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Directly or indirectly, The Fractions Project has launched several research programs in 
the area of students’ operational development.  Research has not been restricted to 
fractions, but has branched out to proportional reasoning (e.g., Nabors 2003), multi-
plicative reasoning in general (e.g., Thompson and Saldanha 2003), and the develop-
ment of early algebra concepts (e.g., Hackenberg accepted).  This chapter summarizes 
current findings and future directions from the growing nexus of related articles and 
projects, which can be roughly divided into four categories.  First, there is an abun-
dance of research on students’ part-whole fraction schemes, much of which preceded 
The Fractions Project.  The reorganization hypothesis contributes to such research by 
demonstrating how part-whole fraction schemes are based in part on students’ whole 
number concepts and operations.

Second, several researchers have noted the limitations of part-whole conceptions 
and have advocated for greater curricular and instructional focus on more advanced 
conceptions of fractions (Mack 2001; Olive and Vomvoridi 2006; Saenz-Ludlow 
1994; Streefland 1991).  The Fractions Project has elucidated these limitations 
while articulating how advancement can be realized through the construction of key 
schemes and operations that transcend part-whole conceptions.  In particular – and 
deserving of its own (third) category – research on fraction schemes has highlighted 
the necessity and power of the splitting operation in students’ development of the 
more advanced fraction schemes, such as the reversible partitive fraction scheme 
and the iterative fraction scheme.

Finally, and more recently, researchers have used results from The Fractions 
Project to demonstrate how advanced fraction schemes can contribute to students’ 
development toward algebraic reasoning.  Although this research is in its infancy, 
one of the main findings so far is that the more advanced fraction schemes are critical 
in the construction of proportional reasoning (Nabors 2003), reciprocal reasoning 
(Hackenberg, accepted), and in solving basic linear equations of the form ax = b 
(Tunc-Pekkan 2008).
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Research on Part-Whole Conceptions of Fractions

The reorganization hypothesis has roots in work by McClellan and Dewey (1895), 
who argued, “the psychological process by which number is formed is first to last 
essentially a process of ‘fractioning’ – making a whole into equal parts and remaking 
the whole from the parts” (p. 138).  We see this in Steffe’s (2002) work, as he has 
described numerical operations that become reorganized as vital components of 
fraction schemes, such as unitizing, partitioning, disembedding, and iterating.  
Working with Steffe, and building on the ideas of McClellan and Dewey, Hunting 
(1983) carefully examined the progress of a 9-year-old student named Alan, from 
whole-number concepts toward the development of fraction concepts.  Hunting 
identified partitioning (for which “fractioning” might be an euphemism) as the key 
operation in Alan’s development of a part-whole conception for fractions.

Before elaborating on Hunting’s findings, we briefly comment on a subtle dis-
tinction between fraction schemes and fraction concepts, which was alluded to in 
previous chapters.  We consider fraction concepts as fraction schemes whose results 
are available prior to engaging in the activity of the scheme.  This implies that the 
activity of the scheme has been interiorized and that the child can engage in operating 
in the absence of material in the child’s perceptual field.  Tzur (2007) has made a 
similar distinction in terms of participatory and anticipatory schemes.  In those 
terms, concepts are anticipatory schemes.  Although we cannot elaborate further 
here, Tzur’s study empirically demonstrated the negative consequences of class-
room instruction that does not support students’ development from the participatory 
stage of scheme construction to the anticipatory stage.

In a fraction concept, the operations of the fraction scheme are contained in the 
first part of the scheme (the recognition template, or “trigger”), which enables the 
scheme to become anticipatory; that is, the scheme can be activated prior to its 
enactment in the sense of a resonating tuning fork (Steffe, 2002), with no need for 
carrying out a sequence of mental actions to establish meaning for a particular situ-
ation or numeral.  In the case of the part-whole fraction scheme, part-whole concep-
tions can be inferred once the part-whole fraction scheme is symbolized by any 
given fraction word or numeral.  A child who has developed a part-whole concep-
tion of fractions immediately understands “¾,” say, as three parts disembedded 
from a whole that has been partitioned into four equal parts.  However, as we have 
pointed out, a part-whole conception of fractions is a bit of a misnomer because the 
partitive fraction scheme is the first genuine fraction scheme.

