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The separation of the study of whole numbers and fractions is historical and 
contributes to the legendary difficulty children experience in the learning of fractions 
that inspired Davis et al. (1993) to comment that “the learning of fractions is not only 
very hard, it is, in the broader scheme of things, a dismal failure” (p. 63).  I cite Davis 
et al. not because I believe that the teaching and learning of fractions is by necessity 
a dismal failure, but rather to accentuate the historical difficulties children experience 
in learning fractions in mathematics education.  These difficulties are quite unsettling 
because they have been known for a long time.  For example, in his famous study 
on the grade placement of arithmetical topics, Washburne (1930, p. 669) reported 
that a mental age level of 9 years should be attained by children if at least three out 
of four of them are to make the very modest mastery represented by a retention test 
score of 80% on the meaning of “nongrouping” fractions.  But, in the case of 
“grouping” fractions, the analogous mental age was 11 years 7 months.1

An assessment of children’s mathematical development conducted 50 years later 
in England and Wales (Foxman et  al. 1980) also indicates the difficulty children 
experience when learning fractions.  In their Primary Survey Report, it is reported 
that only 42% of the 11-year-olds of the study could say that one-fourth of one-half 
of a piece of string was one-eighth of the whole string.  And only 61% could make 
a reasonable estimate of what fraction of the pegs in a bag were white, where 15 where 
white and 45 colored.  Any estimate between and including one-tenth and one-half 
was accepted.  Moreover, Kerslake (1986) found that 13 and 14-year old students 
in England had a good idea of fractions as part of a whole, which is compatible 
with Washburne’s findings concerning “nongrouping fractions,” but only a fragile 
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1 A “nongrouping” fraction did not involve a composite part of a unit. For example, the 
children were asked “A pint is what part of a quart”? or instructed “Draw a line one-
fourth as long as this line.” A “grouping” fraction did involve a composite part of a 
unit. For example, when showing children a picture of three piles of five pennies each, 
they were asked what part of the pennies were in each pile. In another example, when 
showing a picture of five piles of three pennies each with a ring around two piles, the 
children were asked what part of the pennies had a ring drawn around them.
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notion of fraction equivalence, which is compatible with Washburne’s findings 
concerning “grouping” fractions and with the findings from the Primary Survey 
Report (Foxman et al. 1980).

In spite of Kerslake’s findings that the concept of fractional equivalence is fragile 
even for 13 and 14-year olds, Smith’s (1987) mathematically appropriate belief that 
the equivalence class is the central concept in the mathematics of rational number 
unproblematically drives not only what is taught about fractions in the elementary 
school, but also what is taught about fractions in mathematics courses designed for 
elementary school teachers (Long and DeTemple 1996, p. 374).  Believing that 
children’s mathematical knowledge corresponds to and can be explained by 
conventional mathematical concepts and operations, mathematics educators tradi-
tionally have regarded the content of children’s mathematical knowledge as fixed 
and a priori.  In our view, this belief constitutes what Stolzenberg (1984) called a 
trap. According to Stolzenberg, a trap is a:

Closed system of attitudes, beliefs, and habits of thought for which one can give an objective 
demonstration that certain of the beliefs are incorrect and that certain of the attitudes and 
habits of thought prevent this from being recognized (p. 260).

Because children’s mathematical learning in school occurs in the specific context of 
teaching, it might seem to be reasonable to regard the content of children’s math-
ematical knowledge to be explained by conventional mathematical concepts such 
as fractional equivalence.  However, several researchers working within a construc-
tivist view of knowledge and reality have found it necessary to explain what students 
learn using constructs that differ significantly from standard mathematical concepts 
and operations (e.g., Confrey 1994; Kieren 1993; Thompson 1982, 1994; Steffe and 
Cobb 1988).  I therefore seriously question the belief that school instruction should 
be based on concepts such as fractional equivalence.

On Opening the Trap

According to Stolzenberg (1984), it is indisputable that the contemporary math-
ematician operates within a belief system whose core belief is that mathematics is 
discovered rather than created or invented by human beings.  This belief is equiva-
lent to believing, as did Erdös, in a transfinite Book that contains the best proofs of 
all mathematical theorems (Hoffman 1987).  Of course, this is a “mathematicians’ 
book,” and a belief in its existence apparently supports and sustains mathematical 
research for those who believe in it: “Mathematics is there.  It’s beautiful.  It’s the 
jewel we uncover” (p. 66).

