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Preface

This special volume is dedicated to Boris M. Mordukhovich, on the occasion of
his 60th birthday, and aims to celebrate his fundamental contributions to variational
analysis, generalized differentiation and their applications. A main example of these
contributions is Boris’ recent opus magnus “Variational Analysis and Generalized
Differentiation” (vols. I and II) [2,3]. A detailed explanation and careful description
of Boris’ research and achievements can be found in [1].

Boris’ active work and jovial attitude have constantly inspired researchers of
several generations, with whom he has generously shared his knowledge and enthu-
siasm, along with his well-known warmth and human touch.

Variational analysis is a rapidly growing field within pure and applied mathemat-
ics, with numerous applications to optimization, control theory, economics, engi-
neering, and other disciplines. Each of the 12 chapters of this volume is a carefully
reviewed paper in the field of variational analysis and related topics.

Many chapters of this volume were presented at the International Symposium
on Variational Analysis and Optimization (ISVAO), held in the Department of
Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, from
November 28 to November 30, 2008. The symposium was organized in honour of
Boris’ 60th birthday. It brought together Boris and other researchers to discuss state-
of-the-art results in variational analysis and its applications, with emphasis on opti-
mization and control. We thank the organizers and participants of the symposium,
who made the symposium a highly beneficial and enjoyable event.

We are also grateful to all the authors of this special volume, who have taken the
opportunity to celebrate Boris’ birthday and his decades of contributions to the area.
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Systems of Vector Quasi-equilibrium Problems
and Their Applications

Qamrul Hasan Ansari and Jen-Chih Yao

Abstract In this survey chapter, we present systems of various kinds of vector
quasi-equilibrium problems and give existence theory for their solutions. Some ap-
plications to systems of vector quasi-optimization problems, quasi-saddle point
problems for vector-valued functions and Debreu type equilibrium problems,
also known as constrained Nash equilibrium problems, for vector-valued func-
tions are presented. The investigations of this chapter are based on our papers:
Ansari (J Math Anal Appl 341:1271–1283, 2008); Ansari et al. (J Global Optim
29:45–57, 2004); Ansari and Khan (Mathematical Analysis and Applications, edited
by S. Nanda and G.P. Rajasekhar, Narosa, New Delhi, 2004, pp. 1–13); and Ansari
et al. (J Optim Theory Appl 127:27–44, 2005).

1 Introduction

In the last two decades, vector variational inequalities (VVI) have been investigated
[2,32,47,48,55,57,62,65,87,97] and used as tools to solve vector optimization prob-
lems (VOP) for differentiable and convex or nonconvex vector-valued functions.
A generalized form of VVI for multivalued maps is called a generalized vector vari-
ational inequality (GVVI). GVVI has been used to study VOP for nondifferentiable
and nonconvex vector-valued functions. The weak (respectively, strong) solution of
Stampacchia GVVI provides a sufficient condition (respectively, necessary and suf-
ficient conditions) for a solution of VOP; see, for example, [17, 23, 30, 59, 60] and
the references therein.

Qamrul Hasan Ansari
Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India
e-mail: qhansari@gmail.com
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In the recent years, vector equilibrium problems (VEP) have been studied in
[3, 19, 28, 44, 48–50, 94] and the references therein. It is a unified model of several
problems, namely, vector variational inequality problems, vector variational-like in-
equality problems (also called vector pre-variational inequality problems), vector
complementarity problems, vector saddle point problems and vector optimization
problems. A comprehensive bibliography on VEP, vector variational inequalities,
vector variational-like inequalities and their generalizations can be found in [48].
For further details on generalized vector variational inequality problems, general-
ized vector variational-like inequality problems and vector equilibrium problems,
we refer to [2,17,23,28,37,48,50,56,58,61,62,64,83,94] and the references therein.
In [24], we extended a quasi-equilibrium problem, studied in [41, 72], to the case
of vector-valued functions, called a vector quasi-equilibrium problem (VQEP). We
established some existence results for a solution of VQEP with or without a gener-
alized pseudomonotonicity assumption. As a result, we derived the existence results
for solutions of vector quasi-optimization problems, vector quasi-saddle point prob-
lems, vector quasi-variational inequality problems and vector quasi-variational-like
inequality problems [55, 63, 65].

When the involved bifunction in the formulation of VEP (respectively, VQEP)
is a multivalued map, then VEP (respectively, VQEP) is called a generalized vector
equilibrium problem (GVEP) [respectively, generalized vector quasi-equilibrium
problem (GVQEP)]. The GVEP (respectively, GVQEP) includes as special cases
generalized implicit vector variational inequality problems, GVVI problems, gener-
alized vector variational-like inequality problems and vector equilibrium problems
(respectively, generalized implicit vector quasi-variational inequality problems,
generalized vector quasi-variational inequality problems, generalized vector quasi-
variational-like inequality problems and vector quasi-equilibrium problems). GVEP
and GVQEP has been studied in [7,8,11,13,18,21,33,46,57,74,83–85,93] and the
references therein.

The system of vector equilibrium problems (SVEP), that is, a family of equilib-
rium problems for vector-valued bifunctions defined on a product set, is introduced
in [14] with applications in vector optimization and the Nash equilibrium problem
[80–82] for vector-valued functions. The SVEP contains a system of equilibrium
problems, a system of vector variational inequalities, a system of vector variational-
like inequalities, a system of optimization problems and the Nash equilibrium
problem for vector-valued functions as special cases. In the recent past, systems of
scalar (vector) equilibrium problems are used as tools to solve the Nash equilibrium
problem for vector-valued functions; see, for example, [14, 15, 22, 39, 98, 99] and
the references therein. But, by using SVEP, we cannot establish the existence of a
solution of Debreu type equilibrium problem [38], also known as constrained Nash
equilibrium problem, for vector-valued functions that extends the classical concept
of the Nash equilibrium problem for a noncooperative game. For this purpose, in
[5], we introduced a system of vector quasi-equilibrium problems (SVQEP) with
or without involving Φ-condensing maps and proved the existence of its solution.
Consequently, we established some existence results for a solution of a system
of vector quasi-variational-like inequalities. The equivalence between a system of
vector quasi-variational-like inequalities and the Debreu type equilibrium problem
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for vector-valued functions (Debreu VEP) is presented. As an application, we
derived some existence results for a solution of the Debreu VEP.

In [15], we introduced a system of generalized vector equilibrium problems
(SGVEP) which contains a system of generalized implicit vector variational in-
equality problems, a system of generalized vector variational inequalities, a sys-
tem of generalized vector variational-like inequalities and SVEP as special cases.
We established some existence results for a solution of SGVEP by using a maxi-
mal element theorem for a family of multivalued maps due to Deguire et al. [39].
We also derived some existence results for a solution of a system of generalized
implicit vector variational inequality problems, a system of generalized vector vari-
ational inequalities, a system of generalized vector variational-like inequalities and
SVEP. As an application, we gave some existence results for a solution of the Nash
equilibrium problem for differentiable (in some sense) vector-valued functions.

In [10], we introduced a system of generalized vector quasi-equilibrium problems
(SGVQEP). It is a very general and unified model of several problems, namely, a
system of generalized implicit vector quasi-variational inequality problems, a sys-
tem of generalized vector quasi-variational inequalities, a system of generalized vec-
tor quasi-variational-like inequalities, SVEP, SVQEP and SGVEP. We established
some existence results for a solution of SGVQEP with or without involving Φ-
condensing maps. As consequences, we proved the existence of solutions of several
known problems mentioned above. As applications of our results, we derived the
existence results for a solution of Debreu VEP for nondifferentiable (in some sense)
functions.

In 1994, Husain and Tarafdar [52] introduced simultaneous variational inequali-
ties and gave some applications to minimization problems. These are further studied
by Fu [45] for the vector-valued case with applications to vector complementarity
problems. Recently, Lin [67] considered and studied simultaneous vector quasi-
equilibrium problems and proved existence results for their solutions. By using
these results, Lin derived existence results for a solution of a vector quasi-saddle
point problem. In [12], we considered systems of simultaneous generalized vector
quasi-equilibrium problems (SSGVQEP) which contain simultaneous generalized
vector quasi-equilibrium problems [67], generalized vector quasi-equilibrium prob-
lems [46], systems of vector quasi-equilibrium problems [5], systems of generalized
vector quasi-variational-like inequalities [10] and simultaneous vector variational
inequalities [45] as special cases. By using Kakutani fixed point theorem [54], we
established an existence result for solutions of SSGVQEP. We derived several ex-
istence results for solutions of above-mentioned problems. These existence results
either improve or extend known results in the literature. We also considered systems
of vector quasi-saddle point problems (SVQSPP) and systems of quasi-minimax
inequalities (SQMI). As applications of our existence results for solutions of SS-
GVQEP, we proved existence of solutions of SVQSPP and SQMI. We gave another
application of our results to establish existence of a solution of Debreu VEP.

Because of the applications to vector optimization, game theory and economics,
saddle point problems for vector-valued functions, the theory of (vector) equilibrium
problems is emerged as a new direction for the researchers; see the references in this
chapter.
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In this survey chapter, we present systems of various kinds of vector
quasi-equilibrium problems and give existence theory for their solutions and
some applications to systems of (quasi-) vector optimization problems, systems
of quasi-saddle point problems for vector-valued functions and Debreu VEP. The
investigations of this chapter are based on our papers [4, 5, 10, 12].

2 Preliminaries

Throughout the chapter, we use the following notations. Let A be a nonempty subset
of a topological vector space X , we denote by int A, A, coA and coA, the interior
of A in X , the closure of A in X , the convex hull of A, and the closed convex
hull of A, respectively. The family of all subsets of A is denoted by 2A. If X and
Y are topological vector spaces, then L(X ,Y ) denotes the family of all continuous
linear maps from X to Y .

Definition 1 ( [26, 27] ). Let X and Y be topological spaces. A multivalued map
T : X → 2Y is called upper semicontinuous at x0 ∈X if for any open set V ⊆
Y containing T (x0), there exists an open neighbourhood U of x0 in X such that
T (x)⊆V for all x ∈U .

T is called lower semicontinuous at x ∈ X if for any open set V ⊆ Y such
that V ∩ T (x0) �= /0, there exists an open neighbourhood U of x0 in X such that
T (x)∩V �= /0 for all x ∈U .

It is said to be upper (lower) semicontinuous on X if it is upper (lower) semi-
continuous at every point x ∈X .

Further, T is said to be continuous on X if it is upper semicontinuous as well as
lower semicontinuous on X .

Lemma 1 ( [26] ). A multivalued map T : X → 2Y is lower semicontinuous at
x ∈X if and only if for any y ∈ T (x) and for any xn ∈X such that xn → x, there
exists yn ∈ T (xn) such that yn → y.

Definition 2. Let X and Y be two topological spaces. A multivalued map T :
X → 2Y is said to be:

(i) Compact if there exists a compact subset K ⊆ Y such that T (X )⊆K
(ii) Closed if its graph Gr(T ) = {(x,y) | x ∈X , y ∈ T (x)} is closed in X ×Y

Lemma 2 ( [79] ). Let (E,‖ · ‖) be a normed vector space and H be a Hausdorff
metric on the collection CB(E) of all nonempty, closed and bounded subsets of E,
induced by a metric d in terms of d(x,y) = ‖x− y‖, which is defined as

H (U,V ) = max

{
sup
x∈U

inf
y∈V
‖x− y‖,sup

y∈V
inf
x∈U
‖x− y‖

}
,
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for all U,V ∈ CB(E). If U and V are compact sets in E, then for all x ∈U, there
exists y ∈V such that

‖x− y‖ ≤H (U,V ).

Definition 3 ( [79] ). Let (E,d) be a metric space and H be a Hausdorff metric on
CB(E). A multivalued map T : E → CB(E) is said to be continuous (in the sense
of Nadler) on E if for every ε > 0, there exists a δ > 0 such that for all x,y ∈ E

H (T (x),T (y)) < ε whenever d(x,y) < δ .

Remark 1. The notions of continuity in the sense of Definitions 1 and 3 are equiva-
lent if T is compact valued.

Definition 4 ( [101] ). Let Ω be a nonempty convex subset of a normed space (E,‖ ·
‖) and ϒ be a normed linear space. A nonempty compact-valued multifunction T :
Ω → 2L(E,ϒ ) is said to be H -hemicontinuous if for any x,y ∈Ω , the mapping α 	→
H (T (x +α(y− x),T(x))) is continuous at 0+, where H is the Hausdorff metric
defined on CB(E).

Definition 5 ( [88, 89] ). Let E be a Hausdorff topological vector space and L a lat-
tice with least element, denoted by 0. A mappingΦ : 2E → L is called a measure of
noncompactness provided that the following conditions hold for any M,N ∈ 2E :

(i) Φ(M) = 0 if and only if M is precompact (i.e., it is relatively compact).
(ii) Φ(convM) =Φ(M), where convM denotes the closed convex hull of M.

(iii) Φ(M∪N) = max{Φ(M),Φ(N)}.
It follows from (iii) that if M ⊆ N, then Φ(M) ≤Φ(N).

Definition 6 ( [88, 89] ). Let Φ : 2E → L be a measure of noncompactness on E
and D⊆ E . A multivalued map T : D→ 2E is called Φ-condensing provided that if
M ⊆ D with Φ(T (M)) ≥Φ(M) then M is relatively compact.

Remark 2. Note that every multivalued map defined on a compact set is necessarily
Φ-condensing. If E is locally convex, then a compact multivalued map (i.e., T (D)
is precompact) is Φ-condensing for any measure of noncompactnessΦ . Obviously,
if T : D→ 2E is Φ-condensing and if S : D→ 2E satisfies S(x)⊆ T (x) for all x ∈D,
then S is also Φ-condensing.

The following maximal element theorem for a family of multivalued maps is a
main tool to study systems of vector quasi-equilibrium problems and their general-
izations.

Theorem 1 ( [39, 69] ). For each i ∈ I, let Ki be a nonempty convex subset of a
Hausdorff topological vector space Xi. Let K = ∏i∈I Ki. For each i ∈ I, let Si,Ti :
K → 2Ki be multivalued maps satisfying the following conditions:

(i) For each i ∈ I and for all x ∈ K, coSi(x) ⊆ Ti(x), where coSi(x) denotes the
convex hull of Si(x).
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(ii) For each i ∈ I and for all x = (xi)i∈I ∈ K, xi /∈ Ti(x), where xi is the ith
component of x.

(iii) For each i ∈ I and for all yi ∈ Ki, S−1
i (yi) = {x ∈ K : yi ∈ Si(x)} is open in K.

(iv) There exist a nonempty compact subset M of K and a nonempty compact convex
subset Ni of Ki for each i ∈ I such that for all x ∈ K \M, there exists i ∈ I such
that Si(x)∩Ni �= /0.

Then there exists x̄ ∈ K such that Si(x̄) = /0 for all i ∈ I.

Remark 3. If for each i ∈ I, Ki is a nonempty, closed and convex subset of a locally
convex Hausdorff topological vector space Xi, then condition (iv) of Theorem 1 can
be replaced by the following condition:

(iv)′ The multivalued map S : K → 2K defined as S(x) :=∏i∈I Si(x) for all x ∈ K, is
Φ-condensing.

(See Corollary 4 in [29]).

Let Z be a topological vector space and P a closed convex cone in Z with
int P �= /0. Then, P induces the vector ordering in Z by setting, ∀ x,y ∈ P,

x≤P y ⇔ y− x ∈ P;

x �≤P y ⇔ y− x /∈ P.

Since int P �= /0, we also have the weak ordering in Z by setting, ∀ x,y ∈ P,

x <P y ⇔ y− x ∈ int P;

x �<P y ⇔ y− x �∈ int P.

The ordering≥P, �≥P, >P, �>P are defined similarly. A cone P is called pointed if
P∩ (−P) = {0}, where 0 is the zero element of Z .

Definition 7 ( [28, 76, 94] ). Let M be a nonempty subset of a topological vector
space E , and let Z be a topological vector space with a proper, closed and convex
cone P with apex at the origin and int P �= /0. A vector-valued function φ : M →Z
is said to be P-lower semicontinuous (respectively, P-upper semicontinuous) at x0 ∈
M if and only if for any neighbourhood V of φ(x0) in Z , ∃ a neighbourhood U of
x0 in E such that

φ(x) ∈V + P, ∀ x ∈U ∩M

(respectively, φ(x) ∈V −P, ∀ x ∈U ∩M ).

Furthermore, φ is P-lower semicontinuous (respectively, P-upper semicontinuous)
on M if and only if it is P-lower semicontinuous (respectively, P-upper semicon-
tinuous) at each x ∈M .
φ is P-continuous on M if and only if it is both P-lower semicontinuous and

P-upper semicontinuous on M .
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Remark 4. In [28], it is shown that a function φ : M →Z is P-lower semicontinu-
ous if and only if ∀ α ∈Z , the set

L(α) := {x ∈M : φ(x)−α /∈ int P}

is closed in M .
Similarly, we can show that φ is P-upper semicontinuous if and only if ∀ α ∈Z ,

the set
U(α) := {x ∈M : φ(x)−α /∈−int P}

is closed in M .

Definition 8 ( [28,43,76] ).1 Let (Z ,P) be an ordered topological vector space and
K a nonempty convex subset of a vector space X . A map φ : K → Z is said
to be:

(i) P-convex if ∀ x,y ∈K and t ∈ [0,1], we have

φ(tx +(1− t)y)≤P tφ(x)+ (1− t)φ(y).

(ii) Properly P-quasiconvex if ∀ x,y ∈K and t ∈ [0,1], we have either

φ(tx +(1− t)y)≤P φ(x)

or
φ(tx +(1− t)y)≤P φ(y).

(iii) Properly P-quasiconcave if −φ is properly quasiconvex.
(iv) Natural P-quasiconvex (or natural P-quasifunction) if ∀ x,y ∈ K and ∀ t ∈

[0,1],
φ(tx +(1− t)y)∈ co{φ(x),φ(y)}−P.

(v) P-quasiconvex (or P-quasifunction) if ∀ α ∈ Z , the set {x ∈K : φ(x)−α ∈
−P} is convex.

Remark 5. (a) Every P-convex function is natural P-quasiconvex and every natural
P-quasiconvex function is P-quasiconvex, but converse assertions are not true; see,
for example, Remark 2.1 in [95].
(b) φ is a natural P-quasiconvex function if and only if ∀ x,y ∈K and ∀ t ∈ [0,1],
∃ s ∈ [0,1] such that

φ(tx +(1− t)y)∈ sφ(x)+ (1− s)φ(y)−P.

(c) If φ is a P-quasiconvex function, then the set {x ∈K : φ(x)−α ∈ −int P} is
also convex for all α ∈Z .

1 The terms P-convex, natural P-quasiconvex and P-quasiconvex are used in [28,43,76] instead of
P-function, natural P-quasifunction and P-quasifunction which are suggested by Prof. F. Giannessi.
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Example 1. Let K = [0,1], Z = R
2, P = R

2
+ = {(y1,y2)∈R

2 : y1 ≥ 0, y2 ≥ 0} and
define a function φ : K →Z by φ(x) =

(
x2,1− x2

)
. Then, the function φ is contin-

uous and natural P-quasiconvex, but neither P-convex nor properly P-quasiconvex.

Example 2. Let K ,Z ,P be the same as in Example 1. We define functions ξ :
K →Z by

ξ (x) =
(

cos
(πx

2

)
,sin
(πx

2

))
and the function τ : K →Z by

τ(x) = (cos(2πx),sin(2πx)) .

Then, the function ξ is continuous and P-quasiconvex, but not natural P-
quasiconvex, and the function τ is continuous, but not natural P-quasiconvex
and hence, not P-convex.

Throughout the chapter, all topological spaces are assumed to be Hausdorff.

3 System of Vector Quasi-equilibrium Problems

Throughout the chapter, unless otherwise specified, we use the following notations.
Let I be any index set (countable or uncountable). For each i ∈ I, let Xi be a Haus-
dorff topological vector space and Ki be a nonempty convex subset of Xi. We set
K = ∏i∈I Ki, X = ∏i∈I Xi and Ki = ∏ j∈I, j �=i Kj, and we write K = Ki×Ki. For
x ∈ K, xi denotes the projection of x onto Ki and hence we also write x = (xi,xi).
For each i ∈ I, let Yi be a topological vector space and Ci : K → 2Yi be a multivalued
map such that for each x ∈ K, Ci(x) is a proper, closed and convex cone with apex
at the origin and int Ci(x) �= /0. For each i ∈ I, let Pi =

⋂
x∈K Ci(x). For each i ∈ I,

we denote by L(Xi,Yi) the space of all continuous linear operators from Xi into Yi.
We denote by 〈si,xi〉 the evaluation of si ∈ L(Xi,Yi) at xi ∈ Xi. We also assume that
∀i ∈ I, Ai : K → 2Ki is a multivalued map such that ∀ x ∈ K, Ai(x) is nonempty and
convex, A−1

i (yi) is open in K ∀ yi ∈ Ki and the set Fi := {x ∈ K : xi ∈ Ai(x)} is
closed in K, where xi is the ith component of x.

We consider the following system of vector quasi-equilibrium problems
(SVQEP) [5], that is, to find x̄ ∈ K such that for each i ∈ I,

x̄i ∈ Ai(x̄) : fi(x̄,yi) /∈ −int Ci(x̄), ∀ yi ∈ Ai(x̄).

If for each i ∈ I, Yi = R and Ci(x) = R+ ∀ x ∈ K, then SVQEP is known as a
system of quasi-equilibrium problems; see [9, 98] and the references therein.

If for each i ∈ I and ∀x ∈ K, Ai(x) = Ki and Ci(x) = Pi a fixed proper closed
convex cone with nonempty interior, then SVQEP reduces to a system of vector
equilibrium problems (SVEP) [14] of finding x̄ ∈ K such that for each i ∈ I,

fi(x̄,yi) /∈ −int Pi, ∀ yi ∈ Ki.
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If the index set I is singleton, then SVQEP becomes a vector quasi-equilibrium
problem [24] which contains vector quasi-optimization problems, vector quasi-
variational inequality problems, vector quasi-variational-like inequality problems
and vector quasi-saddle point problems as special cases.

Examples of SVQEP

(1) For each i ∈ I, let Ti : K → L(Xi,Yi) and ηi : Ki×Ki → Xi be two maps. If for
each i ∈ I,

fi(x,yi) = 〈Ti(x),ηi(yi,xi)〉,
then SVQEP is equivalent to the following problem of finding x̄ ∈ K such that
∀ i ∈ I,

x̄i ∈ Ai(x̄) : 〈Ti(x̄),ηi(yi, x̄i)〉 /∈−int Ci(x̄), ∀ yi ∈ Ai(x̄).

It is known as a system of vector quasi-variational-like inequalities (SVQVLI).
When ηi(yi,xi) = yi − xi, then SVQVLI is called a system of vector quasi-
variational inequalities (SVQVI). If for each i∈ I, Yi = R and Ci(x) = R+ ∀ x∈
K, SVQVI is studied in [9, 98].
If for each i ∈ I, Ai(x) = Ki ∀ x ∈ K, SVQVLI and SVQVI reduce to the fol-
lowing system of vector variational-like inequalities and the system of vector
variational inequalities, respectively, studied in [14].
The system of vector variational-like inequalities (SVVLI): find x̄∈ K such that
for each i ∈ I,

〈Ti(x̄),η(yi, x̄i)〉 /∈ −int Ci(x̄), for all yi ∈ Ki.

The system of vector variational inequalities (SVVI): find x̄ ∈ K such that for
each i ∈ I,

〈Ti(x̄),yi− x̄i〉 /∈ −int Ci(x̄), for all yi ∈ Ki.

If for each i ∈ I, Yi = R and int Ci(x) = R+, then SVVI becomes the systems of
variational inequalities studied in [20, 35, 86].
In case the index set I is a singleton, SVVI reduces to a vector variational in-
equality first considered in [47]; see also [48] and the references therein.

(2) For each i ∈ I, let ϕi : K → Y be a given function. The system of vector quasi-
optimization problems (SVQOP) is to find x̄ ∈ K such that for each i ∈ I,

ϕi(y)−ϕi(x̄) /∈−int Ci(x̄), for all y ∈ A(x̄).

We can choose y ∈K in such a way that yi = x̄i. Then we have Debreu VEP also
known as constrained Nash equilibrium problem for vector-valued functions
which is to find x̄ ∈ K such that for each i ∈ I,

ϕi(x̄i,yi)−ϕi(x̄) /∈ −int Ci(x̄), for all yi ∈ Ai(x̄).
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For each i ∈ I and for all x ∈ K, if Ai(x) = Ki, then Debreu VEP reduces to the
following Nash equilibrium problem for vector-valued functions: Find x̄ ∈ K
such that ∀ i ∈ I,

ϕi(x̄i,yi)−ϕi(x̄) /∈ −int Ci(x̄), ∀ yi ∈ Ki.

It is clear that every solution of SVQOP is also a solution of Debreu VEP but
the converse is not true.

Of course, if for each i∈ I, ϕi is a scalar-valued function, then Debreu VEP is the
same as one introduced and studied by Debreu in [38], see also [80–82]. In this case,
a large number of papers have already been appeared in the literature; see [9,98] and
the references therein.

Section 3.1 deals with the existence theory of solutions of SVEP and SVQEP
with or without involving Φ-condensing maps. Consequently, we get some exis-
tence results for a solution of SVQVLI. In Sect. 3.2, we first establish an equiva-
lence between SVQVLI and Debreu VEP and then we derive some existence results
for a solution of the Debreu VEP for convex or nonconvex functions.

3.1 Existence Results for Solutions of SVEP and SVQEP

We present the following existence results for solutions of SVEP which are estab-
lished in [14] by utilizing scalarization technique and by using collectively fixed
point theorem for a family of multivalued maps [22].

Theorem 2 ( [14] ). Let Y be a topological vector space and C ⊂ Y be a proper,
closed convex cone with apex at the origin 0 and int C �= /0. For each i ∈ I, let Ki

be a nonempty compact convex subset of Xi and let fi : K×Ki → Y be a bifunction
such that fi(x,xi) = 0 for all x = (xi,xi) ∈ K. Assume that the following conditions
are satisfied:

(i) For each i ∈ I and ∀x ∈ K, the function yi 	→ fi(x,yi) is C-quasiconvex.
(ii) For each i ∈ I, fi is continuous on K×Ki.

Then the solution set of SVEP is nonempty and compact.

In case Ki is not necessarily compact, we have the following result.

Theorem 3 ( [14] ). Let Y be a topological vector space and C ⊂ Y be a proper,
closed convex cone with apex at the origin 0 and int C �= /0. For each i ∈ I, let Ki

be a nonempty convex subset of Xi and let fi : K ×Ki → Y be a bifunction such
that fi(x,xi) = 0 for all x = (xi,xi) ∈ K. Assume that the following conditions are
satisfied:

(i) For each i ∈ I and ∀x ∈ K, the function yi 	→ fi(x,yi) is C-quasiconvex.
(ii) For each i ∈ I, fi is continuous on each compact convex subset of K×Ki.
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(iii) For each i ∈ I, there exists a nonempty compact convex subset Bi of Ki, and let
B =∏i∈I Bi ⊂ K such that for each x ∈ K \B, there exists ỹi ∈ Bi such that

fi(x, ỹi) ∈−int C.

Then there exists a solution x̄ ∈ B of SVEP.

Remark 6. Let I be a finite index set and for each i ∈ I, let Xi be a reflexive Banach
space with norm || · ||i equipped with the weak topology. Consider a Banach space Y
equipped with the norm topology. The norm on X =∏i∈I Xi will be denoted by || · ||.
Then assumption (iii) in Theorem 3 can be replaced by the following condition:

(iii)′ There exists r > 0 such that for all x∈K, ||x||> r, there exists ỹi ∈Ki, ||ỹi||i≤ r
such that

fi(x, ỹi) ∈ −int C.

We present the following existence result for solutions of SVQEP without
involving Φ-condensing maps. In [5], we proved this result by using maximal
element Theorem 1.

Theorem 4 ( [5] ). For each i ∈ I, let Ki be a nonempty and convex subset of a
Hausdorff topological vector space Xi and fi : K×Ki → Yi be a bifunction. Assume
that the following conditions hold:

(i) For each i ∈ I and ∀ x ∈ K, fi(x,xi) /∈−int Ci(x), where xi is the ith component
of x.

(ii) For each i ∈ I and ∀ x ∈ K, the vector-valued function yi 	→ fi(x,yi) is a natural
Pi-quasiconvex function.

(iii) For each i ∈ I and ∀ yi ∈ Ki, the set {x ∈ K : fi(x,yi) /∈ −int Ci(x)} is closed in
K.

(iv) There exist a nonempty and compact subset N of K and a nonempty, compact
and convex subset Bi of Ki ∀ i ∈ I, such that ∀ x ∈ K \N ∃ i ∈ I and ∃ ỹi ∈ Bi,
such that ỹi ∈ Ai(x) and fi(x, ỹi) ∈ −int Ci(x).

Then SVQEP has a solution.

Remark 7. (1) The condition (iii) of Theorem 4 is satisfied if the following condi-
tions hold ∀ i ∈ I:

(a) The multivalued map Wi : K→ 2Yi defined by Wi(x) = Yi \{−int Ci(x)} ∀ x∈ K,
is closed in K×Ki.

(b) For all yi ∈ Ki, fi(·,yi) : K → Yi is continuous (in the usual sense) on K.

(2) If for each i ∈ I and ∀ x∈ K, Ci(x) =Ci, a (fixed) proper, closed and convex cone
in Yi, then conditions (ii) and (iii) of Theorem 4 can be replaced, respectively, by the
following conditions:

(c) For each i ∈ I and ∀ x ∈ K, the vector-valued function yi 	→ fi(x,yi) is a Ci-
quasiconvex function.
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(d) For each i ∈ I and ∀ yi ∈ Ki the vector-valued function x 	→ fi(x,yi) is Ci-upper
semicontinuous on K.

(3) Theorem 4 extends and generalizes Theorem 6 in [9], Theorem 2.1 in [14] and
Corollary 3.1 in [24] in several ways.

(4) If for each i ∈ I, Ki is a nonempty, compact and convex subset of a Hausdorff
topological vector space Xi, then the conclusion of Theorem 4 holds without condi-
tion (iv).

We mention the following existence result for a solution of SVQEP involving
Φ-condensing maps. We proved this result by using maximal element Theorem 1
with Remark 3.

Theorem 5 ( [5] ). For each i ∈ I, let Ki be a nonempty, closed and convex subset
of a locally convex Hausdorff topological vector space Xi, fi : K ×Ki → Yi be a
bifunction and let the multivalued map A = ∏i∈I Ai : K → 2K defined as A(x) =
∏i∈I Ai(x) ∀ x ∈ K, be Φ-condensing. Assume that the conditions (i), (ii) and (iii)
of Theorem 4 hold. Then SVQEP has a solution.

In order to derive the existence results for solutions of systems of vector quasi-
variational (-like) inequalities, we define a topology on the space L(E ,Z ) by the
following way:

Let E and Z be Hausdorff topological vector spaces. Let σ be the family of
bounded subsets of E whose union is total in E , that is, the linear hull of

⋃{U : U ∈
σ} is dense in E . Let B be a neighbourhood base of 0 in Z . When U runs through
σ , V through B, the family

M(U,V ) = {ξ ∈ L(E ,Z ) : ∪x∈U 〈ξ ,x〉 ⊆V}

is a neighbourhood base of 0 in L(E ,Z ) for a unique translation-invariant topology,
called the topology of uniform convergence on the sets U ∈ σ , or, briefly, the σ -
topology (see [42, pp. 79–80] and also [91]).

Lemma 3 ( [42] ). Let E and Z be Hausdorff topological vector spaces and
L(E ,Z ) be the topological vector space under the σ -topology. Then, the bilin-
ear mapping 〈., .〉 : L(E ,Z )×E →Z is continuous on L(E ,Z )×E .