Hunting (1983) found that Alan was able to develop a part-whole conception of 
fractions by applying his knowledge of numerical units to situations involving 
partitioning and sharing parts.  Thus, he demonstrated the utility of partitioning 
operations and coordinating units at two levels in the construction of early fraction 
knowledge.  However, Hunting was surprised to find that, although Alan seemed to 
understand one-fourth and one-eighth as one of four and eight equal parts, respectively, 
Alan did not understand that one-eighth was less than one-fourth (the “inverse order 
relationship,” also addressed in Tzur 2007).  Subsequent research, which we dis-
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cuss in the next section, has indicated that such understanding requires the iterating 
operation and partitive conceptions of fractions.

Several researchers have affirmed the value of engaging students in situations 
involving sharing and partitioning, in support of students’ construction of part-
whole concepts (Behr et al. 1984; Empson 1999; Kieren 1988; Mack 2001, Saenz-
Ludlow 1995).  The Fractions Project has provided a theoretical basis to support 
such findings by identifying the role of the partitioning operation in early fraction 
concepts, and by explaining the construction of the partitioning operation in terms 
of the construction of composite wholes.  Subsequent research by psychologists 
unfamiliar with The Fractions Project has independently affirmed its main theoretical 
underpinning – namely, the reorganization hypothesis.  Working with three 7-year-
old students using nonverbal whole-number and fractions tasks, Mix et al. (1999) 
came to a conclusion that contradicted earlier work by researchers who had 
advanced an interference hypothesis:

There were striking parallels between the development of whole-number and fraction calcu-
lation. This is inconsistent with the hypothesis that early representations of quantity promote 
learning about whole numbers but interfere with learning about fractions. (p. 164)

At least in the mathematics education research community, it is now commonly 
accepted that numerical operations, such as partitioning and disembedding, consti-
tute students’ development of fraction concepts – when students have constructed 
these operations in continuous contexts, such as with connected numbers.  This is 
clearly illustrated in recent work, even by researchers unaffiliated with The 
Fractions Project.  In particular, Mack (2001) implicitly relied on the reorganiza-
tion hypothesis in her study of six fifth-grade students, examining the development 
of fraction multiplication.  Mack found that, indeed, students’ informal knowledge 
of partitioning contributed to their construction of fraction concepts.

On the one hand, findings such as Mack’s and Hunting’s underscore the founda-
tional importance of part-whole reasoning in developing fraction conceptions.  On 
the other hand, to construct “genuine” fractions, students need to transcend part-
whole conceptions.  In fact, in the very same work cited above, Mack (2001) found 
that “students’ informal knowledge of partitioning did not fully reflect the complexi-
ties underlying multiplication of fractions” (p. 291).  The problem is confounded 
when we recognize that – as Streefland noted in 1991 – “teaching efforts have 
focused almost exclusively on the part-whole construct of a fraction” (p. 191).

The singular focus of curricula and instruction on part-whole concepts has con-
tributed to students’ difficulties in working with fractions operations and even 
algebraic reasoning.  For example, in working with a student named Tim, Olive and 
Vomvoridi (2006) found that restriction to part-whole concepts hindered his ability 
to meaningfully engage in classroom activities that implicitly required more 
advanced conceptions.  “Sparse conceptual structures limit students’ understand-
ing; once these conceptual structures had been modified and enriched, Tim was 
able to function within the context of classroom instruction” (p. 44).  However, 
educators must recognize that they cannot change students’ structures at will.  
Laura’s case study (Chaps. 5 and 6) exemplifies this fact: Despite persistent efforts 
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to provoke accommodations to her part-whole fraction scheme, Laura did not construct 
a partitive fraction scheme for over a year.

Transcending Part-Whole Conceptions

Olive (1999) and Steffe (2002) have demonstrated that numerical schemes contribute 
to the construction of fraction schemes, even beyond initial constructions such as the 
part-whole fraction scheme.  Earlier work by Saenz-Ludlow (1994, 1995) elucidated 
those contributions by establishing explicit links between the numerical and fraction 
conceptions of two third-grade students named Michael and Anna.  In this section, 
we build on the previous one by describing how students like Michael used numerical 
schemes to construct partitive fraction schemes.  At the same time, we share findings 
on ways in which partitive reasoning transcends part-whole reasoning.

