
Chapter 9
Automatic Web Data Extraction Based on
Genetic Algorithms and Regular Expressions

David F. Barrero1, David Camacho2, and Marı́a D. R-Moreno1

Abstract Data Extraction from the World Wide Web is a well known, unsolved, and
critical problem when complex information systems are designed. These problems
are related to the extraction, management and reuse of the huge amount of Web data
available. These data usually has a high heterogeneity, volatility and low quality
(i.e. format and content mistakes), so it is quite hard to build reliable systems. This
chapter proposes an Evolutionary Computation approach to the problem of automat-
ically learn software entities based on Genetic Algorithms and regular expressions.
These entities, also called wrappers, will be able to extract some kind of Web data
structures from examples.

9.1 Introduction

Flexible and scalable mechanisms are needed for the integration of information in
order to obtain the necessary data from available sources. However, if these sources
are not structured, for instance being relational-based, or no design has been pre-
viously made by an expert (i.e. a database designer) it is usally difficult to build,
and maintain those mechanisms. The previous situation becomes a critical issue
when talking about the World Wide Web, considered as a highly heterogeneous
data source.

Web Data Extraction (WDE) is a well known and unsolved problem. Also it
is related to the extraction, management and reuse of a huge amount of Web data
available. These data usually has a high heterogeneity, volatility and low quality.
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One popular approach to address this problem is related to the concept of wrappers.
The wrappers [5] are specialized programs that automatically extract data from doc-
uments and convert the stored information into a structured format.

The main contribution of this work is a novel approach to the WDE based on
Genetic Algorithms (GA) [3] which are used to automatically evolve wrappers. The
main difference with other closer approaches [1, 4, 6] is the utilization of regular
expressions using a multiagent system to generate them and extract information [2].
A regular expression, or simply regex, is a powerful way to identify a pattern in a
particular text. Any regex is written in a formal language, that is translated into a
particular syntax like POSIX or Perl, and later processed by a regex engine such as
Perl, Ruby or Tcl. Regular expressions are used by many text editors, utilities, and
programming languages to search and manipulate text based on patterns.

This approach considers the basic (evolved) regex as the atomic extraction ele-
ment. The representation, genetic operators and fitness function are designed in or-
der to obtain simple extraction elements that are later used, shared, and integrated by
a set of information extraction agents. A multi-agent semantic integration plataform
named Searchy [1] is used to deploy and test the evolved regex. This approach has
to find answers for two important questions. First, how the regex can be represented
taking into account its particular features, i.e. vocabulary, syntaxis, grammar and
semantic relationships between the grammatical syntaxis and the patterns that it can
extract. Second, how once a particular individual is found, it can be combined, or
integrated, with others to build a new data extraction (regex).

The following corresponds to the structure of this chapter. Section 2 describes
the basic concepts in GA and its application to wrappers and regular expressions.
Section 3 explains how a variable length population of agents can support the evo-
lution of regular expressions. Section 4 shows how a specific information agent
uses simple gramatical rules to combine, and integrate, the evolved atomic regu-
lar expressions. Section 5 shows the experimental results obtained for a set of web
documents. Finally, some conclusions and future lines of work are outlined.

9.2 Genetic Algorithms and Its Application in Wrappers and
Regular Expressions

This section briefly explains basic concepts related to GA and regex that later will
be used to automatically obtain the wrappers.

9.2.1 Genetic Algorithms

From the AI point of view, GA can be seen as a stochastic search algorithm in-
spired in the biological evolution. GA code the solution of a problem using a string
called chromosome or individual, each chromosome represents a point in the search
space [3]. If the GA is successful, the individuals will evolve exploring the search
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space until a global solution is found and the individuals will converge in that so-
lution. The success or failure of a GA depends on the four principal parameters:
Genome codification, genetic operators, selection strategy and fitness function.

Genome codification is a key subject in any GA. Each chromosome contains
genetic information that codes a solution, therefore it will need a mechanism to
mappings between the solution (phenotype) and the gentic code (genotype). Fig. 9.1
represents an example of binary fixed-length coding. The individual represented is
the string [rc]at. Each attribute in the individual (i.e. each character in the string)
is coded by four bits in the chromosome. The piece of chromosome that codes one
attribute is called gen. Thus, in the example one gen codes one character using four
bits.

Fig. 9.1: Chromosome coding example

Once the coding has been defined, it is necessary to modify the genetic code
of the population in order to explore the solution space. Genome modifications are
done by the genetic operators. There are two main types of genetic operations: re-
combination and mutation. Recombination, also known as crossover, aims to imitate
biological sexual reproduction. It consists of interchanging the genetic code of two
individuals. A simple recombination algorithm is the one-point crossover, that is, it
interchanges two chunks of chromosomes cutting them in a random point. Another
key genetic operator is mutation, it introduces random changes in the genome that
can generate new attributes in the phenotype not presented previously.

