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Introduction to Formal Languages

Gelegentlich ergreifen wir die Feder
Und schreiben Zeichen auf ein weisses Blatt,
Die sagen dies und das, es kennt sie jeder,
Es ist ein Spiel, das seine Regeln hat.

H. Hesse, “Buchstaben”
We now and then take pen in hand
And make some marks on empty paper.
Just what they say, all understand.
It is a game with rules that matter.

H. Hesse, “Alphabet”
(translated by Prof. Richard S. Ellis)

1 General Information

1.1. Let A be any abstract set. We call A an alphabet. Finite sequences of
elements of A are called expressions in A. Finite sequences of expressions are
called texts.

We shall speak of a language with alphabet A if certain expressions and texts
are distinguished (as being “correctly composed,” “meaningful,” etc.). Thus, in
the Latin alphabet A we may distinguish English word forms and grammatically
correct English sentences. The resulting set of expressions and texts is a working
approximation to the intuitive notion of the “English language.”

The language Algol 60 consists of distinguished expressions and texts in the
alphabet {Latin letters} ∪ {digits} ∪ {logical signs} ∪ {separators}. Programs
are among the most important distinguished texts.

In natural languages the set of distinguished expressions and texts usually
has unsteady boundaries. The more formal the language, the more rigid these
boundaries are.

The rules for forming distinguished expressions and texts make up the syntax
of the language. The rules that tell how they correspond with reality make
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4 I Introduction to Formal Languages

up the semantics of the language. Syntax and semantics are described in a
metalanguage.

1.2. “Reality” for the languages of mathematics consists of certain classes of
(mathematical) arguments or certain computational processes using (abstract)
automata. Corresponding to these designations, the languages are divided into
formal and algorithmic languages. (Compare: in natural languages, the declar-
ative versus imperative moods, or—on the level of texts—statement versus
command.)

Different formal languages differ from one another, in the first place, by
the scope of the formalizable types of arguments—their expressiveness; in the
second place, by their orientation toward concrete mathematical theories; and
in the third place, by their choice of elementary modes of expression (from
which all others are then synthesized) and written forms for them.

In the first part of this book a certain class of formal languages is examined
systematically. Algorithmic languages are brought in episodically.

The “language–parole” dichotomy, which goes back to Humboldt and
Saussure, is as relevant to formal languages as to natural languages. In §3 of
this chapter we give models of “speech” in two concrete languages, based on set
theory and arithmetic, respectively, because, as many believe, habits of speech
must precede the study of grammar.

The language of set theory is among the richest in expressive means, despite
its extreme economy. In principle, a formal text can be written in this language
corresponding to almost any segment of modern mathematics—topology, func-
tional analysis, algebra, or logic.

The language of arithmetic is one of the poorest, but its expressive possi-
bilities are sufficient for describing all of elementary arithmetic, and also for
demonstrating the effects of self-reference à la Gödel and Tarski.

1.3. As a means of communication, discovery, and codification, no formal
language can compete with the mixture of mathematical argot and formulas
that is common to every working mathematician.

However, because they are so rigidly normalized, formal texts can
themselves serve as an object for mathematical investigation. The results of
this investigation are themselves theorems of mathematics. They arouse great
interest (and strong emotions) because they can be interpreted as theorems
about mathematics. But it is precisely the possibility of these and still broader
interpretations that determines the general philosophical and human value of
mathematical logic.

1.4. We have agreed that the expressions and texts of a language are elements
of certain abstract sets. In order to work with these elements, we must some-
how fix them materially. In the modern European tradition (as opposed to the
ancient Babylonian tradition, or the latest American tradition, using computer
memory), the following notation is customary. The elements of the alphabet are
indicated by certain symbols on paper (letters of different kinds of type, digits,
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additional signs, and also combinations of these). An expression in an alphabet
A is written in the form of a sequence of symbols, read from left to right, with
hyphens when necessary. A text is written as a sequence of written expressions,
with spaces or punctuation marks between them.

1.5. If written down, most of the interesting expressions and texts in a formal
language either would be physically extremely long, or else would be psycho-
logically difficult to decipher and learn in an acceptable amount of time, or
both.