Stolzenberg’s (1984) contention that mathematics is not discovered but 
invented is according to Watzlawick (1984), “one of the most fascinating aspects 
of Stolzenberg’s essay” (p. 254).  It constitutes a shift in belief that is needed 
to open the trap because mathematicians’ belief in the Book is reenacted by 
mathematics educators concerning the books of contemporary school mathematics.  
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The mathematics that is recorded in these books is usually regarded as a priori and 
as constituting what children are to learn.  This assumption places the mathematics 
of schooling outside of the minds of the children who are to learn it, and it is mani-
fest in the practice of separating the study of whole numbers and fractions between 
the discrete and the continuous as well as in the acceptance of concepts such as 
equivalent fractions as what children are to learn in school mathematics.  School 
mathematics is regarded as a fixed nucleus, and one searches the school mathemat-
ics books in vain for mathematics of children.

Invention or Construction?

Stolzenberg’s view is compatible with an assumption I make in our work with 
children, but it is not identical.  The first difference resides in the meaning of the 
terms “invented” and “constructed.” “To invent” implies the production of 
something unknown by the use of ingenuity or imagination.  An invention certainly 
falls within the scope of what is meant by a construction, but the latter term implies 
conceptual productions within or as a result of interactions that I would not want to 
call inventions.  Although any construction implies the production of a novelty, I 
would hesitate to call, for example, an association between two contiguous 
perceptual items (Guthrie 1942), an invention if for no other reason than many such 
associations are formed without forethought and sometimes even without the 
awareness of the associating individual.  But I do regard associations as constructions 
regardless of the conditions of their formation (Steffe and Wiegel 1996).  The 
boundary between the meanings of “to invent” and “to construct” is quite fuzzy, and 
it would certainly be counterproductive to insist that creative acts within this fuzzy 
boundary are exclusively one or the other.  Nevertheless, making a distinction 
between the two provides a basis for a critique of the following rather restricted 
interpretation of constructivist learning.

In promulgating an active, constructive and creative view of learning, however, the con-
structivists painted the learner in close-up as a solo player, a lone scientist, a solitary 
observer, a meaning-maker in a vacuum.

(Renshaw 1992, p. 91)

Renshaw’s interpretation of constructivist learning is based almost exclusively on 
the interaction of constructs within the individual.  Social interaction seems 
excluded, so his characterization of constructivist learning is more or less compatible 
with the perhaps restricted view that mathematicians invent mathematics without 
the benefit of interacting with other mathematicians.  In contrast, I emphasize the 
constructing individual as a socially interactive being2 as well as a self-organizing 
and maturing being (Steffe 1996).

2 Interaction here includes, but is not limited to, social interaction.
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First-Order and Second-Order Mathematical Knowledge

The second difference between Stolzenberg’s view and the constructivist view is 
apparent in Stolzenberg’s comment that “when I stress the importance of standpoint, 
I am not preaching any brand of relativism.  I do not say that there is your truth 
and my truth and never the twain shall meet” (p. 260).  In taking this position, 
Stolzenberg seemed to be saying that the mathematics produced by one mathemati-
cian could be judged by other mathematicians concerning its fallibility or viability.  
That is, he was basically concerned with first-order mathematical knowledge – the 
models an individual construct to organize, comprehend, and control his or her 
experience, i.e., their own mathematical knowledge.  In our work, we are mainly 
concerned with second-order mathematical knowledge – the models observers may 
construct of the observed person’s knowledge (Steffe et al. 1983, p. xvi).

Distinguishing between first- and second-order mathematical knowledge (or 
models) is critical in avoiding a conflation between children’s mathematical con-
cepts and operations and what has been established as conventional school mathe-
matics.  Traditionally, there has been little distinction between these two kinds of 
knowledge, and school mathematics is considered as first-order mathematical knowledge.  
In our framework, we regard “school mathematics” as a second-order mathematical 
knowledge – a model of children’s mathematics – rather than as the first-order 
model constituted by conventional school mathematics.  Second-order models are 
constructed through social processes and I thereby refer to them as social knowl-
edge.  Regarding school mathematics as social knowledge is a fundamental shift in 
belief that is yet to be fully appreciated.

