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Abstract Nowadays most existing recommender systems operate in a single organ-
isational basis, i.e. a recommender system recommends items to customers of one
organisation based on the organisation’s datasets only. Very often the datasets of
a single organisation do not have sufficient resources to be used to generate qual-
ity recommendations. Therefore, it would be beneficial if recommender systems of
different organisations with similar nature can cooperate together to share their re-
sources and recommendations. In this chapter, we present an Ecommerce-oriented
Distributed Recommender System (EDRS) that consists of multiple recommender
systems from different organisations. By sharing resources and recommendations
with each other, these recommenders in the distributed recommendation system can
provide better recommendation service to their users. As for most of the distributed
systems, peer selection is often an important aspect. This chapter also presents a
recommender selection technique for the proposed EDRS, and it selects and pro-
files recommenders based on their stability, average performance and selection fre-
quency. Based on our experiments, it is shown that recommenders’ recommendation
quality can be effectively improved by adopting the proposed EDRS and the asso-
ciated peer selection technique.

7.1 Introduction

Recommender systems are being applied in an increasing number of ecommerce
sites to increase their business sales by helping consumers locate desired items to
purchase. Generally, recommender systems make recommendations to users based
on their implicit or explicit preferences, the preferences of other users, and item
and user attributes [14, 13]. [3] suggested five different categories of recommender
systems based on the information resources and the prediction algorithm employed.
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Among these five categories, collaborative filtering and content based filtering are
the two most recognized and widely applied techniques.

Collaborative filtering based methods [7, 19] take the preferences of users (e.g.
user ratings and purchase histories) as the major information resources in order to
aggregate opinions from users with similar preferences, and the recommendations
are generated based on these aggregated opinions. On the other hand, content-based
filtering methods use information retrieval related techniques to recommend items
that have similar contents (or attributes) to the user preferred items.

One of the most well-known challenges for recommender systems is the cold-
start problem. The cold-start problem occurs when making recommendations for
new users with their preferences unknown (i.e. lack of previous rating information
or transaction histories), or suggesting new items that no one has yet rated or pur-
chased [15]. Collaborative filtering based recommenders are very vulnerable to the
cold-start problem because they operate solely on the basis of the user preference in-
formation, and therefore many works propose the so called ”hybrid recommenders”
that combine both content-based filtering and collaborative filtering together to re-
plenish the insufficient user preference information [3, 16].

Even though hybridization based recommenders have been widely applied against
the cold-start problem, they are still not comparable to using non-hybrid recom-
menders with sufficient information resources [3]. For instance, assuming a new
ecommerce site wants to run a recommender system with very limited user records
and product catalogue in its database, it will not be able to generate quality recom-
mendations despite the hybridization techniques are employed.

In this chapter, a novel strategy for alleviating the cold start problem is explored.
The basic idea of the strategy is to increase data volume of recommenders via allow-
ing them to share and exchange recommendations with each other over a distributed
environment. As mentioned previously, most of the existing recommender systems
are designed for one single organisation (i.e. business to customer (B2C) recom-
menders), and in general, one single organisation may not possess sufficient infor-
mation or data for analysis in order to give their customers precise and high quality
recommendations. Therefore, it can be beneficial if organisations can share their
information resources (i.e. products and customer database) and recommendations
boundlessly (i.e. build recommendation systems at an interorganisational level).

This chapter presents a framework for distributed recommendation sharing among
recommenders, namely Ecommerce-oriented Distributed Recommender System (EDRS).
The proposed EDRS is different from existing distributed recommender systems.
While existing distributed recommender systems are mainly designed for C2C (Cus-
tomer to Customer) based applications (such as file sharing applications), the pro-
posed EDRS introduces additional B2B (Business to Business) features on top of
the standard B2C recommender systems. Specifically, the goal of the EDRS is to
allow the standard recommenders from existing ecommerce sites or e-shops (e.g.
Amazon.com, Netflix.com) to improve their recommendation quality towards their
users by sharing their information resources and recommendations with each other.



7 Towards Information Enrichment through Recommendation Sharing 105

7.2 Prior and Related Work

Notwithstanding the popularity of centralised recommenders in last decades, rec-
ommender systems that operate on distributed environments or decentralised infras-
tructures have started to attract attention from researchers, and these systems are
commonly referred to as distributed recommender systems or decentralised recom-
mender systems [4, 10].

Generally, a distributed recommender system associates each of its users with a
recommender agent (or peer recommender) on his or her personal computer (client-
side machine). These recommender agents gather user profile information from their
associated users, and exchange these profile information with other agents over a
distributed network (e.g. internet), in the end a recommender agent makes recom-
mendations to its associated user by utilizing the user’s personal profile as well as
these gathered peer profiles (i.e. profiles of other users gathered from other recom-
mender agents) [17, 18].

There are several reasons that lead to increasing popularity of distributed recom-
mender systems:

• The fast growing development of internet related technologies and applications
(e.g. the Grid, ubiquitous computing, peer-to-peer networks for file sharing and
collaborative tasks, Semantic Web, social communities, WEB 2.0, etc.) has
yielded a wealth of information and data being distributed over most of nodes (i.e.
web server, personal computer, mobile phone, etc.) in the internet. Hence, getting
information recommended from only one single source (e.g. ecommerce site) is
no longer sufficient for many users, and instead, they are thirsty for richer infor-
mation from multiple sources [17]. For example, the peer-to-peer (P2P) based
file sharing protocol, BitTorrent (www.bittorrent.com), has proven to be among
the most competent methods to allow large numbers of users to efficiently share
large volumes of data. Instead of storing files or data in a central file server (e.g.
FTP server), BitTorrent stores files in multiple client machines (i.e. peers), and
when a file is requested by a user (i.e. a peer), the user can download this file
simultaneously from multiple peers [4]. Intuitively, as there is no central server
for storing file contents and user (or peer) profiles in BitTorrent, distributed rec-
ommender systems would be more suitable to be applied to such system than
centralised recommenders.

