any
other morphism is again the respective empty map.

(b) This last remark motivates the consideration of another category: that
of pointed sets PSets. An object of PSets is a pair (X, ∗X), where ∗X ∈ X
(so that X cannot be empty). A morphism (X, ∗X) → (Y, ∗Y) is an everywhere
defined map ϕ : X → Y such that ϕ(∗X) = ∗Y . The composition is evident.

Deleting marked points, we get a functor PSets→ ParSets:

X �→ X◦ := X \ {∗X}, ϕ �→ ϕ◦ := (f,D(f)),

where for ϕ : X → Y , D(f) is defined as ϕ−1(Y ◦), and f as the restriction of
ϕ to D(f).

This functor turns out to be an equivalence of categories.
In fact, a quasi-inverse functor can be constructed by formally adding an

extra marked point ∗X to each object X in ParSets, and extending each partial
map (f,D(f)) from X to Y by sending X \D(f) to ∗Y .

This formal completion of sets and partial maps by adding “improper,”
“infinite” elements was reinvented many times, in particular, in topology (one-
point compactification) and in theoretical computer science. I am grateful to
A. Beilinson, who drew my attention to the good categorical properties of this
operation.

The basic category of sets is endowed by the symmetric monoidal structure:
Cartesian product. It is naturally extended to ParSets and to PSets. In PSets
one can put

(X, ∗X)× (Y, ∗Y) := (X◦ × Y ◦) ∪ {(∗X , ∗Y)},

so that the equivalence above becomes monoidal equivalence.
An equivalent (functorially isomorphic) definition uses “reduced product.”

Namely, (X, ∗X)× (Y, ∗Y) can be defined as X×Y with the “coordinate cross”
X × {∗Y } ∪ {∗X} × Y contracted to the base point.

There is another symmetric monoidal structure on Sets: disjoint union
∐

.
It is not canonical and requires choices: what is the disjoint union of a set

with itself? For a construction, see, e.g., F. Borceux, Handbook of Categorical
Algebra 2 (Cambridge UP, 1994), Example 6.1.9.

This structure, as soon as it is chosen, can be directly extended to ParSets
and PSets.

Below, we will use both points of view on partial maps interchangeably, as
equivalent ones.

2.2. Definition. A subcategory C of ParSets as above is called a construc-
tive universe if it contains the constructive world Z+ of all integers ≥ 1, and
also finite sets ∅, {1}, . . . , {1, . . . , n}, . . . and satisfies the following conditions
(a)–(d):

(a) C(Z+,Z+) is defined as the set of all partially recursive functions.
(b) Any infinite object of C is isomorphic in C to Z+.

2 Expanding Constructive Universe: Generalities 291

(c) If U is finite, C(U, V) consists of all partial maps U → V. If V is finite,
C(U, V) consists of f such that D(f) and inverse images of all elements of
V are enumerable.

(d) C inherits from ParSets two compatible symmetric monoidal structures:
Cartesian product × and disjoint sum

∐
.

2.3. Comments. (i) The statement (b) is a version of the Church thesis.
In V.2.4 we stated Church’s thesis in the context of functions from (Z+)m to
(Z+)n.

Here we make it simultaneously broader and vaguer. Imagine that we want
to speak about algorithmic processing of variable finite objects of a given type
U into similar objects of possibly different type V . U and V might be words,
graphs, groups, finite and finitely describable Bourbaki structures, We pos-
tulate that one always can translate such a processing into the calculation of
values of a recursive function. The main step in the reduction is the choice of
two “computable numberings,” those of U and V .

Formally, such an numbering is an isomorphism Z+ → U in C. Two such
different numberings of the same constructive world can differ only by a recur-
sive permutation of numbers, that is, by an automorphism of Z+ in C. We will
call such numberings equivalent ones.

In practice, a numbering of a set-theoretically defined constructive world
U , embedding it into C, is chosen in such a way that some “natural” construc-
tions on constructive objects of the type U given a priori become obviously
computable.

For example, we can renumber U in an eminently theoretically important
and sophisticated way, ordering U by the growing Kolmogorov complexity of
its constructive objects. But then the simplest operations would become non-
computable. Generally, such a Kolmogorov numbering will not be an isomor-
phism in C: cf. further discussion in Section 10.

Returning to (b), we see that each infinite constructive world, that is, an
object of C, is endowed with a well-defined class of enumerable subsets. This
fact is used in the statement (c). The axiom (c) is justified by the fact that
partial recursive functions on Z+ taking only a finite number of values are
characterized by the stated properties.

Similarly, decidable subsets are well defined.

(ii) Notice that because of (c), two finite constructive worlds are isomorphic
iff they have the same cardinality, and the automorphism group of any finite U
consists of all permutations of U.Therefore, the whole category C is equivalent to
its full subcategory, whose objects are Z+ and finite sets, one of each cardinality.

However, this subcategory is too small to accommodate even our standard
definition of partial recursive functions in V.2: we have to extend it by Cartesian
products. For many constructions, it is also convenient to have disjoint sums.
This is the reason we completed the definition by the requirement (d). It implies
that canonical projections of Cartesian products and structure embeddings into
disjoint sums are computable.

292 IX Constructive Universe and Computation

(iii) In view of the previous remark, any two constructive universes are
equivalent (even as monoidal categories). Nevertheless, as a matter of principle,
we always consider C as an open category, and at any moment allow ourselves
to add to it new constructive worlds. If some infinite V is added to C, it must
come together with a class of equivalent numberings.

In this way, we may declare the world of a decidable subset of any object of
C to be an object of C.

Here is another example. The world U∗ of finite sequences of elements of a
constructive world U (“words in the alphabet U”) is endowed with a canonical
class of numberings. Hence we may assume that C is closed with respect to
the construction U �→ U∗. All natural functions, such as length of the word
U∗ → Z+, or the ith letter of the word U∗ → U , are computable. Moreover, if
f : U → V is a morphism in C, then the partial function f∗ sending (u1, . . . , un)
to (f(u1), . . . , f(un)), whenever all f(ui) are defined, is a morphism U∗ → V ∗,
and (g◦f)∗ = g∗◦f∗. Hence U �→ U∗ extends to a covariant endofunctor C → C.

(iv) Some (or even “all”?) infinite constructive worlds U come together
with a natural class of bijective numberings u : Z+ → U such that any two
numberings u, v in this class have one of the following properties:

u−1 ◦ v is a primitive recursive permutation;
or even
u−1 ◦ v is a polynomial-time computable permutation (cf. 6.5 below).
If a version of C includes only objects satisfying the first (resp. the sec-

ond) condition, one can define a subcategory Cprim (resp. Cpol) having the
same objects, but only primitive recursive (resp. polynomial-time computable)
morphisms.

The assumption that “all” constructive worlds do in fact satisfy one of the
two requirements could be called the “primitive recursive,” resp. “polynomial-
time” Church’s thesis.

2.4. A natural numbers object. We could have replaced Z+ in the above
discussions by an abstract natural numbers object in an unspecified category
B. Its definition conforms to a general spirit of categorical reasoning: sets of
morphisms rather than objects should be bearers of additional structures.

More precisely, assume that B admits a terminal object 1. A triple (N , z, s)
in B, consisting of an object N and two morphisms

z : 1→ N , s : N → N ,

is called a natural numbers object if for any other pair of morphisms in B of the
form

f : 1→ X, g : X → X

there exists a unique morphism h : N → X such that

h ◦ z = f, h ◦ s = g ◦ h,

that is, the diagram is commutative. Of course, the leftmost arrow can only
be id1.

3 Expanding Constructive Universe: Morphisms 293

N N

X
f

z s

g

hh

X1

1

This is the simplest form of categorical recursion: values of the morphism h
on the categorical points s◦n◦z ∈ B(1, N) are given by g◦n◦f ∈ B(1, X). Thus,
f is the initial condition (value at n = 0), and g corresponds to one iterative
step applied to the previous value.

Clearly, Z+ together with

z : 1 �→ 1 ∈ Z+, s : n �→ n+ 1

is a natural numbers object in the category of sets.
We will return to this philosophy, discussing normal models of computation

in 6.1 below.
In Sections 3–5, we however, we stick to the more down-to-earth approach,

sketched at the beginning of this section.

3 Expanding Constructive Universe: Morphisms

3.1. Programming methods. We now turn to the computability properties
of the sets of morphisms C(U, V). Again, it is a matter of principle that C(U, V)
itself, and even Cprim, is not a constructive world if U is infinite.

Indeed, otherwise we would have an intuitively computable bijective num-
bering of all partial recursive (resp. primitive recursive) functions Z+ → Z+.
Using numbers of such functions as their descriptions, we could algorithmically
distinguish them. But the latter problem is not algorithmically solvable.

In order to compensate this by a sample of positive statements, let us
consider the following situation.

Any diagram in C
evP : P × U → V

(evaluation morphism) defines a partial map P → C(U, V), p �→ p, where
p(u) := evP (p, u).

3.2. Definition.

(a) We will say that a constructive world P = P (U, V) together with the evalu-
ation map evP as above is a programming method. Elements of P are called
programs.

(b) A programming method (Q = Q(U, V), evQ) is called versal (resp. primitive
versal) if two conditions are satisfied.

294 IX Constructive Universe and Computation

First, the map Q → C(U, V) : q �→ q is surjective (resp. its image consists
of all primitive recursive morphisms).

Second, for any programming method (P = P (U, V), evP) with the same
source U and target V (resp. for any (P, evP) producing only primitive recursive
morphisms) there is at least one compilation morphism in C

comp : P (U, V) → Q(U, V),

that is, an everywhere defined, computable map P → Q such that if comp(p) =
q, then p = q.

3.3. Claim. Versal programming methods exist.

Proof. For brevity, we will consider only the case of infinite U , V . Then P is
infinite as well. Since any infinite object is isomorphic to Z+, we will identify
U, V with Z+, but for convenience we will keep the notation P for the world
of programs. Thus we may restrict ourselves to considering only evaluation
morphisms ev : P × Z+ → Z+.

Such a morphism computes all recursive functions Z+ → Z+ iff it is a versal
family in the sense of V.5.7.

Now consider another versal family, that of recursive functions of two vari-
ables P × Z+ → Z+. Let P

′
be its base:

Ev : P
′
× P × Z+ → Z+.

We now affirm that the programming method (Q := P
′ × P, Ev) is versal.

In fact, versality of Ev implies that for any ev : P × U → V , there exists
p

′ ∈ P ′
such that Ev (p

′
, p, u) = ev (p, u) for all (p, u) ∈ P ×Z+. Therefore, the

map
comp : P → Q : p �→ (p

′
, p)

is a compilation morphism for (P, ev).

Remark. We can now make precise the statement made at the beginning of 3.1.
Namely, it means that for any programming method P (U, V), the canonical
map P (U, V) → C(U, V) cannot be bijective if U is infinite. In fact, if it is
surjective, then it is essentially the same as a versal family; but the equivalence
relation on the base of a versal family induced by p �→ p is not decidable
(or even recursively enumerable).

3.4. Composition of morphisms at the level of programming methods.
Let U1, U2, U3 be three objects of C, and (Qij , evij) three versal programming
methods, for C(Ui, Uj), ij = 12, 13, 23 respectively.

