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The Continuum Problem and Constructible Sets

1 Gödel’s Constructible Universe
1.1. In this section we introduce the subclass L ⊂ V—“Gödel’s constructible
universe”—and establish its fundamental properties. Perhaps the shortest
description of L is that it is the smallest transitive model of the axioms of L1Set
that contains all the ordinals. But the working definition of L, from which the
name “constructible universe” is derived, is rather different.

We consider the following operations F1, . . . , F8 on sets:

F1(X,Y ) = {X,Y },
F2(X,Y ) = X\Y,
F3(X,Y ) = X × Y,
F4(X) = {U |∃W (〈U,W 〉 ∈ X)} = dom X,

F5(X) = {〈U,W 〉|U,W ∈ X ; U ∈W},
F6(X) = {〈U1, U2, U3〉|〈U2, U3, U1〉 ∈ X},
F7(X) = {〈U1, U2, U3〉|〈U3, U2, U1〉 ∈ X},
F8(X) = {〈U1, U2, U3〉|〈U1, U3, U2〉 ∈ X}.

We say that a set (or class) Y is closed with respect to an operation F
of degree r if we have F (Z1, . . . , Zr) ∈ Y for all Z1, . . . , Zr ∈ Y such that
F (Z1, . . . , Zr) is defined. For every X ∈ V we let J (X) denote the smallest set
Y ⊃ X that is closed with respect to the operations F1, . . . , F8. It will later be
shown (Section 1.4) that J (X) actually is a set. The following construction is
analogous to the definition of V .
1.2. Definition.

L0 = ∅;
Lα+1 = P(Lα) ∩ J (Lα ∪ {Lα});

Lα =
⋃
β<α

Lβ, if α is a limit ordinal ;

L = ∪ Lα.

The elements of L are called constructible sets.
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152 IV The Continuum Problem and Constructible Sets

The operations F1, . . . , F8 and simple combinations of them, together with
the transfinite recursion in the definition of L, exhaust the arsenal of primitive
set-theoretic constructions used in mathematics. This can be seen by looking
at Bourbaki’s “compendium of the results of set theory,” upon which all subse-
quent material in their voluminous treatise on the foundations of mathematics
is based. The only way we could possibly (but not necessarily) leave L would be
to apply the axiom of choice. This could happen provided that L is strictly less
than V ; but, as mentioned before, this question is undecidable in the Zermelo–
Fraenkel axiom system (see also 5.16 below). Gödel was of the opinion that L
does not exhaust V , as are most specialists who accept the semantics of L1Set.

Of course, the constructibility of the elements of L should not be understood
in a finitistic sense. The sets we construct at the (α + 1)th stage are only
the subsets of Lα that are obtained from the elements of the sets Lα and
{Lα} using the explicit constructions Fi. But when we consider all the ordinals
indexing the stages, we see that L is hopelessly infinite. Nevertheless, in many
respects the construction of L is simpler than that of V , and L seems to provide
a convenient framework for mathematics.

We now list some properties of L that follow easily from the definitions.
The specific nature of the operations Fi plays a very secondary role in these
properties.

1.3. Ln = Vn for all n � ω0. This is true for L0. Suppose it is true for
Ln. It is clear from the definition that Ln ∈ Ln+1 and {X} ∈ Ln+1 for all
X ∈ Ln. Moreover, any subset of Ln can be represented as a finite difference
(· · · (Ln\{X1})\{X2})\ · · · \{Xk}, where the Xi ∈ Ln are the elements not in
the given subset.

1.4. card Lα = card α for all infinite ordinals α. In fact, for X ∈ V let

Φ(X) = X ∪
3⋃
i=1

F
′′
i (X ×X) ∪

8⋃
j=4

F
′′
i (X),

where F
′′
(X) = {F (Y )|Y ∈ X} is the image of F restricted to the elements

of X . Then J (X) =
⋃∞
n=0Φn(X). It is hence clear that card J (X) = card X

if X is infinite. We now prove the assertion 1.4 by induction on α.
Obviously card Lα � card α. Suppose that α is the least infinite ordinal for

which card Lα > card α. By 1.3, we have α > ω0. α cannot be a limit ordinal,
or we would have card Lα = Σβ<α card β = card α. But the case α = β + 1
is also impossible, since in that case card Lα � card J (Lβ ∪ {Lβ}) = card
(Lβ ∪ {Lβ}) = card β = card α. ��

In particular, the result 1.4 shows that beginning with w0 + 1, the inclusion
Lα ⊂ Vα becomes a strict inequality, since card Vω0+1 = 2ω0 . Of course, this
does not in principle exclude the possibility that ∀α ∃β > α, Lβ ⊃ Vα, but it
seems that there is no such β even for α = ω0 + 1.
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1.5. L is transitive: Y ∈ X ∈ Lα ⇒ Y ∈ Lα, i.e., Lα ⊂ Lα+1. See Section 13
of the appendix to Chapter II; the proof is no different for L.

1.6. L is a big class: by definition, this means that for any X ∈ V with X ⊂ L
there exists a Y ∈ L such that X ⊂ Y .

On L we consider the function φ(x) that is equal to the least α for
which x ∈ Lα. Let X ∈ V, X ⊂ L. We consider the map φ restricted to
X . By the replacement axiom, the values of φ form some set Y . The elements
of Y are ordinals. Let β = ∪ Y . Then for each x ∈ X we have β � φ(x), so that
X ⊂ Lβ.

Effective numbering of L by ordinals.
We order pairs of ordinals 〈α, β〉 by the relation

〈α1, β1〉 < 〈α2, β2〉 ⇔ either max(α1, β1) < max(α2, β2),
or else these maxima are equal and α1 < α2,

or else these maxima are equal and α1 = α2

and β1 < β2.

Further, we order triples 〈i, α, β 〉, where i = 0, . . . , 8, by the relation

〈i1, α1, β1〉 < 〈i2, α2, β2〉 ⇔ either 〈α1, β1〉 < 〈α2, β2〉,
or else 〈α1, β1〉=〈α2, β2〉 and i1 < i2.

We call these triples important.

1.7. Lemma. The class of important triples is well-ordered by the relation <.
In addition, the following assertions hold:

(a) The next triple after 〈i, α, β〉 has the form

〈i+ 1, α, β〉, if i � 7;
〈0, α+ 1, β〉, if i = 8 and α+ 1 < β;
〈0, α+ 1, 0〉, if i = 8 and α+ 1 = β;
〈0, α, β + 1〉, if i = 8 and α > β;
〈0, 0, β + 1〉, if i = 8 and α = β.

(b) Limit triples have the form

〈0, α, β〉, if α+ 1 � β and α is a limit ordinal:
this is the limit of 〈i, γ, β〉, γ < α;

〈0, α, 0〉, if a is a limit ordinal: this is the limit of 〈i, γ, α〉, γ < α;
〈0, α, β〉, if α � β and β is a limit ordinal:

this is the limit of 〈i, α, γ〉, γ < β;
〈0, 0, β〉, if β is a limit ordinal: this is the limit of 〈i, α, γ〉, α<β,

γ<β.
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Proof. The proof follows immediately from the definitions. We shall illustrate
this by showing explicitly how to find the least triple in any nonempty class C
of triples. We set

γ = min{max(α, β)|〈i, α, β〉 ∈ C};
Cγ = {〈i, α, β〉 ∈ C|max(α, β) = γ}.

If Cγ does not contain any triples of the form 〈i, α, γ〉, then let β0 be the
minimum of the third coordinates of triples in Cγ , and let i0 be the least i such
that 〈i, γ, β0〉 ∈ Cγ . Then 〈i0, γ, β0〉 is the least triple in C. Otherwise, let
C

′
γ consist of triples of the form 〈i, α, γ〉 ∈ Cγ , let α0 be the minimum of the

second coordinates in C
′
γ , and let i0 be the least i such that 〈i, α0, γ〉 ∈ Cγ .

Then 〈i0, α0, γ〉 is the least triple in C.

The exact form of assertions (a) and (b) will be needed only in §5. The
lemma implies that there exists a unique order-preserving isomorphism

K : {ordinals} ⇒ {important triples}.

Using this isomorphism, we recursively define a numbering mapping

N : {ordinals} ⇒ L.

Since we have α < γ and β < γ if γ > 0, i > 0, and K(γ) = 〈i, α, β〉, we
may set

N(γ) =

⎧⎪⎨⎪⎩
Lα, for i = 0;
Fi(N(α), N(β)), for i = 1, 2, 3;
Fi(N(α)), for i = 4, 5, 6, 7, 8.

1.8. Lemma.

(a) The mapping N is correctly defined.
(b) The image of N coincides with all of L.

Proof.

