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Selected Proofs on Sphere Packings

7.1 Proof of Theorem 1.3.5

7.1.1 A proof by estimating the surface area of unions of balls

Let B denote the unit ball centered at the origin o of E3 and let P :=
{c1 + B, c2 + B, . . . , cn + B} denote the packing of n unit balls with centers
c1, c2, . . . , cn in E3 having the largest number C(n) of touching pairs among
all packings of n unit balls in E3. (P might not be uniquely determined up to
congruence in which case P stands for any of those extremal packings.) First,
observe that Theorem 1.4.1 and Theorem 2.4.3 imply the following inequality
in a straightforward way.

Lemma 7.1.1
nvol3(B)

vol3(
⋃n
i=1 ci + 2B)

≤ δ(B) =
π√
18
.

Lemma 7.1.2

36πvol23

(
n⋃
i=1

ci + 2B

)
≤ svol32

(
bd

(
n⋃
i=1

ci + 2B

))
.

Thus, Lemma 7.1.1 and Lemma 7.1.2 generate the following inequality.

Corollary 7.1.3

4(18π)
1
3n

2
3 ≤ svol2

(
bd

(
n⋃
i=1

ci + 2B

))
.

Now, assume that ci + B ∈ P is tangent to cj + B ∈ P for all j ∈ Ti,
where Ti ⊂ {1, 2, . . . , n} stands for the family of indices 1 ≤ j ≤ n for which
‖ci − cj‖ = 2. Then let Si := bd(ci + 2B) and let CSi(cj ,

π
6 ) denote the open

K. Bezdek, Classical Topics in Discrete Geometry, CMS Books in Mathematics, 71
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spherical cap of Si centered at cj ∈ Si having angular radius π
6 . Clearly, the

family {CSi(cj , π6 ), j ∈ Ti} consists of pairwise disjoint open spherical caps of
Si; moreover,∑

j∈Ti svol2
(
CSi(cj ,

π
6 )
)

svol2
(
∪j∈TiCSi(cj , π3 )

) =

∑
j∈Ti Sarea

(
C(uij ,

π
6 )
)

Sarea
(
∪j∈TiC(uij ,

π
3 )
) , (7.1)

where uij := 1
2 (cj − ci) ∈ S2 and C(uij ,

π
6 ) ⊂ S2 (resp., C(uij ,

π
3 ) ⊂ S2)

denotes the open spherical cap of S2 centered at uij having angular radius
π
6 (resp., π

3 ) and where svol2(·) (resp., Sarea(·)) denotes the 2-dimensional
surface volume measure in E3 (resp., spherical area measure on S2) of the
corresponding set. Now, Molnár’s density bound (see Satz 1 in [200]) implies
that ∑

j∈Ti Sarea
(
C(uij ,

π
6 )
)

Sarea
(
∪j∈TiC(uij ,

π
3 )
) < 0.89332 . (7.2)

In order to estimate svol2 (bd (
⋃n
i=1 ci + 2B)) from above let us assume

that m members of P have 12 touching neighbours in P and k members of
P have at most 9 touching neighbours in P. Thus, n−m− k members of P
have either 10 or 11 touching neighbours in P. Without loss of generality we
may assume that 4 ≤ k ≤ n −m. Based on the notation just introduced, it
is rather easy to see, that (7.1) and (7.2) together with the well-known fact
that the kissing number of B is 12, imply the following estimate.

Corollary 7.1.4

svol2

(
bd

(
n⋃
i=1

ci + 2B

))
< 12.573(n−m− k) + 38.9578k

<
38.9578

3
(n−m− k) + 38.9578k .

Hence, Corollary 7.1.3 and Corollary 7.1.4 yield in a straightforward way
that

1.1822n
2
3 − 3k < n−m− k . (7.3)

Finally, as the number C(n) of touching pairs in P is obviously at most

1

2
(12n− (n−m− k)− 3k) ,

therefore (7.3) implies that

C(n) ≤ 1

2
(12n− (n−m− k)− 3k) < 6n− 0.5911n

2
3 < 6n− 0.59n

2
3 ,

finishing the proof of Theorem 1.3.5.
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7.1.2 On the densest packing of congruent spherical caps of special
radius

We feel that it is worth making the following comment: it is likely that (7.2)
can be replaced by the following sharper estimate.

Conjecture 7.1.5∑
j∈Ti Sarea

(
C(uij ,

π
6 )
)

Sarea
(
∪j∈TiC(uij ,

π
3 )
) ≤ 6

(
1−
√

3

2

)
= 0.8038 . . . ,

with equality when 12 spherical caps of angular radius π
6 are packed on S2.

If so, then one can improve Theorem 1.3.5 as follows.

Proposition 7.1.6 Conjecture 7.1.5 implies that

C(n) ≤ 6n− 3(18π)
1
3

2π
n

2
3 = 6n− 1.8326 . . . n

2
3 .

Proof: Indeed, Conjecture 7.1.5 implies in a straightforward way that

svol2

(
bd

(
n⋃
i=1

ci + 2B

))

≤ 16πn− 1

6
(

1−
√
3
2

)16π

(
1−
√

3

2

)
C(n) = 16πn− 8π

3
C(n) .

The above inequality combined with Corollary 7.1.3 yields

4(18π)
1
3n

2
3 ≤ 16πn− 8π

3
C(n) ,

from which the inequality of Proposition 7.1.6 follows. �

7.2 Proof of Theorem 1.4.7

7.2.1 The Voronoi star of a Voronoi cell in unit ball packings

Without loss of generality we may assume that the d-dimensional unit ball
B ⊂ Ed centered at the origin o of Ed is one of the unit balls of the given unit
ball packing in Ed, d ≥ 2. Let V be the Voronoi cell assigned to B. We may
assume that V is bounded; that is, V is a d-dimensional convex polytope in
Ed.

First, following [218], we dissect V into finitely many d-dimensional
simplices as follows. Let Fi denote an arbitrary i-dimensional face of V,
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0 ≤ i ≤ d− 1. Let the chain F0 ⊂ F1 ⊂ · · · ⊂ Fd−1 be called a flag of V, and
let F be the family of all flags of V. Now, let f ∈ F be an arbitrary flag of V
with the associated chain F0 ⊂ F1 ⊂ · · · ⊂ Fd−1. Then let vi ∈ Fd−i be the
point of Fd−i closest to o, 1 ≤ i ≤ d. Finally, let Vf := conv{o,v1, . . . ,vd},
where conv(·) stands for the convex hull of the given set. It is easy to see that
the family V := {Vf | f ∈ F and dim(Vf ) = d} of d-dimensional simplices
forms a tiling of V (i.e., ∪Vf∈VVf = V and no two simplices of V have an
interior point in common). This tiling is a rather special one, namely the d-
dimensional simplices of V have o as a common vertex; moreover the union
of their facets opposite to o is the boundary bdV of V. Finally, as shown in
[218], for any Vf ∈ V with Vf = conv{o,v1, . . . ,vd} we have that√

2i

i+ 1
≤ ‖vi‖ = dist (o, conv{vi,vi+1, . . . ,vd}) , 1 ≤ i ≤ d, (7.4)

where dist(·, ·) (resp., ‖ · ‖) stands for the Euclidean distance function (resp.,
norm) in Ed.

