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On the Volume of Finite Arrangements of
Spheres

5.1 The Conjecture of Kneser and Poulsen

Recall that ‖ . . . ‖ denotes the standard Euclidean norm of the d-dimensional
Euclidean space Ed. So, if pi,pj are two points in Ed, then ‖pi − pj‖ de-
notes the Euclidean distance between them. It is convenient to denote the
(finite) point configuration consisting of the points p1,p2, . . . ,pN in Ed by
p = (p1,p2, . . . ,pN ). Now, if p = (p1,p2, . . . ,pN ) and q = (q1,q2, . . . ,qN )
are two configurations of N points in Ed such that for all 1 ≤ i < j ≤ N the
inequality ‖qi − qj‖ ≤ ‖pi − pj‖ holds, then we say that q is a contraction

motion p(t) = (p1(t),p2(t), . . . ,pN (t)), with pi(t) ∈ Ed for all 0 ≤ t ≤ 1 and
1 ≤ i ≤ N such that p(0) = p and p(1) = q, and ‖pi(t)−pj(t)‖ is monotone
decreasing for all 1 ≤ i < j ≤ N . When there is such a motion, we say that
q is a continuous contraction of p. Finally, let Bd[pi, ri] denote the (closed)
d-dimensional ball centered at pi with radius ri in Ed and let vold(. . . ) rep-
resent the d-dimensional volume (Lebesgue measure) in Ed. In 1954 Poulsen
[216] and in 1955 Kneser [183] independently conjectured the following for the
case when r1 = · · · = rN .

Conjecture 5.1.1 If q = (q1,q2, . . . ,qN ) is a contraction of p = (p1,p2,
. . . ,pN ) in Ed, then

vold

(
N⋃
i=1

Bd[pi, ri]

)
≥ vold

(
N⋃
i=1

Bd[qi, ri]

)
.

Conjecture 5.1.2 If q = (q1,q2, . . . ,qN ) is a contraction of p = (p1,p2,
. . . ,pN ) in Ed, then

vold

(
N⋂
i=1

Bd[pi, ri]

)
≤ vold

(
N⋂
i=1

Bd[qi, ri]

)
.
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of p. If q is a contraction of p, then there may or may not be a continuous
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48 5 On the Volume of Finite Arrangements of Spheres

Actually, Kneser seems to be the one who has generated a great deal of
interest in the above conjectures also via private letters written to a number
of mathematicians. For more details on this see, for example, [181].

5.2 The Kneser–Poulsen Conjecture for Continuous
Contractions

For a given point configuration p = (p1,p2, . . . ,pN ) in Ed and radii r1, r2, . . . ,
rN consider the following sets,

Vi = {x ∈ Ed | for all j , ‖x− pi‖2 − r2i ≤ ‖x− pj‖2 − r2j},

Vi = {x ∈ Ed | for all j , ‖x− pi‖2 − r2i ≥ ‖x− pj‖2 − r2j}.

The set Vi (resp., Vi) is called the nearest (resp., farthest) point Voronoi
cell of the point pi. (For a detailed discussion on nearest as well as farthest
point Voronoi cells we refer the interested reader to [124] and [230].) We now
restrict each of these sets as follows.

Vi(ri) = Vi ∩Bd[pi, ri],

Vi(ri) = Vi ∩Bd[pi, ri].

We call the set Vi(ri) (resp., Vi(ri)) the nearest (resp., farthest) point
truncated Voronoi cell of the point pi. For each i 6= j let Wij = Vi ∩Vj and
W ij = Vi ∩ Vj . The sets Wij and W ij are the walls between the nearest
and farthest point Voronoi cells. Finally, it is natural to define the relevant
truncated walls as follows.

Wij(pi, ri) = Wij ∩Bd[pi, ri]

= Wij(pj , rj) = Wij ∩Bd[pj , rj ],

W ij(pi, ri) = W ij ∩Bd[pi, ri]

= W ij(pj , rj) = W ij ∩Bd[pj , rj ].