Throughout the chapter, we assume that L(E ,Z ) is equipped with σ -topology.

In addition to the assumptions on Ci : K → 2Yi , in the following corollaries, we
further assume that Ci(x) is pointed, ∀ i ∈ I and ∀ x ∈ K. Then the following results
can be easily derived, respectively, from Theorems 4 and 5 by setting

fi(x,yi) = 〈Ti(x),ηi(yi,xi)〉.

Corollary 1 ( [5] ). For each i ∈ I, let Ki, Xi and Wi be the same as in Theorem 4
and Remark 7, respectively. For each i ∈ I, let ηi : Ki×Ki → Xi be continuous in
the second variable such that ηi(xi,xi) = 0 ∀ xi ∈ Ki, and let Ti : K → L(Xi,Yi) be
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continuous on K such that the map yi 	→ 〈Ti(x),ηi(yi,xi)〉 is a natural Pi-quasiconvex
function, ∀ x ∈ K. Assume that there exist a nonempty and compact subset N of K
and a nonempty, compact and convex subset Bi of Ki ∀ i ∈ I, such that ∀ x ∈ K \N
∃ i ∈ I and ∃ ỹi ∈ Bi such that ỹi ∈ Ai(x) and 〈Ti(x),ηi(ỹi,xi)〉 ∈ −int Ci(x). Then
SVQVLI has a solution.

Corollary 2 ( [5] ). For each i ∈ I, let Ki, Xi, Ai, A and ηi, Ti, Wi, L(Xi,Yi) be the
same as in Theorem 5 and Corollary 1, respectively. Then SVQVLI has a solution.

Remark 8. To the best of our knowledge, there is only one paper [40] appeared
in the literature on the scalar quasi-variational-like inequality problems involving
Φ-condensing maps. Since the approach in this chapter is different from the one
adopted in [40], Corollary 2 is a new result in the literature, not only for the vector
case but also for the scalar one.

3.2 Applications of SVQEP

Let I = {1,2, . . . ,n} be a finite index set and for each i ∈ I, let Xi be a normed space
and X =∏i∈I Xi. Let Z be a normed space. We recall the following definition.

Definition 9 ( [100] ). The function φ : X → Z is said to be partial Gâteaux differ-
entiable at x = (x1, . . . ,x j−1,x j,x j+1, . . . ,xn) ∈ X w. r. t. the jth variable x j if

〈
Dxjφ(x),h j

〉
= lim

t→0

φ(x1, . . . ,x j−1,x j + th j,x j+1, . . . ,xn)−φ(x)
t

exists,

for all h j ∈ Xj. Dxjφ(x) ∈ L(Xj,Z) is called the partial Gâteaux derivative of φ at
x ∈ X w.r.t. the jth variable x j.
φ is called partial Gâteaux differentiable on X if it is partial Gâteaux differen-

tiable at each point of K w.r.t. each variable.

Definition 10 ( [96] ). Let E be a normed space, Z a normed space with a closed and
convex cone P with apex at the origin, M a nonempty subset of E , η : M×M → E
a function. A Gâteaux differentiable function φ : M → Z is said to be P-invex w.r.t.
η if ∀ x,y ∈M,

φ(y)−φ(x)−〈Dxφ(x),η(y,x)〉 ∈ P,

where Dxφ(x) denotes the Gâteaux derivative of φ at x.

Definition 11 ( [78] ). A subset M of a vector space E is said to be invex w.r.t. η :
M×M→ E if ∀ x,y ∈M and ∀ t ∈ [0,1], x + tη(y,x) ∈M.

Definition 12 ( [96] ). Let M be an invex set in a normed space E w.r.t. η : M×M→
E . A vector-valued function φ : M → Z is said to be P-preinvex if ∀ x,y ∈ M and
∀ t ∈ [0,1],

tφ(y)+ (1− t)φ(x)−φ(x + tη(y,x))∈ P.
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Remark 9. It can be easily seen that if M is an invex subset of E w.r.t. η : M×M→E
and φ : M → Z is Gâteaux differentiable on M and P-preinvex, then φ is P-invex
w.r.t. η . But the converse assertion may not be true.

We have the following result which provides a sufficient condition for a solution
of Debreu VEP.

Proposition 1 ( [5] ). Let I be a finite index set. For each i ∈ I, let Xi and Yi be
normed spaces, Ki a nonempty and convex subset of Xi, K = ∏i∈I Ki, Ai : K → 2Ki

nonempty convex-valued multivalued map, ηi : Ki×Ki → Xi, and ϕi : K → Yi par-
tial Gâteaux differentiable on each open subset of K and Pi-invex w.r.t. ηi in each
argument. Then every solution of SVQVLI with Ti(x) = Dxiϕi(x) is also a solution
of Debreu VEP.

Proof. Assume that x̄ ∈ K is a solution of SVQVLI with Ti(x) = Dxiϕi(x). Then for
each i ∈ I,

x̄i ∈ Ai(x̄) : 〈Dxiϕi(x̄),ηi(yi, x̄i)〉 /∈ −int Ci(x̄), ∀ yi ∈ Ai(x̄). (1)

Since for each i ∈ I, ϕi is Pi-invex w.r.t. ηi in each argument, we have

ϕi(x̄i,yi)−ϕi(x̄)−〈Dxiϕi(x̄),ηi(yi, x̄i)〉 ∈ Pi ⊆Ci(x̄). (2)

Since a−b∈ P and b /∈ −int P⇒ a /∈ −int P, it follows from (1) and (2) that

x̄i ∈ Ai(x̄) : ϕi(x̄i,yi)−ϕi(x̄) /∈ −int Ci(x̄), ∀ yi ∈ Ai(x̄).

Hence x̄ ∈ K is a solution of Debreu VEP.

The next result provides the equivalence between SVQVLI and Debreu VEP.

Proposition 2 ( [5] ). Let I be a finite index set. For each i ∈ I, let Xi and Yi be
normed spaces, Ki ⊆ Xi nonempty invex w.r.t. ηi : Ki×Ki → Xi, K = ∏i∈I Ki, Ai :
K → 2Ki nonempty invex valued multivalued map and ϕi : K → Yi partial Gâteaux
differentiable on each open subset of K and Pi-preinvex in each argument. Then
x̄ ∈ K is a solution of SVQVLI with Ti(x) = Dxiϕi(x) if and only if it is a solution of
Debreu VEP.

Proof. Assume that x̄ ∈ K is a solution of SVQVLI. Then by Proposition 1, x̄ ∈ K
is a solution of Debreu VEP.

Conversely, let x̄ ∈ K be a solution of Debreu VEP. Then for each i ∈ I,

x̄i ∈ Ai(x̄) : ϕi(x̄i,yi)−ϕi(x̄) /∈ −int Ci(x̄), ∀ yi ∈ Ai(x̄). (3)

Since x̄i,yi ∈Ai(x̄) and each Ai(x̄) is invex, we have x̄i +tηi(yi, x̄i)∈Ai(x̄) ∀ t ∈ [0,1].
Therefore, from (3), we get

ϕi(x̄i, x̄i + tηi(yi, x̄i))−ϕi(x̄) ∈Wi(x̄) = Yi \ {−int Ci(x̄)}.
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Since for each i ∈ I, Wi(x̄) is a closed cone, we have

lim
t→0

ϕi(x̄i, x̄i + tηi(yi, x̄i))−ϕi(x̄)
t

∈Wi(x̄).

From the partial Gâteaux differentiability of each ϕi, we get, ∀ i ∈ I

x̄i ∈ Ai(x̄) : 〈Dxiϕi(x̄),ηi(yi, x̄i)〉 /∈ −int Ci(x̄), ∀ yi ∈ Ai(x̄).

Hence x̄ ∈ K is a solution of SVQVLI with Ti(x̄) = Dxiϕi(x̄) ∀ i ∈ I.

Remark 10. If for each i ∈ I and ∀ x ∈ K, ηi(yi,xi) = yi− xi, Ai(x) = Ki, Ci(x) =
R+ and Yi = R, then Proposition 2 reduces to Proposition 4 in [25, p. 269]. Hence
Proposition 2 extends Proposition 4 in [25] in several ways.

By using Proposition 1 and Corollary 1, we can easily derive the following exis-
tence result for a solution of Debreu VEP.

Theorem 6 ( [5] ). Let I be a finite index set. For each i ∈ I, let Xi and Yi be normed
spaces, Ki be a nonempty convex subset of Xi, K =∏i∈I Ki and Wi be the same as in
Remark 7. For each i ∈ I, let ηi : Ki×Ki → Xi be continuous in the second argument
such that ηi(xi,xi) = 0 ∀ xi ∈ Ki, and ϕi : K → Yi partial Gâteaux differentiable on
K and Pi-invex in each variable such that the function yi 	→ 〈Dxiϕi(x),ηi(yi,xi)〉 is
a natural Pi-quasiconvex function, ∀ x ∈ K. Assume that there exist a nonempty
and compact subset N of K and a nonempty, compact and convex subset Bi of
Ki ∀ i ∈ I, such that ∀ x ∈ K \N ∃ i ∈ I and ∃ ỹi ∈ Bi, such that ỹi ∈ Ai(x) and
〈Dxiϕi(x),ηi(ỹi,xi)〉 ∈ −int Ci(x). Then the Debreu VEP has a solution.

If the index set I need not be finite and for each i ∈ I, ϕi need not be partial
Gâteaux differentiable, then we can also easily derive the following existence results
for a solution of Debreu VEP from Theorems 4 and 5 by setting, ∀ i ∈ I,

fi(x,yi) = ϕi(xi,yi)−ϕi(x).

Theorem 7 ( [5] ). For each i ∈ I, let Ki, K, Xi and Wi be the same as in Theorem 4
and Remark 7, respectively, and let ϕi : K → Yi be a vector-valued function. Assume
that the following conditions hold:

(i) For each i ∈ I, ϕi is a natural Pi-quasiconvex function in the ith argument.
(ii) For each i ∈ I, ϕi is continuous on K.

(iii) There exist a nonempty and compact subset N of K and a nonempty, compact
and convex subset Bi of Ki ∀ i ∈ I, such that ∀ x ∈ K \N ∃ i ∈ I and ∃ ỹi ∈ Bi,
such that ỹi ∈ Ai(x) and ϕi(xi, ỹi)−ϕi(x) ∈ −int Ci(x).

Then Debreu VEP has a solution.

Theorem 8 ( [5] ). For each i∈ I, let Ki, K, Xi and Wi be the same as in Theorems 5
and 7, respectively. Assume that the conditions (i) and (ii) of Theorem 5 hold. Then
Debreu VEP has a solution.
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Remark 11. (1) If for each i ∈ I and ∀ x ∈ K, Ci(x) = Ci, a (fixed) proper, closed and
convex cone in Yi, then conditions (i) and (ii) in Theorem 5, and subsequently, in
Theorem 6 can be replaced, respectively, by the following conditions:

(i)′ For each i ∈ I and ∀ x ∈ K, ϕi is a Ci-quasiconvex function in the ith argument.
(ii)′ For each i ∈ I, ϕi is Ci-upper semicontinuous on K.

(2) Theorem 6 provides the existence of a solution of Debreu VEP involving
Φ-condensing map and, consequently, for scalar-valued functions. Therefore,
Theorem 6 is a new result in the literature.

4 System of Generalized Vector Quasi-equilibrium Problems

For each i ∈ I, let Fi : K ×Ki → 2Yi and Ai : K → 2Ki be multivalued maps with
nonempty values. We consider the following system of generalized vector quasi-
equilibrium problems [10]:

(SGVQEP)

{
Find x̄ ∈ K such that for each i ∈ I, x̄i ∈ Ai(x̄) and
Fi(x̄,yi) �⊆ −int Ci(x̄), ∀yi ∈ Ai(x̄).

If for each i ∈ I and ∀ x ∈ K, Ai(x) = Ki, then SGVQEP reduces to the following
system of generalized vector equilibrium problems (SGVEP) [15]:

(SGVEP)

{
Find x̄ ∈ K such that for each i ∈ I,
Fi(x̄,yi) �⊆ −int Ci(x̄), ∀yi ∈ Ki.

It is introduced and studied in [15] with applications to the Nash equilibrium prob-
lem for vector-valued functions.

If I is a singleton set, then SGV(Q)EP reduces to a generalized vector (quasi-)
equilibrium problem which contains generalized implicit vector (quasi-) vari-
ational inequality problems, generalized vector (quasi-) variational inequality
problems, generalized vector (quasi-) variational-like inequality problems and
vector (quasi-) equilibrium problems as special cases. For further detail on gen-
eralized vector (quasi-) equilibrium problems and their applications, we refer
[7, 8, 11, 13, 18, 21, 46, 84, 85, 93, 101] and the references therein.

Examples of SGVQEP

For each i ∈ I, let Di be a nonempty subset of L(Xi,Yi). For each i ∈ I, let Ti :
K → 2Di be a multivalued map with nonempty values. For each i ∈ I, let ψi : Di×
Ki×Ki → Yi be a vector-valued map. The problem of system of generalized implicit
vector quasi-variational inequalities (SGIVQVIP) is to find x̄∈K such that for each
i ∈ I, x̄i ∈ Ai(x̄) and

∀yi ∈ Ai(x̄), ∃ūi ∈ Ti(x̄) : ψi(ūi, x̄i,yi) /∈ −int Ci(x̄).
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Setting for each i ∈ I,

Fi(x,yi) = ψi(Ti(x),xi,yi) = {ψi(ui,xi,yi) : ui ∈ Ti(x)}.
Then SGVQEP coincides with SGIVQVIP.

For Yi = R and Ci(x) = R− for all x ∈ K and for each i ∈ I, SGIVQVIP is called
the problem of system of generalized implicit quasi-variational inequalities. Further,
for all x ∈ K and for each i ∈ I, Ai(x) = Ki, it is called the problem of system of
generalized implicit variational inequalities. Such problem is studied in [22] with
application to Nash equilibrium problem [81].

If I is a singleton set, SGIVQVIP reduces to generalized implicit vector quasi-
variational inequality problem.

The SGIVQVIP contains the following problems as special cases:

(i) For each i ∈ I, let θi : K×Di → Di and ηi : Ki×Ki → Xi be bifunctions. If for
each i ∈ I,

ψi(Ti(x),xi,yi) = 〈θi(x,Ti(x)),ηi(yi,xi)〉= {〈θi(x,ui),ηi(yi,xi)〉 : ui ∈ Ti(x)},
then SGIVQVIP reduces to the problem of system of generalized vector quasi-
variational-like inequalities (SGVQVLIP) (I) which is to find x̄ ∈ K such that
for each i ∈ I, x̄i ∈ Ai(x̄) and

∀yi ∈ Ai(x̄), ∃ūi ∈ Ti(x̄) : 〈θi(x̄, ūi),ηi(yi, x̄i)〉 /∈−int Ci(x̄).

If I is a singleton set, then SGVQVLIP(I) becomes the generalized vector quasi-
variational-like inequality problem. The strong solution (i.e., ūi does not depend
on yi) of SGVQVLIP(I) is studied by Chen et al. [31] and Lee et al. [65], see
also the references therein.
If for each i ∈ I, θi(x,ui) = ui for all x ∈ K, then SGVQVLIP(I) becomes the
following problem denoted by SGVQVLIP(II): Find x̄ ∈ K such that for each
i ∈ I, x̄i ∈ Ai(x̄) and

∀yi ∈ Ai(x̄), ∃ūi ∈ Ti(x̄) : 〈ūi,ηi(yi, x̄i)〉 /∈−int Ci(x̄).

For Yi = R, Ci(x) = R− and Ai(x) = Ki for all x ∈ K and for each i ∈ I, this
problem is studied in [22] with application to the Nash equilibrium problem
[81].

(ii) If for each i ∈ I,

ψi(Ti(x),xi,yi) = 〈Ti(x),yi− xi〉= {〈ui,yi− xi〉 : ui ∈ Ti(x)},
then SGIVQVIP reduces to the problem of system of generalized vector quasi-
variational inequalities (SGVQVIP) which is to find x̄ ∈ K such that for each
i ∈ I, x̄i ∈ Ai(x̄) and

∀yi ∈ Ai(x̄), ∃ūi ∈ Ti(x̄) : 〈ūi,yi− x̄i〉 /∈ −int Ci(x̄).

For each i ∈ I, if Fi is a single-valued map, then SGVQEP reduces to SVQEP
(Sect. 3).



18 Q.H. Ansari and J.-C. Yao

4.1 Existence Results for Solutions of SGVQEP

The following results provide the existence of a solution of SGVQEP with or with-
out Φ-condensing maps.

Theorem 9 ( [10] ). For each i ∈ I, let Ki be a nonempty convex subset of a Haus-
dorff topological vector space Xi and let Fi : K×Ki→ 2Yi be a multivalued map with
nonempty values. For each i ∈ I, assume that the following conditions hold:

(i) For all x ∈ K, Fi(x,xi) �⊆ −int Ci(x), where xi is the ith component of x.
(ii) For all x ∈ K, the set {yi ∈ Ki : Fi(x,yi)⊆−int Ci(x)} is convex.

(iii) For all yi ∈ Ki, the set {x ∈ K : Fi(x,yi) �⊆ −int Ci(x)} is closed in K.
(iv) There exist a nonempty compact subset N of K and a nonempty compact convex

subset Bi of Ki for each i ∈ I such that for each x ∈ K \N there exist i ∈ I and
ỹi ∈ Bi satisfying ỹi ∈ Ai(x) and Fi(x, ỹi)⊆−int Ci(x).

Then the SGVQEP has a solution.

Theorem 10 ( [10] ). For each i ∈ I, let Ki be a nonempty, closed and convex subset
of a locally convex Hausdorff topological vector space Xi, Fi : K×Ki → 2Yi a multi-
valued map with nonempty values and let the multivalued map A =∏i∈I Ai : K→ 2K

defined as A(x) =∏i∈I Ai(x) for all x ∈ K, be Φ-condensing. Assume that the con-
ditions (i)–(iii) of Theorem 9 hold. Then the SGVQEP has a solution.

In order to verify condition (ii) in Theorems 9 and 10, we introduce the following
concept.

Definition 13 ( [21] ). Let W and Z be topological vector spaces and M be a
nonempty convex subset of W and let P : M → 2Z be a multivalued map such that
for each x∈M, P(x) is a closed, convex cone with nonempty interior. For each fixed
x ∈M, a multivalued map F : M×M → 2Z \ { /0} is called P(x)-quasiconvex-like if
for all y1,y2 ∈M and t ∈ [0,1], we have either

F(x,ty1 +(1− t)y2)⊆ F(x,y1)−P(x),

or
F(x,ty1 +(1− t)y2)⊆ F(x,y2)−P(x).

To show the class of P(x)-quasiconvex-like multivalued is nonempty, we give the
following example.

Example 3. Let M = [0,1], P(x) = [0,+∞) for all x∈M. We define F : M×M→ 2R

by
F(x,y) = [x,y + 1] for all x,y ∈M.

For all x,y1,y2 ∈M and 0≤ t ≤ 1, we note that

if y1 ≤ y2 then ty1 +(1− t)y2≤ y2
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and
if y1 > y2 then ty1 +(1− t)y2 ≤ y1.

Therefore, we have for each α ∈ F(x,ty1 +(1− t)y2),

α =
{

(y2 + 1)− [(y2 + 1)−α], y1 ≤ y2,
(y1 + 1)− [(y1 + 1)−α], y1 > y2.

Hence, we have either F(x,ty1 + (1− t)y2) ⊆ F(x,y1)− P(x) or F(x, ty1 + (1−
t)y2)⊆ F(x,y2)−P(x). Thus, F is P(x)-quasiconvex-like.

Remark 12. (a) If for each i ∈ I, Fi is Ci(x)-quasiconvex-like, then the set {yi ∈ Ki :
Fi(x,yi) ⊆ −int Ci(x)} is convex, for all x ∈ K (see, e.g., the proof of Theorem 2.1
in [21]).

(b) If for each i ∈ I, Xi is locally convex Hausdorff topological vector space, the
multivalued map Wi : K → 2Yi defined by Wi(x) = Yi \ {−int Ci(x)} for all x ∈ K, is
closed on K and for all yi ∈Ki, Fi(.,yi) is upper semicontinuous on K, then condition
(iii) of Theorem 9 is satisfied; see, for example, the proof of Theorem 2.1 in [21].

In order to establish existence results for a solution of SGIVQVIP, we modify
the definition of P(x)-quasiconvex-like multivalued bifunction to a single-valued
trifunction.

Definition 14 ( [11] ). Let W and Z be topological vector spaces, M a nonempty
convex subset of W and D a nonempty subset of L(W,Z). Let T : M→ 2D \{ /0} and
P : M → 2Z be multivalued maps such that for each x ∈M, P(x) is a closed, convex
cone with nonempty interior. For each fixed x ∈M, a function ψ : D×M×M → Z
is called P(x)-quasiconvex-like if for all y1,y2 ∈M and t ∈ [0,1], we have either for
all u ∈ T (x),

ψ(u,x,ty1 +(1− t)y2) ∈ ψ(u,x,y1)−P(x),

or
ψ(u,x,ty1 +(1− t)y2) ∈ ψ(u,x,y2)−P(x).

From Theorems 9 and 10, we derive the following existence result for a solution
of SGIVQVIP.

Corollary 3 ( [10] ). For each i ∈ I, let Ki be a nonempty convex subset of a locally
convex topological vector space Xi and let Di be a nonempty subset of L(Xi,Yi). For
each i∈ I, Ti : K→ 2Di be an upper semicontinuous multivalued map with nonempty
values and ψi : Di×Ki×Ki → Yi be a vector-valued map. For each i ∈ I, assume
that:

(i) The multivalued map Wi : K → 2Yi defined by Wi(x) = Yi \ {−int Ci(x)} for all
x ∈ K, is closed on K.

(ii) For all x ∈ K and ui ∈ Ti(x), ψi(ui,xi,xi) /∈ −int Ci(x), where xi is the ith com-
ponent of x.

(iii) ψi is Ci(x)-quasiconvex-like.
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(iv) For all yi ∈ Ki, the map (ui,xi) 	→ ψi(ui,xi,yi) is upper semicontinuous on
Di×Ki.

(v) There exist a nonempty compact subset N of K and a nonempty compact convex
subset Bi of Ki for each i ∈ I such that for each x ∈ K \N there exist i ∈ I and
ỹi ∈ Bi satisfying ỹi ∈ Ai(x) and ψi(ui,xi, ỹi) ∈−int Ci(x) for all ui ∈ Ti(x).

Then the SGIVQVIP has a solution.

Corollary 4 ( [10] ). For each i ∈ I, let Ki,Xi,Di,ψi,Ti and Wi be the same as in
Corollary 3 and let the multivalued map A = ∏i∈I Ai : K → 2K defined as A(x) =
∏i∈I Ai(x) for all x ∈ K, be Φ-condensing. Assume that the conditions (i)–(iv) of
Corollary 3 hold. Then the SGIVQVIP has a solution.

We derive the existence results for a solution of SGVQVLIP by using
Corollaries 3 and 4.

Corollary 5 ( [10] ). For each i ∈ I, let Yi be a Hausdorff topological vector space
and let Ki,Xi,Di,Ti and Wi be the same as in Corollary 3. For each i∈ I, let ηi : Ki×
Ki → Xi be affine in the first argument and continuous in the second argument such
that ηi(xi,xi) = 0 for all xi ∈ Ki. Assume that there exist a nonempty compact subset
N of K and a nonempty compact convex subset Bi of Ki for each i ∈ I such that for
each x ∈ K \N there exist i ∈ I and ỹi ∈ Bi satisfying ỹi ∈ Ai(x) and 〈ui,ηi(ỹi,xi)〉 ∈
−int Ci(x) for all ui ∈ Ti(x). Then the SGVQVLIP has a solution.

Corollary 6 ( [10] ). For each i ∈ I, let Ki,Xi,Yi,Di,ηi,Ti and Wi be the same as in
Corollary 4. For each i ∈ I, let ηi : Ki×Ki → Xi be affine in the first argument and
continuous in the second argument such that ηi(xi,xi) = 0 for all xi ∈ Ki. Let the
multivalued map A = ∏i∈I Ai : K → 2K defined as A(x) = ∏i∈I Ai(x) for all x ∈ K,
be Φ-condensing. Then SGVQVIP has a solution.

The following results provide the existence of a solution of SGVQVIP with or
without Φ-condensing maps.

Corollary 7 ( [10] ). For each i ∈ I, let Ki,Xi,Yi,Di,Ti and Wi be the same as in
Corollary 4. Assume that there exist a nonempty compact subset N of K and a
nonempty compact convex subset Bi of Ki for each i ∈ I such that for each x ∈ K \N
there exist i ∈ I and ỹi ∈ Bi satisfying ỹi ∈ Ai(x) and 〈ui, ỹi− xi〉 ∈ −int Ci(x) for all
ui ∈ Ti(x). Then the SGVQVIP has a solution.

Corollary 8 ( [10] ). For each i ∈ I, let Ki,Xi,Yi,Di,Ti and Wi be the same as in
Corollary 4. Let the multivalued map A = ∏i∈I Ai : K → 2K defined as A(x) =
∏i∈I Ai(x) for all x ∈ K, be Φ-condensing. Then the SGVQVIP has a solution.

4.2 Applications

Throughout this section, unless otherwise specified, we assume that the index set
I is finite, that is, I = {1, . . . ,n}. For each i ∈ I, let Xi and Yi be finite dimensional
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Euclidean spaces R
pi and R

qi , respectively, and Ki be a nonempty convex subset of
Xi. Let K =∏i∈I Ki. Let K =∏n

i=1 Ki. For each i∈ I, let Ci : K→ 2Yi be a multivalued
map such that for all x ∈ K, Ci(x) is a proper, closed and convex cone with apex at
the origin and int Ci(x) �= /0 and R

qi
+ ⊆Ci(x). Let the multivalued map A =∏i∈I Ai :

K → 2K be defined as A(x) =∏i∈I Ai(x), for all x ∈ K. For each i ∈ I, let ϕi : K →Yi

be a given vector-valued function. We recall the following SVQOP which is to find
x̄ ∈ K such that x̄ ∈ A(x̄) and for each i ∈ I,

ϕi(y)−ϕi(x̄) /∈ −int Ci(x̄) ∀ y ∈ A(x̄),

where ϕi(x) = (ϕi1(x),ϕi2(x), . . . ,ϕiqi
(x)) and for each l ∈ L = {1, . . . , qi}, ϕil :

K → R is a function.
As we have seen in Sect. 3 that every solution of SVQOP is also a solution of

Debreu VEP, but the converse need not be true.
We recall the following definitions.

Definition 15. A real-valued function f : R
p → R is said to be locally Lipschitz

if for any z ∈ R
p, there exist a neighbourhood N(z) of z and a positive constant k

such that

| f (x)− f (y)| ≤ k||x− y||, ∀ x,y ∈ N(z).

The Clarke generalized directional derivative [34] of a locally Lipschitz function
f at x in the direction d denoted by f 0(x;d) is

f 0(x;d) = lim
y→x
t↓0

sup
f (y + td)− f (y)

t
.

The Clarke generalized gradient [34] of a locally Lipschitz function f at x is
defined as

∂ f (x) =
{
ξ ∈ R

p : f 0(x;d)≥ 〈ξ ,d〉 for all d ∈R
p} .

If f is convex, then the Clarke generalized gradient coincides with the subdiffer-
ential of f in the sense of convex analysis [90].

The generalized invex function was introduced by Craven [36] as a generalization
of invex functions [51].

Definition 16. A locally Lipschitz function f : R
p → R is said to be generalized

invex at x w.r.t. a given function η : R
p×R

p → R
p if

f (y)− f (x)≥ 〈ξ ,η(y,x)〉, ∀ ξ ∈ ∂ f (x) and y ∈ R
p.

For each i∈ I, let φi : K→R be a locally Lipschitz function and let x∈K, x j ∈Kj.
Following Clarke [34], the generalized directional derivative at x j in the direction
d j ∈ Kj of the function φi(x1, . . . ,x j−1, ·,x j+1, . . . ,xn) denoted by φ0

i j(x;d j) is
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φ0
i j(x;d j) = lim

y j→x j
t↓0

sup
1
t

{
φi(x1, . . . ,x j−1,y j + td j,x j+1, . . . ,xn)

−φi(x1, . . . ,x j−1,y j,x j+1, . . . ,xn)
}
.

The partial generalized gradient [34] of the function φi(x1, . . . ,x j−1, ·,
x j+1, . . . ,xn) at x j is defined as follows:

∂ jφi(x) =
{
ξ j ∈ Xj : φ0

i j(x;d j)≥ 〈ξ j,d j〉 for all d j ∈ Kj
}

.

Lemma 4 ( [34] ). For each i ∈ I, let φi : K →R be locally Lipschitz. Then for each
i ∈ I, the multivalued map ∂iφi is upper semicontinuous.

Definition 17. For each i ∈ I, φi : K → R is called generalized invex at x w.r.t. a
given function ηi : Ki×Ki →R

pi if

φi(y)−φi(x)≥ 〈ξi,ηi(yi,xi)〉, ∀ ξi ∈ ∂iφi(x) and ∀ y ∈ K.

Proposition 3 ( [10] ). For each i ∈ I and for all l ∈ L , let ϕil : K → R be gen-
eralized invex w.r.t. ηil : Ki ×Ki → Xi. Then any solution of SGVQVLIP (II) is a
solution of SVQOP with Ti(x) = ∂iϕi(x) for each i ∈ I and for all x ∈ K, where
∂iϕi(x) = (∂iϕi1(x),∂iϕi2(x), . . . ,∂iϕiqi

(x)) ∈ R
pi×qi .

Proof. For the sake of simplicity, we denote by ϕi(x) = (ϕi1(x), . . ., ϕiqi
(x)) ∈ R

qi ,
ui = (ui1 , . . . ,uiqi

) where uil ∈ ∂iϕil (x) for all l ∈L , and

〈ui,ηi(yi,xi)〉=
(
〈ui1 ,ηi1(yi,xi)〉, . . . ,〈uiqi

,ηiqi
(yi,xi)〉

)
∈ R

qi .

Assume that x̄ ∈ K is a solution of the SGVQVLIP (II). Then for each i ∈ I,

∀yi ∈ Ai(x̄), ∃ūil ∈ ∂iϕil (x̄) for all l ∈L such that(
〈ūi1 ,ηi1(yi, x̄i)〉, . . . ,〈ūiqi

,ηiqi
(yi, x̄i)〉

)
/∈ −int Ci(x̄).

We can rewrite this as

∀yi ∈ Ai(x̄), ∃ūi ∈ ∂iϕi(x̄) : 〈ūi,ηi(yi, x̄i)〉 /∈ −int Ci(x̄). (4)

Since for each i ∈ I and for all l ∈L , ϕil is generalized invex w.r.t. ηil , we have

ϕil (y)−ϕil(x̄)≥ 〈uil ,ηil (yi, x̄i)〉 for all uil ∈ ∂iϕil (x̄) and y ∈ A(x̄) =∏
i∈I

Ai(x̄),

that is, for each i ∈ I
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ϕi(y)−ϕi(x̄)≥ 〈ui,ηi(yi, x̄i)〉 for all ui ∈ ∂iϕi(x̄) and y ∈ A(x̄).

Therefore, for each i ∈ I and for all ui ∈ ∂iϕi(x̄), we have

ϕi(y)−ϕi(x̄) ∈ 〈ūi,ηi(yi, x̄i)〉+R
qi
+ (5)

⊆ 〈ūi,ηi(yi, x̄i)〉+ int Ci(x̄).

From (4) and (5), we have ϕi(y)−ϕi(x̄) /∈ −int Ci(x̄). Hence x̄ ∈ K is a solution of
the SVQOP.

