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Diophantine Sets and Algorithmic
Undecidability

1 The Basic Result

1.1. In §4 of Chapter V we showed that enumerable sets are the same thing as
projections of level sets of primitive recursive functions. The projections of the
level sets of a special kind of primitive recursive function—polynomials with
coefficients in Z+—are called Diophantine sets. We note that this class does
not become any larger if we allow the coefficients in the polynomial to lie in Z.
The basic purpose of this chapter is to prove the following deep result:

1.2. Theorem (M. Davis, H. Putnam, J. Robinson, Yu. Matiyasevič). All enu-
merable sets are Diophantine.

The plan of proof is described in §2. §§3–7 contain the intricate yet com-
pletely elementary constructions that make up the proof itself; these sections are
not essential for understanding the subsequent material, and may be omitted if
the reader so desires.

In §8 we use Theorem 1.2 to prove the existence of versal families of enumer-
able sets and functions. Recall that in §5 of Chapter V this result was shown
to imply that enumerable sets exist that are undecidable, a fact we shall use in
Section 1.3 below.

In §7, which stands somewhat apart from the rest of the chapter, we define
the Kolmogorov complexity of recursive functions, establish the basic properties
of this concept, and prove that the problem of computing the complexity is
algorithmically undecidable.

In Chapter VII the following corollary of Theorem 1.2 will be used in an
essential way: enumerable sets are definable in L1Ar. In fact, by their very
definition, Diophantine sets are defined by formulas of the form ∃x1 · · · ∃xn(p),
where p is an atomic formula.

In the remainder of this section we describe the principal applications of
Theorem 1.2: settling Hilbert’s tenth problem, constructing polynomials that
take only and all prime number values in Z+, and so on.

207Yu. I. Manin, A Course in Mathematical Logic for Mathematicians, Second Edition,
 Graduate Texts in Mathematics 53, DOI 10.1007/978-1-4419-0615-1_6,
© Yu. I. Manin 2010



208 VI Diophantine Sets and Algorithmic Undecidability

1.3. Hilbert’s tenth problem. Hilbert stated it as follows:

Suppose we are given a Diophantine equation with an arbitrary number
of unknowns and with rational integer coefficients. Give a way in which
it is possible to determine after a finite number of operations whether
this equation is solvable in rational integers.

We show that the combination of Theorem 1.2, Theorem 5.8 of Chapter V
(which follows from Theorem 1.2), and Church’s thesis implies that this problem
is undecidable.

First of all, any natural number is the sum of four integer squares (Lagrange).
Hence f(x1, . . . , xn) = 0 is solvable in (Z+)n if and only if the equation
f(1 + Σ4

i=1 y
2
i1, . . . , 1 + Σ4

i=1y
2
in) = 0 is solvable in (Z)4n. Consequently, it is

sufficient to show that the mass problem “determining whether there are
solutions in (Z+)” (see Section 2.6 of Chapter V) is algorithmically undecidable.

Let E ⊂ Z+ be an enumerable set that is not decidable. We represent E
as the projection onto the t-coordinate of the 0-level of the polynomial ft =
f(t;x1, . . . , xn), where f ∈ Z[t, x1, . . . , xn]. The equation ft0 = 0, t0 ∈ Z+, has
a solution if and only if t0 ∈ E. By the discussion in §2 of Chapter V, the
corresponding mass problem for the family {ft} is algorithmically decidable if
and only if the characteristic function of E is computable. But by our choice of
E, this characteristic function is only semicomputable.

Thus, solvability in integers cannot be determined algorithmically even for
a suitable one-parameter family of equations. The number of unknowns in the
equation, and, in general, the codimension of the projection in Theorem 1.2, can
be reduced to 13 (Matiyasevič, Robinson). The precise minimum is not known,
although it is an interesting problem.

Finally, it should be noted that the construction of a Diophantine represen-
tation for any enumerable set E is completely effective in the sense that given
a recursive description of f with D(f) = E or of g with g(Z+) = E, we can
write out the corresponding polynomial explicitly. The same holds for the con-
struction of versal families, of an enumerable undecidable set, and so on. These
are all constructive assertions, and not simple existence theorems.

1.4. Polynomials that represent the prime numbers. The search for “explicit
formulas” for prime numbers was a traditional occupation of dedicated number
theory enthusiasts for many centuries. Euler found the polynomial x2 + x+ 41,
which takes a long series of only prime values. But it has long been known that
the set of values at integer points of a polynomial f in Z[x1, . . . , xn] cannot
consist entirely of prime numbers: for example, if p and q are two sufficiently
large primes, then the congruence f ≡ 0 mod pq can be solved (in infinitely
many ways). On the other hand, the problem becomes solvable in the class of
primitive recursive functions: the function {i �→ the ith prime} is itself primitive
recursive (see §1 of Chapter VII), but for trivial reasons.

The nontrivial statement of the problem and the problem’s solution involve
Theorem 1.2: the set of prime numbers is the set of all positive values at points
in (Z+)n of a certain polynomial in Z[x1, . . . , xn] (or, if we prefer, n may be
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replaced by 4n; see the reduction step in 1.3). Matiyasevič showed that there is
a suitable polynomial of degree 37 in 24 variables.

This is actually a general result that has nothing to do with the specific
properties of prime numbers:

1.5. Proposition. Let E ⊂ Z+ be a Diophantine set. Then there exists a poly-
nomial g ∈ Z[x0, . . . , xn] such that E coincides with the set of positive values of
g at points in (Z+)n+1.

Proof. Let E be the projection of the 0-level of the polynomial f(x0, x1, . . . , xn)
onto the x0-coordinate. We set

g = x0[1− f2(x0, x1, . . . , xn)].

Clearly, the positive values of g are precisely the elements of E. ��
It remains only to use the fact that the set of prime numbers is decidable,

and hence Diophantine by Theorem 1.2.
The following sets are also sets of positive integer values of polynomials:

1.6.The sequences {1, 10, 100, . . . , 10k, . . . } and {1, 22, 333
, . . . , nn

n···
n

(n times), . . . }.
It is amazing that the values of the corresponding polynomials can drop to

zero and below in neighborhoods of points where these values are so large.

1.7. The Fermat set {n|n > 2 and xn + yn+ zn = 0 is solvable in Z}. Thus, the
variable n can be moved from the exponent to the coefficients of a Diophantine
equation.

1.8. The set {10ε1, 102ε2, . . . , 10nεn, . . .}, where εi is the ith digit after the deci-
mal point in the decimal expansion of e (or π or 3

√
2 , or any other “computable”

irrational number).

1.9. The set of all partial fractions in the continued fraction expansion of e, or
π, or 3

√
2.

We recall that in the case of 3
√

2 it is not known whether this set is finite or
infinite.

These examples show that many number-theoretic questions reduce to prob-
lems of the solvability of Diophantine equations. In Chapter VII we shall
see that in a certain sense, “almost all of mathematics” reduces to such
problems.