It is necessary to introduce a selection strategy in order to improve the population
in the successive iterations of the GA (generations). It is analogous to the biological
natural selection. The goal of the selection strategy is to generate a selective pres-
sure, this means to force good chromosomes to have more probabilities to reproduce
than bad ones. However, there is not a clear non-ambiguous meaning for ”good” and
”bad” yet.

Goodness and badness are two fuzzy concepts that cannot be used in a scien-
tific context without a precise definition. GA defines good and bad using a fitness
function. It is a basic piece of any GA, and it is usually one of the most challenging
problems that must be faced in order to successfully implement a GA. In some cases
defining a fitness function is a trivial issue; however in other problems the definition
of the fitness function is more complex. This is the case of the regex evolution.
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9.2.2 Regular Expressions

Regular expressions [7] conform a powerful tool to define string patterns. Then,
using regex makes possible to manipulate strings according to a potentially quite
complex pattern. An extended and well known use of regex is to define sets of files
in many user interfaces. The string rm *.jpg means in a UNIX shell delete all the
files whose name ends in .jpg. Actually *.jpg is a regex representing the set of all
strings that ends in .jpg.

Many practical applications have been found for regex, especially in the UNIX
community, that has achieved a long experience using this tool. Indeed, regex is
a basic feature of shell commands like ls grep and some programming languages
largely used by the UNIX community like Perl or AWK.

Regex is a powerful tool, with a wide range of applications but generation of
regex is a tedious, error prone and time consuming task, especially when dealing
with complex patterns that require complex regex. Reading and understanding a
regex, even if it is not very complex, is far from being an easy task. In order to ease
regex generation, several assistant tools have been developed, but writing regex is
still a problematic task. An automatic way to generate regex using Machine Learn-
ing techniques is a desirable goal that could likely exploit the potential that regex
provides.

Our approach proposses two stages for the generation of regex. In a first stage a
multiagent system is used to evolve a variable length regex able to extract data from
documents that follow a known pattern. Then, a second stage that uses two or more
evolved specialized regex to compose a complex regex able to extract and integrate
several types of data.

9.3 How Agents Support Data Mining: Variable Length
Population

The first stage of the data extraction mechanism proposed in this paper deals with
the automatic generation of a basic regex. The aim is to use supervised learning
to automatically generate a regex in an evolutionary fashion. A multiagent system
(MAS) is used in order to generate basic regex able to extract information to con-
form a pattern, such as phone numbers or URLs. The agents share a training set
composed by positive and negative examples that are used to guide the evolutionary
process until the regex is generated.

Extraction capabilities from a regex are closely related to its length, and the
length of the regex is determined by the length of the chromosome. Traditional
fixed-length GA introduce an arbitrary constrain to the size of the evolved regex that
should be avoided for many reasons. The GA should be able to self adapt its genome
length without human intervention. One solution might be the use of variable-length
genomes, though our interest is an intrinsic parallel solution like a MAS.



9 Automatic Web Data Extraction 147

Regex are generated by a MAS that unfolds a variable length genome, where sub-
sets of agents use a fixed length genome, as it is shown in fig. 9.2. Each agent runs a
GA containing a population whose individuals own a chromosome of fixed length,
and can evolve by its own with a high degree of independence that conform a mi-
croevolution. Agents are not isolated thus their populations are influenced by other
populations by means of emigration: a part of the population can emigrate from one
agent to another agent every generation, so the evolution of one subpopulation is af-
fected by the evolution of other agents. The result is that the total population of the
MAS presents a macroevolution. Microevolution and macroevolution are different
problems that must be addressed individually.

9.3.1 Macroevolution

The MAS is actually a way to implement variable-length GA, in which the sets of
agents containing populations of different length evolve as a whole. The mechanism
that makes this macroevolution possible is the population interchange among agents.
An agent containing a population with a chromosome of length n always clones a
number of individuals to a population with a chromosome size n+ k, where k is the
gen size (see fig. 9.2). Thus, the genetic operation that modifies the length of the
chromosome is performed when the individual is emigrating, adding a new chunk
in a random position of the chromosome. The chunk that is inserted into the genome
is a non-coding region, i.e., a chunk that codes an empty character and therefore, it
does not affect the phenotype. Otherwise the potentially good genetic properties of
the individual might be lost.

