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9.1  An Ad Hoc Epistemology for a Didactical Gap

9.1.1  The Didactical Gap

More often than not, the problem of teaching mathematical proof has been addressed 
almost independently from the teaching of mathematical “content” itself. Some cur-
ricula have exposed learners to a significant amount of mathematics without learning 
about mathematical proof as such (Herbst 2002, p. 288); others teaching mathematical 
proof as a subject in itself without significantly relating it to concrete practical 
examples (cf. Usiskin 2007, p. 75). The most common didactical tradition chooses 
to introduce proof in the context of geometry – usually at the turn of the eighth grade 
– while completely ignoring it in algebra or arithmetic, where things seem to be 
reduced to “mere” computations. This orientation has changed slightly in the past 
decade with an increasing emphasis on the teaching of proof. However, an implicit 
distinction between form and content has lead to references to teaching “mathematical 
reasoning” (e.g., NCTM standards) or “deductive reasoning” (e.g., French national 
programs) instead of mathematical proof as such which would have moved “form” 
much more to the forefront of the didactical scene.

Nevertheless, it is generally acknowledged that mathematical proof has spe-
cific characteristics, among them a formal type of text (the US vocabulary often refers 
to “formal proof”), a specific organization and an undisputable robustness once 
syntactically correct. These characteristics have given mathematics the reputation of 
having exceptionally stringent practices as compared to other disciplines, practices 
that are not socially determined but inherent to the nature of mathematics itself.

Hence, the answer to the question: “Can one learn mathematics without learning 
what a mathematical proof is and how to build one?” is “No.” But now one can 
observe a double didactical gap: (i) mathematical proof creates a rupture between 
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mathematics and other disciplines (even the “exact sciences”) and (ii) a divide in 
the course of mathematical teaching during the (almost) standard first 12 years of 
education (into an era before the teaching of proof and one after).

The origin of these gaps lies at the crosspoint of several lines of tension: rigor 
versus meaning, internal development versus application-oriented development of 
mathematics, ideal objects defined and manipulated by symbolic representations 
versus experience-based empirical evidence. I do not analyse these tensions here; I 
mention them to evoke the complexity of the epistemological and didactical prob-
lems which confront us.

One source of the didactical problems is that teaching must take into account the 
learners’ initial understanding and competence: We can teach only to ones who know… 
The learners’ existing knowledge often proves resistant, especially because the learn-
ers may have proven its efficiency, as in the case of their argumentative skills. In order 
to overcome this difficulty, teachers organize situations, mises en scène and discourses 
in order to “convince” or “persuade” learners (in the vocabulary of Harel and Sowder 
1998). Argumentation seems the best means to this end. It works both as a tool for 
teaching and as a tool for doing mathematics for a long while. But then learners sud-
denly face an unexpected revelation1: In mathematics you don’t argue, you prove…

Looking to bridge this transition, mathematics educators have searched for ideas 
in psychology. In the middle of the twentieth century, the success of Piaget’s “stage 
theory” of development suggested that proof could be taught only after the required 
level of development had been reached2. As a result, mathematical proof was intro-
duced suddenly in curricula (if at all) in the ninth grade – generally, the year that 
students have their 13th birthday. However, this strategy has not worked so well, 
suggesting to some that Piaget may have been wrong.

Some mathematics educators then turned to psychologies of discourse and learn-
ing, feeling that the followers of Piaget had not paid enough attention to language 
and social interaction. Some suggested the ideas of Vygotsky and the socio-con-
structivists could have provided a solution (e.g. Forman et al. 1996). However, this 
line of thought did not appear to be the panacea either. Then Lakatos’ work seemed 
to suggest that a solution might be found in the epistemology of mathematics itself 

1 Argumentation means here “verbal, social and rational activity aimed at convincing a reasonable 
critic of the acceptability of a standpoint by putting forward a constellation of one or more propo-
sitions to justify this standpoint” (van Eemeren et al., 2002, p.xii). “In argumentative discussion 
there is, by definition, an explicit or implicit appeal to reasonableness, but in practice the argu-
mentation can, in all kinds of respects, be lacking of reasonableness. Certain moves can be made 
in the discussion that are not really helpful to resolving the difference of opinion concerned. 
Before a well-considered judgment can be given as to the quality of an argumentative discussion, 
a careful analysis as to be carried out that reveals those aspects of the discourse that are pertinent 
to making such a judgment concerning it reasonableness.” (ibid., p.4)
2 See e.g. Piaget J. (1969) p. 239: “L’enfant n’est guère capable, avant 10-11 ans, de raisonnement 
formel, c’est-à-dire de déduction portant sur des données simplement assumées, et non pas sur de 
vérités observées.” More precisely, For more, c.f. Piaget J. (1967) Le jugement et le raisonnement 
chez l’enfant. Delachaux et Niestlé.
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(e.g. Reichel 2002); however, such attempts also failed amid skepticism from 
mathematicians and researchers.

The responsibility for all these failures does not belong to the theories which 
supposedly underlie the educational designs, but to naive or simplifying readers 
who have assumed that concepts and models from psychology can be freely 
transferred to education. In particular, they rarely take into account the nature of 
mathematics as content (while often emphasizing the nature of the perceived prac-
tice of mathematicians).

