
Chapter 14
A Multiagent Approach to Adaptive Continuous
Analysis of Streaming Data in Complex
Uncertain Environments

Igor Kiselev and Reda Alhajj

Abstract The data mining task of online unsupervised learning of streaming data
continually arriving at the system in complex dynamic environments under condi-
tions of uncertainty is an NP-hard optimization problem for general metric spaces
and is computationally intractable for real-world problems of practical interest.
The primary contribution of this work is a multi-agent method for continuous ag-
glomerative hierarchical clustering of streaming data, and a knowledge-based self-
organizing competitive multi-agent system for implementing it. The reported ex-
perimental results demonstrate the applicability and efficiency of the implemented
adaptive multi-agent learning system for continuous online clustering of both syn-
thetic datasets and datasets from the following real-world domains: the RoboCup
Soccer competition, and gene expression datasets from a bioinformatics test bed.

14.1 Introduction

14.1.1 Problem Definition

Continuous decision-making and anytime data analysis in dynamic uncertain en-
vironments represent one of the most challenging problems for developing robust
intelligent systems. It is indispensable for intelligent applications working in such
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complex environments as autonomous robotic systems, dynamic manufacturing and
production processes, and distributed sensor networks to be capable for successfully
responding to environmental dynamics and making time critical decisions online
under conditions of uncertainty. To develop a probabilistic theory of the operating
environment (a representation of the world), an intelligent system solves the prob-
lem of unsupervised learning, that is the process of discovering significant patterns
or features in the input data when no certain output or response categories (classes)
are specified. The task of unsupervised clustering in statistical learning requires the
maximizing (or minimizing) of a certain similarity-based objective function defin-
ing an optimal segmentation of the input data set into clusters [7].

There are two types of unsupervised clustering algorithms: partitional and hier-
archical. The main goal of a partitional optimization algorithm can be defined by
finding such assignmentsM∗ of observationsX to output subsets S that minimize a
mathematical energy function, which characterizes the degree to which the cluster-
ing goal is not met and is the sum of the cost of the clusters: W(M∗) = ∑k

i=1 c(Si).
The problem of partitional clustering is known to be computationally challenging
(NP-hard) for general metric spaces and is computationally intractable for real-
world problems of practical interest. In comparison to partitional clustering algo-
rithms, the goal of a hierarchical optimization algorithm is to extract an optimal
multi-level partitioning of data by producing a hierarchical tree T (X ) in which the
nodes represent subsets Si ofX . The time and space complexities of the hierarchical
clustering are higher than partitional one: in standard cases a typical implementation
of the hierarchical clustering algorithm requires O(N 2 logN ) computations.

The task of online learning in complex dynamic environments assumes near real-
time mining of streaming data continually arriving at the system, which imposes
additional requirements for continuous data mining algorithms of being sensitive
to environmental variations to provide a fast dynamic response to changes with an
event-driven incremental improvement of mining results (cf. Table 14.1).

Table 14.1: Required properties of online unsupervised learning methods
Feature Classical methods Required functionality

Model:

• Data set

• Decision 

criteria

• Learning 

parameters

Static:

• Static input data sets

• Fixed and Single-objective 

criteria for learning

• Invariable (cannot be changed at 

run-time)

Dynamic:

• Dynamic and Streaming

• Dynamic and Multi-objective quality 

metrics with trade-off balancing

• Adjustable at run-time during algorithm 

execution

Method:

• Learning 

mode

• Availability 

of results

• Reaction to 

changes

Batch-oriented:

• Batch-oriented processing of a 

static data set

• Only after full completion

(needs time to get a result)

• Must be restarted again from 

scratch with full retraining of 

models or extra repair methods

Continuous:

• Near-real time learning of streaming data 

continually arriving at the system

• At anytime during algorithm execution 

(always see a result and its improvement) 

• Without restarting, and with event-driven 

incremental improvement of results, 

trading off operating time and result quality

Environment:

• Uncertainty 

of learning

• Data 

location

Centralized and Deterministic:

• Assume predictable outcome 

(Rigid)

• Single or Decentralized, but with 

an additional centralized algorithm 

of aggregating partial results

Distributed and Stochastic:

• Consider random effects 

(Resilient)

• Both centralized and decentralized 

without any additional aggregation 

procedures
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Additionally, a dynamic data mining algorithm, operating in complex uncertain
environments with incomplete knowledge about parameters of the learning problem,
should be suitable for online exploratory data analysis using different measures of
similarity in order to be able to continually operate on the basis of various dynamic
learning criteria.