They are therefore replaced by “abbreviated notation” (which can some-
times turn out to be physically longer). The expression “xxxxxx” can be briefly
written “x . . . x (six times)” or “x6.” The expression “∀z(z ∈ x ⇔ z ∈ y)” can
be briefly written “x = y.” Abbreviated notation can also be a way of denoting
any expression of a definite type, not only a single such expression (any expres-
sion 101010 . . .10 can be briefly written “the sequence of length 2n with ones
in odd places and zeros in even places” or “the binary expansion of 2

3 (4n−1)”).
Ever since our tradition started, with Viète, Descartes, and Leibniz, abbre-

viated notation has served as an inexhaustible source of inspiration and errors.
There is no sense in, or possibility of, trying to systematize its devices; they
bear the indelible imprint of the fashion and spirit of the times, the artistry and
pedantry of the authors. The symbols Σ,

∫
, ∈ are classical models worthy of

imitation. Frege’s notation, now forgotten, for “P and Q” (actually “not [if P ,
then not Q]” whence the asymmetry):

Q

P

shows what should be avoided. In any case, abbreviated notation permeates
mathematics.

The reader should become used to the trinity

formal text

written text interpretation of text,

which replaces the unconscious identification of a statement with its form and
its sense, as one of the first priorities in his study of logic.

2 First-Order Languages

In this section we describe the most important class of formal languages
L1—the first-order languages—and give two concrete representatives of this
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class: the Zermelo–Fraenkel language of set theory L1Set, and the Peano
language of arithmetic L1Ar. Another name for L1 is predicate languages.

2.1. The alphabet of any language in the class L1 is divided into six disjoint
subsets. The following table lists the generic name for the elements in each
subset, the standard notation for these elements in the general case, the special
notation used in this book for the languages L1Set and L1Ar. We then describe
the rules for forming distinguished expressions and briefly discuss semantics.

The distinguished expressions of any language L in the class L1 are divided
into two types: terms and formulas. Both types are defined recursively.

2.2. Definition. Terms are the elements of the least subset of the expressions
of the language that satisfies the following two conditions:

(a) Variables and constants are (atomic) terms.
(b) If f is an operation of degree r and t1, . . . , tr are terms, then f(t1, . . . , tr)

is a term.

In (a) we identify an element with a sequence of length one. The alpha-
bet does not include commas, which are part of our abbreviated notation:
f(t1, t2, t3) means the same as f(t1t2t3). In §1 of Chapter II we explain how a
sequence of terms can be uniquely deciphered despite the absence of commas.

If two sets of expressions in the language satisfy conditions (a) and (b),
then the intersection of the two sets also satisfies these conditions. Therefore
the definition of the set of terms is correct.

Language Alphabets

Subsets of the Names and Notation
Alphabet General in L1Set in L1Ar
connectives and ⇔(equivalent); ⇒(implies); ∨(inclusive or); ∧ (and);
quantifiers ¬(not); ∀ (universal quantifier); ∃ (existential quantifier)

variables x, y, z, u, v, . . .with indices

constants c · · · with indices ∅ (empty set) 0̄ (zero); 1̄ (one)

operations of + (addition, degree 2);
degree f, g, . . . with none ·(multiplication,
1, 2, 3, . . . indices degree 2)

relations (predicates) ∈ (is an element = (equality, degree 2)
of degree p, q, . . . with of, degree 2);
1, 2, 3, . . . indices = (equals, degree 2)

parentheses ((left parenthesis);)(right parenthesis)

2.3. Definition. Formulas are the elements of the least subset of the expressions
of the language that satisfies the following two conditions:

(a) If p is a relation of degree r and t1, . . . , tr are terms, then p(t1, . . . , tr) is an
(atomic) formula.
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(b) If P and Q are formulas (abbreviated notation!), and x is a variable, then
the expressions

(P ) ⇔ (Q), (P ) ⇒ (Q), (P ) ∨ (Q), (P ) ∧ (Q),
¬(P ), ∀x(P ), ∃x(P )

are formulas.

It is clear from the definitions that any term is obtained from atomic terms
in a finite number of steps, each of which consists in “applying an operation
symbol” to the earlier terms. The same is true for formulas. In Chapter II, §1
we make this remark more precise.

The following initial interpretations of terms and formulas are given for
the purpose of orientation and belong to the so-called “standard models” (see
Chapter II, §2 for the precise definitions).

2.4. Examples and interpretations

(a) The terms stand for (are notation for) the objects of the theory. Atomic
terms stand for indeterminate objects (variables) or concrete objects (con-
stants). The term f(t1, . . . , tr) is the notation for the object obtained by apply-
ing the operation denoted by f to the objects denoted by t1, . . . , tr. Here are
some examples from L1Ar:

0̄ denotes zero;
1̄ denotes one;

+(1̄, 1̄) denotes two (1 + 1 = 2 in the usual notation);

+
(

1̄ + (1̄, 1̄)
)

denotes three;

·
(

+ (1̄, 1̄) + (1̄, 1̄)
)

denotes four (2× 2 = 4).