• User privacy and trust is another area that distributed recommender systems are
considered superior to centralised recommender systems. In a centralised recom-
mender system, all user information and profiles are possessed by the ecommerce
site that runs the recommender system, and this can result in privacy and trust
concerns. Firstly, a centralised recommender system might share users’ personal
information and profile in inappropriate ways (e.g. selling user information to
others), and the users generally have no control over it. Secondly, a centralised
recommender system owned by an ecommerce site might make recommenda-
tions for the business’s own good instead of serving users’ needs. For example, a
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site can adjust its recommender’s configuration, so it only recommends products
that are overstock instead of required by the users.

• The privacy and trust issues are alleviated by distributed recommender systems.
In a distributed recommender system, users’ personal information and profiles
are stored in their own machines, and they generally can explicitly define and set
which parts of their personal data and profiles are sharable. In addition, because
a recommender agent in a distributed recommender system is a piece of software
that runs independently on each client’s machine and it usually gathers informa-
tion only from other peer agents rather than from an ecommerce site, therefore,
it is less possible that the ecommerce sites can manipulate the recommendations
to the users [12].

• In addition, scalability is one of the major challenges for the centralised recom-
mender systems. It is because correlating user interests in a large dataset can
be very computationally expensive (it normally require a quadratic order match-
ing steps). Some research works, therefore, suggest implementing recommender
systems in a decentralised fashion to improve the scalability and computation
efficiency [12].

Most existing works on distributed recommender systems are mainly designed
for peer-to-peer (P2P) or file sharing applications (which usually adhere to C2C
paradigm). Awerbuch’s [1] work provides a generalized view to these distributed
recommenders. Awerbuch suggested a formalized model for the C2C distributed
recommender systems. In Awerbuch’s model, for the distribute system with m users
and n items, there will be m recommender systems (i.e. agents or peers), and each
of the recommender agents will associate with exactly one user. Each recommender
works on behalf of the associated user either to trade recommendations with other
agents or probe the items on its own. Each recommender aims to finally discover
the p items preferred by the associated user, where p ≤ n. In Awerbuch’s opinion,
from the perspective of the entire distributed recommender system, the goal is rather
similar to the ”matrix reconstruction” proposed by Drineas et al. [6]; the overall task
is to reconstruct an m× n user preference matrix in a distributed fashion. It can be
observed that many distributed recommender systems belong to this model.

Generally, the goal of these C2C based distributed recommenders is to avoid
central server failure and protect user privacy (no central database containing in-
formation about customers) [1, 18, 16] . However, most of them are not aiming at
improving their effectiveness or the recommendation quality. By contrast, the goal
of the proposed EDRS is aiming at improving the recommendation quality and alle-
viating the cold start problem. Hence, the infrastructure of the proposed distributed
recommender system is different from Awerbuch’s model as well as many other ex-
isting systems. EDRS contains a set of classical recommenders, and each of them
serves their own set of users. Our goal is to improve the recommendation quality
of these recommenders by allowing them making recommendations for others in a
decentralised fashion. Thus, for the profiling and selection problem, we proposed a
more sophisticated strategy rather than random sampling for recommender peers to
explore others.
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Moreover, recommender systems and information retrieval (IR) systems are gen-
erally considered similar research fields [13], since both of them try to satisfy users’
information needs by either retrieving the most relevant documents or recommend-
ing the most preferred items to users. Information retrieval retrieves documents
based on users’ explicit queries, while recommender systems recommend items or
products based on users’ previous behaviour. In distributed IR [2, 5] , the entire
document collection is partitioned into subcollections that are allocated to various
provider sites, and the retrieval task then involves:

• Querying minimal number of subcollections (to improve the efficiency), and en-
sure the selected subcollections are significant to uphold the retrieval effective-
ness.

• Merging the queried results (fusion problem) that incorporates the differences
among the subcollections in such a way that no decrease in retrieval effectiveness
is effectuated with respected to a comparable non-distributed setting.

For distributed recommender systems, the recommender peer selection and rec-
ommendation merging are also two important tasks. In fact, one of the major fo-
cuses of the works presented in this chapter is to design an effective recommender
peer profiling and selection strategy. The selection criteria for distributed IR includ-
ing the: efficiency (selecting minimal number of subcollections) and effectiveness
(retrieving the most relevant documents) is similar to the criteria for the proposed
distributed recommender system. However, in distributed IR, the collection selec-
tion is content based [5] and it requires the subcollections provide or use sampling
techniques to get subcollection index information (eg. the most common terms or
vocabularies in the collection) and statistical information (eg. document frequen-
cies). By contrast, the proposed selection technique requires no content related in-
formation about recommender peers (assuming recommender peers share minimal
knowledge to each other), the proposed selection algorithm is based on the observed
previous performance (i.e. how well a recommender peer’s recommendations satisfy
the users) about each of the recommender peers.

7.3 Ecommerce-Oriented Distributed Recommender System

As mentioned earlier, the goal of the proposed distributed recommender system is
to allow standard recommenders to overcome cold-start problem and improve rec-
ommendation quality by cooperating, interacting and communicating with recom-
menders of other parties (e.g. other ecommerce sites). Hence, the proposed system is
designed to contain of a set of recommenders from different sites and each of these
recommenders is associated with their own users. Note, it is possible that a user
might visit multiple sites, and therefore two or more recommenders may share com-
mon users. Similar to the centralised paradigm, each recommender peer in the pro-
posed system still serve its own users in a centralised fashion (i.e. the recommender
stores all its user and product data in a central place within the recommender). How-
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ever, in the proposed system, the recommender peers can enrich their information
sources by communicating and cooperating with each other. A general overview of
the proposed system is depicted in Fig.7.3.

Because the proposed distributed recommender system is designed to benefit
ecommerce sites (rather than focusing on helping users to gain more controls on
recommenders), we therefore name our system as ”Ecommerce-oriented Distributed
Recommender System”, and abbreviate it to EDRS. We also abbreviate the standard
Distributed Recommender System to DRS and Centralised Recommender System
to CRS in order to clarify and differentiate the three different system paradigms.

