
4

Coverings by Planks and Cylinders

4.1 Plank Theorems

As usual, a convex body of the Euclidean space Ed is a compact convex set
with non-empty interior. Let C ⊂ Ed be a convex body, and let H ⊂ Ed
be a hyperplane. Then the distance w(C, H) between the two supporting
hyperplanes of C parallel to H is called the width of C parallel to H. Moreover,
the smallest width of C parallel to hyperplanes of Ed is called the minimal
width of C and is denoted by w(C).

Recall that in the 1930’s, Tarski posed what came to be known as the plank
problem. A plank P in Ed is the (closed) set of points between two distinct
parallel hyperplanes. The width w(P) of P is simply the distance between the
two boundary hyperplanes of P. Tarski conjectured that if a convex body of
minimal width w is covered by a collection of planks in Ed, then the sum of
the widths of these planks is at least w. This conjecture was proved by Bang
in his memorable paper [18]. (In fact, the proof presented in that paper is a
simplification and generalization of the proof published by Bang somewhat
earlier in [17].) Thus, we call the following statement Bang’s plank theorem.

Theorem 4.1.1 If the convex body C is covered by the planks P1,P2, . . . ,Pn
d

1 ∪P2 ∪ · · · ∪Pn ⊂ Ed), then

n∑
i=1

w(Pi) ≥ w(C).

In [18], Bang raised the following stronger version of Tarski’s plank prob-
lem called the affine plank problem. We phrase it via the following definition.
Let C be a convex body and let P be a plank with boundary hyperplanes
parallel to the hyperplane H in Ed. We define the C-width of the plank P as
w(P)
w(C,H) and label it wC(P). (This notion was introduced by Bang [18] under

the name “relative width”.)
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Conjecture 4.1.2 If the convex body C is covered by the planks P1,P2, . . . ,
Pn in Ed, d ≥ 2, then

n∑
i=1

wC(Pi) ≥ 1.

The special case of Conjecture 4.1.2, when the convex body to be covered
is centrally symmetric, has been proved by Ball in [12]. Thus, the following is
Ball’s plank theorem.

Theorem 4.1.3 If the centrally symmetric convex body C is covered by the
planks P1,P2, . . . ,Pn in Ed, d ≥ 2, then

n∑
i=1

wC(Pi) ≥ 1.

From the point of view of discrete geometry it seems natural to mention
that after proving Theorem 4.1.3 Ball [13] used Bang’s proof of Theorem 4.1.1
to derive a new argument for an improvement of the Davenport–Rogers lower
bound on the density of economical sphere lattice packings.

It was Alexander [3] who noticed that Conjecture 4.1.2 is equivalent to the
following generalization of a problem of Davenport.

Conjecture 4.1.4 If a convex body C in Ed, d ≥ 2 is sliced by n − 1 hyper-
plane cuts, then there exists a piece that covers a translate of 1

nC.

We note that the paper [33] of A. Bezdek and the author proves Conjec-
ture 4.1.4 for successive hyperplane cuts (i.e., for hyperplane cuts when each
cut divides one piece). Also, the same paper ([33]) introduced two additional
equivalent versions of Conjecture 4.1.2. As they seem to be of independent
interest we recall them following the terminology used in [33].

Let C and K be convex bodies in Ed and let H be a hyperplane of Ed.
The C-width of K parallel to H is denoted by wC(K, H) and is defined as
w(K,H)
w(C,H) . The minimal C-width of K is denoted by wC(K) and is defined as

the minimum of wC(K, H), where the minimum is taken over all possible
hyperplanes H of Ed. Recall that the inradius of K is the radius of the largest
ball contained in K. It is quite natural then to introduce the C-inradius of
K as the factor of the largest (positively) homothetic copy of C, a translate
of which is contained in K. We need to do one more step to introduce the
so-called successive C-inradii of K as follows. Let r be the C-inradius of K.
For any 0 < ρ ≤ r let the ρC-rounded body of K be denoted by KρC and
be defined as the union of all translates of ρC that are covered by K. Now,
take a fixed integer n ≥ 1. On the one hand, if ρ > 0 is sufficiently small,
then wC(KρC) > nρ. On the other hand, wC(KrC) = r ≤ nr. As wC(KρC)
is a decreasing continuous function of ρ > 0 and nρ is a strictly increasing
continuous function of ρ, there exists a uniquely determined ρ > 0 such that
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wC(KρC) = nρ.

