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Abstract In this survey chapter, we present systems of various kinds of vector
quasi-equilibrium problems and give existence theory for their solutions. Some ap-
plications to systems of vector quasi-optimization problems, quasi-saddle point
problems for vector-valued functions and Debreu type equilibrium problems,
also known as constrained Nash equilibrium problems, for vector-valued func-
tions are presented. The investigations of this chapter are based on our papers:
Ansari (J Math Anal Appl 341:1271–1283, 2008); Ansari et al. (J Global Optim
29:45–57, 2004); Ansari and Khan (Mathematical Analysis and Applications, edited
by S. Nanda and G.P. Rajasekhar, Narosa, New Delhi, 2004, pp. 1–13); and Ansari
et al. (J Optim Theory Appl 127:27–44, 2005).

1 Introduction

In the last two decades, vector variational inequalities (VVI) have been investigated
[2,32,47,48,55,57,62,65,87,97] and used as tools to solve vector optimization prob-
lems (VOP) for differentiable and convex or nonconvex vector-valued functions.
A generalized form of VVI for multivalued maps is called a generalized vector vari-
ational inequality (GVVI). GVVI has been used to study VOP for nondifferentiable
and nonconvex vector-valued functions. The weak (respectively, strong) solution of
Stampacchia GVVI provides a sufficient condition (respectively, necessary and suf-
ficient conditions) for a solution of VOP; see, for example, [17, 23, 30, 59, 60] and
the references therein.
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In the recent years, vector equilibrium problems (VEP) have been studied in
[3, 19, 28, 44, 48–50, 94] and the references therein. It is a unified model of several
problems, namely, vector variational inequality problems, vector variational-like in-
equality problems (also called vector pre-variational inequality problems), vector
complementarity problems, vector saddle point problems and vector optimization
problems. A comprehensive bibliography on VEP, vector variational inequalities,
vector variational-like inequalities and their generalizations can be found in [48].
For further details on generalized vector variational inequality problems, general-
ized vector variational-like inequality problems and vector equilibrium problems,
we refer to [2,17,23,28,37,48,50,56,58,61,62,64,83,94] and the references therein.
In [24], we extended a quasi-equilibrium problem, studied in [41, 72], to the case
of vector-valued functions, called a vector quasi-equilibrium problem (VQEP). We
established some existence results for a solution of VQEP with or without a gener-
alized pseudomonotonicity assumption. As a result, we derived the existence results
for solutions of vector quasi-optimization problems, vector quasi-saddle point prob-
lems, vector quasi-variational inequality problems and vector quasi-variational-like
inequality problems [55, 63, 65].

When the involved bifunction in the formulation of VEP (respectively, VQEP)
is a multivalued map, then VEP (respectively, VQEP) is called a generalized vector
equilibrium problem (GVEP) [respectively, generalized vector quasi-equilibrium
problem (GVQEP)]. The GVEP (respectively, GVQEP) includes as special cases
generalized implicit vector variational inequality problems, GVVI problems, gener-
alized vector variational-like inequality problems and vector equilibrium problems
(respectively, generalized implicit vector quasi-variational inequality problems,
generalized vector quasi-variational inequality problems, generalized vector quasi-
variational-like inequality problems and vector quasi-equilibrium problems). GVEP
and GVQEP has been studied in [7,8,11,13,18,21,33,46,57,74,83–85,93] and the
references therein.

The system of vector equilibrium problems (SVEP), that is, a family of equilib-
rium problems for vector-valued bifunctions defined on a product set, is introduced
in [14] with applications in vector optimization and the Nash equilibrium problem
[80–82] for vector-valued functions. The SVEP contains a system of equilibrium
problems, a system of vector variational inequalities, a system of vector variational-
like inequalities, a system of optimization problems and the Nash equilibrium
problem for vector-valued functions as special cases. In the recent past, systems of
scalar (vector) equilibrium problems are used as tools to solve the Nash equilibrium
problem for vector-valued functions; see, for example, [14, 15, 22, 39, 98, 99] and
the references therein. But, by using SVEP, we cannot establish the existence of a
solution of Debreu type equilibrium problem [38], also known as constrained Nash
equilibrium problem, for vector-valued functions that extends the classical concept
of the Nash equilibrium problem for a noncooperative game. For this purpose, in
[5], we introduced a system of vector quasi-equilibrium problems (SVQEP) with
or without involving Φ-condensing maps and proved the existence of its solution.
Consequently, we established some existence results for a solution of a system
of vector quasi-variational-like inequalities. The equivalence between a system of
vector quasi-variational-like inequalities and the Debreu type equilibrium problem
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for vector-valued functions (Debreu VEP) is presented. As an application, we
derived some existence results for a solution of the Debreu VEP.

In [15], we introduced a system of generalized vector equilibrium problems
(SGVEP) which contains a system of generalized implicit vector variational in-
equality problems, a system of generalized vector variational inequalities, a sys-
tem of generalized vector variational-like inequalities and SVEP as special cases.
We established some existence results for a solution of SGVEP by using a maxi-
mal element theorem for a family of multivalued maps due to Deguire et al. [39].
We also derived some existence results for a solution of a system of generalized
implicit vector variational inequality problems, a system of generalized vector vari-
ational inequalities, a system of generalized vector variational-like inequalities and
SVEP. As an application, we gave some existence results for a solution of the Nash
equilibrium problem for differentiable (in some sense) vector-valued functions.

In [10], we introduced a system of generalized vector quasi-equilibrium problems
(SGVQEP). It is a very general and unified model of several problems, namely, a
system of generalized implicit vector quasi-variational inequality problems, a sys-
tem of generalized vector quasi-variational inequalities, a system of generalized vec-
tor quasi-variational-like inequalities, SVEP, SVQEP and SGVEP. We established
some existence results for a solution of SGVQEP with or without involving Φ-
condensing maps. As consequences, we proved the existence of solutions of several
known problems mentioned above. As applications of our results, we derived the
existence results for a solution of Debreu VEP for nondifferentiable (in some sense)
functions.

In 1994, Husain and Tarafdar [52] introduced simultaneous variational inequali-
ties and gave some applications to minimization problems. These are further studied
by Fu [45] for the vector-valued case with applications to vector complementarity
problems. Recently, Lin [67] considered and studied simultaneous vector quasi-
equilibrium problems and proved existence results for their solutions. By using
these results, Lin derived existence results for a solution of a vector quasi-saddle
point problem. In [12], we considered systems of simultaneous generalized vector
quasi-equilibrium problems (SSGVQEP) which contain simultaneous generalized
vector quasi-equilibrium problems [67], generalized vector quasi-equilibrium prob-
lems [46], systems of vector quasi-equilibrium problems [5], systems of generalized
vector quasi-variational-like inequalities [10] and simultaneous vector variational
inequalities [45] as special cases. By using Kakutani fixed point theorem [54], we
established an existence result for solutions of SSGVQEP. We derived several ex-
istence results for solutions of above-mentioned problems. These existence results
either improve or extend known results in the literature. We also considered systems
of vector quasi-saddle point problems (SVQSPP) and systems of quasi-minimax
inequalities (SQMI). As applications of our existence results for solutions of SS-
GVQEP, we proved existence of solutions of SVQSPP and SQMI. We gave another
application of our results to establish existence of a solution of Debreu VEP.

Because of the applications to vector optimization, game theory and economics,
saddle point problems for vector-valued functions, the theory of (vector) equilibrium
problems is emerged as a new direction for the researchers; see the references in this
chapter.
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In this survey chapter, we present systems of various kinds of vector
quasi-equilibrium problems and give existence theory for their solutions and
some applications to systems of (quasi-) vector optimization problems, systems
of quasi-saddle point problems for vector-valued functions and Debreu VEP. The
investigations of this chapter are based on our papers [4, 5, 10, 12].

2 Preliminaries

Throughout the chapter, we use the following notations. Let A be a nonempty subset
of a topological vector space X , we denote by int A, A, coA and coA, the interior
of A in X , the closure of A in X , the convex hull of A, and the closed convex
hull of A, respectively. The family of all subsets of A is denoted by 2A. If X and
Y are topological vector spaces, then L(X ,Y ) denotes the family of all continuous
linear maps from X to Y .

Definition 1 ( [26, 27] ). Let X and Y be topological spaces. A multivalued map
T : X → 2Y is called upper semicontinuous at x0 ∈ X if for any open set V ⊆
Y containing T (x0), there exists an open neighbourhood U of x0 in X such that
T (x) ⊆V for all x ∈U .

T is called lower semicontinuous at x ∈ X if for any open set V ⊆ Y such
that V ∩ T (x0) �= /0, there exists an open neighbourhood U of x0 in X such that
T (x)∩V �= /0 for all x ∈U .

It is said to be upper (lower) semicontinuous on X if it is upper (lower) semi-
continuous at every point x ∈ X .

Further, T is said to be continuous on X if it is upper semicontinuous as well as
lower semicontinuous on X .

Lemma 1 ( [26] ). A multivalued map T : X → 2Y is lower semicontinuous at
x ∈ X if and only if for any y ∈ T (x) and for any xn ∈ X such that xn → x, there
exists yn ∈ T (xn) such that yn → y.

Definition 2. Let X and Y be two topological spaces. A multivalued map T :
X → 2Y is said to be:

(i) Compact if there exists a compact subset K ⊆ Y such that T (X ) ⊆ K
(ii) Closed if its graph Gr(T ) = {(x,y) | x ∈ X , y ∈ T (x)} is closed in X ×Y

Lemma 2 ( [79] ). Let (E,‖ · ‖) be a normed vector space and H be a Hausdorff
metric on the collection CB(E) of all nonempty, closed and bounded subsets of E,
induced by a metric d in terms of d(x,y) = ‖x− y‖, which is defined as

H (U,V ) = max

{
sup
x∈U

inf
y∈V

‖x− y‖,sup
y∈V

inf
x∈U

‖x− y‖
}

,
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for all U,V ∈ CB(E). If U and V are compact sets in E, then for all x ∈ U, there
exists y ∈V such that

‖x− y‖ ≤ H (U,V ).

Definition 3 ( [79] ). Let (E,d) be a metric space and H be a Hausdorff metric on
CB(E). A multivalued map T : E → CB(E) is said to be continuous (in the sense
of Nadler) on E if for every ε > 0, there exists a δ > 0 such that for all x,y ∈ E

H (T (x),T (y)) < ε whenever d(x,y) < δ .

Remark 1. The notions of continuity in the sense of Definitions 1 and 3 are equiva-
lent if T is compact valued.

Definition 4 ( [101] ). Let Ω be a nonempty convex subset of a normed space (E,‖ ·
‖) and ϒ be a normed linear space. A nonempty compact-valued multifunction T :
Ω → 2L(E,ϒ ) is said to be H -hemicontinuous if for any x,y ∈ Ω , the mapping α 	→
H (T (x + α(y− x),T(x))) is continuous at 0+, where H is the Hausdorff metric
defined on CB(E).

Definition 5 ( [88, 89] ). Let E be a Hausdorff topological vector space and L a lat-
tice with least element, denoted by 0. A mapping Φ : 2E → L is called a measure of
noncompactness provided that the following conditions hold for any M,N ∈ 2E :

(i) Φ(M) = 0 if and only if M is precompact (i.e., it is relatively compact).
(ii) Φ(convM) = Φ(M), where convM denotes the closed convex hull of M.

(iii) Φ(M ∪N) = max{Φ(M),Φ(N)}.
It follows from (iii) that if M ⊆ N, then Φ(M) ≤ Φ(N).

Definition 6 ( [88, 89] ). Let Φ : 2E → L be a measure of noncompactness on E
and D ⊆ E . A multivalued map T : D → 2E is called Φ-condensing provided that if
M ⊆ D with Φ(T (M)) ≥ Φ(M) then M is relatively compact.

Remark 2. Note that every multivalued map defined on a compact set is necessarily
Φ-condensing. If E is locally convex, then a compact multivalued map (i.e., T (D)
is precompact) is Φ-condensing for any measure of noncompactness Φ . Obviously,
if T : D → 2E is Φ-condensing and if S : D → 2E satisfies S(x)⊆ T (x) for all x ∈ D,
then S is also Φ-condensing.

The following maximal element theorem for a family of multivalued maps is a
main tool to study systems of vector quasi-equilibrium problems and their general-
izations.

Theorem 1 ( [39, 69] ). For each i ∈ I, let Ki be a nonempty convex subset of a
Hausdorff topological vector space Xi. Let K = ∏i∈I Ki. For each i ∈ I, let Si,Ti :
K → 2Ki be multivalued maps satisfying the following conditions:

(i) For each i ∈ I and for all x ∈ K, coSi(x) ⊆ Ti(x), where coSi(x) denotes the
convex hull of Si(x).
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(ii) For each i ∈ I and for all x = (xi)i∈I ∈ K, xi /∈ Ti(x), where xi is the ith
component of x.

(iii) For each i ∈ I and for all yi ∈ Ki, S−1
i (yi) = {x ∈ K : yi ∈ Si(x)} is open in K.

(iv) There exist a nonempty compact subset M of K and a nonempty compact convex
subset Ni of Ki for each i ∈ I such that for all x ∈ K \M, there exists i ∈ I such
that Si(x)∩Ni �= /0.

Then there exists x̄ ∈ K such that Si(x̄) = /0 for all i ∈ I.

Remark 3. If for each i ∈ I, Ki is a nonempty, closed and convex subset of a locally
convex Hausdorff topological vector space Xi, then condition (iv) of Theorem 1 can
be replaced by the following condition:

(iv)′ The multivalued map S : K → 2K defined as S(x) := ∏i∈I Si(x) for all x ∈ K, is
Φ-condensing.

(See Corollary 4 in [29]).

Let Z be a topological vector space and P a closed convex cone in Z with
int P �= /0. Then, P induces the vector ordering in Z by setting, ∀ x,y ∈ P,

x ≤P y ⇔ y− x ∈ P;

x �≤P y ⇔ y− x /∈ P.