2 Plan of Proof

2.1. In this section we introduce some auxiliary notions and give the plan of
proof for Theorem 1.2.

We shall temporarily introduce a class of sets that are intermediate
between enumerable and Diophantine sets. In order to define this class, we
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consider the map that to every subset E ⊂ (Z+)n associates the set F ⊂ (Z+)n

that is given by the following rule:

〈x1, . . . , xn〉 ∈ F ⇔ ∀k ∈ [1, xn], 〈x1, . . . , xn−1, k〉 ∈ E.

We shall say that F is obtained from E by applying the bounded universal
quantifier to the nth coordinate. We define similarly the operation of applying
the bounded universal quantifier to any coordinate.

2.2. Definition-Lemma. Consider the following three classes of subsets of
(Z+)n for each n.

(I) Projections of level sets of primitive recursive functions.
(II) The least class of sets that contains the level sets of polynomials with

integer coefficients and that is closed with respect to taking finite direct
products, finite unions, finite intersections, projections, and applying the
bounded universal quantifier.

(III) Projections of level sets of polynomials with integer coefficients.

The following assertions hold for these classes:

(a) The class (I) coincides with the class of enumerable sets, and the class (III)
coincides with the class of Diophantine sets. We shall call sets in the class
(II) D-sets.

(b) (I) ⊃ (II) ⊃ (III).

Proof.

(a) In Theorem 4.3 of Chapter V we showed that the class of primitive
enumerable sets coincides with the class of enumerable sets. The rest of (a)
merely consists of definitions.

(b) Only the inclusion (II) ⊂ (I) is not completely obvious. First of all, the
m-level set of a polynomial f is the same as the 1-level set of the primitive
recursive function (f−m)2+1. Hence, to verify (II) ⊂ (I) it suffices to show that
the class (I) is closed with respect to (finite) direct product, union, intersection,
and the bounded universal quantifier. All except for the last of these were
established in Lemma 4.8 of Chapter V.

Finally, suppose F is the image of a primitive enumerable set E under the
bounded universal quantifier:

〈x1, . . . , xn−1, xn〉 ∈ F ⇔ ∀k � xn, 〈x1, . . . , xn−1, k〉 ∈ E.

Starting with the function f(x1, . . . , xn−1, xn; y1, . . . , ym) whose 1-level projects
onto E, we want to construct a function g whose 1-level projects onto F .
A natural idea is to consider as an approximation to g the product

xn∏
k=1

f(x1, . . . , xn−1, k; y1k, . . . , ymk),

where the yik are “independent variables.” The only problem is that the number
of arguments of this “function” increases with xn. To deal with this, we apply
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the Gödel function Gd(k, t), which was defined in Section 4.9 of Chapter V.
The function g will now depend on x1, . . . , xn and on m additional arguments
t1, . . . , tm:

g(x1, . . . ,xn; t1, . . . , tm)

=
xn∏
k=1

f(x1, . . . , xn−1, k; Gd(k, t1), . . . ,Gd(k, tm)).

This function is primitive recursive, because the kth factor is obtained from f
and Gd by substitution and identifying arguments, and then g is constructed
from such factors by recursion.

We now verify that the set F is the projection of the 1-level of g onto the
〈x1, . . . , xn〉-coordinates. In fact, if g(x1, . . . , tm) = 1, then for all 1 � k � xn
we have f(x1, . . . , xn−1, k,Gd(k, t1), . . . ,Gd(k, tm)) = 1, i.e., for all 1 � k � xn
the point 〈x1, . . . , xn−1, k〉 belongs to E. This means that 〈x1, . . . , xn〉 ∈ F .

Conversely, if 〈x1, . . . , xn〉 ∈ F , then for 1 � k � xn we can lift the point
〈x1, . . . , xn−1, k〉 to the 1-level of f . Let the y-coordinates of the resulting point
be y1,k, . . . , ym,k. We solve the following system of equations for the ti:

Gd(k, ti) = yi,k, for all 1 � k � xn.

This is possible by the fundamental property of Gd. The resulting values for
the ti, along with x1, . . . , xn, make g equal to one. This completes the proof of
Lemma 2.2. ��

2.3. The plan for the rest of the proof of Theorem 1.2 is as follows. In §3 we
show that the classes (I) and (II) coincide, and in §§4–7 we show that (II) and
(III) coincide.

2.4. Remark. In the course of proving Lemma 2.2, we obtained the following
facts, which should always be kept in mind in what follows:

(a) In the definitions of the classes (I)–(III) we may always replace “level sets”
by “1-level sets” (by going from f to (f −m)2 + 1).

(b) All of the classes (I)–(III) are closed with respect to (finite) products, in-
tersections, unions, and also projections. (The proof of this for the class (I)
in Lemma 4.8 of Chapter V is also applicable to the class (III).)

We encounter much greater difficulty in treating the bounded universal
quantifier. Indeed, the most technical part of the proof in §§4–7 is concerned
with showing that the class of Diophantine sets is closed with respect to the
bounded universal quantifier.

3 Enumerable Sets Are D-Sets

Let f : (Z+)n → Z+ be a primitive recursive function. Its 1-level can be repre-
sented as the projection onto the first n coordinates of the set Γf∩[(Z+)n×{1}],
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where Γf is the graph of f . Thus, an enumerable set can be obtained as a
projection of the intersection of the graphs of two primitive recursive functions.
Since, by definition, the class of D-sets is closed with respect to projections and
intersections, the assertion in the title of this section follows from the following
fact:

3.1. Proposition. The graphs of primitive recursive functions are D-sets.
Proof. The graphs of the basic functions are Diophantine. The stability
of the property of graphs “being D-sets” relative to the composition and jux-
taposition of functions is verified by the same arguments as in the proof of
Lemma 4.8 of Chapter V. It remains to prove the stability under recursion.
We shall first of all need information about the graph of Gödel’s function. Here
it is more convenient to use gd instead of Gd.

3.2. Lemma. The graph of the Gödel function gd(u, k, t) = rem(l + kt, u) is
Diophantine, and a fortiori, a D-set.

Proof. The set

Γgd = {〈u, k, t, γ〉|γ is the remainder when u is divided by 1 + kt}
is the intersection of the following two sets in (Z+)4:

E1 : γ � 1 + kt;
E2 : u− γ � 0 and is divisible by 1 + kt.

Both E1 and E2 are Diophantine. In fact, E1 is a projection of the 0-level of
the polynomial 2 + kt − γ − y1, and E2 is a projection of the 0-level of the
polynomial u− γ − (1 + kt)(y2 − 1). The lemma is proved. ��

3.3. Corollary. Let f and g be functions of n and n+2 arguments, respectively,
whose graphs are D-sets. Then the following equations determine D-sets in the
(x1, . . . , xn+1, u, t, . . .)-coordinate space (where any additional coordinates may
follow the t):

E : gd(u, 1, t) = f(x1, . . . , xn);
F : gd(u, xn+1 + 1, t) = g(x1, . . . , xn+1, gd(u, xn+1, t)).