Before explaining the proposed distributed recommender framework in more de-
tail, some general differences among the EDRS, DRS and CRS are investigated. In
particular, these systems are compared according to the following aspects:

• Ecommerce Model: based on the general ecommerce activities and transactions
involved in the recommenders’ host application domains, we can roughly catego-
rize them into three different models, namely, Business-to-Business (B2B), Busi-
ness to Customer (B2C) and Customer to Customer (C2C). In B2B model, activ-
ities (e.g. transactions, communications, interactions, etc.) mainly occur among
businesses. In the B2C model, activities are mainly between businesses and cus-
tomers, and the most typical example is activities of E-businesses serving end
customers with products and/or services. Finally, the C2C model involves the
electronically-facilitated transactions between consumers. A typical example is
the online auction (e.g. eBay), in which a consumer posts an item for sale and
other consumers bid to purchase it.

• Architectural Style: an architectural style describes a system’s layout, structure,
and the communication of the major comprising system modules (or software
components). Over past decades, many architectural styles have been proposed,
such as, Client-Server, Peer-to-Peer (P2P), Pipe and Filter, Plugin, Service-
oriented, etc. Client-Server and Peer-to-Peer are the two major architectural
styles related to our work, and therefore will be explained in more details. The
Client-Server architecture usually consists of a set of client systems and one cen-
tral server system, client systems make service requests over a computer network
(e.g. internet) to the server system, and the server system fulfils these requests.
Peer-to-Peer architec-ture consists of a set of peer systems interacting with each
other over a computer network, and it does not have the notion of clients and
servers, instead, all peer systems operate simultaneously as both servers and
clients to each other.

• Communication Paradigm: based on how two types of entities communi-
cate with each other within a system, three major communication paradigms
have been proposed, and they are: One-to-One, One-to-Many and Many-to-
Many communication paradigms (or relationships). In One-to-One communi-
cation paradigm, communication occurs only between two individual entities,
example applications include: e-mail, FTP, Telnet, etc. By contrast, a website
that displays information accessible by many users is considered having a One-
to-Many relationship. In Many-to-Many paradigm, entities communicate freely
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with many others, example applications include: file sharing (multiple users to
multiple users), Wiki (multiple authors to multiple readers), Blogs, Tagging, etc.

Figure 7.1 shows a general overview of a standard centralised recommender sys-
tem (i.e. CRS). The host application of CRS is usually an ecommerce site (e.g.
Amazon.com, Netflix.com, etc.) which possesses all user/product relevant informa-
tion, and the recommender then utilizes all the information from the site to make
personalized recommendations to the site’s users and further create business values
to the ecommerce site. As the nature of the CRS is to serve the users (i.e. customers)
and to satisfy the users’ information needs to the ecommerce site (i.e. business), it
can be considered as adhering to the B2C paradigm. It is usually implemented based
on the Client Server architecture because the entire recommendation generation pro-
cess occurs only within the central server, and users interact with the recommender
though thin clients (e.g. web browsers) whose major functions are presenting users
the recommendations generated from the server and sending users’ information re-
quests to the server. In the most common case, all users of a site are served by a sin-
gle recommender, therefore, the communication paradigm between recommenders
and users in CRS is considered as One-to-Many.

Fig. 7.1: Classical centralised recommender system

The standard distributed recommender system (DRS), as depicted in Fig. 7.2, dif-
fers from CRS in all of the three mentioned aspects. First of all, it emphasizes users’
privacy protection by preventing personal user data being gathered and used (or mis-
used) by ecommerce site owners (or businesses), hence adheres to the Customer-
to-Customer model (as Business entities are evicted from the system for privacy
protection). It is shown in Fig. 7.2 that, a standard distributed recommender system
associates every user in the system with a recommender peer serving the user’s per-
sonal information needs, hence the relationship between the user and recommender
peer is considered as One-to-One. On the other hand, in order to make better recom-
mendations to its user, a recommender peer might need to communicate with other
peers to exchange its user’s data (in a privacy protected way) with other peers or to
get recommendations from other peers because there is no central place for storing
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all users’ data. The relationship among recommender peers in the DRS is consid-
ered as Many-to-Many, as a peer can both communicate to and be communicated by
many other peers. Finally, because all recommender peers are equipped with similar
set of functionalities (i.e. gather information from others and making recommenda-
tion to its user) and operate independently and autonomously from others, therefore
they are commonly modelled and implemented using the Peer-to-Peer architectural
style.

Fig. 7.2: Standard distributed recommender system

The proposed Ecommerce-oriented Distribute Recommender System (EDRS)
(depicted in Fig. 7.3), can be thought as a combination of the two systems (cen-
tralised recommender and DRS) described above. Similar to the DRS, EDRS con-
sists of a set of recommender peers and a set of users. However, while one user
is associated with exactly one recommender peer in the standard distributed rec-
ommender system, the proposed system can be considered as a set of centralised
recommender systems cooperate together to serve their own set of users, and there-
fore each recommender peer needs to interact (i.e. make recommendations to) with
multiple users. Moreover, it is also possible that in our system a user is associated
with more than one recommenders (i.e. he or she can visit multiple sites); for in-
stance, a book reader might try to find a book in both Amazon.com and Book.com.
Because a recommender peer in our system can serve multiple users and a user can
make recommendation requests to multiple recommender peers, the relationship be-
tween users and recommender peers is considered as Many-to-Many. As mentioned
previously, the recommender peers in EDRS might interact and cooperate with each
other to improve their recommendation quality, and hence, apart from the Many-to-
Many relationship between users and recommender peers, another Many-to-Many
communication relationship exists among the peers.

Because EDRS is still designed for normal ecommerce sites, such as e-book
stores like Amazon.com, its major ecommerce model is therefore same as CRS,
that is, Business-to-Customer. Besides, since EDRS introduces additional commu-
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Fig. 7.3: Proposed distributed recommender system

nication and cooperation for recommenders of different sites, it is expected that the
cooperation of these recommenders (also their sites) will confirm to the Business-
to-Business based model.

The implementation of the proposed EDRS involves both Peer-to-Peer and
Client-Server architectural styles. Client-Server architecture is employed to model
a recommender peer (i.e. the server) and its users (i.e. the clients). Similar to the
centralised recommender, the entire recommendation generation process is done by
the recommender situated at the server side, and the users make requests to the rec-
ommender through thin clients such as web browsers. The architectural style for the
network among the recommender peers is modelled with Peer-to-Peer architecture.
As mentioned before, Peer-to-Peer based architecture assumes that the peers are in-
dependent and autonomous from each other, and especially they should be loosely
coupled. Such definition is suitable for modelling the relationship between the rec-
ommender peers’ host sites, as they are both logically and physically independent
and autonomous from each other (as they are different e-commerce sites and or-
ganisations). While both DRS and the proposed EDRS can be modelled with the
Peer-to-Peer architecture, the recommender peers in EDRS are more strongly cou-
pled together than in standard DRS, because the recommender peers in EDRS need
to gather/distributed information and suggestions from/to each other in a timely and
effective fashion to achieve their common goal (i.e. satisfy their users’ information
and recommendation needs).

