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A Multiagent-based Intrusion Detection System
with the Support of Multi-Class Supervised
Classification

Mei-Ling Shyu and Varsha Sainani

Abstract The increasing number of network security related incidents have made it
necessary for the organizations to actively protect their sensitive data with network
intrusion detection systems (IDSs). IDSs are expected to analyze a large volume of
data while not placing a significantly added load on the monitoring systems and net-
works. This requires good data mining strategies which take less time and give ac-
curate results. In this study, a novel data mining assisted multiagent-based intrusion
detection system (DMAS-IDS) is proposed, particularly with the support of multi-
class supervised classification. These agents can detect and take predefined actions
against malicious activities, and data mining techniques can help detect them. Our
proposed DMAS-IDS shows superior performance compared to central sniffing IDS
techniques, and saves network resources compared to other distributed IDS with
mobile agents that activate too many sniffers causing bottlenecks in the network.
This is one of the major motivations to use a distributed model based on multiagent
platform along with a supervised classification technique.

8.1 Introduction

The growing importance of network security is shifting security concerns towards
the network itself rather than being just host-based. Security services are evolv-
ing into network-based and distributed approaches to deal with heterogeneous open
platforms and support scalable solutions. Intrusion detection is the process of identi-
fying network activities that can lead to a compromise of security policy . Intrusion
detection systems (IDSs) must analyze and correlate a large volume of data collected
from different critical network access points [12]. This task requires an IDS to be
able to characterize distributed patterns and to detect situations where a sequence of
intrusion events occur in multiple hosts. In addition, intrusion prevention techniques
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such as user authentication, authorization, encryption, defensive programming and
IDSs are often used as another wall to protect computer systems.

The two main intrusion detection techniques are misuse detection and anomaly
detection . Misuse detection systems [2][10] use patterns of well known attacks or
weak spots of the system to match and identify known intrusions. Misuse detection
techniques in general are not effective against novel attacks that have no matched
rules or patterns yet. On the other hand, anomaly detection systems observe flag
activities that deviate significantly from the established normal usage profiles as
anomalies or in other words as intrusions. Anomaly detection techniques can be
effective against unknown or novel attacks since no prior knowledge about specific
intrusions is required. However, anomaly detection systems tend to generate more
false alarms than misuse detection systems because an anomaly can just be a new
normal behavior [1][9].

As accuracy is the essential requirement for an IDS, its extensibility and adapt-
ability are also critical in today’s network computing environment. There can be
multiple weak points for intrusions to take place in a network system. For example,
at the network level, malicious IP packets can crash a host, and at the host level,
vulnerabilities can occur in system software which can be exploited to execute an
illegal root shell. Since malicious activities at different intrusion points are normally
recorded in different data sources, an IDS needs to be extended to incorporate addi-
tional modules that specialize in certain components of the network systems. Hence,
IDSs need to be adaptive in such a way that frequent and timely updates are possible.

Our research aims to develop a more systematic and automated approach for
building IDSs. We have developed a set of tools that can be applied to a number of
tasks such as capturing data, extracting features, classifying them into known and
unknown attack categories, and ultimately stopping the ongoing malicious activity.
We take a data-centric point of view and consider intrusion detection as a data anal-
ysis process. The central theme of our approach is to apply data mining techniques
to the extensively gathered data to compute a model that accurately captures the
actual behavior and patterns of the intrusions and normal activities. This approach
significantly reduces the need to manually analyze and encode intrusion patterns,
as well as the guesswork in selecting statistical measures for normal usage profiles.
The resultant model is more effective because it is computed and validated using a
large amount of network data. This necessity of analyzing large amounts of data and
finding its nature requires data mining strategies. The instant at which the sign of
an attack is concluded, necessary actions are required which can be accomplished
by intelligent agents. Hence, the integration of agent technology and data mining
techniques makes an IDS more autonomous and efficient.