Mathematics of Children

We, as constructivist researchers, attribute mathematical knowledge to children that 
is independent of our own mathematical knowledge (Kieren 1993; Steffe and Cobb 
1988; Steffe and Thompson 2000).  Although the attribution of such knowledge to 
children is essential in their mathematical education, the first-order knowledge that 
constitutes children’s mathematics is essentially inaccessible to us as observers.  
By saying this, we do not mean that we do not try to construct children’s mathe-
matical knowledge.  Quite to the contrary, we spend a substantial part of our time, 
during and after teaching children, analyzing the mathematical knowledge that they 
bring to the learning situation as well as their evolving mathematical knowledge 
within the learning situation.  What we do mean is that regardless of what the 
results of those analyses might be, we make no claim that the first-order models that 
constitute the children’s mathematics correspond piece-by-piece to what we have 
established as second-order models.

We will use the phrase “children’s mathematics” for whatever constitutes chil-
dren’s first-order mathematical knowledge and “mathematics of children” to mean 
our second-order models of children’s mathematics.  We regard the mathematics of 
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children as legitimate mathematics to the extent that we find rational grounds for 
what children say and do mathematically.  A shift in the belief of what should 
constitute school mathematics from conventional school mathematics to the mathematics 
that children do construct is foundational in opening the trap that has contributed to 
the historical difficulty in children’s learning of fractions.  In fact, a primary goal 
of our work is to construct second-order models of children’s fractional knowledge 
that we are able to bring forth, sustain, and modify.

Mathematics for Children

I usually find it inappropriate to attribute even my most fundamental mathematical 
concepts and operations to children.  For example, a set of elements arranged in 
order is a basic element in ordinal number theory.  For a given number word, 
although children might establish a unit of units that they associate with that 
number word, I have not found sufficient warrant to infer that children constitute 
these composite units as ordered sets in the way I understand ordered sets (Steffe 
1994a). The observer might regard the composite units that are attributed to the 
children as an early form of ordered sets, but to regard them as ordered sets would 
be a serious conflation of the conventional idea of an ordered set and our idea of a 
composite unit, which I have found useful in understanding children’s mathematics.  
Conventional mathematics, such as ordinal number theory, can be orienting, but it 
is not explanatory; it alone cannot be used to account for children’s numerical 
concepts and operations.

It might seem that the mathematics adults intend for children to learn remains 
unspecified.  However, I regard mathematics for children as consisting of those 
concepts and operations that children might learn (Steffe 1988).  But rather than 
regard these concepts as being a part of my own mathematical knowledge, I base 
mathematics for children on the mathematics that I have observed children actually 
learn.  Essentially, mathematics for children cannot be specified a priori and must 
be experientially abstracted from the observed modifications children make in their 
mathematical activity.  That is, mathematics for children can be known only 
through interpreting changes in children’s mathematical activity.  Specifically, the 
mathematics for a group of children is initially determined by the modifications that 
other children have been observed to make whose mathematical behavior is like the 
current children.  I call these observed modifications zones of potential construc-
tion for the children whom I am currently teaching.

A teacher may not have constructed zones of potential construction suitable for 
the children he or she is currently teaching.  Even in that case, a hypothetical zone 
of potential construction can be posited by the teacher to serve as a guide in the 
selection of learning situations.  As a result of actually interacting with the particu-
lar children, the hypothetical zone of potential construction is reconstituted to 
form a zone of actual construction.  The two zones usually diverge, because in the 
course of actually interacting with the children, they may make unanticipated 
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contributions and new situations of learning may need to be formulated.  Through 
establishing actual zones of construction, new possibilities may arise and a new 
zone of potential construction may be posited.3 It is through such experimentation 
in teaching that children’s mathematics may emerge in the experience of the 
teacher.  In short, we recognize the necessity to modify our models of children’s 
mathematics according to the children’s work.  Teaching mathematics is adaptive: 
It is the responsibility of the teacher to construct mathematics of and for children 
in the teaching context.

Our own first-order mathematical knowledge does play fundamental roles in 
formulating the second-order models that we call the mathematics of children.  
Perhaps the most fundamental of these roles is in orienting us as we formulate 
mathematics for children and decide how to interact with them.  Rather than 
elaborate on these roles here, we discuss them throughout the remainder of the 
book because the discussion is concentrated and content specific.  My focus in the 
next sections of this chapter is on developing a central conceptual construct – 
scheme – that I use in building models of children’s mathematics.