Proof. Introducing extra coordinates after the t amounts to taking the direct
product with (Z+)p, and this, of course, takes D-sets to D-sets.

E can be represented as a projection of the intersection of the sets
gd(u, k, t) = w, f(x1, . . . , xn) = w, and k = 1 (where k and w are auxiliary
coordinates). Since Γgd and Γf are D-sets, the same is true for E.

Similarly, F can be represented as a projection of the intersection of the sets

gd(u, xn+1 + 1, t) = w1,

gd(u, xn+1, t) = w2,

g(x1, . . . , xn+1, w2) = w1.

These are D-sets, because Γg and Γgd are D-sets. ��
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3.4. Proof of Proposition 3.1. Recall that it remains to verify the following
assertion: Let h be the function defined recursively from functions f and g by
the equations

h(x1, . . . , xn, 1) = f(x1, . . . , xn),
h(x1, . . . , xn, k + 1) = g(x1, . . . , xn, k, h(x1, . . . , xn, k));

then the graph Γh,

〈x1, . . . , xn+1, η〉 ∈ Γh ⇔ η = h(x1, . . . , xn+1),

is a D-set whenever the graphs Γf and Γg are D-sets.
First step. We set Γh = Γ1∪Γ2, where xn+1 = 1 on Γ1 and xn+1 � 2 on Γ2.

Since

〈x1, . . . , xn+1, η〉 ∈ Γ1 ⇔ xn+1 = 1 and η = f(x1, . . . , xn),

it follows that Γ1 is the intersection of Γf ×Z+ and a D-set, and therefore is a
D-set. It remains to verify that Γ2 is also a D-set.

Second step. In the (x1, . . . , xn+1, η, u, t)-coordinate space we consider the
sets

E1 : η = gd(u, xn+1, t),
E2 : gd(u, 1, t) = f(x1, . . . , xn),
E3 : xn+1 > 1, gd(u, k, t) = g(x1, . . . , xn, k − 1, gd(u, k − 1, t))

for all 2 � k � xn+1.

It is easy to see that Γ2 = pr ∩3
i=1 Ei. In fact, as in §4 of Chapter V, we obtain

inclusion in one direction by comparing E2 and E3 with the inductive definition
of h, and in the other direction by suitably choosing the parameters u and t in
Gödel’s function. Thus, it remains to show that the Ei are D-sets.

Third step. E1 is the graph of gd with some additional coordinates. E2 was
shown to be a D-set in the proof of Corollary 3.3.

Finally, E3 is “almost” obtained from the set F in Corollary 3.3 by applying
the bounded universal quantifier to the xn+1-coordinate. More precisely (for
brevity, we ignore the η-coordinate);

〈x1, . . . , xn+1, u, t〉 ∈ E3 ⇔ ∀k ∈ [2, xn+1], 〈x1, . . . , xn, k − 1, u, t, 〉 ∈ F
⇔ ∀k ∈ [1, xn+1 − 1], 〈x1, . . . , xn, k, u, t, 〉 ∈ F.

Consequently, if we apply to F the bounded universal quantifier in the xn+1-
coordinate, we obtain a D-set that is the same as E3 with the xn+1-coordinates
of all its points decreased by 1. So it remains to see that the operation of shifting
back by 1 preserves the property of “being a D-set,” and this follows easily from
the definitions. The proof is complete. ��
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4 The Reduction

4.1. The next three sections are devoted to proving that the class of D-sets
coincides with the class of Diophantine sets. As noted at the end of §2, it
suffices to show that the class of Diophantine sets is closed with respect to the
bounded universal quantifier.

Let f(x1, . . . , xn, k, y1, . . . , ym) be any nonconstant polynomial with integer
coefficients. f will be fixed for the duration of this section. Let d be the degree
of f , and let c be the sum of the absolute values of its coefficients.

We define the set E by the condition

〈x1, . . . , xn, y〉 ∈ E ⇔ ∀k � y ∃〈y1, . . . , ym〉,
f(x1, . . . , xn, k, y1, . . . , ym) = 0.

We want to show that E is Diophantine. In this section we prove the following
reduction step, which is due to Davis, Putnam, and Robinson.

4.2. Proposition. E is Diophantine if the following three sets are Diophantine:

x1 = xx3
2 ;

x1 = x2!;

x1

x2
=

(
x3/x4

x5

)
, x3 � x4x5,

where
(
n
k

)
= n(n− 1) · · · (n− k + 1)/k! is the “binomial coefficient.”

The proof of this and all subsequent propositions of this type follows a
standard pattern. To show that E is Diophantine, we introduce auxiliary sets
Ei with the following properties:

(a) E =
N⋂
i=1

Ei;

(b) the Ei are Diophantine.

But usually we are not able to establish directly that all the Ei are Diophantine,
so we apply the same procedure to certain of the Ei. Thus, the proof that E is
Diophantine has a treelike pattern.

The exposition of each step will consist of the following stages: the
introduction of auxiliary variables, which disappear when we project; explicit
construction of the sets Ei; the proof of the inclusion E ⊂ pr ∩Ni=1 Ei; and the
proof of the inclusion E ⊃ pr ∩Ni=1 Ei.

4.3. Proof of Proposition 4.2. We denote the auxiliary variables by the
symbols Y , N , K, Y1 , . . . , Ym. We introduce the sets Ei in the
〈x1, . . . , xn, y, Y,N,K, Y1, . . . , Ym〉-space by the following relations:

E1 : N � c · (x1 · · ·xnyY )d, Y < Y1, . . . , Y < Ym
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(intuitively speaking, the right side of the first inequality gives a rough estimate
for the value of the polynomial f at the point 〈x1, . . . , xn, y, y1, . . . , ym〉 if all
yi � Y ).

E2 : 1 +KN ! =
y∏
k=1

(1 + kN !)

(this is a “large modulus”; f = 0 will be replaced by divisibility by this
modulus).

E3 : f(x1, . . ., xn,K, Y1, . . . , Ym) ≡ 0 mod(1 +KN !);

E3+i :
∏
j<Y

(Yj − j) ≡ 0 mod(1 +KN !), i = 1, . . . ,m.

We define the set E
′

as ∩m+3
i=1 Ei.

Proof of the inclusion E ⊂ pr E
′
. Given a point 〈x1, . . . , xn, y〉 ∈ E, we

must choose values for the other coordinates so that the relations E1, . . . , Em+3

are fulfilled.
By the definition of E, each point 〈x1, . . . , xn, k〉, k � y, can be lifted to the

0-level of f :
f(x1, . . . , xn, k, y1k, . . . , ymk) = 0.

For Y we take the maximum of y and the yik. Then, as before, we find the Yi
and N by solving the system of Gödel equations

gd(Yi, k,N !) = yik, for all 1 � k � y.