The application of the proposed multi-agent solution to continuous online learn-
ing is appropriate for various scenarios of near real-time data processing: online
intrusion detection, emergency response in hazardous situations (e.g. forest fires,
chemical contaminants in drinking water), control of military operations with time
critical targets, online learning of distributed robotic systems (e.g. in the RoboCup
Soccer and Rescue domains), and run-time detection of previously unknown dis-
patching rules and effective scheduling policies in transportation logistics.

14.1.2 Related Work

Continuous and anytime data analysis imposes requirements for adaptability of
learning methods that are simply not addressed by traditional data mining tech-
niques. Conventional methods of unsupervised learning address the issue of statisti-
cal fluctuations of the incoming data by means of continual retraining of models that
is computationally intractable or inappropriate in time-critical scenarios. Clustering
results of batch-oriented methods are available only after their full completion, and
must be started again from scratch in order to react on environmental variations.

To address this issue of effective online learning, various approaches have been
considered in the literature (refer to online supplementary materials for a complete
overview of related work [10]). Decentralized clustering algorithms were proposed
to speeds up centralized learning by dividing it onto a set of processors and allowing
them to learn concurrently with an additional centralized algorithm of aggregating
partial mining results to the global solution [21], [12], [23]. To handle the com-
plexity of the problem, approximate clustering algorithms were developed to search
for a feasible solution in incomplete decision space, by applying approximation
heuristics that reduce the problem dimension, but lead to worse result quality [7].
Clustering methods for unsupervised learning of streaming data were developed,
which support incremental update of the mining result by applying additional re-
pairing methods [1], [3]. Uncertainty of the operating environment is approached
by feedback-directed clustering algorithms that apply reinforcement learning tech-
niques to guide the search towards better cluster quality [4], [13]. The distributed-
constraint reasoning formalism was proposed to approach optimization and learning
problems in a decentralized manner, which is better suited to deal with changes in a
localized fashion [5], but can be too expensive in large-scale dynamic environments
[16] and restrictive to provide a fast response to environmental variations [22].

As opposed to previous work, we present a different anytime multi-agent ap-
proach to online unsupervised learning, which is different from conventional meth-
ods by being dynamic, incremental and distributed, rather than parallel . We demon-
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strate that the task of continuous unsupervised learning, when formulated as a dy-
namic distributed resource allocation problem, can be effectively approached by a
decentralized market-based method of multi-agent negotiation [11].

14.2 Continuous Online Unsupervised Learning in Complex
Uncertain Environments

14.2.1 Market-based Algorithm of Continuous Agglomerative
Hierarchical Clustering

As opposed to previous work, we propose a different multi-agent approach to con-
tinuous online learning of streaming data by modeling the task of unsupervised
clustering as a dynamic distributed resource allocation problem [15]. The online
learning algorithm implements the concept of clustering by asynchronous message-
passing [6], whereby the any-time solution to the continual constrained optimiza-
tion problem of clustering is obtained (inferred) by satisfying a dynamic distributed
constraint network of agent interests. Thus, the continual distributed learning pro-
cess is carried out by means of asynchronous quasi-parallel processes of negotiation
between the competitive agents of records and clusters, defined for data elements.
Mining agents negotiate (act) with each other in the virtual learning marketplace in
order to satisfy their individual goals and maximize their criteria values. Searching
for the most profitable allocation variants (semantic links with the highest utility)
to enhance their satisfaction levels with minimal costs, the agents of clusters and
records dynamically establish and reconsider ontological relationships with other
agents, thereby dynamically establishing ontological multilevel virtual market com-
munities.

A distributed computational environment for self-interested agents (a virtual
learning marketplace) is formally defined according to the game-theoretic notation
of a marketplace system [8], [14]. To develop a multi-agent system capable of op-
erating in dynamic distributed environments, we solve the task of online computa-
tional mechanism design in distributed computational settings, which assumes that
self-interested agents can arrive at and depart from the multi-agent system dynam-
ically over time, and there is no a trusted central mechanism to control their be-
havior. Computational mechanism design provides a mathematical framework that
defines each agent’s decision-making model and specifies the protocols that govern
the agent interactions (the market mechanism through which agents interact) [17],
[19]. A market-based algorithm of continuous agglomerative hierarchical cluster-
ing designs a multi-agent system in which rational self-interested agents with pri-
vately known preferences interact in a way that leads to equilibriums with desired
system-wide properties (socially desirable outcome). Fig. 14.1 depicts an overview
flowchart for the market-based algorithm of continuous agglomerative hierarchical
clustering algorithm.
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Fig. 14.1: A flowchart for the market-based algorithm of continuous hierarchical clustering

A global decision (macroscopic solution) of the dynamic distributed data clus-
tering is implicitly achieved (performed) by the competitive agents that maintain a
dynamic balance among the interest of all participants in the interaction according
to the following algorithmic process (cf. Fig. 14.1): continuous arriving of data el-
ements at the system (algorithmic step #1), locating candidate agents for allocation
negotiations (algorithmic step #2), satisfying a dynamic distributed constraint net-
work of agent interests for each type of agent negotiations (algorithmic steps #3, #4,
#5, #6), agent proactive improvement of learning results (algorithmic step #7), and
terminating the execution of the learning algorithm (algorithmic step #8). The com-
plete description of each algorithmic step of the method is omitted in the chapter
due to space limitations (refer to online supplementary materials).

