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Selected Proofs on Finite Packings of
Translates of Convex Bodies

8.1 Proof of Theorem 2.2.1

8.1.1 Monotonicity of a special integral function

Lemma 8.1.1 Let f : [0,1] — R be a function such that f is positive and

monotone increasing on (0,1]; moreover, f(z) = (g(z))* for some concave
function g : [0,1] = R, where k is a positive integer. Then

1 Yy
Fly) = 5 |

is strictly monotone increasing on (0, 1].

Proof: Without loss of generality we may assume that f is differentiable.
So, to prove that F(y) := ﬁ foy f(x)dx is strictly monotone increasing, it

is sufficient to show that d%F > 0 or equivalently that fdy flz)dz < %
From now on, let 0 < y < 1 be fixed (with f'(y) > 0).
As f = g* for some concave g therefore the linear function I(z) = by +

ba(z—y) with by = (f(y))% and by = % satisfies the inequality g(x) <
kE(f(y)) *
[(xz) for all 0 < z < 1, and so we have that f(z) < (l(:zc))]C holds for all

0 <z < 1. Thus, for all 0 <z < 1 we have

/ k / k
J(@) < ((f(y))’“rf(y)“(x—y)> e (1+ /W) <x—y>) .

k()T k1)
(8.1)
By integration we get
/ v ( v ( f'(y) (- y) *
f;v)d:cé/fy)<1+ m—y) dx
0 0 kf(y)
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Now, because the first factor of (8.2) is strictly between 0 and 1, it is sufficient
to show that the last factor is at most 1; that is, we are left to show the

inequality -
yf'(y)

NN T
Suppose that (8.3) is not true; then (1— %CJ;((;’))) < 0. Let G(z) =

, k+1
(1 + ,{f((?;)) (x — y)) . As G(y) = 1 and by assumption G(0) < 0, therefore
k+1

there must be an 0 < zg < y such that G(z¢) = (1 + LW (zo — y)) =0

kf(y) '
But then this and (8.1) imply in a straightforward way that f(zo) <

) k
fly) (1 + LW (zo — y)) = 0. However, by the assumptions of Lemma 8.1.1

kf(y)
we have that f(xg) > 0, a contradiction. This completes our proof of
Lemma 8.1.1. O

8.1.2 A proof by slicing via the Brunn—Minkowski inequality

Let the convex body K be positioned in E¢ such that the hyperplane {x €
E? | (x,v) = —1} with normal vector v is a supporting hyperplane for K
and the non-overlapping translates t; + K, ..., t; + K are all touching K and
(together with K) are all lying in the closed halfspace {x € E¢ | (x,v) > —1}.
Now, due to the well-known fact that by replacing K with % (K+ —(K)) and
performing the same symmetrization for each of the translates t1 +K, ... ty+
K one preserves the packing property, touching pairs, and one-sidedness, we
may assume that K is in fact, a centrally symmetric convex body of E? say,
it is o-symmetric, where o stands for the origin of E¢. Moreover, as in the
classical proof for the Hadwiger number [151], we use that Uf:o (t;+K) C 3K,
where tg = o. Furthermore, let the family tg + K,t; + K, ..., ty + K be
scaled so that the normal vector v is a unit vector (i.e., ||v|] = 1). Next,
let H, .= {p € E? | (p,v) = 2} for z € R. Then clearly, K is between the
hyperplanes H_; and H; touching both, and the translates t; + K, ..., t; + K
(together with K = tg + K) all lie between the hyperplanes H_; and Hj.
Obviously, f_ll volg—1 (KN Hy) dx = voly(K), where voly(-) (resp., volg_1(-))
denotes the d-dimensional (resp., d — 1-dimensional) volume measure. Also, it
follows from the given setup in a straightforward way that

k
/3 volg_1 <Hm N U(tl + K)) dx = (k + 1)voly(K). (8.4)
-1 i=0

Our goal is to write the integral in (8.4) as a sum of two integrals from —1 to
0 and from 0 to 3, and estimate them separately.
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First, notice that

3 k 3 d
/ VO]d_l <Hx n U(ti + K)) dx S / VOld_l (Hx N (3K)) dr = %Vold(K).
0 izo 0
(8.5)
Second, notice that
0 k k 0
/ volg_1 <Hz n{J: + K)) de = Z/ volg_1 (Hy N (t; + K)) dz
-1 i=0 i=0 71
(8.6)

k 1 1—a;
= ;/0 volg—1 (KN (=t; + Hy—1))dx = /0 f(x)dx,  (8.7)

0<a;<1

where f(x) :=volg_1 (KN H;_1),0 <z <1anda;:=(v,t;),0<i<k We
note that a; > 0 for all 0 < ¢ < k (and for some j we have that a; > 1).
Moreover, f is positive and monotone increasing on (0, 1], and by the Brunn—

Minkowski inequality (see, e.g., [85]) the function f 77 is concave (for all
d > 2). Thus, Lemma 8.1.1 implies that

3 / U dx<0<a<1< 1_“1/]” dm) (8.8)

0<a;<1

_ b @) Y fl—az)—fo ?) 2% volyy (KN H-,,) (89)