(a) To verify correctness, it suffices to show that {Lα} ∈ L and that the
class L is closed with respect to the operations Fi. In fact, then induction on γ
shows that N(γ) ∈ L if N(α) ∈ L for all α < γ.

Let X,Y ∈ Lα. Since L is transitive (see 1.5), we easily find that F1(X,Y ),
F2(X,Y ), and F4(X) belong to P(Lα), and hence to Lα+1. For example,

U ∈ F4(X) ⇒ ∃W 〈U,W 〉 ∈ Lα ⇒ {U} ∈ Lα ⇒ U ∈ Lα.

Further, X × Y is a subset of the ordered pairs of elements in Lα. We showed
that the unordered pairs lie in Lα+1, so that the ordered pairs lie in Lα+2, and
finally X × Y ∈ Lα+3 and F5(X) ∈ Lα+4. Analogously, the elements of Fi(X)
for i = 6, 7, 8 are ordered triples of elements in Lα, so that Fi(X) ∈ Lα+6.

(b) Let Z be the image of N . We show by induction on α that Lα ⊂ Z. If
α is a limit ordinal and Lγ ⊂ Z for each γ < α then also Lα =

⋃
γ<αLγ ⊂ Z.

Suppose α = β+ 1 and Lβ ⊂ Z, and let X ∈ Lα. Then X ∈ Φn(Lβ∪{Lβ}) and
we show that X ∈ Z by induction on n.
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(b1) n = 0. Then either X ∈ Lβ so X ∈ Z by the induction hypothesis, or
else X = Lβ, in which case X = N(γ) for γ such that K(γ) = 〈0, β, 0〉.

(b2) n > 0. Let X = Fi(Y, Z), i = 1, 2, 3; Y, Z ∈ Φn−1(Lβ ∪ {Lβ}). By
the induction hypothesis, Y = N(γ1) and Z = N(γ2) for some ordinals γ1, γ2.
Therefore X = N(γ), where K(γ) = 〈i, γ1, γ2〉.

Let X = Fi(Y ), i = 4, . . . , 8; Y ∈ Φn−1(Lβ ∪ {Lβ}). The verification is
analogous.

The lemma is proved. ��
In §3 the numbering N will allow us to prove that a strong form of the

axiom of choice is L-true. The fundamental step in the proof is to choose the
element with the least N -number in each constructible set.

2 Definability and Absoluteness

2.1. Let M ⊂ V be a nonempty class, and let P be a formula in L1Set. As in
§7 of Chapter II, we shall consider the truth values |P |M (ξ) for ξ ∈ M , where
we take the standard interpetation of L1Set in V restricted to M . We then say
that the formula P is M -true if |P |M = 1 for all ξ.

We shall also consider formulas “with constants in M ,” where we assume
that the language L1Set has been extended so that its alphabet includes names
for all the elements of M . We shall designate these elements by the same letters
as in the metalanguage (X,Y, . . . for sets; α, β, . . . for ordinals, etc.), which we
hope will not lead to confusion. We extend the definition of |P |M (ξ) to formulas
with constants in M in the obvious way: we take Xξ = X for any constant X
and any point ξ.

2.2. Definition. Let Xi ∈M, i = 1, . . . , n. Sets of the form

{〈yξ1, . . . , yξn〉|ξ ∈M, yξi ∈ Xi for i = 1, . . . , n; |P |M (ξ) = 1}
⊂ X1 × · · · ×Xn

are called M -definable sets. Here P runs through all formulas with constants
in M and free variables in the set {y1, . . . , yn}.

If P (y1, . . . , yn, Z1, . . . , Zm) is such a formula (where the notation shows the
constants and free variables) and if yξi = Yi, we shall often write “P (Y1, . . . , Yn,
Z1, . . . , Zm) is M -true” instead of |P |M (ξ) = 1.

The next proposition, which, in particular, is applicable to L, is a basic
instrument for proving many assertions about L.

2.3. Proposition. Let M ⊂ V be a transitive big class (see 1.6 ) that is closed
with respect to the operations F1, . . . , F8. Then all M-definable sets are elements
of M .

Proof. The proof is by induction on the number of connectives and quantifiers
in the defining formula P .
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(a) P (y1, . . . , yn; Z1, . . . , Zm) is an atomic formula. It can have one of eight
possible forms: the predicate can be either ∈ or =, and on each side of ∈ or
= we can have either a constant or a variable. But all of these cases reduce to
two: yi ∈ yj and yi ∈ Zj , if we are willing to make the formula a little more
complicated. For example, since M is transitive, we have

“y = Z” defines the same set as ∀z(z ∈ Z ⇔ z ∈ y),
“Z ∈ y” defines the same set as ∃z(z = Z ∧ z ∈ y),

and so on. We therefore analyze these two basic cases.
(a1) yi ∈ Z. We have Z ∩Xi = Z\(Z\Xi) ∈ M , since Z and Xi ∈ M , and

M is F2-closed; and we have X1 × · · · ×Xi−1 × Z ∩Xi × · · · ×Xn ∈ M , since
M is F3-closed. This last set is M -definable by the formula yi ∈ Z, because M
is transitive.

(a2) yi ∈ yj . We use induction on n � 3. Let

Y = {〈Y1, . . . , Yn〉|Yk ∈ Xk for k = 1, . . . , n; Yi ∈ Yj}.

The case 〈i, j〉 = 〈n− 1, n〉. Let Xn−1 ∪Xn ⊂ X ∈M . Then

Y =
× F6(F5(X)× (X1 × · · · ×Xn−2) ∩ (Xn−1 ×Xn)× (X1 × · · · ×Xn−2)).

The case 〈i, j〉 = 〈n, n− 1〉. Again let Xn−1 ∪Xn ⊂ X ∈M . Then

Y =
× F7(F5(X)× (X1 × · · · ×Xn−2) ∩ (Xn−1 ×Xn)× (X1 × · · · ×Xn−2)).

The case n �∈ {i, j}. By the induction assumption, the set Y
′
, which is

M -defined by the formula yi ∈ yj in X1×· · ·×Xn−1, lies in M . But Y = Y
′×Xn.

The case n − 1 �∈ {i, j}. Let Y
′

be M -defined by the formula yi ∈ yj in
X1 × · · · ×Xn−2 ×Xn. Then Y = F8(Y

′ ×Xn−1).
The case n = 2 reduces to the case n = 3 by taking the direct product with

{∅} and projecting. The projection of X1 × · · · ×Xn onto X1 is F4 ◦ · · · ◦ F4

(n− 1 times).

(b) Connectives. ∧ corresponds to intersection, and ¬ corresponds to taking
the complement (relative to X1 × · · · ×Xn). M is closed with respect to these
operations, and the other connectives can be expressed in terms of these two.

(c) Quantifiers. It suffices to verify ∃. This corresponds to projecting,
because M is a big class. More precisely, let Y be M -defined by the formula
∃yn+1P (y1, . . . , yn, yn+1) in X1 × · · · ×Xn. We have

〈Y1, . . . , Yn〉 ∈ Y ⇔
there exists a Yn+1 ∈M such that P (Y1, . . . , Yn+1) is M -true.
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To each 〈Y1, . . . , Yn〉 ∈ X1 × · · · × Xn we associate the least ordinal a for
which there exists Yn+1 ∈M ∩Vα such that P (Y1, . . . , Yn+1) is M -true, if there
is such a Yn+1. This gives rise to a function on Y ⊂ X1×· · ·×Xn. Let A be the
set of its values, and let β = ∪ A. Then X = M ∩Vβ is a set, and X ⊂M . Since
M is a big class, there exists Xn+1 ∈M such that X ⊂ Xn+1. By the induction
assumption, the M -definable subset Y

′ ⊂ X1 × · · · ×Xn ×Xn+1 consisting of
those points 〈Y1, . . . , Yn+1〉 for which P (Y1, . . . , Yn+1) is M -true belongs to M .
But Y = F4(Y

′
), and M is closed under F4.

The proposition is proved. ��

In order to be able to use Proposition 2.3, we need criteria for verifying
M -truth. As remarked in §7 of Chapter II, the basic technical tool for this is
the notion of absoluteness. A formula P is called M -absolute ((M,V )-absolute
in the terminology of Chapter II) if |P |M (ξ) = |P |V (ξ) for all ξ ∈ M ⊂ V .
The standard method of proving that a formula is M -true is to prove that it is
V -true and M -absolute.

The following lemma provides us with a large class of M -absolute formulas.

