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Selected Proofs on Finite Packings of
Translates of Convex Bodies

8.1 Proof of Theorem 2.2.1

8.1.1 Monotonicity of a special integral function

Lemma 8.1.1 Let f : [0, 1] → R be a function such that f is positive and

monotone increasing on (0, 1]; moreover, f(x) = (g(x))
k

for some concave
function g : [0, 1]→ R, where k is a positive integer. Then

F (y) :=
1

f(y)

∫ y

0

f(x)dx

is strictly monotone increasing on (0, 1].

Proof: Without loss of generality we may assume that f is differentiable.
So, to prove that F (y) := 1

f(y)

∫ y
0

is sufficient to show that d
dyF > 0 or equivalently that

∫ y
0
f(x)dx < (f(y))2

f ′(y) .

From now on, let 0 < y < 1 be fixed (with f ′(y) > 0).
As f = gk for some concave g therefore the linear function l(x) = b1 +

b2(x−y) with b1 = (f(y))
1
k and b2 = f ′(y)

k(f(y))
k−1
k

satisfies the inequality g(x) ≤

l(x) for all 0 ≤ x ≤ 1, and so we have that f(x) ≤ (l(x))
k

holds for all
0 ≤ x ≤ 1. Thus, for all 0 ≤ x ≤ 1 we have

f(x) ≤

(
(f(y))

1
k +

f ′(y)

k (f(y))
k−1
k

(x− y)

)k
= f(y)

(
1 +

f ′(y)

kf(y)
(x− y)

)k
.

(8.1)
By integration we get∫ y

0

f(x)dx ≤
∫ y

0

f(y)

(
1 +

f ′(y)

kf(y)
(x− y)

)k
dx
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f(x)dx is strictly monotone increasing, it

95



96 8 Selected Proofs on Finite Packings of Translates of Convex Bodies

=
k

k + 1

(f(y))
2

f ′(y)

(
1−

(
1− yf ′(y)

kf(y)

)k+1
)
. (8.2)

Now, because the first factor of (8.2) is strictly between 0 and 1, it is sufficient
to show that the last factor is at most 1; that is, we are left to show the
inequality

0 ≤
(

1− yf ′(y)

kf(y)

)k+1

(8.3)

Suppose that (8.3) is not true; then
(

1− yf ′(y)
kf(y)

)k+1

< 0. Let G(x) :=(
1 + f ′(y)

kf(y) (x− y)
)k+1

. As G(y) = 1 and by assumption G(0) < 0, therefore

there must be an 0 < x0 < y such that G(x0) =
(

1 + f ′(y)
kf(y) (x0 − y)

)k+1

= 0.

But then this and (8.1) imply in a straightforward way that f(x0) ≤

f(y)
(

1 + f ′(y)
kf(y) (x0 − y)

)k
= 0. However, by the assumptions of Lemma 8.1.1

we have that f(x0) > 0, a contradiction. This completes our proof of
Lemma 8.1.1. �

8.1.2 A proof by slicing via the Brunn–Minkowski inequality

Let the convex body K be positioned in Ed such that the hyperplane {x ∈
Ed | 〈x,v〉 = −1} with normal vector v is a supporting hyperplane for K
and the non-overlapping translates t1 + K, . . . , tk + K are all touching K and
(together with K) are all lying in the closed halfspace {x ∈ Ed | 〈x,v〉 ≥ −1}.
Now, due to the well-known fact that by replacing K with 1

2 (K +−(K)) and
performing the same symmetrization for each of the translates t1+K, . . . , tk+
K one preserves the packing property, touching pairs, and one-sidedness, we
may assume that K is in fact, a centrally symmetric convex body of Ed say,
it is o-symmetric, where o stands for the origin of Ed. Moreover, as in the
classical proof for the Hadwiger number [151], we use that

⋃k
i=0(ti+K) ⊂ 3K,

where t0 = o. Furthermore, let the family t0 + K, t1 + K, . . . , tk + K be
scaled so that the normal vector v is a unit vector (i.e., ‖v‖ = 1). Next,
let Hx := {p ∈ Ed | 〈p,v〉 = x} for x ∈ R. Then clearly, K is between the
hyperplanes H−1 and H1 touching both, and the translates t1+K, . . . , tk+K
(together with K = t0 + K) all lie between the hyperplanes H−1 and H3.