Rest of the section, unless otherwise specified, ∂iϕi(x) and 〈ui,ηi(yi,xi)〉 are the
same as defined in Proposition 3.

Theorem 11 ( [10] ). For each i∈ I and for all l ∈L , let ϕil : K→R be generalized
invex w.r.t. ηil : Ki×Ki → Xi such that ηil is affine in the first argument, continuous
in the second argument and ηil (xi,xi) = 0 for all xi ∈ Ki. Assume that there exists
r > 0 such that for all x ∈ K, ||x|| > r, there exist i ∈ I and ỹi ∈ Ki with ||ỹi||i ≤ r
satisfying ỹi ∈ Ai(x) and

〈ui,ηi(ỹi,xi)〉 ∈ −int Ci(x), ∀ ui ∈ ∂iϕi(x),

where || · || and || · ||i denote the norms on X and Xi, respectively. Then the SVQOP
has a solution.

Theorem 12 ( [10] ). For each i∈ I and for all l ∈L , let ϕil : K→R be generalized
invex w.r.t. ηil : Ki×Ki → Xi such that ηil is affine in the first argument, continuous
in the second argument and ηil (xi,xi) = 0 for all xi ∈ Ki. Let the multivalued map
A =∏i∈I Ai : K → 2K defined as A(x) =∏i∈I Ai(x) for all x ∈ K, be Φ-condensing.
Then the SVQOP has a solution.

The following example, provided by one of the referees, shows that if η is affine
in the second argument, then it is not necessary that η(x,x) = 0.

Example 4. Consider the map η : R+×R+ →R defined by

η(x,y) = (x + y + 1,0), for all x,y ∈ R+ = [0,∞).

Then η is affine in the second argument but η(x,x) �= 0 for all x ∈ R+.

In the next three corollaries, we set ϕi(x) = (ϕi1(x), . . . ,ϕiqi
(x)) ∈ R

qi , ui =
(ui1 , . . . ,uiqi

), 〈ui,yi − xi〉 = (〈ui1 ,yi − xi〉, . . . ,〈uiqi
,yi − xi〉) ∈ R

qi and ∂iϕi(x) =
(∂iϕi1(x),∂iϕi2(x), . . . ,∂iϕiqi

(x)) ∈ R
pi×qi , where ∂iϕi j (x) ( j = 1, . . . ,qi) is the par-

tial subdifferential in the sense of convex analysis.

Corollary 9 ( [10] ). For each i ∈ I and for all l ∈ L , let ϕil : K → R be convex
and lower semicontinuous Assume that there exists r > 0 such that for all x ∈ K,
||x||> r, there exist i ∈ I and ỹi ∈ Ki with ||ỹi||i ≤ r satisfying ỹi ∈ Ai(x) and

〈ui, ỹi− xi〉 ∈ −int Ci(x), ∀ ui ∈ ∂iϕi(x),
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where || · || and || · ||i denote the norms on X and Xi, respectively. Then the SVQOP
has a solution.

Corollary 10 ( [10] ). For each i ∈ I and for all l ∈L , let ϕil : K → R be convex
and lower semicontinuous on K. Let the multivalued map A = ∏i∈I Ai : K → 2K

defined as A(x) =∏i∈I Ai(x) for all x ∈ K, be Φ-condensing. Then the SVQOP has
a solution.

5 System of Generalized Implicit Vector Quasi-equilibrium
Problems

As we have seen in the previous sections that systems of vector quasi-equilibrium
problems are used as tools to establish the existence of a solution of Debreu VEP,
also known as constrained Nash equilibrium problem, both for nondifferentiable
and (non)convex vector-valued functions. These are also used to solve mathemat-
ical programs with equilibrium constraints [70], fixed point theory for a family of
nonexpansive multivalued maps [68] and several related topics. By using different
types of maximal element theorems for a family of multivalued maps and differ-
ent types of fixed point theorems for a multivalued map, several authors studied
the existence of solutions of different kinds of systems of vector quasi-equilibrium
problems; see, for example, [5,6,9,10,12,39,68,70,71,75,98,99] and the references
therein.

For each i ∈ I, let Wi : K → 2Yi be a multivalued map defined as Wi(x) = Yi \
(−int Ci(x)) for all x∈K such that its graph is closed. For each i∈ I, let Fi : Ki→ 2Yi

be a multivalued map with nonempty values, Ai : K→ 2Ki be a multivalued map with
nonempty convex values such that A(x) =∏i∈I Ai(x), and ψi : Di×Ki×Ki →Yi be a
function. We consider the following Systems of Generalized Implicit Vector Quasi-
Equilibrium Problems (SGIVQEP) [4]:

Problem 1. Find x̄ ∈ K such that x̄ ∈ A(x̄) and for each i ∈ I,

∀ūi ∈ Fi(x̄) : ψi(ūi, x̄i,yi) /∈ −int Ci(x̄), ∀yi ∈ Ai(x̄).

Problem 2. Find x̄ ∈ K such that x̄ ∈ A(x̄) and for each i ∈ I,

∃ūi ∈ Fi(x̄) : ψi(ūi, x̄i,yi) /∈ −int Ci(x̄), ∀yi ∈ Ai(x̄).

Problem 3. Find x̄ ∈ K such that x̄ ∈ A(x̄) and for each i ∈ I,

∀yi ∈ Ai(x̄), ∃ūi ∈ Fi(x̄) (ūi depends on yi) : ψi(ūi, x̄i,yi) /∈ −int Ci(x̄).

Problem 4. Find x̄ ∈ K such that x̄ ∈ A(x̄) and for each i ∈ I,

∀y ∈ A(x̄) and ∀vi ∈ Fi(y) : ψi(vi,yi, x̄i) /∈ int Ci(x̄),

where yi is the ith component of y.



Systems of Vector Quasi-equilibrium Problems 25

Problem 5. Find x̄ ∈ K such that x̄ ∈ A(x̄) and for each i ∈ I,

∀y ∈ A(x̄), ∃vi ∈ Fi(y) (vi depends on y) : ψi(vi,yi, x̄i) /∈ int Ci(x̄),

where yi is the ith component of y.

Remark 13. Problem 1 ⇒ Problem 2⇒ Problem 3 and Problem 4⇒ Problem 5.

The solutions of Problems 1, 2 and 3 are called general solution, strong solution
and weak solution, respectively. In view of Remark 13, every general solution is
a strong solution and every strong solution is a weak solution. But the converse
assertions may not be true.

When Ai(x) = Ki for all x ∈ K and for each i ∈ I, Problems 1–5 are called sys-
tems of generalized implicit vector equilibrium problems (SGIVEP) considered and
studied in [1]. In this case, the existence results for solutions of these problems are
investigated by introducing different kinds of generalized pseudomonotonicities. In
this case, Nash equilibrium problem for vector-valued functions can be solved by
using Problems 1–5 but not Debreu VEP.

As we have seen in Sect. 4 that Problem 3 provides a sufficient condition (which
is in general not necessary) for a solution of a SVQOP that includes Debreu VEP
for nondifferentiable and nonconvex functions. But, in this case, Problem 2 provides
necessary and sufficient conditions for a solution of a SVQOP.

If for each i ∈ I, Ai(x) = Ki for all x ∈ K, Problem 3 is called a system of gener-
alized implicit vector equilibrium problems and it is introduced and studied in [15].
It is also used to give the existence of a solution of the Nash equilibrium problem
for nondifferentiable and nonconvex functions. Further, if Yi = R and Ci(x) = R−
and Ai(x) = Ki for all x ∈ K, Problem 3 was studied by in [22]. As an application
of our results, we established some existence results for solutions of systems of
optimization problems and the Nash equilibrium problem.

When I is a singleton set, Yi = R and Ci(x) = R+ for all x ∈ K, the existence of a
solution of Problem 2 is studied in [46].

When I is a singleton set, Ai(x) = Ki for all x∈K andψi(ui,xi,yi)= 〈ui,ηi(yi,xi)〉
(respectively, ψi(ui,xi,yi) = 〈ui,yi − xi〉), then Problem 2 provides necessary and
sufficient conditions for solutions of vector optimization problems for nondiffer-
entiable and nonconvex functions (respectively, for nondifferentiable, but convex
functions). See, for example, [2, 17] and the references therein. In this case, Prob-
lem 1 is considered and studied in [2, 30, 62].

When I is a singleton set, Problems 2 and 3 are studied by Kum and Lee [58,
64]. They proved the existence of solutions of these problems under some kind of
pseudomonotonicity assumptions.

In Sect. 5.1, we give some relationships among Problems 1–5 by using different
kinds of generalized pseudomonotonicities. Section 5.2 is devoted to the existence
results for a solution of Problem 1 under lower semi-continuity of the family of
multivalued maps involved in the formulation of the problem. The existence of a
solution of Problem 1 and so Problems 2 and 3 without any coercivity condition
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but for Φ-condensing maps is also established. In Sect. 5.3, we establish the exis-
tence of a strong solution of our SGVQEP by using H -hemicontinuity assumption
in the setting of real Banach spaces. We also present an existence result for a weak
solution under generalized pseudomonotonicity and u-hemicontinuity assumptions.
Basically, besides establishing existence results for solutions of Problems 1–3 with-
out any coercivity condition but for Φ-condensing maps, we extend the results of
[1] for SGIVEP to SGIVQEP. Our results provide the existence of solutions of
Problems 1–5 under some kind of pseudomonotonicity assumption and under lower
semicontinuity assumption which is one of main motivations of this section.

5.1 Relationships Among Problems 1–5

Throughout this section, for each i ∈ I, we assume that Xi and Yi are locally convex
Hausdorff topological vector spaces and Ki is a nonempty convex subset of Xi, and
Ci is the same as defined in the previous section. We set K = ∏i∈I Ki, X = ∏i∈I Xi,
and Y =∏i∈I Yi.

We recall different kinds of generalized pseudomonotonicities introduced in [1].

Definition 18 ( [1] ). Let {ψi}i∈I be a family of mappings ψi : Di×Ki×Ki → Yi.
A family {Fi}i∈I of multivalued maps Fi : K → 2Ki with nonempty values is called:

(i) Generalized strongly pseudomonotone w.r.t. {ψi}i∈I if for all x,y ∈ K and for
each i ∈ I,

∀ui ∈ Fi(x) : ψi(ui,xi,yi) /∈−int Ci(x)⇒∀vi ∈ Fi(y) : ψi(vi,yi,xi) /∈ int Ci(x).

(ii) Generalized pseudomonotone w.r.t. {ψi}i∈I if for all x,y ∈ K and for each i ∈ I,

∃ui ∈ Fi(x) : ψi(ui,xi,yi) /∈−int Ci(x)⇒∀vi ∈ Fi(y) : ψi(vi,yi,xi) /∈ int Ci(x).

(iii) Generalized weakly pseudomonotone w.r.t. {ψi}i∈I if for all x,y ∈ K and for
each i ∈ I,

∃ui ∈ Fi(x) : ψi(ui,xi,yi) /∈−int Ci(x)⇒∃vi ∈ Fi(y) : ψi(vi,yi,xi) /∈ int Ci(x).

(iv) Generalized pseudomonotone+ w.r.t. {ψi}i∈I if for all x,y∈K and for each i∈ I,

∀ui ∈ Fi(x) : ψi(ui,xi,yi) /∈−int Ci(x)⇒∃vi ∈ Fi(y) : ψi(vi,yi,xi) /∈ int Ci(x).

(v) u-Hemicontinuous w.r.t. {ψi}i∈I if for all x,y ∈ K and α ∈ [0,1] and for each
i ∈ I, the multivalued map

α 	→ ψi(Fi(x +α(y− x)),xi,yi)

is upper semicontinuous at 0+, where
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ψi(Fi(x +α(y− x)),xi,yi) = {ψi(wi,xi,yi) : wi ∈ Fi(x +α(y− x))}.

Remark 14. Definition (i) ⇒ Definition (ii) ⇒ Definition (iii); Definition (iv) ⇒
Definition (iii); Definition (i) ⇒ Definition (iv); that is, Definition (i) ⇒ Definition
(iv)⇒ Definition (iii).

In the next three lemmas, we discuss the relationships among Problems 1–5.

Lemma 5 ( [4] ).

(a) Problem 3⇒ Problem 4 if {Fi}i∈I is generalized pseudomonotone w.r.t. {ψi}i∈I .
(b) Problem 3 ⇒ Problem 5 if {Fi}i∈I is generalized weakly pseudomonotone w.r.t.
{ψi}i∈I .

(c) Problem 1 ⇒ Problem 5 if {Fi}i∈I is generalized pseudomonotone+ w.r.t.
{ψi}i∈I .

(d) Problem 1⇒ Problem 4 if {Fi}i∈I is generalized strongly pseudomonotone w.r.t.
{ψi}i∈I .

(e) Problem 2⇒ Problem 4 if {Fi}i∈I is generalized pseudomonotone w.r.t. {ψi}i∈I .

Lemma 6 ( [4] ). For each i ∈ I, assume that the following conditions hold:

(i) For all x ∈ K and all ui ∈ Fi(x), ψi(ui,xi,xi) ∈ Ci =
⋂

x∈K Ci(x).
(ii) For all x ∈ K and all ui ∈ Fi(x), ψi(ui,xi, ·) is Ci-convex, that is, for all si ∈

L(Xi,Yi), x,y ∈ K and α ∈ [0,1],

ψi(si,xi,αxi +(1−α)yi) ∈ αψi(si,xi,xi)+ (1−α)ψi(si,xi,yi)−Ci.

(iii) For all si ∈ L(Xi,Yi), x,y,z ∈ K and α ∈ [0,1],

ψi(si,xi +α(yi− xi),zi) = (1−α)ψi(si,xi,zi).

(iv) {Fi}i∈I is u-hemicontinuous w.r.t. {ψi}i∈I .

Then Problem 5⇒Problem 3 as well as Problem 4⇒Problem 3.

Proposition 4 ( [4] ). Under the conditions of Lemmas 5(a) and 6, Problems 3, 4
and 5 are equivalent.

Lemma 7. For each i ∈ I, let (Xi,‖ · ‖) and Yi be real Banach spaces and Ki be
a nonempty convex subset of Xi. Let K = ∏i∈I Ki. For each i ∈ I, assume that the
following conditions hold:

(i) For all x ∈ K and all ui ∈ Fi(x), ψi(ui,xi,xi) ∈ Ci =
⋂

x∈K Ci(x).
(ii) For all x ∈ K and all ui ∈ Fi(x), ψi(ui,xi, ·) is Ci-convex, that is, for all si ∈

L(Xi,Yi), x,y ∈ K and t ∈ [0,1],

ψi(si,xi,txi +(1− t)yi) ∈ tψi(si,xi,xi)+ (1− t)ψi(si,xi,yi)−Ci.

(iii) For all si ∈ L(Xi,Yi), x,y,z ∈ K and t ∈ [0,1],

ψi(si,xi + t(yi− xi),zi) = (1− t)ψi(si,xi,zi).
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(iv) ψi is continuous in the first argument.
(v) Fi is H -hemicontinuous and for all x∈K, Fi(x) is a nonempty compact set in Yi.

(vi) The family {Fi}i∈I is generalized pseudomonotone w.r.t. {ψi}i∈I .

Then Problems 2 and 4 are equivalent.

5.2 Existence Results Under Lower Semicontinuity

For each i∈ I, we assume that the graph of the multivalued map Wi : K→ 2Yi defined
by Wi(x) = Yi \ {−int Ci(x)} for all x ∈ K, is closed. For each i ∈ I, we also assume
that Ai : K → 2Ki is a multivalued map such that for all x ∈ K, Ai(x) is nonempty and
convex, A−1

i (yi) is open in K for all yi ∈ Ki and the set Fi := {x ∈ K : xi ∈ Ai(x)} is
closed in K, where xi is the ith component of x.

We extend and generalize Definition 14 for a family of trifunctions.

Definition 19 ( [1] ). For each i ∈ I, let Fi : K → 2Di be a multivalued map with
nonempty values. A family {ψi}i∈I of functions ψi : Di×Ki ×Ki → Yi is called
Ci(x)-quasiconvex-like w.r.t. {Fi}i∈I if for all x ∈ K, y′i,y′′i ∈ Ki and t ∈ [0,1], we
either have ∀ui ∈ Fi(x),

ψi(ui,xi,ty
′
i +(1− t)y′′i ) ∈ ψi(ui,xi,y

′
i)− int Ci(x),

or
ψi(ui,xi,ty

′
i +(1− t)y′′i ) ∈ ψi(ui,xi,y

′′
i )− int Ci(x).

Definition 20 ( [1] ). For each i ∈ I, let Fi : K → 2Di be multivalued map with
nonempty values. A family {ψi}i∈I of functions ψi : Di×Ki ×Ki → Yi is called
simultaneously Ci(x)-quasiconvex-like w.r.t. {Fi}i∈I if for all x ∈ K, y′i,y′′i ∈ Ki and
t ∈ [0,1], we either have ∀u′i,u′′i ∈ Fi(x),

ψi(tu′i +(1− t)u′′i ,xi,ty
′
i +(t)y′′i ) ∈ ψi(u′i,xi,y

′
i)− int Ci(x),

or
ψi(tu′i +(1− t)u′′i ,xi,ty

′
i +(1− t)y′′i ) ∈ ψi(u′′i ,xi,y

′′
i )− int Ci(x).

We present an existence result for a solution of Problem 1 under lower semiconti-
nuity of the family of multivalued maps involved in the formulation of the problem.

Theorem 13 ( [4] ). For each i ∈ I, let Ki be a nonempty convex subset of a Haus-
dorff topological vector space Xi. Let K = ∏i∈I Ki. For each i ∈ I, let Fi : K → 2Ki

be a lower semicontinuous multivalued map with nonempty convex values and
ψi : Di×Ki×Ki → Yi be a function such that the following conditions are satis-
fied:

(i) For all x ∈ K, the family {ψi}i∈I of functions ψi is simultaneously Ci(x)-
quasiconvex-like w.r.t. {Fi}i∈I .
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(ii) For all x ∈ K and for all ui ∈ Fi(x), ψi(ui,xi,xi) /∈−int Ci(x).
(iii) For each fixed yi, the map (ui,xi) 	→ ψi(ui,xi,yi) is continuous on Di×Ki.
(iv) There exist a nonempty compact subset M of K and a nonempty compact convex

subset Ni of Ki for each i ∈ I such that for all x ∈ K \M, there exist i ∈ I and
ỹi ∈ Ni such that ỹi ∈ Ai(x) and ψi(ui,xi, ỹi) ∈ −int Ci(x) for all ui ∈ Fi(x).

Then Problem 1 has a solution.

The following result provides the existence of a solution of Problem 1 without
any coercivity condition but for Φ-condensing maps.

Theorem 14 ( [4] ). For each i∈ I, let Ki be a nonempty, closed and convex subset of
a locally convex Hausdorff topological vector space Xi and let the multivalued map
A =∏i∈I Ai : K → 2K defined as A(x) =∏i∈I Ai(x) for all x ∈ K, be Φ-condensing.
Assume that the conditions (i)–(iii) of Theorem 13 hold. Then Problem 1 has a
solution.

5.3 Existence Results Under Pseudomonotonicity

In this section, we present some existence results for a solution of the SGIVQEP
under generalized pseudomonotonicity assumption.

Theorem 15 ( [4] ). For each i ∈ I, let Ki be a nonempty convex subset of a Haus-
dorff topological vector space Xi. Let K = ∏i∈I Ki. For each i ∈ I, let Fi : K → 2Ki

be a multivalued map with nonempty values and ψi : Di×Ki×Ki →Yi be a function
such that the following conditions are satisfied:

(i) The family {Fi}i∈I of multivalued maps Fi is generalized pseudomonotone w.r.t.
{ψi}i∈I .

(ii) For all x ∈ K, the family {ψi}i∈I of functions ψi is Ci(x)-quasiconvex-like w.r.t.
{Fi}i∈I .

(iii) For all x ∈ K and for all ui ∈ Fi(x), ψi(ui,xi,xi) /∈−int Ci(x).
(iv) For each fixed (vi,yi) ∈ Di×Ki, the map xi 	→ ψi(vi,yi,xi) is continuous on Ki.
(v) There exist a nonempty compact subset M of K and a nonempty compact convex

subset Ni of Ki for each i ∈ I such that for all x ∈ K \M, there exist i ∈ I and
ỹi ∈ Ni such that ỹi ∈ Ai(x) and ψi(ui,xi, ỹi) ∈ −int Ci(x) for all ui ∈ Fi(x).

Then Problem 4 has a solution.

Theorem 16 ( [4] ). For each i ∈ I, let Ki be a nonempty convex subset of a Haus-
dorff topological vector space Xi. For each i ∈ I, let Fi : K → 2Ki be a multivalued
map with nonempty values and ψi : Di×Ki×Ki → Yi be a function such that the
following conditions are satisfied:

(i) The family {Fi}i∈I of multivalued maps Fi is u-hemicontinuous and generalized
pseudomonotone w.r.t. {ψi}i∈I .
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(ii) The family {ψi}i∈I of functions ψi is Ci-convex in the third argument.
(iii) For all si ∈ L(Xi,Yi), x,y,z ∈ X and α ∈ [0,1],

ψi(si,xi +α(yi− xi),zi) = (1−α)ψi(si,xi,zi).

(iv) For all x ∈ K and for all ui ∈ Fi(x), ψi(ui,xi,xi) ∈ Ci.
(v) For each fixed (vi,yi) ∈ Di×Ki, the map xi 	→ ψi(vi,yi,xi) is continuous on Ki.

(vi) There exist a nonempty compact subset M of K and a nonempty compact convex
subset Ni of Ki for each i ∈ I such that for all x ∈ K \M, there exist i ∈ I and
ỹi ∈ Ni such that ỹi ∈ Ai(x) and ψi(ui,xi, ỹi) ∈ −int Ci(x) for all ui ∈ Fi(x).

Then Problem 3 has a solution.

The following result provides the existence of a strong solution of Problem 2.

Theorem 17 ( [4] ). For each i ∈ I, let Ki be a nonempty convex subset of a real
Banach space Xi and Yi be a real Banach space. For each i ∈ I, let Fi : K → 2Ki be
a multivalued map with nonempty compact values and ψi : Di×Ki×Ki → Yi be a
function such that the following conditions are satisfied:

(i) The family {Fi}i∈I of multivalued maps Fi is H -hemicontinuous and general-
ized pseudomonotone w.r.t. {ψi}i∈I .

(ii) The family {ψi}i∈I of functions ψi is Ci-convex in the third argument.
(iii) For all si ∈ L(Xi,Yi), x,y,z ∈ X and α ∈ [0,1],

ψi(si,xi +α(yi− xi),zi) = (1−α)ψi(si,xi,zi).

(iv) For all x ∈ K and for all ui ∈ Fi(x), ψi(ui,xi,xi) ∈ Ci.
(v) For each fixed (vi,yi) ∈ Di×Ki, the map xi 	→ ψi(vi,yi,xi) is continuous on Ki.

(vi) There exist a nonempty compact subset M of K and a nonempty compact convex
subset Ni of Ki for each i ∈ I such that for all x ∈ K \M, there exist i ∈ I and
ỹi ∈ Ni such that ỹi ∈ Ai(x) and ψi(ui,xi, ỹi) ∈ −int Ci(x) for all ui ∈ Fi(x).

Then Problem 2 has a solution.

6 System of Simultaneously Generalized Vector
Quasi-equilibrium Problems

Throughout the section, unless otherwise specified, I is any index set (finite or infi-
nite). For each i ∈ I, let Xi and Yi be two nonempty convex subsets of locally convex
topological vector spaces Ei and Fi, respectively, and Zi be a real topological vector
space. Let X =∏i∈I Xi and Y =∏i∈I Yi. For each i ∈ I, let Ci : X → 2Zi be a multi-
valued map such that for all x ∈ X , Ci(x) is a closed convex cone with apex at the
origin 0. For each i ∈ I, let Pi =

⋂
x∈X Ci(x) such that Pi defines a vector ordering

on Zi. For each i ∈ I, let Si : X → 2Xi and Ti : X → 2Yi be multivalued maps with
nonempty values, and fi : X ×Y ×Xi → Zi and gi : X ×Y ×Yi → Zi be trifunctions.



Systems of Vector Quasi-equilibrium Problems 31

We consider the following problems of system of simultaneous generalized vector
quasi-equilibrium problems (SSGVQEP) [12]:
SSGVQEP(I): Find (x̄, ȳ) ∈ X×Y such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

fi(x̄, ȳ,xi) ∈Ci(x̄), ∀ xi ∈ Si(x̄)

and
gi(x̄, ȳ,yi) ∈Ci(x̄), ∀ yi ∈ Ti(x̄).

SSGVQEP(II): Find (x̄, ȳ) ∈ X×Y such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

fi(x̄, ȳ,xi) /∈ −Ci(x̄)\ {0}, ∀ xi ∈ Si(x̄)

and
gi(x̄, ȳ,yi) /∈ −Ci(x̄)\ {0}, ∀ yi ∈ Ti(x̄).

SSGVQEP(III): Find (x̄, ȳ) ∈ X×Y such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

fi(x̄, ȳ,xi) /∈ −int Ci(x̄), ∀ xi ∈ Si(x̄)

and
gi(x̄, ȳ,yi) /∈−int Ci(x̄), ∀ yi ∈ Ti(x̄),

in this case we assume that int Ci is nonempty for each i ∈ I.

Remark 15. For each i ∈ I and ∀ x ∈ X , let Ci(x) be a pointed cone and Pi =⋂
x∈X Ci(x), then Pi is also pointed. Indeed,

Pi∩ (−Pi) =
(
∩x∈X Ci(x)

)⋂(
∩x∈X (−Ci(x))

)
=
⋂
x∈X

(
Ci(x)∩ (−Ci(x))

)
= {0}.

Therefore, for each i ∈ I, Pi is pointed.

Remark 16. If for each i ∈ I and ∀ x ∈ X , Ci(x) is also pointed, then every solution
of SSGVQEP(I) is a solution of SSGVQEP(II) and every solution of SSGVQEP(II)
is a solution of SSGVQEP(III). But the reverse implication does not hold.

Indeed, let (x̄, ȳ) ∈ X ×Y be a solution of SSGVQEP(I), then for each i ∈ I,
x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

fi(x̄, ȳ,xi) ∈Ci(x̄), ∀ xi ∈ Si(x̄)

and
gi(x̄, ȳ,yi) ∈Ci(x̄), ∀ yi ∈ Ti(x̄).

Since for each i∈ I and ∀ x∈ X , Ci(x) is a pointed cone, we have Ci(x)∩(−Ci(x)) =
{0} and therefore

Ci(x)∩
(
−Ci(x)\ {0}

)
= /0.
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Hence
fi(x̄, ȳ,xi) /∈ −Ci(x̄)\ {0}, ∀ xi ∈ Si(x̄)

and

gi(x̄, ȳ,yi) /∈ −Ci(x̄)\ {0}, ∀ yi ∈ Ti(x̄).

The second statement follows from the fact that−int Ci(x)⊆−Ci(x)\{0}, ∀ x∈
X and for each i ∈ I.

For each i ∈ I, we denote by L(Ei,Zi) the space of all continuous linear operators
from Ei into Zi and let Yi be a nonempty subset of L(Ei,Zi). For each i ∈ I, let
gi ≡ 0, then SSGVQEP(I) reduces to the following problem of system of generalized
implicit vector quasi-variational inequalities:
SGIVQVIP(I): Find (x̄, ȳ) ∈ X ×Y such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄)
satisfying

fi(x̄, ȳ,xi) ∈Ci(x̄), ∀ xi ∈ Si(x̄).

Analogous, we can define SGIVQVIP(II) and SGIVQVIP(III) (problems of system
of generalized implicit vector quasi-variational inequalities) corresponding to SS-
GVQEP(II) and SSGVQEP(III), respectively.

The SGIVQVIP contains the problem of system of generalized vector quasi-
variational-like inequalities (SGVQVLIP) as a special case. Recently, the weak for-
mulation of SGVQVLIP is studied in [10]. We used SGVQVLIP as a tool to prove
the existence of a solution of Debreu type equilibrium problem for nondifferentiable
and nonconvex vector-valued functions.

When for each i∈ I, Xi =Yi, Si≡ Ti and fi ≡ gi, then SSGVQEP is called a system
of vector quasi-equilibrium problems. In this case, SSGVQEP(III) is considered
and studied in [5] for fi(x,y,yi) = hi(x,yi) with further applications to systems of
generalized vector quasi-variational-like inequalities and Debreu type equilibrium
problems for vector-valued functions.

When I is a singleton set and gi≡ 0, then SSGVQEP(I) is considered and studied
in [46].

When I is a singleton set, X = Y , Si ≡ Ti, Si(x) = X , fi(x,y,xi) = ϕ(x,y),
gi(x,y,yi) = φ(x,y), then SSGVQEP(III) reduces to the problem of simultaneous
vector variational inequalities which is considered and studied by Fu [45] for a
fixed cone C. If C = R+, then the problem of simultaneous vector variational in-
equalities becomes the problem of simultaneous variational inequalities, which is
introduced and studied by Husain and Tarafdar [52] with applications to optimiza-
tion problems.

By making suitable choices of fi and gi, we can derive several systems of quasi-
variational inequalities and systems of (quasi-) equilibrium problems studied in the
literature; see, for example, [5, 9, 10, 14–16] and the references therein.
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6.1 Existence Results for Solutions of SSGVQEP

In this section, we present an existence result for a solution of SSGVQEP and derive
existence results for solutions of SGIVQVIP(I), simultaneous generalized vector
quasi-equilibrium problem and a system of generalized vector quasi-variational-like
inequalities.

Theorem 18 ( [12] ). For each i ∈ I, let Ei, Fi and Zi be real locally convex topolog-
ical vector spaces and Fi be also quasi-complete. For each i ∈ I, let Xi ⊆ Ei be a
nonempty compact convex set and Yi ⊆ Fi a nonempty convex set. Let X = ∏i∈I Xi

and Y = ∏i∈I Yi. For each i ∈ I, let Si : X → 2Xi be a continuous multivalued map
with nonempty closed convex values and Ti : X → 2Yi a continuous multivalued map
with nonempty compact convex values. For each i ∈ I, assume that the following
conditions are satisfied:

(i) Ci : X → 2Zi is a closed multivalued map such that ∀ x ∈ X, Ci(x) is a closed
convex cone with apex at the origin, and Pi =

⋂
x∈X Ci(x).

(ii) P∗i has a weak∗ compact convex base B∗i and Zi is ordered by Pi.
(iii) fi : X×Y ×Xi → Zi is a continuous function such that:

(a) ∀ x ∈ X and y ∈Y , fi(x,y,xi)≥Pi 0.
(b) ∀ (x,y) ∈ X×Y, the map ui 	→ fi(x,y,ui) is properly quasi-convex.

(iv) gi : X×Y ×Yi → Zi is a continuous function such that:

(a) ∀ x ∈ X and y ∈Y , gi(x,y,yi)≥Pi 0.
(b) ∀ (x,y) ∈ X×Y, the map vi 	→ gi(x,y,vi) is properly quasi-convex.

Then there exists a solution (x̄, ȳ) ∈ X×Y of SSGVQEP(I).

If for each i ∈ I, gi ≡ 0, then we have the following result.

Corollary 11. For each i ∈ I, let Ei, Fi and Zi be real locally convex topologi-
cal vector spaces and Fi be also quasi-complete. For each i ∈ I, let Xi ⊆ Ei be a
nonempty compact convex set and Yi ⊆ Fi a nonempty convex set. Let X = ∏i∈I Xi

and Y = ∏i∈I Yi. For each i ∈ I, let Si : X → 2Xi be a continuous multivalued map
with nonempty closed convex values and Ti : X → 2Yi a continuous multivalued map
with nonempty compact convex values. For each i ∈ I, assume that the following
conditions are satisfied:

(i) Ci : X → 2Zi is a closed multivalued map such that ∀ x ∈ X, Ci(x) is a closed
convex cone with apex at the origin, and Pi =

⋂
x∈X Ci(x).