2.4. Lemma.

(a) Atomic formulas are M-absolute for all M.
(b) If the formulas P, P1, and P2 are M-absolute, then so are the formulas ¬P

and P1 ∗ P2 (where ∗ is any connective).
(c) Suppose that the class M is transitive, and is closed with respect to an

operation f of degree r. If the formula P is M-absolute, then the “restricted
quantifier” formulas

∀x(x ∈ f(y1, . . . , yr) ⇒ P ),
∃x(x ∈ f(y1, . . . , yr) ∧ P )

are also M-absolute.

Proof. Part (c) is the only assertion that might not be completely obvious.
Before proving it, we make one remark. The formula x ∈ f(y1, . . . , yr) is writ-
ten in a suitable extension of L1Set, and may be assumed to be V -equivalent
to some formula P (x, y1, . . . , yr) in L1Set (with constants in M) for which
∀y1, . . . ,∀yr ∃!x P or a restricted version of this formula is deducible from the
Zermelo–Fraenkel axioms. This P determines the operation f . We also allow
the case r = 0; then f is simply a constant in M . We shall identify f with its
standard interpretation, i.e., we shall denote terms by f(Y1, . . . , Yr) ∈ M for
Y1, . . . , Yr ∈M .

Now let ξ ∈ M, yξi = Yi ∈ M, Q = ∃x(x ∈ f(y1, . . . , yr) ∧ P ),
Y = f(Y1, . . . , Yr) ∈M . Then

|Q|M (ξ) = sup
X∈M

(|X ∈ Y |M · |P |M (ξ
′
)),

where the ξ
′ ∈ M are variations of ξ along x such that xξ

′
= X . Since P

is absolute, it follows that |P |M (ξ
′
) = |P |V (ξ

′
), and since M is transitive, it
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follows that if X �∈M , then |X ∈ Y |M = |X ∈ Y |V = 0. Hence, on the right we
can write V everywhere in place of M and can let ξ

′
run through all variations

of ξ along x in V with xξ
′

= X . The resulting expression equals |Q|V (ξ).
The quantifier ∀ can be handled analogously, or else can be reduced to ∃.

The lemma is proved. ��

We shall abbreviate the restricted quantifier formulas in 2.4(c) as

(∀x ∈ f(y1, . . . , yr))P, (∃x ∈ f(y1, . . . , yr))P,

respectively.
If all the quantifiers in a formula Q are restricted in this way, we say that

Q is a Σ0-formula.
As a first application of the results in 2.3 and 2.4, we prove the following fact.

2.5. Proposition. All ordinals are constructible.

Proof. Suppose that this is not the case, and that β is the least noncon-
structible ordinal. All of the elements in β are contained in Lα. Since L is
transitive, it follows that all γ � β are nonconstructible. Hence,

β = {x|(x is an ordinal ∧ x ∈ Lα) is V -true}.

If we show that “V -true” may be replaced by “L-true” here, we immediately
have a contradiction, since then β ∈ L by Proposition 2.3.

To do this, it suffices to verify that the formula “x is an ordinal” is
L-absolute. Using the regularity axiom, from which ¬(y ∈ y) is deducible, we
can write this formula in the following Σ0-form:

(∀y ∈ x)(∀z ∈ y)(z ∈ x) ∧ (∀y1 ∈ x)(∀y2 ∈ x)(y1 ∈ y2 ∨ y2 ∈ y1 ∨ y1 = y2)

and then apply Lemma 2.4. ��

3 The Constructible Universe as a Model for Set Theory

3.1. Theorem. The Zermelo–Fraenkel axioms are L-true.

Proof. The general principle for verifying the axioms is to note that every
set whose existence is stipulated in a given axiom can be represented as a set
defined by a Σ0-formula with constants in L. We only occasionally have to
perform a direct verification that a subformula is L-absolute.

(a) Empty set. This axiom is equivalent to the Σ0-formula ¬∃x(x ∈ ∅),
which is V -true.

(b) Extensionality. This axiom can be represented in Σ0-form. In addition,
in Section 4.8 of Chapter II we verified this axiom for any transitive class.
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(c) Pairing. A direct computation of the L-truth function gives 1, since L
is closed with respect to forming pairs.

(d) Regularity. This follows by a direct computation using the transitivity
of L.

(e) Union. Here it is somewhat more complicated to reduce the axiom to a
Σ0-formula. The axiom is written in the form

∀x ∃y ∀u(∃z(u ∈ z ∧ z ∈ x) ⇔ u ∈ y).

Let ξ ∈ L, let ξ
′

be any variation of ξ along x, and let X = xξ
′
∈ L. We must

show that
|∃y ∀u(∃z(u ∈ z ∧ z ∈ X) ⇔ u ∈ y)|L(ξ

′
) = 1.

It suffices to find a Y ∈ L such that

|∀u(∃z(u ∈ z ∧ z ∈ X) ⇔ u ∈ Y )|L = 1,

i.e., such that for all U ∈ L,

|(∃z ∈ X)(U ∈ z)|L = |U ∈ Y |L.

We can clearly take Y =
⋃
z∈XZ if we show that Y is constructible. Since L is

transitive, we know that all the elements of Y are constructible. Hence, there
exists a constructible set Y

′
such that Y

′ ⊃ Y . Then Y can be represented as
follows (where we replace V -truth by L-truth using Lemma 2.4):

Y = {U |U ∈ Y ′
; (∃z ∈ X)(U ∈ z) is L-true}.

Now the required assertion follows by Proposition 2.3.
In what follows we shall usually omit explicit mention of the points ξ ∈ L.
(f) Power set axiom ∀x ∃y ∀z(z ⊂ x⇔ z ∈ y). We fix X ∈ L, form the set

Y = P(X)∩L of constructible subsets of X , and show that Y is constructible.
In fact, let Y

′ ⊃ Y , where Y
′

is constructible. Then by
Lemma 2.4,

Y = {Z|Z ∈ Y ′
; (Z ⊂ X) is L-true},

because Z ⊂ X has the Σ0-form (∀z ∈ Z)(z ∈ X). Now a direct computation
gives

|∀z(z ⊂ X ⇔ z ∈ Y )|L = 1.

(g) Infinity. This axiom is L-true because of the constructibility of the set{
∅, {∅}, {{∅}}, . . .

}
, which can be represented in the form{

Y |Y ∈ Lω0 ;
[
Y = ∅ ∨ (∃y ∈ Lω0)(Y = {y})

]
is L-true

}
.

(h) Replacement. Let z = 〈z1, . . . , zn〉. This axiom is written in the form

∀ z ∀u
(
∀x

(
x ∈ u⇒ ∃!yP (x, y, z))

⇒ ∃w ∀y(y ∈ w ⇔ ∃x(x ∈ u ∧ P (x, y, z))
))
.
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We fix Z1, . . . , Zn ∈ L,Z = 〈Z1, . . . , Zn〉, and U ∈ L. It is sufficient to consider
the case that the premise is L-true, i.e., for all X ∈ L,

|X ∈ U ⇒ ∃!yP (X, y, Z)|L = 1.

We must find a value W ∈ L of w for which the conclusion is L-true. We set
W

′
= a constructive set containing as elements all constructive Y for which

(∃x ∈ U)P (x, Y, Z) is L-true.

This set exists because since the premise of the axiom is L-true, it follows that
each X ∈ U corresponds to at most one constructible Y . We then set

W =
{
Y |Y ∈W ′

; (∃x ∈ U)
(
P (x, Y, Z)

)
is L-true

}
.

This set is constructible by Proposition 2.3, and it follows from the way it is
defined that ∣∣∣∀y(y ∈W ⇔ ∃x

(
x ∈ U ∧ P (x, y, Z)

))∣∣∣
L

= 1.

(i) Axiom of choice. The main intuitive point in the verification is the numbering
N of the universe L that was constructed in 1.8. But the formal verification
is much more complicated here than in the previous cases. A fair amount of
work is needed to give a formalization of the construction in 1.7–1.8 that is
sufficiently detailed to prove the following fact:

3.2. Proposition. There exists a formula N(x, y) in L with two free variables
such that

(a) For any X,Y ∈ V , the formula N(X,Y ) is V-true if and only if X is an
ordinal and Y = N(X).

(b) N(x, y) is L-absolute.

We shall postpone the proof until §5, and shall make use of this proposition
to verify the axiom of choice. We divide this verification into two steps.

3.3. Universal choice function. LetX ∈ L be a nonempty set. We construct
the function Y that for every nonempty Z ∈ X chooses the element U in Z
with the least N -number (see 1.8):

Y =
{
〈Z,U〉|Z ∈ X, U ∈

⋃
X′∈X

X
′
; U ∈ Z ∧ ∃w

(
N(w,U) ∧ ∀z

(
z ∈ Z

⇒ (z = U ∨ ∀w′
(N(w

′
, z) ⇒ w ∈ w′

))
))

is V -true
}
.

