
Chapter 16
A Multiagent, Multiobjective Clustering
Algorithm

Daniela S. Santos, Denise de Oliveira, and Ana L. C. Bazzan

Abstract This chapter presents MACC, a multi ant colony and multiobjective clus-
tering algorithm that can handle distributed data, a typical necessity in scenarios
involving many agents. This approach is based on independent ant colonies, each
one trying to optimize one particular feature objective. The multiobjective clustering
process is performed by combining the results of all colonies. Experimental evalu-
ation shows that MACC is able to find better results than the case where colonies
optimize a single objective separately.

16.1 Introduction
Clustering is widely used in data mining to separate a data set into groups of simi-
lar objects. The importance of clustering is clear in applications related to biology,
social sciences, computer science, medicine, and so on. Consequently, many clus-
tering methods have already been developed. One issue with most of these methods
is that they rely on central data structures. However, the current use of Internet re-
sources (distribution of data, privacy, etc.) requires new ways of dealing with data
clustering. This meets the recent trend around the integration of agent technologies
and data mining (see [1] and references therein). In this publication, the authors
identify and discuss two main challenges concerning the integration of agents and
data mining, namely data mining driven agent learning and agent driven data min-
ing. In the present chapter we address the latter by proposing the Multi Ant Colony
Clustering algorithm (MACC). This is also the line followed in [2] where agent-
based data mining was used to integrate knowledge and facilitate the annotation of
proteins. Our work thus has addressed some topics listed in [1] such as agent-based
distributed data mining, multi-data source mining, and distributed agent-based data
gathering and processing. While in [2] we have addressed supervised learning, here
we turn to clustering.
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Clustering methods differ not only in many of their most basic proprieties, such
as the data type handled, but also in the form of the final partitioning, in the assump-
tions about the shape of the clusters, and in the parameters that have to be provided.
Each clustering algorithm looks for clusters according to a different criterion. This
can be a problem because many data sets present different shapes and size of clus-
ters that a single objective clustering is not able to reveal. Moreover, the same data
can have more than one relevant structure, each one related to a different cluster
definition or to a different refinement level [3].

Recently, several biologically inspired algorithms have been introduced to solve
the clustering problem [4, 5, 6, 7, 8]. These algorithms are characterized by the inter-
action of a large number of simple agents that interact in a multiagent system. These
agents can perceive and change their environment locally and they are inspired by
ant colonies, flocks of birds, swarms of bees, etc. However, these algorithms have
been focussing on single objective clustering.

As an effort to overcome some limitations of single objective clustering algo-
rithms, multiobjective clustering algorithms such as [3, 9] have been proposed. The
basic idea of the multiobjective approach is to optimize more than one objective in
the same clustering. Using this approach we can find different shapes and sizes of
clusters and different types of structures in a data set.

MACC, the algorithm we propose, is inspired by ant colony optimization (ACO)
and multiobjective clustering. The central idea of MACC is to simultaneously use
several ant colonies, each colony aiming to optimize one objective. In this particu-
lar work we focus on two objectives in order to compare our results with previous
works on multiobjective clustering. This way, one colony minimizes the compact-
ness, while the other maximizes the connectivity of clusters. The simultaneous op-
timization of these objectives may lead to better solutions than the results achieved
when both objectives are optimized separately.

The remainder of this chapter is organized as follows. Section 16.2 briefly dis-
cusses the related work on ant clustering and multiobjective clustering. Section 16.3
introduces and describes the proposed algorithm, MACC. Section 16.4 presents and
discusses the results achieved, while Section 16.5 presents the conclusions and out-
lines future works.

16.2 Related Work
Social insects (e.g. ants, termites, bees, and wasps) distinguish themselves by their
self-organization [10, 11]. The use of the social insects metaphor to solve com-
puter problems such as combinatorial optimization, communications networks, or
robotics is increasing [12]. Ant colony optimization (ACO) [13] is a class of algo-
rithms based on social insects that has its origins in the ant foraging behavior. This
behavior consists in ants depositing a chemical pheromone as they move from a
food source to their nest, and foragers following such pheromone trails [12].