(ii) P∗i has a weak∗ compact convex base B∗i and Zi is ordered by Pi.
(iii) fi : X×Y ×Xi → Zi is a continuous function such that:

(a) ∀ x ∈ X and y ∈Y , fi(x,y,xi)≥Pi 0.
(b) ∀ (x,y) ∈ X×Y, the map ui 	→ fi(x,y,ui) is properly quasi-convex.

Then there exists a solution (x̄, ȳ) ∈ X×Y of SGIVQVIP(I).
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Remark 17. Corollary 11 is an extension of Theorem 1 in [46] to the system of
quasi-equilibrium problems with a moving cone.

When I is a singleton set, then we have the following result.

Corollary 12. Let E, F and Z be real locally convex topological vector spaces
and F be also quasi-complete. Let X ⊆ E be a nonempty compact convex set and
Y ⊆ F a nonempty convex set. Let S : X → 2X be a continuous multivalued map
with nonempty closed convex values and T : X → 2Y a continuous multivalued map
with nonempty compact convex values. Assume that the following conditions are
satisfied:

(i) C : X → 2Z is a closed multivalued map such that ∀ x ∈ X, C(x) is a closed
convex cone with apex at the origin, and P =

⋂
x∈X C(x).

(ii) P∗ has a weak∗ compact convex base B∗ and Z is ordered by P.
(iii) f : X×Y ×X → Z is a continuous function such that:

(a) ∀ x ∈ X and y ∈Y , f (x,y,x) ≥P 0.
(b) ∀ (x,y) ∈ X×Y, the map u 	→ f (x,y,u) is properly quasi-convex.

(iv) g : X×Y ×Y → Z is a continuous function such that:

(a) ∀ x ∈ X and y ∈Y , g(x,y,y)≥P 0.
(b) ∀ (x,y) ∈ X×Y, the map v 	→ g(x,y,v) is properly quasi-convex.

Then there exists a solution (x̄, ȳ) ∈ X ×Y of the simultaneous generalized vector
quasi-equilibrium problem (SGVQEP): find (x̄, ȳ) ∈ X ×Y such that x̄ ∈ S(x̄), ȳ ∈
T (x̄),

f (x̄, ȳ,x) ∈C(x̄), ∀ x ∈ S(x̄)

and
g(x̄, ȳ,y) ∈C(x̄), ∀ y ∈ T (x̄).

In addition to the assumptions on Ci : K → 2Zi , in the following corollary, we fur-
ther assume that Ci(x) is pointed, for each i ∈ I and for all x ∈ K. Then the following
result can be easily derived from Corollary 3.1 by setting

fi(x,y,ui) = 〈θi(x,y),ηi(ui,xi)〉.

Corollary 13. For each i ∈ I, let Ei and Zi be real locally convex topological vector
spaces and let L(Ei,Zi) be quasi-complete. For each i ∈ I, let Xi ⊆ Ei be a nonempty
compact convex set and Yi ⊆ L(Ei,Zi) a nonempty convex set. Let X = ∏i∈I Xi and
Y = ∏i∈I Yi. For each i ∈ I, let Si : X → 2Xi be a continuous multivalued map with
nonempty closed convex values and Ti : X → 2Yi a continuous multivalued map with
nonempty compact convex values. For each i ∈ I, assume that the following condi-
tions are satisfied:

(i) Ci : X → 2Zi is a closed multivalued map such that ∀ x ∈ X, Ci(x) is a nonempty
closed convex pointed cone, and Pi =

⋂
x∈X Ci(x).

(ii) P∗i has a weak∗ compact convex base Bi and Zi is ordered by Pi.
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(iii) θi : X ×Y → Yi and ηi : Xi×Xi → Xi are continuous bifunctions such that for
each i ∈ I:

(a) ∀ xi ∈ Xi, ηi(xi,xi)〉 ≥Pi 0.
(b) ∀ (x,y)∈ X×Y, the map ui 	→ 〈θi(x,y),ηi(ui,xi)〉 is properly quasi-convex.

Then there exists a solution (x̄, ȳ) ∈ X × Y of the problem of system of gen-
eralized vector quasi-variational-like inequalities (SGVQVLIP)(I): find (x̄, ȳ) =
((x̄i)i∈I ,(ȳi)i∈I) ∈ X×Y such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄) and

〈θi(x̄, ȳ),ηi(xi, x̄i)〉 ∈Ci(x̄), ∀ xi ∈ Si(x̄).

Remark 18. It is worth to mention that the weak formulation of SGVQVLIP(III) is
considered and studied in [10]. Corollary 13 provides the existence of a solution of
a more general problem than SGVQVLIP(III).

6.2 Systems of Vector Quasi-saddle Point Problems

In this section, we define systems of quasi-saddle point problems and systems of
quasi-minimax inequalities. As application of the results of previous section, we
derive existence results for solutions of these problems.

Let X , Y , Xi, Yi, Zi and Ci be the same as defined in the formulations of SSGVQEP.
Let �i : Xi×Yi → Zi be a bifunction. We consider the following systems of quasi-
saddle point problems.
SVQSPP(I): Find x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I, x̄i ∈
Si(x̄), ȳi ∈ Ti(x̄),

�i(xi, ȳi)− �i(x̄i, ȳi) ∈Ci(x̄), ∀ xi ∈ Si(x̄)

and

�i(x̄i, ȳi)− �i(x̄i,yi) ∈Ci(x̄), ∀ yi ∈ Ti(x̄).

SVQSPP(II): Find x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I, x̄i ∈
Si(x̄), ȳi ∈ Ti(x̄),

�i(xi, ȳi)− �i(x̄i, ȳi) /∈ −Ci(x̄)\ {0}, ∀ xi ∈ Si(x̄)

and

�i(x̄i, ȳi)− �i(x̄i,yi) /∈−Ci(x̄)\ {0}, ∀ yi ∈ Ti(x̄).

SVQSPP(III): Find x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I,
x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),
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�i(xi, ȳi)− �i(x̄i, ȳi) /∈ −int Ci(x̄), ∀ xi ∈ Si(x̄)

and
�i(x̄i, ȳi)− �i(x̄i,yi) /∈ −int Ci(x̄), ∀ yi ∈ Ti(x̄).

Remark 19. If for each i ∈ I and ∀ x ∈ X , Ci(x) is a convex pointed cone, then
every solution of SVQSPP(I) is a solution of SVQSPP(II) and every solution of
SVQSPP(II) is a solution of SVQSPP(III). But the converse implication is not true.

If I is a singleton set and Z = R then SVQSPP(I), SVQSPP(II) and SVQSPP(III)
are called a quasi-saddle point problem (QSPP). Of course, if I is a singleton set,
Si(x) = Xi and Ti(x) = Yi, ∀ x ∈ X and Zi = R, then above-mentioned SVQSPPs
reduce to the classical saddle point problem. A study of saddle point for set-valued
maps can be found in [77].

For each i ∈ I, let �i be a real-valued bifunction. We also consider the following
problem of system of quasi-minimax inequalities (SQMIP): find x̄ = (x̄i)i∈I ∈ X and
ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄) and

min
ui∈Si(x̄i)

max
vi∈Ti(x̄i)

�i(ui,vi) = �i(x̄i, ȳi) = max
vi∈Ti(x̄i)

min
ui∈Si(x̄i)

�i(ui,vi).

When I is a singleton set, SQMIP is called quasi-minimax inequality problem
(QMIP). A study of a minimax type inequality for vector-valued functions can be
found in [60, 66].

As application of Theorem 18, we derive the following existence result for a
solution of SGVQSPP(I).

Theorem 19. For each i ∈ I, let Ei, Fi and Zi be real locally convex topologi-
cal vector spaces and also Fi be quasi-complete. For each i ∈ I, let Xi ⊆ Ei be a
nonempty compact convex set and Yi ⊆ Fi a nonempty convex set. Let X = ∏i∈I Xi

and Y = ∏i∈I Yi. For each i ∈ I, let Si : X → 2Xi be a continuous multivalued map
with nonempty closed convex values and Ti : X → 2Yi a continuous multivalued map
with nonempty compact convex values. For each i ∈ I, assume that the following
conditions are satisfied:

(i) Ci : X → 2Zi is a closed multivalued map such that ∀ x ∈ X, Ci(x) is a closed
convex cone with apex at the origin, and Pi =

⋂
x∈X Ci(x).

(ii) P∗i has a weak∗ compact convex base B∗i and Zi is ordered by Pi.
(iii) �i : Xi×Yi → Zi is a continuous function such that:

(a) For each fixed yi ∈ Yi, xi 	→ �i(xi,yi) is properly quasi-convex.
(b) For each fixed xi ∈ Xi, yi 	→ �i(xi,yi) is properly quasi-concave.

Then the SVQSPP(I) has a solution.

If I is a singleton set and Z = R, then we have following existence result for a
solution of the quasi-saddle point problem.

Corollary 14. Let E and F be real locally convex topological vector spaces and
also F be quasi-complete. Let X ⊆ E be a nonempty compact convex set and Y ⊆ F
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a nonempty convex set. Let S : X → 2X be a continuous multivalued map with
nonempty closed convex values and T : X → 2Y a continuous multivalued map with
nonempty compact convex values. Assume that � : X×Y → Z is a continuous func-
tion such that:

(a) For each fixed y ∈ Y , x 	→ �(x,y) is quasi-convex.
(b) For each fixed x ∈ X, y 	→ �(x,y) is quasi-concave.

Then the QSPP has a solution.

As a consequence of Theorem 19, we have the following existence result for a
solution of the system of quasi-minimax inequalities.

Theorem 20. Let Ei, Fi, Xi, Yi, X , Y, Si and Ti be the same as in Theorem 3.1.
For each i ∈ I, assume that �i : Xi×Yi → R is a continuous function satisfying the
following conditions:

(i) For each fixed yi ∈ Yi, xi 	→ �i(xi,yi) is quasi-convex.
(ii) For each fixed xi ∈ Xi, yi 	→ �i(xi,yi) is quasi-concave.

Then the SQMIP has a solution.

If for each i ∈ I, Xi and Yi are nonempty compact convex sets, and Si(x) = Xi

and Ti(x) = Yi, ∀ x ∈ X , then from Theorem 20 we derive the following corollary
which can be seen as an extension of Sion’s minimax theorem [92] for a family of
continuous bifunctions.

Corollary 15. For each i ∈ I, let Xi and Yi be nonempty compact convex subsets of
Ei and Fi, respectively. For each i ∈ I, assume that �i : Xi×Yi → R is a continuous
function satisfying the following conditions:

(i) For each fixed yi ∈ Yi, xi 	→ �i(xi,yi) is quasi-convex.
(ii) For each fixed xi ∈ Xi, yi 	→ �i(xi,yi) is quasi-concave.

Then there exist x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I,

min
ui∈Xi

max
vi∈Yi

�i(ui,vi) = �i(x̄i, ȳi) = max
vi∈Yi

min
ui∈Xi

�i(ui,vi).

If I is a singleton, then Theorem 20 reduces to the Corollary 3.2 in [73].

Corollary 16. Let E, F, X, Y , S and T be the same as in Corollary 14. Assume that
� : X×Y →R is a continuous function satisfying the following conditions:

(i) For each fixed y ∈ Y, x 	→ �(x,y) is quasi-convex.
(ii) for each fixed x ∈ X, y 	→ �(x,y) is quasi-concave.

Then there exists (x̄, ȳ) ∈ X×Y such that x̄ ∈ S(x̄), ȳ ∈ T (ȳ) and

min
u∈S(x̄)

max
v∈T (x̄)

�(u,v) = �(x̄, ȳ) = max
v∈T (x̄)

min
u∈S(x̄)

�(u,v).
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6.3 Debreu Type Equilibrium Problem

In this section, we give another application of Corollary 11 to prove the existence of
a solution of the Debreu VEP.

Let X , Xi, Zi and Ci be the same as defined in the formulations of SSGVQEP. For
each i ∈ I, let ϕi : X → Zi be a vector-valued function and let Xi =∏ j∈I, j �=i Xj and
we write X = Xi×Xi. For x ∈ X , xi denotes the projection of x onto Xi and hence
we write x = (xi,xi). We consider the following Debreu VEP:
Debreu VEP(I): Find x̄ ∈ X such that for each i ∈ I, x̄i ∈ Si(x̄) and

ϕi(x̄i,yi)−ϕi(x̄) ∈Ci(x̄), ∀ yi ∈ Si(x̄).

Debreu VEP(II): Find x̄ ∈ X such that for each i ∈ I, x̄i ∈ Si(x̄) and

ϕi(x̄i,yi)−ϕi(x̄) /∈ −Ci(x̄)\ {0}, ∀ yi ∈ Si(x̄).

Debreu VEP(III): Find x̄ ∈ X such that for each i ∈ I, x̄i ∈ Si(x̄) and

ϕi(x̄i,yi)−ϕi(x̄) /∈ −int Ci(x̄), ∀ yi ∈ Si(x̄),

in this case we assume that int Ci is nonempty for each i ∈ I.
Of course, if for each i ∈ I, ϕi is a scalar-valued function, then Debreu VEPs are

the same as the one introduced and studied by Debreu in [38], see also [80–82].
In this case, a large number of papers have already been appeared in the literature;
see, for example, [9,98] and the references therein. In [5], we introduced and studied
Debreu VEP(III) and established several existence results for its solution with or
without involving Φ-condensing maps. It is the first paper in the literature in which
the Debreu type equilibrium problem for vector-valued functions is considered.

As in the case of SSGVQEPs, if for each i ∈ I and ∀ x ∈ X , Ci(x) is also pointed,
then every solution of Debreu VEP(I) is a solution of Debreu VEP(II) and every
solution of Debreu VEP(II) is a solution of Debreu VEP(III). But the reverse impli-
cation does not hold.

Let Z ∗ be the dual of a locally convex topological vector space Z , P∗ ⊆Z ∗ the
polar cone of P, that is, P∗ = {z∗ ∈ Z ∗ : 〈z∗,z〉 ≥ 0, ∀z ∈ P}. We assume that P∗
has a weak∗ compact convex base B∗. This means that B∗ ⊆ P∗ is a weak∗ compact
convex set such that 0 /∈ B∗ and P∗ =

⋃
λ≥0λB∗; see, for example, [53].

Theorem 21. For each i∈ I, let Ei and Zi be real locally convex topological vector
spaces and Ei be also quasi-complete. For each i ∈ I, let Xi ⊆ Ei be a nonempty
compact convex set and let X =∏i∈I Xi. For each i ∈ I, let Si : X → 2Xi be a contin-
uous multivalued map with nonempty closed convex values. For each i ∈ I, assume
that the following conditions are satisfied:

(i) Ci : X → 2Zi is a closed multivalued map such that ∀ x ∈ X, Ci(x) is a closed
convex cone with apex at the origin, and Pi =

⋂
x∈X Ci(x).

(ii) P∗i has a weak∗ compact convex base B∗i and Zi is ordered by Pi.
(iii) ϕi : X → Zi is continuous and properly quasi-convex in each argument.

Then there exists a solution x̄ ∈ X of the Debreu VEP(I).
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Properties of Derivates and Some Applications

Michael McAsey and Libin Mou

Abstract In this chapter, we generalize the concept of derivates, defined recently
in the literature, to maps defined on a topological space. The derivate of a map has
some interesting properties and applications to optimization problems. For example,
it is closely related to various notions of tangent spaces of the range of the map.
It strengthens the necessary condition (Fermat’s theorem) for an extremum point to
a sufficient condition.

1 Introduction

One motivation for the notion of differentiation and subsequent generalizations is
to solve the optimization problem: min f (x), x ∈W , where W is a metric space or
topological space and f : W → R. Such a consideration is quite natural because the
solution(s) of the problem should be independent of the structure of W (algebraic
or topological). Of course, in most applications, W is endowed with certain natural
structures, which makes it possible to develop a variational analysis on W for solv-
ing the problem. On the other hand, as pointed out in [4] and [7], there are many
optimization problems that are naturally formulated on metric spaces or topological
spaces. In [4] and [7], W is assumed to be a metric space. In this chapter, we allow
W to be a topological space and define the derivate and strict derivate of a map f
from W to a Banach space Y . The derivate in [4] and [7] is generalized herein that it
depends only on the topology of W . In other words, two metrics on W defining the
same topology induce the same derivate for a map f .

The rest of the chapter is arranged as follows. In Sect. 2, the notion of derivate
is defined and some basic properties of derivates are proved, including a strength-
ened version of Fermat’s Theorem and general rules of differentiation for derivates.
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In Sect. 3, we explore the relationship between derivate and several versions of tan-
gent spaces. We show, for example, that the set of zero derivates of f is a subspace
of the Bouligand tangent space of the range f (W ) ⊂ Y . For a map f with the RTR
(restrictive topological regularity) property, these two spaces are actually the same.
Under additional conditions, such as when W is a subset of a Banach space and f is
strictly differentiable in the sense of Gateaux or Fréchet, then the derivates of f can
be described more specifically. In the final section, we derive some necessary condi-
tions for solutions to typical optimization problems by using derivates; these results
generalize some of the results in [2] and [3] and extend the Lagrange multiplier rules
in [4] and [7].

2 Derivates and Their Properties

Definition 2.1. (1) Let f be a map from a Hausdorff topological space W to a
Banach space (Y, || · ||) and ε ≥ 0 a number. We say that y ∈ Y is an ε-derivate of f
at x̄ if there are sequences xi ∈W, xi → x̄ and di ↓ 0 such that

lim
i→∞

∥∥∥∥ f (xi)− f (x̄)
di

− y

∥∥∥∥� ε. (1)

We denote by Dε f (x̄) or Dε f (x̄,W ) the set of all ε-derivates of f at x̄.
(2) We say that y ∈ Y is a strict derivate of f at x̄ if for every sequence xk → x̄ there
is a sequence εk → 0 such that y ∈Dεk f (x̄) for all k. The set of all strict derivates of
f at x̄ is denoted as Ds f (x̄) or Ds f (x̄,W ).

Note that if two metrics d′,d′′ are equivalent, that is, for any sequence xi ∈W
and x̄ ∈W , d′(xi, x̄) → 0 if and only if d′′(xi, x̄)→ 0, then the metrics define the
same notion of derivate. So the notion of derivate depends only on the topology of
W induced by the metric.

Remark 2.2. Our notion of derivate slightly generalizes those defined in papers [4]
and [7], where the sequence xi is also required to satisfy d(xi, x̄) � di for all i.
It should also be noted that an individual derivate is not a mapping as the usual
derivatives are, but is closer in spirit to a derivative evaluated at a point.

The following proposition contains some basic properties of derivates of scalar
functions.

Proposition 2.3. Let f : W →R be a real-valued function and ε ≥ 0 be a real num-
ber.

(a) If l = limi→∞
f (xi)− f (x̄)

di
∈ R for some sequences xi → x̄ and di ↓ 0, then l ∈

D0 f (x̄) and [l− ε, l + ε]⊂ Dε f (x̄).
(b) If there is a sequence xi → x̄ such that f (xi) ↓ f (x̄) then [−ε,∞)⊂ Dε f (x̄).
(c) If there is a sequence xi → x̄ such that f (xi) ↑ f (x̄) then (−∞,ε]⊂ Dε f (x̄).
(d) If ε ≤ δ , then Dε f (x̄)⊆ Dδ f (x̄).
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(e) If y∈Dε f (x̄) and α > 0, then αy ∈Dαε f (x̄). In particular, if y ∈D0 f (x̄) and
α ≥ 0, then αy ∈ D0 f (x̄)

Proof. (a) In this case, every y∈ [l−ε, l +ε] satisfies the definition of an ε-derivate.
(b) In this case, we can take di = ( f (xi)− f (x̄))s/r, where r > 0 and s ∈ (0,1].

Then di → 0. Note that if s = 1, then limi→∞
f (xi)− f (x̄)

di
= r. This implies that [r−

ε,r+ε]⊂Dε f (x̄) by (a). Since r > 0 is arbitrary, we have (−ε,∞)⊂Dε f (x̄). If s ∈
(0,1), then limi→∞

f (xi)− f (x̄)
di

= 0. This shows that [−ε,ε]⊂Dε f (x̄) by (a). Together
we see that the conclusion holds.

(c) is similar to (b). (d) is obvious from the definition of derivate.
(e) If y ∈ Dε f (x̄), then |l − y| � ε , where l = limi→∞

f (xi)− f (x̄)
di

for some se-

quences as in the definition. Then αl = limi→∞
f (xi)− f (x̄)

di/α
and |αl − αy| � αε .

So αy ∈ Dαε f (x̄). If ε = 0, then y = limi→∞
f (xi)− f (x̄)

di
for some sequences as in

the definition. Replace by di by
√

di ↓ 0, then we see that 0 = limi→∞
f (xi)− f (x̄)√

di
.

So 0 ∈ D0 f (x̄). ��
Let us look at some examples.

Example 2.4 (General real-valued functions). Let f (x) be a function on a closed
interval [a,b] and ε ≥ 0 a given number. Let x̄ ∈ [a,b]. A neighborhood of x̄ refers
a set of the form [a,b]∩ (x̄− δ , x̄ + δ ) for some number δ > 0. The following is a
collection of elementary computations of derivates and strict derivates for functions
with simple properties:

1. Dε f (x̄) = [−ε,ε] if f is constant in a neighborhood of x̄. This is because for all

sequences xi ∈W, xi → x̄ and di ↓ 0, we have limi→∞
f (xi)− f (x̄)

di
= 0 .

2. Dε f (x̄) = [−ε,∞) if f (x̄) is a local minimum of f and f is not constant in any
neighborhood of x̄. This follows from Proposition 2.3(b) and the fact that there
exists a sequence xi → x̄ such that f (xi) ↓ f (x̄).

3. Dε f (x̄) = (−∞,ε] if f (x̄) is a local maximum point of f and f is not constant
in any neighborhood of x̄. In this case, there exists a sequence xi → x̄ such that
f (xi) ↑ f (x̄) and the result follows from Proposition 2.3(c).

4. Dε f (x) = (−∞,∞) if f (x) is not a local maximum nor minimum. This follows
from (2) and (3) above.

5. Ds f (x) = {0} if f is constant in a neighborhood of x, or there exists two se-
quences xi → x and x′i → x such that xi are local maximum points while x′i are
local minimum points. In the latter cases, by (2) and (3) above, we have that
Dεi f (xi) = (−∞,εi] and Dεi f (x′i) = [−εi,∞) for any εi ↓ 0, which imply the con-
clusion by the definition of strict derivate.

6. Ds f (x) = (−∞,∞) if every point in a neighborhood of x is not a local maximum
nor local minimum point. This follows from (4) and the definition of Ds f . For
example, this is the case if f is strictly increasing or decreasing in a neighborhood
of x.

Example 2.5 (A continuous function). Let f (0) = 0 and f (x) = |x|sin2 1
x for x �= 0.

Then by Example 2.4(2) and (5), Dε f (0) = [−ε,∞) and Ds f (0) = {0}.
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Example 2.6 (A discontinuous function). Let

f =

{
ax x is rational,

ax + b x is irrational,

where a > 0,b �= 0. Then Dε f (x) = Ds f (x) = (−∞,∞) for every x. This is a special
case of Example 2.4(4) and (6).

Various derivatives or differentials can be used to give necessary conditions for a
local extremum as in classical Fermat-type theorems. Typically, the necessary con-
ditions of Fermat’s theorem are not sufficient. However, derivates give both a nec-
essary and sufficient condition for a local extremum, as shown next.

Theorem 2.7 (Fermat’s theorem). Let f : W → R be a function on a topological
space W and x̄ ∈W. Then x̄ is a local minimum (maximum) point of f on W iff y≥ 0
(y � 0, respectively) for all y ∈ D0 f (x̄).

Proof. Suppose that x̄ is a local minimum point and y ∈ D0 f (x̄). Then we have

y = limi→∞
f (xi)− f (x̄)

di
≥ 0 for some sequences xi ∈W, xi → x̄ and di → 0. Because

f (xi) ≥ f (x̄), y = limi→∞
f (xi)− f (x̄)

di
≥ 0. Conversely, if there is a y ∈ D0 f (x̄) such

that y < 0, then y = limi→∞
f (xi)− f (x̄)

di
< 0. This shows that f (xi)− f (x̄)

di
< 0 for all i

sufficiently large, and this implies that x̄ is not a local minimum point of f . The
proof for maximum points is similar. ��

As an example, we can apply Theorem 2.7 to the functions in the two examples
above. The function in Example 2.5 has a minimum at 0 because D0 f (0) = [0,∞).
The function in Example 2.6 does not have a minimum because D0 f (x) = (−∞,∞)
everywhere.

A simple example shows how derivates will find a minimizer while the usual
elementary calculus derivative will sometimes provide candidates for minima that
satisfy the necessary condition f ′(x) = 0 but the condition is not sufficient. Consider
the function f (x) = x3 for x ∈W = [−1,1]. Elementary calculus suggests there are
three numbers of significance: the two endpoints and x = 0 since f ′(0) = 0. But,
of course, x = 0 satisfies a necessary condition and fails to be the minimizer of
f on W . Using Proposition 2.3, however, the zero derivates are: D0 f (−1,W ) =
[0,∞) , D0 f (+1,W ) = (−∞,0] , and D0 f (x,W ) = (−∞,∞). Theorem 2.7 tells us
immediately that the minimum occurs at x =−1.

To calculate derivates, the following version of the chain rule will be useful. The
“outside” function G in the chain rule will be assumed to be Fréchet differentiable
in part (a) of the theorem and strictly (Fréchet) differentiable in part (b). Recall that
Fréchet differentiability of G :Y → Z at ȳ∈Y means that there is bounded linear map
∇G(ȳ) and a map α(·) = α(·;G, ȳ) with α : Y → Z so that G(y)−G(ȳ)−∇G(ȳ)(y−
ȳ) = α(y− ȳ)‖y− ȳ‖ and ‖α(h)‖→ 0 as ‖h‖→ 0. We recall the definition of strict
differentiability for convenience. See also [5, p. 19]. (We use the same notation for
Fréchet derivative and strict Fréchet derivative.)
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Definition 2.8. For Banach spaces Y and Z, the mapping G : Y → Z is strictly
Fréchet differentiable at ȳ ∈ Y in case there is a bounded linear operator ∇G(ȳ) :
Y → Z satisfying r(G, ȳ,η)→ 0 as η → 0, where

r(G, ȳ,η)

= sup

{‖G(y1)−G(y2)−∇G(ȳ)(y1− y2)‖
‖y1− y2‖ : y1 �= y2,‖yi− ȳ‖< η (i = 1,2)

}
.

The definition implies that for all y1,y2 ∈ B(ȳ,η), the following holds

‖G(y1)−G(y2)−∇G(ȳ)(y1− y2)‖� r(G, ȳ,‖y1− ȳ‖+‖y2− y1‖) ‖y1− y2‖ . (2)

Remark 2.9. Note that the definition of strict differentiability is equivalent to (2)
for some function r(G, ȳ,η)→ 0 as η → 0. In (2), we may assume that r(G, ȳ,η) is
continuous in η from the right by replacing it by s(G, ȳ,η) = limτ→η+ r(G, ȳ,τ) if
r is not continuous from the right. Here s(G, ȳ,η) is continuous from the right and
s(G, ȳ,η) � r(G, ȳ,2η)→ 0 as η → 0.

The concept of strict differentiability can be generalized/localized by requiring
the approximating vectors y1 and y2 in the definition to be elements of a prescribed
subset. For this, let W ⊂Y be a subset of the Banach space Y , ȳ∈W and G : W → Z.
The next definition deviates a bit from the setting in which W is a general topological
space, of course, but the restriction of approximating elements to be elements in the
set W can be used as a replacement for the hypothesis on G in Theorem 2.11(b); see
Remark 2.12.

Definition 2.10. We say that G is strictly Fréchet differentiable at ȳ in W if
r(G, ȳ,η ,W )→ 0, where r(G, ȳ,η ,W ) is defined as r(G, ȳ,η) with the additional
requirement that y1,y2 ∈ W . (The notation ∇G(x̄) will sometimes be written as
∇G(x̄,W ) to emphasize the dependence on W .)

For example, G(y) = −|y| is not differentiable at y = 0. However, for W =
(−∞,0], G|W = y is strictly differentiable at 0 ∈W with ∇G(0) = 1.

Now we prove a chain rule for derivates.

Theorem 2.11 (Chain rules for derivates). Let ε ≥ 0, W a topological space, Y,Z
Banach spaces, and x̄ ∈W . Suppose F : W → Y and G : Y → Z.

(a) If y ∈ DεF(x̄) and G is Fréchet differentiable at ȳ = F(x̄), then ∇G(ȳ)y ∈
D||∇G(ȳ)||ε(G◦F)(x̄). In particular, if y ∈ D0F(x̄), then ∇G(ȳ)y ∈ D0(G◦F)(x̄).

(b) If y ∈ DsF(x̄) and G is strictly differentiable at ȳ = F(x̄), then ∇G(ȳ)y ∈
Ds(G◦F)(x̄).

Proof. (a) Since y ∈ DεF(x̄), by assumption, there are xi → x̄ and di ↓ 0 such that

lim
i→∞

∥∥∥∥F(xi)−F(x̄)
di

− y

∥∥∥∥� ε. (3)



48 Michael McAsey and Libin Mou

This implies that limsupi→∞

∥∥∥F(xi)−F(x̄)
di

∥∥∥ � ||y||+ ε . In particular, F(xi)→ F(x̄).
Write

1
di

[G(F(xi))−G(F(x̄))]−∇G(F(x̄))y

= ∇G(F(x̄))
(

F(xi)−F(x̄)
di

− y

)

+
G(F(xi))−G(F(x̄))−∇G(F(x̄))(F(xi)−F(x̄))

di
.

By Definition (2), the norm of the second term is bounded by

r(G, ȳ,‖F(xi)−F(x̄)‖)||‖F(xi)−F(x̄)‖/di.

So it follows from (3) that

lim
i→∞

∥∥∥∥G(F(xi))−G(F(x̄))
di

−∇G(F(x̄))y
∥∥∥∥� ||∇G(F(x̄))||ε.

This shows the conclusion of part (a).
(b) To show ∇G(ȳ)y is a strict derivate of G ◦F, let xk ∈W be a sequence con-

verging to x̄. Since y ∈ DsF(x̄), there is a sequence εk → 0 so that y ∈ Dεk F(xk) for
all k. This, in turn, means that for each k there exist sequences xk

i → xk and tk
i ↓ 0 as

i→ ∞ such that

limsup
i→∞

∥∥∥∥F(xk
i )−F(xk)

tk
i

− y

∥∥∥∥� εk.

This implies

limsup
i→∞

∥∥∥∥F(xk
i )−F(xk)

tk
i

∥∥∥∥� ||y||+ εk. (4)

Using the strict differentiability of G, we get

1

tk
i

∥∥∥G(F(xk
i ))−G(F(xk))−∇G(F(x̄))(F(xk

i )−F(xk))
∥∥∥

≤ r(G,F(x̄), ||F(xk
i )−F(xk)||+ ||F(xk)−F(x̄)||) ||F(xk

i )−F(xk)||
tk
i

. (5)

Finally, to see that∇G(ȳ)y is a strict derivate of G◦F, add and subtract appropriately
to get

1

tk
i

[G(F(xk
i ))−G(F(xk))]−∇G(F(x̄))y

=
1

tk
i

[G(F(xk
i ))−G(F(xk))]− 1

tk
i

∇G(F(x̄))(F(xk
i )−F(xk))



Properties of Derivates and Some Applications 49

+
1

tk
i

∇G(F(x̄))(F(xk
i )−F(xk))−∇G(F(x̄))y

=
1

tk
i

[G(F(xk
i ))−G(F(xk))−∇G(F(x̄))(F(xk

i )−F(xk))] (6)

+∇G(F(x̄))
(

F(xk
i )−F(xk)

tk
i

− y

)
.