The remaining part of this chapter is organized as follows. Existing work is dis-
cussed in Section 2. Section 3 presents the design of our proposed DMAS-IDS.
Section 4 describes our experimental setup, and the results of the performance anal-
ysis are given in Section 5. Finally, Section 6 concludes the paper.
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8.2 Existing Work

Various distributed intrusion detection architectures using the multiagent design
methodology and the data mining techniques have been developed. These ap-
proaches widely range from being comprised entirely of mobile agents like the
MANET system [5][13], being merely a collection of static agents as in [17], or
a combination of both as in DIDMA system [7].

IDSs have undergone rapid development in both power and scope in the last few
years. Recently, the agent concept has been widely used in distributed environments
because it provides many favorable characteristics including scalability, adaptabil-
ity, graceful degradation of service, etc. as compared to the non-agent based sys-
tems. Most of the distributed agent-based IDSs introduced more traffic into their
residing network, and therefore the communication protocol between various enti-
ties is also an important aspect that has to be considered. At the same time, most
of the designed agent-based IDSs require comparatively high processing power in
local machines to run the agents and other supportive software. Hence, a lightweight
agent system with low network traffic generation requirements is needed. This can
be accomplished with the use of appropriate data mining strategies.

Data mining techniques such as classification can be useful for both misuse de-
tection and anomaly detection. In network intrusion detection, classification can be
applied to classify network data consisting of malicious behaviors, and several exist-
ing approaches such as RIPPER, Naive Bayes, and multi-Bayes classifiers have been
successfully used to detect malicious virus code. There are alternative classification
approaches which can be effectively utilized for intrusion detection purposes. With
intrusions, it is observed that over the time, the user establishes profile based on the
numbers and types of commands they execute. Data mining classifier approaches
like SOM (Self Organizing Maps) and LQM (Learning Vector Quantization) can be
utilized for reducing dimensionality of these numbers. Furthermore, nearest neigh-
bor classifier approaches based on SOM and LQM can be used to refine the collected
network data in intrusion detection. A number of such systems have been developed
which utilized the fast and efficient computation and pattern matching strategies of
data mining to compliment the low cost and lightweight agent system architectures.

One of the well known examples of applying distributed agent design methodol-
ogy in the intrusion detection domain is the Distributed Intrusion Detection System
(DIDS). DIDS attempts to build a distributed system based on monitoring agents
that reside at every host in the network. Distributed systems present both advantages
and disadvantages. On one hand, the system utilizes the real-time traffic information
from various sources, in the form of data from various host monitors or to assess the
security status of its residing network. However, on other hand, the systems’ scal-
ability is poor for large networks as an increasing number of hosts monitoring the
network also significantly increases the work load of the DIDS director agent. Ad-
ditionally, the data flow between host monitors and the director agent may generate
significantly high network traffic overheads. In [7], a system called DIDMA (Dis-
tributed Intrusion Detection using Mobile Agents) attempted to overcome the scala-
bility issues inherent in the original DIDS architecture by employing mobile agents
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in the data analysis task. Thus, by decentralizing data analysis, DIDMA hoped to
significantly neutralize the effects of the scalability issues.

Another well known system called BODHI [8] was designed for heterogeneous
data sources based on the techniques such as supervised inductive distributed func-
tion learning and regression. It focuses on the guarantee for correct local and global
data models having least network communication. It was implemented in Java and
offers message exchanges and runtime environments of agent systems for the exe-
cution of mobile agents at each local site. A central facilitator agent takes care of
initializing and coordinating the data mining tasks.

A Java-based multi-agent system (JAM) [18] is designed to be used for meta-
learning distributed data mining. In this system, each site agent builds a classifica-
tion model, where different agents built their classifiers using different techniques.
JAM also provides a set of meta-learning. Once combined together, the classifiers
are computed with the central JAM system coordinating the execution of these mod-
ules to classify data sets at all data sites simultaneously.