Second, we define the Voronoi star V∗ ⊂ V assigned to the Voronoi
cell V as follows. Let Vf ∈ V with Vf = conv{o,v1, . . . ,vd}. Then let
v∗1 := H∩ lin{v1}, where H denotes the hyperplane parallel to the hyperplane
aff{v1, . . . ,vd} and tangent to B such that it separates o from aff{v1, . . . ,vd}
(with lin(·) and aff(·) standing for the linear and affine hulls of the given sets
in Ed). Finally, let V∗f := conv{o,v∗1,v2, . . . ,vd} and let the Voronoi star
V∗ of V be defined as V∗ := ∪Vf∈VV∗f . It follows from the definition of
the Voronoi star and from (7.4) that the following inequalities and (surface)
volume formula hold:

1 ≤ ‖v∗1‖ = dist (o, conv{v∗1,v2, . . . ,vd}) ≤ ‖v1‖, (7.5)

√
2i

i+ 1
≤ ‖vi‖ = dist (o, conv{vi,vi+1, . . . ,vd}) , 2 ≤ i ≤ d, and (7.6)

vold(V
∗) =

1

d
svold−1(bdV), (7.7)

where vold(·) (resp., svold−1(·)) refers to the d-dimensional (resp., (d − 1)-
dimensional) volume (resp., surface volume) measure.

7.2.2 Estimating the volume of a Voronoi star from below

As an obvious corollary of (7.7), we find that Theorem 1.4.7 follows from the
following theorem.

Theorem 7.2.1 vold(V
∗) ≥ ωd

σd
.
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Proof: The main tool of our proof is the following lemma of Rogers. (See
[218] and [219] for the original version of the lemma, which is somewhat dif-
ferent from the equivalent version below. Also, for a strengthening we refer
the interested reader to Lemma 7.3.11.)

Lemma 7.2.2 Let W := conv{o,w1, . . . ,wd} be a d-dimensional simplex of
Ed having the property that lin{wj−wi | i < j ≤ d} is orthogonal to the vector
wi in Ed for all 1 ≤ i ≤ d − 1 (i.e., let W be a d-dimensional orthoscheme
in Ed). Moreover, let U := conv{o,u1, . . . ,ud} be a d-dimensional simplex
of Ed such that ‖ui‖ = dist (o, conv{ui,ui+1, . . . ,ud}) for all 1 ≤ i ≤ d. If
‖wi‖ ≤ ‖ui‖ holds for all 1 ≤ i ≤ d, then

vold(W)

vold(B ∩W)
≤ vold(U)

vold(B ∩U)
,

where B stands for the d-dimensional unit ball centered at the origin o of Ed.

Now, let W be the orthoscheme of Lemma 7.2.2 with the additional prop-

erty that ‖wi‖ =
√

2i
i+1 for all 1 ≤ i ≤ d. Notice that a regular d-dimensional

simplex of edge length 2 in Ed can be dissected into (d + 1)! d-dimensional
simplices, each congruent to W. This implies that

σd =
vold(B ∩W)

vold(W)
. (7.8)

Finally, let U := V∗f = conv{o,v∗1,v2, . . . ,vd} for Vf ∈ V. Clearly, (7.5)
and (7.6) show that W and U, just introduced, satisfy the assumptions of
Lemma 7.2.2. Thus, Lemma 7.2.2 and (7.8) imply that

1

σd
≤

vold(V
∗
f )

vold(B ∩V∗f )
. (7.9)

Hence, (7.9) yields that

ωd
σd
≤
∑

Vf∈V

vold(B ∩V∗f )
vold(V

∗
f )

vold(B ∩V∗f )
=
∑

Vf∈V

vold(V
∗
f ) = vold(V

∗),

finishing the proof of Theorem 7.2.1. �

7.3 Proof of Theorem 1.4.8

7.3.1 Basic metric properties of Voronoi cells in unit ball packings

Let P be a bounded Voronoi cell, that is, a d-dimensional Voronoi polytope of
a packing P of d-dimensional unit balls in Ed. Without loss of generality we
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may assume that the unit ball B = {x ∈ Ed| dist(o,x) = ‖x‖ ≤ 1} centered
at the origin o of Ed is one of the unit balls of P with P as its Voronoi cell.
Then P is the intersection of finitely many closed halfspaces of Ed each of
which is bounded by a hyperplane that is the perpendicular bisector of a line
segment ox with x being the center of some unit ball of P. Now, let Fd−i
be an arbitrary (d − i)-dimensional face of P, 1 ≤ i ≤ d. Then clearly there
are at least i + 1 Voronoi cells of P which meet along the face Fd−i, that
is, contain Fd−i (one of which is, of course, P). Also, it is clear from the
construction that the affine hull of centers of the unit balls sitting in all of
these Voronoi cells is orthogonal to affFd−i. Thus, there are unit balls of these
Voronoi cells with centers {o,x1, . . . ,xi} such that X = conv{o,x1, . . . ,xi} is
an i-dimensional simplex and of course, affX is orthogonal to affFd−i. Hence,
if R(Fd−i) denotes the radius of the (i − 1)-dimensional sphere that passes
through the vertices of X, then

R(Fd−i) = dist(o, affFd−i), where 1 ≤ i ≤ d.

As the following statements are well known and their proofs are relatively
straightforward, we refer the interested reader to the relevant section in [56]
for the details of those proofs.

Lemma 7.3.1 If Fd−i−1 ⊂ Fd−i and R(Fd−i) = R <
√

2 for some i, 1 ≤ i ≤
d− 1, then

2√
4−R2

≤ R(Fd−i−1).

Corollary 7.3.2
√

2i
i+1 ≤ R(Fd−i) for all 1 ≤ i ≤ d.

Lemma 7.3.3 If R(Fd−i) <
√

2 for some i, 1 ≤ i ≤ d, then the orthog-
onal projection of o onto affFd−i belongs to relintFd−i and so R(Fd−i) =
dist(o, Fd−i).

7.3.2 Wedges of types I, II, and III, and truncated wedges of
types I, and II

Let F0 ⊂ F1 ⊂ · · · ⊂ Fd−1 be an arbitrary flag of the Voronoi polytope P.
Then let ri ∈ Fd−i be the uniquely determined point of the (d−i)-dimensional
face Fd−i of P that is closest to the center point o of P; that is, let

ri ∈ Fd−i such that ‖ri‖ = min{‖x‖ | x ∈ Fd−i}, where 1 ≤ i ≤ d.

Definition 7.3.4 If the vectors r1, . . . , ri are linearly independent in Ed,
then we call conv{o, r1, . . . , ri} the i-dimensional Rogers simplex assigned
to the subflag Fd−i ⊂ · · · ⊂ Fd−1 of the Voronoi polytope P, where 1 ≤
i ≤ d. If conv{o, r1, . . . , rd} ⊂ Ed is the d-dimensional Rogers simplex
assigned to the flag F0 ⊂ · · · ⊂ Fd−1 of P, then conv{rd−i, . . . , rd} is
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called the i-dimensional base of the given d-dimensional Rogers simplex and
dist(o, aff{rd−i, . . . , rd}) = dist(o, affFi) = R(Fi) is called the height assigned
to the i-dimensional base, where 1 ≤ i ≤ d.

Definition 7.3.5 The i-dimensional simplex Y = conv{o,y1, . . . ,yi} ⊂ Ed
with vertices y0 = o,y1, . . . ,yi is called an i-dimensional orthoscheme if for
each j, 0 ≤ j ≤ i − 1 the vector yj is orthogonal to the linear hull lin{yk −
yj | j + 1 ≤ k ≤ i}, where 1 ≤ i ≤ d.

It is shown in [218] that the union of the d-dimensional Rogers simplices of
the Voronoi polytope P is the polytope P itself and their interiors are pairwise
disjoint. This fact together with Corollary 7.3.2 and Lemma 7.3.3 imply the
following metric properties of Rogers simplices in a straightforward way.