To the best of our knowledge, the concept of the proposed EDRS has not yet
been mentioned and investigated by other works. Also, it is different from existing
recommender systems (both centralised and distributed ones) at several high level
aspects.
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7.3.1 Interaction Protocol

As mentioned earlier, the interaction, communication and cooperation of the re-
commender peers in the proposed EDRS can be modelled with the Peer-to-Peer
based architectural style. In particular, the ”Contract Net Protocol” (CNP) is em-
ployed as the foundation for modelling the system, which provides the basis for co-
ordinating the interaction and communication among the recommender peers. Con-
tract Net Protocol is a high level communication protocol and system modelling
strategy for Peer-to-Peer architectural based systems (or other distributed systems)
[9, 20] Weiss, 1999. In CNP, peers in the distributed system are modelled as nodes
and the collection of these nodes is referred to as a contract net. In CNP based sys-
tems, the execution of a task is dealt with as a contract between two nodes, each
node plays a different role, one of them is the manager role and the other is the
contractor role. The role of a manager is responsible for monitoring the execution
of a task and processing the results of its execution. On the other hand, the role of
a contractor is responsible for the actual execution of the task. Note, the nodes are
not designated a priori as contractors or managers, rather, any nodes may take on
either roles dynamically based on the context of their interaction and task execution
[20]. A contract is established by a process of mutual selection based on a two-way
transfer of information. In general, available contractors evaluate task announce-
ments made by managers and submit bids on those for which they are suited. The
managers evaluate the bids and award contracts to the nodes (i.e. contractors) that
they determine to be most qualified [20].

In the case of the proposed EDRS, the recommender peers are modelled as the
nodes in the contract net. Depending on difference circumstances, each recom-
mender peer plays manager role and contractor role interchangeably. When a rec-
ommender peer makes requests for recommendations to other peers, it is considered
as a manager peer. On the other hand, the recommender peer that receives a request
for recommendations and provides recommendations to other manager peers is con-
sidered as a contractor peer. The roles of the manager peer and the contractor peer
and their interactions are depicted in Fig. 7.4.

The communication steps involved in the interaction are indicated by the num-
bers in Fig. 7.4 and explained as follows:

1. User sends a request for recommendations. The recommender peer who received
the request and is responsible for making the recommendation to the user is con-
sidered as in manager role.

2. Based on the user’s request and profile, the manager peer selects suitable peer
recommenders to help it on making better recommendations to the user.

3. The manager peer makes requests to the peers for recommendation suggestions.
The request message may only contain the user’s item preferences (i.e. the user’s
rating data); however the identity of the user is remain anonymous for privacy
protection.

4. Each contractor peer generates recommendations based on the received request.
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Fig. 7.4: High level interaction overview for EDRS (based on contract net protocol)

5. The contractor peers send back their recommendation suggestions to the manager
peer.

6. After the manager peer received the suggestions from the contractors, it then
synthesizes and merges these recommendation suggestions.

7. Based on the synthesized recommendation suggestions from the contractor peers
(might also include the manager peer’s own recommendations) the manager peer
generates the item recommendations to the user.

8. When the user received the recommendations, he or she might supply implicit or
explicit ratings to the recommendations. That is, the user might provide indica-
tions about whether he or she likes or dislikes one or more items in the recom-
mendation list.

9. Based on the user rating feedbacks, the manager peer can objectively evaluates
each of the peers’ (i.e. contractors’) performances to the recommendation sug-
gestions they supplied and update its profiles about these peers.

10. The manager peer sends feedbacks and rewards to the contractor peers based on
their performances to the task.

11. When the contractor peers received feedbacks about the performances of their
recommendation suggestions, they then update their profiles about the manage
peer in order to improve their future suggestions.

From Fig. 7.4, it can be seen that when a recommender peer is requested to make
recommendations for a user, it acts as a manager peer. In the role of a manager peer,
the recommender first generates a strategy about how and what to recommend to
the user based on the user’s profile and request, then chooses a set of recommender
peers (in this context, they act as contractor peer) based on the profiles of peer
recommenders, and finally makes requests for recommendations to these selected
contractor peers. When these selected contractor peers received the requests, they
then construct and return their recommendation suggestions based on the requests
received and the manager peer’s profile (e.g. preferences, domain of interests, trust-
worthiness and etc.). After the manager peer received the recommendations returned
from the contractor peers, it then merges the recommendations (also include its own
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recommendations) and returns to the user. According to the recommendations re-
ceived from the manager peer, the user might either explicitly or implicitly give
feedbacks or ratings about the recommendations to the manager peer. After receiv-
ing the user’s feedback, the manager peer will evaluate the performance of each of
the selected contractor peers, update its profiles about them, and then construct the
feedbacks and make rewards to the contractor peers. Finally, the contractor peers
will update theirs profile about the manager peer based on the given rewards and
feedbacks.

In order to carry out the proposed interaction described above, tasks such as
recommender peer selection, recommendation generation, recommendation merge,
peer feedback and profile update will need to be considered. Among all these for-
mentioned tasks, recommender peer profiling and selection is the major focus of
this chapter, and a novel contractor peer profiling and selection strategy is proposed,
discussed and investigated in Sect. 7.4.

7.4 Peer Profiling and Selection

Part of the major contributions in this chapter includes a recommender profiling
scheme (for manager peers to profile contractor peers) and a recommender selec-
tion algorithm designed for the proposed EDRS. In particular, the recommender
peer selection problem is modeled as the classical exploitation vs. exploration (or
k-armed bandit) problem [11], in which the recommender selection for the manager
peer has to be balanced between choosing the best known contractor peers to keep
users satisfied and selecting other unfamiliar contractor peers to obtain knowledge
about them. The proposed recommender selection algorithm is based on evaluat-
ing the Gittins Indices [11] for every recommender peer, and the indices reflect the
average performance, stability and selection frequency of the recommenders (i.e.
contractor peers).