The implemented auction-based negotiation method of agent negotiations is
based on a modified Contract-Net Protocol, where agents dynamically submit bids
based on the cost of possible allocation variant [20]. Each participant of the negoti-
ation evaluates new allocation options and sends an approval only when the criteria
value of a new agent state with a new established link and broken previous relation-
ships with other agents (if any) is better than the value of the current agent state. If
new ontological instance is created as a result of a negotiation process of the syn-
thesis type a new mining agent of a corresponding type is produced in the virtual
clustering marketplace and assigned to it.

The proposed computationally efficient multi-agent algorithm for online agglom-
erative hierarchical clustering is different from conventional unsupervised learning
methods by being distributed, dynamic, and continuous. Distributed clustering pro-
cess provides the ability to perform efficient run-time learning from both central-
ized and decentralized data sources without an additional centralized algorithm of
aggregating partial mining results. Both the input dataset of decentralized sources
and decision criteria for learning (e.g. similarity matrices and expert knowledge)
are not fixed and can be changed at run-time during execution of the dynamic al-
gorithm. Clustering results of the adaptive learning algorithm are available at any
time and continuously improved to achieve a global quasi-optimal solution to the
optimization problem, trading-off operating time and result quality.
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14.2.2 Agent Decision-making Model

Goal-driven behavior of autonomous agents is supported by the developed microe-
conomic multi-objective decision-making model, which defines for each agent in
the virtual marketplace ontology its individual goals, criteria, preference functions,
and decision-making strategies [9]. Semantic agents of records have the goal to es-
tablish the most profitable allocation with the agents of clusters according to their
individual agent criteria (”to be allocated”). To accomplish the allocation goal, a
record agent can either send a membership application to the existing cluster to join
it (algorithmic step #3) or be allocated to a new cluster, which can be created as
a result of a negotiation process of the synthesis type with either another record
agents or existing cluster agents (algorithmic steps #4 and #5). To support hierar-
chical clustering, there are two different goals defined for a cluster agent within its
decision-making model (bidirectional λ − π inference). The first goal of a cluster
agent (”allocate”) is to establish links with the agents of records to create the most
profitable ontological cluster of the best quality. The second goal of a cluster agent
(”to be allocated”) has the same notion as the goal of a record agent, to establish
the most profitable allocation with the agents of clusters, and is defined through the
task of establishing the most effective relationship of the ”part-of” type with another
cluster agent (algorithmic step #6). Fig. 14.2 illustrates the agent learning goals and
basic types of agent negotiations in the virtual clustering marketplace.
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 4. To form Cluster
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Fig. 14.2: Hierarchical architecture of a virtual clustering marketplace: agent goals and learning
tasks

The developed multi-objective decision-making model makes it possible for the
learning algorithm to continually operate on the basis of dynamic learning crite-
ria, and to be suitable for online exploratory data analysis in complex uncertain
environments with incomplete knowledge about parameters of the learning prob-
lem (cf. Fig. 14.3). Competitive agents of records and clusters act in the virtual
clustering marketplace to satisfy their individual goals and maximize their criteria
values according to the chosen decision-making strategy. Currently supported agent
decision-making strategies are based on the following agent criteria: the Euclidian
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distance-based measure of similarity, the Chebychev similarity metric, and the an-
gle metrics defining polarization (”shape”) of agent communities (multilevel and
multicultural) in decision-space. Agent decision-making strategies can be applied
dynamically at run-time to the whole agent society (global level), to a single agent
(individual level), or to agent groups in different areas of the virtual clustering mar-
ketplace (several polarization vectors).

Initial situation; Strategy: Strategy:
Event occurs: ”minimizing distance”; ”keeping shape”;

new record #1 arrived record #1 → ”A” record #1 → ”B”
text in white text in white text in white

d1>d2
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Fig. 14.3: Dynamic support for various agent decision-making strategies and learning criteria

Utilizing the agent criterion, based on the Euclidian distance-based measure of
similarity, the learning algorithm relies on the ability to calculate the centroid of
each cluster. For the input spaces where it is not possible, we propose to use the
Chebychev similarity metric as a basis for a similarity measure between objects.
The Chebychev similarity measure is based on the definition of the Chebychev dis-
tance metric, where the distance between two vectors is the greatest of their dif-
ferences along any coordinate dimension. Using the Chebychev similarity metric
as a similarity measure has the advantage of being less computational expensive in
comparison to the distance-based metric of similarity since there is no need for es-
timating parameters of all records allocated to the cluster during negotiations. The
complete distributed learning model, representing a full set of agent learning criteria
for three types of similarity metrics (the Euclidian distance-based similarity, Cheby-
chev similarity metric, and the angle metrics), consists of 24 equations in total and
is omitted due to space limitations (refer to online supplementary materials [10]).