Lemma 7.3.6
(1) If conv{o, r1, . . . , ri} is an i-dimensional Rogers simplex assigned to the

subflag Fd−i ⊂ · · · ⊂ Fd−1 of the Voronoi polytope P, then
√

2j
j+1 ≤ ‖rj‖ for

all 1 ≤ j ≤ i, where 1 ≤ i ≤ d.
(2) If Fd−i ⊂ · · · ⊂ Fd−1 is a subflag of the Voronoi polytope P with
R(Fd−i) <

√
2, then conv{o, r1, . . . , ri} is an i-dimensional Rogers simplex

which is, in fact, an i-dimensional orthoscheme (in short, an i-dimensional
Rogers orthoscheme) with the property that each rj ∈ relintFd−j , 1 ≤ j ≤ i is
the orthogonal projection of o onto affFd−j, where 1 ≤ i ≤ d.
(3) If F2 ⊂ · · · ⊂ Fd−1 is a subflag of the Voronoi polytope P ⊂ Ed, 3 ≤ d with
R(F2) <

√
2, then the union of the 2-dimensional bases of the d-dimensional

Rogers simplices that contain the orthoscheme conv{o, r1, . . . , rd−2} is the
(uniquely determined) 2-dimensional face F2 of the Voronoi polytope P that is
totally orthogonal to conv{o, r1, . . . , rd−2} at the point rd−2 and so, ‖rd−2‖ =
dist(o, affF2) with rd−2 ∈ relintF2.

Now we are ready for the definitions of wedges and truncated wedges.
Recall that for any 2-dimensional face F2 of the Voronoi polytope P ⊂ Ed, d ≥
3 we have that

√
2(d−2)
d−1 ≤ R(F2).

Definition 7.3.7
(1) Let F2 be a 2−dimensional face of the Voronoi polytope P ⊂ Ed, d ≥
3 with

√
2(d−2)
d−1 ≤ R(F2) <

√
2(d−1)
d and let conv{o, r1, . . . , rd−2} be any

(d − 2)-dimensional Rogers simplex with rd−2 ∈ relintF2. Then the union
WI of the d-dimensional Rogers simplices of P that contain the orthoscheme
conv{o, r1, . . . , rd−2} is called a wedge of type I (generated by the (d − 2)-
dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2}). F2 is called the 2-
dimensional base of WI , and ‖rd−2‖ = dist(o, affF2) is the height of WI

assigned to the base F2.
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(2) Let F2 be a 2-dimensional face of the Voronoi polytope P ⊂ Ed, d ≥ 3 with√
2(d−1)
d ≤ R(F2) <

√
2d
d+1 and let conv{o, r1, . . . , rd−2} be any (d − 2)-

dimensional Rogers simplex with rd−2 ∈ relintF2. Then the union WII

of the d-dimensional Rogers simplices of P that contain the orthoscheme
conv{o, r1, . . . , rd−2} is called a wedge of type II (generated by the (d − 2)-
dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2}). F2 is called the 2-di-
mensional base of WII , and ‖rd−2‖ = dist(o, affF2) is the height of WII

assigned to the base F2.
(3) Let conv{o, r1, . . . , rd} be the d-dimensional Rogers simplex assigned to
the flag F0 ⊂ F1 · · · ⊂ Fd−1 of the Voronoi polytope P ⊂ Ed, d ≥ 3 with√

2d
d+1 ≤ R(F2). Then WIII = conv{o, r1, . . . , rd} is called a wedge of type

III.

At this point, it useful to recall, that for any vertex F0 of the Voronoi

polytope P ⊂ Ed we have that
√

2d
d+1 ≤ R(F0).

Definition 7.3.8 Let B =
{

x ∈ Ed| dist(o,x) = ‖x‖ ≤
√

2d
d+1

}
.

(1) If WI is a wedge of type I with the 2-dimensional base F2 which is gener-
ated by the (d − 2)-dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2} of
the Voronoi polytope P ⊂ Ed, d ≥ 3, then

WI = conv
(
(B ∩ F2) ∪ {o = r0, . . . , rd−3}

)
is called the truncated wedge of type I with the 2-dimensional base B ∩ F2

generated by the (d− 2)-dimensional Rogers orthoscheme

conv{o, r1, . . . , rd−2}.

(2) If WII is a wedge of type II with the 2-dimensional base F2 which is
generated by the (d−2)-dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2}
of the Voronoi polytope P ⊂ Ed, d ≥ 3, then

WII = conv
(
(B ∩ F2) ∪ {o = r0, . . . , rd−3}

)
is called the truncated wedge of type II with the 2-dimensional base B ∩ F2

generated by the (d− 2)-dimensional Rogers orthoscheme

conv{o, r1, . . . , rd−2}.

As the following claim can be proved by Lemma 7.3.6 in a straightforward
way, we leave the relevant details to the reader.

Lemma 7.3.9
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(1) Let WI (resp., WII) denote the wedge of type I (resp., of type II) with the
2-dimensional base F2 which is generated by the (d − 2)-dimensional Rogers
orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope P ⊂ Ed, d ≥ 3.
If the points x,y ∈ affF2 are chosen so that the triangle 4rd−2xy has a
right angle at the vertex x, then conv{o, r1, . . . , rd−2,x,y} is a d-dimensional
orthoscheme. Moreover, if z ∈ affF2 is an arbitrary point, then conv{o =
r0, . . . , rd−3, z} is a (d− 2)-dimensional orthoscheme.
(2) Let WI denote the wedge of type I with the 2-dimensional base F2 which is
generated by the (d−2)-dimensional Rogers orthoscheme conv{o = r0, r1, . . . ,
rd−2} of the Voronoi polytope P ⊂ Ed, d ≥ 3. Let Q2 ⊂ affF2 and Q∗2 ⊂ affF2

be compact convex sets with relintQ2 ∩ relintQ∗2 = ∅. If K2 = Q2 (resp.,
K∗2 = Q∗2) and Kj = conv(Kj−1∪{rd−j}) (resp., K∗j = conv(K∗j−1∪{rd−j}))
for j = 3, . . . , d, then Kd = conv(Q2 ∪ {o = r0, . . . , rd−3}) (resp., K∗d =
conv(Q∗2 ∪ {o = r0, . . . , rd−3})), moreover relintKd ∩ relintK∗d = ∅. A similar
statement holds for WII .
(3) Let WI (resp., WI) denote the wedge of type I (resp., truncated wedge
of type I) with the 2-dimensional base F2 (resp., B ∩ F2) which is generated
by the (d− 2)-dimensional Rogers orthoscheme conv{o = r0, r1, . . . , rd−2} of
the Voronoi polytope P ⊂ Ed, d ≥ 3. If K2 = F2 (resp., K2 = B ∩ F2) and
Kj = conv(Kj−1∪{rd−j}) for j = 3, . . . , d, then Kd = WI (resp., Kd = WI).
Similar statements hold for WII and WII .

We close this section with the following important observation published
in [56], and refer the interested reader to [56] for the details of the seven-page
proof, which is based on Corollary 7.3.2 and Lemma 7.3.3.

Lemma 7.3.10 Let B∩ F2 be the 2-dimensional base of the type I truncated
wedge WI (resp., type II truncated wedge WII) in the Voronoi polytope P ⊂
Ed of dimension d ≥ 8. Then the number of line segments of positive length
in relbd(B ∩ F2) is at most 4.

7.3.3 The lemma of comparison and a characterization of regular
polytopes

Recall that B = {x ∈ Ed| dist(o,x) = ‖x‖ ≤ 1} and let

S = {x ∈ Ed| dist(o,x) = ‖x‖ = 1}.