As mentioned, clustering approaches inspired by social insects (e.g. [4, 5, 6, 7, 8])
all optimize only a single objective. The algorithm presented in [6] relies mainly on
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pheromone trails to guide ants to select a cluster for each data object, while a local
search is required to randomly improve the best solution before updating pheromone
trails. In this algorithm, ants visit data objects one by one in a sequence and select
clusters for data objects by considering pheromone information. Pheromone depo-
sition depends on an objective function value and on an evaporation rate.

In [4], the authors propose the Ant Colony Optimization for Clustering (ACOC)
which extends the algorithm proposed in [6] by introducing the concept of dynamic
cluster centers in the ant clustering process, and by considering pheromone trails
and heuristic information together at each solution construction step. This heuristic
information is the Euclidean distance between data objects and clusters centers of
ants. It serves to guide artificial ants to group data objects into proper clusters.

The algorithm presented by Yang and Kamel in [7] employs three ant colonies to
solve an important subset of the clustering problem known as the cluster ensemble
problem. In this problem one needs to combine multiple clustering, formed from
different aspects of the same data set, into a single unified clustering [14]. This ap-
proach is based on a hypergraph to combine clustering produced by three colonies.
In each colony ants move with different speeds: constant, random, and randomly
decreasing. Each ant colony projects data objects randomly onto a plane and the
clustering process is done by ants picking up or dropping down objects with dif-
ferent probabilities. Authors used a different ant clustering model inspired by the
cemetery organization behavior proposed by Deneubourg [15].

In [8] Yang and Kamel have presented an extended version of [7]. They added
a centralized element to compute the clustering: a queen ant agent. This agent re-
ceives the results produced by all colonies, calculates a new similarity matrix and
broadcasts to each ant colony of the model. Each colony re-clusters the data using
the new information received.

Besides these works based on ACO for single objective clustering, we discuss
next some multiobjective clustering approaches that are based on evolutionary al-
gorithms. In [9] the authors present a multiobjective evolutionary algorithm called
MOCK. This algorithm is able to simultaneously optimize two complementary ob-
jectives based on cluster connectedness and compactness. MOCK returns a set of
different trade-off partitioning over a range of different numbers of clusters.

Another work is proposed by Faceli et al. [3]. This approach, called multiobjec-
tive clustering ensemble, MOCLE, is based on ideas from cluster ensembles and
multiobjective clustering. Notice that the cluster ensemble is different from cluster-
ing. It is a subset of the clustering problem, which combines multiple clusterings,
formed from different aspects of the same data set, into a single unified clustering.
The goal is to create a single clustering that best characterizes a set of clustering,
without using the original data points already used to generate the clusterings. MO-
CLE uses the results of several different clustering algorithms and returns a set of
solutions. According to the authors these solutions are diverse (revealing the differ-
ent structures of the data) and concise (may be analyzed by domain experts). Finally,
we remark that a multiagent ensemble approach was also proposed [16] but it has a
different purpose.
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Table 16.1: Comparison between MACC and related ant and multiobjective clustering approaches

ACOC Shelokar Yang and MACC MOCLE MOCK
et at. Kamel

Data stochastic sequential stochastic stochastic - -
selecting
process
Multiple no no yes yes - -
colonies
Paradigm ACO ACO Cemetery ACO evolutionary evolutionary

organization algorithms algorithms
Pheromone by by - by all - -

update elitist ants elitist ants ants
Memory of yes no no no - -
visited data
Clustering single single ensemble multiobjective ensemble and multiobjective

type objective objective multiobjective

Table 16.1 summarizes some differences and similarities between the MACC al-
gorithm, ACO based clustering approaches, and approaches for multiobjective clus-
tering. The main difference between MACC and ACO approaches is that MACC
performs the clustering with two colonies optimizing two objectives. MOCK and
MACC optimize multiobjective functions in a different way. While MOCK uses
evolutionary algorithms, MACC is inspired by social insects.

16.3 MACC – Multi Ant Colony Clustering Algorithm
Given a data set D containing |D| data objects with |X | attributes and a prede-
termined number of clusters |Z|, the proposed algorithm has to find a clustering
configuration combining the results of two objective functions. Other approaches
inspired by ACO [4, 6] also use the number of clusters as a parameter for a priori.