The proof of Gödel’s lemma shows that the Yi and N may be taken arbitrarily
large, in particular, so as to satisfy E1. The number K is uniquely determined
by E2.

All the choices have now been made. The relation E3+i holds because by
the definition of Yi and gd, we can find a number Yi − j with j � Y , namely
j = yik, such that Yi− j ≡ 0 mod(1+kN !), for every k � y. Hence, the product
on the left in E3+i is divisible by all the 1 + kN !, 1 � k � y, which are pairwise
relatively prime, since N � y by E1. Therefore, this product is divisible by
1 +KN !.

Finally, to verify E3 we note that E2 implies the congruence K ≡ k mod
(1 + kN !), 1 � k � y, because (1 + KN !)− (1 + kN !) ≡ 0 mod(1 + kN !). But
then, since yik ≡ Yi mod(1 + kN !) by our choice of Yi, we find that

f(x1, . . . , xn,K, Y1, . . . , Ym) ≡ f(x1, . . . , xn, k, yik, . . . , ymk)
≡ 0 mod(1 + kN !).

Since the moduli 1 + kN ! are pairwise relatively prime, this congruence
implies E3.

Proof of the inclusion pr E
′ ⊂ E. Given a point

〈x1, . . . , xn, y, Y,N,K, Y1, . . . , Ym〉
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whose coordinates satisfy the relations E1, . . . , Em+3, we must find a vector
〈y1k, . . . , ymk〉 for each k � y such that

f(x1, . . . , xn, k, y1k, . . . , ymk) = 0.

To do this we let pk denote any prime divisor of 1 + kN !, and we set

yik = the remainder when Yi is divided by pk.

We claim that these yik give us the required equality. In fact, E3 implies that
f(x1, . . . , xn, k, y1k, . . . , ymk) ≡ 0 mod pk. It suffices to show that the number
on the left is less than pk. We have

pk divides
∏
j�Y

(Yi − j) byE3+i

⇒ pk divides Yi − j for some j � Y

⇒ yik = the remainder when Yi is divided by pk � Y

⇒ f(x1, . . . , xn, k, y1k, . . . , ymk) � c(x1 · · ·xnyY )d � N < pk,

where the second inequality in the last line follows from E1, and the third
inequality follows because pk divides 1 + kN !.

Conclusion of the proof. It remains to show that the sets E1, . . . , Em+3

are Diophantine if the sets in Proposition 6.1 are Diophantine. In fact, if we
trivially introduce new variables and make substitutions, we can first reduce
the verification that all the Ei are Diophantine to showing that the following
sets are Diophantine:

x1 = x2!;

x1 =
∏
k�x2

(1 + kx3);

x1 =
∏
j�x3

(x2 − j), x2 > x3.

It then remains to notice that the second of these relations can be written in
the form

x1 = xx2
3

[
1
x3

+ x2

x2

]
,

and the third relation can be written as

x1 = x3!
(
x2 − 1
x3

)
, x2 > x3.

This completes the proof of Proposition 4.2. ��
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5 Construction of a Special Diophantine Set

5.1. In this section we begin the proof that the three sets in Proposition 4.2
are Diophantine. In order that the reader may better appreciate this stage in
the proof, we mention that the most troublesome obstacle here is the rapid
growth of one of the coordinates in comparison to the others (for example,
x1 = x2!). J. Robinson had the following key idea. She proved that if we
know that any specific set in (Z+)2 is Diophantine and has one coordinate that
grows faster than any power of the other but slower than, say, xx (for example,
exponentially), we may then conclude that all enumerable sets are Diophantine.
After this, Matiyasevič and Čudnovskǐı were able to show that a certain set of
that type (connected with Fibonacci numbers) is Diophantine. For a history of
the question, see Matijasevič’s article “Diophantine Sets” in Uspehi Mat. Nauk,
vol. XXVII, No. 5 (1972) (translated in Russian Math. Surveys).

In this section we give a construction that is an improved version of
the original construction. Its idea is based on the following observation. Let
x2 − dy2 = 1 be Pell’s equation (where d ∈ Z+ is not a perfect square). Its
solutions 〈x, y〉 ∈ (Z+)2 form a semigroup with composition law

(x1 + y1
√
d)(x2 + y2

√
d) = x3 + y3

√
d.

This is a cyclic semigroup. That is, let 〈x1, y1〉 be the solution with the least first
coordinate. Then any other solution has the form 〈xn, yn〉, where n ∈ Z+, and

xn + yn
√
d = (x1 + y1

√
d)n.

We call n the number of the solution 〈xn, yn〉.
The coordinates xn and yn grow exponentially with n, so that the set of

solutions of Pell’s equation, and also the projections of this set on the x- and
y-axes, are Diophantine sets having logarithmic density. This is not yet enough:
we still have the problem of including the solution number n among the
coordinates of a Diophantine set. Only then can we apply Robinson’s tech-
nique. This is what will be done below.

5.2. Notation. We consider Pell’s equation with variable d. Its first solution
generally varies as a function of d in an uncontrollable fashion, so that it is
convenient to choose only those d whose first solutions have the simple special
form 〈a, 1〉, a ∈ Z+. Obviously, then d = a2 − 1.

We shall call the equation x2− (a2− 1)y2 = 1 the a-equation. We define the
two sequences xn(a) and yn(a) as the coordinates of its nth solution:

xn(a) + yn(a)
√
a2 − 1 =

(
a+

√
a2 − 1

)n
.

For each n, a formal definition of xn(a) and yn(a) as polynomials in a can easily
be given by induction on n. Then the expressions xn(a) and yn(a) will make
sense for all n ∈ Z and a ∈ C. In particular,

xn(1) = 1, yn(1) = n;

and all the formulas given below remain true.
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The basic result of this section is the following:

5.3. Proposition. The set

E : y = yn(a), a > 1;

in the 〈y, n, a〉-space is Diophantine.

The proof uses the elementary number-theoretic properties of the sequences
xn(a) and yn(a), most of which will be verified at the end of the section (see
5.8). The idea for determining n in a Diophantine way from 〈y, a〉 is to observe
that yn(a) ≡ n mod(a − 1) (Lemma 5.4). This uniquely determines n as long
as n < a− 1. To pass to the general case, we introduce an auxiliary A-equation
with A large, and find formulas for its nth solution (using y) in which n appears
in only a Diophantine context.

Formally, the proof that E is Diophantine follows the pattern described in
4.2. In addition to the basic variables y, n, a, we introduce six auxiliary variables:
x, x1, y1, A, x2, y2. We set

E1 : y � n, a > 1;

E2 : x2 − (a2 − 1)y2 = 1;

E3 : y1 ≡ 0 mod 2x2y2;

E4 : x2
1 − (a2 − 1)y2

1 = 1;

E5 : A = a+ x2
1(x2

1 − a);

E6 : x2
2 − (A2 − 1)y2

2 = 1;

E7 : y2 − y ≡ 0 mod x2
1;

E8 : y2 ≡ nmod 2y.