Saenz-Ludlow began her teaching experiment with the hypothesis that “Michael’s 
well-grounded conceptualization of natural-number units would facilitate the generation 
of fractional-number units” (1994, p. 63).  In fact, Michael seemed to reorganize two 
key numerical operations – coordinating two levels of units and iterating – to con-
struct a partitive fraction scheme for composite units.  As Michael demonstrated, the 
new scheme transcended the power of his previously constructed part-whole fraction 
scheme.  For example, consider Michael’s response to the following task:

T: If I give you forty-fiftieths of 1,000 dollars, how much money will I give you?
M: (After some thinking.) Eight hundred dollars.
T: Why?
M: (Quickly.) Because one-fiftieth is 20 dollars and five 20s is 100, so five, ten, fifteen, 

twenty, twenty-five, thirty, thirty-five, forty (Keeping track of the counting of fives with his 
fingers and finally showing eight fingers.); that is 800.

Michael’s ability to anticipate the value of forty-fiftieths before actually double-
counting fives and hundreds on his fingers indicates that, in fact, he had interiorized 
three levels of units, at least for whole numbers.  He was able to consider the given 
fraction (forty-fiftieths) as a quantity relative in size to the given whole (1,000).  
Moreover, the units he was iterating (100’s) were each composed of five-fiftieths, 
which provides indication of a composite unit fraction.  His overall way of operat-
ing resembles the partitive fraction scheme for connected numbers that Nathan 
constructed (cf. Chap. 9).  It enabled Michael to perform such tasks, whereas, in 
using his part-whole fraction scheme, he would have been restricted to interpreting 
forty-fiftieths as 40 parts out of 50 equal parts within a referent whole.

Saenz-Ludlow (1994) alluded to partitive reasoning when she advocated student 
conceptions of fractions as quantities.  Such conceptions enable comparisons of size 
between part and whole, or even part and part, through the iteration of units.  However, 
the operations of the partitive fraction scheme remain constrained within the referent 
whole.  Both of Jason and Laura (Chap. 5) experienced the necessary errors that result 
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from this way of operating.  Even late in their fourth grade, 9/8 became “nine-ninths” 
or “eight-ninths” or “one-eighth plus one, where the “eighth” referred to 8/8 (p. 406).  
So, “conceptualizing improper fractions is not a simple extension of iterating a unit 
fraction within the whole” (Tzur, 1999 p.  409).  Thus, there are at least two develop-
mental hurdles with regard to conceptualizing fractions: moving from part-whole to 
partitive conceptions, and moving from partitive conceptions of proper fractions to 
iterative conceptions of proper and improper fractions.  Subsequent research has indi-
cated the critical role splitting plays in clearing the latter hurdle.

The Splitting Operation

Several researchers have independently adopted the term “split” from their students 
(Confrey 1994; Empson 1999; Olive and Steffe 2002; Saenz-Ludlow 2004).  
Confrey was first in promoting use of the term in research, especially with regard 
to her splitting hypothesis.  Her splitting hypothesis posits that children develop a 
multiplicative operation – splitting – in parallel with additive operations.  According 
to Confrey (1994), splitting applies to actions of “sharing, folding, dividing sym-
metrically, and magnifying” (p. 292).  “In its most primitive form, splitting can be 
defined as an action of creating simultaneously multiple versions of an original, an 
action often represented by a tree diagram… a one-to-many action” (p. 292).

According to Steffe (Chaps. 1 and 10), the splitting operation is the composition 
of partitioning and iterating, in which partitioning and iterating are understood as 
inverse operations.  For example, a student with a splitting operation can solve tasks 
like the following: “The bar shown below is three times as big as your bar.  Draw 
your bar” (see bar and student response in Fig. 11.1).  Finding an appropriate solu-
tion requires more than sharing (or any other act of partitioning), and even more 
than sequentially applying acts of partitioning and iterating; the student must antici-
pate that she can use partitioning to resolve a situation that is iterative in nature.  
Namely, by partitioning “my” bar into three parts, the student obtained a part that 
could be iterated three times to reproduce the whole bar.