In order to be effective in solving time-sensitive data mining problems in com-
plex uncertain environments, the developed multi-agent learning system addition-
ally addresses the following challenges of online learning of streaming data: the
processing of large number of input records and online tractability, the continual
directed adaptation of the learning system parameters to environmental variations
and a fast dynamic response to them in a real-time fashion, and the communication
complexity of dynamic large-scale networks of autonomous agents [8].
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14.3 Experimental Analysis

14.3.1 Datasets

The proposed multi-agent method of online learning was experimentally evaluated
for continuous agglomerative hierarchical clustering of both synthetic datasets and
datasets from the following real-world domains: the RoboCup Soccer competition
and a gene expression datasets. The experimental datasets for the RoboCup Soc-
cer domain were obtained by analyzing files of the final 2006 game (simulation
league) between the teams ”Brainstormers” and ”WrightEagle”. The datasets for
data mining were obtained using a data preparation framework, which parses log
files of previous RoboCup Soccer games and generates knowledge representation
structures of agent action scenes suitable for data mining purposes (459 instances
with 10 attributes) [8]. To evaluate the performance of the developed solution to
cluster datasets of high-dimensional data, we used a reduced cancer dataset [2]. The
acute myeloid leukemia (AML)/acute lymphoblastic leukemia (ALL) dataset con-
tains 192 gene and 73 patient samples.

14.3.2 Experimental Results

The reported experimental results demonstrate the applicability and efficiency of the
implemented adaptive multi-agent learning system for continuous online clustering
of both synthetic datasets and datasets from the following real-world domains: the
RoboCup Soccer competition, and gene expression datasets from a bioinformatics
test bed. The major experimental results of the conducted experimental analysis are
summarized in Table 14.2 and graphically presented as fourteen charts (cf. Fig. 14.4
– Fig. 14.5 and Fig. 14.8 – Fig. 14.17 listed in Appendix), which demonstrate dy-
namics of the distributed learning process within and across various dimensions of
the performance radar (cf. Fig. 14.5). Table 14.2 consists of four column groups,
and reports solution quality for different algorithm parameters and agent decision-
making strategies.

Both centralized and distributed (local) performance metrics was used to eval-
uate solution quality. We use the Cophenetic (Pearson) coefficient as a centralized
performance metrics to measure quality of hierarchical clustering (computed in the
shared memory primarily for comparison purposes) [18]. We also consider the agent
decision-making criteria to be distributed performance metrics to evaluate the solu-
tion quality. Such ”personified” performance indicators allow for identifying quality
”bottle-necks” across all clustering hierarchy. The table reveals the dominance of
different performance metrics when applying certain agent decision-making strate-
gies, and also demonstrates which parameters of the multi-agent algorithm should
be used to increase system performance along specific dimensions of the perfor-
mance radar (the absolute best and worst parameter values for each performance
metrics are emphasized in bold and italic types respectively).
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Table 14.2: Performance comparison of different agent strategies
Learning Euclidian Top Reference Level Stochastic Proactive Continual Chebychev Angle
Strategy Similarity Candidates Point Penalties Prematching Roles Learning Similarity Metrics

Operating Time
T, ms 3375 2781 3165 3450 3553 3484 3297 11937 2859

Cophenetic (Pearson) coefficients

PMR 0.9029 0.8779 0.8866 0.7873 0.8939 0.9487 0.9029 0.6395 0.7227
PBC 0.9029 0.9353 0.9313 0.9277 0.8939 0.9624 0.9029 0.8835 0.7227
PBA 0.9414 0.9799 0.9799 0.9965 0.9650 0.9813 0.9414 0.9957 0.7790
PM 0.4213 0.4249 0.4261 0.4270 0.4166 0.5807 0.4213 0.3501 0.2813

Cluster Agent Values ”Contains”

CBA CS 0.5974 0.5974 0.5974 0.5974 0.5974 0.5974 0.5974 0.9605 0.9930
CBC CS 0.2273 0.2273 0.2273 0.2273 0.2273 0.3142 0.2273 0.8259 0.7690
CM CS 0.1715 0.1621 0.1665 0.1596 0.1630 0.2086 0.1715 0.7086 0.7102
CMR CS 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.2489 0.3880
CWA CS 0.0184 0.0184 0.0184 0.0184 0.0184 0.0334 0.0184 0.2489 0.0290