7.4.1 System Formalization for EDRS

We envision a world with a set of users and items, and they are denoted by
U = {u1,u2, ...,un} and T = {t1, t2, ..., tm} respectively. The proposed distributed
recommender system (EDRS) denoted as Φ contains a set of l recommender peers
φ1,φ2, ...,φl , i.e. Φ = {φ1,φ2, ...,φl}. The number of recommender peers is much
smaller than the number of users in our system, i.e. l ¿ n. Each recommender peer
φi ∈ Φ has a set of users denoted as Ui ∈U , and a set of items denoted as Ti ∈ T ,
where U =

⋃
φi∈Φ Ui and T =

⋃
φi∈Φ Ti. It should also be noted that some users and

items can be owned by more than one recommender peers.



7 Towards Information Enrichment through Recommendation Sharing 115

7.4.2 User Clustering

Intuitively, a large set of users can be separated into a number of clusters based
on the user preferences. Since users within the same cluster usually share similar
tastes [3] and a cluster with a large number of users and a high degree of intra-
similarity can better reflect the potential preferences of the users belonging to the
cluster, a collaborative filtering based recommender can improve its recommenda-
tion quality by searching similar users within clusters rather than the whole user
set [13]. However, different user clusters often vary in quality. The performance of
such clustering based collaborative filtering system is strongly influenced by the
quality of the clusters [13]. For a given recommender, some users might be able
to receive better recommendations if they belong to a cluster with better quality
(the cluster has a large number of users and a high intra-similarity), whereas some
other users may not be able to get constructive recommendations because the clus-
ter to which they belong is small and has a low intra-similarity. This situation is
closely related to the cold-start problem [15] which happens when a recommender
makes recommendations based on insufficient data resources. Therefore, even for
the same recommender, the recommendation performance might be different for
different clusters of users if different user clusters have different quality. In order
to provide good recommendations to various users, the proposed EDRS allows its
recommender peers (i.e. manager peers) to choose peers (i.e. contractor peers) for
recommendations to the current user based on their performances to a particular user
cluster to which the current user belongs. We expect this design to solve the cold
start problem because a recommender which is making recommendations to a user
who belongs to a weak cluster can get recommendations from recommender peers
who have performed well to that group of users.

In the proposed EDRS, every recommender peer has its own set of user clusters,
i i i,1,uci,2, ...,uci,mi},

such that uci, j ⊆Ui. In addition, for the simplicity of the system, all user clusters
are assumed to be crisp sets. Because different recommender peers have different
user sets and different clustering techniques, the size of their cluster set might vary
as well.

7.4.3 Recommender Peer Profiling

In this section, we present our approach to profile the recommender peers within the
proposed EDRS. To begin with, the performance evaluation of the recommender
peers is explained. The performance of a recommender peer is measured by the de-
gree of user satisfactory to the recommendations made by the recommender [8]. In
our system, a recommender peer φi makes recommendations to a user with a set of
k items Pi = {pi,1, pi,2, ..., pi,k} where Pi ⊆ Ti. Once having received the recommen-
dations, the user then input his or her evaluations to each of the k items. We use ra
to denote the user’s rating to item pi,a ∈ Pi. The value of ra is between 1 and 0 which

φ ∈Φ asUC ={ucand we denote the set of user clusters owned by
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indicates how much the user likes item pi,a. When ra closes to 1, it indicates the user
highly prefers the item, by contrast when ra closes to 0, the user dislikes the item.
Hence, each time a recommender peer generates a recommendation list (eg. Pi) to a
user, it will get feedback R = {r1,r2, ...,rk} from the user, where ra ∈ (0,1). With
R, we can compute the recommender peer’s current performance χ to the user by:

χ = ∑r∈R r
|R| (7.1)

Equation (7.1) measures the current performance of a recommender peer to a
particular user in the current recommendation round. We can use the average per-
formance of the recommender to the users in the same cluster to measure its per-
formance to this group of users. The average performance measures how well the
recommender averagely performed in the past. However, the average performance
doesn’t reflect whether the recommender is generally reliable or not. Hence, we em-
ployed the standard deviation to measure the stability of the recommender. Another
factor that should be taken into account for profiling a recommender is the selection
frequency which indicates how often the recommender has been selected before. In
our system, we profile each recommender peer from the three aspects: recommen-
dation performance, stability, and selection frequency. As mentioned previously, a
recommender will seek for recommendations from other peers when it receives a
request from a user. Broadcasting the user request to all peers is one solution, but
obviously it is not a good solution since not all of the peers are able to provide high
quality recommendations. In EDRS, the recommender peers (i.e. manager peers)
will select the most suitable peers (i.e. contractor peers) for recommendations based
on their profiles. Therefore, each recommender peers in EDRS keeps profiles to
each of the other recommender peers.

A recommender peer may perform differently to different user clusters. Therefore
its performances to different user clusters are different. For recommender φi ∈ Φ
which has mi user clusters, that is, UCi = {uci,1,uci,2, ...,uci,mi} , we use Qi

j,h to
denote the average performance of peer φ j ∈Φ to φi’s user cluster uci,h. Hence, we
can use a z×mi matrix Qi = {Qi

j,h}zmi to represent the average performance of each
of the other peers to each of φi’s user clusters, where z = |Φ |−1 and mi = |UCi|. Qi

is called as the peer average performance matrix of φi. Similarly, we use Si and F i to
represent the stability and selection frequency of other peers to φi. Si = {Si

j,h}zmi and
F i = {F i

j,h}zmi are called as the peer stability matrix and peer selection frequency
matrix respectively. In summary, a recommender φi’s peer profile is defined as Pi =
{Qi,Si,F i} which consists of the three matrixes representing peer recommender’s
average performance, stability, and selection frequency, respectively.