Since int P �= /0, we also have the weak ordering in Z by setting, ∀ x,y ∈ P,

x <P y ⇔ y− x ∈ int P;

x �<P y ⇔ y− x �∈ int P.

The ordering ≥P, �≥P, >P, �>P are defined similarly. A cone P is called pointed if
P∩ (−P) = {0}, where 0 is the zero element of Z .

Definition 7 ( [28, 76, 94] ). Let M be a nonempty subset of a topological vector
space E , and let Z be a topological vector space with a proper, closed and convex
cone P with apex at the origin and int P �= /0. A vector-valued function φ : M → Z
is said to be P-lower semicontinuous (respectively, P-upper semicontinuous) at x0 ∈
M if and only if for any neighbourhood V of φ(x0) in Z , ∃ a neighbourhood U of
x0 in E such that

φ(x) ∈V + P, ∀ x ∈U ∩M

(respectively, φ(x) ∈V −P, ∀ x ∈U ∩M ).

Furthermore, φ is P-lower semicontinuous (respectively, P-upper semicontinuous)
on M if and only if it is P-lower semicontinuous (respectively, P-upper semicon-
tinuous) at each x ∈ M .

φ is P-continuous on M if and only if it is both P-lower semicontinuous and
P-upper semicontinuous on M .
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Remark 4. In [28], it is shown that a function φ : M →Z is P-lower semicontinu-
ous if and only if ∀ α ∈ Z , the set

L(α) := {x ∈ M : φ(x)−α /∈ int P}

is closed in M .
Similarly, we can show that φ is P-upper semicontinuous if and only if ∀ α ∈Z ,

the set
U(α) := {x ∈ M : φ(x)−α /∈−int P}

is closed in M .

Definition 8 ( [28,43,76] ).1 Let (Z ,P) be an ordered topological vector space and
K a nonempty convex subset of a vector space X . A map φ : K → Z is said
to be:

(i) P-convex if ∀ x,y ∈ K and t ∈ [0,1], we have

φ(tx +(1− t)y)≤P tφ(x)+ (1− t)φ(y).

(ii) Properly P-quasiconvex if ∀ x,y ∈ K and t ∈ [0,1], we have either

φ(tx +(1− t)y)≤P φ(x)

or
φ(tx +(1− t)y)≤P φ(y).

(iii) Properly P-quasiconcave if −φ is properly quasiconvex.
(iv) Natural P-quasiconvex (or natural P-quasifunction) if ∀ x,y ∈ K and ∀ t ∈

[0,1],
φ(tx +(1− t)y)∈ co{φ(x),φ(y)}−P.

(v) P-quasiconvex (or P-quasifunction) if ∀ α ∈ Z , the set {x ∈ K : φ(x)−α ∈
−P} is convex.

Remark 5. (a) Every P-convex function is natural P-quasiconvex and every natural
P-quasiconvex function is P-quasiconvex, but converse assertions are not true; see,
for example, Remark 2.1 in [95].
(b) φ is a natural P-quasiconvex function if and only if ∀ x,y ∈ K and ∀ t ∈ [0,1],
∃ s ∈ [0,1] such that

φ(tx +(1− t)y)∈ sφ(x)+ (1− s)φ(y)−P.

(c) If φ is a P-quasiconvex function, then the set {x ∈ K : φ(x)−α ∈ −int P} is
also convex for all α ∈ Z .

1 The terms P-convex, natural P-quasiconvex and P-quasiconvex are used in [28,43,76] instead of
P-function, natural P-quasifunction and P-quasifunction which are suggested by Prof. F. Giannessi.
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Example 1. Let K = [0,1], Z = R
2, P = R

2
+ = {(y1,y2)∈R

2 : y1 ≥ 0, y2 ≥ 0} and
define a function φ : K →Z by φ(x) =

(
x2,1− x2

)
. Then, the function φ is contin-

uous and natural P-quasiconvex, but neither P-convex nor properly P-quasiconvex.

Example 2. Let K ,Z ,P be the same as in Example 1. We define functions ξ :
K → Z by

ξ (x) =
(

cos
(πx

2

)
,sin

(πx
2

))
and the function τ : K → Z by

τ(x) = (cos(2πx),sin(2πx)) .

Then, the function ξ is continuous and P-quasiconvex, but not natural P-
quasiconvex, and the function τ is continuous, but not natural P-quasiconvex
and hence, not P-convex.

Throughout the chapter, all topological spaces are assumed to be Hausdorff.

3 System of Vector Quasi-equilibrium Problems

Throughout the chapter, unless otherwise specified, we use the following notations.
Let I be any index set (countable or uncountable). For each i ∈ I, let Xi be a Haus-
dorff topological vector space and Ki be a nonempty convex subset of Xi. We set
K = ∏i∈I Ki, X = ∏i∈I Xi and Ki = ∏ j∈I, j �=i Kj, and we write K = Ki × Ki. For
x ∈ K, xi denotes the projection of x onto Ki and hence we also write x = (xi,xi).
For each i ∈ I, let Yi be a topological vector space and Ci : K → 2Yi be a multivalued
map such that for each x ∈ K, Ci(x) is a proper, closed and convex cone with apex
at the origin and int Ci(x) �= /0. For each i ∈ I, let Pi =

⋂
x∈K Ci(x). For each i ∈ I,

we denote by L(Xi,Yi) the space of all continuous linear operators from Xi into Yi.
We denote by 〈si,xi〉 the evaluation of si ∈ L(Xi,Yi) at xi ∈ Xi. We also assume that
∀i ∈ I, Ai : K → 2Ki is a multivalued map such that ∀ x ∈ K, Ai(x) is nonempty and
convex, A−1

i (yi) is open in K ∀ yi ∈ Ki and the set Fi := {x ∈ K : xi ∈ Ai(x)} is
closed in K, where xi is the ith component of x.

We consider the following system of vector quasi-equilibrium problems
(SVQEP) [5], that is, to find x̄ ∈ K such that for each i ∈ I,

x̄i ∈ Ai(x̄) : fi(x̄,yi) /∈ −int Ci(x̄), ∀ yi ∈ Ai(x̄).

If for each i ∈ I, Yi = R and Ci(x) = R+ ∀ x ∈ K, then SVQEP is known as a
system of quasi-equilibrium problems; see [9, 98] and the references therein.

If for each i ∈ I and ∀x ∈ K, Ai(x) = Ki and Ci(x) = Pi a fixed proper closed
convex cone with nonempty interior, then SVQEP reduces to a system of vector
equilibrium problems (SVEP) [14] of finding x̄ ∈ K such that for each i ∈ I,

fi(x̄,yi) /∈ −int Pi, ∀ yi ∈ Ki.
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If the index set I is singleton, then SVQEP becomes a vector quasi-equilibrium
problem [24] which contains vector quasi-optimization problems, vector quasi-
variational inequality problems, vector quasi-variational-like inequality problems
and vector quasi-saddle point problems as special cases.

Examples of SVQEP

(1) For each i ∈ I, let Ti : K → L(Xi,Yi) and ηi : Ki ×Ki → Xi be two maps. If for
each i ∈ I,

fi(x,yi) = 〈Ti(x),ηi(yi,xi)〉,
then SVQEP is equivalent to the following problem of finding x̄ ∈ K such that
∀ i ∈ I,

x̄i ∈ Ai(x̄) : 〈Ti(x̄),ηi(yi, x̄i)〉 /∈−int Ci(x̄), ∀ yi ∈ Ai(x̄).

It is known as a system of vector quasi-variational-like inequalities (SVQVLI).
When ηi(yi,xi) = yi − xi, then SVQVLI is called a system of vector quasi-
variational inequalities (SVQVI). If for each i ∈ I, Yi = R and Ci(x) = R+ ∀ x∈
K, SVQVI is studied in [9, 98].
If for each i ∈ I, Ai(x) = Ki ∀ x ∈ K, SVQVLI and SVQVI reduce to the fol-
lowing system of vector variational-like inequalities and the system of vector
variational inequalities, respectively, studied in [14].
The system of vector variational-like inequalities (SVVLI): find x̄ ∈ K such that
for each i ∈ I,

〈Ti(x̄),η(yi, x̄i)〉 /∈ −int Ci(x̄), for all yi ∈ Ki.

The system of vector variational inequalities (SVVI): find x̄ ∈ K such that for
each i ∈ I,

〈Ti(x̄),yi − x̄i〉 /∈ −int Ci(x̄), for all yi ∈ Ki.

If for each i ∈ I, Yi = R and int Ci(x) = R+, then SVVI becomes the systems of
variational inequalities studied in [20, 35, 86].
In case the index set I is a singleton, SVVI reduces to a vector variational in-
equality first considered in [47]; see also [48] and the references therein.

(2) For each i ∈ I, let ϕi : K → Y be a given function. The system of vector quasi-
optimization problems (SVQOP) is to find x̄ ∈ K such that for each i ∈ I,

ϕi(y)−ϕi(x̄) /∈−int Ci(x̄), for all y ∈ A(x̄).

We can choose y ∈ K in such a way that yi = x̄i. Then we have Debreu VEP also
known as constrained Nash equilibrium problem for vector-valued functions
which is to find x̄ ∈ K such that for each i ∈ I,

ϕi(x̄i,yi)−ϕi(x̄) /∈ −int Ci(x̄), for all yi ∈ Ai(x̄).
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For each i ∈ I and for all x ∈ K, if Ai(x) = Ki, then Debreu VEP reduces to the
following Nash equilibrium problem for vector-valued functions: Find x̄ ∈ K
such that ∀ i ∈ I,

ϕi(x̄i,yi)−ϕi(x̄) /∈ −int Ci(x̄), ∀ yi ∈ Ki.

It is clear that every solution of SVQOP is also a solution of Debreu VEP but
the converse is not true.

Of course, if for each i ∈ I, ϕi is a scalar-valued function, then Debreu VEP is the
same as one introduced and studied by Debreu in [38], see also [80–82]. In this case,
a large number of papers have already been appeared in the literature; see [9,98] and
the references therein.

Section 3.1 deals with the existence theory of solutions of SVEP and SVQEP
with or without involving Φ-condensing maps. Consequently, we get some exis-
tence results for a solution of SVQVLI. In Sect. 3.2, we first establish an equiva-
lence between SVQVLI and Debreu VEP and then we derive some existence results
for a solution of the Debreu VEP for convex or nonconvex functions.

3.1 Existence Results for Solutions of SVEP and SVQEP

We present the following existence results for solutions of SVEP which are estab-
lished in [14] by utilizing scalarization technique and by using collectively fixed
point theorem for a family of multivalued maps [22].

Theorem 2 ( [14] ). Let Y be a topological vector space and C ⊂ Y be a proper,
closed convex cone with apex at the origin 0 and int C �= /0. For each i ∈ I, let Ki

be a nonempty compact convex subset of Xi and let fi : K ×Ki → Y be a bifunction
such that fi(x,xi) = 0 for all x = (xi,xi) ∈ K. Assume that the following conditions
are satisfied:

(i) For each i ∈ I and ∀x ∈ K, the function yi 	→ fi(x,yi) is C-quasiconvex.
(ii) For each i ∈ I, fi is continuous on K ×Ki.

Then the solution set of SVEP is nonempty and compact.

In case Ki is not necessarily compact, we have the following result.

Theorem 3 ( [14] ). Let Y be a topological vector space and C ⊂ Y be a proper,
closed convex cone with apex at the origin 0 and int C �= /0. For each i ∈ I, let Ki

be a nonempty convex subset of Xi and let fi : K ×Ki → Y be a bifunction such
that fi(x,xi) = 0 for all x = (xi,xi) ∈ K. Assume that the following conditions are
satisfied:

(i) For each i ∈ I and ∀x ∈ K, the function yi 	→ fi(x,yi) is C-quasiconvex.
(ii) For each i ∈ I, fi is continuous on each compact convex subset of K ×Ki.
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(iii) For each i ∈ I, there exists a nonempty compact convex subset Bi of Ki, and let
B = ∏i∈I Bi ⊂ K such that for each x ∈ K \B, there exists ỹi ∈ Bi such that

fi(x, ỹi) ∈−int C.

Then there exists a solution x̄ ∈ B of SVEP.

Remark 6. Let I be a finite index set and for each i ∈ I, let Xi be a reflexive Banach
space with norm || · ||i equipped with the weak topology. Consider a Banach space Y
equipped with the norm topology. The norm on X = ∏i∈I Xi will be denoted by || · ||.
Then assumption (iii) in Theorem 3 can be replaced by the following condition:

(iii)′ There exists r > 0 such that for all x∈K, ||x||> r, there exists ỹi ∈Ki, ||ỹi||i ≤ r
such that

fi(x, ỹi) ∈ −int C.

We present the following existence result for solutions of SVQEP without
involving Φ-condensing maps. In [5], we proved this result by using maximal
element Theorem 1.

Theorem 4 ( [5] ). For each i ∈ I, let Ki be a nonempty and convex subset of a
Hausdorff topological vector space Xi and fi : K ×Ki → Yi be a bifunction. Assume
that the following conditions hold:

(i) For each i ∈ I and ∀ x ∈ K, fi(x,xi) /∈−int Ci(x), where xi is the ith component
of x.

(ii) For each i ∈ I and ∀ x ∈ K, the vector-valued function yi 	→ fi(x,yi) is a natural
Pi-quasiconvex function.

(iii) For each i ∈ I and ∀ yi ∈ Ki, the set {x ∈ K : fi(x,yi) /∈ −int Ci(x)} is closed in
K.

(iv) There exist a nonempty and compact subset N of K and a nonempty, compact
and convex subset Bi of Ki ∀ i ∈ I, such that ∀ x ∈ K \N ∃ i ∈ I and ∃ ỹi ∈ Bi,
such that ỹi ∈ Ai(x) and fi(x, ỹi) ∈ −int Ci(x).