Subpopulation 1

Subpopulation 2

Subpopulation 3

Generation
 1

Generation
 2

Generation
 3

Generation
 4

Chromosome
length

L=n

L=n+k

L=n+2k

Fig. 9.2: Population interchange among agents

An important issue is the selection process of the individuals that emigrate and
the selection of the individuals that are replaced in the target population. Both selec-
tions are done using a tournament, however, there is a difference. The tournament
of the individuals that emigrate is won by the individual with the best fitness, mean-
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while the tournament between the individuals to be replaced is won by the individual
with the worst fitness. In this way, individuals with high fitness in a population have
more chances to emigrate than individuals with a bad fitness. On the other hand,
chromosomes with low fitness will likely be replaced by better immigrant chromo-
somes.

Each agent in the MAS contains chromosomes of different sizes and they send
or receive a bunch of individuals each generation, which unfolds a population using
the same parameters, strategy and fitness function.

9.3.2 Microevolution

A classical fixed-length GA is run within each agent, evolving a population of chro-
mosomes in a microevolution.It can be described in terms of genome codification,
genetic operators, selection strategy and fitness function.

The GA implemented in the MAS uses a binary genome divided in several gens
of fixed length. Each gen represents a symbol from an alphabet composed by a set
of valid constructed regular expressions. It is important to point out that the alphabet
is not composed by single characters, but by any valid regex. These simple regular
expressions are the building blocks of all the evolved regex and cannot be divided,
so, we will call them atomic regex.

Genetic operators used in the evolution of regular expressions are the muta-
tion and crossover. Since the codifications rely in a binary representation the mu-
tation operator is the common inverse operation meanwhile the recombination is
performed with a one-point crossover. These genetic operators do not modify the
genome length; chromosomes modify their length only when an individual is mi-
grating to another agent. The selection mechanism used is the tournament selection.

From a formal point of view, the fitness function is defined as follows. Given a set
of positive examples, P, with M elements, and a set of negative examples, Q, with
N negative examples, let p ∈ P be an element of P, and q ∈ Q an element of Q, we
define Ω = {ω0,ω1, ...,ωn |ωi ∈ P∪Q,n = N +M} as the set of elements contained
by P and Q; therefore any element of P or Q belongs also to Ω . Let the set of all
regular expressions be R, and r an element of R. Then, we can define a function ϕr,
ϕr(ω) : Ω×R−→N as the number of characters of ω that are matched by the regex
r.

Finally the fitness function F : Q−→ R ∈ [−1,1] is defined as:

F(r) =
1
M ∑

pi∈P

ϕr(pi)
| pi | −

1
N ∑

qi∈Q
Mr(qi) (9.1)

where | ωi | is the number of characters of ωi and Mr(qi) is:

Mr(qi) =
{

1 i f ϕr(qi) > 0
0 i f ϕr(qi) = 0 (9.2)
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Since true positives are calculated based on the characters, and false positives
have no intermediate values, the fitness function presents an intrinsic bias: it is more
sensible to false positives than to true positives. It is important to point out that
the maximum fitness that an individual can achieve is 1 and it is given when all
the positive examples have been completely retrieved and no negative example has
been matched. If a chromosome obtains a fitness of 1, it will be named an ideal
chromosome.

From the evolution of each specialized MAS we obtain a basic regex able to
extract strings matching a pattern. Each MAS requires a training set and, eventually,
an appropriate alphabet of atomic regex. Once the basic regex has evolved, it is
possible to build more complex regex in the second stage of the extraction process.

9.4 Composition of Basic Regex

We use the grammatical rules provided by the regex notation in a composition agent
to integrate the basic evolved regex from the first stage. The composition agent uses
a manually created rule database to integrate two or more basic regex. The agent
applies the grammatical rules to the input regex obtaining a set of composed, poten-
tially complex, regex. They might be not suitable to extract information properly,
so, regex created by the grammatical rules have to be filtered in order to select the
valid ones. We use the traditional data mining F-measure to automatically evaluate
its extraction capabilities and select the composed regex.

Fig. 9.3: Composition agent architecture

A graphical representation of the composition process can be seen in fig. 9.3,
where an example of regex composition is depicted. The composition agent takes
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two basic regex from the output of two evolutive MAS and applies a set of gram-
matical rules stored in a database to generate a set of composed regex.