The following formula discovered by Csikós [113] proves Conjecture 5.1.1
as well as Conjecture 5.1.2 for continuous contractions in a straighforward way
in any dimension. (Actually, the planar case of the Kneser–Poulsen conjecture
under continuous contractions has been proved independently in [77], [112],
[99], and [26].)
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Theorem 5.2.1 Let d ≥ 2 and let p(t), 0 ≤ t ≤ 1 be a smooth motion of a
point configuration in Ed such that for each t, the points of the configuration
are pairwise distinct. Then

d

dt
vold

(
N⋃
i=1

Bd[pi(t), ri]

)

=
∑

1≤i<j≤N

(
d

dt
dij(t)

)
· vold−1 (Wij(pi(t), ri)) ,

d

dt
vold

(
N⋂
i=1

Bd[pi(t), ri]

)

=
∑

1≤i<j≤N

−
(
d

dt
dij(t)

)
· vold−1

(
W ij(pi(t), ri)

)
,

where dij(t) = ‖pi(t)− pi(t)‖.

On the one hand, Csikós [114] managed to generalize his formula to config-
urations of balls called flowers which are sets obtained from balls with the help
of operations ∩ and ∪. This work extends to hyperbolic as well as spherical
space. On the other hand, Csikós [115] has succeeded in proving a Schläfli-type
formula for polytopes with curved faces lying in pseudo-Riemannian Einstein
manifolds, which can be used to provide another proof of Conjecture 5.1.1
as well as Conjecture 5.1.2 for continuous contractions (for more details see
[115]).

5.3 The Kneser–Poulsen Conjecture in the Plane

In the recent paper [58] the author and Connelly proved Conjecture 5.1.1 as
well as Conjecture 5.1.2 in the Euclidean plane. Thus, we have the following
theorem.

Theorem 5.3.1 If q = (q1,q2, . . . ,qN ) is a contraction of p = (p1,p2,
. . . ,pN ) in E2, then

vol2

(
N⋃
i=1

B2[pi, ri]

)
≥ vol2

(
N⋃
i=1

B2[qi, ri]

)
;

moreover,

vol2

(
N⋂
i=1

B2[pi, ri]

)
≤ vol2

(
N⋂
i=1

B2[qi, ri]

)
.
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In fact, the paper [58] contains a proof of an extension of the above the-
orem to flowers as well. In what follows we give an outline of the three-step
proof published in [58] by phrasing it through a sequence of theorems each
being higher-dimensional. Voronoi cells play an essential role in our proofs of
Theorems 5.3.2 and 5.3.3.

Theorem 5.3.2 Consider N moving closed d-dimensional balls Bd[pi(t), ri]
with 1 ≤ i ≤ N, 0 ≤ t ≤ 1 in Ed, d ≥ 2. If Fi(t) is the contribution of the ith

ball to the boundary of the union
⋃N
i=1 Bd[pi(t), ri] (resp., of the intersection⋂N

i=1 Bd[pi(t), ri]), then ∑
1≤i≤N

1

ri
svold−1 (Fi(t))

decreases (resp., increases) in t under any analytic contraction p(t) of the
center points, where 0 ≤ t ≤ 1 and svold−1(. . . ) refers to the relevant (d− 1)-
dimensional surface volume.

Theorem 5.3.3 Let the centers of the closed d-dimensional balls Bd[pi, ri],
1 ≤ i ≤ N lie in the (d − 2)-dimensional affine subspace L of Ed, d ≥ 3.
If Fi stands for the contribution of the ith ball to the boundary of the union⋃N
i=1 Bd[pi, ri] (resp., of the intersection

⋂N
i=1 Bd[pi, ri]), then

vold−2

(
N⋃
i=1

Bd−2[pi, ri]

)
=

1

2π

∑
1≤i≤N

1

ri
svold−1(Fi)

resp., vold−2

(
N⋂
i=1

Bd−2[pi, ri]

)
=

1

2π

∑
1≤i≤N

1

ri
svold−1(Fi)

 ,

where Bd−2[pi, ri] = Bd[pi, ri] ∩ L, 1 ≤ i ≤ N .