Then SVQEP has a solution.

Remark 7. (1) The condition (iii) of Theorem 4 is satisfied if the following condi-
tions hold ∀ i ∈ I:

(a) The multivalued map Wi : K → 2Yi defined by Wi(x) = Yi \{−int Ci(x)} ∀ x ∈ K,
is closed in K ×Ki.

(b) For all yi ∈ Ki, fi(·,yi) : K → Yi is continuous (in the usual sense) on K.

(2) If for each i ∈ I and ∀ x ∈ K, Ci(x) =Ci, a (fixed) proper, closed and convex cone
in Yi, then conditions (ii) and (iii) of Theorem 4 can be replaced, respectively, by the
following conditions:

(c) For each i ∈ I and ∀ x ∈ K, the vector-valued function yi 	→ fi(x,yi) is a Ci-
quasiconvex function.
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(d) For each i ∈ I and ∀ yi ∈ Ki the vector-valued function x 	→ fi(x,yi) is Ci-upper
semicontinuous on K.

(3) Theorem 4 extends and generalizes Theorem 6 in [9], Theorem 2.1 in [14] and
Corollary 3.1 in [24] in several ways.

(4) If for each i ∈ I, Ki is a nonempty, compact and convex subset of a Hausdorff
topological vector space Xi, then the conclusion of Theorem 4 holds without condi-
tion (iv).

We mention the following existence result for a solution of SVQEP involving
Φ-condensing maps. We proved this result by using maximal element Theorem 1
with Remark 3.

Theorem 5 ( [5] ). For each i ∈ I, let Ki be a nonempty, closed and convex subset
of a locally convex Hausdorff topological vector space Xi, fi : K ×Ki → Yi be a
bifunction and let the multivalued map A = ∏i∈I Ai : K → 2K defined as A(x) =
∏i∈I Ai(x) ∀ x ∈ K, be Φ-condensing. Assume that the conditions (i), (ii) and (iii)
of Theorem 4 hold. Then SVQEP has a solution.

In order to derive the existence results for solutions of systems of vector quasi-
variational (-like) inequalities, we define a topology on the space L(E ,Z ) by the
following way:

Let E and Z be Hausdorff topological vector spaces. Let σ be the family of
bounded subsets of E whose union is total in E , that is, the linear hull of

⋃{U : U ∈
σ} is dense in E . Let B be a neighbourhood base of 0 in Z . When U runs through
σ , V through B, the family

M(U,V ) = {ξ ∈ L(E ,Z ) : ∪x∈U 〈ξ ,x〉 ⊆V}

is a neighbourhood base of 0 in L(E ,Z ) for a unique translation-invariant topology,
called the topology of uniform convergence on the sets U ∈ σ , or, briefly, the σ -
topology (see [42, pp. 79–80] and also [91]).

Lemma 3 ( [42] ). Let E and Z be Hausdorff topological vector spaces and
L(E ,Z ) be the topological vector space under the σ -topology. Then, the bilin-
ear mapping 〈., .〉 : L(E ,Z )×E → Z is continuous on L(E ,Z )×E .

Throughout the chapter, we assume that L(E ,Z ) is equipped with σ -topology.

In addition to the assumptions on Ci : K → 2Yi , in the following corollaries, we
further assume that Ci(x) is pointed, ∀ i ∈ I and ∀ x ∈ K. Then the following results
can be easily derived, respectively, from Theorems 4 and 5 by setting

fi(x,yi) = 〈Ti(x),ηi(yi,xi)〉.

Corollary 1 ( [5] ). For each i ∈ I, let Ki, Xi and Wi be the same as in Theorem 4
and Remark 7, respectively. For each i ∈ I, let ηi : Ki ×Ki → Xi be continuous in
the second variable such that ηi(xi,xi) = 0 ∀ xi ∈ Ki, and let Ti : K → L(Xi,Yi) be
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continuous on K such that the map yi 	→ 〈Ti(x),ηi(yi,xi)〉 is a natural Pi-quasiconvex
function, ∀ x ∈ K. Assume that there exist a nonempty and compact subset N of K
and a nonempty, compact and convex subset Bi of Ki ∀ i ∈ I, such that ∀ x ∈ K \N
∃ i ∈ I and ∃ ỹi ∈ Bi such that ỹi ∈ Ai(x) and 〈Ti(x),ηi(ỹi,xi)〉 ∈ −int Ci(x). Then
SVQVLI has a solution.

Corollary 2 ( [5] ). For each i ∈ I, let Ki, Xi, Ai, A and ηi, Ti, Wi, L(Xi,Yi) be the
same as in Theorem 5 and Corollary 1, respectively. Then SVQVLI has a solution.

Remark 8. To the best of our knowledge, there is only one paper [40] appeared
in the literature on the scalar quasi-variational-like inequality problems involving
Φ-condensing maps. Since the approach in this chapter is different from the one
adopted in [40], Corollary 2 is a new result in the literature, not only for the vector
case but also for the scalar one.

3.2 Applications of SVQEP

Let I = {1,2, . . . ,n} be a finite index set and for each i ∈ I, let Xi be a normed space
and X = ∏i∈I Xi. Let Z be a normed space. We recall the following definition.

Definition 9 ( [100] ). The function φ : X → Z is said to be partial Gâteaux differ-
entiable at x = (x1, . . . ,x j−1,x j,x j+1, . . . ,xn) ∈ X w. r. t. the jth variable x j if

〈
Dxj φ(x),h j

〉
= lim

t→0

φ(x1, . . . ,x j−1,x j + th j,x j+1, . . . ,xn)−φ(x)
t

exists,

for all h j ∈ Xj. Dxj φ(x) ∈ L(Xj,Z) is called the partial Gâteaux derivative of φ at
x ∈ X w.r.t. the jth variable x j.

φ is called partial Gâteaux differentiable on X if it is partial Gâteaux differen-
tiable at each point of K w.r.t. each variable.

Definition 10 ( [96] ). Let E be a normed space, Z a normed space with a closed and
convex cone P with apex at the origin, M a nonempty subset of E , η : M×M → E
a function. A Gâteaux differentiable function φ : M → Z is said to be P-invex w.r.t.
η if ∀ x,y ∈ M,

φ(y)−φ(x)−〈Dxφ(x),η(y,x)〉 ∈ P,

where Dxφ(x) denotes the Gâteaux derivative of φ at x.

Definition 11 ( [78] ). A subset M of a vector space E is said to be invex w.r.t. η :
M×M → E if ∀ x,y ∈ M and ∀ t ∈ [0,1], x + tη(y,x) ∈ M.

Definition 12 ( [96] ). Let M be an invex set in a normed space E w.r.t. η : M×M →
E . A vector-valued function φ : M → Z is said to be P-preinvex if ∀ x,y ∈ M and
∀ t ∈ [0,1],

tφ(y)+ (1− t)φ(x)−φ(x + tη(y,x))∈ P.
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Remark 9. It can be easily seen that if M is an invex subset of E w.r.t. η : M×M →E
and φ : M → Z is Gâteaux differentiable on M and P-preinvex, then φ is P-invex
w.r.t. η . But the converse assertion may not be true.

We have the following result which provides a sufficient condition for a solution
of Debreu VEP.

Proposition 1 ( [5] ). Let I be a finite index set. For each i ∈ I, let Xi and Yi be
normed spaces, Ki a nonempty and convex subset of Xi, K = ∏i∈I Ki, Ai : K → 2Ki

nonempty convex-valued multivalued map, ηi : Ki ×Ki → Xi, and ϕi : K → Yi par-
tial Gâteaux differentiable on each open subset of K and Pi-invex w.r.t. ηi in each
argument. Then every solution of SVQVLI with Ti(x) = Dxiϕi(x) is also a solution
of Debreu VEP.

Proof. Assume that x̄ ∈ K is a solution of SVQVLI with Ti(x) = Dxiϕi(x). Then for
each i ∈ I,

x̄i ∈ Ai(x̄) : 〈Dxiϕi(x̄),ηi(yi, x̄i)〉 /∈ −int Ci(x̄), ∀ yi ∈ Ai(x̄). (1)

Since for each i ∈ I, ϕi is Pi-invex w.r.t. ηi in each argument, we have

ϕi(x̄i,yi)−ϕi(x̄)−〈Dxiϕi(x̄),ηi(yi, x̄i)〉 ∈ Pi ⊆Ci(x̄). (2)

Since a−b ∈ P and b /∈ −int P ⇒ a /∈ −int P, it follows from (1) and (2) that

x̄i ∈ Ai(x̄) : ϕi(x̄i,yi)−ϕi(x̄) /∈ −int Ci(x̄), ∀ yi ∈ Ai(x̄).

Hence x̄ ∈ K is a solution of Debreu VEP.

The next result provides the equivalence between SVQVLI and Debreu VEP.

Proposition 2 ( [5] ). Let I be a finite index set. For each i ∈ I, let Xi and Yi be
normed spaces, Ki ⊆ Xi nonempty invex w.r.t. ηi : Ki ×Ki → Xi, K = ∏i∈I Ki, Ai :
K → 2Ki nonempty invex valued multivalued map and ϕi : K → Yi partial Gâteaux
differentiable on each open subset of K and Pi-preinvex in each argument. Then
x̄ ∈ K is a solution of SVQVLI with Ti(x) = Dxiϕi(x) if and only if it is a solution of
Debreu VEP.

Proof. Assume that x̄ ∈ K is a solution of SVQVLI. Then by Proposition 1, x̄ ∈ K
is a solution of Debreu VEP.

Conversely, let x̄ ∈ K be a solution of Debreu VEP. Then for each i ∈ I,

x̄i ∈ Ai(x̄) : ϕi(x̄i,yi)−ϕi(x̄) /∈ −int Ci(x̄), ∀ yi ∈ Ai(x̄). (3)

Since x̄i,yi ∈Ai(x̄) and each Ai(x̄) is invex, we have x̄i +tηi(yi, x̄i)∈Ai(x̄) ∀ t ∈ [0,1].
Therefore, from (3), we get

ϕi(x̄i, x̄i + tηi(yi, x̄i))−ϕi(x̄) ∈Wi(x̄) = Yi \ {−int Ci(x̄)}.
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Since for each i ∈ I, Wi(x̄) is a closed cone, we have

lim
t→0

ϕi(x̄i, x̄i + tηi(yi, x̄i))−ϕi(x̄)
t

∈Wi(x̄).

From the partial Gâteaux differentiability of each ϕi, we get, ∀ i ∈ I

x̄i ∈ Ai(x̄) : 〈Dxiϕi(x̄),ηi(yi, x̄i)〉 /∈ −int Ci(x̄), ∀ yi ∈ Ai(x̄).

Hence x̄ ∈ K is a solution of SVQVLI with Ti(x̄) = Dxi ϕi(x̄) ∀ i ∈ I.

Remark 10. If for each i ∈ I and ∀ x ∈ K, ηi(yi,xi) = yi − xi, Ai(x) = Ki, Ci(x) =
R+ and Yi = R, then Proposition 2 reduces to Proposition 4 in [25, p. 269]. Hence
Proposition 2 extends Proposition 4 in [25] in several ways.

By using Proposition 1 and Corollary 1, we can easily derive the following exis-
tence result for a solution of Debreu VEP.

Theorem 6 ( [5] ). Let I be a finite index set. For each i ∈ I, let Xi and Yi be normed
spaces, Ki be a nonempty convex subset of Xi, K = ∏i∈I Ki and Wi be the same as in
Remark 7. For each i ∈ I, let ηi : Ki×Ki → Xi be continuous in the second argument
such that ηi(xi,xi) = 0 ∀ xi ∈ Ki, and ϕi : K → Yi partial Gâteaux differentiable on
K and Pi-invex in each variable such that the function yi 	→ 〈Dxi ϕi(x),ηi(yi,xi)〉 is
a natural Pi-quasiconvex function, ∀ x ∈ K. Assume that there exist a nonempty
and compact subset N of K and a nonempty, compact and convex subset Bi of
Ki ∀ i ∈ I, such that ∀ x ∈ K \N ∃ i ∈ I and ∃ ỹi ∈ Bi, such that ỹi ∈ Ai(x) and
〈Dxi ϕi(x),ηi(ỹi,xi)〉 ∈ −int Ci(x). Then the Debreu VEP has a solution.

If the index set I need not be finite and for each i ∈ I, ϕi need not be partial
Gâteaux differentiable, then we can also easily derive the following existence results
for a solution of Debreu VEP from Theorems 4 and 5 by setting, ∀ i ∈ I,

fi(x,yi) = ϕi(xi,yi)−ϕi(x).

Theorem 7 ( [5] ). For each i ∈ I, let Ki, K, Xi and Wi be the same as in Theorem 4
and Remark 7, respectively, and let ϕi : K → Yi be a vector-valued function. Assume
that the following conditions hold:

(i) For each i ∈ I, ϕi is a natural Pi-quasiconvex function in the ith argument.
(ii) For each i ∈ I, ϕi is continuous on K.

(iii) There exist a nonempty and compact subset N of K and a nonempty, compact
and convex subset Bi of Ki ∀ i ∈ I, such that ∀ x ∈ K \N ∃ i ∈ I and ∃ ỹi ∈ Bi,
such that ỹi ∈ Ai(x) and ϕi(xi, ỹi)−ϕi(x) ∈ −int Ci(x).

Then Debreu VEP has a solution.

Theorem 8 ( [5] ). For each i ∈ I, let Ki, K, Xi and Wi be the same as in Theorems 5
and 7, respectively. Assume that the conditions (i) and (ii) of Theorem 5 hold. Then
Debreu VEP has a solution.