Fig. 11.1.  Task response providing indication of a splitting operation.
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As exemplified in Fig. 11.1, splitting involves partitioning, but it involves more.  
It supersedes even the levels of fragmenting identified in Chap. 10: simultaneous 
partitioning and equi-partitioning.  As such, Confrey and Steffe’s definitions for 
splitting contain similarities, but differ in one key regard: Confrey’s definition 
makes no mention of iterating.  In fact, Confrey (1994) intentionally juxtaposed 
splitting with iterating, which she viewed as contributing to repeated addition rather 
than the multiplicative reasoning that splitting supports.  If she did not take excep-
tion to the inclusion of iterating operations, Confrey’s splitting might include 
Steffe’s splitting, as well as equipartitioning and simultaneous partitioning.

Splitting, as defined by Steffe, is especially powerful, as illustrated in the follow-
ing case.  During a semester-long teaching experiment with three pairs of sixth-
grade students, Norton (2008) worked with a student name Josh who had 
constructed a splitting operation, but no genuine fraction schemes.  That is to say, 
he could solve tasks like the one illustrated in Fig. 11.1 and he had developed a 
part-whole conception for fractions, but he had not yet constructed a partitive unit 
fraction scheme.  Among the three pairs of students, only one other student, Hillary, 
had constructed a splitting operation (Norton and D’Ambrosio 2008).  Relative to 
their peers, both students made impressive advancements in their constructions of 
fraction schemes, but we focus on Josh.

At the beginning of the teaching experiment, Josh was unable to unambiguously 
use fractional language.  For example, when shown a 7/7-bar and asked what amount 
would remain if two-sevenths were removed, Josh answered, “5 pieces.” When pressed 
for a fraction name, he could not decide between “five-sevenths,” “fifty-sevenths,” and 
“seven-fifths.” Furthermore, when presented with a stick that had been partitioned in 
half, with the left half partitioned in half again, Josh thought the leftmost piece would 
be “one third.” These responses indicate that Josh had not yet constructed a partitive 
unit fraction scheme.  However, toward the end of the teaching experiment, Josh began 
estimating fractional sizes for proper fractions.  Using the computer fractions software, 
TIMA: Sticks, Josh’s partner produced an unpartitioned 2/9-stick along with its unpar-
titioned whole.  When asked what the stick would measure, Josh lined up four copies 
of the fraction stick along the whole stick and estimated, “two-ninths.” His estimate 
indicated that he had constructed a general partitive fraction scheme.

Throughout the teaching experiment, Josh formed conjectures that involved 
novel uses of his splitting operation.  These conjectures seemed to support his 
construction of fraction schemes, including a partitive fraction scheme and a com-
mensurate fraction scheme.  Norton (2008) hypothesized that the splitting operation 
was particularly powerful in supporting his constructions because it composed two 
operations critical to the construction of fraction schemes: partitioning and iterat-
ing.  In fact, studies cited in the previous two sections (e.g., Mack 2001) have illus-
trated the critical roles of those operations.  Their composition then, provides 
powerful opportunities for growth, including the construction of more advanced 
fraction schemes.

In all of the fractions teaching experiments cited here, no student constructed an 
iterative fraction scheme – or a reversible partitive fractional scheme – without first 
constructing splitting.  We have seen examples of this phenomenon from students 
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mentioned in previous chapters, as well as Hillary, whose splitting operation sup-
ported her construction of a reversible partitive fractional scheme.  In addition, all 
four of the students in Hackenberg’s (2007) 8-month teaching experiment fit that 
pattern of development.  All four students began sixth grade with splitting opera-
tions; all four constructed reversible partitive fraction schemes; and two of the 
students constructed iterative fraction schemes.

Consider the following exchange between the teacher–researcher and one of the 
pairs in Hackenberg’s study, Carlos and Michael.  The teacher–researcher asked 
Carlos to produce fourteen-thirteenths.  Carlos began by partitioning a copy of the 
whole stick into 14 parts.  Seeing this, Michael exclaimed, “No – no – no! You 
made fourteenths – (looks at Carlos) yours is thirteenths (gives a little laugh).” 
Carlos responded by asking the teacher–researcher, “didn’t you say fourteen-thir-
teenths?” (Hackenberg 2007, p.  39).  Carlos eventually produced the 14/13 by 
appending an extra piece to a 13/13 stick, but the exchange indicates Carlos’s 
struggles in producing improper fractions.  But then, he had much more success in 
solving tasks like the following: “Tanya has $16, which is 4/5 of what David has; 
how much does David have?” (p. 45).