Theorem 5.3.4 If q = (q1,q2, . . . ,qN ) is a contraction of p = (p1,p2, . . . ,
pN ) in Ed, d ≥ 1, then there is an analytic contraction p(t) = (p1(t), . . . ,
pN (t)), 0 ≤ t ≤ 1 in E2d such that p(0) = p and p(1) = q.

Note that Theorems 5.3.2, 5.3.3, and 5.3.4 imply Theorem 5.3.1 in a
straighforward way.

Also, we note that Theorem 5.3.4 (called the Leapfrog Lemma) cannot be
improved; namely, it has been shown in [24] that there exist point configura-
tions q and p in Ed, actually constructed in the way suggested in [58], such
that q is a contraction of p in Ed and there is no continuous contraction from
p to q in E2d−1.

In order to describe a more complete picture of the status of the Kneser–
Poulsen conjecture we mention two additional corollaries obtained from the
proof published in [58] and just outlined above. (For more details see [58].)
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Theorem 5.3.5 Let p = (p1,p2, . . . ,pN ) and q = (q1,q2, . . . ,qN ) be two
point configurations in Ed such that q is a piecewise-analytic contraction of p
in Ed+2. Then the conclusions of Conjecture 5.1.1 as well as Conjecture 5.1.2
hold in Ed.

The following generalizes a result of Gromov in [150], who proved it in the
case N ≤ n+ 1.

Theorem 5.3.6 If q = (q1,q2, . . . ,qN ) is an arbitrary contraction of p =
(p1,p2, . . . ,pN ) in Ed and N ≤ n + 3, then both Conjecture 5.1.1 and Con-
jecture 5.1.2 hold.

As a next step it would be natural to investigate the case N = n+ 4.

5.4 Non-Euclidean Kneser–Poulsen-Type Results

It is somewhat surprising that in spherical space for the specific radius of
balls (i.e., spherical caps) one can find a proof of both Conjecture 5.1.1 and
Conjecture 5.1.2 in all dimensions. The magic radius is π

2 and the following
theorem describes the desired result in details.

Theorem 5.4.1 If a finite set of closed d-dimensional balls of radius π
2 (i.e.,

of closed hemispheres) in the d-dimensional spherical space Sd, d ≥ 2 is rear-
ranged so that the (spherical) distance between each pair of centers does not
increase, then the (spherical) d-dimensional volume of the intersection does
not decrease and the (spherical) d-dimensional volume of the union does not
increase.

The method of the proof published by the author and Connelly in [61]
can be described as follows. First, one can use a leapfrog lemma to move
one configuration to the other in an analytic and monotone way, but only
in higher dimensions. Then the higher-dimensional balls have their combined
volume (their intersections or unions) change monotonically, a fact that one
can prove using Schläfli’s differential formula. Then one can apply an integral
formula to relate the volume of the higher-dimensional object to the volume
of the lower-dimensional object, obtaining the volume inequality for the more
general discrete motions.

The following statement is a corollary of Theorem 5.4.1, the Euclidean
part of which has been proved independently by Alexander [4], Capoyleas, and
Pach [98] and Sudakov [234]. For the sake of completeness in what follows,
we recall the notion of spherical mean width, which is most likely less known
than its widely used Euclidean counterpart. Let Sd be the d-dimensional unit
sphere centered at the origin in Ed+1. A spherically convex body is a closed,
spherically convex subset of Sd with interior points and lying in some closed
hemisphere, thus, the intersection of Sd with a (d + 1)-dimensional closed
convex cone of Ed+1 different from Ed+1. Recall that Svold(. . . ) denotes the
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spherical Lebesgue measure on Sd, and recall that (d + 1)ωd+1 = Svold(Sd).
Moreover, as usual we denote the standard inner product of Ed+1 by 〈·, ·〉,
and for u ∈ Sd we write u⊥ := {x ∈ Ed+1 : 〈u,x〉 = 0} for the orthogonal
complement of lin{u}. For a spherically convex body K, the polar body is
defined by

K∗ := {u ∈ Sd : 〈u,v〉 ≤ 0 for all v ∈ K}.