My objective here is then to question the constraints mathematics imposes on 
teaching and learning, postulating that, as for any other domain, learning and 
understanding mathematics cannot be separated from understanding its intrinsic 
means for validation: mathematical proof. First, I address the epistemology of 
proof, on which we could base our efforts to manage or bridge the didactical gap 
discussed above.

9.1.2 � The Need to Revisit the Epistemology of Proof

Although apparently a bit simplistic, it may be good to start from the recognition 
that mathematical ideas are not a matter of feeling, opinion or belief. They are of 
the order of “knowing” in the Popperian sense3, by virtue of their very specific rela-
tion to proof (and proving). They provide tools to address concrete, materialistic or 
social problems, but they are not about the “real” world. To some extent, mathemat-
ical ideas are about mathematical ideas; they exist in a closed “world” difficult to 
accept but difficult to escape. For this reason, mathematical ideas do not exist as 
plain facts but as statements which are accepted only once they have been proved 
explicitly; before that, they cannot be4 instrumental either within mathematics or 
for any application.

However, despite this emphasis on the key role of proof in mathematics, it must 
be remembered that at stake is not truth but the validity of a statement within a 
well-defined theoretical context (cf. Habermas 1999). For example, Euclidean 
geometry is no truer than Riemannian geometry. This shift from the vocabulary of 
truth to the vocabulary of validity, which suggests a shift from proof to validation, 
is more important than we may have realized. Validation refers to constructing 
reasons to accept a specific statement, within an accepted framework shaped by 
accepted rules and other previously accepted statements. From this perspective, 
mathematical validation searches for an absolute proof in an explicit context; it can 
thus claim certainty as a foundational principle.

This view of validity and proof is antiauthoritarian (Hanna and Jahnke 1996, p. 
891), insofar as it assumes a common agreement about a collective and well-

3Popper (1959) proposed falsification as the the empirical criterion of demarcation of knowledge, 
scientific theories or models.
4Or should not be...
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understood effort. It thus fits the classical conception of what a scientific proof 
should be, since such a proof must clearly not depend on specific individual or 
social interests. Proving is an example of an intellectual enterprise that allows a 
minority to overcome the opinion of an established majority, according to shared 
rules. This is related to an ancient meaning of the word “demonstration” in English 
(e.g., Herbst 2002, p. 287).

So the concept of proof is not a stand-alone concept; it goes with the concepts of 
“validity of a statement” and “theory.” This has been well explained and illustrated 
by the Italian school, especially Alessandra Mariotti (1997). However, the word “the-
ory” is the most difficult for learners. No such thing is available to learners a priori, 
and to understand what the word means seems out of reach. Nevertheless, learners 
have ideas about mathematics and about mathematical facts. They also have experi-
ence in arguing about the “truth” of a claim or the “falsity” of a statement they reject; 
but this is experience in argumentation in contexts that are not framed by a theory in 
scientific terms. To construct a proof requires an essential shift in the learner’s episte-
mological position: passing from a practical position (ruled by a kind of logic of 
practice) to a theoretical position (ruled by the intrinsic specificity of a theory).

In addition, we cannot engage in the validation of “anything” that has not been 
first expressed in a language. This principle applies across disciplines (Habermas 
1999), but plays a special role in mathematics, where the access to “mathematical 
objects” depends in the first place on their semiotic availability (Duval 1995).

In other words, the teaching and learning of mathematical proof requires mastery 
of the relationships among knowing, representing and proving mathematically.

9.2 � A Model to Bridge Knowing and Proving

9.2.1 � Short Story 1: Fabien and Isabelle Misunderstandings

Consider the following problem5:

Construct a triangle ABC. Construct a point P and its symmetrical point P1 about 
A. Construct the symmetrical point P2 of P about B, construct the symmetrical 
point P3 of P about C. Move P. What can be said about the figure when P3 and 
P are coincident? Construct the point I, the midpoint of [PP3]. What can be said 
about the point I when P is moved? Explain.

Constructing the diagram (Fig. 9.1) with dynamic geometry software,6 one can eas-
ily notice that the point I does not move when one manipulates the point P. This 
fact seems surprising; the crux of the situation is to propose an explanation.

5 From Capponi (1995), Cabri-classe, sheet 4–10.
6 E.g. Cabri-geometry (here used for the drawing), or Geometer Sketchpad; or Geogebra or one of 
the several others now available sometimes open access.
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Let us examine the interaction between a tutor, Isabelle, and a student, Fabien, 
about this problem.7 Fabien has observed the fact but he has no insight about the 
reason: “The point I does not move, but so what...” However, he noticed and proved 
that ABCI is a parallelogram. At this stage, from the point of view of geometry (and 
of the tutor), the reason I stands immobile while P moves should be obvious. The 
tutor then provides Fabien with several hints but with no results. After a while she 
desperately insists: “The others, they do not move. You see what I mean? Then how 
could you define the point I, finally, without using the points P, P1, P2, P3?” 
Throughout the interaction, the tutor is moved by one concern which can be sum-
marized by the question: “Don’t you see what I see?” But Fabien does not see the 
“obvious”; it is only when she tells him the mathematical reasons for the immobil-
ity of I that the tutor provokes a genuine “Aha!” effect...