16 Q.H. Ansari and J.-C. Yao

Remark 11. (1) If for each i ∈ I and ∀ x ∈ K, Ci(x) = Ci, a (fixed) proper, closed and
convex cone in Yi, then conditions (i) and (ii) in Theorem 5, and subsequently, in
Theorem 6 can be replaced, respectively, by the following conditions:

(i)′ For each i ∈ I and ∀ x ∈ K, ϕi is a Ci-quasiconvex function in the ith argument.
(ii)′ For each i ∈ I, ϕi is Ci-upper semicontinuous on K.

(2) Theorem 6 provides the existence of a solution of Debreu VEP involving
Φ-condensing map and, consequently, for scalar-valued functions. Therefore,
Theorem 6 is a new result in the literature.

4 System of Generalized Vector Quasi-equilibrium Problems

For each i ∈ I, let Fi : K ×Ki → 2Yi and Ai : K → 2Ki be multivalued maps with
nonempty values. We consider the following system of generalized vector quasi-
equilibrium problems [10]:

(SGVQEP)

{
Find x̄ ∈ K such that for each i ∈ I, x̄i ∈ Ai(x̄) and
Fi(x̄,yi) �⊆ −int Ci(x̄), ∀yi ∈ Ai(x̄).

If for each i ∈ I and ∀ x ∈ K, Ai(x) = Ki, then SGVQEP reduces to the following
system of generalized vector equilibrium problems (SGVEP) [15]:

(SGVEP)

{
Find x̄ ∈ K such that for each i ∈ I,
Fi(x̄,yi) �⊆ −int Ci(x̄), ∀yi ∈ Ki.

It is introduced and studied in [15] with applications to the Nash equilibrium prob-
lem for vector-valued functions.

If I is a singleton set, then SGV(Q)EP reduces to a generalized vector (quasi-)
equilibrium problem which contains generalized implicit vector (quasi-) vari-
ational inequality problems, generalized vector (quasi-) variational inequality
problems, generalized vector (quasi-) variational-like inequality problems and
vector (quasi-) equilibrium problems as special cases. For further detail on gen-
eralized vector (quasi-) equilibrium problems and their applications, we refer
[7, 8, 11, 13, 18, 21, 46, 84, 85, 93, 101] and the references therein.

Examples of SGVQEP

For each i ∈ I, let Di be a nonempty subset of L(Xi,Yi). For each i ∈ I, let Ti :
K → 2Di be a multivalued map with nonempty values. For each i ∈ I, let ψi : Di ×
Ki ×Ki → Yi be a vector-valued map. The problem of system of generalized implicit
vector quasi-variational inequalities (SGIVQVIP) is to find x̄ ∈K such that for each
i ∈ I, x̄i ∈ Ai(x̄) and

∀yi ∈ Ai(x̄), ∃ūi ∈ Ti(x̄) : ψi(ūi, x̄i,yi) /∈ −int Ci(x̄).
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Setting for each i ∈ I,

Fi(x,yi) = ψi(Ti(x),xi,yi) = {ψi(ui,xi,yi) : ui ∈ Ti(x)}.
Then SGVQEP coincides with SGIVQVIP.

For Yi = R and Ci(x) = R− for all x ∈ K and for each i ∈ I, SGIVQVIP is called
the problem of system of generalized implicit quasi-variational inequalities. Further,
for all x ∈ K and for each i ∈ I, Ai(x) = Ki, it is called the problem of system of
generalized implicit variational inequalities. Such problem is studied in [22] with
application to Nash equilibrium problem [81].

If I is a singleton set, SGIVQVIP reduces to generalized implicit vector quasi-
variational inequality problem.

The SGIVQVIP contains the following problems as special cases:

(i) For each i ∈ I, let θi : K ×Di → Di and ηi : Ki ×Ki → Xi be bifunctions. If for
each i ∈ I,

ψi(Ti(x),xi,yi) = 〈θi(x,Ti(x)),ηi(yi,xi)〉 = {〈θi(x,ui),ηi(yi,xi)〉 : ui ∈ Ti(x)},
then SGIVQVIP reduces to the problem of system of generalized vector quasi-
variational-like inequalities (SGVQVLIP) (I) which is to find x̄ ∈ K such that
for each i ∈ I, x̄i ∈ Ai(x̄) and

∀yi ∈ Ai(x̄), ∃ūi ∈ Ti(x̄) : 〈θi(x̄, ūi),ηi(yi, x̄i)〉 /∈−int Ci(x̄).

If I is a singleton set, then SGVQVLIP(I) becomes the generalized vector quasi-
variational-like inequality problem. The strong solution (i.e., ūi does not depend
on yi) of SGVQVLIP(I) is studied by Chen et al. [31] and Lee et al. [65], see
also the references therein.
If for each i ∈ I, θi(x,ui) = ui for all x ∈ K, then SGVQVLIP(I) becomes the
following problem denoted by SGVQVLIP(II): Find x̄ ∈ K such that for each
i ∈ I, x̄i ∈ Ai(x̄) and

∀yi ∈ Ai(x̄), ∃ūi ∈ Ti(x̄) : 〈ūi,ηi(yi, x̄i)〉 /∈−int Ci(x̄).

For Yi = R, Ci(x) = R− and Ai(x) = Ki for all x ∈ K and for each i ∈ I, this
problem is studied in [22] with application to the Nash equilibrium problem
[81].

(ii) If for each i ∈ I,

ψi(Ti(x),xi,yi) = 〈Ti(x),yi − xi〉 = {〈ui,yi − xi〉 : ui ∈ Ti(x)},
then SGIVQVIP reduces to the problem of system of generalized vector quasi-
variational inequalities (SGVQVIP) which is to find x̄ ∈ K such that for each
i ∈ I, x̄i ∈ Ai(x̄) and

∀yi ∈ Ai(x̄), ∃ūi ∈ Ti(x̄) : 〈ūi,yi − x̄i〉 /∈ −int Ci(x̄).

For each i ∈ I, if Fi is a single-valued map, then SGVQEP reduces to SVQEP
(Sect. 3).
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4.1 Existence Results for Solutions of SGVQEP

The following results provide the existence of a solution of SGVQEP with or with-
out Φ-condensing maps.

Theorem 9 ( [10] ). For each i ∈ I, let Ki be a nonempty convex subset of a Haus-
dorff topological vector space Xi and let Fi : K×Ki → 2Yi be a multivalued map with
nonempty values. For each i ∈ I, assume that the following conditions hold:

(i) For all x ∈ K, Fi(x,xi) �⊆ −int Ci(x), where xi is the ith component of x.
(ii) For all x ∈ K, the set {yi ∈ Ki : Fi(x,yi) ⊆−int Ci(x)} is convex.

(iii) For all yi ∈ Ki, the set {x ∈ K : Fi(x,yi) �⊆ −int Ci(x)} is closed in K.
(iv) There exist a nonempty compact subset N of K and a nonempty compact convex

subset Bi of Ki for each i ∈ I such that for each x ∈ K \N there exist i ∈ I and
ỹi ∈ Bi satisfying ỹi ∈ Ai(x) and Fi(x, ỹi) ⊆−int Ci(x).

Then the SGVQEP has a solution.

Theorem 10 ( [10] ). For each i ∈ I, let Ki be a nonempty, closed and convex subset
of a locally convex Hausdorff topological vector space Xi, Fi : K ×Ki → 2Yi a multi-
valued map with nonempty values and let the multivalued map A = ∏i∈I Ai : K → 2K

defined as A(x) = ∏i∈I Ai(x) for all x ∈ K, be Φ-condensing. Assume that the con-
ditions (i)–(iii) of Theorem 9 hold. Then the SGVQEP has a solution.

In order to verify condition (ii) in Theorems 9 and 10, we introduce the following
concept.

Definition 13 ( [21] ). Let W and Z be topological vector spaces and M be a
nonempty convex subset of W and let P : M → 2Z be a multivalued map such that
for each x ∈ M, P(x) is a closed, convex cone with nonempty interior. For each fixed
x ∈ M, a multivalued map F : M ×M → 2Z \ { /0} is called P(x)-quasiconvex-like if
for all y1,y2 ∈ M and t ∈ [0,1], we have either

F(x,ty1 +(1− t)y2) ⊆ F(x,y1)−P(x),

or
F(x,ty1 +(1− t)y2) ⊆ F(x,y2)−P(x).

To show the class of P(x)-quasiconvex-like multivalued is nonempty, we give the
following example.

Example 3. Let M = [0,1], P(x) = [0,+∞) for all x ∈ M. We define F : M×M → 2R

by
F(x,y) = [x,y + 1] for all x,y ∈ M.

For all x,y1,y2 ∈ M and 0 ≤ t ≤ 1, we note that

if y1 ≤ y2 then ty1 +(1− t)y2 ≤ y2
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and
if y1 > y2 then ty1 +(1− t)y2 ≤ y1.

Therefore, we have for each α ∈ F(x,ty1 +(1− t)y2),

α =
{

(y2 + 1)− [(y2 + 1)−α], y1 ≤ y2,
(y1 + 1)− [(y1 + 1)−α], y1 > y2.

Hence, we have either F(x,ty1 + (1 − t)y2) ⊆ F(x,y1)− P(x) or F(x, ty1 + (1 −
t)y2) ⊆ F(x,y2)−P(x). Thus, F is P(x)-quasiconvex-like.

Remark 12. (a) If for each i ∈ I, Fi is Ci(x)-quasiconvex-like, then the set {yi ∈ Ki :
Fi(x,yi) ⊆ −int Ci(x)} is convex, for all x ∈ K (see, e.g., the proof of Theorem 2.1
in [21]).

(b) If for each i ∈ I, Xi is locally convex Hausdorff topological vector space, the
multivalued map Wi : K → 2Yi defined by Wi(x) = Yi \ {−int Ci(x)} for all x ∈ K, is
closed on K and for all yi ∈ Ki, Fi(.,yi) is upper semicontinuous on K, then condition
(iii) of Theorem 9 is satisfied; see, for example, the proof of Theorem 2.1 in [21].

In order to establish existence results for a solution of SGIVQVIP, we modify
the definition of P(x)-quasiconvex-like multivalued bifunction to a single-valued
trifunction.

Definition 14 ( [11] ). Let W and Z be topological vector spaces, M a nonempty
convex subset of W and D a nonempty subset of L(W,Z). Let T : M → 2D \{ /0} and
P : M → 2Z be multivalued maps such that for each x ∈ M, P(x) is a closed, convex
cone with nonempty interior. For each fixed x ∈ M, a function ψ : D×M×M → Z
is called P(x)-quasiconvex-like if for all y1,y2 ∈ M and t ∈ [0,1], we have either for
all u ∈ T (x),

ψ(u,x,ty1 +(1− t)y2) ∈ ψ(u,x,y1)−P(x),

or
ψ(u,x,ty1 +(1− t)y2) ∈ ψ(u,x,y2)−P(x).

From Theorems 9 and 10, we derive the following existence result for a solution
of SGIVQVIP.

Corollary 3 ( [10] ). For each i ∈ I, let Ki be a nonempty convex subset of a locally
convex topological vector space Xi and let Di be a nonempty subset of L(Xi,Yi). For
each i ∈ I, Ti : K → 2Di be an upper semicontinuous multivalued map with nonempty
values and ψi : Di ×Ki ×Ki → Yi be a vector-valued map. For each i ∈ I, assume
that:

(i) The multivalued map Wi : K → 2Yi defined by Wi(x) = Yi \ {−int Ci(x)} for all
x ∈ K, is closed on K.

(ii) For all x ∈ K and ui ∈ Ti(x), ψi(ui,xi,xi) /∈ −int Ci(x), where xi is the ith com-
ponent of x.

(iii) ψi is Ci(x)-quasiconvex-like.
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(iv) For all yi ∈ Ki, the map (ui,xi) 	→ ψi(ui,xi,yi) is upper semicontinuous on
Di ×Ki.

(v) There exist a nonempty compact subset N of K and a nonempty compact convex
subset Bi of Ki for each i ∈ I such that for each x ∈ K \N there exist i ∈ I and
ỹi ∈ Bi satisfying ỹi ∈ Ai(x) and ψi(ui,xi, ỹi) ∈−int Ci(x) for all ui ∈ Ti(x).

Then the SGIVQVIP has a solution.

Corollary 4 ( [10] ). For each i ∈ I, let Ki,Xi,Di,ψi,Ti and Wi be the same as in
Corollary 3 and let the multivalued map A = ∏i∈I Ai : K → 2K defined as A(x) =
∏i∈I Ai(x) for all x ∈ K, be Φ-condensing. Assume that the conditions (i)–(iv) of
Corollary 3 hold. Then the SGIVQVIP has a solution.

We derive the existence results for a solution of SGVQVLIP by using
Corollaries 3 and 4.

Corollary 5 ( [10] ). For each i ∈ I, let Yi be a Hausdorff topological vector space
and let Ki,Xi,Di,Ti and Wi be the same as in Corollary 3. For each i ∈ I, let ηi : Ki×
Ki → Xi be affine in the first argument and continuous in the second argument such
that ηi(xi,xi) = 0 for all xi ∈ Ki. Assume that there exist a nonempty compact subset
N of K and a nonempty compact convex subset Bi of Ki for each i ∈ I such that for
each x ∈ K \N there exist i ∈ I and ỹi ∈ Bi satisfying ỹi ∈ Ai(x) and 〈ui,ηi(ỹi,xi)〉 ∈
−int Ci(x) for all ui ∈ Ti(x). Then the SGVQVLIP has a solution.

Corollary 6 ( [10] ). For each i ∈ I, let Ki,Xi,Yi,Di,ηi,Ti and Wi be the same as in
Corollary 4. For each i ∈ I, let ηi : Ki ×Ki → Xi be affine in the first argument and
continuous in the second argument such that ηi(xi,xi) = 0 for all xi ∈ Ki. Let the
multivalued map A = ∏i∈I Ai : K → 2K defined as A(x) = ∏i∈I Ai(x) for all x ∈ K,
be Φ-condensing. Then SGVQVIP has a solution.