Then (Q23 × Q12, ev23 ◦ (idQ23 × ev12)) is a programming method for
C(U1, U3). It calculates the composition of morphisms U1 → U2 → U3.

Since Q13 is versal for morphisms U1 → U3, there exists a compilation
morphism

comp : Q23 ×Q12 → Q13

that reproduces composition of morphisms on the level of programs.

3 Expanding Constructive Universe: Morphisms 295

Notice that even if we restrict ourselves to the full subcategory with one
object U1 = U2 = U3 = Z+ and fix a choice of Q and comp, the composition of
morphisms on the level of programs generally will not be associative. Moreover,
a program calculating identical morphisms generally will not be the identity for
program composition.

This motivates the following definition.

3.5. Definition. A category of algorithms over a constructive universe C is a
pair consisting of a category A and a functor J : A → C with the following
properties:

(a) A is enriched over C.

This means in particular that morphism sets in A are objects of C, and the
composition maps A(U, V) × A(V,W) → A(U,W), as well as identities, are
morphisms in C fitting into standard commutative diagrams.

(b) J identifies ObA with a subset of Ob C. We will make no distinction
between U and J(U).

(c) For any objects U, V of A, A(U, V) is a programming method. In par-
ticular, it comes together with the evalution morphism in C

evU,V : A(U, V)× U → V.

This morphism must satisfy the following condition: for all f ∈ A(U, V)
and u ∈ U ,

J(f)(u) = evU,V (f, u).

3.6. Comments. (i) The notion of a category of algorithms formalized in
the previous definition was introduced (in a somewhat less explicit form) by
N. Yanofsky in math.LO/0602053. The same paper contains a construction of
such a category in which J defines surjections J : A(U, V) → Cprim(U, V).

(ii) Since A is enriched over C, we actually work here in a 2-categorical
context: morphisms in A, being objects of C, are connected by 2-morphisms. In
particular, the associativity of composition is not a literal family of identities
h ◦ (f ◦ g) = (h ◦ f) ◦ g but rather a family of canonical isomorphisms

ah,f,g : h ◦ (f ◦ g) → (h ◦ f) ◦ g

interconnected by the standard coherence conditions.
A similar remark applies to left and right identities.

(iii) Given a category A as above, we will call programs p ∈ A(U, V) algo-
rithms. In fact, N. Yanofsky reserves this name for a category satisfying stronger
coherence properties, which is in a certain sense canonical. A part of his con-
structions will be described in Section 5.

296 IX Constructive Universe and Computation

4 Operads and PROPs

In this section, we will consider a somewhat reduced version C0 of the construc-
tive universe with two monoidal structures (C,×,

∐
) defined in 3.2. First, we

will exclude all finite objects of cardinality ≥ 2.

4.1. Definition. (C0,×) is a full monoidal subcategory of (C,×) such that each
object of C0 is either infinite or has cardinality 1.

4.2. Reduction. From Definition 3.2 it follows that C0 is equivalent to its
full subcategory consisting of Cartesian powers (Z+)m, m ≥ 0, and partial
recursive functions. Moreover, (Z+)m × (Z+)n can be canonically identified
with (Z+)m+n, so that the category will become strict. The zeroth Cartesian
power is a one-point set {∗}, the unit for the monoidal structure.

The family of morphisms C((Z+)m, (Z+)m), and in fact similar families of
morphisms in any symmetric or enriched symmetric monoidal category, are nat-
urally endowed with structures, known under the names collections and PROPs.

4.3. Definition. (a) A collection P in a category B is a family of objects
P(m,n), m, n ≥ 0 in B, together with group homomorphisms

Sm × Sopn → AutB P(m,n).

We interpret such a homomorphism as a pair consisting of a left action of
the symmetric group Sm and a right action of Sn on P(m,n) that commutes
with it.

(b) A morphism of collections f : P → Q is a family of morphisms fm,n :
P(m,n)→ Q(m,n) commuting with the action of symmetric groups.

4.4. Endomorphism collections. Let (E ,×) be a symmetric monoidal cate-
gory with unit object e. For U ∈ Ob E , put

Coll End (U)(m,n) := E(Un, Um).

The action of Sm (resp. Sopn) is induced by permutations of factors in the
Cartesian powers Um (resp. Un). The zeroth power is interpreted as e.

Whenever E is an enriched category, one must first make sense of permu-
tation groups acting on objects in the category of morphisms. This does not
present any additional difficulties.

A PROP is a collection, endowed with additional composition laws mutually
compatible with the actions of the symmetric groups.

4.5. Vertical and horizontal products in endomorphism collections.
Endomorphism collections are naturally endowed with two additional struc-
tures:

(a) Vertical products

E(Um, Un)× E(Un, U l) → E(Um, U l) : (f, g) �→ g ◦ f.

4 Operads and PROPs 297

(b) Horizontal products

E(Um1 , Un1)× · · · × E(Ums , Uns) → E(Um1+···+ms , Un1+···+ns) .

The latter are induced by the monoidal structure in E :

(f1, . . . , fs) �→ f1 × · · · × fs .

If E is enriched, the category of morphisms must be strict monoidal, and its
monoidal structure must be compatible with that of E in the standard way, so
that the horizontal products still make sense.

In a constructive universe, a vertical product is the composition/substitution
of partial maps.

These structures in endomorphism collections satisfy a number of cumber-
some but straightforward universal conditions, which we only list here:

(i) Associativity of vertical products; units for them in E(m,m).
(ii) Compatibility of vertical products with actions of symmetry groups.
(iii) Associativity of horizontal products.
(iv) Compatibility of horizontal and vertical products.
(v) Compatibility of horizontal products with actions of symmetric groups.

Assuming that these conditions have been written formally, we can now give a
general definition:

4.6. (Tentative) definition.

(a) A PROP in a category B is a collection in B, endowed with horizontal and
vertical compositions as in 5.3, enjoying the universal properties 4.5 (i)–(v).

(b) An operad in a category B is a collection whose only nontrivial terms are
P(1, n), endowed with a right action of Sn and vertical products that satisfy
4.5 (i),(ii).

The collection Coll End (U) as above is denoted by PropEnd (U) when it
is endowed with its natural structures

Any PROP produces a collection if compositions are forgotten; this functor
under quite general conditions can be proved to have a left adjoint functor: free
PROP generated by a collection. This gives a rise to the notion of subcollection
of generators of a PROP similar to, say, generators of a monoid.

We are most interested in PropEndC(Z+) as an algebraic approximation
to the constructive universe C. We might also try to restrict ourselves to its
primitive recursive version. However, it turns out that the preceding framework,
even we if take the trouble to formalize it by supplying all commutative diagrams
implicit in Definition 4.6, is too narrow for our goals.

4.7. Example: the collection of basic recursive functions. Working now in
C, we can define the collection of basic recursive functionsR ⊂ PropEndC (Z+),
using the notation of V.2.2 . The respective terms of the collection are

R(1, 0) := {1(0)},
R(1, 1) := {suc, 1(1), id(1)},

298 IX Constructive Universe and Computation

R(1, n) := {1(n), prni } for n ≥ 2.

The remaining components of R will be empty.
The action of the symmetric groups is induced by that in PropEndC (Z+).

In fact, it is not identical only on R(1, n): the prni are permuted as the i’s are,
i ∈ {1, . . . , n}.

We would like to have an algebraic structure reflecting our knowledge that
basic functions “generate” all primitive/partial recursive functions. But to do
this, we lack some necessary operators iteratively acting on basic functions. In
fact, composition V.2.3 (a) is accommodated in the general definition of PROP,
and juxtaposition can be dealt with if we add the diagonal ∆ : Z+ → Z+×Z+,
but the recursion and µ-operator are very specific for C, and we lack general
means to deal with them.

In the next section, we will introduce the constructive world of graphs,
and its extensions, worlds of decorated graphs. We will turn these worlds into
categories, and will explain how they provide very convenient linguistic tools for
speaking about PROPs and similar structures, in particular, about the PROP
of recursive functions.

Later we will see that similar constructions naturally arise in the computa-
tion theory as well.

The relevant graphs will be (geometric versions of) Boolean circuits, finite
automata for processing binary input data.

5 The World of Graphs as a Topological Language

5.1. Introduction. Generally, each constructive world comes with its own sup-
ply of “natural operations.” Although any two constructive worlds of the same
cardinality are connected by a computable isomorphism, this does not mean
that, say, a natural numbering of formulas in a language of arithmetic pro-
vides convenient tools for their syntactic analysis or for thinking about their
interpretations in a model.

In particular, when we replace nonconstructive sets of morphisms, say
C(Um, Un), by a constructive world of respective programming methods, we
have to deal with two different sets of natural operations in this constructive
world:

(a) Evaluations (see 3.1), where a programming method being fixed, the main
operation consists in calculating values of, say, a partial recursive function.

(b) Operations, producing new programming methods from old ones, such as
composition, compilation, recursion.

In principle, the latter are not qualitatively different from evaluations, since
we can think about programming methods whose inputs and outputs are pro-
gramming methods as well.

What is needed for efficient constructivization of programming methods is
a good encoding scheme, simultaneously intuitive and accommodating natural
operations.

5 The World of Graphs as a Topological Language 299

We already mentioned two mental worlds in which various encoding schemes
can crystallize:

(i) World of expressions in a language (to which we appealed in previous
chapters).

(ii) World based on scientific/engineering imagery, such as Turing’s
machines, or Boolean circuits (cf. below).

In this section, we will describe the third, topological one:

(iii) World of (decorated) graphs: geometric images of information flows and
hubs where the flows merge, get processed, and diverge again to flow fur-
ther.

Moreover, we will formalize and endow this world by the structure of a
constructive category.

Looking at graphs as a replacement of formulas in a language, we define
models/interpretations as functors on various categories of decorated graphs.

5.2. Graphs. One usually imagines a graph as a picture, or better, a topolog-
ical space, consisting of several points (vertices) pairwise connected by several
(curvi)linear segments (edges).

We will consider each edge as consisting of two “halves” (flags), issuing from
their respective vertices and joined at the edge’s midpoint. Moreover, we will
allow certain flags not to be paired into edges; they will be called tails.

A combinatorial graph is a collection of two abstract sets and two incidence
relations. Here is a formal definition.

5.3. Definition. A combinatorial graph, or simply graph, τ is a quadruple
(Fτ , Vτ , ∂τ , jτ), where Fτ , Vτ are finite sets (elements of a constructive world),
and (∂τ , jτ) are maps. Elements of Fτ are called flags of τ , elements of Vτ are
called vertices of τ ; vertices and flags are disjoint. The map ∂τ : Fτ → Vτ
associates to each flag a vertex, its boundary. The map jτ : Fτ → Fτ is an
involution: j2τ = id.

(a) Marginal cases. If Vτ is empty, Fτ must be empty as well. This defines an
empty graph. In contrast, Fτ might be empty whereas Vτ is not.

(b) Corollas, tails, edges. One-vertex graphs with identical jτ are called corol-
las. Let v be a vertex of τ , Fτ (v) := ∂−1

τ (v). Then τv := (Fτ (v), {v},
evident ∂, identical j) is a corolla, which is called by the corolla of v in τ .