In order to explain the immobility of I, the teacher had to get the student to 
construct a link between a mechanical world – that of the interface of the software8 
– and a theoretical world – the world of geometry. Only this link can turn the 
observed fact (the immobility of I) into a phenomenon (the invariance of I). But the 
construction of this link is not straightforward; it is a process of modeling.

Teacher and student did share representations, words, and arguments so that they 
could communicate and collaborate; however, this did not guarantee that they shared 
understanding. Educators have made considerable efforts to develop representations 
that could make the nature and the properties of mathematical concepts more tangible. 
But these remain just representations with no visible referent; manipulating them and 
sharing factual experience does not guarantee shared meaning. Nevertheless, they are 
the only means of communication, since in mathematics the referent, in a semiotic 
sense, is itself a representation (i.e., a tangible entity produced on purpose).

Consider the following problem 5:

B

A

C

P

P1

P2

P3I

Construct a triangle ABC. Construct a point P and its symmetrical point P1 about
A. Construct the symmetrical point P2 of P about B, construct the symmetrical
point P3 of P about C. Move P. What can be said about the figure when P3 and
P are coincident? Construct the point I, the midpoint of [PP3]. What can be said
about the point I when P is moved? Explain .

Fig. 9.1  Short story 1 problem 

7 A more detailed analysis can be found in Balacheff and Soury-Lavergne (1995), Sutherland and 
Balacheff (1999).
8 Another student’s search for an explanation illustrates well what is meant here by mechanical 
world: “So... I have said... But is not very clear... That when, for example, we put P to the left, then 
P3 compensates to the right. If it goes up, then the other goes down...” (Sébatien, [prot. 78–84]).
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In the next section, I will explore this issue of representation and its relation with 
the learners’ building of meaning, and then take up the challenge of defining 
“knowing” in a way that may not solve the old epistemological problem but will 
provide some grounds to build a link between knowing and proving.

9.2.2 � Trust, Doubt and Representations

The fascination for proof without words9, which would give access to the very mean-
ing of the validity of a mathematical statement without the burden of sophisticated 
and complicated discourses, is a symptom of the expectations mathematics educators 
have attached to the use of nonverbal representations in mathematics teaching. The 
development of multimedia software, advanced graphical interfaces and access to 
“direct manipulation” of the represented “mathematical objects” has even strengthened 
these expectations. The above story of the Fabien and his tutor’s misunderstandings 
is initial evidence that things might be slightly more difficult. I will explore this 
difficulty now, starting with an example coming from professional mathematics.

In 1979, Benoit Mandelbrot noticed in a picture produced by a computer and a 
printer that the Mandelbrot set10 – as it is now known, following a suggestion of 
Adrien Douady – was not connected. “A striking fact, which I think is new” 
Mandelbrot11 remarked. John Hubbard, a former PhD student of Adrien Douady’s 
who became his well known collaborator, reported that:

Mandelbrot had sent [them] a copy of his paper, in which he announced the appearance of 
islands off the mainland of the Mandelbrot set M. Incidentally, these islands were in fact 
not there in the published paper: apparently the printer had taken them for dirt on the origi-
nals and erased them. (At that time, a printer was a human being, not a machine). 
Mandelbrot had penciled them in, more or less randomly, in the copy [they] had. (Hubbard 
2000 pp. 3–4)

This anecdote reflects two things: first, the efficiency and strength of the computer-
based picture in supporting a conjecture; second, the fragility of this same picture, 
which depends on both the algorithmic and technical conditions of its production. 
Then, Hubbard reported:

One afternoon, Douady and I had been looking at this picture, and wondering what hap-
pened to the image of the critical point by a high iterate of the polynomial z0 + c as c takes 

9 See Claudi Alsina and Roger B. Nelsen (2006), Math Made Visual: Creating Images for 
Understanding Mathematics, published by MAA, and a good example in Roger B. Nelsen (1993), 
Proofs without words: exercises in visual thinking, published by MAA. See Hanna (2000, esp. 
pp.15–18) for an analysis.
10 Considering the sequence of complex numbers z

n+1
 = z

n
2 + c, the Mandelbrot set (or set M) is 

obtained by fixing z
0
=0 and varying the complex parameter c.

11 Quotation from p.250 of Mendelbrot (1980) Fractal aspects of the iteration of z→lz(1-z) for 
complex l and z. Annals of the New York Academy of Sciences. 357 (1) 249 - 259
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a walk around an island. This was difficult to imagine, and we had started to suspect that 
there should be filaments of M connecting the islands to the mainland. (ibid.)

Soon, Adrien Douady realized that this meant that the set M is connected12, but “the 
proof of this fact is by no means obvious,” he remarked (Douady 1986, p. 162). The 
proof followed after a long process of writing, initiated by a Note aux Comptes-
rendus in 1982. After the discovery of the connectedness, images of the set M got 
transformed, offering a more beautiful picture full of colors which, so to speak, 
“displayed” the connectivity of M (Fig. 9.2).