We want to prove that Y ∈ L. By Proposition 2.3, this holds if we can
define Y by means of the L-truth of a formula. We are not allowed mechani-
cally to replace V by L, since it is not immediately obvious from its external
form that this formula is L-absolute. We proceed as follows: taking into account
the constructibility of the ordinals, we take all ordinals that occur as the least
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N -numbers of the elements of the constructible set ∪X′∈XX
′

= ∪(X), and we
find a constructible set W that contains these ordinals. Then we replace ∃w by
∃w ∈W and ∀w′

by ∀w′ ∈ W in the formula. The set Y does not change, and
now V -truth may be replaced by L-truth, as can be seen using Proposition 3.2
and Lemma 2.4.
3.4. We now compute the L-truth value of the axiom of choice:

∀x
(
x �= ∅ ⇒ ∃y(y is a function ∧ dom y = x

∧ (∀z ∈ x)(z �= ∅ ⇒ y(z) ∈ z))
)
.

It suffices to show that if we take a nonempty X ∈ L and the constructible
choice function Y ∈ L in 3.3, then

|Y is a function|L = |dom Y = X |L = |(∀z ∈ X)(z �= ∅ ⇒ Y (z) ∈ z)|L = 1.

The third formula here is V -true, and is written in Σ0-form except for the sub-
formula Y (z) ∈ z, which can be replaced by (∀u ∈ U(Y ))(〈z, u〉 ∈ Y ⇒ u ∈ z).
Thus, the third formula is L-absolute and hence L-true.

We verify that the first two formulas are absolute in §5. They are V -true by
construction. This completes the proof of Proposition 3.1. ��

We note that the same argument shows the following: all the axioms, with
the possible exception of the axiom of choice, are M-true for any transitive big
class M that is closed with respect to the operations F1, . . . , F8.

4 The Generalized Continuum Hypothesis Is L-True

4.1. We wish to show that the assertion “card P(ωα) = ωα+1” is L-true.
A certain amount of caution is essential here, because cardinality is not an
L-absolute notion. If Y is a constructible set, let cardL(Y ) be the least ordinal
β for which there exists in L a one-to-one onto function f : Y → β. Hence
“card (Y ) = card (Z)” is L-true iff cardL(Y ) = cardL(Z). Note that although
cardL(Y ) � card (Y ), equality fails if there are one-to-one onto functions Y → β
in V , but no such function lies in L. The cardinal ωα in L is the αth ordinal
β > ω0 such that cardL(β) = β. Thus ωα in L may not coincide with the “real”
ωα, that is, with ωα in V .

We shall show that for each ordinal β and each constructible X ⊂ β there
is an ordinal γ with X ∈ Lγ and cardL(γ) = cardL(β). Hence P(β)∩L ⊂ Lβ+ ,
where β+ is the least ordinal greater than β such that cardL(β+) �= cardL(β).
The L-truth of the generalized continuum hypothesis will then follow if we show
the L-truth of “card (β+) = β+.”

Our proof exploits throughout a proposition that requires a good deal of
work formalizing the construction of L within L1Set.

4.2. Proposition. There exists a formula L(x, y) of L1Set with two independent
variables
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such that

(a) for any X and Y in V, L(X,Y ) is V-true ⇔ Y is an ordinal and
X ∈ Lγ;

(b) for any transitive model M ⊂ V of the axioms (without the axiom of choice),
the formula L(x, y) is M-absolute. In particular, it is L-absolute.

We again postpone the proof until §5.

4.3. Lemma. Let X ⊆ β be constructible. Then X ∈ Lγ for some ordinal γ
such that card L(γ) = cardL(β).

Proof. In this deduction, in addition to Proposition 4.2 we use versions of
Propositions 7.3 and 7.6 of Chapter II that apply to the constructible universe.
They are formulated precisely and proved below, in Sections 4.5 and 4.6.

Suppose that X ⊂ β is constructible. Let δ be an ordinal such that X ∈ Lδ.
We enlarge the alphabet of L1Set by adding names δ̄ and X for δ and X . Let
E be the set of formulas

{axioms of L1Set} ∪
{
L(X, δ̄)

}
.

Let N0 ⊂ L be the set β ∪ {X} ∩ {δ}. By Proposition 4.5 there is a
constructible set N such that N0 ⊂ N , all formulas in E are (N,L)-absolute,
and cardL(N) = cardL(β). Thus (N,∈) is a model for the axioms and, by
Proposition 4.2 (a), for L(X, δ̄). Now N might not be transitive, but then by
Proposition 4.6 there are a transitive axiom model (M, ε) and a constructible
isomorphism f : (N,∈) ∼→ (M, ε). Hence L(X, δ̄) is M -true and cardL(M) =
cardL(N). What are the interpretations of the constants X and δ̄ in M?

Since the set β ⊂ N is transitive, it goes to itself under the isomorphism
f ; hence so does the set X ⊂ β. Let δM be the image of δ under f . Since by
Proposition 4.2(b) the formula L(x, y) is M -absolute, and L(X, δ̄) is M -true, it
follows that L(X, δM ) is V -true, so that δM is an actual ordinal and X ∈ LδM .
Moreover, since δM ∈ M and M is transitive, δM ⊂ M ; hence cardL(δM ) �
cardL(M). Letting γ be the larger of δM and β, we have cardL(γ) = cardL(β)
and X ∈ Lγ . The lemma is proved. ��

4.4. Deduction that the GCH is L-true from the lemma. Let β+ be the
smallest ordinal greater than β such that cardL(β+) �= cardL(β). Then Lemma
4.3 implies the V -truth of the formula

∀z(z ∈ L⇒ (z ⊂ β ⇒ z ∈ Lβ+)).

Since “z ∈ Lβ+” (i.e., the formula L(z, β+)) is L-absolute, it follows that

∀z(z ⊂ β ⇒ z ∈ Lβ+)

is L-true. Now if β is the cardinal ωα in L then β+ is the cardinal ωα+1 in L.
Hence for each α we have shown the L-truth of

P(ωα) ⊂ Lωα+1.
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We claim that the following formula is also L-true:

card(Lωα+1) = ωα+1.

Since “card(Pωα)) � ωα+1” is formally deducible in L1Set from the preceding
two formulas, and since all the axioms are L-true, this will show that the GCH
is L-true.

Our claim is verified thus: In Section 1.4 we proved that card(Lγ) = card(γ)
for each ordinal γ. Indeed, that proof can be formalized in L1Set, using the
formula L(x, y) of Proposition 4.2. That is, the assertion “∀γ(card(Lγ) =
card(γ))” is deducible from the axioms (see 5.17). Since the axioms are L-
true, this assertion is then L-true. But since “card(wα+1) = wα+1” is trivially
L-true, the claim follows. This completes the proof. ��

4.5. Proposition. Let E be a constructible countable set of L-true formulas
in the language L1Set, and let M0 be a constructible set. Then there exists a
constructible set M ⊃ M0, cardL(M) � cardL(M0) + ω0, such that all of the
formulas in E are (M,L)-absolute.

Proof. The general scheme is the same as in Section 7.3 of Chapter II, but
some additional precautions are required. The main point is to prove that if
P (x, y), y = (y1, . . . , yn), is a formula in E , then there exists a constructible
set M ⊃ M0 with cardL(M) � cardL(M0) + ω0 that can be constructed con-
structibly from P and has the property that ∃x(P (x, y)) is (M,L)-absolute.
After this we must verify constructible closure over all P ∈ E .

We reproduce the construction in Section 7.3 of Chapter II. We construct
the set Mi by induction. Let Y = 〈Y1, . . . , Yn〉 ∈ Mi × · · · ×Mi. We let M̂i(Y )
denote the class {X |P (X,Y1, . . . , Yn) is L-true}. We let M̃i(Y ) denote ∅ if
M̂i(Y ) is empty, and M̂i(Y ) ∩ Lα for the least α for which this intersection is
nonempty otherwise. Since L(x, y) is absolute (see §5), it is not hard to see that
the function M̃i, dom M̃i = Mi × · · · ×Mi, is constructible. Because the con-
structible axiom of choice holds in L, we can obtain a constructible function Fi
by choosing one element from each nonempty M̃i(Y ). Let Ni be the set of values
of M̃i. This set is constructible, since all of our constructions are absolute; and
if Mi is infinite, then cardL(Ni) = cardL(Mi). We set Mi+1 = Mi ∪ Ni and
M = ∪Mi. The set M has the required properties; obviously, cardL(M)+ω0 =
cardL(M0) + ω0 in L. The formal transition from {Mi} to M is realized by
considering a function that “closes” M0, as in Section 5.11 below. ��

4.6. Proposition. For every constructible set N such that the extensionality
axiom is N-true there exist a unique constructible transitive set M and isomor-
phism f : (N,∈) ∼→ (M, ε).