Cluster Agent Values ”Contained”

CBA CD 0.1663 0.1239 0.3046 0.3046 0.3046 0.3098 0.1663 0.7383 0.8286
CBC CD 0.0974 0.0663 0.2273 0.1149 0.1250 0.1373 0.0974 0.6851 0.6649
CM CD 0.0618 0.0467 0.0835 -0.4568 0.0772 0.0654 0.0618 0.5479 0.5321

Record Agent Values ”Contained”

RBA 0.5974 0.5974 0.5974 0.5974 0.5974 0.5974 0.5974 0.5974 0.9930
RM 0.2273 0.2273 0.2273 0.2273 0.2273 0.2644 0.2273 0.2273 0.7690
RWA 0.0184 0.0184 0.0184 0.0184 0.0184 0.0325 0.0184 0.0184 0.0290

Fig. 14.4: A radial dendrogram of learning
results for clustering the gene expression dataset
with 192 genes and 73 patients (the equilibrium

state)

Fig. 14.5: A performance radar of major agent
decision-making criteria (the multi-criteria

model of quality metrics for the agent society)

The first set of experimental charts presents learning results for clustering the
gene expression dataset and RoboCup Soccer dataset, and solution quality of the
multi-agent algorithm across different performance metrics, agent decision-making
criteria, and different parameters of the multi-agent algorithm. Learning results for
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clustering the gene expression dataset from the bioinformatics testbed are presented
in Fig. 14.4 as a interactive radial hierarchical dendrogram, which at any point in the
computation graphically represents a dynamic reconfigurable network of the seman-
tic instances of mining agents in the virtual learning marketplace. Red circles and
blue squares of the radial dendrogram represent clustered record and cluster agent
respectively, and a green triangle in the center of the dendrogram constitutes the root
cluster agent at the top level of the learning hierarchy. Additionally, it can be seen
from the dynamic radial dendrogram that the semantic instances of mining agents
are not numbered successively in a stable equilibrium state which is explained by
the incremental nature of the distributed learning process. The multi-agent system
responds to an external event by locally reorganizing only those areas of the global
decision space that are affected by the event (incremental optimization in the local
context). All decisions and established links are not fixed in the system and locally
reconsidered when needed during reaction on environmental perturbations.

Fig. 14.5 represents the overall performance radar of five major quality metrics
(agent decision-making criteria) for the agent society in the virtual learning mar-
ketplace, which define several areas of solution quality: critical and best values,
homeostasis and satisfaction equilibrium. Critical values of the performance dimen-
sions define the area of solution quality, where mining agents are not satisfied with
established relationships with other agents and actively look for other allocation op-
tions to enhance their satisfaction levels with minimal costs. On the contrary, best
values define the area of solution quality, where autonomous agents have absolute
best satisfaction levels for each performance dimension. Satisfaction equilibrium
defines the area of solution quality, where satisfaction levels of the agents are suffi-
ciently high such that they turn to the inactive states and do not exhibit proactivity to
improve their values, thereby releasing computational resources of the multi-agent
system to allow other agents to be active and enhance their satisfaction values (com-
putationally efficient algorithm implementation). Homeostasis area defines the sta-
tionary point of the multi-agent system with Pareto optimality of its quality criteria,
where enhancing values of one performance metric could not be achieve without
decreasing the overall solution quality. The multi-criteria quality model enables the
continuous learning algorithm to operate on the basis of several performance crite-
ria, and to be suitable for exploratory data analysis by dynamically balancing the
evaluation criteria at run-time during execution of the online multi-agent system
(supporting the selection and regulation of appropriate learning parameters).

Fig. 14.6 depicts the distribution of quality levels of the learning hierarchy (cuts
of the agent society) across different performance metrics and over operating time
of the multi-agent algorithm. The anytime multi-agent learning algorithm not only
extracts an optimal multi-level partitioning of data using various measures of sim-
ilarity, but also defines optimal segmentations of the input data set into clusters by
dynamically selecting the quality levels (cuts) of the learning hierarchy for each
performance metric defined in the multi-criteria quality model. Thus, performance
comparison of Euclidian and Chebychev similarity metrics as agent learning cri-
teria is presented in Fig. 14.13, which demonstrates that their major performance
metrics have the same final configuration of quality levels, and suggests that due to
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described advantages of the Chebychev similarity metric it should be used where ap-
propriate. Fig. 14.7 demonstrates the result of a conducted experiment on the anal-
ysis of the distribution of performance metrics by hierarchical levels of the agent
society, and represents a stable equilibrium state of the distributed learning process
(static situation). By comparing the learning results of a conventional hierarchical
single-linkage clustering algorithm with performance metrics of the developed con-
tinual multi-agent algorithm, we can conclude that solution quality obtained by the
multi-agent learning system in its final stable configuration is as good as one of the
batch algorithm.