The following results provide the existence of a solution of SGVQVIP with or
without Φ-condensing maps.

Corollary 7 ( [10] ). For each i ∈ I, let Ki,Xi,Yi,Di,Ti and Wi be the same as in
Corollary 4. Assume that there exist a nonempty compact subset N of K and a
nonempty compact convex subset Bi of Ki for each i ∈ I such that for each x ∈ K \N
there exist i ∈ I and ỹi ∈ Bi satisfying ỹi ∈ Ai(x) and 〈ui, ỹi − xi〉 ∈ −int Ci(x) for all
ui ∈ Ti(x). Then the SGVQVIP has a solution.

Corollary 8 ( [10] ). For each i ∈ I, let Ki,Xi,Yi,Di,Ti and Wi be the same as in
Corollary 4. Let the multivalued map A = ∏i∈I Ai : K → 2K defined as A(x) =
∏i∈I Ai(x) for all x ∈ K, be Φ-condensing. Then the SGVQVIP has a solution.

4.2 Applications

Throughout this section, unless otherwise specified, we assume that the index set
I is finite, that is, I = {1, . . . ,n}. For each i ∈ I, let Xi and Yi be finite dimensional
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Euclidean spaces R
pi and R

qi , respectively, and Ki be a nonempty convex subset of
Xi. Let K = ∏i∈I Ki. Let K = ∏n

i=1 Ki. For each i∈ I, let Ci : K → 2Yi be a multivalued
map such that for all x ∈ K, Ci(x) is a proper, closed and convex cone with apex at
the origin and int Ci(x) �= /0 and R

qi
+ ⊆Ci(x). Let the multivalued map A = ∏i∈I Ai :

K → 2K be defined as A(x) = ∏i∈I Ai(x), for all x ∈ K. For each i ∈ I, let ϕi : K →Yi

be a given vector-valued function. We recall the following SVQOP which is to find
x̄ ∈ K such that x̄ ∈ A(x̄) and for each i ∈ I,

ϕi(y)−ϕi(x̄) /∈ −int Ci(x̄) ∀ y ∈ A(x̄),

where ϕi(x) = (ϕi1(x),ϕi2(x), . . . ,ϕiqi
(x)) and for each l ∈ L = {1, . . . , qi}, ϕil :

K → R is a function.
As we have seen in Sect. 3 that every solution of SVQOP is also a solution of

Debreu VEP, but the converse need not be true.
We recall the following definitions.

Definition 15. A real-valued function f : R
p → R is said to be locally Lipschitz

if for any z ∈ R
p, there exist a neighbourhood N(z) of z and a positive constant k

such that

| f (x)− f (y)| ≤ k||x− y||, ∀ x,y ∈ N(z).

The Clarke generalized directional derivative [34] of a locally Lipschitz function
f at x in the direction d denoted by f 0(x;d) is

f 0(x;d) = lim
y→x
t↓0

sup
f (y + td)− f (y)

t
.

The Clarke generalized gradient [34] of a locally Lipschitz function f at x is
defined as

∂ f (x) =
{

ξ ∈ R
p : f 0(x;d) ≥ 〈ξ ,d〉 for all d ∈ R

p} .

If f is convex, then the Clarke generalized gradient coincides with the subdiffer-
ential of f in the sense of convex analysis [90].

The generalized invex function was introduced by Craven [36] as a generalization
of invex functions [51].

Definition 16. A locally Lipschitz function f : R
p → R is said to be generalized

invex at x w.r.t. a given function η : R
p ×R

p → R
p if

f (y)− f (x) ≥ 〈ξ ,η(y,x)〉, ∀ ξ ∈ ∂ f (x) and y ∈ R
p.

For each i∈ I, let φi : K →R be a locally Lipschitz function and let x∈K, x j ∈Kj.
Following Clarke [34], the generalized directional derivative at x j in the direction
d j ∈ Kj of the function φi(x1, . . . ,x j−1, ·,x j+1, . . . ,xn) denoted by φ0

i j(x;d j) is
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φ0
i j(x;d j) = lim

y j→x j
t↓0

sup
1
t

{
φi(x1, . . . ,x j−1,y j + td j,x j+1, . . . ,xn)

−φi(x1, . . . ,x j−1,y j,x j+1, . . . ,xn)
}
.

The partial generalized gradient [34] of the function φi(x1, . . . ,x j−1, ·,
x j+1, . . . ,xn) at x j is defined as follows:

∂ jφi(x) =
{

ξ j ∈ Xj : φ0
i j(x;d j) ≥ 〈ξ j,d j〉 for all d j ∈ Kj

}
.

Lemma 4 ( [34] ). For each i ∈ I, let φi : K → R be locally Lipschitz. Then for each
i ∈ I, the multivalued map ∂iφi is upper semicontinuous.

Definition 17. For each i ∈ I, φi : K → R is called generalized invex at x w.r.t. a
given function ηi : Ki ×Ki → R

pi if

φi(y)−φi(x) ≥ 〈ξi,ηi(yi,xi)〉, ∀ ξi ∈ ∂iφi(x) and ∀ y ∈ K.

Proposition 3 ( [10] ). For each i ∈ I and for all l ∈ L , let ϕil : K → R be gen-
eralized invex w.r.t. ηil : Ki ×Ki → Xi. Then any solution of SGVQVLIP (II) is a
solution of SVQOP with Ti(x) = ∂iϕi(x) for each i ∈ I and for all x ∈ K, where
∂iϕi(x) = (∂iϕi1(x),∂iϕi2(x), . . . ,∂iϕiqi

(x)) ∈ R
pi×qi .

Proof. For the sake of simplicity, we denote by ϕi(x) = (ϕi1(x), . . ., ϕiqi
(x)) ∈ R

qi ,
ui = (ui1 , . . . ,uiqi

) where uil ∈ ∂iϕil (x) for all l ∈ L , and

〈ui,ηi(yi,xi)〉 =
(
〈ui1 ,ηi1(yi,xi)〉, . . . ,〈uiqi

,ηiqi
(yi,xi)〉

)
∈ R

qi .

Assume that x̄ ∈ K is a solution of the SGVQVLIP (II). Then for each i ∈ I,

∀yi ∈ Ai(x̄), ∃ūil ∈ ∂iϕil (x̄) for all l ∈ L such that(
〈ūi1 ,ηi1(yi, x̄i)〉, . . . ,〈ūiqi

,ηiqi
(yi, x̄i)〉

)
/∈ −int Ci(x̄).

We can rewrite this as

∀yi ∈ Ai(x̄), ∃ūi ∈ ∂iϕi(x̄) : 〈ūi,ηi(yi, x̄i)〉 /∈ −int Ci(x̄). (4)

Since for each i ∈ I and for all l ∈ L , ϕil is generalized invex w.r.t. ηil , we have

ϕil (y)−ϕil(x̄) ≥ 〈uil ,ηil (yi, x̄i)〉 for all uil ∈ ∂iϕil (x̄) and y ∈ A(x̄) = ∏
i∈I

Ai(x̄),

that is, for each i ∈ I
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ϕi(y)−ϕi(x̄) ≥ 〈ui,ηi(yi, x̄i)〉 for all ui ∈ ∂iϕi(x̄) and y ∈ A(x̄).

Therefore, for each i ∈ I and for all ui ∈ ∂iϕi(x̄), we have

ϕi(y)−ϕi(x̄) ∈ 〈ūi,ηi(yi, x̄i)〉+R
qi
+ (5)

⊆ 〈ūi,ηi(yi, x̄i)〉+ int Ci(x̄).

From (4) and (5), we have ϕi(y)−ϕi(x̄) /∈ −int Ci(x̄). Hence x̄ ∈ K is a solution of
the SVQOP.

Rest of the section, unless otherwise specified, ∂iϕi(x) and 〈ui,ηi(yi,xi)〉 are the
same as defined in Proposition 3.

Theorem 11 ( [10] ). For each i ∈ I and for all l ∈L , let ϕil : K →R be generalized
invex w.r.t. ηil : Ki ×Ki → Xi such that ηil is affine in the first argument, continuous
in the second argument and ηil (xi,xi) = 0 for all xi ∈ Ki. Assume that there exists
r > 0 such that for all x ∈ K, ||x|| > r, there exist i ∈ I and ỹi ∈ Ki with ||ỹi||i ≤ r
satisfying ỹi ∈ Ai(x) and

〈ui,ηi(ỹi,xi)〉 ∈ −int Ci(x), ∀ ui ∈ ∂iϕi(x),

where || · || and || · ||i denote the norms on X and Xi, respectively. Then the SVQOP
has a solution.

Theorem 12 ( [10] ). For each i ∈ I and for all l ∈L , let ϕil : K →R be generalized
invex w.r.t. ηil : Ki ×Ki → Xi such that ηil is affine in the first argument, continuous
in the second argument and ηil (xi,xi) = 0 for all xi ∈ Ki. Let the multivalued map
A = ∏i∈I Ai : K → 2K defined as A(x) = ∏i∈I Ai(x) for all x ∈ K, be Φ-condensing.
Then the SVQOP has a solution.

The following example, provided by one of the referees, shows that if η is affine
in the second argument, then it is not necessary that η(x,x) = 0.

Example 4. Consider the map η : R+×R+ → R defined by

η(x,y) = (x + y + 1,0), for all x,y ∈ R+ = [0,∞).

Then η is affine in the second argument but η(x,x) �= 0 for all x ∈ R+.

In the next three corollaries, we set ϕi(x) = (ϕi1(x), . . . ,ϕiqi
(x)) ∈ R

qi , ui =
(ui1 , . . . ,uiqi

), 〈ui,yi − xi〉 = (〈ui1 ,yi − xi〉, . . . ,〈uiqi
,yi − xi〉) ∈ R

qi and ∂iϕi(x) =
(∂iϕi1(x),∂iϕi2(x), . . . ,∂iϕiqi

(x)) ∈ R
pi×qi , where ∂iϕi j (x) ( j = 1, . . . ,qi) is the par-

tial subdifferential in the sense of convex analysis.

Corollary 9 ( [10] ). For each i ∈ I and for all l ∈ L , let ϕil : K → R be convex
and lower semicontinuous Assume that there exists r > 0 such that for all x ∈ K,
||x|| > r, there exist i ∈ I and ỹi ∈ Ki with ||ỹi||i ≤ r satisfying ỹi ∈ Ai(x) and

〈ui, ỹi − xi〉 ∈ −int Ci(x), ∀ ui ∈ ∂iϕi(x),
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where || · || and || · ||i denote the norms on X and Xi, respectively. Then the SVQOP
has a solution.

Corollary 10 ( [10] ). For each i ∈ I and for all l ∈ L , let ϕil : K → R be convex
and lower semicontinuous on K. Let the multivalued map A = ∏i∈I Ai : K → 2K

defined as A(x) = ∏i∈I Ai(x) for all x ∈ K, be Φ-condensing. Then the SVQOP has
a solution.

5 System of Generalized Implicit Vector Quasi-equilibrium
Problems

As we have seen in the previous sections that systems of vector quasi-equilibrium
problems are used as tools to establish the existence of a solution of Debreu VEP,
also known as constrained Nash equilibrium problem, both for nondifferentiable
and (non)convex vector-valued functions. These are also used to solve mathemat-
ical programs with equilibrium constraints [70], fixed point theory for a family of
nonexpansive multivalued maps [68] and several related topics. By using different
types of maximal element theorems for a family of multivalued maps and differ-
ent types of fixed point theorems for a multivalued map, several authors studied
the existence of solutions of different kinds of systems of vector quasi-equilibrium
problems; see, for example, [5,6,9,10,12,39,68,70,71,75,98,99] and the references
therein.

For each i ∈ I, let Wi : K → 2Yi be a multivalued map defined as Wi(x) = Yi \
(−int Ci(x)) for all x ∈ K such that its graph is closed. For each i ∈ I, let Fi : Ki → 2Yi

be a multivalued map with nonempty values, Ai : K → 2Ki be a multivalued map with
nonempty convex values such that A(x) = ∏i∈I Ai(x), and ψi : Di×Ki×Ki →Yi be a
function. We consider the following Systems of Generalized Implicit Vector Quasi-
Equilibrium Problems (SGIVQEP) [4]:

Problem 1. Find x̄ ∈ K such that x̄ ∈ A(x̄) and for each i ∈ I,

∀ūi ∈ Fi(x̄) : ψi(ūi, x̄i,yi) /∈ −int Ci(x̄), ∀yi ∈ Ai(x̄).

Problem 2. Find x̄ ∈ K such that x̄ ∈ A(x̄) and for each i ∈ I,

∃ūi ∈ Fi(x̄) : ψi(ūi, x̄i,yi) /∈ −int Ci(x̄), ∀yi ∈ Ai(x̄).

Problem 3. Find x̄ ∈ K such that x̄ ∈ A(x̄) and for each i ∈ I,

∀yi ∈ Ai(x̄), ∃ūi ∈ Fi(x̄) (ūi depends on yi) : ψi(ūi, x̄i,yi) /∈ −int Ci(x̄).

Problem 4. Find x̄ ∈ K such that x̄ ∈ A(x̄) and for each i ∈ I,

∀y ∈ A(x̄) and ∀vi ∈ Fi(y) : ψi(vi,yi, x̄i) /∈ int Ci(x̄),

where yi is the ith component of y.
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Problem 5. Find x̄ ∈ K such that x̄ ∈ A(x̄) and for each i ∈ I,

∀y ∈ A(x̄), ∃vi ∈ Fi(y) (vi depends on y) : ψi(vi,yi, x̄i) /∈ int Ci(x̄),

where yi is the ith component of y.

Remark 13. Problem 1 ⇒ Problem 2 ⇒ Problem 3 and Problem 4 ⇒ Problem 5.