Since this normalized notation is different from what we are used to in arith-
metic, in L1Ar we shall usually write simply t1 + t2 instead of +(t1, t2) and
t1 · t2 instead of ·(t1, t2). This convention may be considered as another use of
abbreviated notation:

x stands for an indeterminate integer;
x+ 1̄ (or + (x, 1̄)) stands for the next integer.

In the language L1Set all terms are atomic:

x stands for an indeterminate set;
∅ stands for the empty set.
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(b) The formulas stand for statements (arguments, propositions, . . . ) of the
theory. When translated into formal language, a statement may be
either true, false, or indeterminate (if it concerns indeterminate objects); see
Chapter II for the precise definitions. In the general case the atomic formula
p (t1, . . . , tr) has roughly the following meaning: “The ordered r-tuple of objects
denoted by t1, . . . , tr has the property denoted by p.” Here are some examples
of atomic formulas in L1Ar. Their general structure is = (t1, t2), or, in nonnor-
malized notation, t1 = t2:

0̄ = 1̄, x+ 1̄ = y.

Here are some examples of formulas which are not atomic:

¬(0̄ = 1̄),
(x = 0̄) ⇔ (x+ 1̄ = 1̄),

∀ x
(

(x = 0̄) ∨
(
¬(x · x = 0̄)

))
.

Some atomic formulas in L1 Set

y ∈ x (y is an element of x),

and also ∅ ∈ y, x ∈ ∅, etc. Of course, normalized notation must have the form
∈ (xy), and so on.

Some nonatomic formulas:

∃ x
(
∀y(¬(y ∈ x))

)
: there exists an x of which no y is an element.

Informally this means: “The empty set exists.” We once again recall that an
informal interpretation presupposes some standard interpretive system, which
will be introduced explicitly in Chapter II.

∀ y(y ∈ z ⇒ y ∈ x) : z is a subset of x.

This is an example of a very useful type of abbreviated notation: four paren-
theses are omitted in the formula on the left. We shall not specify precisely
when parentheses may be omitted; in any case, it must be possible to reinsert
them in a way that is unique or is clear from the context without any special
effort.

We again emphasize: the abbreviated notation for formulas are only material
designations. Abbreviated notation is chosen for the most part with psycholog-
ical goals in mind: speed of reading (possibly with a loss in formal uniqueness),
tendency to encourage useful associations and discourage harmful ones, suit-
ability to the habits of the author and reader, and so on. The mathematical
objects in the theory of formal languages are the formulas themselves, and not
any particular designations.
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Digression: Names

On several occasions we have said that a certain object (a sign on paper, an
element of an alphabet as an abstract set, etc.) is a notation for, or denotes,
another element. A convenient general term for this relationship is naming.

The letter x is the name of an element of the alphabet; when it appears in
a formula, it becomes the name of a set or a number; the notation x ∈ y is the
name of an expression in the alphabet A, and this expression, in turn, is the
name of an assertion about indeterminate sets; and so on.

When we form words, we often identify the names of objects with the objects
themselves: we say “the variable x,” “the formula P ,” “the set z.” This can
sometimes be dangerous. The following passage from Rosser’s book Logic for
Mathematicians points up certain hidden pitfalls:

The gist of the matter is that, if we have a statement such as “3 is greater
than 9

12” about the rational number 9
12 and containing a name “ 9

12” of
this rational number, one can replace this name by any other name of
the same rational number, for instance, “ 3

4 .” If we have a statement
such as “3 divides the denominator of ‘ 9

12 ’ ” about a name of a rational
number and containing a name of this name, one can replace this name
of the name by some other name of the same name, but not in general
by the name of some other name, if it is a name of some other name of
the same rational number.

Rosser adds that “failure to observe such distinctions carefully can seldom
lead to confusion in logic and still more seldom in mathematics.” However,
these distinctions play a significant role in philosophy and in mathematical
practice.

“A rose by any other name would smell as sweet”—this is true because
roses exist outside of us and smell in and of themselves. But, for example, it
seems that Hilbert spaces “exist” only insofar as we talk about them, and the
choice of terminology here makes a difference. The word “space” for the set
of equivalence classes of square integrable functions was at the same time a
codeword for an entire circle of intuitive ideas concerning “real” spaces. This
word helped organize the concept and led it in the right direction.