Then let H ⊂ Ed be a hyperplane disjoint from the interior of the unit ball
B and let Q ⊂ H be an arbitrary (d− 1)-dimensional compact convex set. If
[o, Q] denotes the convex cone conv({o} ∪ Q) with apex o and base Q, then
the (volume) density δ([o, Q],B) of the unit ball B in the cone [o, Q] is defined
as

δ([o, Q], B) =
vold([o, Q] ∩B)

vold([o, Q])
,
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where vold(·) refers to the corresponding d-dimensional Euclidean volume
measure. It is natural to introduce the following very similar notion. The
surface density δ̂([o, Q], S) of the unit sphere S in the convex cone [o, Q] with
apex o and base Q is defined by

δ̂([o, Q], S) =
Svold−1([o, Q] ∩ S)

vold−1(Q)
,

where Svold−1(·) refers to the corresponding (d − 1)-dimensional spherical
volume measure.

If h = dist(o, H), then clearly h · δ([o, Q],B) = δ̂([o, Q], S). We need the
following statement, the first part of which is due to Rogers [218] and the
second part of which has been proved by the author in [55].

Lemma 7.3.11 Let U = conv{o,u1, . . . ,ud} be a d-dimensional orthoscheme
in Ed and let V = conv{o,v1, . . . ,vd} be a d-dimensional simplex of Ed
such that ‖vi‖ = dist(o, conv{vi,vi+1, . . . ,vd}) for all 1 ≤ i ≤ d − 1. If
1 ≤ ‖ui‖ ≤ ‖vi‖ holds for all 1 ≤ i ≤ d, then
(1) δ(U,B) ≥ δ(V,B) and

(2) δ̂(U, S) ≥ δ̂(V, S).

For the sake of completeness we mention the following statement that
follows from Lemma 7.3.11 using the special decomposition of convex poly-
topes into Rogers simplices. Actually, the characterization of regular poly-
topes through the corresponding volume (resp., surface volume) inequality
below was first observed by Böröczky and Máthéné Bognár [91] (resp., by the
author [55]). (In fact, it is easy to see that the statement on surface volume
implies the one on volume.) For more details on related problems we refer the
interested reader to [93].

Corollary 7.3.12 Let U′ be a regular convex polytope in Ed with circumcen-
ter o and let si denote the distance of an i-dimensional face of U′ from o,
0 ≤ i ≤ d− 1. If V′ is an arbitrary convex polytope in Ed such that o ∈ intV′

and the distance of any i-dimensional face of V′ from o is at least si for all
0 ≤ i ≤ d − 1, then vold(V

′) ≥ vold(U
′) (resp., svold−1(V′) ≥ svold−1(U′)).

Moreover, equality holds if and only if V′ is congruent to U′ and its circum-
center is o.

7.3.4 Volume formulas for (truncated) wedges

Definition 7.3.13 Let x1, . . . ,xn, n ≥ 1 be points in Ed, d ≥ 1 and let X ⊂
Ed be an arbitrary convex set. If X0 = X and Xm = conv({xn−(m−1)}∪Xm−1)
for m = 1, . . . , n, then we denote the final convex set Xn by

[x1, . . . ,xn, X].
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Definition 7.3.14 Let WI (resp., WI) denote the wedge (resp., truncated
wedge) of type I with the 2-dimensional base F2 (resp., B ∩ F2) which is
generated by the (d−2)-dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2}
of the Voronoi polytope P ⊂ Ed, d ≥ 4. Then let

QI = [r1, . . . , rd−3, F2]
(
resp.,QI = [r1, . . . , rd−3,B ∩ F2]

)
be called the (d − 1)-dimensional base of the type I wedge WI = [o, QI ]
(resp., type I truncated wedge WI = [o, QI ]). Similarly, we define the (d−1)-
dimensional bases QII and QII of WII and WII . Finally, let

h1 = ‖r1‖, h2 = ‖r2 − r1‖, . . . , hd−2 = ‖rd−2 − rd−3‖.

Lemma 7.3.15 Let WI (resp., WII) denote the wedge of type I (resp., of
type II) with the 2-dimensional base F2 which is generated by the (d − 2)-
dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope
P ⊂ Ed, d ≥ 4. Then we have the following volume formulas.

(1) vold−1(QI) = 2
(d−1)!

(∏d−2
i=2 hi

)
vol2(F2) and

(2) vold(WI) = 2
d!

(∏d−2
i=1 hi

)
vol2(F2).

Similar formulas hold for the corresponding dimensional volumes of QI ,
WI , QII , WII , QII , and WII .

In general, if K ⊂ affF2 is a convex domain, then

(3) vold−1([r1, . . . , rd−3,K]) = 2
(d−1)!

(∏d−2
i=2 hi

)
vol2(K) and

(4) vold([o, r1, . . . , rd−3,K]) = 2
d!

(∏d−2
i=1 hi

)
vol2(K).

Proof: The proof follows from Lemma 7.3.6 and Lemma 7.3.9 in a straight-
forward way. �

7.3.5 The integral representation of surface density in (truncated)
wedges

The central notion of this section is the limiting surface density introduced as
follows.

Definition 7.3.16 Let WI (resp., WII) denote the wedge of type I (resp.,
of type II) with the 2-dimensional base F2 which is generated by the (d− 2)-
dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope
P ⊂ Ed, d ≥ 4. Then choose a coordinate system with two perpendicular axes
in the plane affF2 meeting at the point rd−2. Now, if x is an arbitrary point
of the plane affF2, then for a positive integer n let Tn(x) ⊂ affF2 denote
the square centered at x having sides of length 1

n parallel to the fixed coor-

dinate axes. Then the limiting surface density δ̂lim ([o, r1, . . . , rd−3,x], S) of
the (d− 1)-dimensional unit sphere S in the (d− 2)-dimensional orthoscheme
[o, r1, . . . , rd−3,x] is defined by
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δ̂lim ([o, r1, . . . , rd−3,x], S) = lim
n→∞

δ̂ ([o, r1, . . . , rd−3, Tn(x)], S) .

Based on this we are able to give an integral representation of the surface
density in a (truncated) wedge.

Lemma 7.3.17 Let WI (resp., WII) denote the wedge of type I (resp., of
type II) with the 2-dimensional base F2 which is generated by the (d − 2)-
dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope
P ⊂ Ed, d ≥ 4.
(1) If x ∈ affF2 and y ∈ affF2 are points such that ‖x‖ ≤ ‖y‖, then

δ̂lim ([o, r1, . . . , rd−3,x], S) ≥ δ̂lim ([o, r1, . . . , rd−3,y], S) .

(2) For the surface densities of the unit sphere S in the wedge WI and in the
truncated wedge WI we have the following formulas.

δ̂(WI , S) =
Svold−1([o, QI ] ∩ S)

vold−1(QI)

=
1

vol2(F2)

∫
F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

and

δ̂(WI , S) =
Svold−1([o, QI ] ∩ S)

vold−1(QI)

=
1

vol2(B ∩ F2)

∫
B∩F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx,

where dx stands for the Euclidean area element in the plane affF2. Similar
formulas hold for WII and WII .
(3) In general, if K ⊂ affF2 is a convex domain, then the surface density of the
unit sphere S in the d-dimensional convex cone [o, r1, . . . , rd−3,K] with apex
o and (d− 1)-dimensional base [r1, . . . , rd−3,K] can be computed as follows.

δ̂([o, r1, . . . , rd−3,K], S) =
1

vol2(K)

∫
K

δ̂lim ([o, r1, . . . , rd−3,x], S) dx.