Fig. 14.14 illustrates the dynamic characteristics of agent instances during the
continual distributed learning process and emphasizes the agent ripple effect, which
is a decision reconsideration chain that improves the overall clustering results due to
agent proactivity. The grey shaded square area of the chart, which is formed by the
intersection of the vertical (time of the ripple effect during which agents improve
their satisfaction) and horizontal (a value gained as a result of the agent proac-
tivity) grey areas, emphasizes the property of the multi-agent algorithm to proac-
tively trade-off solution quality and operating time. A back dotted line of the chart
represents the dynamics of the Cophenetic coefficient over operating time of the
multi-agent algorithm, and is displayed on its own scale to demonstrate incremental
improvement of solution quality as a result of the ripple effect. A red line of the
chart represents the number of non-allocated record agents, which is reduced over
time and approaches a zero value in the final stable configuration of the multi-agent
system. Behavior of the red line inside the shaded square area demonstrates the
moment of switching agent proactivity, during which the system transit from one
dynamic state of balance into a new economically more effective one by the break-
ing of previously established ontological relationships between record and cluster
agents and establishing new semantic links. Thus, it can be seen from the diagram
that the number of non-allocated record agents becomes zero in the beginning of the
grey shaded area (all agents are allocated). However, during the proactivity stage
the agents, seeking to increase their satisfaction values, break previous ontological
relationships (temporary becoming unplanned) and lead the multi-agent system to
a new configuration of the dynamic equilibrium with better solution quality (the
number of non-allocated record agents becomes zero again at the end of the grey
shaded area, but during the period of agent proactivity the value of the Cophenetic
coefficient is increased as a result of the agent ripple effect).

Fig. 14.9 demonstrates the results of the conducted experiments on introducing
the proactive agent ”Record-Cluster” role into the agent decision-making model.
The chart reveals a significant increase of the solution quality across all perfor-
mance metrics (though taking slightly more time to settle down to a new quasi-
optimal state) when the record agents not only exhibit reactive behavior by sim-
ply responding to system events, but also proactively search for profitable alloca-
tion variants. Fig. 14.11 demonstrate that cluster centroids, produced by the devel-
oped multi-agent algorithm, can be considered as significant representative features
(”reference points”) for the algorithm since the latter provides representative clus-
tering results with the satisfactory overall quality of partitioning. Fig. 14.10 demon-
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strates the ability of the multi-agent learning algorithm to avoid local optima and en-
hance the overall learning results by means of the incremental stochastic agent pre-
matching algorithm (”random sampling” of the search space), which restrictively
regulates the agent pre-matching radius to incrementally increase a depth of agent
vision and stochastically select candidate agents within the agent pre-matching ra-
dius. Fig. 14.15 represents performance metrics of cluster agents evolving in the
virtual learning marketplace (with quality levels shown as numbers above the lines,
and final values of the performance metrics in the stable equilibrium state of the
multi-agent system shown on the right side side of the chart).

The second set of experimental charts demonstrates the performance of the de-
veloped multi-agent algorithm to conduct continual online learning of stream data.
Fig. 14.16 demonstrates the functional dependence of online learning performance
on the number of records being continuously clustered. It can be seen from the di-
agram that in situations in which a new record arrived when previous records have
been allocated, the time required to incrementally incorporate a new record into the
hierarchical learning structure is not exponential (and approximately linear) due to
the implemented agent memory and directed search mechanisms. Each allocation
moment, incremental planning a new record takes different amount of time, since
mining agents do not consider all allocation options at once, but only those available
in their local context, and subsequently increase their field of vision to incremen-
tally improve the initial (previous) solutions. Thus, curve dips (troughs) of the graph
demonstrate the situations where new allocation happens with minimum re-learning
of previously established relationships (the ripple effect of minimal length), and
picks of the graph indicate the moments when planning a new agent leads to consid-
erable reallocation of previously formed agent links. A red line of the chart repre-
sents the accumulative number of reallocation of previously planned agents for each
stable equilibrium state, which is increased over time.