MACC uses two colonies, each one with K agents working to group a data set
according to two different objectives. Each colony C works in parallel over the same
data set. However, each one optimizes a different objective function. In this work, we
use two different objective functions: compactness (dev) and connectedness (con),
using one colony for each objective. Colony C1 optimizes the objective based on
compactness of clusters. Compactness measures the overall summed distances be-
tween objects and their corresponding cluster center. It is defined by Equation 16.1,
where Z is the set of all clusters, o is a data object, c j is the center (or centroid) of
cluster Z j and d(o,c j) is the Euclidean distance (Equation 16.2) between o and c j.

dev(Z) = ∑
Z j∈Z

∑
o∈Z j

d(o,c j) (16.1)

d(o,c j) =

√√√√|X |
∑
i=1

(oi− c ji)2 (16.2)
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The other colony, C2, optimizates the connectedness. It is inspired on the Shared
Nearest Neighbor clustering algorithm [17], which defines the similarity between
pairs of objects in terms of how many nearest neighbors two objects share. In MACC
we use this approach to group a set of data in the following way: Each object of the
data set has a list N of neighboring data (size |N |). An agent groups an object o
according to the similarity between o and its neighbors that are in the cluster. How-
ever these neighbors are considered only if o ∈ N . The connectedness reflects how
frequently neighboring objects have been placed in the same group. It is computed
according to Equation 16.3, where nniq is the q-th nearest neighbor of o. This defi-
nition of connectedness was also employed in [3, 9].

con(Z) =
|D|
∑
i=1

|N |
∑
q=1

a(oi,nniq), where a(oi,nniq) =
{ 1

q , if @Z jsuch as oi,nniq ∈ Z j

0 otherwise
(16.3)

Table 16.2 summarizes the main parameters used by MACC. Colonies C1 and C2

use global pheromone matrixes G1 and G2 of size |D|× |Z| to store the pheromone
values. Each agent carries a local pheromone matrix L of size |D|× |Z| with values
of pheromone which are used to group the objects. The whole information about
the global pheromone matrix G is not known by the agents. They only know their
own local pheromone matrix L, which has a partial view of the global pheromone
matrix. Let us denote kn

i the i-th agent of colony Cn. Each k1
i of colony C1 carries a

listM of centers of size |Z| to store their own cluster centers and update them each
T steps. Each agent k2

i of colony C2 carries an object gi ∈ D which has a list N of
neighbors. In the clustering process each agent k2

i needs to update the neighbors list
related to its object gi so that this list contains data that is similar to the object gi.

MACC is described in Algorithm 6. It starts with the initialization of the colonies
and their agents. The elements of the global pheromone matrix G1 and the local
pheromone matrix L1 are initialized with zero, indicating no pheromone. The list of
centers M of each k1

i is initialized with randomly chosen data. The elements of G2

and L2, which calculate the connectivity, are initialized in a different way because
Procedure 3, needs non-zero values for G2 and L2. Thus G2 and L2 are initialized by
agents of colony C2 according to Procedure 1. Each k2

i receives a randomly chosen

Table 16.2: Main parameters of the MACC algorithm

Parameter Description Parameter Description
D data set (size |D|) M list of centers (size |Z|)
X set of attributes (size |X |) ρ persistence of the pheromone trail
Z set of clusters (size |Z|) T interval size (steps) to redefine M
C colony z number of elements in cluster Z
Gn global pheromone matrix Ln local pheromone matrix

of colony Cn (size |D|× |Z|) of colony Cn (size |D|× |Z|)
N neighbors list (size |N |) K number of agents in colony Cn
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object gi to carry. The list N of neighbors of each datum o is also initialized with
|N | randomly chosen elements of the data set D.

After the initialization process, agents of both colonies start to cluster the data.
Colonies work separately, each one with an objective. At the beginning, each agent
k randomly selects an object o to group. After that, agents in C1 and C2 work ac-
cording to Procedure 2 and 3 respectively.