In [19], a distributed agent-based IDS analyzes anomalies to detect and identify
the denial-of-services (DoS) and data theft attacks. It also attempts to respond to
intrusions in real time by sending out alerts to the designated network administra-
tor when network intrusions are detected. One of its main drawbacks is the design
complexity of its comprising agents, since each agent must take on almost all work
load of network traffic sniffing, data parsing, and intrusion detection. In addition, its
data mining techniques are less powerful since they are capable of detecting only a
limited number of attacks.

8.3 The Proposed DMAS-IDS Architecture

In this study, we present a novel data mining assisted multiagent-based intrusion
detection system (DMAS-IDS) architecture. DMAS-IDS integrates a multi-class
supervised classification algorithm and the agent technology in network intrusion
detection. It utilizes high accuracy and speed response of the Principal Component
Classifier (PCC) [16][20] at the first layer of our proposed architecture. Once the re-
sults from PCC classification are obtained, agents communicate them to the second
layer. The second layer of the DMAS-IDS architecture is integrated with the Collat-
eral Representative Subspace Projection Modeling (C-RSPM) classifier [14] which
includes collateral class modeling, class ambiguity solving, and classification. Re-
sults from this stage of classification are further analyzed by the agents and policies
are derived which are communicated to the next layer using our own designed low
cost and low response time agent communication protocol. The architecture is fur-
ther elaborated in the following sections.
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Fig. 8.1: The system architecture of the proposed DMAS-IDS

8.3.1 Agent Architecture

Fig. 8.1 presents our hybrid layered multiagent-based IDS architecture [15] which
constitutes three layers called Host, Classification, and Manager layers. Each of
these layers comprises of deliberative agents which are well aware of each other’s
presence and are capable of communicating with each other using our developed
communication scheme.

8.3.1.1 Host Layer

This layer marks the entry point of our proposed architecture. These end-user ma-
chines are workstations constituting the network, and they also act as the host agents
inspecting each incoming network connection. Virtually, every machine in a net-
work can be considered as a Host Agent. Host Agents collect network connection
information and classify these connections as ‘normal’ or ‘abnormal’. Here, the
Principal Component Classifier (PCC) is used [16][20].

Each Host Agent belongs to one Classification Agent (in the second layer), to
which it reports the connections that PCC classifies them as ‘abnormal’. The re-
sponsibilities of these agents are (i) capturing network traffic, (ii) detecting abnor-
mal activities in these connections, (iii) passing the classification results to its Clas-
sification Agent, (iv) properly responding to these abnormal activities for intrusion
detection, and (v) passing a subset of the normal connection instances and the ab-
normal connection instances to the Manager layer to be saved in a database for the
purpose of re-training the classifier at a later time.
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8.3.1.2 Classification Layer

The second layer of the DMAS-IDS architecture is the Classification Layer. The
responsibilities of the Classification Agents are (i) responsible for a set of Host
Agents, (ii) classifying the abnormal connection instances found in their host ma-
chines into known attack types, and (iii) passing the classification results to the
Manager Agent. Each Classification Agent is facilitated with a misuse detection
algorithm called the Collateral Representative Subspace Projection Modeling (C-
RSPM) [14]. This is important as the attack type will determine how the IDS should
respond to the attack to safeguard the data in the network.

Unlike the Host Agents, dedicated machines are needed to run the Classification
Agents so that they have enough processing power to handle all classification re-
quests of their Host Agents. Additionally, they have to generate ‘policies’ upon the
instances which are identified as attacks. Once the policy is created, it is commu-
nicated to the next layer called the Manager Layer. All the Classification Agents
present in the network add their policies to the policy repository present in the
‘Database’ in the Manager Layer.

8.3.1.3 Manager Layer

This layer, in terms of contemporary agent models, is the same as the planning layer.
The Manager Agent is in charge of the entire system, performing several support
tasks for the system. Its responsibilities include (i) assigning a Host Agent to the
specific Classification Agent, (ii) assisting the Classification Agents in managing
their host machines and the tasks related to them, and (iii) managing the routers and
firewalls in the network.