Flags fixed by jτ form the set of tails of τ denoted by Tτ .
Two-element orbits of jτ form the set Eτ of edges of τ . Elements of such an

orbit are called halves of the respective edge.

5.4. Geometric realization of a graph. First, let τ be a corolla. If its set of
flags is empty, its geometric realization |τ | is, by definition, a point. Otherwise
construct a disjoint union of segments [0, 1/2] bijectively indexed by flags, and
identify in it all points 0. This is |τ |. The image of all 0’s thus becomes the
geometric realization of the unique vertex of τ .

300 IX Constructive Universe and Computation

∂τ (f") = ∂τ (jτ (f"))

f' = jτ (f')
jτ (f)f

Generally, to construct |τ | take a disjoint union of geometric realizations of
corollas of all vertices and identify points 1/2 of any two flags forming an orbit
of jτ , that is, an edge.

A graph τ is called connected (resp. simply connected, resp. tree etc) iff its
geometric realization is such. In the same vein, we can speak about connected
components of a graph, etc. Vertices v with empty Fτ (v) are considered con-
nected components.

5.5. Decorations. We will not try to aximatize a general notion of decoration,
and only list some classes of them most useful for describing flowcharts.

(a) Orientations. Any map Fσ → {in, out} such that halves of any edge are
oriented by different labels is called an orientation of σ. On the geometric
realization, a flag marked by in (resp. out) is oriented toward (resp. away
from) its vertex.

Tails of σ oriented in (resp. out) are called (global) inputs (resp. (global)
outputs) of σ. Similarly, Fσ(v) is partitioned into inputs and outputs of the
vertex v.

Consider an orientation of σ. Its edge is called an oriented loop if both its
halves belong to the same vertex. Otherwise, an oriented edge starts at a source
vertex and ends at a different target vertex.

More generally, a sequence of distinct edges e1, . . . , en, is called a simple
path of length n if ei and ei+1 have a common vertex and the n − 1 vertices
obtained in this way are distinct. If, moreover, e1 and en also have a common
vertex distinct from the mentioned ones, this path is a wheel of length n. A loop
is a wheel of length one. Edges in a wheel are endowed only with a cyclic order
up to inversion.

Clearly, all edges in a path (resp. a wheel) can be oriented so that the source
of ei+1 is the target of ei.

If the graph is already oriented, the induced orientation on any path (resp.
wheel) either has this property or does not. Respectively, the path is called
oriented or not.

(b) Directed graphs. An oriented graph σ is called directed if it satisfies the
following condition:

On each connected component of the geometric realization, one can define a
continuous real-valued function (“height”) in such a way that moving in the
direction of orientation along each flag decreases the value of this function.
In particular, a directed graph has no oriented wheels.

5 The World of Graphs as a Topological Language 301

Notice that, somewhat counterintuitively, a directed graph is not necessarily
oriented “from its inputs to its outputs” as is usually shown on illustrating
pictures. In effect, take a corolla with only in flags and another corolla with only
out flags, and graft one input to one output. The resulting graph is directed
(check this) although its only edge is oriented from global outputs to global
inputs.

This is one reason why it is sometimes sensible to consider only those
directed graphs that have at least one input and atleast one output at each
vertex.

(c) Labeling of vertices. A labeling of vertices by a set S is a map Vτ → S. As
above, S may consist, e.g., of names of basic functions.

(d) Coloring of flags. A coloring of flags by a set I is a map Fτ → I. In the
context of flowcharts, we can imagine, for example, that we start with a
family of objects {Ui | i ∈ I}, and want to describe morphisms between
products of such objects. Then the color i of an input/output will specify
that this input/output must be taken from Ui. In this case halves of an edge
must have the same color.

Even if we have only one object in this family, we may want to totally order
the sets of inputs/outputs of each vertex. This is what is needed to present the
vertex as encoding a map Um → Un rather than a map U{inputs} → U{outputs},
and make a direct connection with the world of descriptions, using traditional
notation for functions, such as (f1(u1, . . . , um), . . . , fn(u1, . . . , um)). Such a total
ordering of, say, inputs is equivalent to their coloring by {1, . . . ,m}. This is
the case when an ordering is not intrinsically needed, but used only in the
comparison of flowcharts with descriptions.

We will now explain that after introducing morphisms of graphs, we will
be able to efficiently use them to encode operations and identities between
operations.

5.6. Isomorphisms of graphs. The notion of isomorphism is (almost) straight-
forward: an isomorphism h : τ → σ consists of two bijections

hV : Vτ → Vσ, hF : Fσ → Fτ

commuting with boundary and involution maps. Composition is composition of
maps.

Notice, however, one peculiarity: hV is covariant, whereas hF is contravari-
ant. This choice can be explained using the intuition behind flowcharts: a change
of arguments produces the lift of functions in the reverse direction.

5.7. Groupoid of corollas Cor. Consider first the category (groupoid) of
oriented corollas with isomorphisms preserving orientation.

It is equivalent to the groupoid whose objects are ordered pairs of sets
{{1, . . . ,m}, {1, . . . , n}} and morphisms are permutations acting on two sets
separately.

302 IX Constructive Universe and Computation

5.8. Claim. A collection P in a category B (cf. Definition 4.3) is “the same as”
a B-valued functor P on the groupoid of oriented corollas.

In fact, P(n,m) can be identified with the value of P on a corolla with
inputs {1, . . . ,m} and outputs {1, . . . , n}. The action of Sm×Sopm is determined
by values of P on the automorphisms of this corolla.

5.9. Disjoint sums of corollas and mergers. A graph τ = (Fτ , Vτ , ∂τ , jτ)
is called a disjoint sum of corollas if its set of edges is empty. Equivalently, all
flags are tails.

Let τ, σ be disjoint sums of corollas. Define a merger morphism τ → σ as a
pair of maps, compatible with boundaries,

hV : Vτ → Vσ, hF : Fσ → Fτ

such that hV is a surjection and hF is a bijection. Composition of mergers is
obviously a merger. If σ is a corolla, h is called a total merger.

We will assume that a monoidal structure disjoint union
∐

on C is chosen
and fixed; it can be naturally extended to graphs and then restricted to the
category of disjoint sums of corollas.

Denote by DCor the category of disjoint sums of corollas with compositions
of mergers and automorphisms as morphisms.

5.10. Claim. A collection P in a symmetric monoidal category (B,×), endowed
with horizontal products 5.3.(b) satisfying the associativity conditions 5.3(iii)
and compatibility with action of symmetric groups 5.3(v), is “the same as” a
symmetric monoidal functor

P : (DCor,
∐

) → (B,×).

In fact, horizontal products as given in 4.5 are simply values of P on obvious
total mergers.

A stylistic remark: the quotation marks around the expression “the same
as” are supposed to alert the reader to the fact that Claim 5.10 must in fact be
understood as the first definition of a collection with horizontal compositions.
Having avoided a precise statement of the compatibility conditions 4.5 (iii) and
4.5 (v), we now simply hide them in the standard definition of a (symmetric
monoidal) functor and implicit combinatorics of mergers and isomorphisms.

We still do not have enough morphisms to give a definition of PROPs as
functors. We will now supply them, by introducing contraction morphisms.

5.11. Definition. (a) A contraction morphism h : τ → σ is a pair of maps

hV : Vτ → Vσ, hF : Fσ → Fτ

such that hF is an injection bijective on tails, hV is a surjection, and any two
vertices in a fiber h−1

V (v) can be connected by a path consisting of edges whose
halves lie in Fσ \ hF (Fτ).
(b) If σ, τ are oriented, hF must be compatible with orientation.

5 The World of Graphs as a Topological Language 303

5.12. Application to PROPs. In geometric realizations, a contraction
morphism induces a map that boils down to the geometric contraction of a
subgraph of τ consisting of edges in Fσ \ hF (Fτ).

Let us show how combined grafting and contraction of flowcharts allows us
to interpret functorially the composition of morphisms in PropEnd (U), that
is, vertical products in 4.5 (a).

Namely, first we interpret E(Um, Un) as the value of a functor P : DCor →
Sets on sums of oriented corollas endowed with automorphisms and mergers.
Now extend the category DCor to include morphisms that can be obtained as
graftings followed by contractions (and, of course, products of such morphisms).
Our functor P has a natural extension to this larger category. In particular, if
we take the union of two oriented corollas, graft bijectively outputs of the first
one to inputs of the second one, and then contract all edges obtained in this
way, we will get a morphism in the extended DCor, and the value of P on it
will be the composition map 4.5 (a).

We will now present another category of decorated graphs that can be used
to generate descriptions of (primitive) recursive functions. This is a modified
version of a part of Yanofsky’s preprint math. CT/0609748.

5.13. The constructive world of decorated graphs Prim. Elements of Prim
are disjoint unions of trees τ in which each vertex is the boundary of at least
two flags. Moreover, τ must be endowed with an admissible decoration. The
latter consists of the following data. They can be chosen independently on each
connected component so that in the following discussion we speak about trees
if we have not explicitly mentioned the general case.

(a) A marked tail, which is called the root, or the (global) output of τ . Its
vertex is called the root vertex. The remaining tails are called (global) inputs of τ .
Global inputs form a set F inτ ⊂ Fτ , and we consider the global output as an
one-element subset F outτ ⊂ Fτ .

A choice of root determines (and is equivalent to) the choice of a specific
orientation: a map Fτ → {in, out}. Namely, in each shortest path (sequence
of flags) from a global input to the root, assign out to the flag that leaves its
vertex, and in to the flag that enters it. This defines the partition of all flags
into two subsets: (local) inputs and outputs.

We will say that τ with such a decoration is an oriented tree. We repeat
that by definition, each oriented tree must have exactly one global output and
at least one global input.

(b) All corollas of an oriented tree are also oriented trees. The next part of
a decoration is a choice of total order on the set of inputs of each corolla of τ ,
and, if τ is not connected, a choice of total order on the set of its connected
components.

(c) A map arity/coarity: Fτ → N : f �→ (a(f), c(f)). If two flags are halves
of an edge, they must be assigned the same arity/coarity.

304 IX Constructive Universe and Computation

(d) A map op : Vτ → {c,b, r}. The value op (v) assigned to a vertex is called
the respective operator: c,b, r stand respectively for composition, bracketing,
recursion.

(e) A map in : F inτ → {basic recursive functions} such that for each
i ∈ F inτ , in(i) is a basic function of arity a(i) and coarity c(i).

All these data must be compatible. A part of the compatibility conditions
was already included in the description. We will now formally introduce the
remaining set, and simultaneously explain an interpretation of graphs in Prim
(without decoration 5.11 (e)) as operations acting on families of input functions.

5.14. Objects of Prim as flowcharts. Given an oriented tree τ with a deco-
ration as above, we interpret the whole of τ as a symbol of an operation Op(τ)
that can be performed over families of functions, indexed by global inputs of τ .