This case supports the idea of complex relations between representation and 
mathematical objects – or, more precisely, the role of representations as mediators 
for the conceptualisation of mathematical objects. It invites more caution in consid-
ering evidence in a nonverbal representation. Not to say that nonverbal representa-
tions or expressions of an argument are of no value; rather, I emphasize that the 
frequent claim in education that, “A picture is worth a thousand words” has limits 
and cannot be accepted without further examination.

For example, graphic calculators are widely used by students. They provide students 
with efficient tools for calculus, blending graphical and symbolic representations. 
The use of this technology has led to new problem-solving strategies that take advan-
tage of the low cost of exploring of graphical representations. Among them is what 
Joel Hillel (1993, p. 29) called “window shopping,” which consists of playing with 
the various possibilities offered by the display. The diagrams (Fig. 9.3) reproduce 
two appearances of the graph of the same function, f(x) = x4 − 5x² + x + 4. As one can 
“see,” these pictures can induce different conjectures about, for example, the num-
bers of zeros of the polynomial or its behavior within the interval [−2, +2]

It is now common for teachers to warn students and teach them strategies to 
ensure reliable, optimal use of their calculators. Still, the problem of knowing how 

The Mandelbrot set for z®z2+c
before and after the Douady and Hubbard discovery

Fig. 9.2  The Mandelbrot set for z→z2+c before and after the Douady and Hubbard discovery

12 Régine Douady remembers that Adrien had been quickly convinced of the connectivity of M, 
thanks to the theoretical argument which convinced him in an astonishingly “simple” way. 
However, to complete the explicit proof took some time (2008, personal communication).
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to balance trust and doubt when using these machines and looking for conjectures 
has no straightforward answer. Part of achieving this balance depends not only on 
how learners critically organize their explorations but also on the reliability of the 
embedded software. Consider the case of the function g(x) = sin(ex). Most students 
are prepared to study this function without a priori foreseeing difficulties; that is, 
until their machine displays something like Fig. 9.4.

“Window shopping” will not help to answer the questions this display raises. An 
algebraic study will just leave students with a question they probably cannot solve 
with their knowledge of mathematics and computer science. This picture results 
from the interference between the computation of the coordinates of each point to 
be displayed and the choice of which pixel to turn black on the screen. In the end, 
it is the product of a kind of stroboscopic effect, as suggested by Adrien Douady13. 
Producing a “correct” figure would be a matter of first mathematically notating 
both the capabilities and the limitations of the drawing instrument and then using 
sophisticated computational strategies to decide on the intervals at which to plot an 
“informative” graph.

The problem of how students can decide to trust or doubt mathematical 
representations goes beyond graphical representations to include any representa-

Fig. 9.4  A stroboscopic effect 

Fig. 9.3  Two representations for one function, an example of window shopping (Hillel 1993, p.29) 

13 Personal communication
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tion. A last example, taken from Luc Trouche work (2003) on computer algebra 
systems demonstrates this. Consider the equation [Ln(ex − 1) = x]: One can use a 
pocket graphical calculator to solve it algebraically or to graph it; the two pictures 
below (Fig. 9.5) (from Trouche 2003, p. 27) show the respective results.

The results speak for themselves. The optimal treatment leading to a solution – 
in this case, that this equation has no solution – consists of a formal transformation 
of the algebraic expression, producing [ex − 1 = ex].

The difficulty students may have relates not to their lack of mathematical know
ledge but to a general human inclination not to question their knowledge and their 
environment unless there is a tangible contradiction between what is expected after 
a given action and what is obtained, as my final example will demonstrate.

In this case, upper secondary students were asked to tell what is the limit at + ∞ of 
the function [f(x)=ln(x)+10sin(x)]. Without a graphic calculator, only five percent 
of the students answered wrongly; with a graphic calculator, which displayed the 
window reproduced below (Fig. 9.6), this number grew to 25% (Guin and Trouch 
2001, p. 65).

Given such cases of error, teachers and mathematics educators might have to 
consider whether graphic calculators contribute positively to mathematics learning 
or whether students have difficulty shifting from one semiotic context to another. 
(Other examples of common errors include: the value of p is exactly 3.14, or a 

Fig. 9.5  A case where a graphic calculator misleads the user (Trouche 2003, p.27) 

Fig. 9.6  Ploting the function [f(x) = ln(x) + 10 sin (x)] 



124 N. Balacheff

convergent series reaches its limit, or the Fibonacci series U
0 
= 1, U

1 
= (1 + √5)/2, 

U
n 
= U

n−1 
+ U

n-2
 is divergent). Most such errors, or “misconceptions” to use the 1980s 

term, are probably symptomatic of the students’ knowledge, which can be legiti-
mate in certain contexts although possibly wrong mathematically. To analyse this 
issue further, we must have a conceptualization of the students’ knowledge which 
(i) allows us to make sense of it from a mathematical perspective; (ii) is relevant 
from a cognitive perspective; and (iii) opens the possibility of didactical solutions.