Using (4) and (5) in (6), we obtain

limsup

∥∥∥∥G(F(xk
i ))−G(F(xk))

tk
i

−∇G(F(x̄))y
∥∥∥∥� σk,

where σk = r(G,F(x̄), ||F(xk)−F(x̄)||)(||y||+ εk)+ ||∇G(F(x̄))||εk → 0 as k→ ∞.
This shows that∇G(F(x̄))y∈Dσk(G◦F,xk) for each k. Consequently,∇G(F(x̄))y∈
Ds(G◦F)(x̄). ��
Remark 2.12. It is obvious that we need only to assume the weaker condition that G
is Fréchet or strictly Fréchet differentiable at ȳ in F(W ), the range of F .

As special cases of Theorem 2.11, we have

Corollary 2.13 (Sum and product rules). Let ε ≥ 0.
(a) Suppose that f ,g : W →Y and (y,z)∈Dε( f ,g)(x̄), c is a constant, then y±z∈

D2ε( f ±g)(x̄), and cy ∈ D|c|ε (c f )(x̄).
(b) Suppose that f : W →R and g : W →Y and (y,z)∈Dε( f ,g)(x̄). Then yg(x̄)+

f (x̄)z ∈ Dε(||g(x̄)||+| f (x̄)|)( f g)(x̄).

Proof. Part (a) follows from the chain rule with F = ( f ,g) : W → Y ×Y and G :
Y ×Y → Y define by G(y,z) = y + z. Part (b) is a special case of the chain rule with
F = ( f (x),g(x)) : W →R×Y and G : R×Y → Y defined by G(r,y) = ry. ��

3 Relationship Between Derivates and Tangents

In this section, we focus on the relationship between derivates and several types of
tangent spaces. The applications of the concepts and results in this section will be
discussed in Sect. 4. First we recall some definitions.

Let Q be a subset of the Banach space Y and ȳ∈Q. The Bouligand tangent space
T (ȳ,Q) is the set of v∈Y such that there are sequences vi ∈Y, vi→ v and ti ↓ 0 such
that ȳ+ tivi ∈Q for all i (see [5]). The following definition generalizes the notion of
restrictive metric regularity (RMR) in [8, Definition 2.1].

Definition 3.1. Let W be a topological space. Let f : W → Y be a map, x̄ ∈W and
ȳ = f (x̄). We say that f has the RTR property around x̄ if there are neighborhoods
U and V of x̄ and ȳ, respectively, such that for all x ∈U and a sequence yi → f (x)
(as i→ ∞), there exists a sequence xi ∈ f−1(yi) such that xi → x.
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As shown by the following proposition, RTR is much weaker than RMR.
Essentially, RTR requires that f has a “right” inverse function that is continuous,
while RMR requires that the inverse be Lipschitz continuous.

Proposition 3.2. If f : W → Y is one-to-one, continuous and W is compact, then f
has RTR at each x̄ ∈W.

Proof. It suffices to show the inverse f−1 : f (W ) → W is continuous. If f−1 is
discontinuous at ȳ = f (x̄), then there exists a sequence yi → ȳ such that xi = f−1(yi)
does not converge to x̄. By compactness of W , we may assume (by passing to a
subnet) that xi → x̄′ as i→ ∞. Consequently, x̄′ �= x̄ and by continuity of f , f (x̄′) =
limi→∞ yi = ȳ = f (x̄) , a contradiction to the assumption that f is one-to-one. So f
has RTR at x̄. ��

First we prove a relationship with Bouligand tangent space.

Theorem 3.3. (a) Let f : W →Y be a map. Let x̄ ∈W and ȳ = f (x̄). Then D0 f (x̄)⊂
T (ȳ, f (W )).

(b) If f has the RTR property around x̄, then T (ȳ, f (W )) = D0 f (x̄).

Proof. (a) Let y ∈D0 f (x̄). Then yi = f (xi)− f (x̄)
di

→ y for some sequences xi ∈W and
di ↓ 0. This implies that ȳ+diyi = f (xi) ∈ f (W ). So y ∈ T (ȳ, f (W )) by definition of
Bouligand tangent.

(b) Let y ∈ T (ȳ, f (W )). We show y ∈ D0 f (x̄). Let yi ∈ Y, yi → y and di ↓ 0 be
such that ȳ + diyi ∈ f (W ). Since f has the RTR property around x̄, there exists x′i
such that f (x′i) = ȳ+diyi and x′i→ x̄. Since ȳ = f (x̄), f (x′i)− f (x̄)

di
= yi→ y. This shows

that y ∈D0 f (x̄). ��
Next we generalize the definition of Gateaux differentiability of a map on X to a

map f : W → Y , where W is a subset of a Banach space (X , || · ||).
Definition 3.4. We say that f : W → Y is restrictively Gateaux differentiable at x̄ ∈
W if there exists a bounded and linear operator ∇ f (x̄) : X → Y such that for every
v ∈ T (x̄,W ) and sequences ti ↓ 0 and vi ∈ X with vi → v, x̄+ tivi ∈W , the following
holds

lim
i→∞

f (x̄ + tivi)− f (x̄)
ti

= ∇ f (x̄)v. (7)

Remark 3.5. Recall that in the case x̄ is an interior point of W , we say that f is
Gateaux differentiable at x̄ if

lim
i→∞

f (x̄ + tiv)− f (x̄)
ti

= ∇g(x̄)v

for every v ∈ X and ti ↓ 0. So restrictive Gateaux differentiability implies Gateaux
differentiability. However, when x̄ is not an interior point, the sequence x̄ + tiv may
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not be in W and so f (x̄+ tiv) and, hence the Gateaux derivative, may not be defined.
That is why we replace x̄+ tiv by x̄+ tivi ∈W in the definition of restrictive Gateaux
differentiability.

We also note that the limit in (7) is assumed to exist and be independent of the
sequence vi. However, the linear and bounded operator ∇ f (x̄) may not be uniquely
defined on the whole space X . For example, if W is a subspace of X and W has a
complemented subspace V so that X = W ⊕V then ∇ f (x̄) can be extended arbitrar-
ily on V . Finally, note that strict Fréchet differentiability (Definition 2.8) implies
restrictive Gateaux differentiability.

To further generalize restrictive Gateaux differentiability by localizing to a sub-
space, let Z ⊂ X be a subspace. Denote by T (x̄,W,Z) the set of all v ∈ X such
that there are sequences zi ∈ Z, zi → 0 and ti ↓ 0 such that x̄ + ti(zi + v) ∈ W .
Clearly, T (x̄,W,Z) ⊂ T (x̄,W,X) = T (x̄,W ) – the Bouligand tangent space. Note
that zi + v ∈ Zv, where Zv is the linear space spanned by Z and the vector v. So each
v ∈ T (x̄,W,Z) is a Bouligand tangent vector of (W − x̄)∩Zv at 0 (in the space Zv).

Definition 3.6. Let W be a subset of the Banach space X and Z a subspace of X . We
say that f : W → Y is restrictively Gateaux differentiable at x̄ ∈W with respect to
Z if there exists a bounded and linear operator ∇ f (x̄) : X → Y such that for every
v ∈ T (x̄,W,Z) and all sequences ti ↓ 0 and zi ∈ Z → 0 with x̄ + ti(zi + v) ∈W , the
following holds

lim
i→∞

f (x̄ + tizi + tiv)− f (x̄)
ti

= ∇ f (x̄)v.

Definition 3.6 generalizes the notion “ f is (X ,Z)-differentiable” as defined in [2,
p. 443]. In particular, we require f be defined only on a subset W , not on all of X .
If W = X , then our notion is the same as the same as “ f is (X ,Z)-differentiable” at
x̄. As noted in [2, Remarks 2.1 and 2.3], a restrictively Gateaux differentiable map
at x̄ ∈W with respect to Z does not require the map be continuous at x̄ ∈W . The
idea here is to restrict the possible directions for approaches to x̄.

The next theorem shows that derivates can be calculated in terms of these gener-
alized derivatives defined above.

Theorem 3.7. (a) If x̄ is an interior point of W and f is Gateaux differentiable at x̄,
then ∇ f (x̄)v ∈ D0 f (x̄) for every v ∈ X.

(b) If f is restrictively Gateaux differentiable at x̄ with respect to Z then∇ f (x̄)v∈
D0 f (x̄) for every v ∈ T (x̄,W,Z).

Proof. This follows directly from Definitions 3.4 and 3.6 and the definition of
derivate. ��

Next we prove a relationship between the Clarke tangent space TC(x̄,W ) of W
and the strict derivate Ds f (W ). Recall that v ∈ TC(x̄,W ) if and only if for every
pair of sequences xi ∈W, xi → x̄ and ti → 0 there exists vi ∈ X , vi → v such that
x̄ + tivi ∈W for all i. A vector v is called a hypertangent of W at x̄ if there exists
ε > 0 such that y + tw ∈W for all t ∈ (0,ε), y ∈ B(x̄,ε)∩W and w ∈ B(v,ε); see
[1, p. 57]. A well-known theorem of Rockafellar (see Theorem 2.4.8 in [1]) says that
if W has a hypertangent vector at x̄, then every vector in TC(x̄,W ) is a hypertangent
vector.
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Theorem 3.8. Let W be a subset of a Banach space X. If f : W → Y is strictly
Fréchet differentiable at x̄ and W has a hypertangent vector at x̄, then ∇ f (x̄)v ∈
Ds f (x̄) for all v ∈ TC(x̄,W ).

Proof. By Rockafellar’s theorem, every tangent vector v in TC(x̄,W ) is a hypertan-
gent vector. Let xk ∈W, xk → x̄ and ti ↓ 0, then by the definition of hypertangent,
xk + tiv ∈W for all i,k that are sufficiently large. By strict Fréchet differentiability
of f in (2), for each fixed k > 0, we have

|| f (xk + tiv)− f (xk)− ti∇ f (x̄)(v)||� ti||v||r( f , x̄, ti||v||+ ||xk− x̄||).

Dividing the inequality by ti, letting i→ ∞, and using that r is continuous in η from
the right, we get

lim
i→∞

∥∥∥∥ f (xk + tiv)− f (xk)
ti

−∇ f (x̄)v
∥∥∥∥� εk,

where εk = ||v||r( f , x̄, ||xk− x̄||). So ∇ f (x̄)(v) ∈Dεk f (xk). Since εk → 0, we see that
∇ f (x̄)v ∈Ds f (x̄). ��

To generalize Theorem 3.8, we introduce the following concepts, which general-
ize the concept of hypertangent and are in the spirit of the construction of derivates.

Definition 3.9. (1) A vector v ∈ X is called a strict tangent vector at x̄ if for every
sequence xk ∈W, xk → x̄, there exists a sequence vk ∈ T (xk,W ), vk → v as k→ ∞.
We denote by T s(x̄,W ) the set of all strict tangent vectors at x̄.

(2) The strict normal Ns(x̄,W ) is defined as the set of x∗ ∈ X such that

〈x∗,v〉� 0

for all v ∈ T s(x̄,W ). (The symbol 〈x∗,v〉 is used here to denote the value of the
functional x∗ acting on the vector v.)

Note that T s(x̄,W ) may be nonempty even though W has no hypertangent vec-
tors. For example, W = {(x,0) : x ∈ [0,1]} ⊂ R

2 has no hypertangent but T s(x̄,W ),
for any x̄ ∈W is the linear subspace R×{0}.

The following example shows that T s(0,W ) may be significantly larger than the
Clarke tangent cone TC(0,W ).

Example 3.10. Let W = {0}∪∞k=0 [ak,
5
4 ak), where ak = 2−k. We claim that

TC(0,W ) = {0}; T (0,W ) = T s(0,W ) = [0,∞).

To show TC(0,W ) = {0}, it suffices to show that 1 /∈ TC(0,W ) (since TC(0,W )
is convex). Indeed, if 1 ∈ TC(0,W ), then for xk = ak → 0 and tk = ak/2→ 0 there
should exist vk → 1 such that

ak +
1
2

akvk ∈W.
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This means either ak + 1
2 akvk � 5

4 ak or ak + 1
2 akvk ≥ ak−1. In the first case, vk � 1/2.

In the second case, vk ≥ 2. We see that in either case, vk does not approach 1, a
contradiction.

To show that T (0,W ) = T s(0,W ) = [0,∞), we need only show that 1 is in both
T (0,W ) and T s(0,W ) because they are cones. For 1 ∈ T (0,W ), we need vk → 1
and tk ↓ 0 so that 0 + tkvk ∈W . Let vk ≡ 1 and tk = 2−k. Then tkvk = 2−k · 1 ∈
[2−k,(5/4)2−k). So 0 + tkvk ∈W , which implies v = 1 ∈ T (0,W ). In fact, it is easy
to see that 1 ∈ T (x,W ) for every x ∈W . So 1 ∈ T s(0,W ).

The next proposition clarifies the relationships among the hypertangents, the
Bouligand tangent T (x̄,W ), and the strict tangent T s(x̄,W ).

Proposition 3.11. (1) T s(x̄,W )⊂ T (x̄,W ), that is, each strict tangent is a Bouligand
tangent.

(2) Each hypertangent vector of W at x̄ is a strict tangent vector.

Proof. (1) Let v ∈ T s(x̄,W ). Then apply the definition to the constant sequence
xk = x̄ to get a sequence vk ∈ T εk (x̄,W ), vk → v. So, for every k, there exists xk

i → xk

and tk
i → 0 as i → ∞ such that limsupi→∞

xk
i−xk

tk
i

= vk. Consequently, there exists a

subsequence ik such that xk ≡ xk
ik
→ x̄ and tk = tik → 0 with limk→∞

xk−x̄
tk

= v. This
shows that v ∈ T (x̄,W ).

(2) Let v∈ X be a hypertangent vector and xk → x̄ be a sequence. By definition of
hypertangent, there exists ε > 0 such that y+tw∈W for all t ∈ (0,ε), y∈B(x̄,ε)∩W
and w ∈ B(v,ε). Let K be an integer such that xk ∈ B(x̄,ε) for all k≥ K. Let ti = 1/i
for i = 1,2, . . . . Then xk +tiv∈W for all i≥ 1/ε . Consequently, v∈ T (xk,W ), which
implies that v ∈ T s(x̄,W ). ��

The next theorem describes certain strict derivates of a strictly differentiable map.

Theorem 3.12. If f : W →Y is strictly Fréchet differentiable at x̄ then ∇ f (x̄,W )v ∈
Ds f (x̄) for all v ∈ T s(x̄,W ).

Proof. Let xk ∈W, xk → x̄ and v ∈ T s(x̄,W ). By definition, there exists a sequence

vk ∈ T εk
(xk,W ), vk → v. So, for each k≥ 1, there exists a sequence xk

i → xk as i→∞

and a sequence tk
i ↓ 0 such that limi→∞ vk

i = vk, where vk
i = xk

i−xk

tk
i

. Therefore, xk +

tk
i vk

i = xk
i ∈W for all i,k that are sufficiently large. By strict Fréchet differentiability

of f , for each fixed k > 0, we have

|| f (xk + tk
i vk

i )− f (xk)− tk
i ∇ f (x̄)vk

i ||� tk
i ||vk

i || r( f , x̄, tk
i ||vk

i ||+ ||xk− x̄||).

This implies that

limsup
i→∞

∥∥∥∥ f (xk + tk
i vk

i )− f (xk)
tk
i

−∇ f (x̄)vk
i

∥∥∥∥� δk,
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where δ k = ||v||r( f , x̄, ||xk− x̄||). Since

limsup
i→∞

||vk
i − v||� ||vk− v||,

we conclude that

limsup
i→∞

∥∥∥∥ f (xk + tk
i vk

i )− f (xk)
tk
i

−∇ f (x̄)v
∥∥∥∥� εk,

where εk = δk + ||∇ f (x̄)|| · ||vk− v|| → 0 as k→ ∞. This implies that ∇ f (x̄,W )v ∈
Dεk f (xk) and ∇ f (x̄)v ∈ Ds f (x̄). ��

4 Some Applications of Derivates

Next we apply the concept of derivate to derive necessary conditions for solutions
to typical optimization problems. There is an abundant literature on this problem;
see [6] and [9], for example.

Let f : W → R be a function and g : W → Y be a map, where W is a topological
space and Y a Banach space. Let Q⊂ Y be a closed subset. Consider

min f (x), for g(x) ∈ Q. (8)

One approach is to rewrite the operator constraint as part of a geometric constraint.
That is, the problem is equivalent to minimizing f (x) for x ∈ Ω = W ∩ g−1(Q).
By Fermat’s Theorem 2.7, we have

Theorem 4.1. The minimum of f on W subject to g(x)∈Q occurs at x̄ iff D0 f (x̄,W ∩
g−1(Q))⊂ [0,∞).

The following example shows that Theorem 4.1 can be used to exclude candidates
for the minimum which are proposed as candidates for solutions by other necessary
conditions.

Example 4.2. Consider problem (8) with the functions

f (x) =

{
x if x � 0,

xsin2(lnx)) if x > 0,

and g(x) = x, W = (−∞,∞) and Q = (−∞,0]. (We could also phrase this with
the same functions and W = Q = (−∞,0] and no operator constraint.) Obviously,
the minimization problem (8), which is the same as minimizing f (x) = x on
(−∞,0], has no solution. Now let us apply Theorem 4.1 to this problem. Note
that W = g−1(Q) = (−∞,0] and D0 f (x̄,(−∞,0]) = (−∞,∞) for all x̄ < 0 and
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D0 f (0,(−∞,0]) = (−∞,0]. By Theorem 4.1, no point x̄ can be a minimum point.
However, if we apply Theorem 5.21 in [6], which is a general necessary condition
for the problem (5.23) in [6, p. 22], we would get

0 ∈ λ0∂ f (x̄)+λ1∂g(x̄), (9)

where ∂ f is the limiting subdifferential of f . Let us check this condition at x̄ =
0. It is easy see that ∂g(0) = {1}. To find ∂ f (0), by Theorem 1.89 in [5, p. 90],
∂ f (0) = limsupx→0 ∂̂ f (x), where ∂̂ f (x) is the Fréchet subdifferential of f at x. For
x �= 0, f is differentiable. So ∂̂ f (x) = {1} for x < 0, ∂̂ f (x) = sin2(lnx)+sin(2lnx)∈
[ 1−√5

2 , 1+
√

5
2 ] for x > 0 and ∂̂ f (0) = {0}. It follows that ∂ f (0) = [ 1−√5

2 , 1+
√

5
2 ] and

the condition (9) is satisfied with λ0 = λ1 = 1 at x̄ = 0, even though 0 is not a
minimum point, as mentioned above.

Now let us consider the case where W is an open subset of a Banach space X and
Q ⊂ Y is a closed subset. Although the open set W is a metric space, this case is
distinct from the setting in [4] and [7], where W is a complete metric space. Let f
and g be defined on W and x̄ ∈W . The problem can be equivalently stated as

min f (x), x ∈ g−1(Q). (10)

First we derive a necessary condition for a solution x̄ of (8) in terms of f , g, and Q.
The proof is based on Theorem 3.7.

Theorem 4.3. Let x̄∈ g−1(Q) be a solution of Problem (10). Suppose that there is a
closed subspace Z ⊂ X such that f and g are continuous and restrictively Gateaux
differentiable at x̄ ∈ g−1(Q) with respect to Z and

(a) The map ∇g(x̄) : Z → Yg = ∇g(x̄)(X) is one-to-one and onto.
(b) Ker(∇g(x̄))⊂ T (x̄,g−1(Q),Z).
(c) For each w ∈ T (ȳ,Q) ∩ Yg, there exists v ∈ T (x̄,g−1(Q),Z) such that

∇g(x̄)v = w.
Then there exists y∗ ∈Y ∗ such that

∇ f (x̄) = 〈y∗,∇g(x̄)〉 (11)

and 〈y∗,w〉 ≥ 0 for all w ∈ T (ȳ,Q)∩Yg.

The notation 〈y∗,∇g(x̄)〉 denotes the linear functional in X∗ whose value at v∈ X
is 〈y∗,∇g(x̄)〉 (v) = y∗(∇g(x̄)v) = 〈y∗,∇g(x̄)v〉.
Proof. Since ∇g(x̄) is a bijection between Z and Yg, by the open mapping theorem,
it has a bounded inverseΛ : Yg → Z. In particular,∇g(x̄)Λ = id on Yg. So any v ∈ X ,
we have that, v−Λ∇g(x̄)v ∈ Ker(∇g(x̄)). By the assumption (b),

v−Λ∇g(x̄)v ∈ T (x̄,g−1(Q),Z).
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By Theorem 3.7(b), ∇ f (x̄)(v−Λ∇g(x̄)v) ∈ D0 f (x̄,g−1(Q)). Since x̄ is a solution
of Problem (10), by Theorem 4.1, we have that

∇ f (x̄)v− [∇ f (x̄)Λ ]∇g(x̄)v≥ 0.

Since v ∈ X is arbitrary, we have ∇ f (x̄) = [∇ f (x̄)Λ ]∇g(x̄) = 〈y∗,∇g(x̄)〉 with y∗ =
∇ f (x̄)Λ .

Now let w ∈ T (ȳ,Q)∩Yg and we prove 〈y∗,w〉 ≥ 0. By assumption (c), there is a
v ∈ T (x̄,g−1(Q),Z) such that w = ∇g(x̄)v. By (11) and Theorem 3.7

〈y∗,w〉= 〈y∗,∇g(x̄)v〉= 〈y∗,∇g(x̄)〉(v) = ∇ f (x̄)v ∈D0 f (x̄,g−1(Q)).

Since x̄ is a minimum point, by Theorem 4.1, 〈y∗,w〉 ≥ 0. ��
The main difference between Theorem 4.3 and the other necessary conditions

is we only assume that f and g are differentiable in g−1(Q) with respect to some
subspace Z plus the assumptions (a)–(c).

For problems with finite constraints, conditions (b) and (c) are automatic. In this
case, Theorem 4.3 generalizes the relevant results in [2] and [3]. Let W be an open
neighborhood of x̄ in X , f : W → R and g = (g1, . . . ,gn+m) : W → R

n+m. Let Q ⊂
R

n+m be any closed subset. We obtain the following corollary.

Corollary 4.4. Suppose there is an n + m-dimensional subspace Z ⊂ X such that f
and g are continuous in a neighborhood of x̄ in Z restrictively Gateaux differentiable
at x̄ ∈ g−1(Q) with respect to Z and the map ∇g(x̄) : Z → R

n+m is one-to-one and
onto. If x̄ is a minimum point of f subject to g(x) ∈Q, then there exists y∗ ∈Y ∗ such
that

∇ f (x̄) = 〈y∗,∇g(x̄)〉
and 〈y∗,w〉� 0 for all w ∈ T (ȳ,Q).

Proof. We need only verify conditions (b) and (c) in Theorem 4.3. Condition (b) is
proved in [2, Lemma 2.1]. To prove (c), let w ∈ T (ȳ,Q). Then there exist sequences
ti ↓ 0 and wi ∈R

n+m, wi→w such that ȳ+ tiwi ∈Q. Since∇g(x̄) is onto R
n+m, there

exists vi ∈ Z such that wi = ∇g(x̄)vi. Because vi =Λwi, and the inverse Λ of ∇g(x̄)
is bounded, we have that vi →Λw. Apply Theorem F in [3] to the function g(x̄+ z)
for z ∈ Z near z = 0. We get a function ξ : Z → Z such that ξ (z) = o(||z||) and

g(x̄ + z+ ξ (z)) = g(x̄)+∇g(x̄)z

for z near 0 in Z. In particular,

g(x̄ + tivi + ξ (tivi)) = g(x̄)+∇g(x̄)tivi = ȳ+ tiwi ∈Q.

This shows that x̄ + tivi + ξ (tivi) ∈ g−1(Q). Since ξ (tivi) = o(ti), v = limi→∞ vi ∈
T (x̄,g−1(Q)Z). Therefore, v =Λw, that is, w = ∇g(x̄)v. This shows (c). ��

We note that Corollary 4.4 generalizes the main theorem in [2, Theorem 2.2] and
the multiplier rule in [3, p. 235], where Q is the “cube”
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Q = {y ∈ R
n+m : y1 � 0, . . . ,yn � 0,yn+1 = · · ·= yn+m = 0}.

Finally, we mention that the Lagrange multiplier rule in [4] and [7] can be applied
to the problem (8) to obtain necessary conditions in terms of the strict normal intro-
duced earlier.

Theorem 4.5 (Necessary conditions). Suppose that Y ∗ is strictly convex and Q is
closed, convex and finite codimensional. Then there exists a non-zero pair (ψ0,ψ)∈
R

+×Z∗ such that

z0ψ0 + 〈z,ψ〉 ≥ 0 for (z0,z) ∈Ds( f ,g)(x̄,W )

and 〈ψ ,η − g(x̄)〉 � 0 for all η ∈ Q. In particular, if f and g are strictly differen-
tiable at x̄, then

ψ0∇ f (x̄,W )+ 〈ψ ,∇g(x̄,W )〉 ∈ −Ns(x̄,W ).

Proof. The first part is a restatement of Theorem 6 in [4]. In the case f and
g are strictly differentiable at x̄ on W , we have that (∇ f (x̄,W )v,∇g(x̄,W )v) ∈
Ds( f ,g)(x̄,W ) for all v ∈ T s(x̄,W ). The second conclusion follows from the first
by the definition of strict normal in (3.9). ��

More general but similar conditions can be obtained by applying Theorem 5.4
in [7] to Problem (8), where the set Q can be nonconvex and Y can be a Gateaux
smooth Banach space.
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Abstract The Mordukhovich subdifferential, being highly important in variational
and nonsmooth analysis and optimization, often happens to be hard to calculate. We
propose a method for computing the Mordukhovich subdifferential of differences
of sublinear (DS) functions via the directed subdifferential of differences of convex
(DC) functions. We restrict ourselves to the two-dimensional case mainly for sim-
plicity of the proofs and for the visualizations.

The equivalence of the Mordukhovich symmetric subdifferential (the union of the
corresponding subdifferential and superdifferential) to the Rubinov subdifferential
(the visualization of the directed subdifferential) is established for DS functions in
two dimensions. The Mordukhovich subdifferential and superdifferential are identi-
fied as parts of the Rubinov subdifferential. In addition, it is possible to construct the
directed subdifferential in a way similar to the Mordukhovich one by considering
outer limits of Fréchet subdifferentials. The results are extended to the case of DC
functions. Examples illustrating the obtained results are presented.
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1 Introduction

The Mordukhovich subdifferential is a highly important notion in variational
analysis, closely related to optimality conditions, metric regularity, Lipschitz-
ness and other fundamental concepts of modern optimization theory (see [23, 24]).
This subdifferential is a closed subset of the Clarke subdifferential (see e.g., [25,
Theorem 9.2]), and may be nonconvex for nonconvex functions, thus achieving
sharper optimality conditions. In contrast to the Fréchet subdifferential (cf. [18,
Example 1.1]), the Mordukhovich subdifferential of a locally Lipschitz function is
always nonempty (see e.g., [22, (2.17)]).

Along with these essential advantages, there comes a substantial drawback: the
Mordukhovich subdifferential is difficult to calculate even for relatively simple ex-
amples, as such computation normally involves finding the Painlevé–Kuratowski
outer limit (see Sect. 2). For most known subdifferentials, the sum rule only has the
form of an inclusion – the subdifferential of a sum is a subset of the sum of the
subdifferentials [23, Theorem 3.36]. This rule applied in calculations only provides
a superset of the subdifferential of the sum.

We propose a method for computing the Mordukhovich subdifferential of
differences of sublinear (DS) functions, which are positively homogeneous DC
(difference of convex) functions, applying directed sets [2] and the directed sub-
differential of DC functions [4]. The DC functions represent a large family of
functions. They are dense in the space of continuous functions [16] and constitute
an important subclass of the quasidifferentiable functions [10]. Various aspects of
calculus and optimality conditions for this class of functions are discussed, for
example, in [1, 8, 10–12, 14, 20].

The class of positively homogeneous DC functions is important enough since
it contains differences of support functions and directional derivatives of DC func-
tions. Many interesting examples of nonconvex DC functions in the literature are in
this class (see, e.g., [4]). All results in Sect. 3 obtained first for DS functions can be
formulated as a corollary for the directional derivative of DC functions.

The main advantage of directed subdifferentials based on directed sets is the
sum rule: the directed subdifferential of a sum is equal to the sum of the directed
subdifferentials [4, Proposition 4.2]. This rule applied for directed subdifferentials
provides the exact result.

We restrict ourselves to the two-dimensional case mainly for simplicity of the
proofs and for the visualizations. Furthermore, the visualization of the directed sub-
differential is essentially more complicated in dimensions higher than two, since
lower dimensional mixed-type parts missing in the two-dimensional case would
emerge in higher dimensions.

In this chapter, the equivalence of the Mordukhovich symmetric subdifferential,
the union of the corresponding subdifferential and superdifferential, to the Rubinov
subdifferential (the visualization of the directed subdifferential), is established in
Theorem 3.14 for the special class of DS functions in two dimensions.
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While the Mordukhovich subdifferential is based on the corresponding normal
cone and can be calculated by outer limits of the Fréchet subdifferential, the directed
subdifferential for DC functions is essentially based on the subtraction of convex
subdifferentials embedded in the Banach space of directed sets. Although these two
concepts differ substantially, there are many interesting links between them.

In Theorem 3.13, we prove that certain parts of the Rubinov subdifferential
comprise the Mordukhovich subdifferential. The remaining parts coincide with the
Mordukhovich superdifferential (see Theorem 3.14). Furthermore, Theorem 3.11
links outer limits of the Fréchet subdifferential to the directed subdifferential.
The assumption on positive homogeneity of the DC functions is dropped in
Theorems 3.16 and 3.17 yielding the connection of the Rubinov subdifferential
to the Mordukhovich symmetric subdifferential of the directional derivative for the
broader class of DC functions.

This chapter is organized as follows. In the next section, we recall necessary def-
initions, notation and results on Fréchet subdifferential. In Sect. 3, the relation be-
tween the Mordukhovich and the directed subdifferential is discussed. We illustrate
our results with several examples in Sect. 4. In the last section, we sketch directions
for future research.

2 Preliminaries

Recall that f : IRn → IR is called positively homogeneous, if f (λx) = λ f (x) for all
x ∈ IRn and λ > 0. Clearly, f (0) = 0 for positively homogeneous functions. A func-
tion is sublinear if it is convex and positively homogeneous. Recall that support
functions of compact sets are sublinear. We denote by Sn−1 the unit sphere in IRn,
and by cl(A),co(A) the closure and the convex hull of the set A, respectively. The
following operations on sets A,B⊂ IRn are well known:

A + B := {a + b |a∈ A, b ∈ B} (Minkowski addition),
�A := {−a |a∈ A} (the pointwise negative of the set A).

The last operation is used in the definition of the Mordukhovich superdifferential
and in the negative part of the visualization of the directed subdifferential.

For the sets A,B⊂ IRn the operation

A−* B = {x ∈ IRn |x + B⊂ A}=
⋂
b∈B

(A−b)

is called the geometric difference of the sets A and B. This difference is introduced
by Hadwiger in [13] as well as in [28] and is also called Minkowski–Pontryagin
difference.
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Let C ⊂ IRn be nonempty, convex, compact and l ∈ IRn. Then, the support func-
tion and respectively the supporting face of C in direction l are defined by

δ ∗(l,C) = max
c∈C

〈l,c〉 ,

Y (l,C) = {y ∈C | 〈l,y〉 = δ ∗(l,C)} = argmax
c∈C

〈l,c〉 .

Note that for l = 0, Y (l,C) = C. By y(l,C), we denote any point of the set Y (l,C),
and if the latter is a singleton (i.e., there is a unique supporting point), then Y (l,C) =
{y(l,C)}.