The main task performed by the Manager Agent is to take the policies from the
Classification Agents throughout the network. After receiving the policies, the Man-
ager Agent broadcasts them to every agent present in the network. Once the policy is
received by all Host Agents, the corresponding Host Agent who initiated the request
implements the policy. This functionality is important as the Classification Agents
can prevent or lessen the effects of a possible attack by managing resources in those
nodes that they expect to be affected by the incoming attack, such as bandwidth,
communication ports, and connection authorization.

8.3.1.4 Agent Communication

A simple and manageable communication scheme that utilizes a discrete number
of KQML performatives is designed to accommodate the goals of all the aforemen-
tioned agents. Agents use these messages to register with the upper level of agents
and communicate the results of the tasks they are responsible of performing.

As soon as the Classification Agent comes online, it registers itself with the
Manager Agent using the “REGISTER” performative. The same registration pro-
cess applies to the Host Agent when it has to register with the Classification Agent.
However, since the Host Agent needs to know to which the Classification Agent it
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belongs as soon as it comes online, it uses the “RECOMMEND-ONE” performative
to ask the Manager Agent. The Manager Agent then uses the “TELL” performative
to reply to the Host Agent with the available Classification Agent’s IP. As men-
tioned earlier, the Host Agent diagnoses each incoming connection using PCC and
uses the “EVALUATE” performative to communicate this result to the Classifica-
tion Agent. The Classification Agent further classifies any abnormal connection into
a known attack type and derives a policy based on it. It uses the “REPORT” perfor-
mative to communicate the corresponding policy to the Manager Agent. Finally,
the Manager Agent broadcasts this policy to all other agents present in the network
using the “BROADCAST” performative. In our proposed DMAS-IDS architecture,
the TCP/IP Secure Socket Layer (SSL) was adopted for the implementation of the
secure communication channel among the agents to provide total privacy and au-
thentication capabilities. The adoption of cryptographic communication services is
important for making the distributed multiagent IDS architecture immune against
attacks.

8.3.2 Principal Component Classifier (PCC)

In the classification module of C-RSPM, each classifier is called the Principal Com-
ponent Classifier (PCC) [20] (as shown in Fig. 2(a)). PCC will classify a connection
as either normal (non-intrusion) or abnormal (possible intrusion). PCC basically
goes through four basic steps of classification: (i) preprocessing, (ii) Principal Com-
ponent Subspace Projection, (iii) Automatic Representative Component Selection,
and (iv) Establishment of the Decision Rules.

In the preprocessing step, the average and standard deviation of the instances
in the normal class are calculated, and these statistical characteristics are used
to normalize the data. Let L be the set of normalized training data instances,
i = 1,2, . . . , p, j = 1,2, . . . ,L, µ̄i and sii be the sample mean and the variance of
ith row of the trimmed matrix X respectively, and xi j (i=1,2,. . . ,p, j=1,2,. . . ,L) be
the elements in matrix X. Define the normalized un-trimmed data set consists of p
features as shown in Equation (8.1) and its corresponding column vectors as pre-
sented in Equation (8.2), where Equation (8.3) is used for normalization. In order to
decide the percentage of the data instances that can be regarded as outliers, a Parzen
window is used to decide which data instances are retained and which are removed
as outliers according to a defined ‘rtd’ factor. The ‘rtd’ factor is chosen correspond-
ing to the center of a Parzen window where the maximum accuracy is reached. If
there is a tie, then the first one is chosen as the default one.