This uniquely determined ρ is called the nth successive C-inradius of K
and is denoted by rC(K, n). Notice that rC(K, 1) = r. Now, the two equivalent
versions of Conjecture 4.1.2 and Conjecture 4.1.4 introduced in [33] can be
phrased as follows.

Conjecture 4.1.5 If a convex body K in Ed, d ≥ 2 is covered by the planks
P1,P2, . . . ,Pn, then

∑n
i=1 wC(Pi) ≥ wC(K) for any convex body C in Ed.

Conjecture 4.1.6 Let K and C be convex bodies in Ed, d ≥ 2. If K is sliced
by n − 1 hyperplanes, then the minimum of the greatest C-inradius of the
pieces is equal to the nth successive C-inradius of K; that is, it is rC(K, n).

A. Bezdek and the author [33] proved the following theorem that (under
the condition that C is a ball) answers a question raised by Conway ([32]) as
well as proves Conjecture 4.1.6 for successive hyperplane cuts.

Theorem 4.1.7 Let K and C be convex bodies in Ed, d ≥ 2. If K is sliced
into n pieces by n− 1 successive hyperplane cuts (i.e., when each cut divides
one piece), then the minimum of the greatest C-inradius of the pieces is the nth
successive C-inradius of K (i.e., rC(K, n)). An optimal partition is achieved
by n− 1 parallel hyperplane cuts equally spaced along the minimal C-width of
the rC(K, n)C-rounded body of K.

4.2 Covering Convex Bodies by Cylinders

In his paper [18], Bang, by describing a concrete example and writing that
it may be extremal, proposes investigating a quite challenging question that
can be phrased as follows.

Problem 4.2.1 Prove or disprove that the sum of the base areas of finitely
many cylinders covering a 3-dimensional convex body is at least half of the
minimum area 2-dimensional projection of the body.

If true, then the estimate of Problem 4.2.1 is a sharp one due to a covering
of a regular tetrahedron by two cylinders described in [18]. A very recent
paper of the author and Litvak ([71]) investigates Problem 4.2.1 as well as its
higher-dimensional analogue. Their main result can be summarized as follows.

Given 0 < k < d define a k-codimensional cylinder C in Ed as a set which
can be presented in the form C = H + B, where H is a k-dimensional linear
subspace of Ed and B is a measurable set (called the base) in the orthogonal
complement H⊥ of H. For a given convex body K and a k-codimensional
cylinder C = H +B we define the cross-sectional volume crvK(C) of C with
respect to K as follows,
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crvK(C) :=
vold−k(C ∩H⊥)

vold−k(PH⊥K)
=

vold−k(PH⊥C)

vold−k(PH⊥K)
=

vold−k(B)

vold−k(PH⊥K)
,

where PH⊥ : Ed → H⊥ denotes the orthogonal projection of Ed onto H⊥.
Notice that for every invertible affine map T : Ed → Ed one has crvK(C) =
crvTK(TC). The following theorem is proved in [71].

Theorem 4.2.2 Let K be a convex body in Ed. Let C1, . . . ,CN be k-codi-
mensional cylinders in Ed, 0 < k < d such that K ⊂

⋃N
i=1 Ci. Then

N∑
i=1

crvK(Ci) ≥
1(
d
k

) .
Moreover, if K is an ellipsoid and C1, . . . ,CN are 1-codimensional cylinders
in Ed such that K ⊂

⋃N
i=1 Ci, then

N∑
i=1

crvK(Ci) ≥ 1.