Fractions as Schemes

Our use of the concept of scheme in building models of children’s fractional knowledge 
is essential if Freudenthal’s (1983) distinction between fractions and rational numbers 
is taken seriously.

Fractions are the phenomenological source of the rational number – a source that never 
dries up. “Fraction” – or what corresponds to it in other languages – is the word by which 
the rational number enters, and in all languages that I know it is related to breaking: 
fracture. (p. 134)

Freudenthal’s emphasis on fractions as the phenomenological source of the 
rational number is similar to Kieren’s (1993) idea that ethnomathematical know- 
ledge is at the center of mathematical knowledge building.  In Kieren’s (1993) 
words, ethnomathematical knowledge is that kind of knowledge that children 
possess “because they have lived in a particular environment.  For example, chil-
dren have shared continuous quantities and described such shares; they have seen 
measurements being made using fractional numbers” (pp. 67–68).

I believe that ethnomathematical knowledge includes Freudenthal’s idea of fractions 
as the phenomenological source of rational number because, as Kieren emphasizes, 
it is a kind of knowing.  In other words, to construct meaning for the term “fraction,” 
we look to what children say and do as a source of our construction of such meaning.  
We bring Freudenthal’s and Kieren’s emphases together through the notion of 
the scheme, which is a conceptual tool that we use to analyze children’s language 

3 The teacher may be yet to construct even a working model of the children’s 
mathematical knowledge.
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and actions as they interact with us.  That is, in our view, the evolving fractional 
knowledge of children consists of the construction of schemes of action and 
operation in their environments.

We describe schemes through observing children recurrently engage in goal-
directed activity on several different occasions in what to us are related situations.4 
These descriptions are usually interesting and often contain insightful behavior on 
the part of the child.  For example, Kieren (1993) described three 7-year-old girls 
as characterizing one of seven children’s share of four pizzas in Fig. 2.1 as “a half 
and a bite.”

As researchers, it is our intention to go beyond this description in an attempt 
to understand and formulate plausible conceptual operations used by the chil-
dren as they established one child’s share as “a half and a bite.” In this, I infer 
that the children’s assimilated situation, which involved a question of how much 
pizza one child would get as well as the picture of the seven children and the 
four pizzas, constitutes what I interpret as a sharing situation.  This inference is 
based on the result of the children’s activity – “a half and a bite.” I infer that the 
children would need to establish a goal and engage in a sharing activity to reply 
as they did.

This intuitive understanding of the mental operations involved in sharing is 
enough to qualify the sharing activity as a scheme in the Piagetian sense if I could 
observe the three children engage in similar sharing activity in other situations.  
The necessity of inferring schemes based on repeatable and generalized action is 
based on Piaget’s (1980) definition of scheme as action “that is repeatable or 
generalized through application to new objects” (p. 24).  Focusing only on  
the activity of sharing, however, does not provide a full account of the concept  
of scheme.  von Glasersfeld (1980), in a reformulation of Piaget’s concept of 
scheme, described a scheme as an instrument of interaction and elaborated the 
concept in a way that opens the possibility of focusing on what may go on prior 
to observable action.  It also opens the possibility that the action of a scheme is 
not sensory-motor action, but interiorized action that is executed with only the 
most minimal sensory-motor indication.  Finally, it opens the possibility to focus 
on the results of the scheme’s action and how those results might close the child’s 
use of the scheme.

Fig. 2.1.  A sharing situation.

4 It is essential to know the boundary situations of a scheme; that is, those situations 
in which the child’s scheme proves to be inadequate from our point of view.
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The Parts of a Scheme

According to von Glasersfeld (1980), a scheme consists of three parts.  First, there 
is an experiential situation; an activating situation as perceived or conceived by 
the child, with which an activity has been associated.  Second, there is the child’s 
specific activity or procedure associated with the situation.  Third, there is a result 
of the activity produced by the child.5

“Schemes” are basic sequences of events that consist of three parts. An initial part that serves 
as trigger or occasion. In schemes of action, this roughly corresponds to what behaviorists 
would call “stimulus,” i.e., a sensory motor pattern. The second part, that follows upon it, 
is an action (“response”)… or an operation (conceptual or internalized activity). … The third 
part is … what I call the result or sequel of the activity (and here, again, there is a rough and 
only superficial correspondence to what behaviorists call “reinforcement”). (p. 81)