Notice that the latter task requires a way of operating that is in reverse of the 
task Saenz-Ludlow (2004) posed to the third grade student named Michael (illus-
trated in the previous section).  In particular, it requires a reversible partitive frac-
tion scheme, which Carlos seemed to have constructed.  However, Carlos had not 
yet constructed the kind of operating that his partner, Michael, used to solve the 
task involving 14/13.  Namely, Michael had constructed an iterative fraction 
scheme.  Both ways of operating require splitting because the students had to use 
partitioning in service of an iterative goal: Producing 14/13 required Carlos to 
partition the whole into 13 parts so that one of them could be iterated 14 times to 
produce the improper fraction; producing David’s amount of money required 
Carlos to partition the given 4/5 part into four parts so that one of them could be 
iterated five times to produce the unknown whole.  However, only Michael could 
readily solve the former task, and Hackenberg (2007) attributes this difference to 
the interiorization of three levels of units.  A student would need to posit three 
levels of units prior to activity to purposefully produce a bar containing 14 thir-
teenths, with the understanding that the whole is produced from 13 iterations of 
any one of those thirteenths.

Findings from Norton’s and Hackenberg’s teaching experiments have challenged 
previous hypotheses about the origins and nature of splitting.  Steffe (2004) had 
hypothesized that the splitting operation is based on the reversible partitive fraction 
scheme: “I presently consider the splitting operation to be the result of a developmen-
tal metamorphic accommodation of the reversible partitive fractional scheme” (p. 
161).  He revised this hypothesis after considering the case of Josh (Norton 2008) 
who had constructed a splitting operation even before constructing a partitive unit 
fraction scheme.  We now understand that – to the contrary of the initial hypothesis 
– splitting is required for the construction of the reversible partitive fraction scheme.

Revising Steffe’s (2004) hypothesis about the origin of the splitting operation begs 
the question: Where does splitting “come from” in students’ constructive itineraries? 
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Confrey (1994) attributed the origins of splitting to abstractions from fair sharing 
activities, which makes sense given that for her splitting is based on making equal 
partitions.  Saenz-Ludlow (1994) demonstrated how students transform Confrey’s 
split from whole number to fractions contexts.  However, in Steffe’s splitting, which 
includes iterating as well as partitioning, fair sharing activities alone would likely be 
insufficient as an origin.  Although Josh’s case offers an exception, it seems that students’ 
experiences in partitive fraction situations support their construction of splitting.  
After all, the partitive fraction scheme involves the sequential use of partitioning and 
iterating.  Applying those operations as part of one scheme could plausibly contribute 
to their eventual composition as a single operation: splitting.

This view aligns with Steffe’s revised splitting hypothesis expressed in Chap. 10: 
Construction of splitting results from interiorization of the equipartitioning scheme – a 
necessary prequel to the reversible partitive fraction scheme.  In fact, the partitive unit 
fraction scheme is also a derivative of the equipartitioning scheme (cf. Chap. 10), so 
it makes sense that most students construct partitive unit fraction schemes prior to 
their construction of splitting (Norton and Wilkins, in press).  The revised hypothesis 
also aligns with Hackenberg’s (2007) findings regarding units coordination.  Namely, 
students operating with a partitive fraction scheme should have constructed the two 
levels of interiorized units required to construct a splitting operation.

Steffe had also previously hypothesized that, “upon the emergence of the split-
ting operation,” the partitive fraction scheme would be reorganized as an iterative 
fraction scheme (2002, p.  299).  He revised this hypothesis in light of Hackenberg’s 
(2007) teaching experiment and one of its key findings:

Although the splitting operation still seems to be instrumental in the construction of an 
iterative fraction scheme, it does not appear to be sufficient for it… Students can construct 
the splitting operation without also interiorizing the coordination of three levels of units, 
and this interiorized coordination appears to be necessary for constructing improper frac-
tions, and therefore the improper fraction scheme. (p. 46).