The case k = d−1 of Theorem 4.2.2 corresponds to Conjecture 4.1.2, that
is, to the affine plank problem. Theorem 4.2.2 for k = d− 1 implies the lower
bound 1/d that can be somewhat further improved (for more details see [71]).

As an immediate corollary of Theorem 4.2.2 we get the following estimate
for Problem 4.2.1.

Corollary 4.2.3 The sum of the base areas of finitely many (1-codimensional)
cylinders covering a 3-dimensional convex body is always at least one third of
the minimum area 2-dimensional projection of the body.

Also, note that the inequality of Theorem 4.2.2 on covering ellipsoids by
1-codimensional cylinders is best possible. By looking at this result from the
point of view of k-codimensional cylinders we are led to ask the following
quite natural question. Unfortunately, despite its elementary character it is
still open.

Problem 4.2.4 Let 0 < c(d, k) ≤ 1 denote the largest real number with the
property that if K is an ellipsoid and C1, . . . ,CN are k-codimensional cylin-
ders in Ed, 1 ≤ k ≤ d − 1 such that K ⊂

⋃N
i=1 Ci, then

∑N
i=1 crvK(Ci) ≥

c(d, k). Determine c(d, k) for given d and k.

On the one hand, Theorems 4.1.1 and 4.2.2 imply that c(d, d − 1) = 1
and c(d, 1) = 1; moreover, c(d, k) ≥ 1

(dk)
. On the other hand, a clever con-

struction due to Kadets [174] shows that if d− k ≥ 3 is a fixed integer, then
limd→∞ c(d, k) = 0. Thus the following as a subquestion of Problem 4.2.4
seems to be open as well.
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Problem 4.2.5 Prove or disprove the existence of a universal constant c > 0
(independent of d) with the property that if Bd denotes the unit ball centered
at the origin o in Ed and C1, . . . ,CN are (d− 2)-codimensional cylinders in

Ed such that Bd ⊂
⋃N
i=1 Ci, then the sum of the 2-dimensional base areas of

C1, . . . ,CN is at least c.

4.3 Covering Lattice Points by Hyperplanes

In their paper [51], the author and Hausel established the following discrete
version of Tarski’s plank problem.

Recall that the lattice width of a convex body K in Ed is defined as

w(K,Zd) = min
{

max
x∈K
〈x,y〉 −min

x∈K
〈x,y〉 | y ∈ Zd, y 6= o

}
,

where Zd denotes the integer lattice of Ed. It is well known that if y ∈ Zd, y 6=
o is chosen such that λy /∈ Zd for any 0 < λ < 1 (i.e., y is a primitive integer
point), then

max
x∈K
〈x,y〉 −min

x∈K
〈x,y〉

is equal to the Euclidean width of K in the direction y divided by the Eu-
clidean distance between two consecutive lattice hyperplanes of Zd that are
orthogonal to y. Thus if K is the convex hull of finitely many points of Zd,
then

max
x∈K
〈x,y〉 −min

x∈K
〈x,y〉

is an integer namely, it is less by one than the number of lattice hyperplanes
of Zd that intersect K and are orthogonal to y. Now, we are ready to state
the following conjecture of the author and Hausel ([51]).

Conjecture 4.3.1 Let K be a convex body in Ed. Let H1, . . . ,HN be hyper-
planes in Ed such that

K ∩ Zd ⊂
N⋃
i=1

Hi.

Then
N ≥ w(K,Zd)− d.

Properly translated copies of cross-polytopes, described in [51], show that
if true, then the above inequality is best possible.