More precisely, let f = {fi | i ∈ F inτ } be a family of functions (or even partial
functions) such that fi : (Z+)a(i) → (Z+)c(i). Then

Op (τ)(f) = g : (Z+)a → (Z+)c,

where (a, c) is the arity/coarity of the root.
The prescription for getting g, given f , runs as follows.
One-vertex case. Let τ be a corolla whose vertex is decorated by c,b,

or r. Then g is obtained by applying to the family {fi}, i ∈ F inτ , the respective
elementary operation: composition, bracketing, or recursion. This requires the
following compatibilities, which vary depending on the label of the vertex.

(a) Composition. Let (a1, c1), . . . , (ar, cr) be the family of arities/coarities
of inputs ordered as the respective flags. They must then be constrained by the
condition c1 = a2, . . . , cr−1 = ar, and the arity/coarity of the output must be
(a1, cr).

For a general τ , these compatibility conditions must be satisfied for all
corollas τv of all vertices decorated by c.

In the flowchart interpretation, such a corolla transforms an input family
(f1, . . . , fr), fi : (Z+)ai → (Z+)ci , into the composition fr ◦ fr−1 ◦ · · · f1.

Notice an essential difference in treating compositions in the context of
PROPs, resp. Prim: for PROPs, we graft and contract, whereas for Prim,
we endow a vertex with the task of composing.

This is because the corollas for PROPs are flowcharts accepting arguments
from, say, (Z+)m and producing a vector in (Z+)n, whereas decorated trees in
Prim accept and produce arguments that are themselves vectors of functions,
and we want to compose these functions rather than programs producing them.

(b) Bracket. With the same notation as in (a), the compatibility condition
reads a• := a1 = · · · = ar, and the arity/coarity of the output must be (a•, c1 +
· · ·+ cr).

For a general τ , these compatibility conditions must be satisfied for all
corollas τv of all vertices decorated by b and respective orderings.

5 The World of Graphs as a Topological Language 305

In the flowchart interpretation, such a corolla transforms an input family
(f1, . . . , fr), fi : (Z+)a• → (Z+)ci , into the map

〈f1, . . . , fr〉 : (Z+)a• → (Z+)c1+···+cr .

It was called juxtaposition in V.2.3 (b).

(c) Recursion. If a vertex is decorated by r, it must have exactly two local
inputs. If the arity/coarity of the first one (in their structure order) is (a, c),
for the second one it must be (a + c, c), and for the local output it must be
(a+ 1, c). This is our compatibility condition.

In the flowchart interpretation, such a vertex takes as input two arbitrary
maps f1 : (Z+)a → (Z+)c, f2 : (Z+)a+c → (Z+)c and produces the output

g : (Z+)a+1 → (Z+)c

defined recursively as

g(x, 1) := f1(x),
g(x, k + 1) := f2(x, f1(x, k))

for each x ∈ (Z+)a, k ∈ Z+.
This form of recursion is more restrictive than the one that is often used:

it does not allow f2 to depend explicitly on the recursion parameter k. How-
ever, R. M. Robinson proved in 1947 that it suffices to use it in order to get
all primitive recursive functions if an extension of the list of basic functions is
allowed. Afterward, M. D. Gladstone showed that such an extension is unnec-
essary (Jour. Symb. Logic, 32:4 (1967), 505–508). I am grateful to N. Yanofsky
for these references.

General case. First consider a connected graph τ . Assume that it has ≥ 2
vertices. We define the operation Op (τ) by induction on the number of vertices.

Namely, for a vertex v that is the boundary of a global input, consider the
subfamily fv := {fi | ∂τ (i) = v}. Denoting by τv the corolla of v (an in-corolla),
calculate gv := Op (τv)(fv) as specified above.

One can check that this prescription produces the result independent of
arbitrary choices.

Now consider the maximal decorated subtree τ0 of τ whose flags and
vertices do not belong to this in-corolla. Its global inputs consist of all global
inputs of τ not adjacent to v, and jτ (r), where r is the root of our corolla.
Decoration of τ0 is the restriction of that of τ ; global inputs of τ retain also
their input functions fi. Decorate the input jτ (r) by gv and put

Op (τ)({fi}) := Op (τ0)({fi, gv | ∂(i) �= v}).

The right-hand side is defined due to the inductive assumption.
Finally, if τ is the disjoint union of connected components

∐
a∈A τa, we put

Op (
∐
a∈A

τa) := ×a∈AOp (τa)

306 IX Constructive Universe and Computation

in the sense that Op (τ) acts on the family, naturally indexed by A, of (families
of) global inputs of connected components, and produces the family of outputs,
as well indexed naturally by A.

As we implied in the previous discussion, we can apply Op (τ) to families
consisting not necessarily of basic, or even recursive, functions.

But if we want to define programming methods based upon Prim, then we
must decorate global inputs by some basic functions, and interpret the resulting
decorated tree as as a program producing one concrete recursive function.

Here the choice becomes ambiguous: we may change the list of basic func-
tions, and we may allow the application of c,b, r to some restricted class of
subfamilies, getting the more general cases from trees larger than corollas.

For c and b, we allowed arbitrary natural families, implicitly using associa-
tivity of intended interpretations. Yanofsky allows only two inputs. For r, we
essentially adhered in 5.12 (c) to the choice made by Yanofsky.

5.15. Prim as a world of programming methods. We now define
Prim (m,n) as the subset of Prim consisting of graphs whose outputs (roots
of connected components) have the total arity/coarity (m,n).

The evaluation morphism in C

evP (m,n) : P (m,n)× (Z+)m → (Z+)n

we have already essentially described. Namely,

evP (m,n)(τ, (x1, . . . , xm)) := fτ (x1, . . . , xm),

where fτ is the total output of the flowchart τ , which we formerly denoted by
Op (τ), applied to the input decorations of τ .

A computable multiple composition morphism (cf. 3.4 above)

comp : P (mr−1,mr)× · · · × P (m2,m3)× P (m1,m2) → P (m1,mr)

can be constructed as follows. For simplicity, we will describe only the composite
comp (τr , τr−1, . . . , τ1) for an r-tuple of decorated trees τ1, τ2, . . . , τr.

Consider a corolla with vertex decorated by c, r inputs decorated by the
arities (m1,m2), . . . , (mr−1,mr), and an output decorated by (m1,mr). Graft
inputs of this corolla to the roots of τ1, . . . , τr respectively. The resulting tree
represents the composition.

Of course, on the combinatorial level, we will have to make a stupid choice
of some “concrete” vertex and flags of this corolla, but the result will be unique
up to unique isomorphism identical on the component trees τi.

However, if we iterate partial compositions that on the level of maps corre-
spond, say, to h ◦ g ◦ f , (h ◦ g) ◦ f , and h ◦ (g ◦ f) respectively, we will get three
different decorated trees, say σ123, σ12,3, σ1,23.

On the combinatorial/geometric level these trees are interconnected by two
contraction morphisms (cf. 5.11) σ12,3 → σ123 and σ1,23 → σ123 that contract
the edges entering the root vertices, whose ends are marked by c. One can
simply declare that such contractions generate an equivalence relation on the

6 Models of Computation and Complexity 307

elements of Prim, and that algorithms encoded by Prim are actually such
(or even bigger) equivalence classes rather than isomorphism classes of the dec-
orated trees.

However, since we work in a categorical context, and strive to produce a
category of algorithms in the sense of Definition 3.5, a better way to act is to
organize Prim into a constructive category, and then to localize it with respect
to those morphisms τ → σ that produce a natural identification Op (τ) and
Op (σ).

Recall that the localization of a category B with respect to a set of its mor-
phisms S is a functor L : B → B[S−1] that makes all morphisms in S invertible
and that is the initial object among all functors with this property.

Here is a simple version of this construction.

5.16. Definition–Claim. Consider the category Pr whose set of objects is the
set Prim, and morphisms are compositions of the following maps of decorated
graphs:

(i) Isomorphisms.
(ii) Contractions of subtrees of the following type: all vertices of such a subtree

are decorated by c. After the contraction, the resulting vertex must be
marked by c. The remaining decorations do not change.

(iii) Contractions of subtrees, all of whose all vertices are decorated by b. After
the contraction, the resulting vertex must be marked by b. The remaining
decorations do not change.

Denote by P the localization of Pr with respect to all morphisms. It has the
natural structure of a category of programming methods for which composition
and bracket operations become associative.

One can similarly accommodate more sophisticated equivalence relations
between decorated trees, studied by Yanofsky.

To this end one can extend the category Pr by some extra morphisms, and
then localize with respect to them as well.

6 Models of Computation and Complexity

In this section we are gradually zooming, passing from the macroscopic view
of the constructive universe to “human scale” to microscopic (Boolean and
Turing’s) level.

6.1. Normal models. Let U be an infinite set. In this subsection we will be
considering partial functions U → U that can be constructed by iteration. In
other contexts, they might be called dynamical systems with discrete time, or
cascades.

A normal model of computation M is the structure (P,U, I, F, s) consisting
of four sets and a map

I, F ⊂ P × U, s : P × U → P × U .

308 IX Constructive Universe and Computation

Here s is an everywhere defined function such that s(p, u) = (p, sp(u)) for
any (p, u) ∈ P × U. Intuitively, p is a program, u is a configuration of the
deterministic discrete-time computing device, and sp(u) is the new configuration
obtained from u after one unit of time (clock tick). The subset I is that of initial
data, or inputs. The subset F ⊂ P × U (final configurations, outputs) must be
a part of the set of fixed points of s: if (p, u) ∈ F, then s(p, u) = (p, u).

In this setting, we denote by fp the partial function fp : U → U such that
we have u ∈ D(fp), fp(u) = v, if and only if

(p, u) ∈ I, and for some n ≥ 0, (p, snp (u)) ∈ F and snp (u) = v.

The minimal such n will be called the time (number of clock ticks) needed to
calculate fp(u) using the program p.

Any finite sequence

(p, u, sp(u), . . . , smp (u)), u ∈ I,

will be called a protocol of computation of length m for the model M .
We now add the constructivity conditions.
We require P,U to be constructive worlds, s computable. In addition, we

require I, F to be decidable subsets of P × U . Then fp are computable, and
protocols of given length (resp. of arbitrary length, resp. or those stopping at F)
form constructive worlds. If we denote by QM the world of protocols stopping at
F and by ev : QM × U → U the map (p, u) �→ smax

p (u), we get a programming
method.

Such a model M is called versal if the respective programming method QM
is versal.

The notion of normal model of computation includes both normal algorithms
and Turing machines.

Consider, for example, the standard description of the constructive world
T of Turing machines T slightly adapted to our conventions. It includes the
following data:

(a) The constructive world U = {0, 1}∗ of, say, binary words that can be written
on the tape of any T from our world.

(b) For each T , a finite set of internal states JT , containing initial state,
accepting state rejecting state, and remaining intermediate states J0

T . All
JT must be elements of a constructive world of states J , and the map
T �→ JT must be computable.

(c) The computable partial map τ : J×N×U → J×N×U , where N are natural
numbers (including 0). For each T , it must send the subset JT ×N×U into
itself.

A triple (i, n, u) ∈ JT×N×U is the configuration of T in which T is in state i,
and the head is scanning the nth square of the tape (the initial bit of u is counted
as the first square, the square to the left of it is the zeroth square). The domain
of definition of τT consists only of those triples for which n ≤ |u| + 1, where
|u| is the length of u: the head must scan either one of the bits of u, or one
of the next-door neighbors. The triple τT (i, n, u) = (i1, n1, u1) depicts the next

6 Models of Computation and Complexity 309

internal state of the machine, position of the head, and the new word on the
tape. The usual restrictions on the τT are n1 = n ± 1, and u1 may differ from
u only at the nth bit.