The supporting face Y (l,C) equals the subdifferential of the support function of
C at l [29, Corollary 23.5.3].

We denote by Limsup the Painlevé–Kuratowski outer limit and by Liminf the
inner limit of sets (see [30, Chap. 4]). Intuitively, the outer limit of a sequence
of sets consists of the limiting points of all converging subsequences of points
from these sets. In contrast, the inner limit consists of limiting points of all se-
quences constructed from points taken from almost every set in a way that only
a finite number of sets can be missed out. For a more rigorous definition (see
[30, Sect. 4.A]), first consider the set N �

∞ of all infinite subsequences in the set
of natural numbers N �

∞ := {N ⊂ IN |N infinite}, and the set N∞ of all the se-
quences of natural numbers which include all numbers beyond a certain value, that
is, N∞ := {N ⊂ IN | IN \N finite}. Given a sequence {Ck} of sets in IRn, we set

Limsup
k→∞

Ck = {x ∈ IRn |∃N ∈N �
∞ , ∃xk ∈Ck(k ∈ N) with xk → x} ,

Liminf
k→∞

Ck = {x ∈ IRn |∃N ∈N∞ , ∃xk ∈Ck(k ∈ N) with xk → x} .

For a set-valued mapping F : IRn → IRm and x̄ ∈ IRn, the outer and inner limit of F
as x→ x̄ is naturally defined as

Limsup
x→x̄

F(x) := {y ∈ IRm |∃xk → x̄ , yk → y with yk ∈ F(xk) ∀k ∈ IN} , (1)

Liminf
x→x̄

F(x) := {y ∈ IRm |∀xk → x̄ , ∃N ∈N∞ ,

∃yk → y with yk ∈ F(xk) ∀k ∈ N} . (2)

Clearly, the inner limit is a subset of the outer limit. If they are equal, this set is
called the Painlevé–Kuratowski limit and is denoted by Lim k→∞Ck, respectively,
Lim x→x̄ F(x).

Remark 2.1. Let F(·) be a uniformly bounded mapping defined in a neighborhood
of the point x̄∈ IRn with nonempty images in a finite-dimensional space. It is easy to
show that if the Painlevé–Kuratowski outer limit is a singleton Limsup x→x̄ F(x) =
{ȳ}, it is equal to the Painlevé–Kuratowski limit. Indeed, by the assumption, for
any sequence xn → x̄, there is a converging subsequence ynk ∈ F(xnk) and any such
subsequence may have only the point ȳ as the limit.

The classical Moreau–Rockafellar subdifferential of a convex function f : IRn →
IR at x ∈ IRn is

∂ f (x) := {s ∈ IRn |∀y ∈ IRn : 〈s,y− x〉+ f (x)≤ f (y)} . (3)
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It is well-known (see, e.g., [15, Chap. V, Definition 1.1.4]) that

δ ∗(l,∂ f (x)) = f ′(x; l) , (4)

where f ′(x; l) is the directional derivative of f at x in direction l.
In the sequel, the Moreau–Rockafellar subdifferential of a sublinear function g

at zero is denoted by ∂g instead of ∂g(0).
Also, for the unique supporting point of a supporting face we denote

dh(l; l′) = y(l′,Y (l,∂h)) (l, l′ ∈S1 with l ⊥ l′) . (5)

The Dini subdifferential (see [5,17,26,27]) of a directionally differentiable func-
tion f : IRn → IR at x ∈ IRn is

∂D f (x) = {v ∈ IRn | f ′(x;d)≥ 〈v,d〉 ∀d ∈ IRn} .

The Fréchet subdifferential and the superdifferential/upper subdifferential (see
[5, 6, 18, 23]) of a function f : IRn → IR at a point x̄ ∈ IRn are defined as follows:

∂F f (x̄) =
{

v ∈ IRn

∣∣∣∣ liminf
x→x̄

f (x)− f (x̄)−〈v,x− x̄〉
||x− x̄|| ≥ 0

}
,

∂+
F f (x̄) =

{
v ∈ IRn

∣∣∣∣ limsup
x→x̄

f (x)− f (x̄)−〈v,x− x̄〉
||x− x̄|| ≤ 0

}
.

The Fréchet subdifferential coincides with the Fréchet gradient for a Fréchet differ-
entiable function, and with the subdifferential for a convex function. One can think
of ∂F f (x̄) and ∂+

F f (x̄) as of the set of gradients of linear functions “supporting” f
from below resp. above at x̄. While the Fréchet subdifferential is defined for a vast
class of functions, and can be used to check optimality conditions, in many cases it
happens to be an empty set, which is a serious drawback for applications.

The Fréchet subdifferential possesses several useful properties summarized in
the following two lemmas.

Lemma 2.2. Let f : IRn → IR be positively homogeneous and l ∈ IRn. Then

∂F f (0) = {v ∈ IRn | f (d)≥ 〈v,d〉 ∀d ∈Sn−1} (6)

and f (·) is the support function of the Fréchet subdifferential, that is

f ′(0; l) = f (l) . (7)

Furthermore,

∂F f (l) = ∂F f (λ l), λ > 0 . (8)

Proof. The relation (6) is obtained easily from the positive homogeneity of f
and f (0) = 0 (see, e.g., [18, Proposition 1.9(a)]), and (8) follows from [18,
Proposition 1.9(b)]. ��
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The following result, which is an immediate consequence of [9, Theorem 2], is
used for evaluating Fréchet and Mordukhovich subdifferentials in the examples.

Lemma 2.3. Let f : IRn → IR be directionally differentiable.
(i) If the directional derivative of f at x can be represented as

f ′(x;g) = inf
t∈T

ϕt(g) ,

where ϕt are sublinear functions for every t ∈ T and T is an arbitrary index set,
then

∂F f (x) =
⋂
t∈T

∂ϕt(x) . (9)

(ii) Analogously, if
f ′(x;g) =− inf

t∈T
ϕt(g) ,

where ϕt are sublinear functions for every t ∈ T , then

∂+
F f (x) =�

⋂
t∈T

∂ϕt (x) . (10)

The next lemma states that the Fréchet subdifferential coincides with the Dini
one for DC functions.

Lemma 2.4. If f = g−h is DC with convex functions g and h, then

∂F f (x) = ∂D f (x) = {v ∈ IRn | f ′(x; l) ≥ 〈v, l〉 ∀l ∈Sn−1} . (11)

Proof. Since each convex function g,h : IRn → IR is locally Lipschitz (see [15,
Chap. IV, Theorem 3.1.2]), each DC function f = g− h is also locally Lipschitz.
Hence, we can apply Proposition 1.16 from [18], which yields

d f (x)(l) = liminf
t↓0

f (x + tl)− f (x)
t

,

where we use the notation in [18]. In our setting, d f (x)(l) corresponds to the lower
Hadamard directional derivative of f at x in the direction l.

Since each convex function (and hence, each DC function) is directionally dif-
ferentiable, the limit inferior is indeed a limit with d f (x)(l) = f ′(x; l). As we
are dealing with finite-dimensional spaces, dw f (x; l) = d f (x; l) holds, and [18,
Proposition 1.17] yields

∂F f (x) = {v ∈ IRn |dw f (x; l) ≥ 〈v, l〉 ∀l ∈ IRn}
= {v ∈ IRn | f ′(x; l) ≥ 〈v, l〉 ∀l ∈ IRn}= ∂D f (x) .

��
Clearly, for convex functions it follows that

∂Fg(x) = ∂Dg(x) = ∂g(x) . (12)
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3 The Mordukhovich and the Directed Subdifferential in IR2

For a continuous function f : IRn → IR, the Mordukhovich (lower) subdifferential
and superdifferential (upper subdifferential) can be defined as a corresponding outer
limit of Fréchet subdifferentials [23, Theorem 1.89]:

∂M f (x̄) = Limsup
x→x̄

∂F f (x) , (13)

∂+
M f (x̄) = Limsup

x→x̄
∂+

F f (x) . (14)

The Mordukhovich symmetric subdifferential is defined as

∂ 0
M f (x) = ∂M f (x)∪∂+

M f (x) .

Here, the limits are in the Painlevé–Kuratowski sense. Furthermore, the connection
between the Fréchet/Mordukhovich superdifferential to the corresponding subdif-
ferential is given by the following formulas

∂+
F f (x̄) =�∂F(− f )(x̄) , ∂+

M f (x̄) =�∂M(− f )(x̄), (15)

which involve the negative function and the pointwise inverse of sets, see [18, re-
marks following Proposition 1.3] and [23, remarks below Definition 1.78].

Directed sets, offering a visualization of differences of two compact convex sets,
are introduced and studied in [2, 3]. Here, we only sketch the main ideas and nota-
tions on directed sets in IR2.

The directed sets, as well as the embedding Jn of convex compact sets in IRn

into the Banach space of directed sets, are defined recursively in the space of
dimension n. In one dimension, the directed embedded intervals are defined by the
values of the support function in the two unit directions±1,

−−→
[a,b] = J1([a,b]) = (δ ∗(η , [a,b]))η=±1 = (−a,b) (a≤ b) .

A general directed interval
−→
A 1 =

−−→
[c,d] = (−c,d) allows that c,d are arbitrary

real numbers, even c > d is possible (see references in [2, 3]). A two-dimensional
directed set

−→
A 2 is a pair of a uniformly bounded map

−→
A 1(·) having one-dimensional

directed intervals [2] as its values (the directed “supporting face”), and a continuous
function a2(·) : IR2→ IR (the directed “support function”). This pair is parametrized
by the unit vectors l ∈ IR2:

−→
A2 = (

−→
A 1(l),a2(l))l∈S1 . (16)

A convex compact set A ⊂ IR2 is embedded into the space of two-dimensional di-
rected sets via the embedding map J2 composed from the natural projection π1,2
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from IR×{0} ⊂ IR2 onto IR, and the rotation R2l which for any unit vector l ∈ IR2

maps the pair (l′, l) (with l′ orthonormal to l) to the standard basis (e1,e2) in IR2:

J2(A) = (
−−−−→
Y (l,A),δ ∗(l,A))l∈S1 with

−−−−→
Y (l,A) = J1(π1,2R2l(Y (l,A)− δ ∗(l,A)l)) . (17)

For a directed set
−→
A , its visualization V2(

−→
A )⊂ IR2 has three parts – positive P2(

−→
A ),

negative N2(
−→
A ) and mixed-type part M2(

−→
A ):

V2(
−→
A ) = P2(

−→
A )∪N2(

−→
A )∪M2(

−→
A ) , (18)

M2(
−→
A ) =

⋃
l∈S1

Q2,lV1(
−→
A1(l))\

(
∂P2(

−→
A )∪∂N2(

−→
A )
)

. (19)

The last part is formed by reprojections Q2,l of one-dimensional visualizations from
IR onto the supporting lines 〈x, l〉= a2(l) for any unit vector l ∈ IR2.

Equipped with a norm and operations acting separately on the components of the
directed sets, the space of directed sets is a Banach space. The subtraction in this
space is inverse to the Minkowski addition for embedded convex compact sets.

The directed subdifferential for DC functions and its visualization, the Rubinov
subdifferential, are introduced in [4] for a DC function f = g−h as

−→
∂ f (x) = J2(∂g(x))− J2(∂h(x)), ∂R f (x) = V2(

−→
∂ f (x)) ,

that is, it is the difference of the two embedded subdifferentials.
An explicit formula for the Mordukhovich subdifferential of a positively homo-

geneous function as a union of Fréchet subdifferentials is obtained in the next state-
ment.

Proposition 3.1. Let f : IR2 → IR be a positively homogeneous function. Then

∂M f (0) = ∂F f (0)∪
⋃

l∈S1

⎛
⎜⎝∂F f (l)∪

⋃
l′∈S1 ,

l⊥l′

Limsup
t↓0

∂F f (l + tl′)

⎞
⎟⎠ . (20)

Proof. Denote by D the right-hand side of (20). We first show that D ⊆ ∂M f (0).
Observe that ∂F f (0)⊂ ∂M f (0) holds by (13). Further, for any l ∈S1 and λ > 0 we
have ∂F f (λ l) = ∂F f (l) by Lemma 2.2 and

∂F f (l) = Limsup
λ↓0

∂F f (λ l) ⊂ Limsup
x→0

∂F f (x) = ∂M f (0) .

It remains to show that for any l, l′ ∈S1, l ⊥ l′ we have

Limsup
t↓0

∂F f (l + tl′)⊂ ∂M f (0) .
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Again, by Lemma 2.2 for any t > 0

∂F f (t(l + tl′)) = ∂F f (l + tl′) .

Therefore,

Limsup
t↓0

∂F f (l + tl′) = Limsup
t↓0

∂F f (t(l + tl′))⊂ Limsup
x→0

∂F f (x) = ∂M f (0) .

Now we will show that ∂M f (0) ⊆ D. Let us consider an arbitrary element v ∈
∂M f (0). By (13), there exist {vn} and {xn} such that vn → v, xn → 0 and vn ∈
∂F f (xn). Without loss of generality, either xn = 0 for all n, or xn �= 0 for all n. In the
former case, we have vn ∈ ∂F f (0), and by the closedness of ∂F f (0)

v ∈ Limsup
n→∞

∂F f (0) = ∂F f (0)⊂ D .

In the latter case, without loss of generality suppose that ln = xn
‖xn‖ → l ∈S1. Ob-

serve that by Lemma 2.2

∂F f (xn) = ∂F f

(
1
‖xn‖xn

)
= ∂F f (ln) . (21)

There are two possibilities again. Without loss of generality, either ln = l for all n,
or ln−〈ln, l〉 · l �= 0 and 〈l, ln〉 �= 0 for all n. In the first case, by (21)

v ∈ Limsup
n→∞

∂F f (ln) = ∂F f (l) ⊂ D .

In the second case, let l′n = ln−〈ln,l〉·l
‖ln−〈ln,l〉·l‖ and tn = ‖ln−〈ln,l〉·l‖

〈ln,l〉 . Observe that l′n ⊥ l, and

‖l′n‖ = 1. Since in IR2 there are only two unit vectors perpendicular to l, we can
assume l′n = l′ ∈S1 for all n, where l′ is one of such two vectors. We have by (21)
and Lemma 2.2

v ∈ Limsup
n→∞

∂F f

(
ln
〈ln, l〉

)
= Limsup

n→∞
∂F f (l + tnl′)⊂ Limsup

t↓0
∂F f (l + tl′)⊂ D .

��
The following result about the Fréchet subdifferential of a DC function follows

from (11) and [14, Sect. 4] resp. [10, Chap. III, Proposition 4.1]. The following
lemma will be used to explicitly calculate the first term appearing in the right-hand
side of (20) in Proposition 3.1.

Lemma 3.2. Let f = g−h, where g,h : IRn → IR are convex. Then

∂F f (x) = ∂D f (x) = ∂g(x)−* ∂h(x) , (22)

where ∂g(x) and ∂h(x) are the subdifferentials of g and h, respectively.
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To obtain a formula for the second term in the right-hand side of (20) for sublin-
ear functions, we show now that the subdifferential of a sublinear function in a point
l �= 0 is a lower dimensional supporting face.

Lemma 3.3. Let h : IRn → IR be convex. Then for any l ∈ IRn,

∂ [h′(x; ·)](l) = Y (l,∂h(x)) . (23)

If, in addition, h is sublinear, then

∂h(l) = Y (l,∂h) . (24)

Proof. The equality (24) is trivial for l = 0. It follows from [15, Chap. VI,
Proposition 2.1.5] that for l �= 0 and every convex function

∂ [h′(x; ·)](l) = Y (l,∂h(x)) .

Setting x = 0, the equality follows immediately, since (7) holds for the positively
homogeneous function h(·). ��

In the next two lemmas, we study the last term in the right-hand side of (20) for
DS functions.

Lemma 3.4. Let f = g−h, where g,h : IR2 → IR are sublinear. Then for every l, l′ ∈
S1 with l ⊥ l′,

Limsup
t↓0

∂F f (l + tl′) �= /0 .

Proof. The function f is locally Lipschitz as a difference of sublinear functions.
Hence, f is Fréchet differentiable almost everywhere, and there exists a sequence
{xn}n ⊂ IR2 such that 〈xn, l′〉> 0 for all n, xn → 0 and f is Fréchet differentiable at
l + xn. The Fréchet subdifferential of f at l + xn is nonempty and coincides with the
Fréchet derivative (see [18, Proposition 1.1]). Therefore, we have

∂F f (l + xn) = {∇ f (l + xn)} (n ∈ IN) .

Observe that for sufficiently large n we have 1 + 〈xn, l〉> 0 and

l + xn = l + 〈xn, l〉 · l + 〈xn, l
′〉 · l′ = (1 + 〈xn, l〉)

(
l +

〈xn, l′〉
1 + 〈xn, l〉 l

′
)

.

The positive homogeneity of f together with (8) yields

∂F f

(
l +

〈xn, l′〉
1 + 〈xn, l〉 l

′
)

= ∂F f (l + xn) = {∇ f (l + xn)} .

Let tn = 〈xn,l′〉
1+〈xn,l〉 . Observe that tn > 0 and also tn → 0, that is, tn ↓ 0. Since f is

locally Lipschitz, the sequence {∇ f (l + xn)} is bounded, hence, has a converging
subsequence. This subsequence satisfies
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Limsup
n→∞

∂F f (l + xn) = Limsup
n→∞

∂F f (l + tnl′)⊂ Limsup
t↓0

∂F f (l + tl′),

which yields the nonemptiness of Limsup t↓0 ∂F f (l + tl′). ��
The following result establishes that the set limit (i.e., the limit of the sequence)

of the subdifferentials ∂h(l + tl′) evaluated at small orthogonal disturbances of the
direction l is a singleton. This fact is needed later in the representation theorem for
directed subdifferentials.

Lemma 3.5. Let h : IR2 → IR be sublinear. Then for any l, l′ ∈ S1 with l ⊥ l′, the
set Y (l′,Y (l,∂h)) is a singleton, and

Lim
t↓0

∂h(l + tl′) = Y (l′,Y (l,∂h)) = {y(l′,Y (l,∂h))} . (25)

Proof. First, we will prove the claimed equality for the outer limit Limsup t↓0 ∂h(l+
tl′), and then apply Remark 2.1.
Let v̄ ∈ Y (l,∂h). Assume that tn ↓ 0 and {vn}n is a sequence of points, each one
in ∂h(l + tnl′), and converging to a point in Limsup t↓0 ∂h(l + tl′). Lemma 3.3
shows that

vn ∈ ∂h(l + tnl′) = Y (l + tnl′,∂h) (n ∈ IN) .

By the definition of supporting face and by (7), we have

〈vn, l + tnl′〉 ≥ 〈v̄, l + tnl′〉= 〈v̄, l〉+ tn〈v̄, l′〉= h(l)+ tn〈v̄, l′〉 (26)

and

〈l,vn〉 ≤ δ ∗(l,Y (l + tnl′,∂h))≤ δ ∗(l,∂h) = h′(0; l) = h(l) . (27)

Taking limits as n→ ∞ (tn ↓ 0) on both sides of (26) and (27), we obtain

lim
n→∞

〈vn, l〉 = h(l) . (28)

Let ṽ ∈ Y (l′,Y (l,∂h)). Observe that ṽ ∈ Y (l,∂h) ⊂ ∂h, vn ∈ Y (l + tnl′,∂h) and

〈vn, l + tnl′〉 = 〈vn, l〉+ tn〈vn, l
′〉 ≤ 〈ṽ, l〉+ tn〈vn, l

′〉 , (29)

〈vn, l + tnl′〉 ≥ 〈ṽ, l + tnl′〉= 〈ṽ, l〉+ tn〈ṽ, l′〉 . (30)

Subtracting (30) from (29), we have 〈vn, l′〉 ≥ 〈ṽ, l′〉. Thus for any cluster point
v̂ ∈ Limsup t↓0 ∂h(l + tl′) of the sequence {vn}n, we have

〈v̂, l′〉 ≥ 〈ṽ, l′〉 . (31)

Since Y (·,∂h) is upper semicontinuous and has closed values, it follows from (24)
and vn ∈ Y (l + tnl′,∂h) that v̂ ∈ Y (l,∂h). Hence, v̂ ∈ Y (l′,Y (l,∂h)) by (31) and the
inclusion “⊂” in (25) is proved with the outer limit in the left-hand side.
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Assume now that Y (l′,Y (l,∂h)) contains two different points ṽ1, ṽ2. Clearly,

〈l′, ṽ1〉 = 〈l′, ṽ2〉= δ ∗(l′,Y (l,∂h)) ,

〈l, ṽ1〉 = 〈l, ṽ2〉= δ ∗(l,∂h) .

For any η ∈ IR2, the representation η = 〈η , l〉 · l + 〈η , l′〉 · l′ is valid, therefore

〈η , ṽ1− ṽ2〉 = 〈η , l〉 · 〈l, ṽ1− ṽ2〉+ 〈η , l′〉 · 〈l′, ṽ1− ṽ2〉= 0 ,

which contradicts the assumption that the points are different.
Hence, the right-hand side in (25) is just a singleton and the equality follows

by the nonemptiness of the left-hand side guaranteed by Lemma 3.4, (12) and
Remark 2.1. ��

Thus, (25) in the above lemma can be reformulated with the notation (5) as

Lim
t↓0

∂h(l + tl′) = {dh(l; l′)} . (32)

The previous lemma will be generalized to DC functions. The following lemma
states an explicit formula for the third term appearing in the right-hand side of (20)
in Proposition 3.1.

Lemma 3.6. Let f = g−h, where g,h : IR2 → IR are sublinear. Then for every l, l′ ∈
S1, l′ ⊥ l the outer limit Limsup t↓0 ∂F f (l + tl′) is a singleton, and

Limsup
t↓0

∂F f (l + tl′) = {y(l′,Y (l,∂g))− y(l′,Y (l,∂h))} . (33)

Proof. Let
u ∈ Limsup

t↓0
∂F f (l + tl′) .

Then there exist sequences {un}, {tn}, un → u, tn ↓ 0 such that un ∈ ∂F f (l + tnl′).
By Lemma 3.2 we have

∂F f (l + tnl′) = ∂g(l + tnl′)−* ∂h(l + tnl′) (n ∈ IN) .

Therefore, for all n ∈ IN there are

vn ∈ ∂g(l + tnl′) and wn ∈ ∂h(l + tnl′)

such that un = vn−wn.
Since {vn} and {wn} are bounded (as they belong to the corresponding up-

per semicontinuous subdifferentials of g and h), the sets Limsupn→∞{vn} and
Limsupn→∞{wn} of cluster points of the corresponding sequences are nonempty.
Moreover, by Lemma 3.5 we have

Limsup
n→∞

{vn} ⊂ Limsup
n→∞

∂g(l + tnl′) = Lim
n→∞

∂g(l + tnl′) = {dg(l; l′)} ,

Limsup
n→∞

{wn} ⊂ Limsup
n→∞

∂h(l + tnl′) = Lim
n→∞

∂h(l + tnl′) = {dh(l; l′)} ,

where we have used the notation (5).
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Hence the sequences {vn} and {wn} converge and have unique cluster points.
Therefore

u = lim
n→∞

un = lim
n→∞

vn− lim
n→∞

wn = dg(l; l′)−dh(l; l′) .

Since u is arbitrary, we have

Limsup
t↓0

∂F f (l + tl′)⊂ {dg(l; l′)−dh(l; l′)} . (34)

Applying Lemma 3.4,
Limsup

t↓0
∂F f (l + tl′) �= /0

holds and we obtain (33) from (34). ��
For the convenience of the reader, we include a full proof for the explicit formula

of the subdifferential of a sublinear function with the help of two collinear directions
orthogonal to the supporting face in Lemma 3.3, although this geometric fact is
rather obvious.

Lemma 3.7. Let h : IR2 → IR be a sublinear function. Then for every l, l′ ∈S1 with
l′ ⊥ l,

∂h(l) = co{dh(l;−l′),dh(l; l′)} ,

where we used again the notation (5).

Proof. From Lemma 3.3, we know that

∂h(l) = Y (l,∂h) .

Obviously, co{dh(l;−l′),dh(l; l′)} ⊂ Y (l,∂h), and we only need to show the oppo-
site inclusion. Assume that there exists v ∈ Y (l,∂h) such that

v /∈ co{dh(l;−l′),dh(l; l′)} .

Then by the separation theorem there exists l̃ ∈ IR2 such that

〈v, l̃〉> max{〈dh(l;−l′), l̃〉,〈dh(l; l′), l̃〉} . (35)

Since the representation v = 〈v, l〉 · l +〈v, l′〉 · l′ holds, we can use v∈Y (l,∂h) as well
as (4) and (7) to observe that

〈l̃,v〉= 〈l̃, l〉 · 〈v, l〉+ 〈l̃, l′〉 · 〈v, l′〉= 〈l̃, l〉 ·h(l)+ 〈l̃, l′〉 · 〈v, l′〉 .

Using dh(l; l′)∈Y (l,∂h) twice, the equality h(l) = 〈dh(l, l′), l〉 follows, if 〈l̃, l′〉 ≥ 0,
as well as

〈l̃,v〉 ≤ 〈l̃, l〉 ·h(l)+ 〈l̃, l′〉 · 〈dh(l; l′), l′〉= 〈dh(l; l′), l̃〉
≤ max{〈dh(l;−l′), l̃〉,〈dh(l; l′), l̃〉} . (36)
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Analogously, if 〈l̃, l′〉< 0, the following estimate is valid due to h(l)= 〈dh(l,−l′), l〉:
〈l̃,v〉 ≤ 〈l̃, l〉 ·h(l)−〈l̃, l′〉 · 〈dh(l;−l′),−l′〉= 〈dh(l;−l′), l̃〉

≤ max{〈dh(l;−l′), l̃〉,〈dh(l; l′), l̃〉} (37)

Clearly, (36) resp. (37) contradict (35), hence our assumption is wrong. ��
The next two lemmas will be used in the further theorems. The first one connects

the first component of the embedding (17) of convex sets into the space of directed
sets to the interval which coincides with the projection of the line segment from
Lemma 3.7. In the embedding, the natural projection π1,2 and the rotation R2,l in [2]
are used.

Lemma 3.8. Let h : IR2 → IR be sublinear, l ∈S1 and l′ = R�2,le
1. Then, the embed-

ding in (17) satisfies

π1,2R2,l(Y (l,∂h)−h(l)l) = [〈dh(l;−l′), l′〉,〈dh(l; l′), l′〉] ,

where we used again the notation (5).

Proof. Observe that l ⊥ l′, so that Lemmas 3.3 and 3.7 apply with

Y (l,∂h) = co{dh(l;−l′),dh(l; l′)} . (38)

Since h(l) = 〈dh(l;±l′), l〉, the following representation holds:

dh(l;±l′) = 〈dh(l;±l′), l′〉 · l′+ 〈dh(l;±l′), l〉 · l = 〈dh(l;±l′), l′〉 · l′+ h(l)l. (39)

Therefore,

π1,2R2,l(Y (l,∂h)−h(l)l) = π1,2R2,l(co{dh(l;−l′),dh(l; l′)}−h(l)l) (by (38))

= π1,2R2,l(co{dh(l;−l′)−h(l)l,dh(l; l′)−h(l)l})
= π1,2R2,l(co{〈dh(l;−l′), l′〉l′,〈dh(l; l′), l′〉l′}) (by (39))

= co{π1,2R2,l〈dh(l;−l′), l′〉l′,π1,2R2,l〈dh(l; l′), l′〉l′}
= co{〈dh(l;−l′), l′〉 ·π1,2R2,ll

′,〈dh(l; l′), l′〉 ·π1,2R2,l l
′}

= co{〈dh(l;−l′), l′〉,〈dh(l; l′), l′〉}
= [〈dh(l;−l′), l′〉,〈dh(l; l′), l′〉]

(as 〈dh(l;−l′), l′〉 ≤ 〈dh(l; l′), l′〉) .

��
The following lemma generalizes Lemma 3.8 to DS functions. To study the result

of the embedded difference of subdifferentials, the convex sets in the first compo-
nent of the embedding (17) can be calculated with the help of the two endpoints of
the interval.
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Lemma 3.9. Let f = g− h, where g,h : IR2 → IR are sublinear. Consider l ∈ S1

and the orthogonal vector l′ = R�2,le
1. Then

π1,2R2,l(D−(l)− f (l)l) = 〈dg(l;−l′)−dh(l;−l′), l′〉 ,
π1,2R2,l(D+(l)− f (l)l) = 〈dg(l; l′)−dh(l; l′), l′〉 ,

where the notation (5) and

D−(l) := Limsup
t↓0

∂F f (l− tl′) and D+(l) := Limsup
t↓0

∂F f (l + tl′)

are used.

Proof. Clearly, l ⊥ l′. By Lemma 3.6, the two sets

D−(l) = dg(l;−l′)−dh(l;−l′) , D+(l) = dg(l; l′)−dh(l; l′)

are singletons and dg(l;±l′) ∈ Y (l,∂g), dh(l;±l′) ∈ Y (l,∂h). Therefore,

π1,2R2,l(D−(l)− f (l)l) = π1,2R2,l(D−(l)− f (l)l)
= π1,2R2,l(dg(l;−l′)−dh(l;−l′)− f (l)l)
= π1,2R2,l(〈dg(l;−l′)−dh(l;−l′), l′〉l′

+〈dg(l;−l′)−dh(l;−l′), l〉l− f (l)l)
= π1,2R2,l(〈dg(l;−l′)−dh(l;−l′), l′〉l′

+(g(l)−h(l))l− f (l)l)
= π1,2R2,l(〈dg(l;−l′)−dh(l;−l′), l′〉l′)
= 〈dg(l;−l′)−dh(l;−l′), l′〉 ·π1,2R2,ll

′

= 〈dg(l;−l′)−dh(l;−l′), l′〉 ·π1,2R2,lR
�
2,le

1

= 〈dg(l;−l′)−dh(l;−l′), l′〉

and analogously

π1,2R2,l(D+(l)− f (l)l) = 〈dg(l; l′)−dh(l; l′), l′〉 .

��
We apply the two lemmas above to represent the directed subdifferential of a

positively homogeneous DC function in IR2 with the help of outer limits of Fréchet
subdifferential. The unique supporting points calculated in Lemma 3.9 are used to
determine the (one-dimensional) first component of the directed subdifferential.

Lemma 3.10. f = g−h, g,h : IR2 → IR, sublinear. Then, using the notation (5),

−→
∂ f (0) = (

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[〈dg(l;−l′)−dh(l;−l′), l′〉,〈dg(l; l′)−dh(l; l′), l′〉], f (l))l∈S1

with l′ = l′(l) = R�2,le
1.
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Proof. Observe that δ ∗(l,∂g) = g′(0; l) = g(l) by (4) and Lemma 2.2 and therefore,

−→
∂ f = J2(∂g)− J2(∂h) (by definition)

= (J1(π1,2R2,l(Y (l,∂g)−g(l)l)),g(l))l∈S1

−(J1(π1,2R2,l(Y (l,∂h)−h(l)l)),h(l))l∈S1 (by definition)

= (J1([〈dg(l;−l′), l′〉,〈dg(l; l′), l′〉])
−J1([〈dh(l;−l′), l′〉,〈dh(l; l′), l′〉]),g(l)−h(l))l∈S1 (by Lemma 3.8)

= (
−−−−−−−−−−−−−−−−−−−→
[〈dg(l;−l′), l′〉,〈dg(l; l′), l′〉]−−−−−−−−−−−−−−−−−−−−→[〈dh(l;−l′), l′〉,〈dh(l; l′), l′〉], f (l))l∈S1

= (
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[〈dg(l;−l′), l′〉− 〈dh(l;−l′), l′〉,〈dg(l; l′), l′〉− 〈dh(l; l′), l′〉], f (l))l∈S1 .