Proof:
(1) It is sufficient to look at the case ‖x‖ < ‖y‖. (The case ‖x‖ = ‖y‖

follows from this by standard limit procedure.) Then recall that

δ̂ ([o, r1, . . . , rd−3, Tn(x)], S) = h1δ ([o, r1, . . . , rd−3, Tn(x)], S)

and

δ̂ ([o, r1, . . . , rd−3, Tn(y)], S) = h1δ ([o, r1, . . . , rd−3, Tn(y)], S) .

Thus, it is sufficient to show that if n is sufficiently large, then
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δ ([o, r1, . . . , rd−3, Tn(x)], S) ≥ δ ([o, r1, . . . , rd−3, Tn(y)], S) .

This we can get as follows. We can approximate the d-dimensional convex
cone [o, r1, . . . , rd−3, Tn(x)] (resp., [o, r1, . . . , rd−3, Tn(y)]) arbitrarily close
with a finite (but possibly large) number of non-overlapping d-dimensional
orthoschemes each containing the (d− 3)-dimensional orthoscheme [o, r1, . . . ,
rd−3] as a face and each having all the edge lengths of the 3 edges going out
from the vertex o and not lying on the face [o, r1, . . . , rd−3] close to ‖x‖ (resp.,
‖y‖) for n sufficiently large (see also Lemma 7.3.9). Thus, the claim follows
from (1) of Lemma 7.3.11 rather easily.

(2),(3) It is sufficient to prove the corresponding formula for K.
A typical term of the Riemann–Lebesgue sum of

1

vol2(K)

∫
K

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

is equal to

1

vol2(K)
δ̂ ([o, r1, . . . , rd−3, Tn(xm)], S) vol2(Tn(xm)),m ∈M.

Using Lemma 7.3.15 this turns out to be equal to

vold−1([r1, . . . , rd−3, Tn(xm)])

vold−1([r1, . . . , rd−3,K])
δ̂ ([o, r1, . . . , rd−3, Tn(xm)], S)

=
Svold−1([o, r1, . . . , rd−3, Tn(xm)] ∩ S)

vold−1([r1, . . . , rd−3,K])
.

Finally, as the union of the non-overlapping squares Tn(xm),m ∈M is a good
approximation of the convex domain K in the plane affF2 we get that∑

m∈M

Svold−1([o, r1, . . . , rd−3, Tn(xm)] ∩ S)

vold−1([r1, . . . , rd−3,K])

=

∑
m∈M Svold−1([o, r1, . . . , rd−3, Tn(xm)] ∩ S)

vold−1([r1, . . . , rd−3,K])

is a good approximation of

Svold−1 ([o, r1, . . . , rd−3,K] ∩ S)

vold−1([r1, . . . , rd−3,K])
= δ̂([o, r1, . . . , rd−3,K], S).

This completes the proof of Lemma 7.3.17. �
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7.3.6 Truncation of wedges increases the surface density

Lemma 7.3.18 Let WI (resp., WII) denote the wedge of type I (resp., of
type II) with the 2-dimensional base F2 which is generated by the (d − 2)-
dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope
P ⊂ Ed, d ≥ 4. Then

δ̂(WI , S) ≤ δ̂(WI , S)
(
resp., δ̂(WII , S) ≤ δ̂(WII , S)

)
.

Proof: Notice that (1) of Lemma 7.3.17 easily implies that if 0 < vol2(F2\B),

then for any x∗ ∈ F2 with ‖x∗‖ =
√

2d
d+1 we have that

1

vol2(F2 \B)

∫
F2\B

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

≤ δ̂lim ([o, r1, . . . , rd−3,x
∗], S)

≤ 1

vol2(B ∩ F2)

∫
B∩F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx.

Thus, if 0 < vol2(F2 \B), then (2) of Lemma 7.3.17 yields that

δ̂(WI , S) =
1

vol2(F2)

∫
F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

=
vol2(B ∩ F2)

vol2(F2)
· 1

vol2(B ∩ F2)

∫
B∩F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

+
vol2(F2 \B)

vol2(F2)
· 1

vol2(F2 \B)

∫
F2\B

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

≤ vol2(B ∩ F2)

vol2(F2)
· 1

vol2(B ∩ F2)

∫
B∩F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

+
vol2(F2 \B)

vol2(F2)
· 1

vol2(B ∩ F2)

∫
B∩F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx

=
1

vol2(B ∩ F2)

∫
B∩F2

δ̂lim ([o, r1, . . . , rd−3,x], S) dx = δ̂(WI , S).

As the same method works for WII and WII this completes the proof of
Lemma 7.3.18. �



7.3 Proof of Theorem 1.4.8 85

7.3.7 Maximum surface density in truncated wedges of type I

Let WI denote the truncated wedge of type I with the 2-dimensional base
B ∩ F2 which is generated by the (d − 2)-dimensional Rogers orthoscheme
conv{o, r1, . . . , rd−2} of the Voronoi polytope P ⊂ Ed, d ≥ 8. By assumption
F2 is a 2-dimensional face of the Voronoi polytope P with√

2(d− 2)

d− 1
≤ h = R(F2) <

√
2(d− 1)

d
.

Let G0 ⊂ affF2 (resp., G ⊂ affF2) denote the closed circular disk of radius

g0(h) =

√
2d

d+ 1
− h2

(
resp., g(h) =

2− h2√
4− h2

)
centered at the point rd−2. It is easy to see that G ⊂ relintG0 for all√

2(d−2)
d−1 ≤ h <

√
2(d−1)
d . (Moreover G = G0 for h =

√
2(d−1)
d .) Notice that

G0 = B ∩ affF2, thus Corollary 7.3.2 implies that there is no vertex of the
face F2 belonging to the relative interior of G0. Moreover, as h = R(F2) <

√
2

Lemma 7.3.1 yields that 2√
4−h2

≤ R(F1) holds for any side F1 of the face F2,

hence G ⊂ F2 and of course, G ⊂ B ∩ F2 = G0 ∩ F2. Now, let M ⊂ affF2 be
a square circumscribed about G. A straightforward computation yields that

g0(h)
g(h) is a strictly decreasing function on the interval

[√
2(d−2)
d−1 ,

√
2(d−1)
d

)
(i.e., d

dh

(
g0(h)
g(h)

)
< 0 on the interval

(√
2(d−2)
d−1 ,

√
2(d−1)
d

)
) and

g0

(√
2(d−2)
d−1

)
g

(√
2(d−2)
d−1

) =

√
2d

d+ 1
<
√

2.

Thus, the vertices of the square M do not belong to G0. Finally, as d ≥ 8
Lemma 7.3.10 implies that there are at most four sides of the face F2 that
intersect the relative interior of G0.

The following statement is rather natural from the point of view of the
local geometry introduced above, however, its three-page proof based on
Lemma 7.3.11 and Lemma 7.3.17 published in [56] is a bit technical and so,
for that reason we do not prove it here; instead we refer the interested reader
to the proper section in [56].

Lemma 7.3.19 Let WI denote the truncated wedge of type I with the 2-
dimensional base B∩F2 which is generated by the (d−2)-dimensional Rogers
orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope P ⊂ Ed, d ≥ 8.
Then

δ̂(WI , S) ≤ δ̂([o, r1, . . . , rd−3, G0 ∩M ], S).