9.2.3 � A Phenomenological Definition of Knowing

Studying students’ productions that were mathematically incorrect, the mathemat-
ics educators of the 1980s usually chose to use the word “misconception.” As noted 
by Jere Confrey (1990), such student errors should be first considered as indications 
of what they know. Comfrey used the generic word “conception” to refer to the 
rationale of students’ answers to a given problem or question. I postulate that such 
conceptions result from the learner’s interactions with the environment, and that 
learning is both a process and an outcome of the learner’s adaptation to this envi-
ronment. By “environment,” I refer to a physical setting, a social context or even a 
symbolic system (especially now that the latter can be depicted by a technology 
which dynamically materializes it).

However, only some characteristics of the environment are relevant from the 
point of view of learning. Educators do not deal with the learner in all his or her 
social, emotional, physiological and psychological complexity, but from a knowledge 
perspective: as the epistemic subject. The same principle applies to the environment, 
which we restrict to the milieu defined as the subject’s antagonist system in the 
learning process (Brousseau 1997, p. 57); that is, we only consider those features of 
the environment that are relevant from the epistemic perspective. This means that 
our characterizations of the (epistemic) subject and of the milieu are interdependent 
systemically (and dynamically, since both will evolve during the learning process).

Pragmatically, the only accessible evidences of a conception are behaviors and 
their outcomes. The educator’s problem is to interpret this evidence as an indicator 
of adaptive strategies, and demonstrate the student’s conception in a model 
(Brousseau 1997, p. 215)14. Below, I propose a formalization that will provide such 
a model. Below, I propose a formalization that will provide such a model. 
Recognizing this interdependence, expressed by Noss and Hoyles15 (1996, p. 122) 
as situated abstraction, accepts that people could demonstrate different and possibly 
contradictory conceptions depending on circumstances, although knowledgeable 
observers may ascribe them to the same source concept.

14 For the convenience of the English-speaking reader, I take all the references to Brousseau’s 
contributions to mathematics education from Kluwer, 1997 but Brousseau’s work was primarily 
published between 1970 and 1990.
15 This proposition should be understood in the light of the development of the “situated learning 
paradigm” of Jeane Lave and Etienne Wenger, whose work was published in the early 1990s.
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Thus, a conception is attached neither to the subject nor to the milieu, but exists as 
a property of the interaction between the subject and the milieu – its antagonist system 
(Brousseau 1997, p. 57). The objective of this interaction is to maintain the viability of 
the subject/milieu system (or [S↔M] system) by returning it to a safe equilibrium after 
some perturbation (i.e., the tangible materialization of a problem). This implies that the 
subject recognizes the perturbation (e.g., a contradiction or uncertainty) and that the 
milieu has features which make the perturbation tangible (since otherwise, the milieu 
may “absorb” or “tolerate” errors or dysfunctions) (Fig. 9.7).

From this definition of conception, I can derive a definition of knowing as the 
characterization of a dynamic set of conceptions. This definition has the advantage 
of being in line with our usual use of the word “knowing” while providing grounds 
to understand the possible contradictions evidenced by learners’ behaviors and their 
variable mathematical development. A conception is a situated knowing; in other 
words, it is the instantiation of a knowing in a specific situation detailed by the 
properties of the milieu and the constraints on the relations (action/feedback) 
between this milieu and the subject.

This definition of conception provides a starting point but still has to be refined 
in order to make it relevant to our research. To do so, I will now introduce the model 
cK¢16, in order to provide an effective tool to concretely represent and analyze the 
corpus of data obtained from the observation of students’ activities. This model 
aims to establish a necessary bridge between knowing and proving by providing a 

A conception  is the state of dynamical equilibrium of  
an action/feedback loop between a subject and a 
milieu under proscriptive constraints of viability. 16

Fig. 9.7  A conception is the state of dynamical equilibrium of an action/feedback loop between 
a subject and a milieu under proscriptive constraints of viability. These constraints do not address 
how the equilibrium is recovered but the criteria of this equilibrium. Following Stewart (1994, pp. 
25–26), I argue that these constraints are proscriptive – they express necessary conditions to 
ensure the system’s viability – and not prescriptive, since they do not tell in detail how equilibrium 
must be reconstructed.

16 The letters cK¢ stand for : “conception,” “knowing” and “concept”; more about this model is 
presented and discussed on [http://ckc.imag.fr]

http://ckc.imag.fr
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more balanced role to control structures with respect to the role usually assigned to 
actions and representations.

9.2.4 � A Model to Bridge Knowing and Proving: cK¢

That validation plays a key role in the emergence of “knowing” has been estab-
lished at least since Popper proposed the criterion of falsification and Piaget intro-
duced the process of cognitive disequilibrium. This principle is also inherent in a 
“conception” as we define it, adding the explicit condition that a conception is not 
self-contradictory.