A successfully chosen name is a bridge between scientific knowledge and
common sense, between new experience and old habits. The conceptual foun-
dation of any science consists of a complicated network of names of things,
names of ideas, and names of names. It evolves itself, and its projection on
reality changes.

3 Beginners’ Course in Translation

3.1. We recall that the formulas in L1Set stand for statements about sets; the
formulas in L1Ar stand for statements about natural numbers; these formulas
contain names of sets and numbers, which may be indeterminate.
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In this section we give the first basic examples of two-way translation
“argot ⇔ formal language.” One of our purposes will be to indicate the great
expressive possibilities in L1Set and L1Ar, despite the extremely limited modes
of expression.

As in the case of natural languages, this translation cannot be given by rigid
rules, is not uniquely determined, and is a creative process. Compare Hesse’s
quatrain with its translation in the epigraph to this book: the most important
aim of translation is to “understand . . . just what they say.”

Before reading further, the reader should look through the appendix to
Chapter II: “The von Neumann Universe.” The semantics implicit in L1Set
relates to this universe, and not to arbitrary “Cantor” sets.

A more complete picture of the meaning of the formulas can be obtained
from §2 of Chapter II.

Translation from L1Set to argot.

3.2. ∀ x(¬(x ∈ ∅)): “for all (sets) x it is false that x is an element of (the set)
∅” (or “∅ is the empty set”).

The second assertion is equivalent to the first only in the von Neumann
universe, where the elements of sets can only be sets, and not real numbers,
chairs, or atoms.

3.3. ∀ z(z ∈ x⇔ z ∈ y) ⇔ x = y: “if for all z it is true that z is an element of
x if and only if z is an element of y, then it is true that x coincides with y; and
conversely,” or “a set is uniquely determined by its elements.”

In the expression 3.3 at least six parentheses have been omitted; and the
subformulas z ∈ x, z ∈ y, x = y have not been normalized according to the
rules of L1.

3.4. ∀u ∀v ∃x ∀z(z ∈ x⇔ (z = u ∨ z = v)): “for any two sets u, v there exists
a third set x such that u and v are its only elements.”

This is one of the axioms of Zermelo–Fraenkel. The set x is called the
“unordered pair of sets u, v” and is denoted {u, v} in the appendix.

3.5. ∀y ∀z
(
((z ∈ y ∧ y ∈ x) ⇒ z ∈ x) ∧ (y ∈ x ⇒ ¬(y ∈ y))

)
: “the set x is

partially ordered by the relation ∈ between its elements.”
We mechanically copied the condition y ∈ x⇒ ¬(y ∈ y) from the definition

of partial ordering. This condition is automatically fulfilled in the von Neumann
universe, where no set is an element of itself.

A useful exercise would be to write the following formulas:

“x is totally ordered by the relation ∈”;
“x is linearly ordered by the relation ∈”;
“x is an ordinal.”



3 Beginners’ Course in Translation 11

3.6. ∀x(y ∈ z): The literal translation “for all x it is true that y is an element
of z” sounds a little strange. The formula ∀x ∃x(y ∈ z), which agrees with the
rules for constructing formulas, looks even worse. It would be possible to make
the rules somewhat more complicated, in order to rule out such formulas, but
in general they cause no harm. In Chapter II we shall see that from the point
of view of “truth” or “deducibility,” such a formula is equivalent to the formula
y ∈ z. It is in this way that they must be understood.

Translation from argot to L1Set.

We choose several basic constructions having general mathematical signifi-
cance and show how they are realized in the von Neumann universe, which
contains only sets obtained from ∅ by the process of “collecting into a set,”
and in which all relations must be constructed from ∈.

3.7. “x is the direct product y × z.”
This means that the elements of x are the ordered pairs of elements of y

and z, respectively. The definition of an unordered pair is obvious: the formula

∀u (u ∈ x⇔ (u = y1 ∨ u = z1))

“means,” or may be briefly written in the form, x = {y1, z1} (compare 3.4). The
ordered pair y1 and z1 is introduced using a device of Kuratowski and Wiener:
this is the set x1 whose elements are the unordered pairs {y1, y1} and {y1, z1}.

We thus arrive at the formula

∃y2 ∃z2(“x1 = {y2, z2}” ∧ “y2 = {y1, y1}” ∧ “z2 = {y1, z1}”),

which will be abbreviated
x1 = 〈y1, z1〉

and will be read “x1 is the ordered pair with first element y1 and second element
z1.” The abbreviated notation for the subformulas is in quotes; we shall later
omit the quotation marks.