��
As a first main result, we connect the representation of the directed subdifferen-

tial to outer limits of Fréchet subdifferentials.

Theorem 3.11. Let g,h : IR2 → IR be sublinear functions, and let f = g− h. Then
the directed subdifferential of f at zero

−→
A = (

−→
A1(l),a2(l))l∈S1 can be constructed

via limits of Fréchet normals as follows: for every l ∈S1 let

f2(l) := f (l),
−→
F1(l) :=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[π1,2R2,l

(
D−(l)− f (l)l

)
,π1,2R2,l

(
D+(l)− f (l)l

)
] , (40)

where D−(l) := Limsup t↓0 ∂F f (l − tl′), D+(l) := Limsup t↓0 ∂F f (l + tl′), and

l′ := R�2,le
1.

Then,
−→
F = (

−→
F1(l), f2(l))l∈S1 coincides with

−→
A =

−→
∂ f (0).

Proof. By Lemma 3.9

π1,2R2,l(D−(l)− f (l)l) = 〈dg(l;−l′)−dh(l;−l′), l′〉 ,
π1,2R2,l(D+(l)− f (l)l) = 〈dg(l; l′)−dh(l; l′), l′〉 ,

where we used again the notation (5). Therefore,

−→
F = (

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[〈dg(l;−l′)−dh(l;−l′), l′〉,〈dg(l; l′)−dh(l; l′), l′〉], f (l))l∈S1 ,

which coincides with the directed subdifferential
−→
A of f by Lemma 3.10. ��

The equality for the Fréchet subdifferential in the next lemma will be used to ex-
plicitly calculate the second term appearing in the right-hand side of (20) in Propo-
sition 3.1. Geometrically, this fact is easy to believe so the reader may skip the
technical proof.

Lemma 3.12. Let f = g− h, where g,h : IR2 → IR are sublinear. Then for every
l ∈S1

∂F f (l) = ∂g(l)−* ∂h(l) = co{dg(l;−l′),dg(l; l′)}−* co{dh(l;−l′),dh(l; l′)}
=
{

co{dg(l;−l′)−dh(l;−l′),dg(l; l′)−dh(l; l′)} , if case 1 holds,
/0 , if case 2 holds,
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where we used again the notation (5) and l′ = R�2,le
1. Case 1 holds, if

〈dg(l;−l′)−dh(l;−l′), l′〉 ≤ 〈dg(l; l′)−dh(l; l′), l′〉

and case 2 is given, if the inequality “>” holds.

Proof. Lemmas 3.3 and 3.7 show that

∂g(l) = Y (l,∂g) = co{dg(l;−l′),dg(l; l′)} ,

∂h(l) = Y (l,∂h) = co{dh(l;−l′),dh(l; l′)} ,

since l ⊥ l′. Clearly, for all v ∈ ∂g(l) and w ∈ ∂h(l), (4) and (7) apply, that is

〈l,v〉 = δ ∗(l,∂g) = g′(0; l) = g(l) ,

〈l,w〉 = δ ∗(l,∂h) = h′(0; l) = h(l)

and especially,

〈l,dg(l;±l′)〉= g(l) , 〈l,dh(l;±l′)〉= h(l) . (41)

It holds that

∂g(l) = co{dg(l;−l′)−g(l)l,dg(l; l′)−g(l)l}+ g(l)l

= co{〈dg(l;−l′), l′〉 · l′,〈dg(l; l′), l′〉 · l′}+ g(l)l ,

∂h(l) = co{dh(l;−l′)−h(l)l,dh(l; l′)−h(l)l}+ h(l)l

= co{〈dh(l;−l′), l′〉 · l′,〈dh(l; l′), l′〉 · l′}+ h(l)l ,

∂g(l)−g(l)l = co{〈dg(l;−l′), l′〉 · l′,〈dg(l; l′), l′〉 · l′} ,

∂h(l)−h(l)l = co{〈dh(l;−l′), l′〉 · l′,〈dh(l; l′), l′〉 · l′} .

Let us denote for abbreviation

μ1 := 〈dg(l;−l′), l′〉 , μ2 := 〈dg(l; l′), l′〉 ,
ν1 := 〈dh(l;−l′), l′〉 , ν2 := 〈dh(l; l′), l′〉 .

Since dg(l; l′) ∈ Y (l′,Y (l,∂g)) and dh(l; l′) ∈Y (l′,Y (l,∂h)), we have the ordering

μ1 ≤ μ2 and ν1 ≤ ν2 .

Let us study the scalar product of u ∈ (∂g(l)−g(l)l)−*(∂h(l)−h(l)l) and η ∈ IRn:

〈η ,u〉 ≤ δ ∗(η ,co{μ1l′,μ2l′})− δ ∗(η ,co{ν1l′,ν2l′})
= max{〈η ,μ1l′〉,〈η ,μ2l′〉}−max{〈η ,ν1l′〉,〈η ,ν2l′〉}
= max{μ1 · 〈η , l′〉,μ2 · 〈η , l′〉}−max{ν1 · 〈η , l′〉,ν2 · 〈η , l′〉}.
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Both shifted line segments are spanned by the vector l′, hence the geometric
difference lies also in this span which is demonstrated by setting η = ±l in the
above inequality:

〈l,u〉 ≤ 0−0 = 0, 〈−l,u〉 ≤ 0−0 = 0

Hence, 〈l,u〉 = 0. Let us study the scalar product in the orthogonal directions l′
and −l′.

〈l′,u〉 ≤ max{μ1,μ2}−max{ν1,ν2}= μ2−ν2 , (42)

〈−l′,u〉 ≤ max{−μ1,−μ2}−max{−ν1,−ν2}=−μ1 +ν1. (43)

Assume that ν2 − ν1 > μ2 − μ1 and that u ∈ IRn exists with u ∈ (∂g(l) −
g(l)l)−* (∂h(l)−h(l)l). Then, (42) and (43) yield the contradiction

μ1−ν1 ≤ 〈l′,u〉 ≤ μ2−ν2 , i.e. ν2−ν1 ≤ μ2− μ1 .

Now assume that
ν2−ν1 ≤ μ2− μ1 . (44)

We will show that
M1 = M2

holds for

M1 := (co{μ1,μ2} · l′)−* (co{ν1,ν2} · l′) , M2 := co{μ1−ν1,μ2−ν2} · l′ .

“⊂”: Let η ∈ IRn. Using 〈l,u〉 = 0 and the orthonormal basis {l, l′}, we get η =
〈η , l〉 · l + 〈η , l′〉 · l′ and

δ ∗(η ,M1) = max
u∈M1

〈η ,u〉= max
u∈M1

(〈η , l〉 · 〈l,u〉+ 〈η , l′〉 · 〈l′,u〉)
= 〈η , l′〉 ·δ ∗(l′,M1)≤ 〈η , l′〉 · (μ2−ν2) (by (42))

= 〈η , l′〉 · max
α∈[μ1−ν1,μ2−ν2]

〈l′,α · l′〉

= max
α∈[μ1−ν1,μ2−ν2]

(〈η , l〉 · 〈l,α · l′〉+ 〈η , l′〉 · 〈l′,α · l′〉)
= max

α∈[μ1−ν1,μ2−ν2]
〈η ,α · l′〉= max

u∈M2
〈η ,u〉= δ ∗(η ,M2),

which shows that M1 ⊂M2.
“⊃”: Let us first show that (μ1−ν1)l′ ∈M1. Since (44) and μ1−ν1 +ν2 ≤ μ2 hold,

(μ1−ν1)l′+ co{ν1,ν2} · l′ = (μ1−ν1)l′+ co{ν1l′,ν2l′}
= co{(μ1−ν1)l′+ν1l′,(μ1−ν1)l′+ν2l′}
= co{μ1l′,(μ1−ν1+ν2)l′}=co{μ1,(μ1−ν1 +ν2)} · l′
⊂ co{μ1,μ2} · l′ .
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Hence, the first endpoint of the line segment M2 lies in M1:

(μ1−ν1)l′ ∈
(

co{μ1,μ2} · l′
)−* (co{ν1,ν2} · l′

)
= M1.

Now, we proceed similarly with the second endpoint (μ2− ν2)l′. Since (44) and
μ2−ν2 +ν1 ≥ μ1 is valid,

(μ2−ν2)l′+ co{ν1,ν2} · l′ = (μ2−ν2)l′+ co{ν1l′,ν2l′}
= co{(μ2−ν2)l′+ν1l′,(μ2−ν2)l′+ν2l′}
= co{(μ2−ν2+ν1)l′,μ2l′}=co{(μ2−ν2 +ν1),μ2} · l′
⊂ co{μ1,μ2} · l′ .

An immediate consequence is that the second endpoint of M2 also lies in M1:

(μ2−ν2)l′ ∈
(

co{μ1,μ2} · l′
)−* (co{ν1,ν2} · l′

)
= M1.

Since M1 is convex, it follows that

M2 = co{(μ1−ν1)l′,(μ2−ν2)l′} ⊂M1 .

This equality for both sets is used to reformulate the geometric difference:

∂g(l)−* ∂h(l) = (∂g(l)−g(l)l)−* (∂h(l)−h(l)l)+ f (l)l
= (co{μ1,μ2} · l′)−* (co{ν1,ν2} · l′)+ f (l)l
= co{μ1−ν1,μ2−ν2} · l′+ f (l)l
= co{(μ1−ν1)l′+ f (l)l,(μ2−ν2)l′+ f (l)l}.

Let us now calculate both endpoints of the line segment using (41):

(μ1−ν1)l′+ f (l)l =
(〈dg(l;−l′), l′〉− 〈dh(l;−l′), l′〉) · l′+ g(l)l−h(l)l

=
(〈dg(l;−l′), l′〉 · l′+ 〈dg(l;−l′), l〉 · l)
− (〈dh(l;−l′), l′〉 · l′+ 〈dh(l;−l′), l〉 · l)

= dg(l;−l′)−dh(l;−l′),
(μ2−ν2)l′+ f (l)l =

(〈dg(l; l′), l′〉− 〈dh(l; l′), l′〉) · l′+ g(l)l−h(l)l
=
(〈dg(l; l′), l′〉 · l′+ 〈dg(l; l′), l〉 · l)
− (〈dh(l; l′), l′〉 · l′+ 〈dh(l; l′), l〉 · l)

= dg(l; l′)−dh(l; l′).

This finally shows that

∂g(l)−* ∂h(l) = co{dg(l;−l′)−dh(l;−l′),dg(l; l′)−dh(l; l′)} .

��
The next main theorem shows that the Mordukhovich subdifferential of f at 0 can

be represented via visualization parts from (18)–(19) of the directed subdifferential.
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Theorem 3.13. Let f = g−h, where g,h : IR2 → IR are sublinear functions, and let−→
A =

−→
∂ f (0) be the directed subdifferential of f at 0. Then,

∂M f (0) = P2(
−→
A )∪

⋃
l∈S1

Q2,l

(
P1(
−→
A1(l))∪bdN1(

−→
A1(l))

)
, (45)

where bd denotes the boundary of a set in IR, and Q2,l(y) = R�2,lπ
�
1,2(y)+ a2(l)l is

the reprojection as in [3].

Proof. First of all, observe that by Proposition 3.1

∂M f (0) = ∂F f (0)∪
⋃

l∈S1

(
∂F f (l)∪Limsup

t↓0
∂F f (l− tl′)∪Limsup

t↓0
∂F f (l + tl′)

)
,

(46)
where l′ = R�2,le

1. The proof consists of three parts:
Step 1: We will show that the positive part coincides with the Fréchet subdifferen-

tial at x = 0:
∂F f (0) = P2(

−→
A ). (47)

Step 2: We will conclude that the reprojected positive part is the second term in
(46):

∂F f (l) =

{
Q2,lP1(

−→
A1(l)), if P1(

−→
A1(l)) �= /0 ,

/0, if P1(
−→
A1(l)) = /0.

(48)

Step 3: We will prove the following equality for the reprojected boundary points:

Limsup
t↓0

∂F f (l− tl′)∪Limsup
t↓0

∂F f (l + tl′) = Q2,l(bdP1(
−→
A1(l))∪bdN1(

−→
A1(l))).

(49)
It is not difficult to see that Steps 1–3 together with (46) yield (45).

Step 1: For the Fréchet subdifferential, Lemma 2.2 yields

∂F f (0) = {v | 〈v, l〉 ≤ f (l) ∀l ∈S1} . (50)

This equation can be compared with the definition of the positive part of the directed
set:

P2(
−→
A ) = {v ∈ IR2 | 〈v, l〉 ≤ a2(l) ∀l ∈S1}. (51)

Since a2(l) = g(l)−h(l) = f (l), from (50) and (51) we conclude (47).

Step 2: By Lemma 3.12 for all l ∈S1 we have

∂F f (l) =

⎧⎪⎨
⎪⎩

co{dg(l;−l′)−dh(l;−l′),
dg(l; l′)−dh(l; l′)}, if case 1 of Lemma 3.12 holds,

/0 , if the opposite inequality holds,

(52)

where the notation (5) is again used.



On Computing the Mordukhovich Subdifferential Using Directed Sets 79

At the same time, Lemma 3.10 yields for every l ∈S1

P1(
−→
A1(l)) = P1(

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[〈dg(l;−l′)−dh(l;−l′), l′〉,〈dg(l; l′)−dh(l; l′), l′〉])

=

⎧⎪⎨
⎪⎩

[〈dg(l;−l′)−dh(l;−l′), l′〉,
〈dg(l; l′)−dh(l; l′), l′〉] , if case 1 of Lemma 3.12 holds,

/0 , if case 2 of Lemma 3.12 holds.

(53)

Observe that

Q2,l(〈dg(l;±l′)−dh(l;±l′), l′〉) (54)

= R�2,lπ
�
1,2(〈dg(l;±l′)−dh(l;±l′), l′〉)+ a2(l)l

= R�2,l(〈dg(l;±l′)−dh(l;±l′), l′〉)e1 + f (l)l

= 〈dg(l;±l′)−dh(l;±l′), l′〉 · l′+(g(l)−h(l))l
= 〈dg(l;±l′), l′〉 · l′+ g(l)l−〈dh(l;±l′), l′〉 · l′ −h(l)l
= 〈dg(l;±l′), l′〉 · l′+ 〈dg(l;±l′), l〉 · l
−〈dh(l;±l′), l′〉 · l′ − 〈dh(l;±l′), l〉 · l

= dg(l;±l′)−dh(l;±l′) ,

and hence

Q2,l{[〈dg(l;−l′)−dh(l;−l′), l′〉,〈dg(l; l′)−dh(l; l′), l′〉]}
= co{dg(l;−l′)−dh(l;−l′),dg(l; l′)−dh(l; l′)} . (55)

Equation (48) follows from (52), (53), and (55).

Step 3: By Lemma 3.6

Limsup
t↓0

∂F f (l± tl′) = {dg(l;±l′)−dh(l;±l′)} , (56)

since l ⊥ l′. An immediate consequence of (53) and (54) is

Q2,l(bdP1(
−→
A1(l))) =

⎧⎨
⎩
{dg(l;−l′)−dh(l;−l′),
dg(l; l′)−dh(l; l′)}, if P1(

−→
A1(l)) �= /0 ,

/0, if P1(
−→
A1(l)) = /0 .

(57)

Since N1(
−→
A1(l)) = �P1(−−→A1(l)), the expression for Q2,l(bdN1(

−→
A1(l))) can be ob-

tained analogously:

Q2,l(bdN1(
−→
A1(l))) =

⎧⎨
⎩
{dg(l;−l′)−dh(l;−l′),
dg(l; l′)−dh(l; l′)} , if N1(

−→
A1(l)) �= /0 ,

/0 , if N1(
−→
A1(l)) = /0.

(58)
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There are three possible cases (see [3, Proposition 3.4]): either one of the sets
P1(
−→
A1(l))) or N1(

−→
A1(l))) is empty or both are singletons and P1(

−→
A1(l))) =

N1(
−→
A1(l))). Together with (57) and (58), this yields

Q2,l(bdP1(
−→
A1(l))∪bdN1(

−→
A1(l))) = {dg(l;−l′)−dh(l;−l′),dg(l; l′)−dh(l; l′)}.

(59)
Now, (56) and (59) yield (49). ��

The Mordukhovich superdifferential and symmetric subdifferential of f at 0 is
represented via the directed subdifferential in the following theorem. Besides iso-
lated points from the reprojected lower dimensional positive part of the directed
subdifferential, the Mordukhovich superdifferential forms the negative two- and
one-dimensional part in the visualization of the directed subdifferential. The pos-
itive parts are reflected by the Mordukhovich subdifferential (see Theorem 3.13) so
that the Mordukhovich symmetric subdifferential form the complete visualization
of the directed subdifferential for DS functions.

Theorem 3.14. Let f = g−h, where g,h : IR2 → IR are sublinear functions, and let−→
A =

−→
∂ f (0) be the directed subdifferential of f at 0. Then,

∂+
M f (0) = N2(

−→
A )∪

⋃
l∈S1

Q2,l

(
N1(
−→
A1(l))∪bdP1(

−→
A1(l))

)
, (60)

∂ 0
M f (0) = V2(

−→
∂ f (0)) . (61)

Proof. Apply Theorem 3.13 to − f = h−g and use [3, Proposition 3.8]:

−→
∂ (− f )(0) = −−→∂ f (0) , �P2(−−→A ) = N2(

−→
A ) ,

�P1(−−→A1(l)) = N1(
−→
A1(l)) , �N1(−−→A1(l)) = P1(

−→
A1(l)).

This, together with (15), immediately yields (60).
Since

V1(
−→
A1(l)) = P1(

−→
A1(l))∪N1(

−→
A1(l)) , M2(

−→
A )⊂ Q2,lV1(

−→
A1(l))

and (18) hold, the second equation (61) follows easily. ��
Applying the previous Theorems 3.11, 3.13, and 3.14 to the directional deriva-

tive generalizes these results to the class of general DC functions (which are not
necessarily positively homogeneous).

As a starting point, we will demonstrate that the directed subdifferential of the
function at x coincides with the one of its directional derivative evaluated at direction
l = 0.

Proposition 3.15. Let f = g−h with g,h : IRn → IR be convex functions. Then,

−→
∂ [ f ′(x; ·)](0) =

−→
∂ f (x). (62)
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Proof. By Lemma 3.3, the convex subdifferential of g′(x; )̇ in 0 coincides with the
one of g(x):

∂ [g′(x; ·)](0) = Y (0,∂g(x)) = ∂g(x).

The same is true for the convex function h such that

−→
∂ [ f ′(x; ·)](0) = Jn(∂ [g′(x; ·)](0))− Jn(∂ [h′(x; ·)](0))

= Jn(∂g(x))− Jn(∂h(x)) =
−→
∂ f (x) .

��
Since the Mordukhovich subdifferential of the directional derivative may differ

from the one for the function itself (see Example 4.3) in contrary to the directed sub-
differential, the following results for the Mordukhovich subdifferentials have to be
formulated with the directional derivative. The next theorem yields the connection
between outer limits of Fréchet subdifferentials and the directed subdifferential.

Theorem 3.16. Let g,h : IR2 → IR be convex functions, and let f = g− h. Then
the directed subdifferential

−→
A = (

−→
A1(l),a2(l))l∈S1 of f at x can be constructed via

limits of Fréchet normals as follows: for every l ∈S1 let

f2(l) := f ′(x; l) ,
−→
F1(l) :=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[π1,2R2,l

(
D−(l)− f ′(x; l)l

)
,π1,2R2,l

(
D+(l)− f ′(x; l)l

)
] ,
(63)

where

D−(l) := Limsup
t↓0

∂F f ′(x; ·)(l− tl′) , D+(l) := Limsup
t↓0

∂F f ′(x; ·)(l + tl′) ,

and l′ := R�2,le
1.

Then,
−→
F = (

−→
F1(l), f2(l))l∈S1 coincides with

−→
A =

−→
∂ f (x).

Proof. Applying [10, Sect. I.3, Proposition 3.1], the directional derivative

f ′(x; l) = g′(x; l)−h′(x; l)

is a DS representation. Hence, Proposition 3.15 and Theorem 3.11 can be applied.
��

The next theorem for DC functions, in which we can drop the assumption of
positive homogeneity, could be seen as the nonconvex counterpart of the following
result for locally Lipschitz and directionally differentiable function in [19, Sect. 3]
and [8, (35)]:

∂Cl[ f ′(x; ·)](0) = ∂MP f (x) ,

where ∂MP f (x) is the Michel–Penot subdifferential of f in x (see [8, 21]). In what
follows the Mordukhovich symmetric subdifferential for the directional derivative at
x in direction 0 coincides with the Rubinov subdifferential at x, that is, its visualized
directed subdifferential.
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Theorem 3.17. Let f = g− h, where g,h : IR2 → IR are convex functions, and let−→
A =

−→
∂ f (x) be the directed subdifferential of f at x. Then,

∂M[ f ′(x; ·)](0) = P2(
−→
A )∪

⋃
l∈S1

Q2,l

(
P1(
−→
A1(l))∪bdN1(

−→
A1(l))

)
, (64)

∂+
M [ f ′(x; ·)](0) = N2(

−→
A )∪

⋃
l∈S1

Q2,l

(
N1(
−→
A1(l))∪bdP1(

−→
A1(l))

)
, (65)

∂ 0
M[ f ′(x; ·)](0) = V2(

−→
∂ f (x)) . (66)

Proof. As in the proof of Theorem 3.16, the equality (62) of the directed subdif-
ferential of f ′(x; ·) in 0 and the one of f (·) in x holds. The claimed equalities are
proved by applying Theorems 3.13 and 3.14. ��
Remark 3.18. All the lemmas starting from Lemma 3.3 could be adapted to the con-
vex (instead of sublinear) situation. For this purpose, the function must be replaced
by its directional derivative, which is sublinear with respect to its second argument.
For example, Lemma 3.5 reads for h being only convex:

Limsup
t↓0

∂ [h′(x; ·)](l + tl′) = Y (l′,Y (l,∂h(x))) .

4 Examples

For each of the presented examples, we will first calculate theoretically the Mor-
dukhovich subdifferential and superdifferential. Their union, the symmetric subdif-
ferential is compared visually with the Rubinov subdifferential in [4].

We will frequently use Lemma 2.3 for evaluating the Fréchet subdifferential,
which is a basic tool for calculating the Mordukhovich subdifferential with (13).
Analogously, we proceed with the Fréchet superdifferential and (14) in the same
way to evaluate the Mordukhovich superdifferential.

The first example is governed by a parameter r by which three different cases
could be studied: the Mordukhovich subdifferential has nonempty interior (r = 0.5),
the Mordukhovich superdifferential has nonempty interior (r = 2.0), and both have
empty interior (r = 1.25). This corresponds to nonemptiness of the positive part
resp. of the negative part as well as the mere presence of the mixed-type part in the
directed subdifferential.

Example 4.1 ([4, Example 5.7]). Let f = g−h, where

g(x) = |x1|+ |x2|, h(x) = r
√

x2
1 + x2

2 = r‖x‖, r > 0 .

To evaluate the Mordukhovich lower/upper/symmetric subdifferential of f at zero
directly, we first need to calculate the Fréchet subdifferentials of f at zero and in its
neighborhood.
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A. The Fréchet subdifferential at 0. Observe that f can be represented as follows:

f (x) = g(x)− r
√

x2
1 + x2

2 = g(x)+ min
‖w‖=r

〈w,x〉= min
‖w‖=r

(g(x)+ 〈w,x〉) .

Let
ϕw(x) := 〈w,x〉+ g(x) ,

then
f (x) = min

‖w‖=r
ϕw(x) .

Since f ′(0; l) = f (l), the formula (9) for the Fréchet subdifferential holds

∂F f (0) =
⋂
‖w‖=r

(∂g(0)+ w) . (67)

It is not difficult to see that

∂g(0) = co{(1,1),(−1,1),(1,−1),(−1,−1)}= [−1,1]2 .

We are going to show that

∂F f (0) =
{

[−1 + r,1− r]2 , r ≤ 1 ,
/0 , r > 1 .

(68)

Let u ∈ ∂F f (0). For every w, ‖w‖= r, there exists v ∈ [−1,1]2 by (67) such that the
coordinates satisfy

ui = vi + wi, i = 1,2 .

This yields −1 + r≤ ui ≤ 1− r, and hence

∂F f (0)⊂ [−1 + r,1− r]2 , if r ≤ 1 , (69)

and
∂F f (0) = /0 , if r > 1 . (70)

To show the inclusion opposite to (69), consider an arbitrary u such that −1 + r ≤
ui ≤ 1− r. For every w, ‖w‖ = r, we set v := u−w. Then v ∈ [−1,1]2 is valid as
well as

∂F f (0)⊃ [−1 + r,1− r]2 . (71)

Now, (68) follows from (69)–(71).

B. The Fréchet superdifferential at 0. Observe that

f (x) = max
i=1,...,4

〈vi,x〉− max
‖w‖=r

〈w,x〉

= max
i=1,...,4

{
〈vi,x〉− max

‖w‖=r
〈w,x〉

}
=− min

i=1,...,4

{
max
‖w‖=r

〈w,x〉− 〈vi,x〉
}

,
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where

v1 = (1,1), v2 = (1,−1), v3 = (−1,1), v4 = (−1,−1) .

Let

ϕi(x) = max
‖w‖=r

〈w,x〉− 〈vi,x〉 .

It is not difficult to observe that

∂ϕi(x) = Br(0)− vi = Br(−vi) ,

where Br(m) = {x |‖x−m‖ = r}. Using (10), the Fréchet superdifferential can be
calculated as

∂+
F f (x) =�

4⋂
i=1

Br(−vi) =
4⋂

i=1

Br(vi) . (72)

C. The Fréchet sub- and superdifferentials around 0. For every x �= 0 the func-
tion h is smooth, hence

∂F f (x) = ∂ f (x) = ∂g(x)−h′(x) = ∂g(x)− r
x
‖x‖ ∀x �= 0 .

For the Fréchet superdifferential in all points x �= 0 we have

∂+
F f (x) =

⎧⎨
⎩

g′(x)− r x
‖x‖ , if g is differentiable at x,

/0 , otherwise, since g is not Fréchet superdifferentiable
due to [18, Proposition 1.3].

Observe that for x �= 0, the subdifferential of g is given by

∂g(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{(sgn(x1),sgn(x2))} , x1 �= 0,x2 �= 0,
co{(1,1),(1,−1)} , x1 > 0,x2 = 0,
co{(1,1),(−1,1)} , x1 = 0,x2 > 0,
co{(−1,−1),(−1,1)} , x1 < 0,x2 = 0,
co{(−1,−1),(1,−1)} , x1 = 0,x2 < 0.

Therefore,

∂F f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{(sgn(x1),sgn(x2))− r x
‖x‖} , x1 �= 0,x2 �= 0,

co{(1,1),(1,−1)}−{r x
‖x‖} , x1 > 0,x2 = 0,

co{(1,1),(−1,1)}−{r x
‖x‖} , x1 = 0,x2 > 0,

co{(−1,−1),(−1,1)}−{r x
‖x‖} , x1 < 0,x2 = 0,

co{(−1,−1),(1,−1)}−{r x
‖x‖} , x1 = 0,x2 < 0,

(73)
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and

∂+
F f (x) =

{ {(sgn(x1),sgn(x2))− r x
‖x‖} , x1 �= 0,x2 �= 0,

/0 , x1x2 = 0,x �= 0.
(74)

It is not difficult to observe that for every l ∈ S1 with l1l2 �= 0, we have

Limsup
t↓0

∂F f (l + tl′) = ∂F f (l) , Limsup
t↓0

∂+
F f (l + tl′) = ∂+

F f (l) , (75)

by applying (73) and (74). For l = (1,0) and l′ = (0,1)

Limsup
t↓0

∂F f (l + tl′) = Limsup
t↓0

∂+
F f (l + tl′) = Limsup

t↓0

{
(1,1)− r

l + tl′

‖l + tl′‖
}

= Limsup
t↓0

{(
1− r

‖l + tl′‖ ,1− rt
‖l + tl′‖

)}
= {(1− r,1)} .

The corresponding outer limits for the remaining directions can be evaluated analo-
gously. We have

Limsup
t↓0

∂F f (l + tl′)

= Limsup
t↓0

∂+
F f (l + tl′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(1− r,1)} , l = (1,0), l′ = (0,1),
{(1− r,−1)} , l = (1,0), l′ = (0,1),
{(1,1− r)} , l = (0,1), l′ = (1,0),
{(−1,1− r)} , l = (0,1), l′ = (−1,0),
{(−1 + r,1)} , l = (−1,0), l′ = (1,0),
{(−1 + r,−1)} , l = (−1,0), l′ = (−1,0),
{(1,−1 + r)} , l = (0,−1), l′ = (1,0),
{(−1,−1 + r)} , l = (0,−1), l′ = (−1,0).

(76)

D. The Mordukhovich subdifferentials at 0. To finish the evaluation of the Mor-
dukhovich subdifferential, we use Proposition 3.1.

From (68), (73), (75), and (76), the Mordukhovich subdifferential is given by

∂M f (0) = ∂F f (0)∪Limsup
x→0,
x�=0

∂F f (x)

= {u | −1 + r≤ ui ≤ 1− r, i = 1,2}
∪ [{(1,1)}+{w |‖w‖= r, w1 ≤ 0, w2 ≤ 0}]
∪ [{(−1,1)}+{w |‖w‖= r, w1 ≥ 0, w2 ≤ 0}]
∪ [{(1,−1)}+{w |‖w‖= r, w1 ≤ 0, w2 ≥ 0}]
∪ [{(−1,−1)}+{w |‖w‖= r, w1 ≥ 0, w2 ≥ 0}]
∪co{(1− r,1),(1− r,−1)}
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∪co{(−1,1− r),(1,1− r)}
∪co{(−1 + r,−1),(−1 + r,1)}
∪co{(−1,−1 + r),(1,−1 + r)} .

Analogously, from (72) and (74)–(76)

∂+
M f (0) = ∂+

F f (0)∪Limsup
x→0,
x�=0

∂+
F f (x)

=
4⋂

μ=1

Br(vμ)

∪ [{(1,1)}+{w |‖w‖= r, w1 ≤ 0, w2 ≤ 0}]
∪ [{(−1,1)}+{w |‖w‖= r, w1 ≥ 0, w2 ≤ 0}]
∪ [{(1,−1)}+{w |‖w‖= r, w1 ≤ 0, w2 ≥ 0}]
∪ [{(−1,−1)}+{w |‖w‖= r, w1 ≥ 0, w2 ≥ 0}] .

The Mordukhovich subdifferentials of f at 0 for the values of r = 0.5, 1.25, and
2.0 are plotted in Figs. 1–3.

The corresponding series for the visualization of the directed subdifferentials
with the same values of r are plotted in Fig. 4, see also [4, Example 5.7] for further
explanations. The plots coincide with the pictures of the Mordukhovich symmet-
ric subdifferentials. Since the subdifferentials of the convex functions g and h are
known, the Rubinov subdifferential could be easily calculated as the visualization
of the difference of these embedded convex sets.

The arrows in Fig. 4 indicate outer normals to the directed “supporting faces”.
They also form the parametrizing directions in (16) for the directed subdifferential.
The positive part in the left picture of Fig. 4 is a convex set. It is colored in gray and
only outer normals are attached to its boundary. The other nonconvex part belongs
to the mixed-type part. Similarly for the right picture in Fig. 4. The gray convex
subset is the negative part and has only inner normals attached to its boundary. The
positive and negative part in the middle picture are empty and the Rubinov sub-
differential consists only of the mixed-type part. Note that the unique “supporting
points” belong both to the Mordukhovich subdifferential and superdifferential due
to Theorems 3.13 and 3.14, since for such a point the lower dimensional positive
and negative parts coincide with the point itself.