The special case, when N = 0, is of independent interest. (In particular,
this case seems to be “responsible” for the term d in the inequality of Con-
jecture 4.3.1.) Namely, it seems reasonable to conjecture (see also [16]) that if
K is an integer point free convex body in Ed, then w(K,Zd) ≤ d. On the one
hand, this has been proved by Banaszczyk [15] for ellipsoids. On the other
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hand, for general convex bodies containing no integer points, Banaszczyk,
Litvak, Pajor, and Szarek [16] have proved the inequality w(K,Zd) ≤ C d

3
2 ,

where C is an absolute positive constant. This improves an earlier result of
Kannan and Lovász [177].

Although Conjecture 4.3.1 is still open we have the following partial results
which were recently published. Improving the estimates of [51], Talata [238]
has succeeded in deriving a proof of the following inequality.

Theorem 4.3.2 Let K be a convex body in Ed. Let H1, . . . ,HN be hyper-
planes in Ed such that

K ∩ Zd ⊂
N⋃
i=1

Hi.

Then

N ≥ c w(K,Zd)
d

− d,

where c is an absolute positive constant.

In the paper [71], the author and Litvak have shown that the plank the-
orem of Ball [12] implies a slight improvement on the above inequality for
centrally symmetric convex bodies whose lattice width is at most quadratic in
dimension. (Actually, this approach is different from Talata’s technique and
can lead to a somewhat even stronger inequality in terms of the relevant ba-
sic measure of the given convex body. For more details on this we refer the
interested reader to [71].)

Theorem 4.3.3 Let K be a centrally symmetric convex body in Ed. Let H1,
. . . , HN be hyperplanes in Ed such that

K ∩ Zd ⊂
N⋃
i=1

Hi.

Then

N ≥ c w(K,Zd)
d ln(d+ 1)

,

where c is an absolute positive constant.

Motivated by Conjecture 4.3.1 and by a conjecture of Corzatt [109] (ac-
cording to which if in the plane the integer points of a convex domain can be
covered by N lines, then those integer points can also be covered by N lines
having at most four different slopes), Brass, Moser, and Pach [96] have raised
the following related question.

Problem 4.3.4 For every positive integer d find the smallest constant c(d)
such that if the integer points of a convex body in Ed can be covered by N
hyperplanes, then those integer points can also be covered by c(d)N parallel
hyperplanes.
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Theorem 4.3.2 implies that c(d) ≤ c d2 for convex bodies in general and for
centrally symmetric convex bodies Theorem 4.3.3 yields the somewhat better
upper bound c d ln(d + 1). As a last note we mention that the problem of
finding good estimates for the constants of Theorems 4.3.2 and 4.3.3 is an
interesting open question as well.

4.4 On Some Strengthenings of the Plank Theorems of
Ball and Bang

Recall that Ball ([12]) generalized the plank theorem of Bang ([17], [18]) for
coverings of balls by planks in Banach spaces (where planks are defined with
the help of linear functionals instead of inner product). This theorem was
further strengthened by Kadets [175] for real Hilbert spaces as follows. Let C
be a closed convex subset with non-empty interior in the real Hilbert space H
(finite or infinite dimensional). We call C a convex body of H. Then let r(C)
denote the supremum of the radii of the balls contained in C. (One may call
r(C) the inradius of C.) Planks and their widths in H are defined with the
help of the inner product of H in the usual way. Thus, if C is a convex body
in H and P is a plank of H, then the width w(P) of P is always at least as
large as 2r(C ∩P). Now, the main result of [175] is the following.

Theorem 4.4.1 Let the ball B of the real Hilbert space H be covered by the
convex bodies C1,C2, . . . ,Cn in H. Then

n∑
i=1

r(Ci ∩B) ≥ r(B).

We note that an independent proof of the 2-dimensional Euclidean case
of Theorem 4.4.1 can be found in [35]. Kadets ([175]) proposes to investigate
the analogue of Theorem 4.4.1 in Banach spaces. Thus, an affirmative answer
to the following problem would improve the plank theorem of Ball.