“Proving” is the most visible part of the intellectual activity related to validation. 
However, as the Italian school has clearly demonstrated (Boero et  al. 1996a), 
proving cannot be separated from the on-going controlling activity involved in 
solving a problem or achieving a task. To some extent, “proving” can be seen as an 
ultimate achievement of controlling and validating. No one can claim to know 
without a commitment to and a responsibility for the validity of the claimed knowl-
edge. In return, this knowledge functions as a means to establish the validity of a 
decision in the course of performing a task and even in the process of building new 
knowledge – especially in the learning process. In this sense, knowing and proving 
are tightly related. Hence, a conception is validation dependent: In other words, we 
can diagnose the existence of a conception because there is an observable domain 
in which “it works,” in which there are means to validate it and to challenge 
possible falsifications. This is the essence of Vergnaud’s (1981, p. 220) statement 
that problems are the sources and criteria of concepts.

Vergnaud demonstrated that we could characterize students’ conceptions with 
three components: problems, representation systems and invariant operators (1991, 
p. 145)17. I take this model as a starting point, with the addition of the related 
control structure.

Then, I can characterize a conception by a quadruplet (P, R, L, ∑) in which:

P is a set of problems,––

This set corresponds to the class of the disequilibria the considered subject/milieu [S↔M] 
system can recognize; in mathematical terms: P is the set of problems which can be solved 
– in pragmatic terms, P is the conception’s sphere of practice.

R is a set of operators,––
L is a representation system,––

R and L describe the feedback loop relating the subject and the milieu, namely the actions, 
feedbacks and outcomes.

–– ∑ is a control structure,

The control structure describes the components that support the monitoring of the equilib-
rium of the [S↔M] system. This structure ensures the conception’s coherence; it includes 

17Vergnaud in fact proposed this definition at the beginning of the 1980s.
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the tools needed to take decisions, make choices, and express judgement on the use of an 
operator or on the state of a problem (i.e., solved or not).

This model aims at accounting for the [S↔M] system and is not restricted to one 
of its components18. The representation system allows the formulation and the 
manipulation of the operators by the active subject as well as by the reactive milieu. 
The control structure allows expression and discussion of the subject’s means for 
deciding the adequacy and validity of his or her action as well as the milieu’s crite-
ria for selecting a feedback. This symmetry allows us both to take the subject’s 
perspective when evaluating his or her knowing and the milieu’s perspective when 
designing the best conditions to stimulate and support learning. Moreover, it gives 
us a framework in which to describe, analyze and understand the didactical com-
plexity of learning proof by taking into account the interrelated relevant dimen-
sions: the subject, the milieu and the problem.

In the next section I will give an illustration of this distinctive role of the control 
structure and the light it sheds on the learners’ behaviors we observe and aim at 
understanding. I will then summarize the proposed framework discussing the 
relations we must establish between action, formulation and validation in order to 
understand the didactical complexity of learning and teaching mathematical proof. 
These three dimensions provide the means we need to build a bridge between 
knowing and proving.

9.3 � Proving From a Learning Perspective

9.3.1 � Short Story 2: Vincent and Ludovic Mismatch

Vincent and Ludovic are two middle school students who had no specific difficul-
ties with mathematics. They volunteered to participate in an experiment that Bettina 
Pedemonte (2002) was carrying out to study the cognitive unity between problem 
solving and proof. The problem was the following:

Construct a circle with AB as a diameter. Split AB in two equal parts, AC and 
CB. Then construct the two circles of diameter AC and CB… and so on (Fig. 9.8).

How does the perimeter vary at each stage?
How does the area vary?
With no hesitation, the two students expressed – with the formulas they knew 

well – the perimeter and the area of the first steps in the series of drawings. Their 
letters represent quantities and the formulas are another description of the reality 
the drawing factually displays. The students conjectured that the perimeter will be 
constant and that the area decreases to zero. But Vincent noticed that “the area is 

18By extension, one can often refer to students’ conceptions as acceptable given that one can 
account precisely for the circumstances, which are the milieu and the constraints within which 
[S↔M] functioned.
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always divided by 2…so, at the limit? The limit is a line, the segment from which 
we started ….” The discussion then continued:

	41.	 Vincent: It falls in the segment… the circle are so small.
	42.	 Ludovic: Hmm… but it is always 2pr.
	43.	 Vincent: Yes, but when the area tends to 0 it will be almost equal…
	44.	 Ludovic: No, I don’t think so.
	45.	 Vincent: If the area tends to 0, then the perimeter also… I don’t know…
	46.	 Ludovic: I will finish writing the proof.

Although Vincent and Ludovic collaborate well and seem to share the mathematics 
involved, the types of control they have on their problem-solving activity differ. 
Ludovic is working in the algebraic setting (c.f., Douady 1985); the control is 
provided by his ensuring the correctness of the symbolic manipulation and his know
ledge of elementary algebra. Vincent is working in a symbolic-arithmetic setting; 
the control comes from a constant confrontation between what the formula “tells” 
and what is displayed in the drawings. Both students understood the initial situation 
in the “same” way, both syntactically manipulated the symbolic representations 
(i.e., the formulas of the perimeter and of the area), but their controls on what they 
performed were different, revealing that the conceptions they mobilized were also 
significantly different. I deduce that the operators they manipulated (algebraic writ-
ings, sketching diagrams, etc.), although they coincided from the behavioral 
perspective, were semantically different. Moreover, from this evidence, an observer 
could argue that the students were not addressing the same “problem”; Vincent was 
“baffled” by the gap between what he saw and what he computed, while Ludovic 
was “blind” to this gap. (Actually, Ludovic’s knowledge of calculus would not have 
been sufficient to provide any relevant explanation).