The fixed points of τ are triples for which i = accepting or rejecting state.
We can reduce such a description to our normal form by putting U = {0, 1}∗,

P := J ×N, I := {initial states} × {1} × U.

States F are those triples (accepting state,n,u) that can be reached from some
point of I after a finite iteration of τ . Finally, to get an everywhere defined s
coinciding with τ on its definition domain, we can extend τ to a computable map
in some trivial way. For example, starting with some triple (i, n, u) not in I, we
can prescribe s to move the head to the left until it reaches the first nonempty
tape square, to continue moving until it reaches the next empty square, and
then move one square to the right.

Turing machines have one feature that we did not keep in our definition
of normal models. It is sometimes called locality of the iteration map, which
depends only on the restricted number of bits in of the current position and
changes only a restricted number of bits in moving to the next position.
Discussing complexity later, we will suggest a useful and sufficiently general
weakening of this requirement.

6.2. Boolean circuits. Boolean circuits are classical models of computation
well suited for studying maps between the finite sets whose elements are encoded
by binary words. Discussing them, we will identify the alphabet {0, 1} with the
2-element field F2.

Consider the commutative polynomial algebra generated over F2 by a count-
able sequence of independent variables, say x1, x2, x3, Define the Boolean
algebra B as the quotient algebra of F2[x1, x2, . . .] modulo the ideal generated
by polynomials x2

i − xi. Each Boolean polynomial, element of B, determines a
function on ⊕∞

i=1F2 with values in F2 = {0, 1}.
We start with the following simple fact.

6.3. Claim. Any map f : Fm2 → Fn2 can be represented by a unique vector of
Boolean polynomials.

Proof. It suffices to consider the case n = 1. Then this map is surjective,
because f is represented by

F (x1, . . . , xm) :=
∑

y=(yi)∈Fm
2

f(y)
∏
i

(xi + yi + 1) .

In fact, the product at f(y) is the Kronecker delta δx,y.
Moreover, the vector spaces of such maps and of Boolean polynomials over

F2 have the common dimension 2m. In fact, Boolean polynomials are rep-
resented by linear combinations of monomials xi1 · · ·xik , one for each subset
{i1, . . . , ik} ⊂ {1, . . . ,m}. This completes the proof.

310 IX Constructive Universe and Computation

Now we can calculate any vector of Boolean polynomials by iterating
operations from a small finite list, which is chosen and fixed, e.g., B :=
{x, 1, x + y, xy, (x, x)}. Such operators are called classical gates. A sequence
of such operators, together with an indication of their arguments from the pre-
viously computed bits, is called a Boolean circuit. The number of steps in such
a circuit is considered (a measure of) the time of computation.

As the word circuit suggests, one may consider even better representations
by flowcharts, which are oriented graphs, with vertices decorated by the names
of gates.

When the relevant finite sets are not Fm2 , and perhaps have a wrong cardi-
nality (not a power of 2), we encode their elements by finite sequences of bits
and consider the restriction of Boolean polynomials to the relevant subset.

As above, a protocol of computation in this model can be represented as the
finite table consisting of rows (generally of variable length) that accommodate
sequences of 0’s and 1’s. The initial line of the table is the input. Each subse-
quent line must be obtainable from the previous one by the application of one
the basic functions in B to the sequence of neighboring bits (the remaining bits
are copied unchanged). The last line is the output. The exact location of the
bits that are changed in each row and the nature of change must be a part of
the protocol.

Physically, one can implement the rows as the different registers of the mem-
ory, or else as the consecutive states of the same register (then we have to make a
prescription for how to cope with the variable length, e.g., using blank symbols).

6.4. Turing machines vs. Boolean circuits. Any protocol of the Turing
computation of a function can be treated as such a protocol of an appropriate
Boolean circuit, and in this case we have only one register (the initial part of
the tape) whose states are consecutively changed by the head/processor. We
will still use the term “gate” in this context.

A computable function f with infinite domain is the limit of a sequence
of functions fi between finite sets whose graphs extend each other. A Turing
program for f furnishes a computable sequence of Boolean circuits, which com-
pute all fi in turn. Such a sequence is sometimes called uniform.

6.5. Size, complexity, and polynomial-time computability. The quanti-
tative theory of computational models deals simultaneously with the space and
time dimensions of protocols. The preceding subsection focused on time; here
we introduce space. For Boolean (and Turing machine) protocols this is easy:
the length of each row of the protocol plus specifications for the next step is
the space required at that moment. The maximum of these lengths, up to a
multiplicative constant, bounds the total space required from above and from
below.

The case of normal models and infinite constructive worlds U is more
interesting.

Generally we will say that a a size function U → N is any function such that
for every H ∈ N, there are only finitely many objects of size ≤ H. Thus the

6 Models of Computation and Complexity 311

number of bits |n| = [log2n]+1 and the identical function ‖n‖ = n are both size
functions on Z+. Using a numbering, we can transfer them to any constructive
world. In these two examples, the number of constructive objects of size ≤ H
grows as exp cH , resp. cH. Such a count in more general cases allows one to
make a distinction between the bit size, measuring the length of a description
of the object, and the volume of the object.

In most cases we require computability of size functions. However, there
are exceptions: for example, Kolmogorov complexity is a noncomputable size
function with very important properties: see VI.9.

Given a size function (on all relevant worlds) and a versal normal model of
computations M , we can consider the following complexity problems:

(A) For a given morphism (computable map) f : U → V , estimate the smallest
bit size KM (f) of the program p such that f = fp.

According to V.9, there exists an optimal universal model of computation
U such that with P = N and the bit size function, for any other model S there
exists a constant c such that for any f ,

KU(f) ≤ KM (f) + c.

When U is chosen, KU(f) is called the Kolmogorov complexity of f. With a
different choice of U we will get the same complexity function up to O(1)-
summand.

This complexity measure is highly nontrivial (and especially interesting) in
the case of one-point U . It measures, then, the size of the most compressed
description of a variable constructive object in V. This complexity is quite
“objective,” being almost independent of arbitrary choices. Being uncom-
putable, it cannot be directly used in computer science. However, it furnishes
some basic restrictions on computability, strikingly similar to those provided by
conservation laws in physics.

Recall that on N we have KU(n) ≤ |n|+ O(1) = log2‖n‖+ O(1). The first
inequality “generically” can be replaced by equality, but infinitely often KU(n)
becomes much smaller that |n|.

(B) For a given morphism (recursive map) f : U → V , estimate the time needed
to calculate f(u), u ∈ D(f), using the program p and compare the results
for different p and different models of computation.

(C) The same for the function “maximal size of intermediate configurations in
the protocol of the computation of f(u) using the program p” (space, or
memory).

In the last two problems, we have to compare functions rather than numbers:
time and space depend on the size of input. Here a cruder polynomial scale
appears naturally. Let us show how this happens.

Fix a computational model S with the transition function s computing
functions U → U , and choose a bit size function u �→ |u| on U satisfying
the following crucial assumption, a weakening of the locality requirement valid
for Turing machines:

312 IX Constructive Universe and Computation

(i) |u| − c ≤ |sp(u)| ≤ |u| + c, where the constant c may depend on p but not
on u.

In this case we have |smp (u)| ≤ |u|+ cpm: the required space grows no more
than linearly with time.

Let now (S ′
, s

′
) be another model such that sp = s

′
q for some q. For example,

such q always exists if S ′
is versal. Assume that s

′
satisfies (i) as well, and

moreover,

(ii) s can be computed in the model S ′
in time bounded by a polynomial F in

the bit size of input.

This requirement is certainly satisfied for Turing and Markov models, and
is generally reasonable, because an elementary step of an algorithm deserves its
name only if it is computationally tractable.

Then we can replace one application of sp to smp (u) by ≤ F (|u| + cm)
applications of s

′
q. And if we needed T (u) steps in order to calculate fp(u)

using S, we will need no more than ≤
∑T (u)
m=1 F (|u| + cm) steps to calculate

the same function using S ′
and q. In a detailed model, there might be a small

additional cost of merging two protocols. This is an example of the compilation
morphism lifted to the worlds of protocols.

Thus, from the assumptions (i) and (ii) it follows that functions computable
in polynomial-time by S have the same property for all reasonable models.
Notice also that for such functions, |f(u)| ≤ G(|u|) for some polynomial G and
that the domain D(f) of such a function is decidable: if after T (|u|) iterations
of sp we are not in a final state, then u /∈ D(f).

Thus we can define the class PF of functions, say Nk → N, computable in
polynomial-time using a fixed universal Turing machine and arguing as above
that this definition is model-independent.

If we want to extend it to a constructive universe C, however, we will
have to postulate additionally that any constructive world U comes together
with a natural class of numberings that together with their inverses are com-
putable in polynomial-time. The bit size will be defined in terms of one of these
numberings.

This postulate, accepted for “all constructive worlds,” seems to be a part of
the content of the “polynomial Church thesis” invoked by M. Freedman in his
talk at the Berlin ICM, 1998.

If we take this strengthening of Church is thesis for granted, and take two
bit-size functions determined by two polynomial numberings, then the quotient
of two such size functions is bounded from above and away from zero.

Below we will be considering only the universes C and worlds U with these
properties, and |u| will always denote a computable bit size. Gödel’s numbering
for N × N shows that that such C is still closed with respect to finite prod-
ucts. (Notice, however, that the beautiful numbering of N∗ using primes is not
polynomial-time computable; it may be replaced by another one that is in PF).

6 Models of Computation and Complexity 313

6.6. P/NP problem. Let U be a constructive world. By definition, a subset
E ⊂ U belongs to the class P if its characteristic function χE (equal to 1 on E
and 0 outside) belongs to the class PF.

Furthermore, E ⊂ U belongs to the class NP if there exists a subset E
′ ⊂

U × V belonging to P and a polynomial G such that

u ∈ E ⇐⇒ ∃ (u, v) ∈ E
′

with |v| ≤ G(|u|).

Here V is another constructive world (which may coincide with U). We will say
that E is obtained from E

′
by a polynomially truncated projection.

Such a v can be called a witness of the inclusion u ∈ E. The polynomial-time
calculation establishing that χE′ (u, v) = 1 is a short proof that u ∈ E.

The discussion above establishes in what sense this definition is model-
independent.

Clearly, P⊂ NP.
The question whether these two classes coincide is the celebrated P/NP

problem.
A naive algorithm calculating χE from χE′ by searching for v with |v| ≤

G(|u|) and χE′ (u, v) = 1 will generally take exponential time v (because |u| is
a bit-size function). Of course, if one can treat all such v simultaneously, using
massive parallellism, the required time will be polynomial: time will be traded
for space. Or else, if an oracle tells you that u ∈ E and supplies an appropri-
ate v, you can convince yourself that this is indeed so in polynomial-time, by
computing χE′ (u, v) = 1.