Let E
′

= ∩8
i=1Ei. We show that pr E

′
= E.

The inclusion E ⊂ prE
′
. Given 〈y, n, a〉 ∈ E, we must find values for the

other variables such that E1, . . . , E8 hold. As before, we shall not introduce any
new symbols for these values; after we choose, say, a value for x, the letter x
will become the name for this value.

E1 is automatically satisfied: yn(a) � n for all a � 1, n � 1 (induction on
n). We find x uniquely from E2 : x = xn(a). We take 〈x1, y1/2x2y2〉 to be
any solution of the Pell equation X2 − (a2 − 1)(2x2y2)2Y 2 = 1; this gives E4.
A is found uniquely from E5. We take 〈x2, y2〉 to be the nth solution of the
A-equation. Now all choices have been made. To verify E7 and E8 we need two
lemmas.

5.4. Lemma. yk(a) ≡ k mod(a− 1).

5.5. Lemma. If a ≡ b mod c, then yn(a) ≡ yn(b) mod c.

These lemmas will be proved in 5.8.
We use these lemmas as follows. From E5 we obtain

A = a+ (1 + (a2 − 1)y2
1)(1 + (a2 − 1)y2

1 − a) ≡ 1 mod 2y,
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because of E3. Lemma 5.4 then gives y2 = yn(A) ≡ n mod 2y; this is E8.
Lemma 5.5 gives yn(A) ≡ yn(a) mod x2

1 (because of E5); this is E7.
The inclusion pr E

′ ⊂ E. From the relations E1, . . . , E8 we have only to
prove that n is the number of the solution 〈x, y〉. Note that n occurs only
in E8.

For the time being we let N,N1, and N2 denote the numbers of the solutions
〈x, y〉, 〈x1, y1〉, and 〈x2, y2〉, respectively. We shall prove that

n ≡ N or n ≡ −N mod 2y.

Since we also have y � n (by E1) and y � N (by the definition of N), it follows
that n = N , as required. The number N2 will be the “stepping stone” to get
from n to N .

First of all, as before, it follows from E5 that A ≡ 1 mod 2y, and then it
follows from the definition of N2 and Lemma 5.4 that y2 ≡ N2 mod 2y. But by
E8 we have y2 ≡ n mod 2y; hence

N2 ≡ n mod 2y.

Next, A ≡ a mod x2
1 by E5, and then y2 = yN2(A) ≡ yN2(a) mod x2

1 by
Lemma 5.5. Using E7, we have y = yN(a) ≡ y2 mod x2

1. Hence

yN (a) ≡ yN2(a) mod x2
1.

We now need two more lemmas, which will be proved in 5.8.

5.6. Lemma. If yi(a) ≡ yj(a) mod xn(a), where a > 1, then either i ≡ j or
i ≡ −j mod 2n.

5.7. Lemma. If yi(a)2 divides yj(a), then yi(a) divides j.

If we apply Lemma 5.6 with N , N2, and N1 in place of i, j, and n, and use the
last congruence proved, we obtain

N ≡ ±N2 mod 2N1.

If we apply Lemma 5.7 with N and N1 in place of i and j, and use E3, we
obtain y|N1. Hence

N ≡ ±N2 mod 2y,

and since we have already shown that N2 ≡ n mod 2y, this completes the proof.
��

5.8. Proof of the Lemmas. We shall write xn and yn instead of xn(a) and
yn(a). Using the formula

xnk + ynk
√
a2 − 1 =

(
xn + yn

√
a2 − 1

)k
,
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we find that

ynk =
∑
j�k

j≡1(mod 2)

(
k
j

)
xk−jn yjn(a2 − 1)

(j−1)/2
.

In particular,

ynk ≡ kxk−1
n yn mod (a2 − 1),

which gives Lemma 5.4 if we set n = 1. In addition, we have

ynk ≡ kxk−1
n yn mod y3

n.

If we replace nk, k, and n by n, n/k, and k, respectively, we obtain

yn ≡
n

k
x
n/k−1
k yk mod y3

k.

Since xk and yk are relatively prime, we have

yn ≡ 0 mod y2
k ⇒

n

k
≡ 0 mod yk ⇒ n ≡ 0 mod yk,

which gives Lemma 5.7.

If we write yn(a) as a polynomial in a with integer coefficients whose degree
and coefficients depend only on n, we immediately obtain Lemma 5.5. It remains
to prove Lemma 5.6.

First of all, the equation

xn±m +
√
a2 − 1 yn±m =

(
xn +

√
a2 − 1 yn

)(
xm ±

√
a2 − 1 ym

)
gives us

xn±m = xnxm ± (a2 − 1)ynym,
yn±m = ±xnym + xmyn.

Hence,

y2n±m = yn+(n±m) ≡ xn±myn mod xn ≡ ±(a2 − 1)y2
nym mod xn

≡ ∓ym mod xn,

and, similarly,

y4n±m = y2n+(2n±m) ≡ −y2n±m mod xn ≡ y±m mod xn.

This means that the class yk mod xn has period 4n as a function of k, and within
[1, 4n] its behavior is determined by its values on the first quarter-period [1, n]:

y2n±m ≡ ∓ym, y±m ≡ ±ym, for 1 � m � n.

If a � 3, it is clear that Lemma 5.6 follows from these facts and from the
inequality ym < 1

2xn for 1 � m � n, which, in turn, follows because

4y2
m < (a2 − 1)y2

n + 1 = x2
n.

If a = 2, then we only have ym < 1
2xn for m � n− 1, but this is still enough

to complete the proof of the lemma in this case. ��
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6 The Graph of the Exponential Is Diophantine

6.1. Proposition. The set
E : m = an

in the 〈m, a, n〉-space is Diophantine.

Proof. It suffices to show that E0 = E ∩ {a|a > 1} is Diophantine. If a > 1,
we easily obtain by induction on n that

(2a− 1)n � yn+1(a) � (2a)n,

in the notation of §5. Hence, for any N � 1 we have

an
(

1− 1
2Na

)n
=

(2Na− 1)n

(2N)n
� yn+1(Na)

yn+1(N)
� (2Na)n

(2N − 1)n

= an
(

1− 1
2N

)−n
.

Thus, if we choose N large enough so that both(
1− 1

2N

)−n
− 1 <

1
an

and 1−
(

1− 1
2Na

)n
<

1
an
,

then we obtain an = [yn+1(Na)/yn+1(N)] (where the brackets here and below
denote the integral part of a number). E0 is therefore a projection of the set E1:

a > 1,
0 � yn+1(Na)− yn+1(N)m < yn+1(N),

N > ?,

where a suitable lower bound for N must be inserted in place of ?, in such a
way as to keep the last relation Diophantine. An elementary calculation shows
that it suffices to set N > 4n(y + 1). The results in §5 then imply that E1 is
Diophantine if we trivially introduce the auxiliary relations

y
′

= yn+1(N) and y
′′

= yn+1(Na). ��

7 The Factorial and Binomial Coefficient Graphs
Are Diophantine

In this section we carry out the last series of arguments.