Obviously,
∫ 1

−1 vold−1 (K ∩Hx) dx = vold(K), where vold(·) (resp., vold−1(·))
denotes the d-dimensional (resp., d−1-dimensional) volume measure. Also, it
follows from the given setup in a straightforward way that∫ 3

−1
vold−1

(
Hx ∩

k⋃
i=0

(ti + K)

)
dx = (k + 1)vold(K). (8.4)

Our goal is to write the integral in (8.4) as a sum of two integrals from −1 to
0 and from 0 to 3, and estimate them separately.
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First, notice that∫ 3

0

vold−1

(
Hx ∩

k⋃
i=0

(ti + K)

)
dx ≤

∫ 3

0

vold−1 (Hx ∩ (3K)) dx =
3d

2
vold(K).

(8.5)
Second, notice that∫ 0

−1
vold−1

(
Hx ∩

k⋃
i=0

(ti + K)

)
dx =

k∑
i=0

∫ 0

−1
vold−1 (Hx ∩ (ti + K)) dx

(8.6)

=
k∑
i=0

∫ 1

0

vold−1 (K ∩ (−ti +Hx−1)) dx =
∑

0≤ai≤1

∫ 1−ai

0

f(x)dx, (8.7)

where f(x) := vold−1 (K ∩Hx−1) , 0 ≤ x ≤ 1 and ai := 〈v, ti〉, 0 ≤ i ≤ k. We
note that ai ≥ 0 for all 0 ≤ i ≤ k (and for some j we have that aj ≥ 1).
Moreover, f is positive and monotone increasing on (0, 1], and by the Brunn–

Minkowski inequality (see, e.g., [85]) the function f
1
d−1 is concave (for all

d ≥ 2). Thus, Lemma 8.1.1 implies that

∑
0≤ai≤1

∫ 1−ai

0

f(x)dx ≤
∑

0≤ai≤1

(
f(1− ai)
f(1)

∫ 1

0

f(x)dx

)
(8.8)

=

∫ 1

0
f(x)dx

f(1)

∑
0≤ai≤1

f(1− ai) =

∫ 1

0
f(x)dx

f(1)

∑
0≤ai≤1

vold−1 (K ∩H−ai) (8.9)

=

∫ 1

0
f(x)dx

f(1)

k∑
i=0

vold−1 ((ti + K) ∩H0) (8.10)

=

∫ 1

0
f(x)dx

f(1)
vold−1

(
H0 ∩

k⋃
i=0

(ti + K)

)
≤
∫ 1

0
f(x)dx

f(1)
vold−1 (H0 ∩ (3K))

(8.11)

=
1

2
vold(K)

1

vold−1(H0 ∩K)
vold−1 (H0 ∩ (3K)) =

3d−1

2
vold(K). (8.12)

Hence, (8.4), (8.5), (8.6), (8.7), (8.8), (8.9), (8.10), (8.11), and (8.12) yield
that

(k + 1)vold(K) ≤ 3d

2
vold(K) +

3d−1

2
vold(K),

and so, k ≤ 2 · 3d−1 − 1 as claimed in Theorem 2.2.1.
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To prove that equality can only be reached for d-dimensional affine
cubes, notice first that the equality in (8.8) and the strict monotonicity of
Lemma 8.1.1 imply that for all ai with 0 ≤ ai < 1 we have ai = 0 and for all
ai = 1 we have f(1 − ai) = 0. Taking into account the equality in (8.11), we
get that translates of H0 ∩K must tile H0 ∩ (3K). Hence, [151] yields that
H0 ∩K as well as H0 ∩ (3K) are (d− 1)-dimensional affine cubes. Also, there
is only the obvious way to tile H0 ∩ (3K) by 3d−1 translates of H0 ∩K, so
the set of the translation vectors {ti | ti ∈ H0} is o-symmetric. But then the((

3d−1 − 1
)

+ 1
)

+ 2
(
(2 · 3d−1 − 1)− (3d−1 − 1)

)
= 3d translates

{ti + K | ti ∈ H0} ∪ {ti + K | ti /∈ H0} ∪ {−ti + K | ti /∈ H0}

of K form a packing in 3K. Thus, the Hadwiger number of K is 3d−1 and so,
using [151] we get that K is indeed a d-dimensional affine cube. This completes
the proof of Theorem 2.2.1.