Z =
{
zi j

}
, i = 1,2, . . . , p, j = 1,2, . . . ,L. (8.1)

Z j = (z1 j,z2 j, . . . ,zp j)′, j = 1,2, . . . ,L. (8.2)

zi j =
xi j− µ̄i√

sii
. (8.3)
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(a) Principal Component Classifier Ar-
chitecture

(b) Collateral representative subspace projection modeling for supervised classifica-
tion architecture

Fig. 8.2: PCC and C-RSPM

Next step is to automatically select the representative principal components
(PCs). In the PC space, only those dimensions that have positive eigenvalues are
selected. Before this, we need to perform the projection for the data instances from
the original space to the PC space. That is, each retained training data instance
is projected to a subspace by using those PCs derived from the normal class. Let
Ei = (ei1,ei2, . . . ,eip)

′ be the ith eigenvector, and (λ 1, E1), (λ 2, E2), . . . , (λ p, E p)
be the p eigenvalue-eigenvector pairs of the robust correlation matrix S. Also, let Y
be the projection of Z onto the p-dimensional eigenspace (shown in Equation (8.4))
consisting of Y j column vectors (given in Equation (8.5)). Then, a sample score
value of the normalized training data instance vector can be computed using Equa-
tion (8.6). We define the p score row vectors of Y, representing the distribution of
the p eigenspace features of all the un-trimmed, normalized, and projected training
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instances, as Ri=(yi1, yi2, . . . , yiL), i=1,2,. . .,p. Following this, a lambda score value
is computed for each PC.

Y =
{
yi j

}
, i = 1,2, . . . , p j = 1,2, . . . ,L. (8.4)

Y j = (y1 j,y2 j, . . . ,yp j)′, j = 1,2, . . . ,L. (8.5)
yi j = Ei

′Z j = ei1z1 j + ei2z2 j + . . .+ eipzp j. (8.6)

In the attempt to generate a better predictive model, the set of available score
row vectors is refined by eliminating those possessing extremely insignificant or
null variability, i.e., extremely little standard deviation. Next, a distance measure is
defined as shown in Equation (8.7).

c j = ∑
m∈M

(ym j)2

λm
. (8.7)

Finally, the classification decision rules can be established, where the decision
rules to classify each of the data instances X ′

j, j=1,2,. . . ,N′, are based on the selected
threshold value Cthresh. The details of the steps of establishing the decision rules and
determination of Cthresh can be found in [14]. In summary, we classify the jth testing
data instance as abnormal if c′j > Cthresh.

8.3.3 Collateral Representative Subspace Projection Modeling
(C-RSPM)

Among various data mining techniques, supervised classification has become an
essential tool that has been applied successfully in diverse research areas including
network intrusion detection systems. Since it shows promising results with a number
of data sets as compared to other available algorithms, it is utilized in our proposed
framework. The system architecture of our previously developed C-RSPM classi-
fier [14] is illustrated in Fig. 2(b). As can be seen from this figure, it includes the
Classification module and Ambiguity Solver module.

The Classification module is composed of an array of deviation classifiers (i.e.,
one PCC for each class) which are executed collaterally. That is, each of the classi-
fiers receives and classifies the same testing instance simultaneously [14]. The basic
idea of the C-RSPM classifier is that each classifier is trained with the data instances
of a known class in the training data set. Thus, training the C-RSPM classifier con-
sists basically of training each individual classifier to recognize the instances of each
specific class. In the ideal case, a testing data instance will be classified as ‘normal’
to only one classifier’s training data instances. However, in realistic situations, a test-
ing data instance may be classified as ‘normal’ by multiple classifiers or none of the
classifiers considers it as ’normal’. To address these two scenarios, the Ambiguity
Solver module is introduced. Ambiguity Solver captures and coordinates classifica-
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tion conflicts and also provides an extra opportunity to improve the classification
accuracy by estimating the true class of an ambiguous testing data instance.

There can be one more scenario for class ambiguity, which arises with a simple
fact that no classifier can ensure the 100% classification accuracy, as in most cases,
a data set would contain classes with very similar properties. Thus it makes it diffi-
cult for a classifier to identify the correlative differences between these classes with
small feature differences.