The solutions of Problems 1, 2 and 3 are called general solution, strong solution
and weak solution, respectively. In view of Remark 13, every general solution is
a strong solution and every strong solution is a weak solution. But the converse
assertions may not be true.

When Ai(x) = Ki for all x ∈ K and for each i ∈ I, Problems 1–5 are called sys-
tems of generalized implicit vector equilibrium problems (SGIVEP) considered and
studied in [1]. In this case, the existence results for solutions of these problems are
investigated by introducing different kinds of generalized pseudomonotonicities. In
this case, Nash equilibrium problem for vector-valued functions can be solved by
using Problems 1–5 but not Debreu VEP.

As we have seen in Sect. 4 that Problem 3 provides a sufficient condition (which
is in general not necessary) for a solution of a SVQOP that includes Debreu VEP
for nondifferentiable and nonconvex functions. But, in this case, Problem 2 provides
necessary and sufficient conditions for a solution of a SVQOP.

If for each i ∈ I, Ai(x) = Ki for all x ∈ K, Problem 3 is called a system of gener-
alized implicit vector equilibrium problems and it is introduced and studied in [15].
It is also used to give the existence of a solution of the Nash equilibrium problem
for nondifferentiable and nonconvex functions. Further, if Yi = R and Ci(x) = R−
and Ai(x) = Ki for all x ∈ K, Problem 3 was studied by in [22]. As an application
of our results, we established some existence results for solutions of systems of
optimization problems and the Nash equilibrium problem.

When I is a singleton set, Yi = R and Ci(x) = R+ for all x ∈ K, the existence of a
solution of Problem 2 is studied in [46].

When I is a singleton set, Ai(x) = Ki for all x∈K and ψi(ui,xi,yi)= 〈ui,ηi(yi,xi)〉
(respectively, ψi(ui,xi,yi) = 〈ui,yi − xi〉), then Problem 2 provides necessary and
sufficient conditions for solutions of vector optimization problems for nondiffer-
entiable and nonconvex functions (respectively, for nondifferentiable, but convex
functions). See, for example, [2, 17] and the references therein. In this case, Prob-
lem 1 is considered and studied in [2, 30, 62].

When I is a singleton set, Problems 2 and 3 are studied by Kum and Lee [58,
64]. They proved the existence of solutions of these problems under some kind of
pseudomonotonicity assumptions.

In Sect. 5.1, we give some relationships among Problems 1–5 by using different
kinds of generalized pseudomonotonicities. Section 5.2 is devoted to the existence
results for a solution of Problem 1 under lower semi-continuity of the family of
multivalued maps involved in the formulation of the problem. The existence of a
solution of Problem 1 and so Problems 2 and 3 without any coercivity condition
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but for Φ-condensing maps is also established. In Sect. 5.3, we establish the exis-
tence of a strong solution of our SGVQEP by using H -hemicontinuity assumption
in the setting of real Banach spaces. We also present an existence result for a weak
solution under generalized pseudomonotonicity and u-hemicontinuity assumptions.
Basically, besides establishing existence results for solutions of Problems 1–3 with-
out any coercivity condition but for Φ-condensing maps, we extend the results of
[1] for SGIVEP to SGIVQEP. Our results provide the existence of solutions of
Problems 1–5 under some kind of pseudomonotonicity assumption and under lower
semicontinuity assumption which is one of main motivations of this section.

5.1 Relationships Among Problems 1–5

Throughout this section, for each i ∈ I, we assume that Xi and Yi are locally convex
Hausdorff topological vector spaces and Ki is a nonempty convex subset of Xi, and
Ci is the same as defined in the previous section. We set K = ∏i∈I Ki, X = ∏i∈I Xi,
and Y = ∏i∈I Yi.

We recall different kinds of generalized pseudomonotonicities introduced in [1].

Definition 18 ( [1] ). Let {ψi}i∈I be a family of mappings ψi : Di ×Ki ×Ki → Yi.
A family {Fi}i∈I of multivalued maps Fi : K → 2Ki with nonempty values is called:

(i) Generalized strongly pseudomonotone w.r.t. {ψi}i∈I if for all x,y ∈ K and for
each i ∈ I,

∀ui ∈ Fi(x) : ψi(ui,xi,yi) /∈−int Ci(x) ⇒∀vi ∈ Fi(y) : ψi(vi,yi,xi) /∈ int Ci(x).

(ii) Generalized pseudomonotone w.r.t. {ψi}i∈I if for all x,y ∈ K and for each i ∈ I,

∃ui ∈ Fi(x) : ψi(ui,xi,yi) /∈−int Ci(x) ⇒∀vi ∈ Fi(y) : ψi(vi,yi,xi) /∈ int Ci(x).

(iii) Generalized weakly pseudomonotone w.r.t. {ψi}i∈I if for all x,y ∈ K and for
each i ∈ I,

∃ui ∈ Fi(x) : ψi(ui,xi,yi) /∈−int Ci(x) ⇒∃vi ∈ Fi(y) : ψi(vi,yi,xi) /∈ int Ci(x).

(iv) Generalized pseudomonotone+ w.r.t. {ψi}i∈I if for all x,y∈K and for each i∈ I,

∀ui ∈ Fi(x) : ψi(ui,xi,yi) /∈−int Ci(x) ⇒∃vi ∈ Fi(y) : ψi(vi,yi,xi) /∈ int Ci(x).

(v) u-Hemicontinuous w.r.t. {ψi}i∈I if for all x,y ∈ K and α ∈ [0,1] and for each
i ∈ I, the multivalued map

α 	→ ψi(Fi(x + α(y− x)),xi,yi)

is upper semicontinuous at 0+, where
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ψi(Fi(x + α(y− x)),xi,yi) = {ψi(wi,xi,yi) : wi ∈ Fi(x + α(y− x))}.

Remark 14. Definition (i) ⇒ Definition (ii) ⇒ Definition (iii); Definition (iv) ⇒
Definition (iii); Definition (i) ⇒ Definition (iv); that is, Definition (i) ⇒ Definition
(iv) ⇒ Definition (iii).

In the next three lemmas, we discuss the relationships among Problems 1–5.

Lemma 5 ( [4] ).

(a) Problem 3 ⇒ Problem 4 if {Fi}i∈I is generalized pseudomonotone w.r.t. {ψi}i∈I .
(b) Problem 3 ⇒ Problem 5 if {Fi}i∈I is generalized weakly pseudomonotone w.r.t.

{ψi}i∈I .
(c) Problem 1 ⇒ Problem 5 if {Fi}i∈I is generalized pseudomonotone+ w.r.t.

{ψi}i∈I .
(d) Problem 1 ⇒ Problem 4 if {Fi}i∈I is generalized strongly pseudomonotone w.r.t.

{ψi}i∈I .
(e) Problem 2 ⇒ Problem 4 if {Fi}i∈I is generalized pseudomonotone w.r.t. {ψi}i∈I .

Lemma 6 ( [4] ). For each i ∈ I, assume that the following conditions hold:

(i) For all x ∈ K and all ui ∈ Fi(x), ψi(ui,xi,xi) ∈ Ci =
⋂

x∈K Ci(x).
(ii) For all x ∈ K and all ui ∈ Fi(x), ψi(ui,xi, ·) is Ci-convex, that is, for all si ∈

L(Xi,Yi), x,y ∈ K and α ∈ [0,1],

ψi(si,xi,αxi +(1−α)yi) ∈ αψi(si,xi,xi)+ (1−α)ψi(si,xi,yi)−Ci.

(iii) For all si ∈ L(Xi,Yi), x,y,z ∈ K and α ∈ [0,1],

ψi(si,xi + α(yi − xi),zi) = (1−α)ψi(si,xi,zi).

(iv) {Fi}i∈I is u-hemicontinuous w.r.t. {ψi}i∈I .

Then Problem 5⇒Problem 3 as well as Problem 4⇒Problem 3.

Proposition 4 ( [4] ). Under the conditions of Lemmas 5(a) and 6, Problems 3, 4
and 5 are equivalent.

Lemma 7. For each i ∈ I, let (Xi,‖ · ‖) and Yi be real Banach spaces and Ki be
a nonempty convex subset of Xi. Let K = ∏i∈I Ki. For each i ∈ I, assume that the
following conditions hold:

(i) For all x ∈ K and all ui ∈ Fi(x), ψi(ui,xi,xi) ∈ Ci =
⋂

x∈K Ci(x).
(ii) For all x ∈ K and all ui ∈ Fi(x), ψi(ui,xi, ·) is Ci-convex, that is, for all si ∈

L(Xi,Yi), x,y ∈ K and t ∈ [0,1],

ψi(si,xi,txi +(1− t)yi) ∈ tψi(si,xi,xi)+ (1− t)ψi(si,xi,yi)−Ci.

(iii) For all si ∈ L(Xi,Yi), x,y,z ∈ K and t ∈ [0,1],

ψi(si,xi + t(yi− xi),zi) = (1− t)ψi(si,xi,zi).
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(iv) ψi is continuous in the first argument.
(v) Fi is H -hemicontinuous and for all x∈K, Fi(x) is a nonempty compact set in Yi.

(vi) The family {Fi}i∈I is generalized pseudomonotone w.r.t. {ψi}i∈I .

Then Problems 2 and 4 are equivalent.

5.2 Existence Results Under Lower Semicontinuity

For each i ∈ I, we assume that the graph of the multivalued map Wi : K → 2Yi defined
by Wi(x) = Yi \ {−int Ci(x)} for all x ∈ K, is closed. For each i ∈ I, we also assume
that Ai : K → 2Ki is a multivalued map such that for all x ∈ K, Ai(x) is nonempty and
convex, A−1

i (yi) is open in K for all yi ∈ Ki and the set Fi := {x ∈ K : xi ∈ Ai(x)} is
closed in K, where xi is the ith component of x.

We extend and generalize Definition 14 for a family of trifunctions.

Definition 19 ( [1] ). For each i ∈ I, let Fi : K → 2Di be a multivalued map with
nonempty values. A family {ψi}i∈I of functions ψi : Di ×Ki ×Ki → Yi is called
Ci(x)-quasiconvex-like w.r.t. {Fi}i∈I if for all x ∈ K, y′i,y′′i ∈ Ki and t ∈ [0,1], we
either have ∀ui ∈ Fi(x),

ψi(ui,xi,ty
′
i +(1− t)y′′i ) ∈ ψi(ui,xi,y

′
i)− int Ci(x),

or
ψi(ui,xi,ty

′
i +(1− t)y′′i ) ∈ ψi(ui,xi,y

′′
i )− int Ci(x).

Definition 20 ( [1] ). For each i ∈ I, let Fi : K → 2Di be multivalued map with
nonempty values. A family {ψi}i∈I of functions ψi : Di ×Ki ×Ki → Yi is called
simultaneously Ci(x)-quasiconvex-like w.r.t. {Fi}i∈I if for all x ∈ K, y′i,y′′i ∈ Ki and
t ∈ [0,1], we either have ∀u′i,u′′i ∈ Fi(x),

ψi(tu′i +(1− t)u′′i ,xi,ty
′
i +(t)y′′i ) ∈ ψi(u′i,xi,y

′
i)− int Ci(x),

or
ψi(tu′i +(1− t)u′′i ,xi,ty

′
i +(1− t)y′′i ) ∈ ψi(u′′i ,xi,y

′′
i )− int Ci(x).

We present an existence result for a solution of Problem 1 under lower semiconti-
nuity of the family of multivalued maps involved in the formulation of the problem.

Theorem 13 ( [4] ). For each i ∈ I, let Ki be a nonempty convex subset of a Haus-
dorff topological vector space Xi. Let K = ∏i∈I Ki. For each i ∈ I, let Fi : K → 2Ki

be a lower semicontinuous multivalued map with nonempty convex values and
ψi : Di ×Ki ×Ki → Yi be a function such that the following conditions are satis-
fied:

(i) For all x ∈ K, the family {ψi}i∈I of functions ψi is simultaneously Ci(x)-
quasiconvex-like w.r.t. {Fi}i∈I .
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(ii) For all x ∈ K and for all ui ∈ Fi(x), ψi(ui,xi,xi) /∈−int Ci(x).
(iii) For each fixed yi, the map (ui,xi) 	→ ψi(ui,xi,yi) is continuous on Di ×Ki.
(iv) There exist a nonempty compact subset M of K and a nonempty compact convex

subset Ni of Ki for each i ∈ I such that for all x ∈ K \M, there exist i ∈ I and
ỹi ∈ Ni such that ỹi ∈ Ai(x) and ψi(ui,xi, ỹi) ∈ −int Ci(x) for all ui ∈ Fi(x).

Then Problem 1 has a solution.

The following result provides the existence of a solution of Problem 1 without
any coercivity condition but for Φ-condensing maps.

Theorem 14 ( [4] ). For each i∈ I, let Ki be a nonempty, closed and convex subset of
a locally convex Hausdorff topological vector space Xi and let the multivalued map
A = ∏i∈I Ai : K → 2K defined as A(x) = ∏i∈I Ai(x) for all x ∈ K, be Φ-condensing.
Assume that the conditions (i)–(iii) of Theorem 13 hold. Then Problem 1 has a
solution.

5.3 Existence Results Under Pseudomonotonicity

In this section, we present some existence results for a solution of the SGIVQEP
under generalized pseudomonotonicity assumption.

Theorem 15 ( [4] ). For each i ∈ I, let Ki be a nonempty convex subset of a Haus-
dorff topological vector space Xi. Let K = ∏i∈I Ki. For each i ∈ I, let Fi : K → 2Ki

be a multivalued map with nonempty values and ψi : Di×Ki×Ki →Yi be a function
such that the following conditions are satisfied:

(i) The family {Fi}i∈I of multivalued maps Fi is generalized pseudomonotone w.r.t.
{ψi}i∈I .

(ii) For all x ∈ K, the family {ψi}i∈I of functions ψi is Ci(x)-quasiconvex-like w.r.t.
{Fi}i∈I .