Fig. 14.17 presents the results of the conducted comparison analysis of the devel-
oped continuous multi-agent method and a conventional hierarchical single-linkage
clustering algorithm (the Alias ”LingPipe” software library). The chart demonstrates
that for the incremental approach the time required to react on changes and main-
tain the clustering hierarchy valid reduces as the number of agents affected by en-
vironmental variations decreases (the length of the ripple effect is context depen-
dent), while re-learning time remains approximately constant for the batch algo-
rithm. Thus, the conducted comparison analysis demonstrates the strong advantage
of the developed incremental multi-agent approach over the classical batch cluster-
ing algorithm in dynamic settings as a result of the developed matching memory
mechanism ensures a quick response time to changes by directly adapting of only
those areas of the global decision space that are affected by them. Nevertheless, it
should be noted that due to its distributed nature the continuous multi-agent algo-
rithm takes more time for batch data mining in static settings than the centralized
algorithm (the blue line is higher than the read one in the beginning of the chart).
Fig. 14.8 provides a performance comparison chart for clustering in a dataset in
batch and continuous learning modes. This chart and Fig. 14.12 demonstrate that
the algorithm ensures deterministic learning results for various input sequences of
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arriving records at the system (the results converge to the same values in the final
stable equilibrium state of the distributed learning process).

14.4 Summary, Conclusion and Future Work

14.4.1 Summary

This work considers the problem of continuous data mining of streaming data in
complex dynamic environments under conditions of uncertainty. The primary goal
of the developed multi-agent approach is continuous learning in distributed envi-
ronments from decentralized data sources across a heterogeneous data environment
with a view to effectively responding to environmental dynamics and performing
online data analysis using various dynamic learning criteria and measures of simi-
larity. The main contributions of this research can be summarized as follows.

1. With a view to responding to rapid changes in the environment, we developed a
multi-agent method of continuous online learning, by modeling the task of un-
supervised clustering as a dynamic distributed resource allocation problem. A
game-theoretic decentralized market-based method of competitive and implicit
multi-agent negotiation, and an asynchronous message-passing algorithm are de-
veloped to obtain an implicit global quasi-optimal solution to the distributed con-
strained learning problem, which requires market-based negotiation between dif-
ferent self-interested agents, defined for data elements, to satisfy a dynamic dis-
tributed constraint network of agent interests by maintaining a dynamic balance
among the interests of all participants in the interaction.

2. A knowledge-based competitive multi-agent learning system is developed to en-
able the data-driven self-organizing distributed process of dynamic continuous
data mining. The implemented multi-agent platform of the system provides a
distributed computational environment (virtual learning marketplace) and a run-
time support for asynchronous quasi-parallel negotiations between the agents in a
virtual marketplace. To consider personal preferences and expert knowledge, the
developed virtual marketplace ontology (a semantic knowledge base located in
the shared memory) has been set up to contain conceptual knowledge of the prob-
lem domain and to support the dynamic regulation of various control parameters
of the learning system at run-time during its execution, such as different agent
decision-making criteria, active agent negotiation roles, nature of the operating
environment and various properties of the learning algorithm.

3. A multi-objective agent decision-making model is developed to support goal-
driven behavior of autonomous agents in the virtual learning marketplace, which
defines for each agent in the virtual marketplace ontology its individual goals, cri-
teria, preference functions, and decision-making strategies. The multi-objective
decision-making model enables the learning algorithm to continually operate on
the basis of non-standard optimization criteria, and to be suitable for online ex-
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ploratory data analysis in complex uncertain environments using various mea-
sures of similarity for situations with incomplete knowledge about parameters of
the learning problem.

4. The proposed multi-agent method of online learning was experimentally eval-
uated for continuous agglomerative hierarchical clustering of both synthetic
datasets and datasets from the following real-world domains: the RoboCup Soc-
cer competition and a gene expression datasets from a bioinformatics test bed.
The conducted comparison analysis demonstrates the superior advantage of the
incremental multi-agent learning approach over conventional batch clustering al-
gorithms.

14.4.2 Conclusions and Future Directions

We support our conclusions by conducting the experimental analysis, which demon-
strate the applicability and efficiency of the developed continuous multi-agent learn-
ing system to respond to environmental dynamics and to perform online data analy-
sis using various dynamic learning criteria and measures of similarity. The reported
experimental results demonstrate the strong performance of the developed multi-
agent learning system for continuous agglomerative hierarchical clustering of both
synthetic datasets and datasets from the real-world domains.

According to the conducted experimental analysis, we conclude that the pro-
posed online multi-agent approach has the advantage over conventional unsuper-
vised learning methods of being dynamic, incremental and continuous. The input
dataset, decision-making criteria and various control parameters of the learning
system are not fixed and can be changed at run-time during execution of the dy-
namic algorithm. Clustering results of the adaptive learning algorithm are available
at any time, and continuously and incrementally improved to achieve a global quasi-
optimal solution to the optimization problem, trading-off operating time and result
quality. All decentralized decisions of the method are not fixed and locally reconsid-
ered when needed in response to environmental events, taking advantage of domain
semantics.