Suppose that the composition agent takes http://\w+.\.\w+.com and \(\d+\)\d+-
\d+ as basic regex, and the aim is to compose them using a subset of regex opera-
tors, for example, |, (, ), + and ?, then it is possible to define a database of grammat-
ical rules in the composition agent such as:

Rule 1: X|Y Rule 2: XY Rule 3: X+Y? Rule 4: (Y)+|((X)+|foo)

Where X and Y are http://\w+.\.\w+.com and \(\d+\)\d+-\d+. The composi-
tion agent applies the grammatical rules to the input regex generating the following
set of composed regex:

Composed 1:http://\w+\.\w+\.com|\(\d+\)\d+-\d+ Composed 2:
http://\w+\.\w+\.com\(\d+\)\d+-\d+ Composed 3:
http://\w+\.\w+\.com+\(\d+\)\d+-\d+? Composed 4:
(\(\d+\)\d+-\d+)+\((http://\w+\.\w+\.com)+|foo)

Since the regex composition has used a brute force approach, not all the com-
posed rules are supposed to be able to correctly extract data. Therefore, it is neces-
sary to select at least one valid regex. This is done by the regex retrieval capacity
that evaluates the generated regex calculating the F-measure using a dataset com-
posed by several documents (see equation 3). This measure is based on the weighted
harmonic mean from classical Information Retrieval Precision (P) and Recall (R)
values. Of course, other extraction quality measures such as Fβ or E are also valid.
Based on these quantitative measures, automatic estimation of the best composed
regex is possible.

Fmeasure =
2PR

P+R
(9.3)

9.5 Experimental Evaluation

The experimental evaluation has been divided into three stages with different goals.
The first stage is the setup of the experiment, in which several tests were carried
out in order to set the basic GA parameters, necessary for the second stage in which
the regex evolution uses a MAS. Finally, some grammatical rules are used with
the evolved regex and they are automatically evaluated in order to obtain a final
composed regex.

Some initial experiments were carried out to acquire knowledge about the be-
haviour of the regex evolution. In order to achieve this goal a single GA was used
with the same configuration required by the MAS. Due to the lack of space, only
the most significant results are enumerated without further discussion.
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Despite the differences between phone and URL, both evolved regex have sim-
ilar behaviours, in this way it is possible to extrapolate experimental results. The
best results are achieved with mutation probabilities between 0.01 and 0.02 thus an
average mutation probability of 0.015 was fixed to carry out the rest of the exper-
iments. Tournament size has shown to have a remarkable impact to obtain a faster
convergence while avoiding local maximum. Experiments have demonstrated that a
tournament size of three is a good balance. Variation in the size of the population
shows the usual GA behaviour, a population with fifty individuals is a good trade-off
between convergence speed and computational resources.

9.5.1 Results: Regex Evolution

The second experimental stage aims to use a MAS with subsets of agents where pop-
ulations of chromosomes with different lengths are evolving. Six subsets of agents
have been used with chromosomes sizes of 6, 9, 12, 15, 18 and 21 bits organized
in chunks of three bits. The emigration strategy has been set as described in section
3.1. Agents in the MAS run a GA with the parameters obtained in the experiment
setup phase and following the same experimental procedure.

Fig. 9.4 depicts the evolution of the average fitness of each subset of agents for
the phone numbers regex evolution. Since the results for the URL regex evolution
are analogous, no figure is included. It should be noticed the close relationship be-
tween the convergence speed and the chromosome size. The longer is the chromo-
some, the longer it takes to converge because the chromosome codes a solution in a
bigger search space. Another fact that influences the difference in the convergence
speed is found in the limited speed of propagation of good chromosomes along the
MAS.

Fig. 9.4 shows an interesting fact in relation to the different fitness convergente
values in the agents for the phone number evolution. shows is the different fitness
convergence values in the agents for the phone number regex evolution. A popula-
tion with a chromosome length of 6 bits presents a fast convergence to 0.54. With 6
bits only very small phenotypes can be represented, just two symbols, so only part
of the examples can be extracted, achieving a maximum fitness of 0.54. This fact is
also found in populations of size 9, but with less dramatic effects. The populations
with chromosomes of length 12 present a very important growth in the fitness. The
reason is that the shortest ideal regex must be coded with at least 12 bits.

9.5.2 Results: Regex Composition

Two basic regex have been selected for the third evaluation stage, where they are
composed and its extraction capabilities are measured using precision, recall and
F-measure.
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Fig. 9.4: Average fitness for the phone number regex evolution

Table 9.1: Evolved regular expressions
Evolved regex (URL) Fitness Evolved regex (Phone) Fitness
http://-http://http:// 0 \w+ 0
conwww\.http://com-www\.com 0 \(\d+\) 0.33
/\w+\. 0.55 \(\d+\)\d+ 0.58
http://\w+\.\w+\ 0.8 \(\d+\)\d+-\d+ 1
http://\w+\.\w+\.com 1

A dataset was needed to measure the precision and recall. The experiment used a
dataset composed by ten documents from different origins containing URLs and
phone numbers, mixed and alone. Table 9.3 shows basic information about the
dataset and its records. Documents one, two and three are composed by examples
extracted from the training set. The rest of documents are web pages retrieved from
the Web; however documents five and six were transformed to a plain text format in
order to remove all the URLs.