1 0<a; <1 f(l) 0<a; <1

k
= fo:)]:“: Zvold_l ((tl + K) N HO) (810)

_fy t@) Jo f(@)de
0 0 Vo1d 1 (HO mZUO ) < OfTvold_l (Ho N (3K))

(8.11)

1 d—1
ol (HyN (3K)) =
)vold,l(HOmK)VOd 1 (Ho N (3K))

1
= —voly(K

5 volg(K).  (8.12)

Hence, (8.4), (8.5), (8.6), (8.7), (8.8), (8.9), (8.10), (8.11), and (8.12) yield

that
d d—1

3 3
(k‘ + 1)V01d(K) < ?VOId(K) + 5

and so, k < 2-3%"! — 1 as claimed in Theorem 2.2.1.

VOld(K),
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To prove that equality can only be reached for d-dimensional affine
cubes, notice first that the equality in (8.8) and the strict monotonicity of
Lemma 8.1.1 imply that for all a; with 0 < a; < 1 we have a; = 0 and for all
a; = 1 we have f(1 — a;) = 0. Taking into account the equality in (8.11), we
get that translates of Hy N K must tile Hy N (3K). Hence, [151] yields that
HyNK as well as Hy N (3K) are (d — 1)-dimensional affine cubes. Also, there
is only the obvious way to tile Hy N (3K) by 39! translates of Hy N K, so
the set of the translation vectors {t; | t; € Hp} is o-symmetric. But then the
(371 =1)+1) +2((2-3%1 = 1) = (347! = 1)) = 37 translates

{ti+ K |tie HijU{t;+ K |t; ¢ HojU{—t; + K | t; ¢ Ho}

of K form a packing in 3K. Thus, the Hadwiger number of K is 3¢ — 1 and so,
using [151] we get that K is indeed a d-dimensional affine cube. This completes
the proof of Theorem 2.2.1.

8.2 Proof of Theorem 2.4.3

Let C,, :={cy,ca,...,c,} and assume that the inequality stated in Theorem
2.4.3 does not hold. Then there is an € > 0 such that

nvolg(Ko)

volg(C,, + 2K,) = 3(Ky) €. (8.13)
Let A C E¢ be a d-dimensional packing lattice of C,, + 2K, such that
C, + 2K, is contained in the fundamental parallelotope P of A. For each
A > 0 let Q) denote the d-dimensional cube of edge length 2 centered at the
origin o of E¢ having edges parallel to the corresponding coordinate axes of
E<. Obviously, there is a constant y > 0 depending on P only such that for
each A > 0 there is a subset Ly C A with Q\x C Ly +P and L) +2P C Qx4,.
Moreover, let P,,(Ko) be the family of all possible packings of n > 1 translates
of the o-symmetric convex body K, in E?. The definition of 6(K,) implies
that for each A > 0 there exists a packing in the family P,,y)(Ko) with

centers at the points of C,,(y) such that C,,(») + Ko C Q, and

m(A)volg(Ko)

A—00 VOld(Q)\) - é(KO).

vola (Qxa+u)
VOld(Q)\)
family Py, ¢)(Ko) with centers at the points of C,, () and with C,,¢) + Ko C

Q¢ such that

As lim)y 00 = 1, therefore there exist ¢ > 0 and a packing in the

volg(P)0(Ko)  m(&)voly(Ko)
VOld(P) +e VOld(Q§+#)

(8.14)

and
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nvolyg(Ko) - nvolg(Ko)card(Le)
VO]d(P) + € VOld(Qf—&-u)

Now, for each x € P we define a packing of n(x) translates of the o-
symmetric convex body K, in E? with centers at the points of

(8.15)

Cup ={x+Le +CplU{y € Cpye) | y € x+ L¢ + Cp, +int(2Ko) }.

Clearly, Chix) + Ko C Qeyp As a next step we introduce the (characteristic)
function xy : P — R as follows: xy(x) :=1ify ¢ x+ L¢ + C,, + int(2K,)
and xy(x) := 0 for any other x € P. Thus,

[ o= [ (nemaizo + 3T x| dx

YE€Cm(e)

= nvolyg(P)card(Le) + m(§) (volg(P) — voly(C,, + 2K,)) .

Hence, there is a point p € P with

ap) 2 m(e) (1~ UG I ) 4 cavaz)

and so,

n(p)V()ld (Ko)
VOId(Q{-ﬁ-M)

< M (1 B VOld(Cn + 2K0)> nVOId(KO)Card(Lﬁ) (816)

vola(Qe+u) voly(P) vola(Qetp)

Thus, (8.16), (8.15), (8.14), and (8.13) imply in a straightforward way that

n(p)volg(Ko)
VOld(Q£+u)

= §(Ko). (8.17)

volg(P)o(Ko) <1 ~ volg(Cyp + 2K0)> nvolg(Ko) _
voly(P) + €

voly(P) + € voly(P)

As Cpp) + Ko C Qg yy, therefore (8.17) leads to the existence of a packing
by translates of K, in E¢ with density strictly larger than §(K,), a contra-
diction. This finishes the proof of Theorem 2.4.3.
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