It is also spherically convex, but need not have interior points. The number

U(K) :=
1

2
Svold({u ∈ Sd : u⊥ ∩K 6= ∅})

can be considered as the spherical mean width of K. Obviously, a vector u ∈ Sd
satisfies u ∈ K∗ ∪ (−K∗) if and only if u⊥ does not meet the interior of K,
hence

(d+ 1)ωd+1 − 2Svold(K
∗) = 2U(K). (5.1)

Now, (5.1) and Theorem 5.4.1 imply the following theorem in a rather
straighforward way.

Theorem 5.4.2 Let p = (p1,p2, . . . ,pN ) be N points on a closed hemisphere
of Sd, d ≥ 2 (resp., points in Ed, d ≥ 2), and let q = (q1,q2, . . . ,qN ) be a
contraction of p in Sd (resp., in Ed). Then the spherical mean width (resp.,
mean width) of the spherical convex hull (resp., convex hull) of q is less than or
equal to the spherical mean width (resp., mean width) of the spherical convex
hull (resp., convex hull) of p.

Before we continue our non-Euclidean discussions it seems natural to men-
tion a Euclidean Kneser–Poulsen-type result supported by Theorem 5.4.2. For
that purpose, let p = (p1,p2, . . . ,pN ) be N points in Ed, d ≥ 2, and let
q = (q1,q2, . . . ,qN ) be an arbitrary contraction of p in Ed. Now, if r > 0 is
sufficiently large, then the union of the balls of radius r centered at the points
of q (resp., p) is eventually the same as the outer parallel domain of radius r
of the convex hull of q (resp., p). Then writing out Steiner’s formula for the
volumes of the outer parallel domains just mentioned with coefficients equal
to the proper intrinsic volumes and noting that the first intrinsic volume is
equal to the mean width (up to some constant), Theorem 5.4.2 implies that
Conjecture 5.1.1 holds for sufficiently large equal radii (provided of course,
that the mean width in question is non-zero). A similar argument supports
the inequality of Conjecture 5.1.2 to hold for sufficiently large equal radii.
Thus we have arrived at the following theorem that was proved regorously by
Gorbovickis in [149] (using a different approach).

Theorem 5.4.3 If q = (q1,q2, . . . ,qN ) is a contraction of p = (p1,p2,
. . . ,pN ) in Ed, then there exists r0 > 0 such that for any r ≥ r0,

vold

(
N⋃
i=1

Bd[pi, r]

)
≥ vold

(
N⋃
i=1

Bd[qi, r]

)
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(
resp., vold

(
N⋂
i=1

Bd[pi, r]

)
≤ vold

(
N⋂
i=1

Bd[qi, r]

))
.

We note that Theorem 5.4.1 extends to flowers as well; moreover, a positive
answer to the following problem would imply that both Conjecture 5.1.1 and
Conjecture 5.1.2 hold for circles in S2 (for more details on this see [61]).

Problem 5.4.4 Suppose that p = (p1,p2, . . . ,pN ) and q = (q1,q2, . . . ,qN )
are two point configurations in S2. Then prove or disprove that there is
a monotone piecewise-analytic motion from p = (p1,p2, . . . ,pN ) to q =
(q1,q2, . . . ,qN ) in S4.