We now explain the behavior of colony C1. Each k1
i needs to redefine its list

M of centers in a distributed way. The parameter T regulates the execution of this
process. Each attribute xv of the new centroid c j ∈M is calculated according to
Equation 16.4, where z j is the total number of data in cluster Z j.

xv =
∑

z j
i=1 xvi

z j
, v = 1...|X |, j = 1...|Z|, (16.4)

All necessary information to redefine the list of centers is searched from the local
pheromone matrix L1 of the agent k1

i . Ant k1
i calculates the similarity between the

object o and each centroid c j of its list of centers (M) according to Equation 16.2.
Each agent adds τo j, a pheromone concentration of object o associated to the cluster
Z j, in the global pheromone matrix G1 . This matrix is updated according to Equa-
tion 16.5, where ρ is a constant indicating the persistence of the trail, (0≤ ρ ≤ 1);
(1−ρ) is the evaporation rate; t is the iteration number; and τo j is calculated ac-
cording to Equation 16.6 for C1.

τo j(t) = (1−ρ)τo j(t−1)+
K

∑
k=1

τk
o j (16.5)

τo j = 1−d(o,c j) (16.6)

After updating the global pheromone matrix G1, agents of colony C1 update their
local pheromone matrix L1. They copy the pheromone concentration τo j relative
to object o and each cluster Z j from the global pheromone matrix G1 to the local
pheromone matrix L1.

Next we explain the behavior of colony C2. Agents working in colony C2 group
the objects in a different way. To calculate the pheromone τo j they consider the
neighborhood of the object. They first update the neighbors list of their object gi
they carry. This process is performed by each agent k2

i when it selects an object o to
group. The agent calculates the similarity between the selected object o and the data
of the list of neighbors of its object gi according to Equation 16.2. If the object o is
more similar to the object gi than to every datum in the listN of neighbors, then the
object o will be added to N replacing the less similar object.

After updating N each k2
i starts the clustering process. To group an object o in

a cluster Z j it considers the list N of o. Then, when k2
i randomly selects an object

o to group, it checks in its local pheromone matrix L2 how many neighbors of o
are in each cluster Z j and updates G2 according to Equation 16.5. It calculates the
pheromone value τo j for the object o and cluster Z j according to Equation 16.7,
where oi indicates the object that needs to be compared with o (oi ∈ Z j), P is the
number of objects that are neighbors of o and are in the cluster Z j, and V is the
number of objects that are not neighbors of o and are in the cluster Z j. No and Noi
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are the list of neighbors of object o and oi respectively, and d(o,oi) is the Euclidean
distance between the object o and oi.

τo j =





∑P
i=1 δ (o)

V
if P < V

1 otherwise,
(16.7)

where δ (o) =
{

d(o,oi) if o ∈Noi and oi ∈No
0 otherwise,

After updating the global pheromone matrix G2, agents of colony C2 also update
their local pheromone matrix L2. This process is carried out in the same way as for
colony C1 by copying G2 relative to the object o and to each cluster Z j to L2. At
the end of the process, each object will have different values of pheromone for each
group. The object will belong to the cluster with the highest amount of pheromone.

Algorithm 6: MACC algorithm
initialize C1 and C2 with K agents;1
initialize N with random objects;2
initialize G1 with pheromone value equal to 0;3
initialize L1 of each agent k1

i with pheromone value equal to 0;4
initialize G2 and L2 according Procedure 1;5
initialize M of each agent k1

i with random objects;6
initialize parameters T,ρ, |Z|;7
repeat for each step8

foreach colony Cn do9
foreach agent i do10

randomly choose an object o to group;11
if agent i is working from colony C1 then12

cluster o using Procedure 2;13

else if agent i is working from colony C2 then14
cluster o using Procedure 3;15

until numSteps;16
combine both global pheromone matrices G1 and G2: G = G1 +G2;17

Procedure 1 initialize G2 and L2

foreach agent k2
i do1

randomly choose an object o to group;2
randomly choose a cluster Z j to put o;3
agent initializes G2 for the object o and cluster Z j with value 0.1;4

L2 ← G2 ;5
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Procedure 2 compactness

if step % T == 0 then1
foreach cluster Z j , j ∈ {0, ..., |Z|} do2

foreach attribute x ∈ {0, ..., |X |} do3
calculate x according Equation 16.4;4

foreach cluster Z j , j ∈ {0, ..., |Z|} do5
calculate the similarity between o and c j according to Equation 16.2;6
update G1 for the object o and cluster Z j according to Equation 16.5;7
update local pheromone matrix L1 ;8

Procedure 3 connectedness
foreach object i ∈ {0, ...,P} do1

if d(o,g) < d(g, i) then2
Ng ← o;3

foreach cluster Z j , j ∈ {0, ..., |Z|} do4
update G2 according to Equation 16.7;5
update local pheromone matrix L2 ;6

16.4 Experiments and Results
We have performed experiments to investigate the quality of the proposed multi-
objective ant clustering algorithm using public domain data set. The Iris data set
from the Machine Learning Repository [18] was used (as in other multiobjective
algorithms). The data set contains 3 classes referring to a type of Iris plant (Setosa,
Versicolour and Virginica), with 4 attributes and 50 instances each.