Steffe revised his hypothesis to its present form: If the child’s operations that produce three 
levels of units become assimilating operations of the partitive fraction scheme, then the 
partitive fraction scheme can be used in the construction of the iterative fraction scheme.  
In other words, the partitive fraction scheme requires two levels of interiorized units, but 
if it, furthermore, includes a structure for producing three levels of units, the splitting 
operation might indeed be used to reorganize the partitive fraction scheme into an itera-
tive fraction scheme.  In fact, Joe and Patricia’s case studies (cf. Chap. 10) illustrate such 
constructions.  Further, based on Melissa’s case study, Steffe claims that children con-
struct the splitting operation using three levels of units in activity, though the operations 
that produce these units are not necessarily assimilating operations.

Students’ Development Toward Algebraic Reasoning

In the past decade, researchers have begun to work on the problem of how students’ 
construction of fraction schemes and operations may support students’ construction 
of algebraic reasoning.  This research focus is part of a larger effort to understand 
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how to help students base their construction of algebraic reasoning on robust 
quantitative reasoning (Kaput 2008; Smith and Thompson 2008; Thompson 1993).  
One thrust of this effort is to understand how students can develop significant, 
conceptually coherent quantitative reasoning that would actually warrant generating 
and using powerful symbolic tools of algebra (Smith and Thompson 2008).  
Researchers who study students’ construction of fraction schemes have made some 
progress in this area, as we will outline below.  In contrast, little research based in 
scheme theoretic approaches has as of yet made significant progress on how students 
construct algebraic symbol systems (cf. Tillema 2007; Tunc-Pekkan 2008).

Before discussing the research that has been done in this area, we give a brief 
outline of how we characterize algebraic reasoning.  From a very broad perspective, 
Kaput (2008) posited that algebra has two core aspects: (A) systematically symbol-
izing generalizations of regularities and constraints, and (B) engaging in syntacti-
cally guided reasoning on generalizations expressed in conventional symbol 
systems.  He envisioned these core aspects as embodied in three strands: (1) algebra 
as the study of structures and systems abstracted from computations and relations, 
including algebra as generalized arithmetic and quantitative reasoning; (2) algebra 
as the study of functions, relations, and joint variation; and (3) algebra as the appli-
cation of a cluster of modeling languages.  Much of the research on children’s early 
algebraic reasoning focuses on Kaput’s core aspect A and strand 1 (e.g., Carpenter 
et al. 2003; Carraher et al. 2006; Dougherty, 2004; Knuth et al. 2006).  We do so as 
well, but, as Tunc-Pekkan (2008) has pointed out, we do not take for granted the 
quantitative operations that may be required to build algebraic reasoning – in fact, 
we aim to specify them in our work with students.

We also aim to specify how quantitative operations may be reorganized to produce 
algebraic operations, a potential extension of the reorganization hypothesis of The 
Fractions Project (Hackenberg 2006; Tunc-Pekkan 2008).  One possible “bridge” 
from quantitative fraction schemes (with the partitive fraction scheme being the 
first of these) to algebraic reasoning lies in students’ construction of ratios and 
proportional reasoning.  Nabors (2003) investigated this arena in her teaching 
experiment.  She worked with seventh grade students to help them construct frac-
tion schemes prior to investigating how they constructed schemes to solve problems 
involving ratios and proportions and rates, such as the following:

Money Exchange Problem. “In England, pounds are used rather than dollars. Four US dollars 
can be exchanged for three British pounds. How many pounds would you get in exchange 
for 28 US dollars? (adapted from Kaput and West 1994)” (p. 136).

Nabors hypothesized that the construction of what we have called more advanced 
fraction schemes (such as a reversible partitive fraction scheme, an iterative fraction 
scheme, and a reversible iterative fraction scheme) would be sufficient for students 
to reason with unit ratios to solve problems like the Money Exchange Problem (see 
Kaput and West’s third level of proportional reasoning, 1994).  This hypothesis was 
not confirmed – Nabors found that the fraction schemes were likely necessary, but 
not sufficient, for students’ construction and use of unit ratios (cf. Davis 2003).  
Although the students in her study made progress in solving problems like the 
Money Exchange Problem and other problems involving rates, they used “build-up” 
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strategies, both additive and multiplicative in nature (cf. Kaput and West’s first and 
second levels of proportional reasoning, 1994).