Finally, the statement “x = y × z” may be written in the form

∀x1(x1 ∈ x⇔ ∃y1 ∃z1(y1 ∈ y ∧ z1 ∈ z ∧ “x1 = 〈y1, z1〉”)).

In order to remind the reader for the last time of the liberties taken in
abbreviated notation, we write this same formula adhering to all the canons
of L1:

∀x1

[
(∈ (x1x))

⇔
[
∃y1

(
∃z1

((
(∈ (y1y)) ∧ (∈ (z1z))

)
∧
(
∃y2

(
∃z2

(((
∀u

(
(∈ (ux1))

⇔ ((= (uy2) ∨ (= (uz2))
)))

∧ (∀u((∈ (uy2))

⇔ (= (uy1))))) ∧ (∀u((∈ (uz2) ⇔ ((= (uy1)) ∨ (= (uz1))))))
))))]]
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Exercise: Find the open parenthesis corresponding to the fifth closed paren-
thesis from the end. In §1 of Chapter II we give an algorithm for solving such
problems.

3.8. “f is a mapping from the set u to the set v.”
First of all, mappings, or functions, are identified with their graphs; other-

wise, we would not be able to consider them as elements of the universe. The
following formula successively imposes three conditions on f: f is a subset of
u× v; the projection of f onto u coincides with all of u; and each element of u
corresponds to exactly one element of v:

∀z
(
z ∈ f ⇒ (∃u1 ∃v1(u1 ∈ u ∧ v1 ∈ v ∧ “z = 〈u1, v1〉”))

)
∧ ∀u1(u1 ∈ u⇒ ∃v1 ∃z(v1 ∈ v ∧ “z = 〈u1, v1〉” ∧ z ∈ f))
∧ ∀u1 ∀v1 ∀v2(∃z1 ∃z1(z1 ∈ f ∧ z2 ∈ f ∧ “z1 = 〈u1, v1〉” ∧ “z2 = 〈u1, v2〉”))

⇒ v1 = v2).

Exercise: Write the formula “f is the projection of y × z onto z.”

3.9. “x is a finite set.”
Finiteness is far from being a primitive concept. Here is Dedekind’s defini-

tion: “there does not exist a one-to-one mapping f of the set x onto a proper
subset.” The formula:

¬∃f
(
“f is a mapping from x to x” ∧ ∀u1 ∀u2 ∀v1 ∀v2((“〈u1, v1〉 ∈ f”

∧ “〈u2, v2〉 ∈ f” ∧ ¬(u1 = u2)) ⇒ ¬(v1 = v2) ∧ ∃v1(v1 ∈ x ∧ ¬∃u1

(“〈u1, v1〉 ∈ f”))
)
.

The abbreviation “〈u1, v1〉 ∈ f” means, of course, ∃y(“y = 〈u1, v1〉)” ∧ y ∈ f).

3.10. “x is a nonnegative integer.”
The natural numbers are represented in the von Neumann universe by the

finite ordinals, so that the required formula has the form

“x is totally ordered by the relation ∈” ∧ “x is finite.”

Exercise: Figure out how to write the formulas “x + y = z” and “x · y = z”
where x, y, z are integers � 0.

After this it is possible in the usual way to write the formulas “x is an
integer,” “x is a rational number,” “x is a real number” (following Cantor or
Dedekind), etc., and then construct a formal version of analysis. The written
statements will have acceptable length only if we periodically extend the lan-
guage L1Set (see §8 of Chapter II). For example, in L1Set we are not allowed
to write term-names for the numbers 1, 2, 3, . . . (∅ is the name for 0), although
we may construct the formulas “x is the finite ordinal containing 1 element,”
“x is the finite ordinal containing 2 elements,” etc. If we use such roundabout
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methods of expression, the simplest numerical identities become incredibly long;
but of course, in logic we are mainly concerned with the theoretical possibility
of writing them.

3.11. “x is a topological space.”
In the formula we must give the topology of x explicitly. We define the

topology, for example, in terms of the set y of all open subsets of x. We first
write that y consists of subsets of x and contains x and the empty set:

P1 : ∀z(z ∈ y ⇒ ∀u(u ∈ z ⇒ u ∈ x)) ∧ x ∈ y ∧∅ ∈ y.

The intersection w of any two elements u, v in y is open, i.e., belongs to y:

P2 : ∀u ∀v ∀w((u ∈ y ∧ v ∈ y ∧ ∀z((z ∈ u ∧ z ∈ v) ⇔ z ∈ w)) ⇒ w ∈ y).