Unlike many other algorithms which upon encountering such issues simply resort
to solutions such as the random selection of a class label from among the ambiguous
class labels, the C-RSPM classifier attempts to properly address the issues by defin-
ing a class-attaching measure called Attaching Proportion for each of the ambiguous
classes. The goal of solving such an ambiguity issue via attaching proportion mea-
sure is to label an ambiguous testing data instance with the label of the classifier
exhibiting the lowest Attaching Proportion value. Additionally, the Attaching Pro-
portion can be viewed as a measure of the degree of normality of a data instance
with respect to a class, indicating the percentile of normality the data instance under
analysis is associated to the corresponding class.

8.3.4 Policy Derivation at Classification Agents

Ideally, an IDS should aim at not only detecting the intrusions but also stopping
them as soon as they are detected. Our proposed architecture takes this requirement
of the IDSs into consideration as well. As mentioned above, the Classification Agent
derives a policy after it concludes the type of the abnormal connection, and then
reports this policy, rather than the attack type, to the Manager Agent.

Policy derivation plays a very important role in the scenarios when the same
attacker generates different attacks to different hosts in the same cluster at the same
time instant or at different time instants. If the Classification Agent just reports the
attack types, it does not serve the purpose, as the Manager agent may recommend
a common measure for all different attacks at different hosts. In such situations, the
policies prove their importance since policies provide the solutions to the ongoing
attacks. This could be better explained with the example as follows. If an attacker A
makes one attack called ‘attack1’ at host HA1 and the other attack called ‘attack2’
at host HA2, and both hosts belong to Classification Agent CA. Understanding the
properties of ‘attack1’, it is enough to block the access of the attacker to a particular
port; whereas for ‘attack2’, it may be required to block the access of the attacker to a
particular server in the network. It is very much expected that in real case scenarios,
we cannot just go blocking each doubtful machine. Hence, it is required to have
case specific solutions, and policies can well provide acceptable solutions for this.
Policies add more dynamicity and adaptability to an IDS by providing attack specific
solutions.

To demonstrate how such types of policies can be established, in our experiments,
three types of policy options are defined. Of course, more policies can be defined



8 A Multiagent-based Intrusion Detection System 137

to accommodate different network intrusions. Following gives the three pieces of
policies that are defined in our experiments.

1. Block;
2. Block on a port; and
3. Block on a server.

As soon as the Classification agent concludes the attack type, it looks at the features
of the attacks, chooses one of the three policy options, and then reports this to the
Manager Agent. Fig. 8.3 shows a screen dump where incoming instances are being
blocked to the port which has been diagnosed as a penetration point in the network.

Fig. 8.3: Policy derivation and implementation

8.4 Experimental Setup

In order to assess the overall performance of our DMAS-IDS together with the our
previously developed communication protocol in a realistic scenario, a prototype of
the proposed architecture was implemented using Java RMI package in the partic-
ular lipe RMI [11], which allows a number of machines to communicate with each
other at the TCP level. We have conducted evaluations in terms of scalability-related
criteria such as network bandwidth and system response time for the analysis of our
implemented protocol and proved its performance in our previous study [15]. Fig.
8.1 shows our DMAS-IDS network testbed, where the different types of agents were
placed in mutually exclusive machines within the testbed in a manner such that any
communication among the agents could only be realized through the generation of
network traffic rather than local traffic within the same machine.

In order to test our framework, various experiments were organized to assess
the performance of (i) the response time characteristics of the proposed architecture
in terms of agent communication with supervised classification scheme, and (ii)
the accuracy of classification and policy derivation of the agents. Both the training
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and testing data sets were acquired from network traffic data generated in our own
testbed. To evaluate the performance of the proposed framework, the classifiers were
trained offline with the data generated from the testbed. Here, ten types of traffic
were generated, which include 5,000 normal connections and 100 connections for
each type of abnormal traffic classes. The generated ‘normal’ connections provide
a proper quantity of data and transfer them during a 5-second interval; whereas typ-
ical abnormal connections generate a large amount of data in a short span of times
(varying for all types of attacks) continuously. For example, connections sending
extremely huge packets are used to simulate the ‘ping of death’ attacks; connections
with a lot of packets in a short time duration simulate the ‘mail bombing’ attacks;
connections which try to access the reserved ports are simulated as the ‘Trojan in-
fections’; connections transmitting a number of large packets in a short time are
used to simulate the ‘buffer-overflow’ cases, etc.