Notice that enumerable sets can be alternatively described as projections of
decidable ones, and that in this context projection does create undecidable sets.
Nobody as yet has been able to translate the diagonalization argument used to
establish this to the P/NP domain.

It has long been known that the P/NP problem can be reduced to checking
whether some very particular sets—NP -complete ones—belong to P.

6.7. Definition. The set E ⊂ U is called NP -complete if, for any other set
D ⊂ V,D ∈ NP, there exists a function f : V → U, f ∈ PF, such that
D = f−1(E), that is, χD(v) = χE(f(v)).

We will sketch the classical argument (due to S. Cook, L. Levin, R. Karp)
showing the existence of NP -complete sets. In fact, the reasoning is construc-
tive: it furnishes a polynomially computable map producing f from the descrip-
tions of χE′ and the truncating polynomial G.

In order to describe one NP-complete problem, we will define an infinite
family of Boolean polynomials bu indexed by the following data, constituting
objects u of the constructive world U . One u is a collection

m ∈ N; (S1, T1), . . . , (SN , TN),

where Si, Ti ⊂ {1, . . . ,m}, and bu is defined as

bu(x1, . . . , xm) =
N∏
i=1

⎛⎝1 +
∏
k∈Si

(1 + xk)
∏
j∈Ti

xj

⎞⎠ .

314 IX Constructive Universe and Computation

We choose the bit size of u as |u| = mN.
Put

E = {u ∈ U | ∃v ∈ Fm2 , bu(v) = 1}.
Using the language of Boolean truth values, one says that v satisfies bu if
bu(v) = 1, and E is called the satisfiability problem, or SAT.

6.8. Proposition. SAT ∈ NP.

Proof. In fact, let

E
′

= {(u, v) | bu(v) = 1} ⊂ U × (⊕∞
i=1F2) .

Clearly, E is the full projection of E
′
. A bit of contemplation will convince the

reader that E
′ ∈ P. In fact, we can calculate bu(v) performing O(Nm) Boolean

multiplications and additions. The projection to E can be replaced by a polyno-
mially truncated projection, because we have to check only v of bit size |v| ≤ m.

6.9. Theorem. SAT is NP-complete.

Proof (sketch). In fact, let D ∈ NP, D ⊂ A, where A is some constructive
world. Take a representation of D as a polynomially truncated projection of
some set D

′ ⊂ A × B,D
′ ∈ P. Choose a normal, say Turing, model of com-

putation and consider the Turing protocols of computation of χD′ (a, b) with
fixed a and variable polynomially bounded b. As we have explained above, for
a given a, any such protocol can be imagined as a table of a fixed polynomially
bounded size whose rows are the consecutive states of the computation. In the
“microscopic” description, the positions in this table can be filled only by 0 or 1.
In addition, each row is supplied by the specification of the position and the
inner state of the head/processor. Some of the arrangements are valid protocols,
others are not, but the local nature of the Turing computation allows one to
produce a Boolean polynomial bu in appropriate variables such that the valid
protocols are recognized by the fact that this polynomial takes value 1. This
defines the function f reducing D to E. The construction is so direct that the
polynomial-time computability of f is straightforward.

Many natural problems are known to be NP-complete, in particular
3-SAT. It is defined as the subset of SAT consisting of those u for which
card (Si ∪ Ti) = 3 for all i.

6.10. Remark. Most Boolean functions are not computable in polynomial-time.
Several versions of this statement can be proved by simple counting.

First of all, fix a finite basis B of Boolean operations as in 6.3, each acting
on ≤ a bits. Then sequences of these operations of length t generate O((bna)t)
Boolean functions Fn2 → Fn2 , where b = cardB. On the other hand, the number
of all functions 2n2n

grows as a double exponential of n and for large n cannot
be obtained in time t polynomially bounded in n.

The same conclusion holds if we consider not all functions but only permu-
tations: Stirling’s formula for cardS2n = 2n! involves a double exponential.

7 Basics of Quantum Computation I: Quantum Entanglement 315

Here is one more variation of this problem: define the time complexity of a
conjugacy class in S2n as the minimal number of steps needed to calculate some
permutation in this class. This notion arises if we are interested in calculating
automorphisms of a finite world of cardinality 2n that is not supplied with a
specific encoding by binary words. Then it can happen that a judicious choice of
encoding will drastically simplify the calculation of a given function. However,
for most functions we still will not be able to achieve polynomial-time com-
putability, because the asymptotic formula for the number of conjugacy classes
(partitions)

p(2n) ∼
exp

(
π
√

2
3 (2n − 1

24

)
4
√

3(2n − 1
24)

again displays double exponential growth.

7 Basics of Quantum Computation I: Quantum
Entanglement

In this section we will discuss the basics: how to use the superposition principle
in order to accelerate (certain) classical computations.

For a minimal physics background, the reader may wish to reread II.
12.1–12.9.

7.1. Description of the problem. Let N be a large number, F : {0, . . . ,
N−1} → {0, . . . , N−1} a function such that the computation of each particular
value F (x) is tractable, that is, can be done in time polynomial in log x. We want
to compute (to recognize) some property of the graph (x, F (x)), for example:

(i) Find the least period r of F , i.e., the least residue rmodN such that
F (x+rmodN) = F (x) for all x (the key step in the factorization problem.)

(ii) Find some x such that F (x) = 1 or establish that such x does not exist
(search problem.)

As we already mentioned, a direct attack on such a problem consists in com-
piling the complete list of pairs (x, F (x)) and then applying to it an algorithm
recognizing the property in question. Such a strategy requires at least exponen-
tial time (as a function of the bit size of N), since already the length of the
list is N. Barring a theoretical breakthrough in understanding such problems
(for example a proof that P=NP), a practical response might be in exploiting
the possibility of parallel computing, i.e., calculating simultaneously many—or
even all—values of F (x). This takes less time but uses (dis)proportionally more
hardware.

A remarkable suggestion due to D. Deutsch consists in using a quantum
superposition of the classical states |x〉 as the replacement of the union of N
classical registers, each in one of the initial states |x〉. To be more precise, here
is a mathematical model formulated as a definition.

316 IX Constructive Universe and Computation

7.2. Quantum parallel processing: version I. Keeping the notation above,
assume moreover that N = 2n.
(i) The quantum space of inputs/outputs is the 2n-dimensional complex Hilbert

space Hn with the orthonormal basis |x〉, 0 ≤ x ≤ N − 1. Vectors |x〉 are
called classical states.

(ii) The quantum version of F is the unique unitary operator UF : Hn → Hn

such that UF |x〉 = |F (x)〉.
Quantum parallel computing of F is (a physical realization of) a quantum

system with the state space Hn and the evolution operator UF .
Naively speaking, if we apply UF to the initial state which is a superposition

of all classical states, with, say, equal amplitudes, we will get simultaneously all
classical values of F (i.e., their superposition):

UF

(
1√
N

∑
|x〉

)
=

1√
N

∑
|F (x)〉.

Now, this does not look very promising. In fact, UF exists only if F is a
permutation, and in this case the left hand side is simply identical to the right-
hand side!

To get a more workable version, we will have to take superpositions with
different weights. We will also have to devise tricks for replacing, say, search
functions (1 on desirable elements, 0 elsewhere) by permutations. For this, see
Section 7.3 below.

For the time being, we will start discussing various issues related to our
preliminary picture, before passing to its more realistic modification.

(A) We put N = 2n above because we are imagining the respective classical
system as an n-bit register: cf. the discussion of Boolean circuits. Every
number 0 ≤ x ≤ N − 1 is written in the binary notation x =

∑
i εi2

i and is
identified with the pure (classical) state |εn−1, . . . , ε0〉, where εi = 0 or 1 is
the state of the ith register. The quantum system H1 is called a qubit. We
have Hn = H⊗n

1 , |εn−1, . . . , ε0〉 = |εn−1〉 ⊗ · · · ⊗ |ε0〉.
This conforms to the general principles of quantum mechanics. The Hilbert

space of the union of systems can be identified with the tensor product of the
Hilbert spaces of the subsystems. Accordingly, decomposable vectors correspond
to the states of the compound for which one can say that the individual subsys-
tems are in definite states.

In a general state of the register, the individual bits do not store any definite
values: this is the essence of quantum entanglement.

(B) Pure quantum states, strictly speaking, are points of the projective space
P (Hn), that is, complex lines in Hn. Traditionally, one considers instead
vectors of norm one. This leaves undetermined an overall phase factor
exp iϕ. If we have two state vectors, individual phase factors have no
objective meaning, but the difference of their phases does have one. This
difference can be measured by observing effects of quantum interference.

Quantum interference is highly important and is used for implementing
efficient quantum algorithms.

7 Basics of Quantum Computation I: Quantum Entanglement 317

(C) If a quantum system S is isolated from its environment, its dynamical evo-
lution with time t is described by the unitary operator acting on its Hilbert
space, U(t) = exp iHt, where H is the Hamiltonian, t is time. Therefore
one option for implementing UF physically is to design a device for which
UF would be a fixed time evolution operator. However, this seemingly con-
tradicts many deeply rooted notions of the algorithm theory. For example,
calculating F (x) for different inputs x takes different times, and it would
be highly artificial to try to equalize them already in the design.

Instead, one can try to implement UF as the result of a sequence of brief
interactions, carefully controlled by a classical computer, of S with the envi-
ronment (say, laser pulses). Mathematically speaking, UF is represented as a
product of some standard unitary operators Um, . . . , U1 each of which acts only
on a small subset (two, three) of classical bits. These operators are called quan-
tum gates.

The complexity of the respective quantum computation is determined by its
length (the number m of the gates) and by the complexity of each of them.

The latter point is a subtle one: continuous parameters, e.g., phase shifts,
on which Ui may depend, makes the information content of each Ui potentially
infinite and leads to a suspicion that a quantum computer will in fact perform
an analog computation, only implemented in a fancy way.

This point has been discussed and refuted on several occasions by displaying
those features of quantum computation that distinguish it from both analog
and digital classical information processing. Philosophically, all arguments are
variations on the theme of von Neumann’s theorem on the impossibility of
hidden parameters (cf. II.12).

One more problem related to the necessity to renounce the image of an
isolated quantum register is that of stability, or fault tolerance. Even very weak,
but uncontrolled, interactions with the environment will quickly lead to the
spreading of quantum noise, destroying the useful information. This is called
quantum decoherence.

One defense strategy is the technique of fault-tolerant computation using
quantum codes for producing continuous variables highly protected from exter-
nal noise.

7.3. Reducing general functions to permutations. As we have already
remarked, the requirement that F must be a permutation is highly restrictive:
for instance, in the search problem F takes only two values.

There is nothing justifying this restriction in the schemes of classical com-
putation, but in our quantum model, only permutations F extend to unitary
operators (“quantum reversibility”).

The standard way out consists in introducing two n-bit registers instead of
one, for keeping the value of the argument as well as that of the function. This
also conforms with our initial idea that we want to learn something about the
graph of F .

More precisely, if F (|x〉) is an arbitrary function of classical bits, we can
replace it by the permutation F̃ (|x, y〉) := |x, F (x)⊕y〉, where ⊕ is the Boolean

318 IX Constructive Universe and Computation

(bitwise) sum. This involves no more than a polynomial increase of the classical
complexity, and the restriction of F̃ to y = 0 produces the graph of F , which
we need anyway for the type of problems we are interested in.