Problem 4.4.2 Let the ball B be covered by the convex bodies C1,C2, . . . ,Cn

in an arbitrary Banach space. Prove or disprove that

n∑
i=1

r(Ci ∩B) ≥ r(B).

In order to complete the picture on plank-type results in spaces other
than Euclidean we mention the statement below, proved by Schneider and
the author [74]. It is an extension of Theorem 4.4.1 for coverings of large balls
in spherical spaces. Recall that Sd stands for the d-dimensional unit sphere in
(d+ 1)-dimensional Euclidean space Ed+1, d ≥ 2. A spherically convex body is
a closed, spherically convex subset K of Sd with interior points and lying in
some closed hemisphere, thus, the intersection of Sd with a (d+1)-dimensional
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closed convex cone of Ed+1 different from Ed+1. The inradius r(K) of K is the
spherical radius of the largest spherical ball contained in K. Also, recall that a
lune in Sd is the d-dimensional intersection of Sd with two closed halfspaces of
Ed+1 with the origin o in their boundaries. The intersection of the boundaries
(or any (d−1)-dimensional subspace in that intersection, if the two subspaces
are identical) is called the ridge of the lune. Evidently, the inradius of a lune
is half the interior angle between the two defining hyperplanes.

Theorem 4.4.3 If the spherically convex bodies K1, . . . ,Kn cover the spher-
ical ball B of radius r(B) ≥ π

2 in Sd, d ≥ 2, then

n∑
i=1

r(Ki) ≥ r(B).

For r(B) = π
2 the stronger inequality

∑n
i=1 r(Ki∩B) ≥ r(B) holds. Moreover,

equality for r(B) = π or r(B) = π
2 holds if and only if K1, . . . ,Kn are lunes

with common ridge which have pairwise no common interior points.

Theorem 4.4.3 is a consequence of the following result proved by Schneider
and the author in [74]. Recall that Svold(. . . ) denotes the spherical Lebesgue
measure on Sd, and recall that (d+ 1)ωd+1 = Svold(Sd).

Theorem 4.4.4 If K is a spherically convex body in Sd, d ≥ 2, then

Svold(K) ≤ (d+ 1)ωd+1

π
r(K).

Equality holds if and only if K is a lune.

Indeed, Theorem 4.4.4 implies Theorem 4.4.3 as follows. If B = Sd; that
is, the spherically convex bodies K1, . . . ,Kn cover Sd, then

(d+ 1)ωd+1 ≤
n∑
i=1

Svold(Ki) ≤
(d+ 1)ωd+1

π

n∑
i=1

r(Ki),

and the stated inequality follows. In general, when B is different from Sd,
let B′ ⊂ Sd be the spherical ball of radius π − r(B) centered at the point
antipodal to the center of B. As the spherically convex bodies B′,K1, . . . ,Kn

cover Sd, the inequality just proved shows that

π − r(B) +
n∑
i=1

r(Ki) ≥ π,

and the stated inequality follows. If r(B) = π
2 , then K1 ∩ B, . . . ,Kn ∩ B

are spherically convex bodies and as B′,K1 ∩ B, . . . ,Kn ∩ B cover Sd , the
stronger inequality follows. The assertion about the equality sign for the case
when r(B) = π or r(B) = π

2 follows easily.
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4.5 On Partial Coverings by Planks: Bang’s Theorem
Revisited

The following variant of Tarski’s plank problem was introduced very recently
by the author in [73]: let C be a convex body of minimal width w > 0 in Ed.
Moreover, let w1 > 0, w2 > 0, . . . , wn > 0 be given with w1 +w2 + · · ·+wn <
w. Then find the arrangement of n planks say, of P1,P2, . . . ,Pn, of width
w1, w2, . . . , wn in Ed such that their union covers the largest volume subset of
C, that is, for which vold((P1 ∪P2 ∪ · · · ∪Pn)∩C) is as large as possible. As
the following special case is the most striking form of the above problem, we
are putting it forward as the main question of this section.