For processing these data sets, a number of tools were employed including our
own previously developed tools. As mentioned above, in JAVA’s JPCAP [3][4][6],
packages were used in our program to capture the packets from the network inter-
face card and TCP trace was used to transform these packets into data instances. This
traffic was generated using our own developed traffic generator, which is capable of
generating a number of myriad attacks by simply varying its input parameters. The
TCP trace extracts 88 attributes from each TCP connection like elapsed time, num-
ber of bytes, and segments transferred on both ways, etc. We have also utilized our
own developed feature extraction technique to extract 46 features from the output
of TCP trace, which are useful for the proposed DMAS-IDS. These features include
some basic, time based, connection-based, and ratio-based network features. Out of
these 46 features, 14 are real time rates which are employed for our experiments.

The focus of our testbed based experiments is on network attacks based on the
TCP network protocol, since a great majority of the attacks are either executed via or
rely on a certain degree on the TCP protocol. This is due mostly to TCP’s frangibility
and instability. Please note, however, that our proposed architecture is not limited to
the detection of simply TCP based network attacks. The network protocol is simply
one of many categorical features employed to describe a network connection.

Having our tools installed in all of the machines in our testbed, we start the traffic
generator on one of the machines serving as the sender and have another machine as
the receiver where we have our Host Agent running. This Host Agent captures the
incoming packets by reading it from the network card in the machine and caches it
in the memory at the interval of every 5 seconds. Next, it calls the TCP trace soft-
ware which reads the dump files and converts them to the data instances. Having the
data instance from the TCP trace, the Host Agent calls our feature extraction tool
to extract the required features from the data instance. After retrieving the result-
ing features from each data instance (i.e., a network connection), the Host Agent
classifies it using PCC.

We had saved all the classification parameters for each of the classes into text
files in the training phase. This helps us classify data instances in real time. PCC
[20] classifies the data instances only in ‘normal’ and ‘abnormal’ classes and re-
turns this label to the Host Agents. If the data instance is classified as ‘normal’,
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then it is saved with the Host Agent, but if it is classified as ‘abnormal’, then the
Host Agent further sends it to its Classification Agent on another machine using
the ‘EVALUATE’ message. Upon receiving the ‘EVALUATE’ message with the ab-
normal instance information, the Classification Agent calls C-RSPM [14] to further
analyze this data instance to classify it to a predefined known attack class. This la-
bel is used by the Classification Agent to derive its policy by looking at the features
of that attack. The Classification Agent then places this policy into the ‘REPORT’
message and connects it to the Manager Agent which is located on another different
machine. Upon receiving the message from the Classification Agent, the Manager
Agent broadcasts it to all the Classification Agents in the network which further
send it out to its Host Agents using the ‘BROADCAST’ message.

8.5 Results and Analysis

Our implemented agent architecture (excluding C-RSPM) has made its mark by
proving its scalability, low cost, and low response time in our previous study [15].
It was evaluated with a number of experiments and a total of 506 agents were sim-
ulated altogether. We simulated 500 host agents and 5 classification agents along
with one manager agent. The experiments over this setup were conducted in order
to evaluate its performance in terms of its bandwidth requirements and response
time. From [15], it can be observed that the system scaled linearly in terms of the
attack response time. The highest response time was of 95 seconds for 100 host
agents, 5 classification agents, and 1 manager agent, which is absolutely negligible.
This also proved how fast our agents respond and hence how fast they can deliver
the task assigned. Also, the bandwidth consumption results of this system were less
than 1 MBit/sec, which is almost negligible as well. This demonstrates our com-
munication protocol enables information exchange with low overhead and system
scalability. This makes our proposed system low cost which is definitely a desir-
able feature for any distributed system. It is also clear from the results that in our
proposed architecture, the performance of the system will not deteriorate too much
with the increase in the number of attacks, which is justified by its low bandwidth
consumption and quick response time behavior.