For comparison we use the MOCK and the Yang & Kamel algorithms. Experi-
ments were repeated 50 times (comparison with MOCK) or 10 times (with Yang
& Kamel). The MACC algorithm parameter values used are: T = 40, ρ = 0.3,
|N | = 20% of |D|, and K = 3×|D|, and the number of iterations (numSteps) was
2000. These values have chosen after several tests with different values for each
parameter.

To assess the performance of the clustering produced according to both objec-
tives (compactness and connectedness) we have performed the experiments in two
phases. In the first, we have investigated the quality of results of the two colonies
C1 and C2 working independently. Each colony performed the clustering using a
pheromone matrix (G1 and G2 respectively). In the second phase we have studied
the results of both global pheromone matrix combined. This combination is per-
formed by adding the pheromone values of both matrices. The main idea of the
second phase is to optimize both objectives to find better results than when using
the colonies optimizing a single objective separately.

We use the F-measure evaluation function expressed in Equation 16.8; it can
take values in the interval [0,1] and should be maximized. This function is used in
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[3, 7, 8] as well. The overall F-measure for the clustering is computed by Equation
16.9, where p(i, j) = ni j

n j
, r(i, j) = ni j

ni
, ni j is the number of objects of class i within

cluster j, n j is the total number of objects within cluster j, and ni is the number of
objects of class i.

F(i, j) =
2× p(i, j)× r(i, j)

p(i, j)+ r(i, j)
, (16.8)

F = ∑ ni

D
×max{F(i, j)} (16.9)

Table 16.3 shows both phases of the clustering obtained by MACC. As we can
see, the objective of MACC was achieved: the multiobjective clustering process
(combined) works better than each colony working separately (dev and con). Ta-
ble 16.4 compares MACC and MOCK while 16.5 Table shows the performance of
MACC in comparison to Yang & Kamel algorithm. Entries in Table 16.4 show the
sample median and interquartile range (IQR) for the F-measure while Table 16.5
depicts the average and standard deviation for the F-measure. These different mea-
sures are used to make both comparisons possible. Table 16.4 shows that MACC
outperforms MOCK both when colonies work separately (the first phase) and after
the combination of both pheromone matrices (the second phase).

Table 16.5 shows that our approach performs similarly to the Yang & Kamel
algorithm, when the combined matrices are used. Moreover, it must be also noticed
that the Yang & Kamel algorithm uses a centralized queen ant agent that receives the
results produced by all colonies, computes a new similarity matrix and broadcasts
to each ant colony of the model, while the agents of MACC do the clustering in a
partially distributed way without knowledge about the whole environment.

Table 16.3: F-measure for MACC for the Iris data set (50 repetitions).

Measure MACC (dev) MACC (con) MACC (combined)
Average 0.8857 0.8997 0.9215
Std. deviation 0.0017 0.1033 0.0686

Table 16.4: F-measure for MOCK and MACC for the Iris data set (50 repetitions).

Measure MACC (dev) MACC (con) MACC (combined) MOCK
Median 0.8853 0.9286 0.9397 0.8346
IQR 0 -0.0609 -0.0676 0.0076
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Table 16.5: F-measure for Yang & Kamel and MACC for Iris data set (10 repetitions).

Measure MACC (dev) MACC (con) MACC (combined) Yang & Kamel
Average 0.8910 0.9219 0.9326 0.9494
Std. Deviation 0.0059 0.0407 0.0407 0.0038

16.5 Conclusion and Future Work
This chapter presented MACC, a new clustering algorithm based on ideas of multi
ant colony and multiobjective clustering. The central idea of MACC is to simulta-
neously use several ant colonies, each optimizing one objective. Here we have per-
formed experiments where one colony minimizes the compactness, while another
maximizes the connectivity of clusters. The simultaneous optimization of these ob-
jectives leads to better solutions than those achieved when both objectives are opti-
mized separately.