In particular, Nabors (2003) found that students who had constructed a units 
coordinating scheme for composite units – in which composite units were iterating 
units – could solve problems like the Money Exchange Problem by repeatedly 
coordinating iterations of two composite units (in this case, units of four and units 
of three).  Nabors agreed with Kaput and West (1994) that this solution strategy is 
primarily additive in nature, and her description of it indicates that students who 
have constructed the ENS can engage in it.  In contrast, to solve the problem by 
anticipating that twenty-eight is some number of composite units of four, using 
division to determine that number, and then iterating the composite unit of three that 
number of times required that composite units were iterable units for the students.  In 
other words, Nabors indicates that students had to be aware of the operation of 
iterating composite units prior to iterating them (p. 139).  In essence, this finding 
implies that the operations that produce the GNS are needed for solving problems 
involving ratios and proportions with this “more advanced” build-up strategy.  Even 
though some students in her study appeared to have constructed these operations, 
they did not produce solutions involving unit ratios (e.g., in which students 
determine that three-fourths of a pound corresponds to 1 dollar, and so three-fourths 
of 28 will yield the number of pounds that correspond to 28 dollars).  Nabors did not 
hypothesize what operations are necessary to construct such solutions, except for 
noting that the interiorization of three levels of units is likely necessary.

Finally, Nabors (2003) found that students in her study could use some standard 
notational forms to solve problems involving ratios and proportions, but she could 
not claim that doing so meant they were engaging in reasoning beyond the two kinds 
of solutions discussed above.  In fact, she notes that her study was an initial foray 
into this area, and that future research should investigate how students construct 
“numerical and algebraic representations of their reasoning processes” (p. 177) in 
these situations (cf. Kaput and West’s fourth level of proportional reasoning, 
1994).

Hackenberg’s (2005, accepted) research is similar to Nabors’ research in that she 
aimed to understand how students construct schemes and operations that underlie 
another traditional “component” of beginning algebra: the construction and solution 
of basic linear equations of the form ax = b.  In her teaching experiment, she inves-
tigated how students reverse their quantitative reasoning with fractions to solve 
problems that can be solved with a basic linear equation of the form ax = b.  A central 
finding of her study was the interiorization of three levels of units (i.e., the operations 
that produce the GNS) was critical for the construction of schemes to solve problems 
like this one:

Candy Bar Problem. That collection of 7 inch-long candy bars [7 identical rectangles] is 3/5 
of another collection. Could you make the other collection of bars and find its total length?

To solve this problem, one student, Michael, modified his splitting operation to 
include the units-coordinating activity of his multiplying scheme.  That is, Michael 
had constructed a reversible iterative fraction scheme and he used it to assimilate 
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this problem: He aimed to split the known quantity into three equal parts, each of 
which would be one-fifth of the unknown quantity.  However, he had no immediate 
way of operating to use to split seven units into three equal parts – the seven seemed 
to be at the “heart” of his perturbation in solving the problem.  He eliminated this 
perturbation by splitting each of the 7 in.  into a number of mini-parts (three) that 
would create a total number of mini-parts (21) that he could split into three equal 
parts (each containing 7 mini-parts).  Hackenberg proposed that Michael could 
operate in this way because he could flexibly switch between two three-levels-of-
units structures.  That is, he conceived of the collection as a unit of seven units each 
containing three units, and then he could reorganize (in thought) the 21 mini-parts 
into a unit of three units each containing seven units.  This way of reasoning is 
based on the splitting scheme for composite units in which the distributive parti-
tioning scheme is embedded.