It is harder to write “the union of any set of open subsets is open.” We first
write

P3 : ∀u(u ∈ z ⇔ ∀v(v ∈ u⇒ v ∈ y)),

that is, “z is the set of all subsets of y.” Then

P4 : ∀u ∀w((u ∈ z ∧ ∀v1(v1 ∈ w⇔ ∃v(v ∈ u ∧ v1 ∈ v))) ⇒ w ∈ y).

This means (taking into account P3, which defines z); “If u is any subset of y,
i.e., a set of open subsets of x, then the union w of all these subsets belongs
to y, i.e., is open.” Now the final formula may be written as follows:

P1 ∧ P2 ∧ ∀z(P3 ⇒ P4).

The following comments on this formula will be reflected in precise defini-
tions in Chapter II, §§1 and 2. The letters x, y have the same meaning in all the
Pi, while z plays different roles: in P1 it is a subset of x, and in P3 and P4 it is
the set of subsets of x. We are allowed to do this because as soon as we “bind”
z by the quantifier ∀, say in P1, z no longer stands for an (indeterminate)
individual set, and becomes a temporary designation for “any set.” Where the
“scope of action” of ∀ ended, z can be given a new meaning. In order to “free”
z for later use, ∀z was also put before P3 ⇒ P4.

Translation from argot to L1Ar.

3.12. “x < y”: ∃z(y = (x + z) + 1̄). Recall that the variables are names for
nonnegative integers.

3.13. “x is a divisor of y”: ∃z(y = x · z).

3.14. “x is a prime number”: “1̄ < x”∧ (“y is a divisor of x”⇒ (y = 1̄ ∨ y = x)).

3.15. “Fermat’s last theorem”: ∀x1 ∀x2 ∀x3 ∀u(“2̄ < u” ∧ “xu1 + xu2 = xu3” ⇒
“x1x2x3 = 0̄”). It is not clear how to write the formula xu1 + xu2 = xu3
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in L1Ar. Of course, for any concrete u = 1, 2, 3 there is a correspond-
ing atomic formula in L1Ar, but how do we make u into a variable? This
is not a trivial problem. In the second part of the book we show how to
find an atomic formula p(x, u, y, z1, . . . , zn) such that the assertion that
∃z1 · · · ∃znp (x, u, y, z1, . . . , zn) in the domain of natural numbers is equiva-
lent y = xu. Then xu1 + xu2 = xu3 can be translated as follows:

∃y1 ∃y2 ∃y3 (“xu1 = y1” ∧ “xu2 = y2” ∧ “xu3 = y3” ∧ y1 + y2 = y3).

The existence of such a p is a nontrivial number-theoretic fact, so that here the
very possibility of performing a translation becomes a mathematical
problem.

3.16. “The Riemann hypothesis.” The Riemann zeta function ζ (s) is defined
by the series Σ∞

n=1 n
−s in the half-plane Re s ≥ 1. It can be continued mero-

morphically onto the entire complex s-plane. The Riemann hypothesis is the
assertion that the nontrivial zeros of ζ(s) lie on the line Re s = 1

2 . Of course,
in this form the Riemann hypothesis cannot be translated into L1Ar. However,
there are several purely arithmetic assertions that are demonstrably equivalent
to the Riemann hypothesis. Perhaps the simplest of them is the following.

Let µ(n) be the Möbius function on the set of integers � 1: it equals 0 if
n is divisible by a square, and equals (−1)r, where r is the number of prime
divisors of n, if n is square-free. We then have

Riemann hypothesis ⇔ ∀ε > 0 ∃x ∀y
[
y > x⇒

[∣∣∣ y∑
n=1

µ(n)
∣∣∣ < y1/2+ε

]]
.

Only the exponent is not an integer on the right; but ε need only run through
numbers of the form 1/z, z an integer � 1, and then we can raise the inequality
to the (2z)th power. The formula(

y∑
n=1

µ(n)

)2z

< yz+2

can then be translated into L1Ar, although not completely trivially. The neces-
sary techniques will be developed in the second part of the book.

The last two examples were given in order to show the complexity that is
possible in problems that can be stated in L1Ar, despite the apparent simplicity
of the modes of expression and the semantics of the language.

We conclude this section with some remarks concerning higher-order
languages.