MACC was compared with a multiobjective clustering algorithm, MOCK, and
with a multi ant colony, the Yang & Kamel algorithm. Results were extremely en-
couraging and therefore we plan to use it in other datasets, including some that are
related to experiments on microarrays, where the objective is to find correlations
among several genes that are expressed.

Besides, we plan to try another way to perform the multiobjective clustering:
each colony collaborates with the results of each other by adding pheromone values
in the corresponding global pheromone matrix. We also plan to test the optimization
of conflicting objectives.

Acknowledgements This research is partially supported by the Air Force Office of Scientific
Research (AFORS) (grant number FA9550-06-1-0517) and by the Brazilian National Council for
Scientific and Technological Development (CNPq).

References

1. Cao, L., Luo, C., Zhang, C.: Agent-mining interaction: An emerging area. In: AIS-ADM,
Springer (2007)

2. Santos, C.T., Bazzan, A.L.C.: Integrating knowledge through cooperative negotiation – a
case study in bioinformatics. In Gorodetsky, V., Liu, J., Skormin, V.A., eds.: Proceedings of
the International Workshop on Autonomous Intelligent Systems: Agents and Data Mining.
Number 3505 in Lecture Notes in Artificial Intelligence, Springer-Verlag (2005) 277–288

3. Faceli, K., Carvalho, A.C.P.L.F., Souto, M.C.P.: Multi-objective clustering ensemble. In:
Proceedings of the Sixth International Conference on Hybrid Intelligent Systems (HIS 06),
Washington, DC, USA, IEEE Computer Society (2006) 51

4. Kao, Y., Cheng, K.: An ACO-based clustering algorithm. In: Proceedings of the Fifth Interna-
tional Workshop on Ant Colony Optimization and Swarm Intelligence - ANTS 2006. Volume
4150 of Lecture Notes in Computer Science., Brussels, Belgium, Springer (2006) 340–347

5. Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Pro-
ceedings of the third international conference on Simulation of adaptive behavior: from ani-



16 A Multiagent, Multiobjective Clustering Algorithm 249

mals to animats, Cambridge, MA, USA, MIT Press (1994) 501–508
6. Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D.: An ant colony approach for clustering. Ana-

lytica Chimica Acta 509 (2004) 187–195
7. Yang, Y., Kamel, M.: Clustering ensemble using swarm intelligence. In: Proceedings of the

Swarm Intelligence Symposium (SIS 03), Indianapolis, USA (2003) 65–71
8. Yang, Y., Kamel, M.: An aggregated clustering approach using multi-ant colonies algorithms.

Pattern Recongnition 39 (2006) 1278–1289
9. Handl, J., Konwles, J.: Exploiting the trade-off - the benefits of multiple objectives in data

clustering. In: Proceedings of the Third International Conference on Evolutionary Multi-
Criterion Optimization (EMO 2005), Springer Verlag (2005) 547–560

10. Camazine, S., Deneubourg, J.D., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-
Organization in Biological Systems. Princeton University Press, Princeton, N.J. (2003)

11. Gordon, D.: The organization of work in social insect colonies. Nature 380 (1996) 121–124
12. Bonabeau, E., Theraulaz, G., Dorigo, M.: Swarm Intelligence: From Natural to Artificial

Systems. Oxford University Press, New York, USA (1999)
13. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating

agents. IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics 26 (1996)
29–41

14. Strehl, A., Ghosh, J.: Cluster ensembles: a knowledge reuse framework for combining par-
titionings. In: Proceedings of the Eighteenth National Conference Intelligence, Menlo Park,
CA, USA, American Association for Artificial Intelligence (2002) 93–98

15. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.: The
dynamics of collective sorting: Robot-like ant and ant-like robot. In: Proceedings of the First
Conference on Simulation of Adaptive Behavior: From Animals to Animats, Canbridge, MA,
USA, MIT Press (1991) 356–363

16. Agogino, A., Tumer, K.: Efficient agent-based cluster ensembles. In Stone, P., Weiss, G., eds.:
Proceedings of the fifth international joint conference on Autonomous agents and multiagent
systems, AAMAS ’06, New York, NY, USA, ACM (2006) 1079–1086
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