Proof. The plan of proof is the same as in Section 7.6 of Chapter II. First
let “f is a continuous (α + 1)-sequence” be the formula “α is an ordinal”∧“f
is a function”∧ domf = α + 1 ∧ (∀β ∈ α + 1)(β a limit ordinal ⇒ f(β) =⋃
γ∈βf(γ)). This formula is shown to be L-absolute as in Section 5.14 below.
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Now consider the L-absolute operation φ(Z) = {X |X ∈ N ∧X ∩N ⊂ Z}, and
let ∅N be the unique member of N such that ∅N ∩N = ∅. Finally, let ψ(x, y)
be the formula

(∃f)(“f is a continuous (x + 1)-sequence” ∧ f(0) = ∅N∧
× (∀β ∈ x)(f(β + 1) = φ(f(β))) ∧ y = f(x)).

Then ψ is L-absolute, as can be shown as in Sections 5.14 and 5.15 below, and
ψ(x, y) is L-true if and only if y = Nx in the sense of Chapter II, Section 7.6.

We now set N̂ = ∪αNα = {z|(∃α)(∃y ⊂ N)(ψ(α, y)∧z ∈ y)}. We show that
N̂ = N . Clearly N̂ ⊂ N , and if N\N̂ = Y were nonempty, it would follow by
the regularity axiom, which holds in L, that ∃Z(Z ∈ Y ∧ Z ∩ Y = ∅). For this
Z we would have Z ⊂ N̂ , hence Z ⊂ Nα for a suitable α, so that Z ∈ Nα+1,
which is a contradiction.

The implication Z ⊂ N̂ ⇒ ∃α(Z ⊂ Nα), which we have used here, follows
because there exists an absolute function on N̂ that associates to each X the
least α for which X ∈ Nα. The replacement axiom shows that there exists
an ordinal α0, namely, the least upper bound of the values of this function,
for which N̂ = N = Nα0 . This ordinal, which is fixed for N , occurs in our
subsequent construction, which is verified to be absolute as in §5.

Let “h is a constructing (α + 1)-sequence for N,M” be the formula “h is
a continuous (α + 1)-sequence” ∧ h(0) = {〈∅N ,∅〉} ∧ “(∀β ∈ α)(h(β + 1) is a
function ∧ dom h(β + 1) = Nβ+1∧ the value of h(β + 1)) on any X ∈ Nβ+1

is the set of h(β)-images of elements of X ∩ N).” Then for each α there is a
unique such h; let Mα be the image of h(α). For α = α0 we obtain a function
h : N → M = Mα0 , where M is our desired constructible set and h is a
constructible ∈-isomorphism.

The proposition is proved. ��

5 Constructibility Formula

5.1. The purpose of this section is to prove Propositions 4.2 and 3.2. Both proofs
are extremely straightforward, and simply consist in writing out explicitly the
formulas L(x, y) and N(x, y) and verifying that the conditions in Lemma 2.4
apply. But since these formulas are very long, we perform the verifications in
a series of “blocks,” in order to improve their appearance and to make the
interpretation and verification of the conditions in 2.4 easier. As soon as a
block (subformula) is constructed and its absoluteness is verified, we replace it
by an abbreviated notation in the next formula.

The material within each subsection is arranged in the following order:
first the abbreviated notation for the formula that is being constructed and
shown to be absolute in the subsection; then the complete form of the for-
mula; and finally any remarks that may be needed regarding absoluteness.
The “complete form” of the formula may contain abbreviated notation for
subformulas. If such a subformula has not yet been interpreted in detail and
shown to be absolute, this is done right after the complete form.
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By absoluteness we mean “M -absoluteness for any transitive model M for
the axioms without the axiom of choice.”

Sections 5.2–5.15 are devoted to the formula L(x, y), and Sections 5.18–
5.20 are devoted to the formula N(x, y). As the material we are dealing with
accumulates, we shall allow ourselves to omit more and more details and to rely
on the reader’s experience.

The formulas

z =

{
Fi(x, y), i = 1, 2, 3;
Fj(y), j = 4, 5, 6, 7, 8.

5.2. z = {x, y} : (∀u ∈ z)(u = x ∨ u = y) ∧ x ∈ z ∧ y ∈ z. This whole formula
is clearly absolute by Lemma 2.4. From now on we shall not even comment on
such simple cases.

5.3. z = x\y : (∀u ∈ z)(u ∈ x ∧ u �∈ y) ∧ (∀u ∈ x)(u �∈ y ⇒ u ∈ z).

5.4. z = x× y : (∀u1 ∈ x)(∀u2 ∈ y)(〈u1, u2〉 ∈ z)

∧ (∀u ∈ z)(∃u1 ∈ x)(∃u2 ∈ y)(u = 〈u1, u2〉);
〈u1, u2〉 ∈ z : (∃v ∈ z)(v = 〈u1, u2〉);
u = 〈u1, u2〉 : (∀v ∈ u)(v = {u1} ∨ v = {u1, u2})

∧ {u1} ∈ u ∧ {u1, u2} ∈ u;
{u1, u2} ∈ u : (∃v ∈ u)(v = {u1, u2}).

5.5. Z = F4(y) = dom y: (∀u ∈ z)(∃v ∈ ∪ ∪ (y))(〈u, v〉 ∈ y)

∧(∀u ∈ ∪∪ (y))(∀v ∈ ∪∪ (y))(〈u, v〉 ∈ y ⇒ u ∈ z).

Here ∪ ∪ appears because 〈u, v〉 = {{u}, {u, v}} ∈ y ⇒ u, v ∈ ∪ ∪ (y).
This formula is absolute, since a transitive model is closed with respect to the
operation ∪ (see 3.1(e)). We shall write ∪2 = ∪∪, and so on.

5.6. z = F5(y): (∀u ∈ z)(∃v ∈ y)(∃w ∈ y)(v ∈ w ∧ u = 〈v, w〉) ∧ (∀v ∈ y)
(∀w ∈ y)(v ∈ w ⇒ 〈v, w〉 ∈ z).

5.7. z = F6(y) : (∀u ∈ z)(∃u1 ∈ ∪4(y))(∃u2 ∈ ∪4(y))(∃u3 ∈ ∪2(y))(〈u1, u2, u3〉 ∈
y ∧ u = 〈u3, u1, u2〉) ∧ (∀u1 ∈ ∪4(y))(∀u2 ∈ ∪4(y))(∀u3 ∈ ∪2(y))(〈u1, u2, u3〉 ∈
y ⇒ 〈u3, u1, u2〉 ∈ z). Here ∪4 appears for the same reason as ∪2 in 5.5.
The formulas 〈u1, u2, u3〉 ∈ y, etc., are shown to be absolute in the same way
as in 5.4.

The operations F7 and F8 are treated analogously to F6.
The formulas

y =

{
F

′′
i (x × x), for i = 1, 2, 3;
F

′′
j (x), for j = 4, 5, 6, 7, 8.
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5.8. y = F
′′
i (x× x), i = 1, 2, 3:

(∀u ∈ y)(∃u1 ∈ x)(∃u2 ∈ x)(u = Fi(u1, u2))
∧(∀u1 ∈ x)(∀u2 ∈ x)(Fi(u1, u2) ∈ y),

where Fi(u1, u2) ∈ y : (∃v ∈ y)(v = Fi(u1, u2)).

5.9. y = F
′′
j (x), j = 4, . . . , 8: (∀u ∈ y)(∃v ∈ x)(u = F

′′
j (v)) ∧ (∀v ∈ x)

(F
′′
j (v) ∈ y).

5.10. y = Φ(x) (see 1.4):

(∀z ∈ y)(z ∈ x ∨ z ∈ F
′′
1 (x× x) ∨ · · · ∨ z ∈ F

′′
8 (x)) ∧ (∀z ∈ x)(z ∈ y)

∧ (∀z ∈ F ′′
1 (x× x))(z ∈ y) ∧ · · · ∧ (∀z ∈ F ′′

8 y(x))(z ∈ y).

The class L is closed with respect to the operations F
′′
i . In fact, suppose,

for example, that i � 4, and let X ∈ L. Let U ∈ L be a set containing all Fi(Y )
for Y ∈ X . Then

F
′′
1 (X) = {Z|Z ∈ U, (∃y ∈ X)(Z = Fi(y)) is V -true}.

Since the formula Z = Fi(y) has been shown to be absolute, we may replace
“V -true” by “L-true” here, and then apply Proposition 2.3. Thus, the formula
y = Φ(x) is L-absolute by Lemma 2.4.