Unlike the stimulus in the stimulus-response theory, then, the situation of a 
scheme is an experiential situation as perceived or conceived by the child rather 
than by the observer.  In Piaget’s (1964) view, a stimulus:

Is a stimulus only to the extent that it is significant, and it becomes significant only to the 
extent that there is a structure which permits its assimilation, a structure which can inte-
grate this stimulus but which at the same time sets off the response. (p. 18)

For Piaget (1964), assimilation rather than association constituted the fundamental 
relation involved in learning, and he defined it as follows:

I shall define assimilation as the integration of any sort of reality into a structure, and it is 
this assimilation which seems to me fundamental in learning, and which seems to me the 
fundamental relation from the point of view of pedagogical or didactic applications. … 
Learning is possible only when there is active assimilation. (p. 18)

When I speak of assimilation, I do not assume that an experiential situation “exists” 
a priori somewhere in the mind in its totality as an object that a child retrieves.  
Rather, I assume that records of operations used in past activity are activated in 
assimilation.  I further assume that the activated operations produce a “recognition 
template,” which is used in creating an “experiential situation” that may have been 
experienced before.

So, in the first part of a scheme, records of operations from past activity, when 
activated, produce a “recognition template” that is used in establishing an experi-
ential situation.  When it is clear from context, I refer to the recognition template 
as an assimilating structure and to the operations that produce it as operations of 
assimilation.  The experiential situation may be created by means of visualized 
imagination as well as perception.  It may in turn activate the scheme’s activity, 
which, in the case of a cognitive scheme, may consist of an implementation of 
the assimilating operations in the context of the experiential situation.  The result 
of the cognitive scheme consists of whatever modification of the experiential 
situation is induced by the activity.

5 The goal of a scheme is discussed in the section on the sucking scheme.
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Learning as Accommodation

In Piaget’s quotation concerning assimilation, he commented that “learning is possible 
only when there is active assimilation.” Learning, however, is not to be equated 
with assimilation.  Rather, when there is an irregularity or disturbance in the func-
tioning of an established scheme, only then can accommodation take place, and not 
otherwise (von Glasersfeld 1980, p. 82).  In our work, learning is construed as 
accommodation, that is, the modification of schemes.

This feature of the Piagetian model, as I see it, constitutes its main basis as a constructivist 
theory of cognition in which “knowledge’ is no longer a true or false representation of 
reality but simply the schemes of action and the schemes of operating that are functioning 
reliably and effectively

(von Glasersfeld 1980, p. 83)

There is indeed interaction between schemes and experiential events, but as von 
Glasersfeld points out, the child does not get to know the observer’s situations; in the 
sense that its schemes come to match or in any sense reflect structures as they might 
be to the observer in his or her situations.  So, although an observer may have the 
observed child and the child’s environment in his or her experiential field, and 
observe the child using schemes while interacting with events, perhaps including 
other people, the interaction from the point of view of the interacting child is between 
schemes and experiential events within the system that constitutes the child.

The Sucking Scheme

Glasersfeld uses the sucking scheme in illustrating his idea of scheme.  He uses it 
not only because of its essentiality in the survival of Homo sapiens, but also 
because of its importance in the construction of object concepts (Piaget 1937) and, 
thus, eventually in the construction of numerical concepts and schemes (Steffe and 
Cobb 1988).  I have chosen the sucking scheme of newborn infants to illustrate the 
possibility of nonlinearity among the parts of a scheme in that the parts do not 
always proceed one way from the scheme’s situation to activity to result.  One may 
regard the activity of the sucking scheme as being involved in assimilating objects 
in that case where the sucking action is driven by a sensation of hunger rather than 
by some sensory experience like touching the infant’s cheek.  In the case of the 
sensation of hunger, the activity of sucking is activated and the baby searches for 
something on which to suck, and often it is a part of the baby’s hand.  Here, the 
baby establishes a possible situation of the scheme by means of the activity that is 
driven by the gnawing sensation of hunger.

The possibility that a scheme’s activity can be the primary operation of 
assimilation solidly differentiates a scheme from the classical S → R schema.  
In the latter, it is the observer’s stimulus that sets off a response.  In the former, the 
activity of the scheme may be triggered by disequilibria internal to the scheme and 
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only then is a situation created by the actions of the child.  I interpret Piaget’s 
(1964) comment that “the response was there first” (p. 15) as meaning that the 
activity of a scheme can be involved in establishing a situation of the scheme as 
well as the other way around, which is an important consideration in self-generated 
mathematical activity.