7.1. Proposition. The set

E : r =
(
n
k

)
, n � k,

in the 〈r, k, n〉-space is Diophantine.



222 VI Diophantine Sets and Algorithmic Undecidability

Here, by definition, ( nk ) = n(n − 1) · · · (n − k + 1)/k!. We shall need the
following lemma.

7.2. Lemma. If u > nk, then ( nk )= the remainder when [(u+1)n/uk] is divided
by u.

Proof. We have

(u + 1)n/uk =
n∑

i=k+1

(
n
i

)
ui−k +

(
n
k

)
+
k−1∑
i=0

(
n
i

)
ui−k.

The first sum is divisible by u, and the last sum is less than 1 if u > nk. ��

7.3. Proof of Proposition 7.1. We introduce the auxiliary variables u and
v, and take the relations

E1 : u > nk;

E2 : v = [(u+ 1)n/uk];
E3 : r ≡ v mod u;
E4 : r < u;
E5 : n � k.

Lemma 7.2 immediately implies that E = pr∩5
i=1Ei. E1 is Diophantine because

of Proposition 6.1; E3, E4, and E5 are obviously Diophantine. It also becomes
obvious that E2 is Diophantine if we write E2 in the form

(u+ 1)n � ukv < (u + 1)n + uk

and again use Proposition 6.1. This completes the proof. ��

7.4. Proposition. The set E : m = k! is Diophantine.

7.5. Lemma. If k > 0 and n > (2k)k+1, then k! =
[
nk

/
( nk )

]
. (This is proved

by some simple estimates.)

Proof of Proposition 7.4. We take the auxiliary variable n and the relations

E1 : n > (2k)k+1;

E2 : m =
[
nk/

(
n
k

)]
.

The rest is obvious (using Propositions 6.1 and 7.1). ��
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7.6. Proposition. The set

E :
x

k
=

(
p/q
k

)
, p > qk,

in the 〈x, y, p, q, k〉-space is Diophantine.

The proof that follows is a slightly more complicated version of the argument
in 7.2 and 7.3.

7.7. Lemma. Let a > 0 be an integer such that a ≡ 0 mod qkk! and a >
2p−1pk+1. Then(

p/q
k

)
= a−1

[
a2k+1(1 + a−2)p/q

]
− a

[
a2k−1(1 + a−2)p/q

]
.

This is proved using the binomial Taylor series for (1 + a−2)p/q . The
inequality a > 2p−1pk+1 allows us to throw away all the terms in the first
sum starting with the (k + 1)th and all the terms in the second sum starting
with the kth when we take the integral part. The congruence a ≡ mod qkk!
ensures that the partial sums are integers. ��

7.8. Proof of Proposition 7.6. We use the auxiliary variables a, u1, u2,
and v, and the following relations:

E1 : a ≡ 0 mod qkk!;

E2 : a > 2p−1pk+1;

E3 : u1/u2 = a−1
[
a2k+1(1 + a−2)p/q

]
;

E4 : v = a
[
a2k−1(1 + a−2)p/q

]
;

E5 : xu2 = y(u1 − vu2).

It follows from Lemma 7.7 that E = pr ∩5
i=1 Ei. E1 and E2 are immediately

seen to be Diophantine from Propositions 6.1 and 7.1. E3 and E4 are shown to
be Diophantine just as at the end of 7.3, except that this time we must raise
the inequalities to the qth power after clearing denominators. E5 is obviously
Diophantine.

This concludes the proof of Theorem 1.2, that enumerable sets coincide with
Diophantine sets. ��

8 Versal Families

Versal families were defined and first used in Section 5.7 of Chapter V. The pur-
pose of this section is to prove their existence, using the result that enumerable
sets are Diophantine (Theorem 1.2).

8.1. Theorem. For any m � 0, versal enumerable families of m-sets and
m-functions over the base Z+ exist and can be effectively constructed.
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Proof. We divide the proof into several steps. Recall that τ (2) : (Z+)2 ∼⇒ Z+

is the primitive recursive isomorphism constructed in §4 of Chapter V, and
〈t(2)1 , t

(2)
2 〉 is its inverse. We shall write t1 and t2 for brevity.

(a) A versal family of polynomials in Z+[x1, x2, x3, . . . ]. We define polyno-
mials f [l] ∈ Z+[x1, x2, x3, . . . ] by recursion on l ∈ Z+, l � 4:

f [1] = f [2] = f [3] = 1;
f [4k] = k;

f [4k + 1] = xk;
f [4k + 2] = f [t1(k)] + f [t2(k)];
f [4k + 3] = f [t1(k)]f [t2(k)].

The definition is correct, since t1(k), t2(k) < 4k + 2. The image of the map
k �→ f [k] coincides with all of Z+[x1, x2, x3, . . . ], since it contains Z+ (in the
4k-places) and all the xk (in the 4k + 1-places), and, whenever it contains two
polynomials f [k1] and f [k2], it contains their sum (in the 4τ (2)(k1, k2)+2-place)
and their product (in the 4τ (2)(k1, k2)+3-place). (Compare with the numbering
of constructible sets by ordinals in Chapter V.)

(b) Construction of a versal 1-family over Z+. Let Ek be the projection onto
the x1-coordinate of the 0-level of the polynomial f [t1(k)] − f [t2(k)]. Since all
the elements of Z[x1, x2, x3, . . . ] can be represented as such a difference, it is
clear that the family {Ek} contains all enumerable sets.

(c) {Ek} is enumerable. We must show that the total space E = {〈i, j〉|i ∈
Ej} ⊂ Z+ × Z+ is enumerable. We write the condition i ∈ Ej in the form of
an L1-type formula, in which all the quantified variables take values in Z+. We
use the fact that f [t1(j)]− f [t2(j)] ∈ Z[x1, . . . , xj ]. We have

〈i, j〉 ∈ E ⇔i ∈ Ej ⇔ ∃x1 · · · ∃xj(x1 = i ∧ f [t1(j)] = f [t2(j)])
⇔∃t((∃x1 · · · ∃xj ∀k � j(f [k] = Gd(k, t)))
∧Gd(5, t) = i ∧Gd(t1(j), t) = Gd(t2(j), t)),

where Gd(k, t) is Gödel’s function (see §4 of Chapter V). Furthermore, by
the definition of f [k],

∃x1 · · · ∃xj∀k � j(f [k] = Gd(k, t))
⇔ ∀k � j((k � 3 ∧Gd(k, t) = 1) ∨ ∃l((k = 4l ∧Gd(k, t) = l)

∨ (k = 4l+ 2 ∧Gd(k, t) = Gd(t1(l), t) + Gd(t2(l), t))
∨ (k = 4l + 3 ∧Gd(k, t) = Gd(t1(l), t)Gd(t2(l), t)))).