3.17. Higher-order languages. Let L be any first-order language. Its modes
of expression are limited in principle by one important consideration: we are
not allowed to speak of arbitrary properties of objects of the theory, that is,
arbitrary subsets of the set of all objects. Syntactically, this is reflected in the
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prohibition against forming expressions such as ∀p(p(x)), where p is a relation
of degree 1; relations must stand for fixed rather than variable properties.

Of course, certain properties can be defined using nonatomic formulas. For
example, in L1Ar instead of “x is even” we may write ∃y(x = (1̄ + 1̄) · y).
However, there is a continuum of subsets of the integers but only a countable
set of definable properties (see §2 of Chapter II), so there are automati-
cally properties that cannot be defined by formulas. Thus, it is impossible
to replace the forbidden expression ∀p(p(x)) by a sequence of expressions
P1(x), P2(x), P3(x), . . . .

Languages in which quantifiers may be applied to properties and/or func-
tions (and also, possibly, to properties of properties, and so on) are called higher-
order languages. One such language—L2Real—will be considered in Chapter III
for the purpose of illustrating a simplified version of Cohen forcing.

On the other hand, the same extension of expressive possibilities can be
obtained without leaving L1. In fact, in the first-order language L1Set we may
quantify over all subsets of any set, over all subsets of the set of subsets, and
so on. Informally this means that we are speaking of all properties, all proper-
ties of properties, . . . (with transfinite extension). In addition, any higher-order
language with a “standard interpretation” in some type of structured sets can
be translated into L1Set so as to preserve the meanings and truth values in
this standard interpretation. (An apparent exception is the languages for
describing Gödel–Bernays classes and “large” categories; but it seems, based
on our present understanding of paradoxes, that no higher-order languages can
be constructed from such a language.)

The attentive reader will notice the contrast between the possibility of writ-
ing a formula in L1Set in which ∀ is applied to all subsets (informally, to all
properties) of finite ordinals (informally, of integers) and the impossibility of
writing a formula in L1Set that would define any concrete subset in the con-
tinuum of undefinable subsets. (There are fewer such subsets in L1Set than in
L1Ar, but still a continuum.) We shall examine these problems more closely in
Chapter II when we discuss “Skolem’s paradox.”

Let us summarize. Almost all the basic logical and set-theoretic principles
used in the day-to-day work of the mathematician are contained in the first-
order languages and, in particular, in L1Set. Hence, those languages will be the
subject of study in the first and third parts of the book. But concrete oriented
languages can be formed in other ways, with various degrees of deviation from
the rules of L1. In addition to L2Real, examples of such languages examined
in Chapter II include SELF (Smullyan’s language for self-description) and SAr,
which is a language of arithmetic convenient for proving Tarski’s theorem on
the undefinability of truth.

Digression: Syntax

1. The most important feature that most artificial languages have in common
is the ability to encompass a rich spectrum of modes of expression starting
with a small finite number of generating principles.
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In each concrete case the choice of these principles (including the alphabet
and syntax) is based on a compromise between two extremes. Economical use of
modes of expression leads to unified notation and simplified mechanical analy-
sis of the text. But then the texts become much longer and farther removed
from natural language texts. Enriching the modes of expression brings the
artificial texts closer to the natural language texts, but complicates the syntax
and the formal analysis. (Compare machine languages with such programming
languages as Algol, Fortran, Cobol, etc.)

We now give several examples based on our material.

2. Dialects of L1

(a) Without changing the logic in L1, it is possible to discard parentheses and
either of the two quantifiers from the alphabet, and to replace all the con-
nectives by one, namely ↓ (conjunction of negations). (In addition, con-
stants could be declared to be functions of degree 0, and functions could
be interpreted as relations.)

This is accomplished by the following change in the definitions. If t1, . . . , tr
are terms, f is an operation of degree r, and p is a relation of degree r, then
ft1 . . . tr is a term, and pt1 . . . tr is an atomic formula. If P and Q are formulas,
then ↓ PQ and ∀xP are formulas. The content of ↓ PQ is “not P and not Q”
so that we have the following expressions in this dialect:

¬(P ) : ↓ PP,
(P ) ∧ (Q) : � PP ↓ QQ,
(P ) ∨ (Q) : � PQ ↓ PQ.

Clearly, economizing on parentheses and connectives leads to much repetition
of the same formula. Nevertheless, it may become simpler to prove theorems
about such a language because of the shorter list of syntactic norms.