Initially, the Qi, Si and F i of φi are all zero matrixes, because φi has no knowl-
edge about other peers. These matrixes will be updated when a recommender peer
φ j helped φi (i.e. φ j is in contractor role and φi is in manager role) to make a rec-
ommendation Pi for a user belonging to (or being classified to) a φi’s user clus-
ter uci,h. Suppose that R j is the recommendation list returned by φ j. Ideally, R j is
expected to be a subset of Ti. But usually R j * Ti since φi and φ j may have dif-
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ferent item sets. In the proposed EDRS, only the items which are in Ti are con-
sidered by φi. Let Pi be the final recommendation list made by φi to the user and
Pj = {t|t ∈ R j ∩Ti and selected by φi} be the recommendation list made by φ j and
selected by φi during the merging process (the major focus of this selection is on
peer profiling, other aspects of the proposed EDRS such as merging recommenda-
tions from different peers will be explained in latter sections). Pj should be a subset
of Pi. After the recommendation Pi is provided to the user, φi will get a feedback list
(i.e. the actual user ratings to the recommended items) R about Pi from the target
user. With the user feedback R, Equation 7.2 will be used to compute φ j’s per-
formance χ for the recommendation of this round (only the items in Pi are taken
into consideration when compute the χ for φ j) which is φi’s observation about φ j’s
performance to user cluster uci,h. The methods for updating the average quality, sta-
bility and selection frequency in φi’s peer profile Pi = {Qi,Si,F i} are given below,
where Q̃i

j,h , S̃i
j,h, F̃ i

j,h are the updated value for peer φ j and cluster uci,h in the three
matrixes, respectively:

Q̃i
j,h =

Qi
j,h×F i

j,h + χ
F i

j,h +1
(7.2)

F̃ i
j,h = F i

j,h +1 (7.3)

S̃i
j,h = 0 , if F i

j,h < 2

=

√√√√ [(F i
j,h−1)×Si

j,h]2+
(χ−Qi

j,h)2

Fi
j,h+1

F i
j,h

, otherwise
(7.4)

7.4.4 Recommender Peer Selection

In this section, a novel technique is proposed that allows manager peers to effec-
tively and efficiently select contractor peers based on the proposed recommender
peer profiles described in Section 7.3 for assistances in making quality recommen-
dations. The proposed peer selection strategy is based on the famous Gittins Indices
technique [11] developed for solving the exploitation vs. exploration problem, as
such, it enables the manager peers to efficiently learn their contractor peers as well
as maintain their recommendation quality to the users.

7.4.4.1 Gittins Indices

The Gittins indices [11] is developed for the k-armed bandit problem (which is a
subset of the exploitation vs. exploration problem) that deals with a slot machine
with k arms. An amount of reward will be given when an arm is pulled. However,
in each time period, only a limited number of arms can be pulled (normally one
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arm). Different arms have different reward distributions, and the reward distributions
for the arms are initially unknown. The objective is to choose which arms to pull
that will maximize the total rewards over time based on previous experience and
obtained rewards as well. Formally, the k-armed bandit problem is to schedule a
sequence of pulls maximizing the expected present values of

∞

∑
t=1

α tR(t) (7.5)

where t indicates the time points, R(t) denotes the sum of the rewards obtained
by pulling a set of arms at t, and α is a fixed discount factor where 0 < α < 1.

Traditionally, dynamic programming was the preferred framework for solving
the bandit problem. It requires analysis of all possible combinations of the pulling
sequences. However, Gittins has developed a solution in 1972 that requires compu-
tation only on the current states of the individual arms. Gittins suggests comparing
each potential action (i.e. a pull) against a reference arm with a known and constant
reward instead of to compare all possible actions against each other [11]. Gittins
proved it is optimal to select actions with expected rewards equal to the reference
actions with the highest equivalent rewards (i.e. Gittins index values) for each pull
[11].

Specifically, a Gittins index value of an arm is computed based on the average
and standard deviation of the rewards generated from the arm as well as the number
of times the arm has been pulled. The application of the Gittins indices for solving
the multi-armed bandit problem is therefore straight forward: we simply compute
the Gittins index values for every arms (based on their current average and stan-
dard deviation of the rewards generated and the number of times each of them are
pulled), and pull the arm with the highest index value. As the arm selection task
involves only the current states of the arms (i.e. current average and standard de-
viation of the rewards and number of the times being pulled), it is therefore both
memory and computationally efficient (when comparing to dynamic programming
based solutions).

Note, the theorem background and the relevant index value generation techniques
of the Gittins Indices technique are detailed in [11], this work mainly focuses on the
application of the Gittins indices in the context of the recommender peer selection
task.

Given an arm which has been pulled for n times, and generated an average reward
x̄ with a standard deviation ŝ, Gittins denotes the index value for the arm as v(x̄, ŝ,n),
and he also proved that:

v(x̄, ŝ,n) = x̄+ ŝ× v(0,1,n) (7.6)

where v(0,1,n) is the index value for an arm being pulled for n times with a
zero average reward and a standard deviation of 1. Gittins has calculated the value
of v(0,1,n) for different combination of α and n in [11]. Gittins suggested that by
selecting the arms with the highest index value (i.e. (7.6)) in every selection round,
the overall accumulated total reward can be optimized.
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7.4.4.2 Selection Strategy for EDRS

Based on Sect. 7.3 when a manager peer φi wants to find a best contractor peer φi to
make a recommendation to a user u ∈ uci,h the following equation is used to select
the most suitable peer:

φ j = argmaxφ j∈Φ {φi}Q
i
j,h +Si

j,h× v(F i
j,h) (7.7)

wherev(F i
j,h) is the Gittins index function that maps F i

j,h (i.e. selection frequency)
to the corresponding v(0,1,F i

j,h). In (7.7), φi firstly calculates the average perfor-
mance, stability and selection frequency of the available peers to the user cluster that
u belongs to (i.e. uci,h). Then φi computes the index values for every peers based on
(7.7). Finally, the most preferred peerφ j will be the one which has the highest index
value. By setting up a cutoff for the index value, multiple recommender peers with
index values higher than the cutoff can be selected.

7.5 Experiments and Evaluation

In this experimentation, multiple recommenders with different capability in making
recommendations are constructed, and we allow them to interact with each other
based on the proposed EDRS framework. Essentially, these recommenders employ
the proposed peer profiling and selection strategy presented in Sect. 7.4 to learn
from and select each other in order to improve their recommendation making. Our
main focuses are to examine whether incorporating helps from other recommenders
can indeed improve recommenders’ recommendation quality and also evaluate the
effectiveness of the proposed profiling and selection strategy.