(iii) For all x ∈ K and for all ui ∈ Fi(x), ψi(ui,xi,xi) /∈−int Ci(x).
(iv) For each fixed (vi,yi) ∈ Di ×Ki, the map xi 	→ ψi(vi,yi,xi) is continuous on Ki.
(v) There exist a nonempty compact subset M of K and a nonempty compact convex

subset Ni of Ki for each i ∈ I such that for all x ∈ K \M, there exist i ∈ I and
ỹi ∈ Ni such that ỹi ∈ Ai(x) and ψi(ui,xi, ỹi) ∈ −int Ci(x) for all ui ∈ Fi(x).

Then Problem 4 has a solution.

Theorem 16 ( [4] ). For each i ∈ I, let Ki be a nonempty convex subset of a Haus-
dorff topological vector space Xi. For each i ∈ I, let Fi : K → 2Ki be a multivalued
map with nonempty values and ψi : Di ×Ki ×Ki → Yi be a function such that the
following conditions are satisfied:

(i) The family {Fi}i∈I of multivalued maps Fi is u-hemicontinuous and generalized
pseudomonotone w.r.t. {ψi}i∈I .
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(ii) The family {ψi}i∈I of functions ψi is Ci-convex in the third argument.
(iii) For all si ∈ L(Xi,Yi), x,y,z ∈ X and α ∈ [0,1],

ψi(si,xi + α(yi − xi),zi) = (1−α)ψi(si,xi,zi).

(iv) For all x ∈ K and for all ui ∈ Fi(x), ψi(ui,xi,xi) ∈ Ci.
(v) For each fixed (vi,yi) ∈ Di ×Ki, the map xi 	→ ψi(vi,yi,xi) is continuous on Ki.

(vi) There exist a nonempty compact subset M of K and a nonempty compact convex
subset Ni of Ki for each i ∈ I such that for all x ∈ K \M, there exist i ∈ I and
ỹi ∈ Ni such that ỹi ∈ Ai(x) and ψi(ui,xi, ỹi) ∈ −int Ci(x) for all ui ∈ Fi(x).

Then Problem 3 has a solution.

The following result provides the existence of a strong solution of Problem 2.

Theorem 17 ( [4] ). For each i ∈ I, let Ki be a nonempty convex subset of a real
Banach space Xi and Yi be a real Banach space. For each i ∈ I, let Fi : K → 2Ki be
a multivalued map with nonempty compact values and ψi : Di ×Ki ×Ki → Yi be a
function such that the following conditions are satisfied:

(i) The family {Fi}i∈I of multivalued maps Fi is H -hemicontinuous and general-
ized pseudomonotone w.r.t. {ψi}i∈I .

(ii) The family {ψi}i∈I of functions ψi is Ci-convex in the third argument.
(iii) For all si ∈ L(Xi,Yi), x,y,z ∈ X and α ∈ [0,1],

ψi(si,xi + α(yi − xi),zi) = (1−α)ψi(si,xi,zi).

(iv) For all x ∈ K and for all ui ∈ Fi(x), ψi(ui,xi,xi) ∈ Ci.
(v) For each fixed (vi,yi) ∈ Di ×Ki, the map xi 	→ ψi(vi,yi,xi) is continuous on Ki.

(vi) There exist a nonempty compact subset M of K and a nonempty compact convex
subset Ni of Ki for each i ∈ I such that for all x ∈ K \M, there exist i ∈ I and
ỹi ∈ Ni such that ỹi ∈ Ai(x) and ψi(ui,xi, ỹi) ∈ −int Ci(x) for all ui ∈ Fi(x).

Then Problem 2 has a solution.

6 System of Simultaneously Generalized Vector
Quasi-equilibrium Problems

Throughout the section, unless otherwise specified, I is any index set (finite or infi-
nite). For each i ∈ I, let Xi and Yi be two nonempty convex subsets of locally convex
topological vector spaces Ei and Fi, respectively, and Zi be a real topological vector
space. Let X = ∏i∈I Xi and Y = ∏i∈I Yi. For each i ∈ I, let Ci : X → 2Zi be a multi-
valued map such that for all x ∈ X , Ci(x) is a closed convex cone with apex at the
origin 0. For each i ∈ I, let Pi =

⋂
x∈X Ci(x) such that Pi defines a vector ordering

on Zi. For each i ∈ I, let Si : X → 2Xi and Ti : X → 2Yi be multivalued maps with
nonempty values, and fi : X ×Y ×Xi → Zi and gi : X ×Y ×Yi → Zi be trifunctions.
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We consider the following problems of system of simultaneous generalized vector
quasi-equilibrium problems (SSGVQEP) [12]:
SSGVQEP(I): Find (x̄, ȳ) ∈ X ×Y such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

fi(x̄, ȳ,xi) ∈Ci(x̄), ∀ xi ∈ Si(x̄)

and
gi(x̄, ȳ,yi) ∈Ci(x̄), ∀ yi ∈ Ti(x̄).

SSGVQEP(II): Find (x̄, ȳ) ∈ X ×Y such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

fi(x̄, ȳ,xi) /∈ −Ci(x̄)\ {0}, ∀ xi ∈ Si(x̄)

and
gi(x̄, ȳ,yi) /∈ −Ci(x̄)\ {0}, ∀ yi ∈ Ti(x̄).

SSGVQEP(III): Find (x̄, ȳ) ∈ X ×Y such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

fi(x̄, ȳ,xi) /∈ −int Ci(x̄), ∀ xi ∈ Si(x̄)

and
gi(x̄, ȳ,yi) /∈−int Ci(x̄), ∀ yi ∈ Ti(x̄),

in this case we assume that int Ci is nonempty for each i ∈ I.

Remark 15. For each i ∈ I and ∀ x ∈ X , let Ci(x) be a pointed cone and Pi =⋂
x∈X Ci(x), then Pi is also pointed. Indeed,

Pi ∩ (−Pi) =
(
∩x∈X Ci(x)

)⋂(
∩x∈X (−Ci(x))

)
=

⋂
x∈X

(
Ci(x)∩ (−Ci(x))

)
= {0}.

Therefore, for each i ∈ I, Pi is pointed.

Remark 16. If for each i ∈ I and ∀ x ∈ X , Ci(x) is also pointed, then every solution
of SSGVQEP(I) is a solution of SSGVQEP(II) and every solution of SSGVQEP(II)
is a solution of SSGVQEP(III). But the reverse implication does not hold.

Indeed, let (x̄, ȳ) ∈ X ×Y be a solution of SSGVQEP(I), then for each i ∈ I,
x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

fi(x̄, ȳ,xi) ∈Ci(x̄), ∀ xi ∈ Si(x̄)

and
gi(x̄, ȳ,yi) ∈Ci(x̄), ∀ yi ∈ Ti(x̄).

Since for each i ∈ I and ∀ x ∈ X , Ci(x) is a pointed cone, we have Ci(x)∩(−Ci(x)) =
{0} and therefore

Ci(x)∩
(
−Ci(x)\ {0}

)
= /0.
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Hence
fi(x̄, ȳ,xi) /∈ −Ci(x̄)\ {0}, ∀ xi ∈ Si(x̄)

and

gi(x̄, ȳ,yi) /∈ −Ci(x̄)\ {0}, ∀ yi ∈ Ti(x̄).

The second statement follows from the fact that −int Ci(x) ⊆−Ci(x)\{0}, ∀ x ∈
X and for each i ∈ I.

For each i ∈ I, we denote by L(Ei,Zi) the space of all continuous linear operators
from Ei into Zi and let Yi be a nonempty subset of L(Ei,Zi). For each i ∈ I, let
gi ≡ 0, then SSGVQEP(I) reduces to the following problem of system of generalized
implicit vector quasi-variational inequalities:
SGIVQVIP(I): Find (x̄, ȳ) ∈ X ×Y such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄)
satisfying

fi(x̄, ȳ,xi) ∈Ci(x̄), ∀ xi ∈ Si(x̄).

Analogous, we can define SGIVQVIP(II) and SGIVQVIP(III) (problems of system
of generalized implicit vector quasi-variational inequalities) corresponding to SS-
GVQEP(II) and SSGVQEP(III), respectively.

The SGIVQVIP contains the problem of system of generalized vector quasi-
variational-like inequalities (SGVQVLIP) as a special case. Recently, the weak for-
mulation of SGVQVLIP is studied in [10]. We used SGVQVLIP as a tool to prove
the existence of a solution of Debreu type equilibrium problem for nondifferentiable
and nonconvex vector-valued functions.

When for each i∈ I, Xi =Yi, Si ≡ Ti and fi ≡ gi, then SSGVQEP is called a system
of vector quasi-equilibrium problems. In this case, SSGVQEP(III) is considered
and studied in [5] for fi(x,y,yi) = hi(x,yi) with further applications to systems of
generalized vector quasi-variational-like inequalities and Debreu type equilibrium
problems for vector-valued functions.

When I is a singleton set and gi ≡ 0, then SSGVQEP(I) is considered and studied
in [46].

When I is a singleton set, X = Y , Si ≡ Ti, Si(x) = X , fi(x,y,xi) = ϕ(x,y),
gi(x,y,yi) = φ(x,y), then SSGVQEP(III) reduces to the problem of simultaneous
vector variational inequalities which is considered and studied by Fu [45] for a
fixed cone C. If C = R+, then the problem of simultaneous vector variational in-
equalities becomes the problem of simultaneous variational inequalities, which is
introduced and studied by Husain and Tarafdar [52] with applications to optimiza-
tion problems.

By making suitable choices of fi and gi, we can derive several systems of quasi-
variational inequalities and systems of (quasi-) equilibrium problems studied in the
literature; see, for example, [5, 9, 10, 14–16] and the references therein.
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6.1 Existence Results for Solutions of SSGVQEP

In this section, we present an existence result for a solution of SSGVQEP and derive
existence results for solutions of SGIVQVIP(I), simultaneous generalized vector
quasi-equilibrium problem and a system of generalized vector quasi-variational-like
inequalities.

Theorem 18 ( [12] ). For each i ∈ I, let Ei, Fi and Zi be real locally convex topolog-
ical vector spaces and Fi be also quasi-complete. For each i ∈ I, let Xi ⊆ Ei be a
nonempty compact convex set and Yi ⊆ Fi a nonempty convex set. Let X = ∏i∈I Xi

and Y = ∏i∈I Yi. For each i ∈ I, let Si : X → 2Xi be a continuous multivalued map
with nonempty closed convex values and Ti : X → 2Yi a continuous multivalued map
with nonempty compact convex values. For each i ∈ I, assume that the following
conditions are satisfied:

(i) Ci : X → 2Zi is a closed multivalued map such that ∀ x ∈ X, Ci(x) is a closed
convex cone with apex at the origin, and Pi =

⋂
x∈X Ci(x).

(ii) P∗
i has a weak∗ compact convex base B∗

i and Zi is ordered by Pi.
(iii) fi : X ×Y ×Xi → Zi is a continuous function such that:

(a) ∀ x ∈ X and y ∈Y , fi(x,y,xi) ≥Pi 0.
(b) ∀ (x,y) ∈ X ×Y, the map ui 	→ fi(x,y,ui) is properly quasi-convex.

(iv) gi : X ×Y ×Yi → Zi is a continuous function such that:

(a) ∀ x ∈ X and y ∈Y , gi(x,y,yi) ≥Pi 0.
(b) ∀ (x,y) ∈ X ×Y, the map vi 	→ gi(x,y,vi) is properly quasi-convex.

Then there exists a solution (x̄, ȳ) ∈ X ×Y of SSGVQEP(I).

If for each i ∈ I, gi ≡ 0, then we have the following result.

Corollary 11. For each i ∈ I, let Ei, Fi and Zi be real locally convex topologi-
cal vector spaces and Fi be also quasi-complete. For each i ∈ I, let Xi ⊆ Ei be a
nonempty compact convex set and Yi ⊆ Fi a nonempty convex set. Let X = ∏i∈I Xi

and Y = ∏i∈I Yi. For each i ∈ I, let Si : X → 2Xi be a continuous multivalued map
with nonempty closed convex values and Ti : X → 2Yi a continuous multivalued map
with nonempty compact convex values. For each i ∈ I, assume that the following
conditions are satisfied:

(i) Ci : X → 2Zi is a closed multivalued map such that ∀ x ∈ X, Ci(x) is a closed
convex cone with apex at the origin, and Pi =

⋂
x∈X Ci(x).

(ii) P∗
i has a weak∗ compact convex base B∗

i and Zi is ordered by Pi.
(iii) fi : X ×Y ×Xi → Zi is a continuous function such that:

(a) ∀ x ∈ X and y ∈Y , fi(x,y,xi) ≥Pi 0.
(b) ∀ (x,y) ∈ X ×Y, the map ui 	→ fi(x,y,ui) is properly quasi-convex.

Then there exists a solution (x̄, ȳ) ∈ X ×Y of SGIVQVIP(I).
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Remark 17. Corollary 11 is an extension of Theorem 1 in [46] to the system of
quasi-equilibrium problems with a moving cone.

When I is a singleton set, then we have the following result.

Corollary 12. Let E, F and Z be real locally convex topological vector spaces
and F be also quasi-complete. Let X ⊆ E be a nonempty compact convex set and
Y ⊆ F a nonempty convex set. Let S : X → 2X be a continuous multivalued map
with nonempty closed convex values and T : X → 2Y a continuous multivalued map
with nonempty compact convex values. Assume that the following conditions are
satisfied:

(i) C : X → 2Z is a closed multivalued map such that ∀ x ∈ X, C(x) is a closed
convex cone with apex at the origin, and P =

⋂
x∈X C(x).