In the case of the sharing scheme, I can imagine the sharing operations as being 
activated by the question of how much pizza one person gets and by being involved 
in establishing the situation as a sharing situation.  In the case of the sucking 
scheme, the sucking activity (activated by a sensation of hunger) can be involved in 
establishing a situation of the scheme.  In that case where the baby sucks its hand, 
the situation may be the only result of the scheme’s activity.  Unlike the sharing 
scheme, which is closed by implementing the sharing operations within the situation 
of sharing, the sensation of hunger would not be reduced in intensity by the 
activity of sucking.  And yet, the infant may achieve some sense of satisfaction by 
implementing the activity of the scheme – the infant is temporarily “pacified.”

In other cases, the recognition template may be used in assimilation without the 
scheme’s activity being implemented.  An example is where one observes the people 
in a large stadium.  The question of how many people are in the stadium could be 
answered by counting the people as they exit the stadium or by counting them by 
counting the number of tickets sold.  But as one sits in the stadium without recourse to 
either possibility, the activity of counting usually remains only minimally implemented, 
even though it may be evoked.  The question of how many people are in the stadium 
is meaningful in that the activity of counting could be implemented given an 
appropriate situation.  But the constraints in implementing the counting activity leave 
the individual without an activity, so the individual has a goal but no activity to reach 
the goal.  In such cases, I would say that the individual has established a problem.

The Structure of a Scheme

Fig. 2.2 is a diagram of the idea of a scheme.  This diagram is static and as such it 
can be grossly misleading in interpretation.  But it does help to highlight the essen-
tial aspects of a scheme.  The Generated Goal can be regarded as the apex of a 
tetrahedron.  The vertices of the base of the tetrahedron constitute the three compo-
nents of a scheme.  The double arrows linking the three components are to be 
interpreted as meaning that it is possible for any one of them to be in some way 
compared or related to either of the two others.  The dashed arrow is to be inter-
preted as an expectation of the scheme’s result.

In the case of the sucking scheme, I have already indicated how the scheme’s 
activity can lead to an establishment of a situation of the scheme.  This situation 
along with the activity can in turn lead to a full stomach as a result.  The result in 
turn can engender a feeling of satisfaction usually manifest as a sleeping baby and 
the scheme’s activity is discontinued, which is indicated by the double arrow 
between the scheme’s result and the generated goal.
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Given a generated goal and a result of a scheme, in some cases, it is possible for 
a child to establish a situation of the scheme if the scheme’s activity is reversible.  
For example, a basic reason why 58% of the 11-year-old children in the study of 
mathematical development conducted by the National Foundation for Educational 
Research in England and Wales (Foxman et al. 1980) could not say that one-fourth 
of one-half is one-eighth is understandable when considering the possibility that 
their fractional schemes were not reversible schemes.6 The children were first given 
a piece of string and then were asked to cut it in half.  The children were then pre-
sented with one of the halves and were asked to “cut off one-fourth of this piece.” 
The question “what fraction of the whole string that you started with is that little 
piece”? was then asked.

The children who were successful in cutting off one-fourth of one-half of the 
whole string had produced a result of their fractional scheme and their goal of 
making one-fourth had been satisfied.  When the last question of the series of three 
was asked, this would serve to establish a new goal and a new situation using the 
results of the old scheme.  To find one-eighth, the children might first reassemble the 
four pieces in thought and see them as one-half of the string partitioned into four 
equal pieces.  The children could then produce another one-half of the string in 
thought also partitioned into four equal pieces, which would produce the whole 
string as two equal pieces each partitioned into four equal pieces.  To do this, the 
children would need a fractional scheme that is reversible, in that they would be able 
to start from a result and reestablish the situation using inverse operations.  So, in the 
case a scheme is reversible, its result can be used in establishing a situation of the 
scheme via the scheme’s reversible activity.  I stress, however, that these relations 
are only possible for some schemes.  They are not a necessary aspect of all schemes.  
Some schemes are entirely “one-way” schemes that proceed from situation to 
activity to result.

6 We intensively study the construction of such a scheme in later chapters where we 
explain how recursion is involved in such a reversibility.