Note that in fact, Theorem 5.4.1 states a volume inequality between two
spherically convex polytopes satisfying some metric conditions. The following
problem searches for a natural analogue of that in the hyperbolic 3-space H3.
In order to state it properly we recall the following. Let A and B be two planes
in H3 and let A+ (resp., B+) denote one of the two closed halfspaces bounded
by A (resp., B) such that the set A+ ∩B+ is nonempty. Recall that either A
and B intersect or A is parallel to B or A and B have a line perpendicular to
both of them. Now, “the dihedral angle A+ ∩B+” means not only the set in
question, but also refers to the standard angular measure of the corresponding
angle between A and B in the first case, it refers to 0 in the second case, and
finally, in the third case it refers to the negative of the hyperbolic distance
between A and B.

Problem 5.4.5 Let P and Q be compact convex polyhedra of H3 with P
(resp., Q) being the intersection of the closed halfspaces H+

P,1, H
+
P,2, . . . ,H

+
P,N

(resp., H+
Q,1, H

+
Q,2, . . . ,H

+
Q,N ). Assume that the dihedral angle H+

Q,i ∩ H
+
Q,j

(containing Q) is at least as large as the corresponding dihedral angle H+
P,i ∩

H+
P,j (containing P) for all 1 ≤ i < j ≤ N . Then prove or disprove that the

volume of P is at least as large as the volume of Q.

Using Andreev’s version [6], [7] of the Koebe–Andreev–Thurston theorem
and Schläfli’s differential formula the author [64] proved the following partial
analogue of Theorem 5.4.1 in H3.

Theorem 5.4.6 Let P and Q be nonobtuse-angled compact convex polyhedra
of the same simple combinatorial type in H3. If each inner dihedral angle of
Q is at least as large as the corresponding inner dihedral angle of P, then the
volume of P is at least as large as the volume of Q.

5.5 Alexander’s Conjecture

It seems that in the Euclidean plane, for the case of the intersection of con-
gruent disks, one can sharpen the results proved by the author and Connelly
[58]. Namely, Alexander [4] conjectures the following.
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Conjecture 5.5.1 Under arbitrary contraction of the center points of finitely
many congruent disks in the Euclidean plane, the perimeter of the intersection
of the disks cannot decrease.

The analogous question for the union of congruent disks has a negative
answer, as was observed by Habicht and Kneser long ago (for details see [58]).
In [68] some supporting evidence for the above conjecture of Alexander has
been collected; in particular, the following theorem was proved.

Theorem 5.5.2 Alexander’s conjecture holds for continuous contractions of
the center points and it holds up to 4 congruent disks under arbitrary contrac-
tions of the center points.

We note that Alexander’s conjecture does not hold for incongruent disks
(even under continuous contractions of their center points) as shown in [68].
Finally we remark that if Alexander’s conjecture were true, then it would be
a rare instance of an asymmetry between intersections and unions for Kneser–
Poulsen-type questions.

5.6 Densest Finite Sphere Packings

Let Bd denote the closed d-dimensional unit ball centered at the origin o of
Ed, d ≥ 2 and let P := {c1 + Bd, c2 + Bd, . . . , cn + Bd} be a packing of n
unit balls with centers c1, c2, . . . , cn in Ed. We say that P is a densest packing
among all packings of n unit balls in Ed if there exists a parameter r > 1 with
the property that

δ(P) :=
nvold(B

d)

vold (
⋃n
i=1 ci + rBd)

=
nωd

vold (
⋃n
i=1 ci + rBd)

= max

{
nωd

vold (
⋃n
i=1 xi + rBd)

| ‖xj − xk‖ ≥ 2 for all 1 ≤ j < k ≤ n
}

;

that is,

vold(
n⋃
i=1

ci + rBd) = min
‖xj−xk‖≥2 for all 1≤j<k≤n

{
vold(

n⋃
i=1

xi + rBd)
}
. (5.2)