If M is an arbitrary transitive model, then the verification that M is closed
with respect to F

′′
i is somewhat different. Namely, the formula ∀x ∃!y(y =

F
′′
i (x)) is obviously V -true. The formal deduction of this formula does not use

the axiom of choice. Hence, the formula is M -true for any transitive model M .
We therefore have Y ∈ M if X ∈ M , where Y = F

′′
i (X). We shall use this

device many times in what follows.

5.11. “g closes x,” which is short for “g is a function on ω0, and g(n) = Φn(x)
for all n ∈ ω0.” We write the formula with the constant ω0 and the free variables
g and x:

“g is a function” ∧ F4(g) = ω0 ∧ g(0) = x

∧ (∀n ∈ ω0)(g(n+ 1) = Φ(g(n))).
Here:

(a) “g is a function”:

(∀u ∈ g)(∃u1 ∈ ∪2(g))(∃u2 ∈ ∪2(g))(u = 〈u1, u2〉)
∧ (∀u1 ∈ ∪2(g))(∀u2 ∈ ∪2(g))(∀u3 ∈ ∪2(g))

(〈u1, u2〉 ∈ g ∧ 〈u1, u3〉 ∈ g ⇒ u2 = u3).

(b) g(0) = x : 〈∅, x〉 ∈ g.
(c) g(n+ 1) = Φ(g(n)) :

(∃y ∈ ∪2(g))(〈n, y〉 ∈ g ∧ 〈n ∪ {n}, Φ(y)〉 ∈ g),
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where

〈n ∪ {n}, Φ(y)〉 ∈ g : (∃u ∈ ∪2(g))(∃v ∈ ∪2(g))
(u = n ∪ {n} ∧ v = Φ(y) ∧ 〈u, v〉 ∈ g).

Since ω0 ∈M , the formula 5.11 is now easily seen to be absolute by the previous
results.

In 5.11 we took the liberty of using g and n for variables of L1Set in order to
make the formulas intuitively clearer. In what follows we shall also use α, β,K,
and N as variables, thereby temporarily ignoring our convention of using only
lowercase letters at the end of the Latin alphabet.

5.12. y ∈ J x : ∃g(“g closes x”∧(∃n ∈ ω0)(〈n, y〉 ∈ g)). Here the quantifier over
g is not restricted. Since the formula under the ∃g sign is absolute, we may
conclude directly from the definition ‖L(ξ) = ‖V (ξ), ξ ∈ M , that y ∈ J x is
also absolute, provided we show that for any X ∈M , the function G ∈ V that
closes X lies in M . The formula ∀x ∃! g (“g closes x”) is obviously V -true. If
we formalize the verification of this fact, we see that this formula is deducible
from the axioms without the axiom of choice. Hence it is M -true. This implies
that for any X ∈M we have G ∈M .

5.13. y ∈ P(x) ∩ J (x ∪ {x}) : (∀z ∈ y)(∀v ∈ z)(v ∈ x) ∧ y ∈ J (x ∪ {x}).

5.14. “f is the constructing (α + 1)-sequence,” which is short for “α is an
ordinal”∧ “f is a function”∧ dom f = α+ 1 ∧ (∀β ∈ α+ 1)(f(β) = Lβ).

Here:

(a) (∀β ∈ α+ 1)(f(β) = Lβ):

(∀β ∈ α+ 1)((β is a limit ordinal ⇒ f(β) = ∪γ∈βf(γ))
∧(f(β + 1) = P(f(β)) ∩ J (f(β) ∪ {f(β)}))).

(b) “β is a limit ordinal”: “β is an ordinal”∧(∀α ∈ β)(β �= α ∪ {α}).

(c) f(β) = ∪γ∈βf(γ) : (∃v ∈ ∪2(f))(v = ∪γ∈βf(γ) ∧ 〈β, v〉 ∈ f);

v = ∪ γ∈βf(γ) : (∀u ∈ v)(∃γ ∈ β)(u ∈ f(γ))

∧ (∀u ∈ ∪3(f))(u ∈ f(γ)⇒ u ∈ v);

u ∈f(γ) : (∃w ∈ ∪2(f))(〈γ, w〉 ∈ f ∧ u ∈ w).

(d) f(β + 1) = P(f(β)) ∩ J (f(β) ∪ {f(β)}) :

(∃u ∈ ∪2(f))(〈β + 1, u〉 ∈ f ∧ (∀v ∈ u)
(v ∈ P(f(β)) ∩ J (f(β) ∪ {f(β)}))
∧ ∀v(v ∈ P(f(β)) ∩ J (f(β) ∪ {f(β)}) ⇒ v ∈ u));
v ∈ P(f(β)) ∩ J (f(β) ∪ {f(β)}) :

(∃u ∈ ∪2(f))(〈β, u〉 ∈ f ∧ v ∈ P(u) ∩ J (u ∪ {u})).
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Finally, in order to verify directly that the subformula

∀v(v ∈ P(f(β)) ∩ J (f(β) ∪ {f(β)}) ⇒ v ∈ u)

is M -absolute, it suffices to show that M is closed with respect to the opera-
tion X �→ P(X) ∩ J (X ∪ {X}). But M is closed with respect to both J and
X �→ P(X) ∩M , so the verification is complete.

5.15. L(x, y): “y is an ordinal and x ∈ Ly”: “y is an ordinal”∧∃f(“f is the
constructing (y + 1)-sequence”∧(∃z ∈ ∪2(f))(〈y, z〉 ∈ f ∧ x ∈ z)). Since the
quantifier ∃f is not bounded, in order to verify this last absoluteness statement
we must show that the constructing (Y + 1)-sequence F is an element of M for
any ordinal Y in M . We use the same argument as in 5.12: the formula ∀y(y is
an ordinal ⇒ ∃!f(f is the constructing (y + 1)-sequence)) not only is V -true,
but also is deducible from the axioms without the axiom of choice; therefore it
is M -true.

This completes the proof of Proposition 4.2. ��

5.16. Remark. The formula ∀x ∃y L(x, y) is often written in the form V = L,
and is called the axiom of constructibility. The absoluteness of L(x, y) implies
that the following formula is L-true:

|∀x ∃y L(x, y)|L = inf
X∈L

sup
Y ∈L

|L(X,Y )|L = inf
X∈L

sup
Y ∈L

|L(X,Y )|V = 1.

Hence, this formula is consistent with the Zermelo–Fraenkel axioms. On the
other hand, V = L implies the generalized continuum hypothesis (GCH), and
since the negation of the GCH is also consistent with the Zermelo–Fraenkel
axioms, it follows that ¬(V = L) is consistent with the axioms.

We now proceed to the proof of Proposition 3.2. This proof follows the
same plan as the proof of Proposition 4.2. We return to the conventions and
constructions in 1.7–1.8.

5.17. Remark. In Section 4.4 we exploited the fact that the assertion “α �
ω0 ⇒card(Lα) = card(α)” is formally deducible from the axioms of L1Set (with-
out the axiom of choice). We may now see that such a formal
deduction can be obtained by exactly mimicking the proof in Section 1.4.
Indeed, from the definition of L(x, y) we have the formal deducibility of “Lα+1 =
P(Lα) ∩ J (Lα ∪ {Lα})” and “β a limit ordinal ⇒ Lβ = ∪γ∈βLγ”. Moreover,
the following are deducible: “card(X) < ω0 ⇒ card(X) < card(P(X)) < ω0”
and “card(X) � ω0 ⇒ card(J (X)) = card(X).” As a result, the assertions
“card(Lω0) = ω0,” “card(La) � ω0 ⇒ card(Lα+1) = card(Lα),” and “β a limit
ordinal ⇒ card(Lβ) = card(∪γ∈βLγ)” are all deducible. And from these and
the axioms of L1Set the desired assertion may be deduced (using, in particu-
lar, the deducibility of “card(ω0) = ω0,” “α � ω0 ⇒card(α + 1) = card(α),”
“β is a limit ordinal ⇒ β = ∪γ∈βγ,” and in addition an instance of transfinite
induction on the ordinals, which is of course also formally deducible in L1Set).
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5.18. The formula H(K,x) : K is a function ∧ x is an ordinal ∧ dom K =
x+1∧K(0) = 〈0, 0, 0〉∧(∀y ∈ x+1)(K(y) is an important triple ∧K(y+1) is the
next important triple after K(y))∧(y is a limit ordinal⇒ K(y) = limz∈yK(z))
is absolute.

We shall not analyze the subformulas that have been considered before. The
following subformulas remain:

(a) “K(y) is an important triple ∧K(y + 1) is the next important triple after
K(y)”;

(b) K(y) = limz∈yK(z).