Construct a circle with AB as a diameter.  Split AB in two equal parts, AC and  
CB.  Then construct the two circles of diameter AC and CB… and so on.  

How does the perimeter vary at each stage?
How does the area vary?

Fig. 9.8  Short story 2 problem 
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The symbolic representation plays the role of a semiotic mediator between the 
two students’ different conceptions. It allows communication between the students 
and is instrumental for each in controlling the problem-solving process and building 
a proof. We know that two different representations may demonstrate two different 
understandings; however, here one given representation also supports different 
understandings and hence different proofs.

9.3.2 � The Complex Nature of Proof

Many theorists have attempted to answer the question of what counts as a proof, from 
either an epistemological or an educational point of view. However, there is no single, 
final answer. The Vincent and Ludovic discussion above confirms that sheer formal 
computation is not enough. As in one of the best previous anecdotes in the history of 
mathematics19, Vincent could well say to Ludovic: I see it, but I don’t believe it. As 
several authors have emphasized, a proof should be able to fulfill the need for an 
explanation; however the explanatory nature of a proof may become the object of an 
even more irreconcilable disagreement than was its rigor. Consider the simple math-
ematical statement: The sum of two even numbers is itself even. Figure 9.9 provide a 
sample of proofs of this statement. A discussion of these proofs by mathematicians, 
mathematics teachers and learners provokes very different responses from each.

The arguments in such a discussion involve three types of critical considerations: 
the search for certainty, the search for understanding and the requirements for a 

Fig. 9.9  Example adapted from Healy and Hoyles (2000, p. 400)

19 “Je le vois, mais je ne le crois pas,” wrote Cantor to Dedekind, in 1877, after having proved that 
for any integer n, there exists a bijection between the points on the unit line segment and all of the 
points in an n-dimensional space.
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successful communication. The complex nature of proof lies in the fact that any 
effort to improve a candidate-proof on one of these dimensions may change its 
value on the other two. There is no clear standard to decide on the correct balance. 
Restricting the evaluation to the “certainty” side is playing safe, as this side is com-
pulsory for the transformation of mathematical ideas. However, such reductionism 
is not viable from a learning perspective, especially when students are first intro-
duced to mathematical proof; their control structures are not appropriately evolved. 
Educators at this point need to give academic status to activities that may not lead 
to what would be a proof for professional mathematicians but that still make 
sense as mathematical activities. Hence, my proposal to structure the relations 
between explanation, proof and mathematical proof as I did to ground my own 
work (Balacheff 1988). This structure distinguished between pragmatic and intel-
lectual proof, and within both it identified categories related first to the nature of 
the student’s knowing and his or her available means of representation.

The rationale for this organization (sketched below in Fig. 9.10) is the postulate that 
the explaining power of a text (or nontextual “discourse”) is directly related to the qual-
ity and density of its roots in the learner’s (or even mathematician’s) knowing. What is 
produced first is an “explanation” of the validity of a statement from the subject’s own 
perspective. This text can achieve the status of proof if it gets enough support from a 
community that accepts and values it as such. Finally, it can be claimed as mathematical 
proof if it meets the current standards of mathematical practice. So, the keystone of a 
problématique of proof in mathematics (and possibly any field) is the nature of the rela-
tion between the subject’s knowing and what is involved in the “proof.”

This recognition of a proof’s roots in knowing may justify a statement as strong 
as Harel and Sowder’s that “one’s proof scheme is idiosyncratic and may vary from 
field to field, and even within mathematics itself,” (1998, p. 275). However, this 
view misses the social dimension of proof, which transcends an entirely subjective 
feeling of understanding (as well as “ascertaining” or “persuading”; Harel and 
Sowder, ibid., p. 242). From a didactical perspective, the issue is not psychological 
but epistemological, being directly related to the role a proof plays in building links 
between a theory that provides its framework and means and a statement that it 
aims to validate. The transcendence of a proof, proposed by Habermas (1999) as a 

Fig. 9.10  From its producer perspective what comes first is an “explanation” of the validity of a 
statement, reaching the status of proof and of mathematical proof require specific processes either 
social or syntactical. The explanatory character of the proof may be lost in this process which 
balance the constraints of certitude, understanding and communication 
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requirement for a problématique of truth and justification, is a dimension too often 
forgotten in favor of a psychological or sociological analysis of proving. This tran-
scendence is not a dogmatic but a pragmatic position which allows the construction 
of knowledge as a collective asset which can be shared and be sustainable without 
depending on its author(s) and circumstance(s) of birth.

The technicalities of mathematical proof are then essential, and can be accepted 
as the price for a viable construction of mathematics. In this respect, formal rigor 
is a weapon against the biases that “idiosyncratic proof schemes” may produce.