Here the part of the formula after ∃l defines a decidable set in 〈k, t, l〉-space. The
quantifier ∃l projects this set onto the 〈k, t〉-coordinates, thereby taking it to
an enumerable set, and the bounded quantifier ∀k � j preserves enumerability
(see §2). Returning to the formula that defines E, we find that the set we have
constructed so far must be intersected with two other decidable sets and then
projected along the t-axis, so that the result is again enumerable.
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(d) Construction of a versal m-family over Z+. The case m = 0 is trivial,
and the case m = 1 has already been discussed. The case m � 2 reduces to the
case m = 1 using the isomorphism τ (m) : (Z+)m ∼⇒Z+. In fact, let Ek = E

(1)
k

be a versal 1-family, and set E(m)
k = (τ (m))−1(E(1)

k ). The family {E(m)
k } is

enumerable because

E(m) = {〈x, k〉|x ∈ E(m)
k } =

{
〈(τ (m))−1(x), k〉|x ∈ E(1)

k

}
= (τ (m), pr11)−1E(1).

(e) Construction of a versal family of 1-functions. We take a versal 2-family
{E(2)

k } with total space

E(2) = {〈x, y, k〉|〈x, y〉 ∈ E(2)
k } ⊂ (Z+)3.

Let g(x, y, k, z) be a primitive recursive function such that the projection of its
1-level onto the 〈x, y, k〉-coordinates coincides with E(2). We set

f(x, k) = t
(2)
1

(
min

{
u|g(x, t(2)1 (u), t(2)2 (u)) = 1

})
.

We claim that {fk|fk(x) = f(x, k)} is a versal family of 1-functions. The total
function is obviously partial recursive. We need only verify that every partial
recursive 1-function f occurs in the family.

Let Γf be the graph of f , and let Γf = E
(2)
k0

, where k0 ∈ Z+. We show that
f = fk0 . In fact,

〈x, f(x)〉 ∈ Γf = E
(2)
k0
⇔ 〈x, f(x), k0〉 ∈ E(2) ⇔ ∃z ∈ Z+,

g(x, f(x), k0, z) = 1.

Among the z ∈ Z+ that make g(x, f(x), k0, z) = 1, we choose the z for which
the number u given by 〈f(x), z〉 = 〈t(2)1 (u), t(2)2 (u)〉 is minimal. For this u we
have fk0(x) = t

(2)
1 (u) = f(x), which proves the claim.

(f) Construction of a versal family of m-functions. The case m = 0 is trivial.
If {f (1)

k } is a versal family of 1-functions, then for m � 2 we set

f
(m)
k (x1, . . . , xm) = f

(1)
k (τ (m)(x1, . . . , xm)),

thereby obtaining a versal family of m-functions.
The theorem is proved. ��

8.2. The choice of versal families is far from unique. If m > 1, there does not
exist a versal family that contains each function or each set exactly once (i.e.,
a universal family). Nevertheless, there are important methods of extracting
invariant information from data about the position of a function or set in a
versal family. The next section is devoted to this question.
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9 Kolmogorov Complexity

9.1. Let u = {uk} be an enumerable family of m-functions over Z+, and let f
be a partial recursive m-function. We define the complexity of f relative to the
family u as

Cu(f) =

{
min{k|uk = f}, if such a k exists;
∞, otherwise.

We call the enumerable family u (asymptotically) optimal if for any other
enumerable family v, there exists a constant cu,v > 0 such that for every partial
recursive m-function f we have

Cu(f) � cu,vCv(f).

If we take v to be any versal family, we see that an optimal family must be
versal, i.e., Cu(f) never takes the value ∞.

9.2. Theorem (Kolmogorov)

(a) For any m ≥ 0, optimal families exist and can be effectively constructed.
(b) If u and v are optimal families of m-functions, then for any m-function f,

c−1
v,u � Cu(f)/Cv(f) � cu,v.

9.3. Remarks

(a) The measure of complexity Cu(f) involves the following intuitive ideas.
In order to define any enumerable family u, it is necessary to give only a finite
amount of information, for example, a program that semicomputes the total
function of u. Therefore, in order to define a specific function f that occurs in
the family u, it suffices to give no more than

log2 Cu(f) + const

bits of information, namely, the program for u and the number of f in u.

(b) A family being optimal means that it can be used to compute any
m-function, and that the loss in using it rather than any other family to compute
a function is bounded by a constant that does not depend on the function.

(c) Finally, the inequality 9.2(b), which follows trivially from the definition
of an optimal family, shows that to within an additive term that is bounded in
absolute value, the logarithmic measure of complexity

Ku(f) = [log2 Cu(f)] + 1 (where“[ ]” = “integral part”)

does not depend on the choice of the optimal family u, and so is an asymptotic
invariant of f .
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9.4. Proof of Theorem 9.2. We first choose a recursive embedding θ :
Z+ × Z+ → Z+ that has a recursive inverse function and that satisfies the
following linear growth condition in one of its arguments:

θ(k, j) � k · φ(j), for all k, j ∈ Z+ and some suitable φ : Z+ → Z+.

For example, we could let θ1(k, j) = (2k− 1)2j with φ1(j) = 2j+1, or, following
Kolmogorov, we could let

θ2(k1k2 · · ·kr, j1j2 · · · js) = j1j1 · · · jsjs01k1 · · · kr,

where kα, jβ ∈ {0, 1} and the bar denotes the binary expansion of a number.
Here φ2(j) < const · j2, so that this function grows more slowly. (See also
Section 9.8 below.)

Now let U be any versal family of (m + 1)-functions. We define a family u
of m-functions by setting

u(x1, . . . , xm, k) = U(x1, . . . , xm, θ
−1(k)).

We show that the family u is optimal, with the following bound for the con-
stants:

cu,v � φ(CU (v)).

In fact, let f be a recursive m-function. It suffices to consider the case in which
f occurs in the family v. Then

f(x1, . . . , xm) = v(x1, . . . , xm;Cv(f))
= U(x1, . . . , xm, Cv(f);CU (v))
= u(x1, . . . , xm, θ(Cv(f), CU (v))),

so that

Cu(f) � θ(Cv(f), CU (v)) � Cv(f)φ(CU (v)).

The theorem is proved. ��

9.5. Example. A 0-function f can be identified with the single value it takes,
i.e., with a positive integer n. In this case, Theorem 9.2 gives us an almost
invariant complexity Cu(n) for the integers. We have:

(a) Cu(n) � const·n for all n, since the function “n” appears in the nth place
in the simplest versal family un(·) = n.

(b) C(n) ∼ min{2j−1(2k−1)|n is the kth value of the jth function in some versal
family of 1-functions}. (We write f ∼ g if f and g have the same domain
of definition, and f � const·g and g � const·f for suitable constants. In
relations of the type Cu(fk) ∼ g(k), we often omit the designation of the
optimal family u, which we take to be arbitrary, but fixed.)
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It is clear from (b) that the complexity of the numbers pn (the nth prime),
n2, or

nn
n···

n

(n times)

as n → ∞ is asymptotically no greater than const · n, since each of these is
the nth value of a fixed recursive function. In 9.7(b) below, we shall lower this
estimate to const · C(n).