However, Hackenberg (2005, accepted) also found that the interiorization of 
three levels of units was not sufficient to provoke or explain the construction of 
reciprocal reasoning – although it seems to be necessary for it.  In particular, 
Michael did not reason reciprocally to solve problems like the Candy Bar Problem, 
but another student in the study, Deborah, at least began to do so.  Hackenberg 
hypothesized that Deborah had abstracted a fraction as a multiplicative concept, 
i.e., as a program of operations that included those of Deborah’s iterative fraction 
scheme and reversible iterative fraction scheme.  As Tunc-Pekkan (2008) has iden-
tified, how Deborah produced this abstraction was not clear.  A related limitation 
of Hackenberg’s study was that she and her student-participants did not engage in 
operating explicitly on unknowns, an important characteristic of algebraic reason-
ing.  In the context of solving problems like the Candy Bar Problem, reasoning 
reciprocally would facilitate operating on the unknown quantity.

Tunc-Pekkan (2008) conducted a teaching experiment specifically to investigate 
students’ construction of reciprocal reasoning in stating and solving equations of the 
form ax = b where a and b are both fractional numbers.  She differentiated between 
reversible reasoning and inverse reasoning in this context.  On the basis of her analy-
sis of one of the two pairs of eighth grade students with whom she worked, she 
hypothesized that constructing an inverse relationship between two quantities requires 
(1) conceptualizing both quantities independently (rather than solely that the known 
can be used to make the unknown); (2) constructing explicit equivalencies between 
fractional parts of the known and unknown quantities; and (3) using operations such 
as disembedding and iterating parts of the known quantity to create the unknown 
quantity (i.e., using multiplicative reasoning to construct the unknown quantity).

Tunc-Pekkan’s findings indicate that the construction of measurement units were 
critical for producing and operating with equivalency; constructing only identity 
relationships between parts of quantities, which is possible when composite units 
are iterable, was insufficient to construct standard measurement units as indepen-
dent quantities.  The construction of measurement units involves the coordination 
of sequences of units, and so surpasses the operations that produce the GNS 
(alone).  This finding is important because it indicates that “numerical aspects” of 
reasoning with quantities must be included in what we call “quantitative reasoning” 
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for it to be powerful enough to be a basis for algebraic reasoning, something that 
some advocates of quantitative reasoning as a basis for algebra have downplayed or 
ignored (cf. Smith and Thompson 2008).

In addition, Tunc-Pekkan (2008) found that the students’ construction of a sym-
bolic fraction multiplication scheme was critical for students’ construction of recip-
rocal reasoning.  By symbolic she meant that students need to construct “more” 
than an anticipatory scheme in which they can find (make) a fraction composition 
– i.e., in which they construct a new quantity (the composition) as a result of operat-
ing on known quantities.  In addition, students need to be able to construct the 
measurement of those quantities using what she called recursive distributive parti-
tioning operations.  Constructing these operations involves constructing partition-
ing and iterating as inverse operations, as well as distributive partitioning.1 Her 
conclusions are interesting in light of the central role that Steffe gives to splitting 
in the construction of fraction schemes: Constructing the splitting operation may be 
the first step in the construction of an awareness of partitioning and iterating as 
inverse operations (cf. Chap. 10).  In this way, construction of the splitting operation 
is important in the development of algebraic reasoning.

A central message of Tunc-Pekkan’s (2008) research is that the power of alge-
braic thinking comes from not being dependent on quantities produced through 
operating but from being able to think of and interpret quantitative situations in 
terms of measurement units.  More needs to be understood regarding how students 
construct measurement units and recursive distributive partitioning operations.  
However, together the work we have reviewed in this section suggests that research-
ers have made progress in understanding two hallmarks of algebraic reasoning: how 
students build conceptual structures and operate on them further, and how students 
learn to operate explicitly on unknown quantities.

1 For Tunc Pekkan (2008), distributive partitioning is the operation that a student 
might use to find, say, 1/7 of 3 in. The student might partition each of the 3 in. into 
seven equal parts, disembed three parts (e.g., one part from each of the three 
inches), and unite them together to make 3/7 of 1  in. Recursive distributive 
partitioning involves, further, being able to engage in distributive partitioning of 
parts of quantities that are not perceptually present in service of taking a fractional 
amount of a quantity. For example, consider taking 1/7 of 3/5 of a liter, when only 
the 3/5-liter is present in the student’s visual field. If a student uses distributive 
partitioning but also applies it to the two fifths of the liter that are not present, to 
conclude that the result is 3/35 of a liter, then the student has used recursive 
distributive partitioning.
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