In the quantum Boolean circuit version this trick must be applied to all
gates.

More precisely, in order to process a classical algorithm (sequence of Boolean
gates) for computing F into the quantum one, we replace each classical gate
by the respective reversible quantum gate, i.e., by the unitary operator corre-
sponding to it tensored with the identical operator. Besides two registers for
keeping |x〉 and F (|x〉) we will have to introduce as well extra qubits in which
we are not particularly interested. The corresponding Hilbert space and its con-
tent is sometimes referred to as “scratchpad,” “garbage,” etc. Besides ensuring
reversibility, additional space and garbage can be introduced as well for con-
sidering functions F : {0, . . . , N − 1} → {0, . . . ,M − 1}, where N, M are not
powers of two (then we extend them to the nearest power of two). For more
details, see the next section.

Notice that the choice of gate array (Boolean circuit) as the classical model
of computation is essential in the following sense: a quantum routine cannot
use conditional instructions. Indeed, to implement such an instruction we must
observe the memory in the midst of calculation, but the observation generally
will change its current quantum state.

In the same vein, we must avoid copying instructions, because the classical
copying operator |x〉 → |x〉 ⊗ |x〉 is not linear. In particular, each output qubit
from a quantum gate can be used only in one gate at the next step (if several
gates are used in parallel): cloning is not allowed.

These examples show that the basics of quantum code writing will have a
very distinct flavor.

We now pass to the problems posed by the input/output routines.
Input, or initialization, in principle can be implemented in the same way as

a computation: we produce an input state starting, e.g., from the classical state
|0〉 and applying a sequence of basic unitary operators: see the next section.
Output, however, involves an additional quantum-mechanical notion: that of
observation.

7.4. Quantum observation. The simplest model of observation of a quantum
system with the Hilbert space H is that of interaction with another system,
and their subsequent disentanglement.

Possible results of such an interaction will form an orthonormal basis |χi〉
of H (depending on the physical details of observation). If our system was in
some entangled state |ψ〉 at the moment of observation, it will be observed in
some state |χi〉 with probability |〈χi|ψ〉|2.

This means first of all that every quantum computation is inherently prob-
abilistic. Observing (a part of) the quantum memory is not exactly the same
as “printing the output.” We must plan a series of runs of the same quantum
program and the subsequent classical processing of the observed results, and
we can hope only to get the desired answer with probability close to one.

8 Selected Quantum Subroutines 319

Furthermore, this means that by implementing quantum parallelism simple-
mindedly as at the beginning of this section, and then observing the memory
as if it were the classical n-bit register, we will simply get some value F (x) with
probability 1/N . This does not use the potential of the quantum parallelism.
Therefore we formulate a corrected version of this notion, allowing more flexibil-
ity and stressing the additional tasks of the designer, each of which eventually
contributes to the complexity estimate.

7.5. Quantum parallel processing: version II. To solve efficiently a problem
involving properties of the graph of a function F , we must design:

(i) An auxiliary unitary operator U carrying the relevant information about
the graph of F.

(ii) A computationally feasible realization of U with the help of standard quan-
tum gates.

(iii) A computationally feasible realization of the input subroutine.
(iv) A computationally feasible classical algorithm processing the results of

many runs of quantum computation.

All of this must be supplemented by quantum error-correcting encoding,
which we will not address here. In the next section we will discuss some standard
quantum subroutines.

8 Selected Quantum Subroutines

8.1. Initialization. Using the same conventions as in Section 7 and the subse-
quent comments, in particular the identification Hn = H⊗n

1 , we have

1√
N

N−1∑
x=0

|x〉 =
1√
N

∑
εi=0,1

|εn−1 · · · ε0〉 =
(

1√
2

(|0〉+ |1〉)
)⊗n

.

In other words,

1√
N

N−1∑
x=0

|x〉 = U
(n−1)
1 · · ·U (0)

1 |0 · · · 0〉,

where U1 : H1 → H1 is the unitary operator

|0〉 �→ 1√
2

(|0〉+ |1〉), |1〉 �→ 1√
2

(|0〉 − |1〉) ,

and U (i)
1 = id⊗ · · · ⊗ U1 ⊗ · · · ⊗ id acts only on the ith qubit.

Thus making the quantum gate U1 act on each memory bit, one can in
n steps initialize our register in the state that is the superposition of all 2n

classical states with equal weights.

8.2. Quantum computations of classical functions. Let B be a finite basis
of classical gates containing the one-bit identity and generating all Boolean

320 IX Constructive Universe and Computation

circuits, and F : Fm2 → Fn2 a function. We will describe how to turn a Boolean
circuit of length L calculating F into another Boolean circuit of comparable
length consisting only of reversible gates, and calculating a modified function,
which, however, contains all information about the graph of F. Reversibility
means that each step is a bijection (actually, an involution) and hence can be
extended to a unitary operator, that is, a quantum gate. For a gate f, define
f̃(|x, y〉) = |x, f(x) + y〉 as in 7.3 above.

8.3 Claim. A Boolean circuit S of length L in the basis B can be processed
into the reversible Boolean circuit S̃ of length O((L + m + n)2) calculating a
permutation H : Fm+n+L

2 → Fm+n+L
2 with the following property:

H(x, y, 0) = (x, F (x) + y, 0) = (F̃ (x, y), 0).

Here x, y, z have sizes m,n, L respectively.

Proof. We will understand L here as the sum of sizes of the outputs of all
gates involved in the description of S. We first replace in S each gate f by
its reversible counterpart f̃ . This involves inserting extra bits, which we put
side by side into a new register of total length L. The resulting subcircuit will
calculate a permutation K : Fm+L

2 → Fm+L
2 such that K(x, 0) = (F (x), G(x))

for some function G (garbage).
Now add to the memory one more register of size n keeping the variable y.

Extend K to the permutation K : Fm+L+n
2 → Fm+L+n

2 keeping y intact:
K : (x, 0, y) �→ (F (x), G(x), y). Clearly, K is calculated by the same Boolean
circuit as K, but with extended register.

Extend this circuit by the one adding the contents of the first and the
third registers: (F (x), G(x), y) �→ (F (x), G(x), F (x) + y). Finally, build the
last extension that calculates K

−1
and consists of reversed gates calculating

K in reverse order. This clears the middle register (scratchpad) and produces
(x, 0, F (x) + y). The whole circuit requires O(L + m + n) gates if we allow
the application of them to not necessarily neighboring bits. Otherwise we must
insert gates for local permutations, which will replace this estimate by O((L+
m+ n)2).

8.4. Fast Fourier transform. Finding the least period of a function of one
real variable can be done by calculating its Fourier transform and looking at
its maxima. The same strategy is applied by Shor in his solution of the factor-
ization problem. We will show now that the discrete Fourier transform Φn is
computationally easy (quantum polynomial-time). We define Φn : Hn → Hn

by

Φn(|x〉) =
1√
N

N−1∑
c=0

|c〉 exp (2πicx/N).

In fact, it is slightly easier to implement directly the operator

Φtn(|x〉) =
1√
N

N−1∑
c=0

|ct〉 exp (2πicx/N),

8 Selected Quantum Subroutines 321

where ct is c read from right to left. The effects of the bit reversal can then be
compensated at a later stage without difficulty.

Let U (kj)
2 : Hn → Hn, k < j, be the quantum gate that acts on the pair of

the kth and jth qubits in the following way: it multiplies |11〉 by exp (iπ/2j−k)
and leaves the remaining classical states |00〉, |01〉, |10〉 intact.

8.5. Lemma. We have

Φtn =
n−1∏
k=0

⎛⎝U (k)
1

n−1∏
j=k+1

U
(kj)
2

⎞⎠ .

By our rules of the game, this presentation has polynomial length in the
sense that it involves only O(n2) gates. However, implementation of U (kj)

2

requires controlling variable phase factors that tend to 1 as k − j grows. More-
over, arbitrary pairs of qubits must allow quantum-mechanical coupling, so that
for large n, the interaction between qubits must be nonlocal. The contribution
of these complications to the notion of complexity cannot be estimated without
going into the details of the physical arrangement. Therefore we will add a few
words on this subject.

One possible implementation of a quantum register consists of a collection of
ions (charged atoms) in a linear harmonic trap (optical cavity). Two of the elec-
tronic states of each ion are denoted by |0〉 and |1〉 and represent a qubit. Laser
pulses transmitted to the cavity through the optical fibers and controlled by
the classical computer are used to implement gates and readout. The Coulomb
repulsion keeps ions apart (spatial selectivity), which allows the preparation of
each ion separately in any superposition of |0〉 and |1〉 by timing the laser pulse
properly and preparing its phase carefully. The same Coulomb repulsion allows
for collective excitations of the whole cluster, whose quanta are called phonons.
Such excitations are produced by laser pulses as well under appropriate reso-
nance conditions. The resulting resonance selectivity combined with the spatial
selectivity implements a controlled entanglement of the ions that can be used
in order to simulate two- and three-bit gates.

Another recent suggestion is to use a single molecule as a quantum register,
representing qubits by nuclear spins of individual atoms, and using interac-
tions through chemical bonds in order to perform multiple-bit logic. The clas-
sical technique of nuclear magnetic resonance developed since the 1940s, which
allows one to work with many molecules simultaneously, provides the startup
technology for this project.

8.6. Quantum search. All the subroutines described up to now have boiled
down to some identities in the unitary groups involving products of not too
many operators acting on subspaces of small dimension. They did not involve
output subroutines and therefore did not “compute” anything in the traditional
sense of the word. We will now describe the beautiful quantum search algorithm
due to L. Grover, which produces a new identity of this type, but also demon-
strates the effect of observation and the way one can use quantum entanglement
in order to exploit the potential of quantum parallelism.

322 IX Constructive Universe and Computation

We will treat only the simplest version. Let F : Fn2 → {0, 1} be a function
taking the value 1 at exactly one point x0. We want to compute x0. We assume
that F is computable in polynomial-time, or else that its values are given by an
oracle. Classical search for x0 requires on the average about N/2 evaluations of
F where N = 2n.

In the quantum version, we will assume that we have a quantum Boolean
circuit (or quantum oracle) calculating the unitary operator Hn → Hn,

IF : |x〉 �→ eπiF (x)|x〉.

In other words, IF is the reflection inverting the sign of |x0〉 and leaving the
remaining classical states intact.

Moreover, we put J = −Iδ, where δ : Fn2 → {0, 1} takes the value 1 only at
0, and V = U

(n−1)
1 · · ·U (0)

1 , as in 8.1.

8.6. Claim. (i) The real plane in Hn spanned by the uniform superposition ξ of
all classical states and by |x0〉 is invariant with respect to T := V JV IF .

(ii) T restricted to this plane is the rotation (from ξ to |x0〉) by the angle ϕN ,
where

cosϕN = 1− 2
N
, sinϕN = 2

√
N − 1
N

.

The check is straightforward.
Now, ϕN is close to 2/

√
N , and for the initial angle ϕ between ξ and |x0〉

we have
cosϕ = − 1√

N
.