8.2 Proof of Theorem 2.4.3

Let Cn := {c1, c2, . . . , cn} and assume that the inequality stated in Theorem
2.4.3 does not hold. Then there is an ε > 0 such that

vold(Cn + 2Ko) =
nvold(Ko)

δ(Ko)
− ε. (8.13)

Let Λ ⊂ Ed be a d-dimensional packing lattice of Cn + 2Ko such that
Cn + 2Ko is contained in the fundamental parallelotope P of Λ. For each
λ > 0 let Qλ denote the d-dimensional cube of edge length 2λ centered at the
origin o of Ed having edges parallel to the corresponding coordinate axes of
Ed. Obviously, there is a constant µ > 0 depending on P only such that for
each λ > 0 there is a subset Lλ ⊂ Λ with Qλ ⊂ Lλ+P and Lλ+ 2P ⊂ Qλ+µ.
Moreover, let Pn(Ko) be the family of all possible packings of n > 1 translates
of the o-symmetric convex body Ko in Ed. The definition of δ(Ko) implies
that for each λ > 0 there exists a packing in the family Pm(λ)(Ko) with
centers at the points of Cm(λ) such that Cm(λ) + Ko ⊂ Qλ and

lim
λ→∞

m(λ)vold(Ko)

vold(Qλ)
= δ(Ko).

As limλ→∞
vold(Qλ+µ)
vold(Qλ)

= 1, therefore there exist ξ > 0 and a packing in the

family Pm(ξ)(Ko) with centers at the points of Cm(ξ) and with Cm(ξ) +Ko ⊂
Qξ such that

vold(P)δ(Ko)

vold(P) + ε
<
m(ξ)vold(Ko)

vold(Qξ+µ)
(8.14)

and
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nvold(Ko)

vold(P) + ε
<
nvold(Ko)card(Lξ)

vold(Qξ+µ)
. (8.15)

Now, for each x ∈ P we define a packing of n(x) translates of the o-
symmetric convex body Ko in Ed with centers at the points of

Cn(x) := {x + Lξ + Cn} ∪ {y ∈ Cm(ξ) | y /∈ x + Lξ + Cn + int(2Ko)}.

Clearly, Cn(x) + Ko ⊂ Qξ+µ. As a next step we introduce the (characteristic)
function χy : P → R as follows: χy(x) := 1 if y /∈ x + Lξ + Cn + int(2Ko)
and χy(x) := 0 for any other x ∈ P. Thus,

∫
x∈P

n(x) dx =

∫
x∈P

n card(Lξ) +
∑

y∈Cm(ξ)

χy(x)

 dx

= nvold(P)card(Lξ) +m(ξ) (vold(P)− vold(Cn + 2Ko)) .

Hence, there is a point p ∈ P with

n(p) ≥ m(ξ)

(
1− vold(Cn + 2Ko)

vold(P)

)
+ n card(Lξ)

and so,

n(p)vold(Ko)

vold(Qξ+µ)

≥ m(ξ)vold(Ko)

vold(Qξ+µ)

(
1− vold(Cn + 2Ko)

vold(P)

)
+
nvold(Ko)card(Lξ)

vold(Qξ+µ)
. (8.16)

Thus, (8.16), (8.15), (8.14), and (8.13) imply in a straightforward way that

n(p)vold(Ko)

vold(Qξ+µ)

>
vold(P)δ(Ko)

vold(P) + ε

(
1− vold(Cn + 2Ko)

vold(P)

)
+

nvold(Ko)

vold(P) + ε
= δ(Ko). (8.17)

As Cn(p)+Ko ⊂ Qξ+µ, therefore (8.17) leads to the existence of a packing

by translates of Ko in Ed with density strictly larger than δ(Ko), a contra-
diction. This finishes the proof of Theorem 2.4.3.
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