Problem 4.5.1 Let Bd denote the unit ball centered at the origin o in Ed.
Moreover, let w1, w2, . . . , wn be positive real numbers satisfying the inequality
w1 + w2 + · · ·+ wn < 2. Then prove or disprove that the union of the planks
P1,P2, . . . ,Pn of width w1, w2, . . . , wn in Ed covers the largest volume subset
of Bd if and only if P1 ∪P2 ∪ · · · ∪Pn is a plank of width w1 +w2 + · · ·+wn
with o as a center of symmetry.

Clearly, there is an affirmative answer to Problem 4.5.1 for n = 1. Also,
we note that it would not come as a surprise to us if it turned out that the
answer to Problem 4.5.1 is positive in proper low dimensions and negative in
(sufficiently) high dimensions. The following partial results have been obtained
in [73].

Theorem 4.5.2 Let w1, w2, . . . , wn be positive real numbers satisfying the
inequality w1+w2+ · · ·+wn < 2. Then the union of the planks P1,P2, . . . ,Pn

of width w1, w2, . . . , wn in E3 covers the largest volume subset of B3 if and
only if P1 ∪P2 ∪ · · · ∪Pn is a plank of width w1 +w2 + · · ·+wn with o as a
center of symmetry.

Corollary 4.5.3 If P1,P2, and P3 are planks in Ed, d ≥ 3 of widths w1, w2,
and w3 satisfying 0 < w1 +w2 +w3 < 2, then P1 ∪P2 ∪P3 covers the largest
volume subset of Bd if and only if P1∪P2∪P3 is a plank of width w1+w2+w3

having o as a center of symmetry.

The following estimate of [73] can be derived from Bang’s paper [18]. In
order to state it properly we introduce two definitions.

Definition 4.5.4 Let C be a convex body in Ed and let m be a positive integer.
Then let T mC,d denote the family of all sets in Ed that can be obtained as the

intersection of at most m translates of C in Ed.

Definition 4.5.5 Let C be a convex body of minimal width w > 0 in Ed and
let 0 < x ≤ w be given. Then for any non-negative integer n let

vd(C, x, n) := min{vold(Q) | Q ∈ T 2n

C,d and w(Q) ≥ x }.
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Now, we are ready to state the theorem which although it was not pub-
lished by Bang in [18], follows from his proof of Tarski’s plank conjecture.

Theorem 4.5.6 Let C be a convex body of minimal width w > 0 in Ed.
Moreover, let P1,P2, . . . ,Pn be planks of width w1, w2, . . . , wn in Ed with
w0 = w1 + w2 + · · ·+ wn < w. Then

vold(C \ (P1 ∪P2 ∪ · · · ∪Pn)) ≥ vd(C, w − w0, n);

that is,

vold((P1 ∪P2 ∪ · · · ∪Pn) ∩C) ≤ vold(C)− vd(C, w − w0, n).

Clearly, the first inequality above implies (via an indirect argument) that
if the planks P1,P2, . . . ,Pn of width w1, w2, . . . , wn cover the convex body C
in Ed, then w1+w2+· · ·+wn ≥ w. Also, as an additional observation from [73]
we mention the following statement, that can be derived from Theorem 4.5.6
in a straightforward way and, on the other hand, represents the only case
when the estimate in Theorem 4.5.6 is sharp.

Corollary 4.5.7 Let T be an arbitrary triangle of minimal width (i.e., of
minimal height) w > 0 in E2. Moreover, let w1, w2, . . . , wn be positive real
numbers satisfying the inequality w1 + w2 + · · · + wn < w. Then the union
of the planks P1,P2, . . . ,Pn of width w1, w2, . . . , wn in E2 covers the largest
area subset of T if P1 ∪P2 ∪ · · · ∪Pn is a plank of width w1 +w2 + · · ·+wn
sitting on the side of T with height w.