9.3.3 � Knowing and Proving in the Didactical Genesis of Proof

Learning mathematics starts with the first years of schooling, at least from an insti-
tutional point of view. As is well documented, learners at this elementary level 
depend as much on their experience as on the teacher as a reference to distinguish 
between their opinions, their beliefs and their actual knowledge. The criterion for 
assessing this difference rests either in the tangible efficiency of the knowledge at 
stake or in ad hoc validation by the teacher. But the teacher has to rely on knowledge, 
demonstrating that authority is not the ultimate reference. Hence, efficiency and 
tangible evidence are the supports for the validity of a statement: It’s true because 
we verify that it works. Mathematical learners are first of all practical persons; to 
enter mathematics they have to change their intellectual posture and become a theo-
retician. This shift can easily be seen in the passage from practical geometry 
(the geometry of drawings and shapes) to theoretical geometry (the deductive or 
axiomatic geometry), or from symbolic arithmetic (computation of quantities using 
letters) to algebra. A learner making the transition from the practical to the theoreti-
cal has to face the epistemological difficulty of a transition from knowing in action 
to knowing in discourse: The origin of knowing is in action but the achievement of 
mathematical proof is in language (see Fig. 9.12).

Again, the tight relationship among action, formulation (semiotic system) and 
validation (control structure) imposes itself (Brousseau 1997). This trilogy which 
defines a conception (Fig. 9.11), also shapes didactical situations20; there is no vali-
dation possible if a claim has not been explicitly expressed and shared; and there is 
no representation without a semantic which emerges from the activity (i.e., from the 
interaction of the learner with the mathematical milieu).

Indeed, this passage from mathematics as a tool whose rationale is “transparent,” 
to mathematics as a theoretically-grounded means for the production and evaluation 
of explicit validation has a key stepping stone: language; as a symbolic technology 
(Bishop 1991, p. 82), not just a means for social interaction and communication. 
Language allows learners to understand and appropriate the value of mathematical 
proof compared with the pragmatic proof they were used to. Now, this language 

20 figure 9.11 sketches the interactions between these three poles
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could be of lower levels than the naïve formalism mathematicians use; the level of 
language will bind the level of the proof learners can produce and/or understand. 
However, there is room for genuine mathematical activity at all these levels, pro-
vided that the learners have moved beyond empiricism and have seen the added 
value of the theoretical posture (see Fig. 9.12).

9.4 � Still an Open Problem: The Situations…

After a few decades, researchers have now reached a consensus on the variety of mean-
ings that proof may have for learners (if not for teachers). Several classifications and 
analyses of the complexity of the different aspects of mathematical proof have been 
extensively reported. Although they still express significant differences (Balacheff 
2008), researchers have converged on considering mathematical proof as a core issue 
in the challenge of learning and teaching mathematics; mathematical knowing and 
proving cannot be separated. In other words an educational problématique of proof 
cannot be separated from that of constructing mathematical knowledge.

This challenge is well understood from an epistemological perspective. However, 
it is far from clear from a didactical perspective. A lot of effort has gone into pro-
posing problems and mathematical activities which could facilitate the learning of 
mathematical proof. At the turn of the twentieth century, computer science and 
human–computer interaction research have made so much progress that it is 
possible to provide learners and teachers with environments able to provide much 
more mathematically relevant feedback on users’ activities. Especially, dynamic 
geometry environments and computer algebra systems allow learners to experience 
conjecturing and refuting in a manner never available before, hence giving them 
access to a dialectic necessary to ground the learning of mathematical proof. 

Fig. 9.11  The three interelated and interacting dimensions of mathematical knowledge 
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However, there is some evidence that learners can remain in a pragmatic intellec-
tual posture, not catching the value of mathematical proof.

Prompting the ultimate move from pragmatic to theoretic knowing requires 
designing situations so that the pragmatic posture is no longer safe or economical 
for the learners, while the theoretical posture demonstrates all its advantages. The 
resultant social and situational challenges are levers which one can use to modify 
the nature of the learners’ commitment to proving. Such design is possible if 
solving a problem is no longer the main issue and fades away behind the issue of 
being “sure” of the validity of the solution. We already have some examples which 
witness the possibility of designing such situations (e.g., Bartolini-Bussi 1996, 
Boero et al.1996b, Arsac and Mantes 1997, etc.). The scientific challenge is now to 
better understand the didactical characteristics of these situations and to propose a 
reliable model for their design, for the sake of both researchers and teachers.

This figure illustrates the approximate mapping between the
critical categories in each of the three dimensions (action,
formulation and validation). It requires teachers to provide
students with the means to switch from a pragmatic
approach of truth to a theoretical approach of validity based
on mathematical proof. Realising that language as a tool is a
critical milestone on this move.

Fig.  9.12  This figure illustrates the approximate mapping between the critical categories in 
each of the three dimensions (action, formulation and validation). It requires teachers to provide 
students with the means to switch from a pragmatic approach of truth to a theoretical approach 
of validity based on mathematical proof. Realising that language as a tool is a critical milestone 
on this move
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