(b) Bourbaki’s language of set theory has an alphabet consisting of the signs
�, τ, ∨, ¬, =, ∈ and the letters. Expressions in this language are not
simply sequences of signs in the alphabet, but sequences in which certain
elements are paired together by superlinear connectives. For example:

The main difference between Bourbaki’s language and L1Set is the use of the
“Hilbert choice symbol.” If, for example, ∈ xy is the formula “x is an element
of y,” then

is a term meaning “some element of the set y.”
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Bourbaki’s language is not very convenient and is not widely used. It became
known in the popular literature thanks to an example of a very long abbreviated
notation for the term “one,” which the authors imprudently introduced:

τz

((
∃u)(∃U)(u = (U, {∅}, Z)∧ U ⊂ {∅} × Z ∧ (∀k)((x ∈ {∅})

⇒ (∃y)((x, y) ∈ U)) ∧ (∀x)(∀y)(∀y
′
)(((x, y ∈ U ∧ (x, y

′
) ∈ U)

⇒ (y = y
′
)) ∧ (∀y)((y ∈ Z) ⇒ (∃x)x((x, y) ∈ U)))

))
.

It would take several tens of thousands of symbols to write out this term
completely; this seems a little too much for “one.”

(c) A way to greatly extend the expressive possibilities of almost any language
in L1 is to allow “class terms” of the type {x|P (x)}, meaning “the class of
all objects x having the property P .” This idea was used by Morse in his
language of set theory and by Smullyan in his language of arithmetic; see
§10 of Chapter II.

3. General remarks. Most natural and artificial languages are characteristically
discrete and linear (one-dimensional). On the one hand, our perception of
the external world is not felt by us to be either discrete or linear, although
these characteristics are observed on the level of physiological mechanisms
(coding by impulses in the nervous system). On the other hand, the lan-
guages in which we communicate tend to transmit information in a sequence
of distinguishable elementary signs. The main reason for this is probably
the much greater (theoretically unlimited) uniqueness and reproducibility
of information than is possible with other methods of conveyance. Compare
with the well-known advantages of digital over analog computers.

The human brain clearly uses both principles. The perception of images as
a whole, along with emotions, are more closely connected with nonlinear and
nondiscrete processes—perhaps of a wave nature. It is interesting to examine
from this point of view the nonlinear fragments in various languages.

In mathematics this includes, first of all, the use of drawings. But this use
does not lend itself to formal description, with the exception of the separate
and formalized theory of graphs. Graphs are especially popular objects, because
they are as close as possible both to their visual image as a whole and to their
description using all the rules of set theory. Every time we are able to connect a
problem with a graph, it becomes much simpler to discuss it, and large sections
of verbal description are replaced by manipulation with pictures.

A less well-known class of examples is the commutative diagrams and spec-
tral sequences of homological algebra. A typical example is the “snake lemma.”
Here is its precise formulation.

Suppose we are given a commutative diagram of abelian groups and
homomorphisms between them (in the box below), in which the rows are exact
sequences:
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A
f g h

0

Ker f Ker g Ker h

Coker f Coker g Coker h

0

0

0

0

0

A'

B

B'

C

C'

Then the kernels and cokernels of the “vertical” homomorphisms f, g, h form
a six-term exact sequence, as shown in the drawing, and the entire diagram of
solid arrows is commutative. The “snake” morphism Ker h → Coker f , which
is denoted by the dotted arrow, is the basic object constructed in the lemma.

Of course, it is easy to describe the snake diagram sequentially in a suitable,
more or less formal, linear language. However, such a procedure requires an
artificial and not uniquely determined breaking up of a clearly two-dimensional
picture (as in scanning a television image). Moreover, without having the overall
image in mind, it becomes harder to recognize the analogous situation in other
contexts and to bring the information together into a single block.

The beginnings of homological algebra saw the enthusiastic recognition of
useful classes of diagrams. At first this interest was even exaggerated; see the
editor’s appendix to the Russian translation of Homological Algebra by Cartan
and Eilenberg.

There is one striking example of an entire book with an intentional two-
dimensional (block) structure: C. H. Lindsey and S. G. van der Meulen, Informal
Introduction to Algol 68 (North-Holland, Amsterdam, 1971). It consists of eight
chapters, each of which is divided into seven sections (eight of the 56 sections
are empty, to make the system work!). Let (i, j) be the name of the jth section
of the i th chapter; then the book can be studied either “row by row” or “column
by column” in the (i, j) matrix, depending on the reader’s intentions.

As with all great undertakings, this is the fruit of an attempt to solve what
is in all likelihood an insoluble problem, since, as the authors remark, Algol 68
“is quite impossible to describe . . . until it has been described.”
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