7.5.1 Data Acquisition

In this work, the ”Book-Crossing” dataset (http://www.informatik.unifreiburg.d
e/ cziegler/BX/) is chosen to conduct the experiments. The ”Book-Crossing” dataset
is collected by Cai-Nicolas Ziegler in a 4-week crawl (August / September 2004)
from the Book-Crossing community (http://www.bookcrossing.com/) with kind per-
mission from Ron Hornbaker, CTO of Humankind Systems. It contains 278,858
users (anonymized but with demographic information) providing 1,149,780 ratings
(explicit / implicit) about 271,379 books. In the user ratings, 433,671 of them are
the explicit user ratings, and the rest of 716,109 ratings are implicit ratings. The
book taxonomy and book descriptors for the experiments are obtained from Ama-
zon.com. Amazon.com’s book classification taxonomy is tree-structured (i.e. lim-
ited to ”single inheritance”) and therefore is perfectly suitable to the proposed tech-



120 Li-Tung Weng, Yue Xu, Yuefeng Li and Richi Nayak

nique. The average number of descriptors per book is around 3.15, and the taxonomy
tree formed by these descriptors contains 10,746 unique topics.

7.5.2 Experiment Setup

As the main purpose of this experiment is to evaluate the proposed interaction
protocol and the peer profiling and selection technique (rather than evaluating a
new recommendation technique or algorithm) in a distributed recommender sys-
tem, therefore the overall setup of this experiment is different from the setup for
non-distributed recommender systems.

In this experiment, it is required to simulate the interactions (i.e. profiling and
selection) among the recommenders from different organisations, and therefore the
first step in the experiment setup process is to construct multiple recommenders with
different capabilities and underlying knowledgebase (i.e. datasets). Next, the testing
dataset is constructed for evaluating the recommenders’ recommendation quality.
Importantly, the recommendation quality comparison between recommenders uti-
lizing the proposed EDRS framework (i.e. getting helps from other recommenders)
and standalone recommenders (i.e. making recommendations based on their own
efforts) are carried out. Moreover, the effectiveness of the proposed peer profiling
and selection technique is also examined by comparing it with other peer selection
strategies. Note, the proposed peer profiling strategy requires the manager peers to
get user feedbacks for all of their recommendations so they can determine their
contractor peers performances based on the feedbacks and then update their peer
profiles. Hence, it is necessary to provide a way to allow the user feedbacks in the
experiment. The tasks involved in this experiment setup are detailed in the following
subsections.

7.5.2.1 Constructing Recommender Peers

In this experiment, four recommenders of different organisations are constructed
to simulate the proposed recommender peer interactions. These four recommenders
are named as ORG1, ORG2, ORG3 and ORG4, and they are equipped with different
datasets but use the same underlying recommendation technique.

By evaluating the performances of the recommenders with the same recommen-
dation technique and different underlying datasets, we can evaluate the performance
of the recommenders based on their available information sources (i.e. their underly-
ing datasets and also collaboration from other recommender peers) without the im-
pact from using different recommendation techniques. Moreover, the results from
the experiments can also be used to verify the proposed solution to the cold-start
problem (i.e. enriching the information resources from other parties).

The recommendation technique employed by the four recommenders is the stan-
dard item-based collaborative filtering technique, for detailed implementation please
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refers to [3]. The use of the state-of-the-art recommendation technique ensures that
our experiment can be compared and verified with other works. Moreover, it also
suggested that the proposed EDRS framework and peer profiling and selection strat-
egy can be easily adopted by existing recommenders. The main differences among
the four recommenders are in their underlying datasets, specifically, they all have
different customer sets (or user sets). We firstly select 6500 users from the Book-
Crossing Dataset and then cluster them into 20 user clusters based on their item
preferences (i.e. explicit item ratings). We denote the overall user set as U and the
20 user clusters as uc1,uc2, ...,uc20.

From these 6500 users in U, 5000 users are selected as the training user set Û
(i.e. for forming the underlying datasets of the recommender peers) and the rest of
1500 users then forms the testing user set Ǔ , where U = Û ∪ Ǔ and Û ∩ Ǔ = /0.
Furthermore, we denote the set of training users within cluster uci as ûci and the
set of testing users within cluster uci as ǔci. Importantly, the users in U are divided
into the clusters first, and the 1500 users in the testing set U are then selected from
each of the clusters. This process allows us to keep track of the percentages of the
different user types (i.e. users in different clusters) in the testing user set.

7.5.2.2 Evaluation Metrics

The classification accuracy metrics such as Precision, Recall and F1 metrics are
chosen for the performance evaluation of the recommenders against the users in the
testing user set. The classification accuracy metrics are mainly based on comparing
the recommended item list and the set of user preferred items. In this experiment,
for each testing user ui ∈ Ǔ , we divide the set of items explicitly rated by ui (de-
noted as Ři) into two halves denoted by Yi and Ti. For the two item sets Yi and Ti,
Yi and the associated item ratings are used to represent ui’s user profile (i.e. the rec-
ommenders make recommendations to ui based on ui’s ratings to the items in Yi),
and the items in Ti, on the other hand, are used to form the user preferred item list
for evaluating the recommendations made to ui. However, not all the items in Ti
are preferred by the user ui. The items with low rating values should not be con-
sidered as the user’s preferred items because ui has specifically indicated that they
are disliked. Hence, the final testing item set Ťi is constructed by removing all items
with ratings below ui’s average rating from Ti. For evaluating the recommenders’
recommendation quality to a given testing user ui ∈ Ǔ , the recommenders are firstly
provided with ui’s profile (i.e. Yi and the associated ratings), then the recommenders
generate their recommendations to ui, finally, the recommendations generated from
the recommenders (i.e. Pi) are evaluated against the testing item set Ťi by utilizing
the classification accuracy metrics (i.e. Precision, Recall and F1).
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7.5.2.3 Benchmarks for the Peer Profiling and Selection Strategy

As mentioned earlier, one of the objectives of this experiment is to evaluate the ef-
fectiveness of the proposed peer profiling and selection technique described in Sect.
7.4. Hence, it is important to include other profiling and selection techniques as
baselines in order to conclude the significance of the proposed technique. However,
to the best of our knowledge, there are no other existing works available for the
recommender peer profiling and selection tasks required for the proposed EDRS.
As there are no existing standard baseline techniques available in distributed recom-
mender systems, we therefore have adapt techniques from other research domains
that are reasonably applicable to the required peer profiling and selection task. In
this experiment, the following five peer profiling and selection strategies are com-
pared:

• Gittins: the proposed recommender peer profiling and selection technique as de-
scribed in Sect.7.4.