It was observed by the author in [73] that there is an implicit connection
between problem 4.5.1 and the well-known Blaschke–Lebesgue problem, which
is generated by Theorem 4.5.6. The details are as follows.

First, recall that the Blaschke–Lebesgue problem is about finding the min-
imum volume convex body of constant width w > 0 in Ed. In particular,
the Blaschke–Lebesgue theorem states that among all convex domains of con-
stant width w, the Reuleaux triangle of width w has the smallest area, namely
1
2 (π−

√
3)w2. Blaschke [76] and Lebesgue [188] were the first to show this and

the succeeding decades have seen other works published on different proofs of
that theorem. For a most recent new proof, and for a survey on the state of
the art of different proofs of the Blaschke–Lebesgue theorem, see the elegant
paper of Harrell [167]. Here we note that the Blaschke–Lebesgue problem is
unsolved in three and more dimensions. Even finding the 3-dimensional set
of least volume presents formidable difficulties. On the one hand, Chakerian
[101] proved that any convex body of constant width 1 in E3 has volume at

least π(3
√
6−7)
3 = 0.365 . . .. On the other hand, it has been conjectured by

Bonnesen and Fenchel [85] that Meissner’s 3-dimensional generalizations of
the Reuleaux triangle of volume π( 2

3 −
1
4

√
3 arccos( 1

3 )) = 0.420 . . . are the
only extramal sets in E3.
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For our purposes it is useful to introduce the notation Kw,d
BL (resp., K

w,d

BL)
for a convex body of constant width w in Ed having minimum volume (resp.,

surface volume). One may call Kw,d
BL (resp., K

w,d

BL) a Blaschke–Lebesgue-type
convex body with respect to volume (resp., surface volume). Note that for

d = 2, 3 one may choose Kw,d
BL = K

w,d

BL , however, this is likely not to happen
for d ≥ 4. (For more details on this see [101].) As an important note we
mention that Schramm [227] has proved the inequality

vold(K
w,d
BL) ≥

(√
3 +

2

d+ 1
− 1

)d(
w

2

)d
vold(B

d),

which gives the best lower bound for all d > 4. By observing that the or-
thogonal projection of a convex body of constant width w in Ed onto any
hyperplane of Ed is a (d − 1)-dimensional convex body of constant width w
one obtains from the previous inequality of Schramm the following one,

svold−1(bd(K
w,d

BL)) ≥ d
(√

3 +
2

d
− 1

)d−1(
w

2

)d−1
vold(B

d).

Second, let us recall that if X is a finite (point) set lying in the interior of
a unit ball in Ed, then the intersection of the (closed) unit balls of Ed centered
at the points of X is called a ball-polyhedron and it is denoted by B[X]. (For
an extensive list of properties of ball-polyhedra see the recent paper [69].) Of
course, it also makes sense to introduce B[X] for sets X that are not finite
but in those cases we get sets that are typically not ball-polyhedra.

Now, we are ready to state our theorem.

Theorem 4.5.8 Let B[X] ⊂ Ed be a ball-polyhedron of minimal width x with
1 ≤ x < 2. Then

vold(B[X]) ≥ vold(K
2−x,d
BL ) + svold−1(bd(K

2−x,d
BL ))(x− 1) + vold(B

d)(x− 1)d.

Thus, Theorem 4.5.6 and Theorem 4.5.8 imply the following immediate
estimate.

Corollary 4.5.9 Let Bd denote the unit ball centered at the origin o in Ed,
d ≥ 2. Moreover, let P1,P2, . . . ,Pn be planks of width w1, w2, . . . , wn in Ed
with w0 = w1 + w2 + · · ·+ wn ≤ 1. Then

vold((P1 ∪P2 ∪ · · · ∪Pn) ∩Bd) ≤ vold(B
d)− vd(Bd, 2− w0, n)

≤ (1− (1− w0)d)vold(B
d)− vold(K

w0,d
BL )− svold−1(bd(K

w0,d

BL ))(1− w0).
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