(ii) P∗ has a weak∗ compact convex base B∗ and Z is ordered by P.
(iii) f : X ×Y ×X → Z is a continuous function such that:

(a) ∀ x ∈ X and y ∈Y , f (x,y,x) ≥P 0.
(b) ∀ (x,y) ∈ X ×Y, the map u 	→ f (x,y,u) is properly quasi-convex.

(iv) g : X ×Y ×Y → Z is a continuous function such that:

(a) ∀ x ∈ X and y ∈Y , g(x,y,y) ≥P 0.
(b) ∀ (x,y) ∈ X ×Y, the map v 	→ g(x,y,v) is properly quasi-convex.

Then there exists a solution (x̄, ȳ) ∈ X ×Y of the simultaneous generalized vector
quasi-equilibrium problem (SGVQEP): find (x̄, ȳ) ∈ X ×Y such that x̄ ∈ S(x̄), ȳ ∈
T (x̄),

f (x̄, ȳ,x) ∈C(x̄), ∀ x ∈ S(x̄)

and
g(x̄, ȳ,y) ∈C(x̄), ∀ y ∈ T (x̄).

In addition to the assumptions on Ci : K → 2Zi , in the following corollary, we fur-
ther assume that Ci(x) is pointed, for each i ∈ I and for all x ∈ K. Then the following
result can be easily derived from Corollary 3.1 by setting

fi(x,y,ui) = 〈θi(x,y),ηi(ui,xi)〉.

Corollary 13. For each i ∈ I, let Ei and Zi be real locally convex topological vector
spaces and let L(Ei,Zi) be quasi-complete. For each i ∈ I, let Xi ⊆ Ei be a nonempty
compact convex set and Yi ⊆ L(Ei,Zi) a nonempty convex set. Let X = ∏i∈I Xi and
Y = ∏i∈I Yi. For each i ∈ I, let Si : X → 2Xi be a continuous multivalued map with
nonempty closed convex values and Ti : X → 2Yi a continuous multivalued map with
nonempty compact convex values. For each i ∈ I, assume that the following condi-
tions are satisfied:

(i) Ci : X → 2Zi is a closed multivalued map such that ∀ x ∈ X, Ci(x) is a nonempty
closed convex pointed cone, and Pi =

⋂
x∈X Ci(x).

(ii) P∗
i has a weak∗ compact convex base Bi and Zi is ordered by Pi.
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(iii) θi : X ×Y → Yi and ηi : Xi ×Xi → Xi are continuous bifunctions such that for
each i ∈ I:

(a) ∀ xi ∈ Xi, ηi(xi,xi)〉 ≥Pi 0.
(b) ∀ (x,y)∈ X ×Y, the map ui 	→ 〈θi(x,y),ηi(ui,xi)〉 is properly quasi-convex.

Then there exists a solution (x̄, ȳ) ∈ X × Y of the problem of system of gen-
eralized vector quasi-variational-like inequalities (SGVQVLIP)(I): find (x̄, ȳ) =
((x̄i)i∈I ,(ȳi)i∈I) ∈ X ×Y such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄) and

〈θi(x̄, ȳ),ηi(xi, x̄i)〉 ∈Ci(x̄), ∀ xi ∈ Si(x̄).

Remark 18. It is worth to mention that the weak formulation of SGVQVLIP(III) is
considered and studied in [10]. Corollary 13 provides the existence of a solution of
a more general problem than SGVQVLIP(III).

6.2 Systems of Vector Quasi-saddle Point Problems

In this section, we define systems of quasi-saddle point problems and systems of
quasi-minimax inequalities. As application of the results of previous section, we
derive existence results for solutions of these problems.

Let X , Y , Xi, Yi, Zi and Ci be the same as defined in the formulations of SSGVQEP.
Let �i : Xi ×Yi → Zi be a bifunction. We consider the following systems of quasi-
saddle point problems.
SVQSPP(I): Find x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I, x̄i ∈
Si(x̄), ȳi ∈ Ti(x̄),

�i(xi, ȳi)− �i(x̄i, ȳi) ∈Ci(x̄), ∀ xi ∈ Si(x̄)

and

�i(x̄i, ȳi)− �i(x̄i,yi) ∈Ci(x̄), ∀ yi ∈ Ti(x̄).

SVQSPP(II): Find x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I, x̄i ∈
Si(x̄), ȳi ∈ Ti(x̄),

�i(xi, ȳi)− �i(x̄i, ȳi) /∈ −Ci(x̄)\ {0}, ∀ xi ∈ Si(x̄)

and

�i(x̄i, ȳi)− �i(x̄i,yi) /∈−Ci(x̄)\ {0}, ∀ yi ∈ Ti(x̄).

SVQSPP(III): Find x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I,
x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),
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�i(xi, ȳi)− �i(x̄i, ȳi) /∈ −int Ci(x̄), ∀ xi ∈ Si(x̄)

and
�i(x̄i, ȳi)− �i(x̄i,yi) /∈ −int Ci(x̄), ∀ yi ∈ Ti(x̄).

Remark 19. If for each i ∈ I and ∀ x ∈ X , Ci(x) is a convex pointed cone, then
every solution of SVQSPP(I) is a solution of SVQSPP(II) and every solution of
SVQSPP(II) is a solution of SVQSPP(III). But the converse implication is not true.

If I is a singleton set and Z = R then SVQSPP(I), SVQSPP(II) and SVQSPP(III)
are called a quasi-saddle point problem (QSPP). Of course, if I is a singleton set,
Si(x) = Xi and Ti(x) = Yi, ∀ x ∈ X and Zi = R, then above-mentioned SVQSPPs
reduce to the classical saddle point problem. A study of saddle point for set-valued
maps can be found in [77].

For each i ∈ I, let �i be a real-valued bifunction. We also consider the following
problem of system of quasi-minimax inequalities (SQMIP): find x̄ = (x̄i)i∈I ∈ X and
ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄) and

min
ui∈Si(x̄i)

max
vi∈Ti(x̄i)

�i(ui,vi) = �i(x̄i, ȳi) = max
vi∈Ti(x̄i)

min
ui∈Si(x̄i)

�i(ui,vi).

When I is a singleton set, SQMIP is called quasi-minimax inequality problem
(QMIP). A study of a minimax type inequality for vector-valued functions can be
found in [60, 66].

As application of Theorem 18, we derive the following existence result for a
solution of SGVQSPP(I).

Theorem 19. For each i ∈ I, let Ei, Fi and Zi be real locally convex topologi-
cal vector spaces and also Fi be quasi-complete. For each i ∈ I, let Xi ⊆ Ei be a
nonempty compact convex set and Yi ⊆ Fi a nonempty convex set. Let X = ∏i∈I Xi

and Y = ∏i∈I Yi. For each i ∈ I, let Si : X → 2Xi be a continuous multivalued map
with nonempty closed convex values and Ti : X → 2Yi a continuous multivalued map
with nonempty compact convex values. For each i ∈ I, assume that the following
conditions are satisfied:

(i) Ci : X → 2Zi is a closed multivalued map such that ∀ x ∈ X, Ci(x) is a closed
convex cone with apex at the origin, and Pi =

⋂
x∈X Ci(x).

(ii) P∗
i has a weak∗ compact convex base B∗

i and Zi is ordered by Pi.
(iii) �i : Xi ×Yi → Zi is a continuous function such that:

(a) For each fixed yi ∈ Yi, xi 	→ �i(xi,yi) is properly quasi-convex.
(b) For each fixed xi ∈ Xi, yi 	→ �i(xi,yi) is properly quasi-concave.

Then the SVQSPP(I) has a solution.

If I is a singleton set and Z = R, then we have following existence result for a
solution of the quasi-saddle point problem.

Corollary 14. Let E and F be real locally convex topological vector spaces and
also F be quasi-complete. Let X ⊆ E be a nonempty compact convex set and Y ⊆ F
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a nonempty convex set. Let S : X → 2X be a continuous multivalued map with
nonempty closed convex values and T : X → 2Y a continuous multivalued map with
nonempty compact convex values. Assume that � : X ×Y → Z is a continuous func-
tion such that:

(a) For each fixed y ∈ Y , x 	→ �(x,y) is quasi-convex.
(b) For each fixed x ∈ X, y 	→ �(x,y) is quasi-concave.

Then the QSPP has a solution.

As a consequence of Theorem 19, we have the following existence result for a
solution of the system of quasi-minimax inequalities.

Theorem 20. Let Ei, Fi, Xi, Yi, X , Y, Si and Ti be the same as in Theorem 3.1.
For each i ∈ I, assume that �i : Xi ×Yi → R is a continuous function satisfying the
following conditions:

(i) For each fixed yi ∈ Yi, xi 	→ �i(xi,yi) is quasi-convex.
(ii) For each fixed xi ∈ Xi, yi 	→ �i(xi,yi) is quasi-concave.

Then the SQMIP has a solution.

If for each i ∈ I, Xi and Yi are nonempty compact convex sets, and Si(x) = Xi

and Ti(x) = Yi, ∀ x ∈ X , then from Theorem 20 we derive the following corollary
which can be seen as an extension of Sion’s minimax theorem [92] for a family of
continuous bifunctions.

Corollary 15. For each i ∈ I, let Xi and Yi be nonempty compact convex subsets of
Ei and Fi, respectively. For each i ∈ I, assume that �i : Xi ×Yi → R is a continuous
function satisfying the following conditions:

(i) For each fixed yi ∈ Yi, xi 	→ �i(xi,yi) is quasi-convex.
(ii) For each fixed xi ∈ Xi, yi 	→ �i(xi,yi) is quasi-concave.

Then there exist x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I,

min
ui∈Xi

max
vi∈Yi

�i(ui,vi) = �i(x̄i, ȳi) = max
vi∈Yi

min
ui∈Xi

�i(ui,vi).

If I is a singleton, then Theorem 20 reduces to the Corollary 3.2 in [73].

Corollary 16. Let E, F, X, Y , S and T be the same as in Corollary 14. Assume that
� : X ×Y → R is a continuous function satisfying the following conditions:

(i) For each fixed y ∈ Y, x 	→ �(x,y) is quasi-convex.
(ii) for each fixed x ∈ X, y 	→ �(x,y) is quasi-concave.

Then there exists (x̄, ȳ) ∈ X ×Y such that x̄ ∈ S(x̄), ȳ ∈ T (ȳ) and

min
u∈S(x̄)

max
v∈T (x̄)

�(u,v) = �(x̄, ȳ) = max
v∈T (x̄)

min
u∈S(x̄)

�(u,v).
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6.3 Debreu Type Equilibrium Problem

In this section, we give another application of Corollary 11 to prove the existence of
a solution of the Debreu VEP.

Let X , Xi, Zi and Ci be the same as defined in the formulations of SSGVQEP. For
each i ∈ I, let ϕi : X → Zi be a vector-valued function and let Xi = ∏ j∈I, j �=i Xj and
we write X = Xi ×Xi. For x ∈ X , xi denotes the projection of x onto Xi and hence
we write x = (xi,xi). We consider the following Debreu VEP:
Debreu VEP(I): Find x̄ ∈ X such that for each i ∈ I, x̄i ∈ Si(x̄) and

ϕi(x̄i,yi)−ϕi(x̄) ∈Ci(x̄), ∀ yi ∈ Si(x̄).

Debreu VEP(II): Find x̄ ∈ X such that for each i ∈ I, x̄i ∈ Si(x̄) and

ϕi(x̄i,yi)−ϕi(x̄) /∈ −Ci(x̄)\ {0}, ∀ yi ∈ Si(x̄).

Debreu VEP(III): Find x̄ ∈ X such that for each i ∈ I, x̄i ∈ Si(x̄) and

ϕi(x̄i,yi)−ϕi(x̄) /∈ −int Ci(x̄), ∀ yi ∈ Si(x̄),

in this case we assume that int Ci is nonempty for each i ∈ I.
Of course, if for each i ∈ I, ϕi is a scalar-valued function, then Debreu VEPs are

the same as the one introduced and studied by Debreu in [38], see also [80–82].
In this case, a large number of papers have already been appeared in the literature;
see, for example, [9,98] and the references therein. In [5], we introduced and studied
Debreu VEP(III) and established several existence results for its solution with or
without involving Φ-condensing maps. It is the first paper in the literature in which
the Debreu type equilibrium problem for vector-valued functions is considered.

As in the case of SSGVQEPs, if for each i ∈ I and ∀ x ∈ X , Ci(x) is also pointed,
then every solution of Debreu VEP(I) is a solution of Debreu VEP(II) and every
solution of Debreu VEP(II) is a solution of Debreu VEP(III). But the reverse impli-
cation does not hold.

Let Z ∗ be the dual of a locally convex topological vector space Z , P∗ ⊆Z ∗ the
polar cone of P, that is, P∗ = {z∗ ∈ Z ∗ : 〈z∗,z〉 ≥ 0, ∀z ∈ P}. We assume that P∗
has a weak∗ compact convex base B∗. This means that B∗ ⊆ P∗ is a weak∗ compact
convex set such that 0 /∈ B∗ and P∗ =

⋃
λ≥0 λ B∗; see, for example, [53].

Theorem 21. For each i ∈ I, let Ei and Zi be real locally convex topological vector
spaces and Ei be also quasi-complete. For each i ∈ I, let Xi ⊆ Ei be a nonempty
compact convex set and let X = ∏i∈I Xi. For each i ∈ I, let Si : X → 2Xi be a contin-
uous multivalued map with nonempty closed convex values. For each i ∈ I, assume
that the following conditions are satisfied:

(i) Ci : X → 2Zi is a closed multivalued map such that ∀ x ∈ X, Ci(x) is a closed
convex cone with apex at the origin, and Pi =

⋂
x∈X Ci(x).

(ii) P∗
i has a weak∗ compact convex base B∗

i and Zi is ordered by Pi.
(iii) ϕi : X → Zi is continuous and properly quasi-convex in each argument.

Then there exists a solution x̄ ∈ X of the Debreu VEP(I).
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