• BPP: Best Past Performances. It is the most fundamental and intuitive strategy
being used for the profiling and selection related tasks in many research domains
(e.g. the collection selection task in distributed information retrieval) . The ba-
sic idea behinds BPP is to select recommender peers with the best average past
performances to the target users’ belonging clusters.

• Rand: the manager peers based on this strategy keep no knowledge about other
peers and select contractor peers at random. This strategy is included in this
experiment to show the significance of having a reasonable peer profiling and
selection strategy in the proposed EDRS.

• Gittins NC this selection strategy is a simplified version of the proposed strategy
Gittins. Essentially, Gittins NC assumes all users belong to one cluster. Even
Gittins NC still profiles recommender peers based on their average performance,
stability and selection frequency, and the selection is also based on the combined
Gittins scores as described in Sect. 7.4, it does not profile the recommender peers
by considering the performance differences for users in different clusters.

• BPP NC: similar to Gittins NC, this profiling and selection strategy does not
differentiate peers’ performance differences for users in different clusters, and it
employs only the average past performances of the recommender peers to make
selections (i.e. as similar to BPP). The main purpose of having Gittins NC and
BPP NC included in this experiment is to empirically demonstrate that different
recommenders have different performances towards users in different clusters.

7.5.3 Experimental Results

Each of the four standalone recommenders (i.e. ORG1, ORG2, ORG4 and ORG4)
can run by itself using its own dataset. However, the performance of the individ-
ual recommenders may not be satisfactory due to the insufficiency of the dataset.
The EDRS framework proposed in this chapter can improve the performances of all
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involved participant recommenders by allowing them to share datasets and recom-
mendations. Therefore, it is expected that the distributed recommendation system
with a reasonable peer selection strategy outperforms the individual recommenders.
Fig. 7.5, Fig. 7.6 and Fig. 7.7 present the precision, recall and F1 results obtained
from running the four standalone recommenders (i.e. ORG1, ORG2, ORG4 and
ORG4) and the distributed recommendation system with five peer selection strate-
gies described in Sect. 7.5.2.3 (i.e. Rand, BPP NC, Gittins NC, BPP and Gittins),
respectively.

Fig. 7.5: Precision results for different recommendation settings

Fig. 7.6: Recall results for different recommendation settings

Let’s firstly take a look at the performance of the distributed recommender sys-
tem with the five different profiling and selection strategies (i.e. Rand, BPP, Git-
tins, BPP NC, and Gittins NC). Among these five strategies, Rand is the only strat-
egy that does not have profiles for the recommender peers, and it randomly se-
lects peers for making recommendations. Based on the experiment results shown
in above figures, Rand performed the worst among all of the five strategies, and it
even performed worse than two of the stand-alone recommenders ORG3 and ORG4
which make recommendations only based on their own datasets. By contrast, the
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Fig. 7.7: F1 results for different recommendation settings

other four strategies (i.e. BPP NC, Gittins NC, BPP and Gittins) that profile rec-
ommender peers based on the peers’ past performances and select peers’ based on
their profiles all achieved much better results than all stand-alone recommenders ex-
cept for ORG3. Because ORG3 is the best performed stand-alone recommender and
therefore very often selected by the manager recommender, the distributed system
with some of these strategies achieved similar performance as what ORG3 does.
This result suggests that by sharing datasets and selecting the most appropriate rec-
ommender to make recommendations, the distributed recommendation system can
greatly improve recommendation quality. Particularly, for those peers which suffer
from the cold-start problem (such as ORG1 and ORG2), the amount of improve-
ment is significant, for instance, the performance of both ORG1 and ORG2 can be
improved by more than 50% if they adapt any of the four strategies to profile and
select peers.

Among the four rational strategies (i.e. BPP NC, Gittins NC, BPP and Gittins),
BPP and Gittins profile and select peers based on their performance to users in
different clusters. By contrast, BPP NC and Gittins NC do not consider the fact that
different peers might perform differently for users in different clusters and profile
peers based on their average performance over all users. As shown in 7.5, Fig. 7.6
and Fig. 7.7, the cluster based strategies BPP and Gittins significantly outperformed
the noncluster based strategies BPP NC and Gittins NC. This is because the cluster
based strategies can find the best recommender peers for making recommendations
based on the target users’ belonging clusters. By contrast, BPP NC and Gittins NC
select recommender peers based on their average past performances to all users.
Therefore, they will select peers performed averagely best in the past despite that
these peers might be unable to produce good recommendations for some target users
in certain clusters.

Finally, the experiment results show that the Gittins indices based strategies (i.e.
Gittins and Gittins NC) performed better than that of the standard performance
based strategies (i.e. BPP and BPP NC). Specifically, Gittins outperformed BPP
and Gittins NC outperformed BPP NC. This result suggests that by combining the
selection frequency and recommendation stability into peer profiling and selection
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process, the best performed peers can be more accurately identified than only based
on the peers’ average past performances.

7.6 Conclusions

In this chapter, we suggested a new distributed system paradigm for recommenders,
namely, Ecommerce-oriented Distributed Recommender System (EDRS). EDRS is
designed to allow the recommenders from different organisations or parties to share
datasets and recommendations with each other, so that all of them can achieve better
recommendation quality and provide better services to their users. Also, as the rec-
ommenders within the proposed EDRS no longer make recommendations solely on
their own efforts, they are therefore more resistant to the cold-start problems. In or-
der to facilitate the interaction among the recommenders in the EDRS, a novel peer
profiling and selection strategy is proposed in this chapter. The proposed strategy
profiles and selects recommender peers based on their past recommendation perfor-
mance, stability and selection frequency in cluster level, and our experiment results
show that the proposed strategy allows recommender peers to effectively learn from
each other and select the most appropriate peers to provide satisfactory recommen-
dations to their users.
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