Instead of integers, Kolmogorov and his collaborators considered finite
binary sequences and constructed a theory that showed that the most com-
plex binary sequences are those that approach random behavior. See the survey
article by A. K. Zvonkin and L. A. Levin in Uspehi Matem. Nauk, vol. XXV,
No. 6 (1970) (translated in Russian Mathematical Surveys), which contains a
large bibliography.

9.6. Proposition.

(a) Let

F = f0(f1(x1, . . . , xm), . . . , fn(x1, . . . , xm), xm+1, . . . , xp),

where the fi are recursive functions. Then

C(F ) � const ·
n∏
i=1

C(fi)

(
log

n∏
i=1

C(fi)

)n−1

if f0 is fixed and fi runs through all possible m-functions. Here const
depends on f0 and on the families used to compute the complexity, but does
not depend on f1, . . . , fn.

(b) If f0 is also allowed to vary, then
∏n
i=1 must be replaced by

∏n
i=0 and logn−1

must be replaced by logn on the right.

9.7. Special cases

(a) If, for example, we set f0 = sum2 or prod2, then we have

C(f1 + f2), C(f1f2) � const C(f1)C(f2) log(C(f1)C(f2)).

(b) If we set n = 1 and m = 0, we find that for any enumerable family {fk},

C(f(k, x1, . . . , xp)) � const C(k).

9.8. Proof of Proposition 9.6. First of all, for every n � 1 we define the
following recursive bijection with a recursive inverse:

θ(n)(k1, . . . , kn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
the index of the n-tuple 〈k1, . . . , kn〉 if we order n-tuples

according to increasing
n∏
i=1

ki, and in alphabetical order

for fixed
n∏
i=1

ki.
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It is easy to see (by induction on n) that

θ(n)(k1, . . . , kn) � const
n∏
i=1

ki

(
log

n∏
i=1

ki

)n−1

.

We define the function Θ : (Z+)n+1 → Z+ as follows:

Θ(l1, . . . , ln+1) = θ(θ(n)(l1, . . . , ln), ln+1),

where θ is as described in 9.4.
We now consider two optimal families v(x1, . . . , xp, l) and u(x1, . . . , xm, k) of

p-functions andm-functions, respectively. We use these two families to construct
the families

W (x1, . . . , xp; k1, . . . , kn, l)
= v(u(x1, . . . , xm, k1), . . . , u(x1, . . . , xm, kn), xm+1, . . . , xp, l),

w(x1, . . . , xp, k) = W (x1, . . . , xp,Θ−1(k)).

The function F occurs in the

θ
(
θ(n)(Cu(f1), . . . , Cu(fn)), Cv(f0)

)
place in the family w. Then the estimate θ(k, j) � k · φ(j), along with the
estimate for θ(n), gives assertion (a).

We similarly obtain (b) if we replace Θ by θ(n+1) in the definition of w. ��

Remark. The function θ(n) gives us the most economical estimate for C(F )
that is symmetrical in the C(f1), . . . , C(fn). In specific situations it might make
sense to improve the estimate in certain of the C(fi) at the expense of worsening
the estimate with respect to the others; this is done by suitably changing θ. For
example, Kolmogorov’s θ gives

C(f1 + f2) � const C(f1)C(f2)2,

which is better than

const C(f1)C(f2) log(C(f1)C(f2))

if C(f2) grows much more slowly than C(f1).

9.9. Theorem. The function C(f) is not computable. More precisely, let g(k)
be any unbounded partial recursive function, and let {fk} be any enumerable
family. Then it is false that C(fk)|D(g) ∼ g(k).

Thus, C(fk) can be computable (even up to ∼) only on a set of indices k such
that there are only finitely many different functions among the functions fk;
otherwise, C(fk) is not bounded on this set.
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Proof. Suppose that C(fk)|D(g) ∼ g(k). We show that there exists a general
recursive function h : Z+ → Z+ whose image is contained in D(g) and such that
g ◦ h is monotonically increasing. We then obtain a contradiction as follows.
By 9.7(b), for all k we have

C(fh(k)) � const C(k),

and, by our assumption and by the fact that g ◦ h is increasing,

C(fh(k)) � const g(h(k)) � const · k.

But these two inequalities are incompatible, because lim inf C(k)/k = 0 (for
example, C(k2)/k2 � const/k).

It remains to construct h. We choose a general recursive bijection h1 : Z+ ∼⇒
D(g), using Proposition 5.6 of Chapter V, and we set

E = {k|∀i < k, g(h1(i)) < g(h1(k))}.

This set is decidable and infinite, and g ◦ h1 is an increasing function on E.
Let h2 : Z+ → E be an increasing general recursive bijection (again using

Proposition 5.6 of Chapter V). Then h = h1 ◦ h2 has the necessary properties.
The theorem is proved. ��

9.10. Remarks

(a) Theorem 9.9 shows that computing complexity is a problem demanding
creativity: even if we find the number of a place where f occurs in an optimal
family {uk}, there is no algorithm that could tell us whether this function occurs
even sooner.

(b) Since C(k) �= C(l) ⇒ k �= l, it follows that for all x and B,

card {y|y � x,C(y) � x/B} � x/B,

i.e., most numbers have a large complexity.
Nevertheless, it is not possible to give effectively a sequence of numbers

that asymptotically have maximal complexity. More precisely, let {ki} be any
increasing sequence with C(ki) � ki/B for some constant B. Then the set {ki}
does not contain a single infinite enumerable set E. Otherwise, we would be
able to find an increasing general recursive function h : Z+ → E, and would
obtain a contradiction, as in Theorem 9.9.

(c) Let u = {uk} be any optimal family of m-functions. The “moments of
first appearance” {k|∀i < k, ui �= uk} actually form a sequence of asymptotically
maximal complexity, since, by the definition and by 9.7(b), they satisfy

k = Cu(uk) � const · C(k).

Thus, we might say that in an optimal family the functions first appear “at
random moments.”

The problem of computing C(uk) is complicated by the fact that, at least in
the specific families in the proof of Theorem 9.2, any function appears infinitely
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often, so that if we are not lucky we might first notice the function arbitrarily
far out from the place where it first appeared.

(d) Finally, we mention that at least one essential aspect of the complexity
of computations has not been touched upon in our discussion of Cu. Namely,
log2 C(k) measures the length of a program that could compute k, but says noth-
ing about the time it takes for such a program to work, let alone the possibilities
for shortening the time by performing parallel computations, lengthening the
program, and so on.

The concept of complexity is rather far removed from practical uses. But it
seems to be such a fundamental idea that its role in theoretical mathematics is
likely to grow.
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