The definition (5.2) is rather natural from the point of the Kneser–Poulsen
Conjecture and it seems to lead to a new definition of densest finite sphere
packings. The closest related notion is the definition of parametric density,
introduced by Wills in [247] (see also [28]), where the union of balls is replaced
by the convex hull of the union of balls thereby replacing our concave container
by a convex one.
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First, let us investigate (5.2) in E2. If (5.2) holds with parameter r satisfy-
ing 1 < r ≤ 2√

3
= 1.1547 . . . , then it is easy to see that P must be a packing

with the largest number of touching pairs among all packings of n unit disks,
and therefore according to the well-known result of Harborth [166], P must
be a subset of the densest infinite hexagonal packing of unit disks in E2. If
(5.2) holds with parameter r satisfying 2√

3
< r, then the Hajós Lemma (see,

for example, [200]) easily implies that δ(P) < π√
12

. This inequality, for any

fixed 2√
3
< r, is asymptotically best possible (with respect to n). However,

the following remains a challenging open question.

Problem 5.6.1 Assume that P is a densest packing of n unit disks in E2

with parameter 2√
3
< r in (5.2). Prove or disprove that P is a subset of the

densest infinite hexagonal packing of unit disks in E2.

Next, let us take a closer look of (5.2) in E3. If (5.2) holds with param-
eter r satisfying 2 ≤ r, then Theorem 2.4.3 and Theorem 1.4.1 imply in a
straightforward way that δ(P) ≤ π√

18
. Not surprisingly, this inequality, for

any fixed 2 ≤ r, is asymptotically best possible (with respect to n). Moreover,

if (5.2) holds with parameter r satisfying
√

3
2 = 1.2247 · · · ≤ r < 2, then The-

orem 1.4.6 implies that δ(P) ≤ σ3 = 0.7796 . . . . Last but not least, if (5.2)
holds with parameter r satisfying 1 < r < 2√

3
= 1.1547 . . . , then it is easy to

see that P must be a packing with the largest number C(n) of touching pairs
among all packings of n unit balls in E3. For some exact values as well as
estimates on C(n) see Theorem 1.3.5 and the discussion there. The following
problem might generate further progress on the problem at hand. For natural
reasons we call it the Truncated Dodecahedral Conjecture.

Conjecture 5.6.2 Let F be an arbitrary (finite or infinite) family of non-
overlapping unit balls in E3 with the unit ball B centered at the origin o of E3

belonging to F . Let P stand for the Voronoi cell of the packing F assigned to B
and let Q denote a regular dodecahedron circumscribed B having circumradius√

3 tan π
5 = 1.2584 . . . . If r is any parameter with 2√

3
< r ≤

√
3 tan π

5 , then

vol3(P ∩ rB) ≥ vol3(Q ∩ rB) .

We note that obviously the inequality of Conjecture 5.6.2 holds for any pa-
rameter with 1 < r ≤ 2√

3
. Moreover, for the sake of completeness we mention

that the special case, when r =
√

3 tan π
5 in Conjecture 5.6.2, had already been

conjectured by L. Fejes Tóth in [135], and it is still open, although the closely
related (but weaker) Dodecahedral Conjecture has been recently proved by
Hales and McLaughlin [164], [165].

Finally, we take a look at (5.2) in Ed, d ≥ 4. On the one hand, if (5.2)
holds with parameter r satisfying 2 ≤ r, then Theorem 2.4.3 implies the
estimate δ(P) ≤ δ(Bd). On the other hand, if (5.2) holds with parameter r
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satisfying
√

2d
d+1 ≤ r < 2, then Theorem 1.4.6 implies that δ(P) ≤ σd. In fact,

Theorem 1.4.8 improves that inequality to δ(P) ≤ σ̂d (< σd) for all d ≥ 8.
Last but not least, if (5.2) holds with parameter r satisfying 1 < r < 2√

3
, then

it is easy to see that P must be a packing with the largest number of touching
pairs (called the contact number of P) among all packings of n unit balls in
Ed. Theorem 2.4.2 gives estimates on the contact number of P.
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