86 7 Selected Proofs on Sphere Packings

It is clear from the construction that we can write δ̂([o, r1, . . . , rd−3, G0 ∩
M ], S) as a function of d− 2 variables, namely

∆̂(ξ1, . . . , ξd−3, ξd−2) = δ̂([o, r1, . . . , rd−3, G0 ∩M ], S),

where ξ1 = ‖r1‖, . . . , ξd−3 = ‖rd−3‖, ξd−2 = ‖rd−2‖ = h. Corollary 7.3.2 and
the assumption on h imply that

m1 = 1 ≤ ξ1, . . . ,mi =

√
2i

i+ 1
≤ ξi, . . . ,md−3 =

√
2(d− 3)

d− 2
≤ ξd−3,

md−2 =

√
2(d− 2)

d− 1
≤ ξd−2 = h <

√
2(d− 1)

d
.

Notice that if ‖ri‖ = mi for all 1 ≤ i ≤ d − 2, then [o, r1, . . . , rd−3, G0 ∩M ]
can be dissected into four pieces each being congruent to W and therefore
δ̂([o, r1, . . . , rd−3, G0 ∩M ], S) = σ̂d.

Lemma 7.3.20

∆̂(ξ1, . . . , ξd−3, ξd−2) ≤ ∆̂(m1, . . . ,md−3,md−2) = σ̂d.

Proof: For any fixed ξd−2 = h, (2) of Lemma 7.3.11 easily implies that

∆̂(ξ1, . . . , ξd−3, h) ≤ ∆̂(m1, . . . ,md−3, h).

Finally, using Lemma 7.3.11 again, it is rather straightforward to show that
the function ∆̂(m1, . . . ,md−3, h) as a function of h is decreasing on the interval(√

2(d−2)
d−1 ,

√
2(d−1)
d

)
. From this it follows that

∆̂(m1, . . . ,md−3, h) ≤ ∆̂(m1, . . . ,md−3,md−2) = σ̂d,

finishing the proof of Lemma 7.3.20. �

Thus, Lemma 7.3.19 and Lemma 7.3.20 yield the following immediate es-
timate.

Corollary 7.3.21 Let WI denote the truncated wedge of type I with the 2-
dimensional base B∩F2 which is generated by the (d−2)-dimensional Rogers
orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope P ⊂ Ed, d ≥ 8.
Then

δ̂(WI , S) ≤ σ̂d.

7.3.8 An upper bound for the surface density in truncated wedges
of type II

It is sufficient to prove the following statement.
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Lemma 7.3.22 Let WII denote the truncated wedge of type II with the 2-
dimensional base B∩F2 which is generated by the (d−2)-dimensional Rogers
orthoscheme conv{o, r1, . . . , rd−2} of the Voronoi polytope P ⊂ Ed, d ≥ 4.
Then

δ̂(WII , S) ≤ σ̂d.

Proof: By assumption F2 is a 2-dimensional face of the Voronoi polytope P
with √

2(d− 1)

d
≤ h = R(F2) <

√
2d

d+ 1
.

Let G0 ⊂ affF2 denote the closed circular disk of radius g0(h) =
√

2d
d+1 − h2

centered at the point rd−2. As h = R(F2) <
√

2, therefore Lemma 7.3.1 yields
that √

2d

d+ 1
≤ 2√

4− h2
≤ R(F1)

holds for any side F1 of the face F2. Thus,

B ∩ F2 = G0

and so
δ̂(WII , S) = δ̂([o, r1, . . . , rd−3, G0], S).

It is clear from the construction that we can write δ̂([o, r1, . . . , rd−3, G0], S)
as a function of d− 2 variables, namely

∆̂∗(ξ1, . . . , ξd−3, ξd−2) = δ̂([o, r1, . . . , rd−3, G0], S),

where ξ1 = ‖r1‖, . . . , ξd−3 = ‖rd−3‖, ξd−2 = ‖rd−2‖ = h. Corollary 7.3.2 and
the assumption on h imply that

m1 = 1 ≤ ξ1, . . . ,mi =

√
2i

i+ 1
≤ ξi, . . . ,md−3 =

√
2(d− 3)

d− 2
≤ ξd−3,

m∗d−2 =

√
2(d− 1)

d
≤ ξd−2 = h <

√
2d

d+ 1
.

For any fixed ξd−2 = h, (2) of Lemma 7.3.11 easily implies that

∆̂∗(ξ1, . . . , ξd−3, h) ≤ ∆̂∗(m1, . . . ,md−3, h).

Finally, again applying (2) of Lemma 7.3.11 we immediately get that

∆̂∗(m1, . . . ,md−3, h) ≤ ∆̂∗(m1, . . . ,md−3,m
∗
d−2) ≤ σ̂d.

This completes the proof of Lemma 7.3.22. �
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7.3.9 The overall estimate of surface density in Voronoi cells

Let P be a d-dimensional Voronoi polytope of a packing P of d-dimensional
unit balls in Ed, d ≥ 8. Without loss of generality we may assume that the
unit ball B = {x ∈ Ed | dist(o,x) = ‖x‖ ≤ 1} centered at the origin o of Ed
is one of the unit balls of P with P as its Voronoi cell. As before, let S denote
the boundary of B.

First, we dissect P into d-dimensional Rogers simplices. Then let conv{o,
r1, . . . , rd} be one of these d-dimensional Rogers simplices assigned to the
flag say, F0 ⊂ · · · ⊂ Fd−1 of P. As ri ∈ Fd−i, 1 ≤ i ≤ d it is clear that
aff{rd−2, rd−1, rd} = affF2 and so

dist(o, aff{rd−2, rd−1, rd}) = dist(o, affF2) = R(F2).

Notice that Corollary 7.3.2 implies that
√

2(d−2)
d−1 ≤ R(F2).

Second, we group the d-dimensional Rogers simplices of P as follows.

(1): If
√

2(d−2)
d−1 ≤ R(F2) <

√
2(d−1)
d , then we assign the Rogers simplex

conv{o, r1, . . . , rd} to the type I wedge WI with the 2-dimensional base F2

generated by the (d−2)-dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2}
of the Voronoi polytope P ⊂ Ed, d ≥ 8.

(2): If
√

2(d−1)
d ≤ R(F2) <

√
2d
d+1 , then we assign the Rogers simplex

conv{o, r1, . . . , rd} to the type II wedge WII with the 2-dimensional base F2

generated by the (d−2)-dimensional Rogers orthoscheme conv{o, r1, . . . , rd−2}
of the Voronoi polytope P ⊂ Ed, d ≥ 8.

(3): If
√

2d
d+1 ≤ R(F2), then we assign the Rogers simplex conv{o, r1,

. . . , rd} to itself as the type III wedge WIII .
As the wedges of types I, II, and III of the given Voronoi polytope P

sit over the 2-skeleton of P and form a tiling of P it is clear that each d-
dimensional Rogers simplex of P belongs to exactly one of them. As a result,

in order to show that the surface density δ̂(P, S) = Svold−1(S)
svold−1(bdP) = dωd

svold−1(bdP)

of the unit sphere S in the Voronoi polytope P is bounded from above by σ̂d,
it is sufficient to prove the following inequalities.

(1̂): δ̂(WI , S) ≤ σ̂d,
(2̂): δ̂(WII , S) ≤ σ̂d,
(3̂): δ̂(WIII , S) ≤ σ̂d.
This final task is now easy. Namely, Lemma 7.3.18, Corollary 7.3.21, and

Lemma 7.3.22 yield (1̂) and (2̂) in a straightforward way. Finally, (3̂) follows
with the help of (2) of Lemma 7.3.11 rather easily.

For the details of the proof of σ̂d < σd, based on the so-called “Lemma
of Strict Comparison”, we refer the interested reader to the proper section in
[56].