The implemented multi-objective decision-making model enables the learning
algorithm to continually operate on the basis of non-standard optimization criteria
and suitable for online exploratory data analysis using various measures of sim-
ilarity. Additionally, the implemented adaptive agent pre-matching mechanism of
regulating a depth of agent vision makes it possible for an agent to restrictively con-
sider only those allocation options that are inside its limited field of vision, thereby
preventing enumeration of all allocation possibilities and making learning of a large
amount of data computationally tractable.

Nonetheless, the current implementation of the multi-agent learning system has
the following limitations. The conducted comparison analysis of the developed
multi-agent method and a conventional hierarchical single-linkage clustering al-
gorithm (the Alias ”LingPipe” software library) demonstrates the superior perfor-



14 A Multiagent Approach to Adaptive Continuous Analysis of Streaming Data 215

mance of the incremental approach in comparison to the batch algorithm. The de-
veloped matching memory mechanism on the agent protocol level ensures a quick
response time to changes by directly adapting of only those areas of the global
decision space that are affected by them. However, keeping such records of agent
statuses in the shared memory of the system in order to decrease communication
costs introduces the increase in the memory complexity of the algorithm. To reduce
memory consumption, a special service role of the World agent periodically vali-
dates agent matching memories to delete non-valid history records of instances with
dead agents.

The conducted experiments demonstrate that introducing the proactive agent
”Record-Cluster” role significantly increases the solution quality across all perfor-
mance metrics. The effective regulation of agent activities in the distributed envi-
ronment is crucial to obtain a global quasi-optimal solution to the problem of bet-
ter quality and to enhance the performance of the distributed learning algorithm.
The developed agent activity control framework provides the decentralized mech-
anism of regulating proactivity for certain types of agent negotiation roles based
on the observation of the hormonal level in the multi-agent environment. Neverthe-
less, balancing proactivity of agent negotiation roles in the virtual learning market-
place is a challenging issue. Thus, some performance charts of the conducted ex-
perimental analysis reveal a slight decrease in solution quality during the moments
of switching agent proactivity for certain types of agent negotiation roles. Although
the strong advantage of the developed incremental multi-agent approach over classi-
cal batch clustering algorithms in dynamic settings was demonstrated, the conducted
experimental analysis revealed the current limitation of the developed learning algo-
rithm to efficiently perform massive data processing of high-dimensional data (e.g.
genome-wide gene expression data) in centralized and batch settings due to com-
munication costs of additional message-passing and decision synchronization algo-
rithmic steps. Nevertheless, to increase the performance of the developed approach
for batch data processing in static settings, we suggest conducting combinatorial
auctions in the local agent context and propose a hybrid online learning approach
that combines distributed constraint optimization techniques and decision theoretic
approaches [9].

We consider the developed solution to be an important step in our research to-
wards the development of effective online learning algorithms in dynamic uncer-
tain environments, and plan to explore how to learn non-stationary dynamics. Fu-
ture work will be directed towards addressing the following challenging problems
that have arisen from this research: (1) extending the adaptive learning approach to
support online automatic semi-supervised classification by continuously deducing
semantic-based classification rules from clustering results and performing automatic
rule-based classification and subsequent pattern verification at run-time, and (2) de-
veloping a hybrid online learning approach, which reduces the problem dimension
while maintaining the essential characteristics of the original system, and provides
a dynamic bidirectional cyclic feedback on using the market-based distributed re-
source allocation (bottom-up) and Bayesian reinforcement learning of decentralized
partially observable Markov decision processes (Dec-POMDPs) (top-down).
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Appendix

Fig. 14.6: Quality levels (cuts) of the learning
hierarchy across different performance metrics

Fig. 14.7: Distribution of performance metrics
by hierarchical levels (stable equilibrium state)

Fig. 14.8: Time required for Batch vs.
Continuous learning (performance comparison)

Fig. 14.9: Trading-off operating time & learning
quality(agent role ”Record-Cluster” is proactive)

Fig. 14.10: Time required for learning with
incremental and stochastic agent prematching

Fig. 14.11: Performance comparison chart:
cluster centroids as representative ”reference

points”
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Fig. 14.12: Time required for learning with
penalties, established for links between agents at

different levels of the learning hierarchy

Fig. 14.13: Performance comparison chart:
Euclidian vs. Chebychev similarity metrics as

agent learning criteria (with quality levels
shown)

Fig. 14.14: The agent dynamics of the distributed
learning process (with incremental improvement
of solution quality as a result of the ripple effect)

Fig. 14.15: Performance metrics of cluster
agents evolving in the virtual learning

marketplace (with quality levels and equilibrium
metric values)
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Fig. 14.16: Time required for continual learning
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algorithm)
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