Next, the performance of C-RSPM was evaluated in [14]. As mentioned above,
it is capable of performing high accuracy supervised classification and outperforms
many other classification algorithms. C-RSPM has shown excellent performance
with our testbed data and it has shown that it achieved 100% accuracy for some of
the classes for our attack data generated from the testbed, and 99.97% on average for
other data with the standard deviation varying only up to 0.09. This was motivating
enough for us to integrate it with our agent system and build the proposed DMAS-
IDS architecture.

Having proven the performance of our prior developed sub-systems, we next
move to demonstrate the performance of the entire DMAS-IDS architecture to-
gether. As described above, we generated the attack data for 5900 instances and
each of these instances was classified in real time, being captured from the network
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data card of the machine and then going through each agent layer and respective
classifiers. Fig. 4(a) shows the times consumed by each of the 100 instances contin-
ually going through the whole cycle of classification and communication, differen-
tiated by the attack types. As can be seen from this figure, the data instances from
all types of attacks, on average, result in the same response time irrespective of the
attack types. This is definitely a desirable feature. If an IDS performs good for some
of the attack types and not in the same way for the others, it can not be considered as
a good system. Also, the longest time taken is 40 seconds in our experiments, which
shows that our proposed DMAS-IDS architecture shows its promise by addressing
an ongoing attack within 40 seconds after it has been detected as an intrusion. The
time is measured from when an attack is detected and until the last ‘BROADCAST’
message has reached the Host Agent.

(a) Response time of the
proposed DMAS-IDS

(b) Number of bytes per
second transmitted from
the host agent to the clas-
sification agent

(c) Bandwidth consump-
tion of the proposed
DMAS-IDS

Fig. 8.4: Experimental results

Let’s now look at the bandwidth consumed by this architecture. As depicted by
Fig. 4(b) and Fig. 4(c), the maximum bandwidth consumed by the system is 0.06
Mbits/sec, which is very low as well. This proves that even if the number of attacks
increases exponentially, our system will still result in considerably fair performance.
Also, if more machines are connected to the network, our proposed DMAS-IDS ar-
chitecture will still withstand the load and deliver results. Therefore, it can be clearly
seen that our proposed DMAS-IDS architecture is scalable, fast, and efficient. It pro-
vides an option over contemporary firewalls which are only good at blocking traffic
for pre-known malicious connections.

8.6 Conclusion

In this paper, a novel distributed multiagent IDS architecture called DMAS-IDS
is presented, which incorporates the desirable features of the multiagent design
methodology with highly accurate, fast, and lightweight PCC Classifier and C-
RSPM schemes. Even as a larger number of agents are introduced into the network,
our proposed DMAS-IDS architecture provides effective communication between
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its two comprising layers, through an efficient agent communication scheme that
requires only a small and manageable generation of network traffic overhead as
shown in the experimental results. A key concept in the design of the proposed
DMAS-IDS architecture was to show the integration of the agent technology with
the data mining strategies, and to prove how both compliment each other. To test
the feasibility of a realistic employment and all the salient features of the proposed
DMAS-IDS architecture, a private LAN testbed is built to facilitate both the gen-
eration of realistic normal and anomalous network traffic data and some common
network attack generation tools, to appropriately validate the performance of pro-
posed DMAS-IDS when compared to other well-known anomaly detection and su-
pervised classification methods, and to assess the important scalability aspects of the
proposed architecture such as system response time and agent communication gen-
erated network traffic overhead. From our experimental results, it can be concluded
that the proposed DMAS-IDS architecture yields promising results, indicating a
linear scalability and low response time including both agent communication and
classification response times. These results are indicative that our proposed DMAS-
IDS architecture provides many favorable characteristics such as being lightweight,
good scalability, and least degradation of service.
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