We shall have to use the absoluteness of the auxiliary formula “y = x(i),”
which is short for “x is an important triple (i.t.) and y is the ith coordinate of
x,” where i = 1, 2, or 3. That is;

(∃u1 ∈ ∪3(x))(∃u2 ∈ ∪3(x))(∃u3 ∈ ∪(x))
× (x = 〈u1, u2, u3〉 ∧ u1 is an ordinal ∧ u1 � 8
∧ u2 is an ordinal ∧ u3 is an ordinal ∧ y = ui).

The complete form of (a) is

(∃u ∈ ∪(K))(∃v ∈ ∪(K))(〈y, u〉 ∈ K ∧ 〈y + 1, v〉 ∈ K
∧ u is an i.t. ∧ v is the i.t. after u).

According to Lemma 1.7(a), “u is an i.t. ∧v is the i.t. after u” can be written in
the form

∨5
i=1 Ci(u, v), where Ci(u, v) is the formalization of the ith alternative

in 1.7(a). For example,

C1 : u is an i.t. ∧ v is an i.t. ∧ u(1) � 7 ∧ v(1) = u(1) + 1
∧ v(2) = u(2) ∧ v(3) = u(3);

C2 : u is an i.t. ∧ v is an i.t. ∧ u(1) = 8 ∧ u(2) + 1 < u(3)

∧ v(1) = 0 ∧ v(2) = u(2) + 1 ∧ v(3) = 0.

The other Ci are analogous, and are absolute for the same reasons.
The complete form of (b). Here we need to know that the following auxiliary

formulas are absolute:

u =
⋃
z∈y

K(z)(i), i = 2 or 3: (∀v ∈ u)(∃z ∈ y)(v = K(z)(i))

∧ (∀z ∈ y)(∃v ∈ u)(v = K(z)(i));
v =K(z)(i) : (∃w ∈ ∪(K))(〈z, w〉 ∈ K ∧ w is an i.t. ∧ v = w(i)).

Then, using Lemma 1.7(b), we explain the formula K(y) = limz∈yK(z) as
follows:

K(y)(1) =

0 ∧ ∃u2 ∃u3

(
u2 =

⋃
z∈y

K(z)(2) ∧ u3 =
⋃
z∈y

K(z)(3) ∧
4∨
i=1

Di(u2, u3, y)

)
,
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where the alternativesDi have the following structure, depending on “howK(z)
approaches K(y)”:

D1 : u2 ∈ u3 ∧ u2 is a limit ordinal ∧ ((∃z ∈ y)(K(z)(3) = u3)
→ k(y)(2) = u2 ∧K(y)(3) = u3);

D2 : u2 = u3 ∧ u2 is a limit ordinal ∧ ((∃z ∈ y)(K(z)(3) = u3)
∧ (∀z ∈ y)(K(z)(2) ∈ u2) → k(y)(2) = u2 ∧K(y)(3) = 0);

D3 : u2 � u3 ∧ u3 is a limit ordinal ∧ ((∀z ∈ y)(K(z)(3) ∈ u3)
→ K(y)(2) = u2 ∈ K(y)(3) = u3);

D4 : u2 = u3 ∧ u2 is a limit ordinal ∧ ((∀z ∈ y)(K(z)(2) ∈ u2

∧K(z)(3) ∈ u3) → K(y)(2) = 0 ∧K(y)(3) = u3).

It is therefore obvious that the Di are absolute. Even though the quantifiers
∃u2 and ∃u3 are not restricted, there is no problem, since when Kξ, yξ ∈ L, this

formula can be V -true only if uξ
′

2 and uξ
′

3 are uniquely determined ordinals and
lie in L, which gives us L-truth.

5.19. The formula S(N, x): “x is an ordinal ∧ N is a function ∧ dom N =
x+ 1∧ (∀y � x+ 1)(N(y) is a constructible set with N -number y)” is absolute.

We shall need to know that the following auxiliary formula is absolute:

y = (x)i, i = 1, 2, 3, where K(x) = 〈(x)1, (x2), (x)3〉

(not to be confused with the formula y = x(i) in 5.16, which occurs here as a
subformula): x is an ordinal ∧∃K(H(K,x)∧(∃u ∈ ∪(K))(〈x, u〉 ∈ K∧y = u(i))).
Even though ∃K is not restricted, this does not cause any problem, because for
every ordinal xξ ∈ L, the value of Kξ making H(Kξ, xξ) V -true lies in L. In
fact, the V -true formula

∀x(x is an ordinal⇒ ∃!K(H(K,x)))

is deducible from the axioms without the axiom of choice, and hence is L-true.
We now return to S(N, x). We need only show that the subformula “N(y) is

a constructible set with N -number y” is absolute. By definition, this subformula
can be written as

∨8
i=0Qi(y,N), where the alternatives have the form

Q0: (y)1 = 0 ∧ 〈y, L(y)2〉 ∈ N ;
Qi, 1 � i � 3: (y)1 = i ∧ 〈y, Fi(N((y)2), N((y)3))〉 ∈ N ;
Qi, 4 � i � 8: (y)1 = i ∧ 〈y, Fi(N((y)2))〉 ∈ N.

The absoluteness of the subformulas that have not been analyzed is clear
from the following complete forms of these formulas:

(a) 〈y, L(y)2〉 ∈ N : (∃z ∈ ∪(N))(〈y, z〉 ∈ N ∧ z ∈ L(y)2);
z = L(y)2 : (∃u ∈ y + 1)(u = (y)2 ∧ z = Lu);
z = Lu : (∀v ∈ z)(v ∈ Lu) ∧ ∀v(v ∈ Lu ⇒ v ∈ z).
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We can verify directly that the last subformula, with the unrestricted quantifier
∀v, is absolute, since LU ∈ L for any ordinal U , and L is transitive.

(b) 〈y, Fi(N((y)2))〉 ∈ N, i = 4, . . . , 8:
(∃u, v, w ∈ ∪(N))(u = (y)2 ∧ 〈u, v〉 ∈ N ∧ w = Fi(v) ∧ 〈y, w〉 ∈ N).

(c) 〈y, Fi(N((y)2), N((y)3))〉 ∈ N, i = 1, 2, 3:
(∃u2, u3, v2, v3, w ∈ ∪ (N))(u2 = (y)2 ∧ u3 = (y)3 ∧ 〈u2, v2〉 ∈ N
∧〈u3, v3〉 ∈ N ∧ w = Fi(u2, v3) ∧ 〈y, w〉 ∈ N).

5.20. The formula N(x, y): “x is an ordinal ∧y = N(x)” is absolute.
In fact, this formula is written in the form

∃N(S(N, x+ 1) ∧ 〈x, y〉 ∈ N).

There is no problem with ∃N being unrestricted, since we can apply the same
type of argument as we have used many times before: for any ordinal xξ there is
a unique N ξ

′
making this formula V -true, and then N ξ

′
∈ L, since the formula

∀x (x is an ordinal ⇒ ∃!N(S(N, x+ 1))) is deducible from the axioms without
the axiom of choice, and hence is L-true.

This completes the proof of Proposition 3.2. ��

6 Remarks on Formalization

Gödel’s theory, to which this chapter is devoted, is usually presented in a more
syntactic version. We shall now briefly describe the system of basic ideas and
the most important changes in the proofs in this version, in which the least
possible appeal is made to the semantics.

6.1. Let Q(x) be a formula in L1Set with one free variable x. Let ZF be the set
of all the (logical, special, and equality) axioms of L1Set except for the axiom
of choice. Q(x) is said to be transitive if

ZF � (Q(x) ∧ y ∈ x) ⇒ Q(y).

6.2. The relativization PQ of a formula P in L1Set relative to Q is defined by
induction on the number of connectives and quantifiers in P :

(x ∈ y)Q is Q(x) ∧Q(y) ⇒ x ∈ y;
(x = y)Q is Q(x) ∧Q(y) ⇒ x = y;

(¬P )Q is ¬(PQ);
(P1 ∗ P2)Q is (P1)Q ∗ (P2)Q, for any connective *;

(∀xP )Q is ∀x(Q(x) ⇒ P );
(∃xP )Q is ∃x(Q(x) ∧ P ).

6.3. Q(x) is called an (internal) model of L1Set if for any axiom P ∈ ZF we
have

ZF � PQ.
This model is transitive if Q is transitive.
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A formula P (y1, . . . , yn) is called Q-absolute if

ZF � (Q(y1) ∧ · · · ∧Q(yn)) ⇒ (P ⇔ PQ).

6.4. The connection between these concepts and our earlier ones is as follows.
Every formula Q(x) determines a class M = {X ∈ V |Q(X) is V -true}. This
class M has the property that

|P |M (ξ) = |PQ|V (ξ), ∀ξ ∈M,

for any formula P (as can easily be proved by induction on the number of
connectives and quantifiers in P ). Thus, to give a syntactic reformulation of
our proofs we must make the following changes throughout;

(a) We consider only classes M that are defined by formulas Q, and all
references to M are replaced by references to Q.