This completes the proof of Theorem 1.4.8.
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7.4 Proof of Theorem 1.7.3

7.4.1 The signed volume of convex polytopes

Definition 7.4.1 Let P := conv{p1,p2, . . . ,pn} be a d-dimensional convex
polytope in Ed, d ≥ 2 with vertices p1,p2, . . . , pn. If F := conv{pi1 , . . . ,pik}
is an arbitrary face of P, then the barycenter of F is

cF :=
1

k

k∑
j=1

pij . (7.10)

Let F0 ⊂ F1 ⊂ · · · ⊂ Fl, 0 ≤ l ≤ d − 1 denote a sequence of faces,
called a (partial) flag of P, where F0 is a vertex and Fi−1 is a facet (a face
one dimension lower) of Fi for i = 1, . . . , l. Then the simplices of the form
conv{cF0

, cF1
, . . . , cFl} constitute a simplicial complex CP whose underlying

space is the boundary of P.
We regard all points in Ed as row vectors and use qT for the column vector

that is the transpose of the row vector q. Moreover, [q1, . . . ,qd] is the (square)
matrix with the ith row qi.

Choosing a (d − 1)-dimensional simplex of CP to be positively oriented,
one can check whether the orientation of an arbitrary (d − 1)-dimensional
simplex conv{cF0

, cF1
, . . . , cFd−1

} of CP (generated by the given sequence of
its vertices), is positive or negative. Let sign

(
conv{cF0

, cF1
, . . . , cFd−1

}
)

be
equal to 1 (resp., −1) if the orientation of the (d − 1)-dimensional simplex
conv{cF0 , cF1 , . . . , cFd−1

} is positive (resp., negative).

Definition 7.4.2 The signed volume V (P) of P is defined as

1

d!

∑
F0⊂F1⊂···⊂Fd−1

sign
(
conv{cF0 , cF1 , . . . , cFd−1

}
)

det[cF0 , cF1 , . . . , cFd−1
],

(7.11)
where the sum is taken over all flags of faces F0 ⊂ F1 ⊂ · · · ⊂ Fd−1 of P, and
det[·] is the determinant function.

The following is clear.

Lemma 7.4.3

V (P) =
1

d!

∑
F0⊂···⊂Fd−1

sign
(
conv{cF0 , cF1 , . . . , cFd−1

}
)
cF0 ∧ cF1 ∧ · · · ∧ cFd−1

,

where ∧ stands for the wedge product of vectors. Moreover, one can choose
the orientation of the boundary of P such that V (P) = vold(P), where vold(·)
refers to the d-dimensional volume measure in Ed, d ≥ 2.
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7.4.2 The volume force of convex polytopes

We wish to compute the gradient of V (P), where P = conv{p1,p2, . . . ,pn}
is regarded as a function of its vertices p1,p2, . . . ,pn. To achieve this we
consider an arbitrary path p(t) = p + tp′ in the space of the configurations
p := (p1,p2, . . . ,pn), where p′ := (p′1,p

′
2, . . . ,p

′
n). Based on Definition 7.4.1,

Definition 7.4.2, and Lemma 7.4.3 we introduce V (P(t)) as a function of t
(with t being an arbitrary real with sufficiently small absolute value) via

1

d!

∑
F0⊂F1⊂···⊂Fd−1

sign
(
conv{cF0

(t), . . . , cFd−1
(t)}

)
det[cF0

(t), . . . , cFd−1
(t)]

=
1

d!

∑
F0⊂F1⊂···⊂Fd−1

sign
(
conv{cF0(t), . . . , cFd−1

(t)}
)
cF0(t) ∧ · · · ∧ cFd−1

(t),

where cF (t) := 1
k

∑k
j=1 pij (t) for any face F = conv{pi1 , . . . ,pik} of P.

Clearly, V (P(0)) = V (P). Moreover, evaluating the derivative d
dtV (P(t))

of V (P(t)) at t = 0, collecting terms, and using the anticommutativity of the
wedge product we get that

d

dt
V (P(t)) |t=0 =

1

d!

n∑
i=1

Ni ∧ p′i, (7.12)

where each Ni is some linear combination of wedge products of d− 1 vectors
pj with pj and pi sharing a common face.

Definition 7.4.4 We call N := (N1,N2, . . . ,Nn) the volume force of the
d-dimensional convex polytope P ⊂ Ed with n vertices.

The following are some simple properties of the volume force. We leave
the rather straightforward proofs to the reader.

Lemma 7.4.5 Let N := (N1,N2, . . . ,Nn) be the volume force of the d-
dimensional convex polytope P ⊂ Ed, d ≥ 2 with vertices p1,p2, . . . ,pn. Then
the following hold.
(1) Each Ni is only a function of the vertices that share a face with pi, but
not pi itself.
(2) Assume that the origin o of Ed is the barycenter of P; moreover, let
T : Ed → Ed be an orthogonal linear map satisfying T (P) = P. If T (pi) = pj,
then T (Ni) = Nj.

For more details and examples on volume forces we refer the interested
reader to the proper sections in [34].
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7.4.3 Critical volume condition

Let P := conv{p1,p2, . . . ,pn} be a d-dimensional convex polytope in Ed, d ≥
2 with vertices p := (p1,p2, . . . , pn). Let G be a graph defined on this vertex
set p. Here, G may or may not consist of the edges of P. We think of the edges
of G as defining those pairs of vertices of P that are constrained not to get
closer. In the terminology of the geometry of rigid tensegrity frameworks each
edge of G is a strut. (For more information on rigid tensegrity frameworks and
the basic terminology used there we refer the interested reader to [222].)

Let p′ := (p′1,p
′
2, . . . , p′n) be an infinitesimal flex of G(p), where G(p)

refers to the realization of G over the point configuration p. That is, for each
edge (strut) {i, j} of G we have

(pi − pj) · (p′i − p′j) ≥ 0, (7.13)

where “·” denotes the standard inner product (also called the “dot product”)
in Ed.

Let e denote the number of edges of G. Then the rigidity matrix R(p)
of G(p) is the e × nd matrix whose row corresponding to the edge {i, j} of
G consists of the coordinates of d-dimensional vectors within a sequence of
n vectors such that all the coordinates are zero except maybe the ones that
correspond to the coordinates of the vectors pi − pj and pj − pi listed on
the ith and jth position. Another way to introduce R(p) is the following.
Let f : End → Ee be the map defined by x = (x1,x2, . . . ,xn) → (. . . , ‖xi −
xj‖2, . . . ). Then it is immediate that 1

2
d
dxf |x=p = R(p). Now, we can rewrite

the inequalities of (7.13) in terms of the rigidity matrix R(p) of G(p) (using
the usual matrix multiplication applied to R(p) and the indicated column
vector) as follows,

R(p)(p′)T ≥ 0, (7.14)

where the inequality is meant for each coordinate.
For each edge {i, j} of G, let ωij be a scalar. We collect all such scalars into

a single row vector called the stress ω := (. . . , ωij , . . . ) corresponding to the
rows of the matrix R(p). Append the volume force N := (N1,N2, . . . ,Nn) as

the last row onto R(p) to get a new matrix R̂(p), which we call the augmented

rigidity matrix. So, when performing the matrix multiplication R̂(p)(p′)T , we
find that the result is a column vector of length e+1 having (pi−pj)·(p′i−p′j)

on the position corresponding to the edge {i, j} of G, and having
∑n
k=1 Nk ·p′k

on the (e+ 1)st position. Also, it is easy to see that

(ω, 1)R̂(p) =

. . . ,∑
j

ωij(pi − pj) + Ni, . . .