The calculus of precision and recall use the total number of records in the doc-
ument, i.e., the sum of URLs and phone numbers, regardless the evaluated regex.
It means that the result is strongly biased against regex that are not able to extract
both URLs and phone numbers. It should be noticed also that an extracted string is
true if and only if it matches exactly the records, otherwise it has been computed as
a false positive.

Results, as can be seen in table 9.2, are quite satisfactory for the pre-processed
documents, i.e., documents one to five, but measures get worse for real raw docu-
ments. X has a perfect precision; meanwhile Y has a poor average precision of 0.41.
It can be explained looking at Y . This regex has the form http://\w+\.\w+\.com,
which means that it only extracts the protocol and the host name from the URLs,
but it cannot extract the path, a common part of URLs found in the Web.
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A special case is the regex XY, a direct concatenation of X and Y. This regex
extracts URLs followed directly by a phone number; obviously, such situation is not
likely to happen. So, it is unable to extract any record (for this reason these results
are not shown in the table). After all, the best balance between precision and recall
is achieved by the composed regex (X) | (Y ), with a precision of 0.63 and a recall
of 0.62.

Table 9.2: Extraction capacity of basic and composed regex. It is calculated using traditional
precision (Prec.) and Recall values. The table shows the Retrieved elements (Retr) and the True

Positives (TPos) detected.
X Y (X)|(Y)

Retr TPos Prec. Recall Retr TPos Prec. Recall Retr TPos Prec. Recall
Document 1 5 5 1 1 0 0 - - 5 5 1 1
Document 2 0 0 - - 5 5 1 1 5 5 1 1
Document 3 5 5 1 0.5 5 5 1 0.5 10 10 1 1
Document 4 99 99 1 1 0 0 - - 99 99 1 1
Document 5 10 10 1 1 0 0 - - 10 10 1 1
Document 6 0 0 - - 43 6 0.14 0.12 43 6 0.14 0.12
Document 7 20 20 1 0.21 773 12 0.16 0.12 97 32 0.33 0.33
Document 8 37 37 1 0.05 668 76 0.11 0.11 705 113 0.16 0.16
Document 9 24 24 1 0.13 88 1 0.01 0.01 112 25 0.22 0.14
Document 10 0 0 - - 49 23 0.47 0.45 49 23 0.47 0.45
Average 1 0.56 0.41 0.33 0.63 0.62

Precision and recall balance can be quantified with the F-measure (shown in
table 9.3). The (X) | (Y ) regex obtained the best value followed not far by X . As it
was expected, the composition agent selectes (X) | (Y ) based on the F-measure.

Table 9.3: Document record types and F-measure of regexes.
URL Phone X Y (X)|(Y)

Document 1 0 5 1 - 1
Document 2 5 0 - 1 1
Document 3 5 5 0.67 0.67 1
Document 4 0 99 1 - 1
Document 5 0 10 1 - 1
Document 6 0 51 - 0.12 0.12
Document 7 77 20 0.35 0.14 0.33
Document 8 436 37 0.09 0.11 0.16
Document 9 241 24 0.23 0.01 0.17
Document 10 51 0 - 0.46 0.46
Average 0.62 0.35 0.69
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9.6 Conclusions

An innovative approach for data extraction based on regex evolution and grammat-
ical composition of regex has been presented. We have shown that it is possible to
use a GA to evolve regex in a MAS and to apply grammatical rules to the evolved
regex in order to generate a composition of regular expressions with the capacity to
extract different records of data.

Using a MAS to simulate a variable-length genome population has showed to be
a successful way to generate a variable-length chromosome evolution. Each agent
is able to evolve a population and the MAS presents a macroevolution that tends to
generate regex correctly sized.

However, the experiments carried out show some limitations. The linear nature of
the GA codification is not the best option to represent a hierarchical structure such
as a regex. The result is a natural difficulty to define a fine-grained fitness function
able to evaluate not only all the regex, but also its parts. For these reasons the next
step to follow is to use other evolutionary algorithms, such as Genetic Programming
and Grammatical Evolution that overcome this limitation.

Finally, grammatical rules offer a simple way to automatically compose basic
regex and select the best composed regex measuring its F-measure with a set of
documents.
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