(b) We everywhere replace “P is V -true” by “P is deducible from ZF.”
(c) We everywhere replace “P is M -true” by “PQ is deducible from ZF.”
(d) We everywhere replace “P is M -absolute” by “P is Q-absolute.”

In order for the new assertions on deducibility from ZF to become sufficiently
obvious, we must either do some additional work formalizing the proofs or else
give more careful intuitive proofs. In particular, we must find finite subsets of
ZF from which the various facts are deducible. The basic results are stated as
follows in the new syntactic language:

6.5. ∃y L(x, y) “is” a transitive internal model of L1Set.

6.6. ZF�(axiom of choice)∃y L(x,y).

6.7. ZF�(generalized continuum hypothesis)∃y L(x,y).

6.8. Thus, a completely syntactic version of Gödel’s theory would consist of all
the deductions implicit in 6.5–6.7, without any commentary. Of course, such a
treatment has never been written. The formula ∃yL(x, y) alone takes up several
pages; without appealing to semantics, it would be impossible either to think
up, or to explain, or even to copy down all this without making mistakes.
The deductions of all the required relativized formulas P∃y L(x,y) would also
be extremely long. This situation gives us an instructive example of what was
discussed in “Digression: Proof” in Chapter II.

7 What Is the Cardinality of the Continuum?

After all we have learned about the Zermelo–Fraenkel language and axiom
system, it might seem naive to return to this question. But we must do so
if we consider mathematical meaning to be our primary concern.
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Some specialists in the foundations of mathematics espouse a different
point of view. Namely, they answer that the question itself is meaningless. It
seems that Paul Cohen himself tends toward this viewpoint, at the same time
admitting that “this is a hard decision” (P. Cohen, Comments on the founda-
tions of set theory, Proc. Symp. Pure Math., vol. XIII, part I, American Math.
Soc., Providence 1971, p. 12).

From this point of view it is natural to reject almost the entire semantics
of L1Set, including all the Vα starting with α = ω0 + 1 in the von Neumann
universe. No halfway solutions can help matters, especially since questions con-
cerning higher axioms of infinity or the so-called measurable cardinals are in an
even worse position than the CH.

It thus becomes necessary to try to find alternative languages and semantics.
Here the differences of opinion are wide and irreconcilable. The most clear-cut
position is that of the constructivists, although even among them there are
different shades of opinion. The constructivists do not recognize infinity as a
usable concept, and reject ineffective existence proofs. (It turns out that in prac-
tice they often replace these ineffective proofs by a more carefully differentiated
word usage—“there cannot not exist,” or “there quasi-exists”—which is nearly
synonymous with certain linguistic precautions adopted in classical texts.) In
our opinion, the shortcoming in their point of view is that constructivism is
in no sense “another mathematics.” It is, rather, a sophisticated subsystem of
classical mathematics, which rejects the extremes in classical mathematics and
carefully nourishes its effective computational apparatus.

Unfortunately, it seems that it is these “extremes”—bold extrapolations,
abstractions that are infinite and do not lend themselves to a constructivist
interpretation—that make classical mathematics effective. One should try to
imagine how much help mathematics could have provided twentieth-century
quantum physics if for the past hundred years it had developed using only
abstractions from “constructive objects.” Most likely, the standard calcula-
tions with infinite-dimensional representations of Lie groups that today play an
important role in understanding the microworld would simply never have
occurred to anyone.

It is not impossible that a new (or a completely forgotten old) conception
of the continuum, in which the continuum has no “cardinality,” could be found
in the course of a deep investigation of the external world. The notion of a set
consisting of elements may actually be adequate only for finite or countable
sets, and “higher infinities” may turn out to be abstractions from objects of a
completely different type.

Physics seems to point up a difference in principle between “counting”
and the Eudoxus–Dedekind idealization of measurement. The counting proce-
dure applies to regions of attraction—“attractors” (R. Thom)—that are units
not having sharp boundaries. The parts of a unit, even if they have physical
meaning, are nevertheless attractors of a different sort. But even these ideas
apparently stop making sense in the microworld.

If nature has a fundamentally statistical aspect, it might be fruitful to
consider mathematical models in which the statistical aspect appears as an
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undefined concept. The unexpected richness of the nonstandard interpretations
of classical mathematics in Boolean-valued models agrees with the suggestion
that all the words we say should be understood in a new way.

7.2. We now discuss a less radical point of view on the continuum problem,
according to which this question of its cardinality is meaningful. Then the main
problem once again becomes how to determine the place of the continuum on
the scale of alephs.

Cohen concludes his book with the following opinion: “A point of view which
the author feels may eventually come to be accepted is that CH is obviously
false. . . . C is greater than ℵn,ℵw,ℵα where α = ℵw etc. This point of view
regards C as an incredibly rich set given to us by one bold new axiom, which
can never be approached by any piecemeal process of construction.”

We thus have a conjectural estimate from below for C, and nothing more—
not even a conjecture as to whether the cardinal C is regular or singular.

Of course, the real problem consists not only in guessing a plausible conjec-
ture, but in supporting it with sufficiently convincing indirect evidence for it to
become widely accepted, even if not proved. What sort of evidence could this
be? In discussing new axioms for set theory, Gödel writes:

there may exist . . . other (hitherto unknown) axioms of set theory which a
more profound understanding of the concepts underlying logic and mathe-
matics would enable us to recognize as implied by these concepts.

Furthermore, however, even disregarding the intrinsic necessity of some

new axiom, and even in case it had no intrinsic necessity at all, a decision

about its truth is possible also in another way, namely, inductively by study-

ing its “success,” that is, its fruitfulness in consequences and in particular in

“verifiable” consequences, i.e., consequences demonstrable without the new

axiom, whose proofs by means of the new axiom, however, are considerably

simpler and easier to discover, and make it possible to condense into one

proof many different proofs. The axioms for the system of real numbers,

rejected by the intuitionists, have in this sense been verified to some extent

owing to the fact that analytic number theory frequently allows us to prove

number theoretic theorems which can subsequently be verified by elementary

methods. A much higher degree of verification than that, however, is conceiv-

able. There might exist axioms so abundant in their verifiable consequences,

shedding so much light upon a whole discipline, and furnishing such powerful

methods for solving given problems (and even solving them, as far as that

is possible, in a constructivistic way) that quite irrespective of their intrinsic

necessity they would have to be assumed at least in the same sense as any well

established physical theory (K. Gödel, What is Cantor’s continuum problem?

Amer. Math. Monthly, vol. 54, no. 9, 1947).

There is little to add here to this ardently expressed hope. But see §8 of
Chapter VII, where it is shown using an idea of Gödel’s own that any new
independent axiom can shorten to an arbitrary extent the proofs of suitable
assertions that are provable without the axiom. This result somewhat
weakens our confidence in pragmatic criteria for truth.
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7.3. More than two decades after the publication of the first edition of this
book, Hugh W. Woodin introduced interesting new ideas about the continuum
hypothesis.

His constructions enrich both our set-theoretic intuition and its formal
language, in an intuitively consistent way.

We will very briefly explain Woodin’s approach, following his notes “The
continuum hypothesis. I, II,” Notices AMS, 48 (2001), no. 6, 567–576, and no.
3, 681–690. We will work in the constructible universe of Section IV.1.

Call a set X transitive if each element of an element of X belongs to X .
The transitive closure of X is the minimal transitive set containing X .

Let k be an infinite cardinal, and H(k) the set of all sets X whose transitive
closure is of cardinality ≤ k. Accepting the axiom of choice, one sees that
any constructible set belongs to some H(k). Let k0, k1, k2, . . . be the increasing
sequence of the first infinite cardinals. Woodin easily reinterprets H(k0) as
the semiring of natural numbers N with addition and multiplication, and, with
some effort, H(k1) as a particular structure on the set of subsets of this semiring.
These efforts are justified by providing a list of axioms for these structures that
are intuitive and provide a basis for generalization to H(k2).

Having thus set the stage, Woodin takes up H(k2) and introduces an exten-
sion of first-order logic and a new axiom modestly called (∗).

Here the grand finale arrives: in this context Woodin can prove that 2ℵ0 =
ℵ2.

The following quotation from his second paper nicely concludes the discus-
sion of this whole section:

“So, is the continuum hypothesis solvable? Perhaps, I am not completely
confident the ‘solution’ I have sketched is the solution, but it is for me a
convincing evidence that there is a solution. Thus, I now believe the continuum
hypothesis is solvable, which is a fundamental change in my view of set theory.”
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