 , (7.15)

where each sum is taken over all pj adjacent to pi in G, and we collect d
coordinates at a time.
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Definition 7.4.6 Let N = (N1,N2, . . . ,Nn) be the volume force of the d-
dimensional convex polytope P ⊂ Ed, d ≥ 2 with vertices p = (p1,p2, . . . ,
pn). We say that the stress ω = (. . . , ωij , . . . ) resolves N if for each i we

have that
∑
j ωij(pi−pj) + Ni = o or, equivalently, (ω, 1)R̂(p) = o, where o

denotes the zero vector.

Definition 7.4.7 The d-dimensional convex polytope P ⊂ Ed, d ≥ 2 and the
graph G defined on the vertices of P satisfy the critical volume condition if
the volume force N can be resolved by a stress ω = (. . . , ωij , . . . ) such that for
each edge {i, j} of G, ωij < 0.

Theorem 7.4.8 Let the d-dimensional convex polytope P ⊂ Ed, d ≥ 2 and
the strut graph G, defined on the vertices of P, satisfy the critical volume
condition. Moreover, let p′ = (p′1,p

′
2, . . . , p′n) be an infinitesimal flex of the

strut framework G(p) (i.e., let p′ satisfy (7.13)). Then

d

dt
V (P(t)) |t=0 =

1

d!

n∑
i=1

Ni ∧ p′i ≥ 0

with equality if and only if (pi − pj) · (p′i − p′j) = 0 for each edge {i, j} of G.

Proof: The assumptions, (7.15), the associativity of matrix multiplication,
and (7.12) imply in a straightforward way that

0 = o · p′ = (ω, 1)R̂(p)(p′)T =
∑
{i,j}

ωij(pi − pj) · (p′i − p′j) +
n∑
i=1

Ni · p′i

=
∑
{i,j}

ωij(pi − pj) · (p′i − p′j) +
n∑
i=1

Ni ∧ p′i ≤
n∑
i=1

Ni ∧ p′i =
d

dt
V (P(t)) |t=0,

where Ni is regarded as a d-dimensional vector so that Ni ∧ p′i can be inter-
preted as the standard inner product Ni · pi, with appropriate identification
of bases. We clearly get equality if and only if (pi − pj) · (p′i − p′j) = 0 for
each edge {i, j} of G. �

7.4.4 Strictly locally volume expanding convex polytopes

The following definition recalls standard terminology from the theory of rigid
tensegrity frameworks. (See [105] for more information.) Consider now just
the bar graph G, which is the graph G with all the struts changed to bars, and
take its realization G(p) sitting over the point configuration p = (p1,p2, . . . ,
pn). (Here bars mean edges whose lengths are constrained not to change.) We
say that the infinitesimal motion p′ = (p′1,p

′
2, . . . , p′n) is an infinitesimal flex

of G(p) if for each edge (bar) {i, j} of G, we have

(pi − pj) · (p′i − p′j) = 0.

This is the same as saying R(p)(p′)T = o for the rigidity matrix R(p).
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Definition 7.4.9 We say that p′ is a trivial infinitesimal flex if p′ is a (di-
rectional) derivative of an isometric motion of Ed, d ≥ 2. We say that G(p)
(resp., G(p)) is infinitesimally rigid if G(p) (resp., G(p)) has only trivial
infinitesimal flexes.

Theorem 7.4.10 Let the d-dimensional convex polytope P ⊂ Ed, d ≥ 2 and
the strut graph G, defined on the vertices of P, satisfy the critical volume
condition and assume that the bar framework G(p) is infinitesimally rigid.
Then

d

dt
V (P(t)) |t=0 =

1

d!

n∑
i=1

Ni ∧ p′i > 0

for every non-trivial infinitesimal flex p′ = (p′1,p
′
2, . . . , p

′
n) of the strut frame-

work G(p).

Proof: By Theorem 7.4.8 we have that d
dtV (P(t)) |t=0 = 1

d!

∑n
i=1 Ni∧p′i ≥ 0.

If d
dtV (P(t)) |t=0 = 0, then applying Theorem 7.4.8 again, p′ = (p′1,p

′
2, . . . ,

p′n) must be an infinitesimal flex of the bar framework G(p). However, then
by the infinitesimal rigidity of G(p), this would imply that p′ is trivial. Thus,
d
dtV (P(t)) |t=0 > 0. �

The following definition leads us to the core part of this section.

Definition 7.4.11 Let P ⊂ Ed, d ≥ 2 be a d-dimensional convex polytope
and let G be a strut graph defined on the vertices p = (p1,p2, . . . , pn) of P.
We say that P is strictly locally volume expanding over G, if there is an ε > 0
with the following property. For every q = (q1,q2, . . . ,qn) satisfying

‖pi − qi‖ < ε for all i = 1, . . . , n (7.16)

and
‖pi − pj‖ ≤ ‖qi − qj‖ for each edge {i, j} of G, (7.17)

we have V (P) ≤ V (Q) (where V (Q) is defined via (7.10) and (7.11) substi-
tuting q for p) with equality only when P is congruent to Q, where Q is the
polytope generated by the simplices of the barycenters in (7.10) using q instead
of p.

Theorem 7.4.12 Let the d-dimensional convex polytope P ⊂ Ed, d ≥ 2 and
the strut graph G, defined on the vertices of P, satisfy the critical volume
condition and assume that the bar framework G(p) is infinitesimally rigid.
Then P is strictly locally volume expanding over G.

Proof: The inequalities (7.17) define a semialgebraic set X in the space of
all configurations {(q1,q2, . . . ,qn)|qi ∈ Ed, i = 1, . . . , n}. Suppose there is no
ε as in the conclusion. Add V (P) ≥ V (Q) to the constraints defining X. By
Wallace [245] (see [105]) there is an analytic path p(t) = (p1(t),p2(t), . . . ,
pn(t)), 0 ≤ t < 1, with p(0) = p and p(t) ∈ X, p(t) not congruent to p(0) for
0 < t < 1. So,
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‖pi − pj‖ ≤ ‖pi(t)− pj(t)‖ for each edge {i, j} of G and (7.18)

V (P) ≥ V (P(t)) for 0 ≤ t < 1. (7.19)

Then after suitably adjusting p(t) by congruences (as in [105] as well as
[107]) we can define

p′ :=
dkp(t)

dtk
|t=0

for the smallest k that makes p′ a non-trivial infinitesimal flex. (Such k exists
by the argument in [105] as well as [107]).

Because (7.18) holds we see that p′ is a non-trivial infinitesimal flex of
G(p) and (7.19) implies that

d

dt
V (P(t)) |t=0 ≤ 0.

But this contradicts Theorem 7.4.10, finishing the proof of Theorem 7.4.12.
�

7.4.5 From critical volume condition and infinitesimal rigidity to
uniform stability of sphere packings

Here we start with the assumptions of Theorem 1.7.3 and apply Theo-
rem 7.4.12 to each Pi and GP restricted to the vertices of Pi, 1 ≤ i ≤ m.
Then let ε0 > 0 be the smallest ε > 0 guaranteed by the strict locally volume
expanding property of Theorem 7.4.12. All but a finite number of tiles are
fixed. The tiles that are free to move are confined to a region of fixed volume
in Ed, d ≥ 2. Each Pi is strictly locally volume expanding, therefore the vol-
ume of each of the tiles must be fixed. But the strict condition implies that
the motion of each tile must be an isometry. Because the tiling is face-to-face
and the vertices are given by GP we conclude inductively (on the number of
tiles) that each vertex of GP must be fixed. Thus, P is uniformly stable with
respect to ε0 introduced above, finishing the proof of Theorem 1.7.3.
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