Scheme's  
Situation

Generated  
Goal

Scheme's  
Activity

Scheme's  
Result

Fig. 2.2.  A diagram for the structure of a scheme.
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The diagram also indicates that the goal of a scheme can be generated in the 
process of assimilation.  In Fig. 2.1, a child may see the picture of the stick figures, 
but form no immediate goal for further action.  The child may simply recognize the 
stick figures as indicating people.  In this sense, there is an assimilation using con-
cepts constructed at an earlier time.  In the process of assimilation, the child may 
form a goal of finding how many stick figures because it may establish an aware-
ness of more than one figure – an awareness of plurality – which in turn may activate 
counting activity.  The arrows between the scheme’s situation and goal and between 
the scheme’s activity and goal indicate these possibilities.

It would be unlikely, in the process of assimilation, for the child to form the goal 
of finding how much of one pizza each stick figure would have if the pizzas were 
shared equally.  But if another person were to ask an appropriate sharing question 
about an assimilated situation, the activated sharing operations would constitute a 
reinterpretation – a further assimilation – of the situation as originally established 
by the child.  The resulting goal to find the share for one of the seven stick figures 
drives the sharing activity during the activity.  One might say the goal frames 
the activity.  Partial results (partial from the point of view of the goal) feed 
back into the goal and I assume that they are compared with the generated goal.  
The connecting line between the generated goal and the activity indicates this 
feedback system.

The connecting line between the scheme’s activity and the scheme’s results indicates 
that the results or partial results may modify the activity, which in turn may modify 
the results.  Likewise, a modification of either of the scheme’s activity or results may 
lead to a modification of the recognition template.  In further uses of the scheme, the 
latter modification may in turn lead to a change in the scheme’s activity.  Of course, 
the generated goal may also change as the scheme is being used.

Seriation and Anticipatory Schemes

Operations of a scheme are basic in our construction of children’s fraction schemes.  
For Piaget (1964), “An operation is … the essence of knowledge: it is an interiorized 
action which modifies the object of knowledge” (p. 8).  An operation, for Piaget, 
was always a part of a structure of operations.  A key example of such a structure is 
seriation, the setting of elements in order.  Piaget wrote that “an asymmetrical relation 
does not exist in isolation.  Seriation is the natural, basic operational structure” (pp. 9–10).  
Seriation should be regarded as a basic mechanism of intelligence and as a product 
of spontaneous development, and it can be profitably considered as a scheme in von 
Glasersfeld’s terms.

The seriation scheme can be used to portray what I mean by an anticipatory 
scheme.  A child might form a goal of placing a collection of sticks in order from 
the shortest to the longest upon recognizing a collection of sticks.  Prior to the activity 
of ordering the sticks the child might imagine the activity by imagining several 
sticks aligned in order.  In this case, I say that the scheme is anticipatory as well as 
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operative because the child can imagine the scheme’s activity or result without 
carrying out the activity.

An ordering of the sticks is contributed to the collection of sticks by the 
seriating child.  By activating the conceptual structure of seriation, a child can 
formulate an expectation that a collection of sticks be ordered.  The child does not 
abstract seriation from the sticks; rather, the child contributes it to the collection 
of sticks.

Mathematics of Living Rather Than Being

Scheme is an observer’s concept and, in the case of schemes that are mathematical, 
it refers to children’s mathematical language and actions.  As observers, we can 
make a distinction between our concept of scheme and the children’s mathematical 
activity to which it refers, just as we can make a distinction between our concept of 
tree, and something “out there” to which we can point.  One may object because 
the goal-directed activity of children is of a different nature than a tree.  I agree they 
are of a different nature, but our concept, tree, can go beyond the concept that we 
initially constructed using the sensory material that was available to us.  It can 
include our understanding of a tree as a dynamic living system and include such 
properties as photosynthesis.

Like our concept of tree, we also have a concept of children as physical objects.  
But that is only a beginning.  We form the goal to understand children’s mathematics 
as a constitutive part of a living conceptual system.  This way of understanding their 
mathematics has great advantages for mathematics education and puts us in education, 
we think, in an appropriate frame of reference.  No longer is the sole focus on the 
abstracted adult concepts and operations, and no longer is children’s mathematical 
development conflated with those abstracted concepts and operations.  Rather, the 
focus is on the living systems that children comprise and the problem is to understand 
how to bring the subsystems called mathematics of these living systems forth, and how 
to bring modifications in these subsystems forth.  In this way, we may escape from 
Stolzenberg’s trap.
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