Hence in [ϕ/ϕN] ≈ π
√
N/4 applications of T to ξ we will get the state very

close to |x0〉. Stopping the iteration of T after as many steps and measuring
the outcome in the basis of classical states, we will obtain |x0〉 with probability
very close to one.

One application of T replaces in the quantum search one evaluation of F.
Thus, thanks to quantum parallelism, we achieve a polynomial speedup in com-
parison with the classical search. The case in which F takes the value 1 at several
points and we want to find only one of them can be treated by an extension
of this method. If there are n such points, the algorithm requires about

√
N/n

steps, and n need not be known a priori.
Still, this does not help solving NP-complete problems, because the square

root of an exponential is still an exponential.

9 Shor’s Factoring Algorithm

Efficient factorization of large integers became in the last decades an important
applied problem, because standard public key cryptosystems rely on the per-
ceived difficulty of this problem. At least in 2000, it was practically impossible

9 Shor’s Factoring Algorithm 323

to factorize a product of two 150-decimal-digit primes: estimated running times
of the best existing factorization algorithms were in the billions years.

Producing such public key cryptosystems on an industrial scale requires
mass production of large primes. This last problem recently was shown to be in
the class P (M. Agrawal, N. Kayal, N. Saxena). Existing practical algorithms
can prove primality of a 10000-bit number in several weeks.

For this reason, when P. Shor demonstrated that a quantum algorithm can
efficiently solve the factorization problem, and thus provide means for system-
atically breaking the public key cryptosystems, his discovery attracted much
public attention. We will sketch his algorithm in this section.

9.1. Notation. Let M be a natural number to be factored. We will assume that
it is odd and is not a power of a prime number.

Denote by N the volume of the basic memory register we will be using
(not counting scratchpad). Its bit size n will be about twice that of M . More
precisely, choose M2 < N = 2n < 2M2. Finally, let 1 < t < M be a random
parameter with gcd (t,M) = 1. This condition can be checked classically in time
polynomial in n.

Below we will describe one run of Shor’s algorithm, in which t (and of course,
M , N) is fixed. Generally, polynomially many runs will be required, in which
the value of t can remain the same or be chosen anew. This is needed in order
to gather statistics. Shor’s algorithm is a probabilistic one, with two sources of
randomness that must be clearly distinguished. One is built into the classical
probabilistic reduction of factoring to the finding of the period of a function.
Another stems from the necessity of observing quantum memory, which, too,
produces random results.

More precise estimates than those given here show that a quantum com-
puter that can store about 3n qubits can find a factor of M in time of order
n3 with probability close to 1. On the other hand, it is widely believed that no
recursive function of the type M �→ a proper factor of M belongs to PF.

9.2. A classical algorithm. Put

r := min {ρ | tρ ≡ 1 modM},

which is the least period of F : a �→ ta modM.

Claim. If one can efficiently calculate r as a function of t, one can find a proper
divisor of M in time polynomial in log2M with probability ≥ 1−M−m for any
fixed m.

In fact, choose such t for which the period r satisfies

r ≡ 0 mod 2, tr/2 �= −1 modM.

Then gcd (tr/2 + 1,M) is a proper divisor of M. Notice that gcd is computable
in polynomial-time.

The probability that this condition holds is ≥ 1 − 1/2k−1, where k is the
number of different odd prime divisors of M , hence ≥ 1/2 in our case. Therefore

324 IX Constructive Universe and Computation

we will find a good t with probability ≥ 1−M−m in O(logM) tries. The longest
calculation in one try is that of tr/2. The usual squaring method performs this
in polynomial-time as well.

9.3. Quantum algorithm calculating r. Here we describe one run of the
quantum algorithm that purports to compute r, given M,N, t. We will use the
working register that can keep a pair consisting of a variable 0 ≤ a ≤ N−1 and
the respective value of the function ta modM.One more register will serve as the
scratchpad needed to compute |a, ta modM〉 reversibly. When this calculation
is completed, the content of the scratchpad will be reversibly erased: cf. 8.3
above. In the remaining part of the computation the scratchpad will no longer
be used, so we may decouple it and forget about it.

The quantum computation consists of four steps, three of which were
described in Section 8:

(i) Partial initialization produces from |0, 0〉 the superposition

1√
N

N−1∑
a=0

|a, 0〉.

(ii) Reversible calculation of F processes this state into

1√
N

N−1∑
a=0

|a, ta modM〉.

(iii) Partial Fourier transform then furnishes

1
N

N−1∑
a=0

N−1∑
c=0

exp (2πiac/N) |c, ta modM〉.

(iv) The last step is the observation of this state with respect to the system of
classical states |c,mmodM〉. This step produces some concrete output

|c, tk modM〉

with probability ∣∣∣∣∣ 1
N

∑
a: ta≡tk modM

exp (2πiac/N)

∣∣∣∣∣
2

.

The remaining part of the run is assigned to the classical computer and consists
of the following steps.

(A) Find the best approximation (in lowest terms) to
c

N
with denominator

r
′
< M <

√
N : ∣∣∣∣∣ cN − d

′

r′

∣∣∣∣∣ < 1
2N

.

10 Kolmogorov Complexity and Growth of Recursive Functions 325

As we will see below, we may hope that r
′

will coincide with r in at least
one run among at most polynomially many. For this reason, we will try r

′
in

the role of r right away:

(B) If r
′ ≡ 0 mod 2, calculate gcd (tr

′
/2 ± 1,M).

If r
′

is odd, or if r
′

is even, but we did not get a proper divisor of M , repeat
the run O(log logM) times with the same t. In case of failure, change t and
start a new run.

9.4. Justification. We will now show that given t, from the observed values
of |c, tk modM〉 we can find in O(log logM) runs the correct value of r with
probability close to 1.

Let us call the observed value of c good if

∃ l ∈
[
− r

2
,
r

2

]
, rc ≡ lmodN.

In this case there exists d such that

− r
2
≤ rc− dN = l ≤ r

2
,

so that ∣∣∣∣ cN − d

r

∣∣∣∣ < 1
2N

.

Hence if c is good, then r
′

found in 9.3 (A) in fact divides r.
Now call c very good if r

′
= r.

Estimating the exponential sum in 9.3 (iv), we can easily check that the
probability of observing a good c is ≥ 1/3r2. On the other hand, there are
rϕ(r) states |c, tk modM〉 with very good c. Thus to find a very good c with
high probability, O(r2 log r) runs will suffice.

10 Kolmogorov Complexity and Growth of Recursive
Functions

Consider general functions f : Z+ → Z+. Computability theory uses several
growth scales for such functions, of which two are most useful: f may be maj-
orized by some recursive function (e.g., when it is itself recursive), or by a
polynomial (e.g., when it is computable in polynomial-time). Linear growth
does not seem particularly relevant in this context. However, this impression
is quite misleading, at least if one allows one most important uncomputable
reordering of Z+. In fact, we make the following claim:

10.1. Claim. There exists a permutation K : Z+ → Z+ such that for any
partially recursive function f : N → N there exists a constant c with the
property

K ◦ f ◦K−1(n) ≤ c n for all n ∈ K(D(f)).

326 IX Constructive Universe and Computation

Moreover, K is bounded by a linear function, but K−1 is not bounded by any
recursive function.

Proof. We will use the Kolmogorov complexity measure of integers, as was
explained in VI.9. We first recall its definition.

For a recursive function u : Z+ → Z+, x ∈ Z+, put Cu(x) := min {k | f(k) =
x}, or ∞ if such k does not exist. Call such a function u optimal if for any other
recursive function v, there exists a constant cu,v such that Cu(x) ≤ cu,vCv(x) for
all x. Optimal functions do exist (see Theorem VI.9.2); in particular, they take
all positive integer values (however, they certainly are not everywhere defined).
Fix one such u and call Cu(x) the (exponential) complexity of x. By definition,
K = Ku rearranges Z+ in order of increasing complexity. In other words,

K(x) := 1 + card {y |Cu(y) < Cu(x)}.

We first show that
K(x) = exp (O(1))Cu(x).

Since Cu takes each value at most once, we have K(n) ≤ Cu(n). In order to
show that Cu(x) ≤ cK(x) for some c it suffices to check that

card {k ≤ N | ∃x, Cu(x) = k} ≥ bN

with some b > 0. In fact, at least half of the numbers x ≤ N have complexity
that is no less than x/2.

Now, VI.9.7(b) implies that for any recursive function f and all x ∈ D(f),
we have Cu(f(x)) ≤ constCu(x). Since Cu(x) and K(x) have the same order
of growth up to a bounded factor, our claim follows.

10.2. Corollary. Denote by Srec∞ be the group of recursive permutations of Z+.
Then KSrec

∞ K−1 is a subgroup of permutations of no more than linear growth.
Actually, appealing to Proposition VI.9.6, one can considerably

strengthen this result. For example, let σ be a recursive permutation, σK =
KσK−1. Then σK(x) ≤ cx, so that (σK)n(x) ≤ cnx for n > 0. But actually the
last inequality can be replaced by

(σK)n(x) ≤ c
′
n

for a fixed x and variable n. With both x and n variable one gets the estimate
O(xn log (xn)).

Recall that finite permutations appear in the quantum versions of Boolean
circuits, because we must treat any function with the help of an appropriate
unitary operator: cf. the discussion in 7.3 above.

For the same reason, infinite (computable) permutations might naturally
appear in models of quantum Turing machines and normal computation mod-
els. In fact, if one assumes that the transition function s is a permutation, and
then extends it to the unitary operator Us in the infinite-dimensional Hilbert
space, one might be interested in studying the spectral properties of such

10 Kolmogorov Complexity and Growth of Recursive Functions 327

operators. But the latter depend only on the conjugacy class. Perhaps the
universal conjugation UK will be a useful theoretical tool in this context.

10.3. Final comments. Finally, we would like to comment on the hidden role
of Kolmogorov complexity in the real life of classical computing.

The point is that in a sense (which is difficult to formalize), we are interested
only in the calculation of sufficiently nice functions, because a random Boolean
function will have (super)exponential complexity anyway.

A nice function, at the very least, has a short description and therefore
a small Kolmogorov complexity. Thus, dealing with practical problems, we
actually work not with small numbers, graphs, circuits, . . . , but rather with
an initial segment of the respective constructive world reordered with the help
of K. We systematically replace a large object by its short description.

But then the “natural operations” that can be performed on our objects lose
computability when we have replaced the objects by their short descriptions.

This inherent tension, incompatibility of shortest descriptions with most-
economic algorithmic processing, is the central issue of any computation theory.

The place-value notation of numbers that played such a great role in the
development of human civilizations is the ultimate system of short descriptions
that bridges the abyss. Kolmogorov complexity goes far beyond this point.

	Constructive Universe and Computation
	1 Introduction: A Categorical View of Computation
	2 Expanding Constructive Universe: Generalities
	3 Expanding Constructive Universe: Morphisms
	4 Operads and PROPs
	5 The World of Graphs as a Topological Language
	6 Models of Computation and Complexity
	7 Basics of Quantum Computation I: Quantum Entanglement
	8 Selected Quantum Subroutines
	9 Shor’s Factoring Algorithm
	10 Kolmogorov Complexity and Growth of Recursive Functions