Example 4.2 ([23, Example 2.49]). Let

f (x1,x2) := ||x1|+ x2| .
Straightforward computation of the Mordukhovich subdifferentials of f (see [23,
Example 2.49]) gives

∂M f (0,0) = co{(0,0) ,(1,1) ,(−1,1)}∪ co{(0,0) ,(−1,−1)}∪ co{(0,0) ,(1,−1)} ,

∂+
M f (0,0) = co{(1,−1) ,(−1,−1)}∪{(1,1) ,(−1,1)} ,
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a b c

Fig. 1 Mordukhovich subdifferentials of f if r = 0.5: (a) ∂M f (0); (b) ∂+
M f (0); (c) ∂ 0

M f (0)

a b c

Fig. 2 Mordukhovich subdifferentials of f if r = 1.25: (a) ∂M f (0); (b) ∂+
M f (0); (c) ∂ 0

M f (0)

a b c

Fig. 3 Mordukhovich subdifferentials of f if r = 2: (a) ∂M f (0); (b) ∂+
M f (0); (c) ∂ 0

M f (0)
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Fig. 4 Visualization of directed subdifferential for Example 4.1 for (a) r = 0.5; (b) r = 1.25;
(c) r = 2.0
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a b c

Fig. 5 Mordukhovich subdifferentials for Example 4.2: (a) ∂M f (0); (b) ∂+
M f (0); (c) ∂ 0

M f (0)
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Fig. 6 Visualization of directed subdifferential for Example 4.2

and

∂ 0
M f (0,0) = ∂M f (0,0)∪ co{(1,−1) ,(−1,−1)} .

Figures 5–6 show the comparison between the Mordukhovich lower/upper/
symmetric subdifferential with the Rubinov subdifferential. The calculation of
the latter is based on one DC representation of f , for example

f (x) = max{2x1 + 2x2,−2x1 + 2x2,0}−max{x1 + x2,−x1 + x2} .

As in Example 4.1, one can see that the four unique directed “supporting points”
(±1,±1) (see Fig. 5) are present both in the Mordukhovich subdifferential and su-
perdifferential.

The only segment co{(−1,−1),(1,−1)} in the Mordukhovich superdifferential
may be recognized from the Rubinov subdifferential in Fig. 6 as coming from a
negative part of a directed interval, since there are outer normals attached to its ends
(see Fig. 6) where the projections are pointing inside the interval, contrary to all the
segments in the Mordukhovich subdifferential.
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Also the Rubinov subdifferential (the visualization of the directed one in
Fig. 6) coincides with the Mordukhovich symmetric subdifferential, according
to Theorem 3.14.

The last example shows the difference between Theorems 3.13/3.14 and 3.17.
In this example, the function f is DC, but not positive homogeneous. So we can-
not expect that we have equality between the Mordukhovich symmetric subdiffer-
ential and the Rubinov one (the visualization of the directed subdifferential) as in
Theorem 3.14.

Example 4.3 ([10, Sect. III.4, Example 4.2] and [4, Example 4.7]). Let f = g− h,
where

g(x) = max{2x2,x
2
1 + x2} , h(x) = max{0,x2

1 + x2} .

Together with

ϕ1(x) = max{2x2,x
2
1 + x2} , ϕ2(x) = max{0,x2− x2

1},

it follows that

f (x) = max{2x2,x
2
1 + x2}+ min{0,−x2

1− x2}
= min{max{2x2,x

2
1 + x2},max{0,x2− x2

1}}
= min{ϕ1(x),ϕ2(x)} .

We have

∂ϕ1(x) =

⎧⎪⎨
⎪⎩
{(0,2)} , if x2 > x2

1 ,

{(2x1,1)} , if x2 < x2
1 ,

co{(0,2),(2x1,1)} , if x2 = x2
1 ,

∂ϕ2(x) =

⎧⎪⎨
⎪⎩
{(−2x1,1)} , if x2 > x2

1 ,

{(0,0)} , if x2 < x2
1 ,

co{(0,0),(−2x1,1)} , if x2 = x2
1 .

It is not difficult to observe that the set of active indices of f in x, that is

I f (x) = {i ∈ {1,2}| f (x) = ϕi(x)} =

⎧⎪⎨
⎪⎩
{1} , if x2 <−x2

1 ,

{2} , if x2 >−x2
1 ,

{1,2} , if x2 =−x2
1 .

From Lemma 2.3 follows that

∂F f (x) =

⎧⎪⎨
⎪⎩
∂ϕ1(x) , if x2 <−x2

1 ,

∂ϕ2(x) , if x2 >−x2
1 ,

∂ϕ1(x)∩∂ϕ2(x) , if x2 =−x2
1 ,
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(0,0)} , if −x2
1 < x2 < x2

1 ,

{(−2x1,1)} , if x2 > x2
1 ,

{(2x1,1)} , if x2 <−x2
1 ,

co{(0,0),(−2x1,1)} , if x2 = x2
1 , x1,x2 �= 0 ,

/0 , if x2 =−x2
1 , x1,x2 �= 0 ,

{(0,1)} , if x1 = x2 = 0 .

The evaluation of the outer limit in (13) is straight forward:

∂M f (0) = Limsup x→0 ∂F f (x) = co{(0,0),(0,1)} .

Since f is Fréchet differentiable, the Rubinov subdifferential yields just the gradient
(see [4]):

V2(
−→
∂ f (0)) = {(0,1)},

which is a strict subset of the Mordukhovich subdifferential, see Fig. 7.
Let us try to apply Theorem 3.17. The formula for the directional derivatives of a

DC function is proved in [10, Sect. I.3, Proposition 3.1]:

f ′(x; l) = g′(x; l)−h′(x; l)

Since the directional derivatives of g and h involve a maximum, we set

g1(x) = 2x2 , g2(x) = x2
1 + x2 ,

h1(x) = 0 , h2(x) = g2(x),

-0.5 0 0.5
-0.5

0

0.5

1

1.5

Fig. 7 Mordukhovich and Clarke subdifferential for Example 4.3
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and apply [10, Sect. I.3, Proposition 3.1]:

g′(x; l) = max
i∈Ig(x)

g′i(x; l) , Ig(x) = {i ∈ {1,2}|g(x) = gi(x)} ,

h′(x; l) = max
i∈Ih(x)

h′i(x; l) , Ih(x) = {i ∈ {1,2}|h(x) = hi(x)} .

Now,

g′(x; l) =

⎧⎪⎨
⎪⎩

g′1(x; l) = ∇g1(x)l = (0,2) · (l1l2)= 2l2 , if x2 > x2
1 ,

g′2(x; l) = ∇g2(x)l = (2x1,1) · (l1l2)= 2x1l1 + l2 , if x2 < x2
1 ,

max{g′1(x; l),g′2(x; l)} = max{2l2,2x1l1 + l2} , if x2 = x2
1 ,

h′(x; l) =

⎧⎪⎨
⎪⎩

h′1(x; l) = ∇h1(x)l = (0,0) · (l1l2)= 0 , if x2 <−x2
1 ,

h′2(x; l) = ∇h2(x)l = (2x1,1) · (l1l2)= 2x1l1 + l2 , if x2 >−x2
1 ,

max{h′1(x; l),h′2(x; l)} = max{0,2x1l1 + l2} , if x2 =−x2
1 .

Since we fix x = 0, we have x2 =−x2
1 and x2 = x2

1 and hence,

f ′(0; l) = max{2l2,2 ·0 · l1 + l2}−max{0,2 ·0 · l1 + l2}=max{2l2, l2}−max{0, l2}
= l2 + max{l2,0}−max{0, l2}= l2.

The function f ′(0; ·) is continuously differentiable with respect to l, hence
strict differentiable by [7, Corollary to Proposition 2.2.1]. One can apply [7,
Proposition 2.2.4] to show

∂MP f (0) = ∂Cl[ f ′(0; ·)](0) = {∇l f ′(0; ·)(0)}= {(0,1)},

which coincides with the Rubinov subdifferential.
A similar reasoning shows that the Fréchet subdifferential and superdifferential of
the directional derivative coincides with the gradient of f ′(0; ·) with respect to l in
any direction η by [18, Proposition 1.3]. Hence, the Mordukhovich subdifferential
and the Mordukhovich superdifferential also equal to the point (0,1) due to (14).

5 Conclusions

As we have shown in this chapter, the connection between the Mordukhovich sub-
differential/superdifferential and the Rubinov subdifferential may provide substan-
tial information related to their computing and their applications. This relation will
be investigated and explored in more detail in our further research. Especially, we
are currently working on the extension of our results from the class of DC functions
to quasidifferentiable functions and on their application to quasidifferential calculus.
Another focus of future research will be the case of dimension higher than two.
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Future Challenges for Variational Analysis∗

Jonathan M. Borwein

Abstract Modern nonsmooth analysis is now roughly 35 years old. In this
chapter, I shall attempt to analyse (briefly): where the subject stands today, where
it should be going, and what it will take to get there? In summary, the conclusion
is that the first-order theory is rather impressive, as are many applications. The
second-order theory is by comparison somewhat underdeveloped and wanting of
further advance.

It is not knowledge, but the act of learning, not possession but the act of getting there,
which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I
turn away from it, in order to go into darkness again; the never-satisfied man is so strange
if he has completed a structure, then it is not in order to dwell in it peacefully,but in order
to begin another. I imagine the world conqueror must feel thus, who, after one kingdom is
scarcely conquered, stretches out his arms for others. – Carl Friedrich Gauss (1777–1855).1

1 Preliminaries and Precursors

I intend to first discuss First-Order Theory, and then Higher-Order Theory – mainly
second-order – and only mention passingly higher-order theory, which really de-
volves to second-order theory. I will finish by touching on Applications of Vari-
ational Analysis or VA both inside and outside Mathematics, mentioning both
successes and limitations or failures. Each topic leads to open questions even
in the convex case, which I will refer to as CA. Some issues are technical and

Jonathan M. Borwein
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∗ This chapter is dedicated to Boris Mordukhovich on the occasion of his 60th birthday. It is
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1 From an 1808 letter to his friend Farkas Bolyai (the father of Janos Bolyai).
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specialized, others are some broader and more general. In nearly every case, Boris
Mordukhovich has made prominent or seminal contributions; many of which are
elaborated in [24] and [25].

To work fruitfully in VA, it is really important to understand both CA and smooth
analysis (SA); they are the motivating foundations and very often provide the key
technical tools and insights. For example, Fig. 1 shows how an essentially strictly
convex [8, 11] function defined on the orthant can fail to be strictly convex.

(x,y) 	→max
{
(x−2)2 + y2−1,−(xy)1/4

}
.

Understanding this sort of boundary behaviour is clearly prerequisite to more
delicate variational analysis of lower semicontinuous functions as are studied in
[8, 13, 24, 28].

In this note, our terminology is for the most part consistent with those references
and since I wish to discuss patterns, not proofs, I will not worry too much about
exact conditions. That said, f will at least be a proper and lower semicontinuous
extended-real valued function on a Banach space X .

Fig. 1 A function that is essentially strictly but not strictly convex with nonconvex subgradient
domain

Let us first recall the two main starting points:

1.1 A Descriptive Approach

By 1968 Pshenichnii, as described in his book [27], had started a study of the large
class of quasi-differentiable locally Lipschitz functions for which

f ′(x;h) := limsup
t→0+

f (x + th)− f (x)
t
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is required to exist and be convex as a function of h. We define ∂ ′ f (x) := ∂2 f ′(x;0),
where we take the classical convex subdifferential with respect to the second
variable.

1.2 A Prescriptive Approach

By contrast, Clarke in his 1972 thesis (described in his now classic book [15]) con-
sidered all locally Lipschitz functions for which

f ◦(x;h) := limsup
t→0+ y→x

f (y + th)− f (y)
t

is constructed to be convex. In convex terms, we may now define a generalized
subdifferential by ∂ o f (x) := ∂2 f 0(x;0). (Here the later is again the convex subdif-
ferential with respect to the h variable.)

Both ideas capture the smooth and the convex case, both are closed under + and
∨, and both satisfy a reasonable calculus; so we are off to the races. Of course, we
now wish to do as well as we can with more general lsc functions.

2 First-Order Theory of Variational Analysis

The key players are as I shall outline below. We start with:

1. The (Fréchet) subgradient: ∂F f (x), which denotes a one-sided lower Fréchet
subgradient (i.e., the appropriate limit is taken uniformly on bounded sets) and
which can (for some purposes) be replaced by a Gâteaux (uniform on finite sets),
Hadamard (uniform on norm-compact sets), or weak Hadamard (uniform on
weakly compact sets) object. These are denoted by ∂G f (x),∂H f (x), and ∂WH f (x)
respectively.
That is φ ∈ ∂F f (x), exactly when

φ(h)≤ liminf
t→0+ ‖h‖=1

f (x + th)− f (x)
t

.

A formally smaller and more precise object is a derivative bundle of F,G,H, or
WH-smooth (local) minorants:

2. The viscosity subgradient:

∂ v
F f (x) := {φ : φ = ∇Fg(x), f (y)−g(y)≥ f (x)−g(x) for y near x}

as illustrated in Fig. 2. By its very definition 0 ∈ ∂ v
F f (x) when x is a local min-

imizer of f . In nice spaces, say those with Fréchet-smooth renorms as have
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reflexive spaces, these two subgradient notions coincide [13]. In this case, we
have access to a good generalization of the sum rule from convex calculus [11]:

3. (Fuzzy) sum rule: For each ε > 0

∂F( f + g)(x)⊆ ∂F f (x1)+ ∂Fg(x2)+ εBX∗

for points x1,x2 each within ε of x. In Euclidean space and even in Banach space –
under quite stringent compactness conditions except in the Lipschitz case – with
the addition of asymptotic subgradients, one can pass to the limit and recapture
approximate subdifferentials [13, 24, 25, 28].
For now, we let ∂ f denote any of a number of subgradients and have the appro-
priate tools to define a workable normal cone.

4. Normal cones: We define
Nepi f := ∂ιepi f .

Here ιC denotes the convex indicator function of a set C.
Key to establishing the fuzzy sum rule and its many equivalences [13, 24] are:

5. Smooth variational principles (SVP) which establish the existence of many
points, x, and locally smooth (with respect to an appropriate topology) minorants
g such that

f (y)−g(y)≥ f (x)−g(x)

for y near x.
We can now establish the existence and structure of:

6. Limiting subdifferentials such as

∂ a f (x) := limsup
y→ f x

∂F f (x),

for appropriate topological limits superior, and of:
7. Coderivatives of multifunctions: As in [24], one may write

D∗Ω(x,y)(y∗) =
{

x∗ : (x∗,−y∗) ∈ Ngph(Ω)(x,y)
}

.

The fuzzy sum rule and its related calculus also leads to fine results about the
notion of:

8. Metric regularity:
Indeed, we can provide very practicable conditions on a multifunction Ω , see
[12, 13, 17, 24], so that locally around y0 ∈Ω(x0) one has

Kd(Ω(x),y) ≥ d(x,Ω−1(y)). (1)

Estimate (1) allows one to show many things easily. For example, it allows one
straight forwardly to produce Ck-implicit function theorems under second-order
sufficiency conditions [3, 13]. Estimate (1) is also really useful in the very con-
crete setting of alternating projections on two closed convex sets C and D, where
one uses Ω(x) := x−D for x ∈C and Ω(x) := /0 otherwise [13].
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The very recent book by Dontchev and Rockafellar [17] gives a comprehensive
treatment of implicit function theory for Euclidean multifunctions (and
much more).

Fig. 2 A function and its smooth minorant and a viscosity subdifferential (in red)

2.1 Achievements and Limitations

Variational principles meshed with viscosity subdifferentials provide a fine first-
order theory. Sadly, ∂ a f (x) is inapplicable outside of Asplund space (such as reflex-
ive space or spaces with separable duals) and extensions using ∂H f are limited and
technically complicated. Correspondingly, the coderivative is very beautiful theo-
retically but is hard to compute even for “nice” functions. Moreover, the compact-
ness restrictions (e.g., sequential normal compactness as described in [24]) are fun-
damental, not technical. Better results rely on restricting classes of functions (and
spaces) such as considering, prox-regular [28], lower C2 [28], or essentially smooth
functions [13].

Moreover, the limits of a prescriptive approach are highlighted by the fact that
one can prove results showing that in all (separable) Banach spaces X a generic
nonexpansive function has no information in its generalized derivative:

∂ a f (x) = ∂ o f (x) ≡ BX∗

for all points x ∈ X [10, 13]. Similarly, one can show that nonconvex equilibrium
results will frequently contain little or no nontrivial information [13].
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3 Higher-Order Theory of Variational Analysis

Recall that for closed proper convex functions the difference quotient of f is given by

Δt f (x) : h 	→ f (x + th)− f (x)
t

;

and the second-order difference quotient of f by

Δ2
t f (x) : h 	→ f (x + th)− f (x)− t〈∇ f (x),h〉

1
2 t2

.

Analogously let

Δt [∂ f ](x) : h 	→ ∂ f (x + th)−∇ f (x)
t

.

For any t > 0, Δt f (x) is closed, proper, convex and nonnegative [11, 28]. Quite
beautifully, as Rockafellar [11, 28] discovered,

∂
[

1
2
Δ2

t f (x)
]

= Δt [∂ f ](x).

Hence, we reconnect the two most natural ways of building a second-order convex
approximation.

This relates to a wonderful result [1, 11]:

Theorem 1 ( [1] ). In Euclidean space a real-valued continuous convex function ad-
mits a second-order Taylor expansion at almost all points (with respect to Lebesgue
measure).

My favourite proof is a specialization of Mignot’s 1976 extension of Alexan-
drov’s theorem for monotone operators [11,28]. The theorem relies on many happy
coincidences in Euclidean space. This convex result is quite subtle and so the paucity
of definitive nonconvex results is no surprise.

3.1 The State of Higher-Order Theory

Various lovely patterns and fine theorems are available in Euclidean space [11, 24,
28] but no definitive corpus of results exists, nor even canonical definitions, outside
of the convex case. There is interesting work by Jeyakumar and Luc [21], by Dutta,
and others, much of which is surveyed in [18].

Starting with Clarke, many have noted that

∂ 2 f (x) := ∂ ∇G f (x)
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is a fine object when the function f is Lipschitz smooth in a separable Banach space
– so that the Banach space version of Rademacher’s Theorem [11] applies.

More interesting are the quite fundamental results by Ioffe and Penot [20] on lim-
iting 2-subjets and 2-coderivatives in Euclidean space, with a more refined calculus
of “efficient” sub-Hessians given by Eberhard and Wenczel [19]. Ioffe and Penot
[20] exploit Alexandrov-like theory, again starting with the subtle analysis in [16],
to carefully study a subjet of a reasonable function f at x, the subjet ∂ 2− f (x) being
defined as the collection of second-order expansions of all C2 local minorants g with
g(x) = f (x). The (nonempty) limiting 2-subjet is then defined by

∂
2

f (x) := limsup
y→ f x

∂ 2
− f (x).

Various distinguished subsets and limits are also considered in their paper. They
provide a calculus, based on a sum rule for limiting 2-subjets (that holds for all
lower-C2 functions and so for all continuous convex functions) making note of both
the similarities and differences from the first-order theory. As noted, interesting re-
finements have been given by Eberhard and Wenczel in [19].

Fig. 3 Nick Trefethen’s digit-challenge function (2)

There is little “deep” work in infinite dimensions, that is, when reasonably obvi-
ous extensions fail even in Hilbert space. Outside separable Hilbert space, general
positive results are not to be expected [11]. So it seems clear to me that research
should focus on structured classes of functions for which more can be obtained;
such as integral functionals as in Moussaoui and Seeger [26], semi-smooth and prox-
regular functions [8], or composite convex functions [28].
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4 Some Reflections on Applications of Variational Analysis

The tools of variational analysis are now an established part of pure nonlinear and
functional analysis. This is a major accomplishment.

There are also more concrete successes:

• There is a convergence theory for “pattern search” derivative-free optimization
algorithms (see [23] for an up to date accounting of such methods) based on the
Clarke subdifferential.

• Eigenvalue and singular value optimization theory has been beautifully devel-
oped [8], thanks largely to Adrian Lewis. There is a quite delicate second-order
theory due to Lewis and Sendov [22]. There are even some results for Hilbert–
Schmidt operators [11, 13].

• We can also handle a wide variety of differential inclusions and optimal control
problems well [25].

• There is a fine approximate Maximum Principle and a good accounting of
Hamilton–Jacobi equations [13, 24, 25].

• Nonconvex mathematical economics and Mathematical Programs with Equilib-
rium Constraints (MPECS) are much better understood than before [24, 25].

• Exact penalty and universal barrier methods are well developed, especially in
finite dimensions [11].

• Counting convex optimization – as we certainly should – we have many more
successes [14].

That said, there has been only limited numerical success even in the convex case
– excluding somewhat spectral optimization, semidefinite programming code, and
bundle methods.

For example, consider the following two-variable well-structured very smooth
function taken from [4], in which only the first two rather innocuous terms couple
the variables

(x,y) 	→ + (x2 + y2)/4− sin(10(x + y))+ exp(sin(50x))
+ sin(sin(80y))+ sin(70sinx)+ sin(60ey). (2)

This function is quite hard to minimize. Actually, the global minimum occurs at
(x∗,y∗)≈ (−0.024627 . . .,0.211789 . . .) with minimal value of ≈−3.30687 . . . .

The pictures in Fig. 3, plotted using 106 grid points on [0,1]× [0,1] and also –
after “zooming in” – on [−00.25,0]× [0,0.25], shows that we really cannot robustly
distinguish the function from a nonsmooth function. Hence, it makes little sense to
look at practicable nonsmooth algorithms without specifying a realistic subclass of
functions on which they should operate.

Perhaps we should look more towards projects like Robert Vanderbei’s
SDP/Convex package LOQO/LOCO2 and Janos Pinter’s Global Optimization

2 http://www.princeton.edu/∼rvdb/.

http://www.princeton.edu/~rvdb/
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LGO3 package, while working with composite convex functions and smooth-
ing techniques, and adopting the “disciplined convex programming”4 approach
advocated by Steve Boyd.

5 Open Questions and Concluding Remarks

I pose six problems below, which should either have variational solutions or instruc-
tive counterexamples. Details can be found in the specified references.

5.1 Alexandrov Theorem in Infinite Dimensions

For me, the most intriguing open question about convex functions is:

Does every continuous convex function on separable Hilbert space admit a second order
Gâteaux expansion at at least one point (or perhaps on a dense set of points)? [7, 9, 13]

This fails in nonseparable Hilbert space and in every separable �p(N),1 ≤ p <
∞, p �= 2. It also fails in the Fréchet sense even in �2(N).

The following example from [9] provides a continuous convex function d on
any nonseparable Hilbert space which is nowhere second-order differentiable: Let
A be uncountable and let C the positive cone of �2(A). Denote by d the distance
function to C and let P := ∇d. Then d is nowhere second-order differentiable and P
is nowhere differentiable (in the sense of Mignot [28]).

Proof. Clearly, P(a) = a+ for all a ∈ �2(A), where a+ = (a+
α )α∈A and a+

α =
max{0,aα}. Pick x ∈ �2(A) and α ∈ A, then P is differentiable in the direction
eα if and only if xα �= 0. Here eα stands for an element of the canonical basis.
Since each x ∈ �2(A) has only countably many nonzero coordinates, d is nowhere
second-order differentiable. Likewise the maximal monotone operator P is nowhere
differentiable. ��

So I suggest to look for a counterexample. I might add that, despite the wonderful
results of Preiss, see [11], and others on differentiability of Lipschitz functions, it
is still also unknown whether two arbitrary real-valued Lipschitz functions on a
separable Hilbert space must share a point of Fréchet differentiability.

3 http://myweb.dal.ca/jdpinter/index.html.
4 http://www.stanford.edu/∼boyd/cvx/.

http://myweb.dal.ca/jdpinter/index.html
http://www.stanford.edu/~boyd/cvx/
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5.2 Subjets in Hilbert Space

I turn to a question about nonsmooth second-order behaviour:

Are there sizeable classes of functions for which subjets or other useful second order
expansions can be built in separable Hilbert space? [11, 19, 20]

I have no precise idea what “useful” means and even in convex case this is a tough
request; if one could handle the convex case then one might be able to use Lasry–
Lions regularization or other such tools more generally. A potentially tractable case
is that of continuous integral functionals for which positive Alexandrov-like results
are known in the convex case [9].

5.3 Chebyshev Sets

The Chebyshev problem as posed by Klee (1961) asks:

Given a nonempty set C in a Hilbert space H such that every point in H has a unique nearest
(also called proximal) point in C must C convex? [5, 8, 11]

Such sets are called Chebyshev sets. Clearly convex closed sets in Hilbert space are
Chebyshev sets. The answer is “yes” in finite dimensions. This is the Motzkin–Bunt
theorem of which four proofs are given in Euclidean space in [8] and [5]. In [5, 11],
a history of the problem, which fails in some incomplete normed spaces, is given.

Fig. 4 A proximal point on the boundary of the (2/3)-ball

5.4 Proximality

The most striking open question I know regarding proximality is:

(a) Let C be a closed subset of a Hilbert space H. Fix an arbitrary equivalent renorming of
H. Must some (many) points in H have a nearest point in C in the given renorming?
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(b) More generally, is it possible that in every reflexive Banach space, the proximal points
on the boundary of C (see Fig. 4) are dense in the boundary of C? [6, 13]

The answer is “yes” in if the set is bounded or the norm is Kadec–Klee and hence if
the space is finite dimensional or if it is locally uniformly rotund [6, 11, 13].

So any counterexample must be a wild set in a weird equivalent norm on H.

5.5 Legendre Functions in Reflexive Space

Recall that a convex function is of Legendre-type if it is both essentially smooth and
essentially strictly convex. In the reflexive setting, the property is preserved under
Fenchel conjugacy:

Find a generalization of the notion of a Legendre function for convex functions on a reflex-
ive space that applies when the functions have no points of continuity such as is the case of
the (negative) Shannon entropy. [2, 11]

When f has a point of continuity, a quite useful theory is available but it does not
apply to entropy functions like x 	→ ∫ 1

0 x(t) logx(t)μ(dt) or x 	→ −∫ 1
0 logx(t)μ(dt),

whose domains are subsets of the nonnegative cone when viewed as operators on
L2(T,μ). More properly to cover these two examples, the theory should really apply
to integral functionals on nonreflexive spaces such as L1(T,μ).

Fig. 5 A function and nonviscosity subderivative of 0
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5.6 Viscosity Subdifferentials in Hilbert Space

A more technical but fundamental question is:

Is there a real-valued locally Lipschitz function f on �2(N) such that properly

∂ v
H f (x)⊂ ∂H f (x)

for some x ∈ �2(N)? [12, 13]

As shown in Fig. 5, the following continuous but non-Lipschitz function

(x,y) 	→ xy3

x2 + y4

with value zero at the origin has 0 ∈ ∂H f (0) but 0 �∈ ∂ v
H f (0) [12, 13].

For a Lipschitz function in Euclidean space the answer is “no” since ∂F f = ∂H f in
this setting. And as we have noted ∂F f = ∂ v

F f in reflexive space. A counterexample
would be very instructive, while a positive result would allow for many results to be
extended from the Fréchet case to the Gateaux case: as ∂G f = ∂H f for all locally
Lipschitz f .

5.7 Final Comments

My view is that rather than looking for general prescriptive results based on univer-
sal constructions, we would do better to spend some real effort, or “brain grease” as
Einstein called it,5 on descriptive results for problems such as the six above. Coun-
terexamples or complete positive solutions would be spectacular, but even some-
what improving best current results will require sharpening the tools of variational
analysis in interesting ways. That would also provide great advertising for our field.
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A Deflected Subgradient Method Using
a General Augmented Lagrangian Duality
with Implications on Penalty Methods

Regina S. Burachik and C. Yalçın Kaya

Abstract We propose a duality scheme for solving constrained nonsmooth and
nonconvex optimization problems. Our approach is to use a new variant of the
deflected subgradient method for solving the dual problem. Our augmented La-
grangian function induces a primal–dual method with strong duality, that is, with
zero duality gap. We prove that our method converges to a dual solution if and only
if a dual solution exists. We also prove that all accumulation points of an auxiliary
primal sequence are primal solutions. Our results apply, in particular, to classical
penalty methods, since the penalty functions associated with these methods can be
recovered as a special case of our augmented Lagrangians. Besides the classical aug-
menting terms given by the �1- or �2-norm forms, terms of many other forms can be
used in our Lagrangian function. Using a practical selection of the step-size parame-
ters, as well as various choices of the augmenting term, we demonstrate the method
on test problems. Our numerical experiments indicate that it is more favourable to
use an augmenting term of an exponential form rather than the classical �1- or �2-
norm forms.

1 Introduction

Subgradient methods were introduced in the middle of 1960s, in the works of De-
myanov [12], Polyak [20–22] and Shor [34, 35] for solving nonsmooth and con-
vex unconstrained optimization problems (for a description of these methods, see
[3, 4, 18, 19] and the references therein).

When an optimization problem is constrained it is common practice to apply La-
grange relaxation techniques: a Lagrange function, in other words the Lagrangian,
is used to construct a duality scheme, and a dual function is maximized in the dual
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variable space, typically applying the subgradient method, because the dual problem
is convex. An alternative approach is to use projections; for example, D’Antonio
et al. [1] considers methods for nonsmooth and convex constrained problems com-
bining deflected subgradient directions and projections on the constraint set.

There is an extensive literature on the study of general augmented Lagrangians
and the duality schemes they give rise to (see, for example, the works of Rubi-
nov, Yang and their co-workers [26,29–32,36]). Strong duality (or zero-duality gap
property), which states that the optimal values of the dual and the primal problem co-
incide, is clearly desirable for a duality scheme. The augmented Lagrangian duality,
introduced by Rockafellar and Wets [27, Chap. 11] is known to have this property.
With this kind of Lagrangians, one can apply the subgradient method for solving
the (convex) dual problem. Gasimov and Ismayilova [13, 14] exploited this idea by
considering a deflected subgradient direction for solving the dual problem. A main
advantage of their method is the strict improvement of the dual values. This mono-
tonic improvement does not hold in general for the classical subgradient method
and its variants. Gasimov and Ismayilova proved convergence of their method to an
optimal dual value, under a restricted form of a Polyak-type step-size.

We describe below the current literature on deflected methods.
Burachik et al. [8] further studied the deflected subgradient method given in

[13, 14], and established, under a much broader selection of step-size parameters,
convergence of the dual iterates to a dual solution, and primal optimality of the ac-
cumulation points of an auxiliary primal sequence. Also in [8], a new kind of step-
size parameter (differing in form from the classical Polyak-type step-size parameter)
was proposed for a numerical implementation of the new method, and comprehen-
sive numerical experiments were given for the first time.

Primal–dual schemes may provide stable rules for updating the parameter in
penalty methods. These methods are known to be prone to ill-conditioning be-
cause of the uncontrolled growth of the penalty parameter. In order to avoid this
ill-conditioning, the papers [15,24,25] propose a dynamic update of the penalty pa-
rameter for convex and smooth problems. For addressing the nonsmooth and non-
convex case, Burachik and Kaya [10] devised a penalty parameter update rule using
a deflected subgradient method and proved that primal convergence is equivalent
to the differentiability of the dual function at the dual limit. This equivalence was
recently extended in [6] to more general families of augmented Lagrangians.

An inexact version of a deflected subgradient method, introduced in [11], was
proved to have the same convergence and existence properties as those given in [8].
Numerical experiments given in [11] illustrate significant computational savings as
a result of this inexact scheme.

The deflected methods considered in [8, 11] approach a dual solution, but con-
vergence to a primal solution was only established for an auxiliary convergence.
Indeed, the primal sequence may stay far from the primal solution set (see [8,
Example 1]). This drawback was recently overcome in [9], where it is proved that,
for a specific choice of the step-size, all accumulation points of the primal sequence
are primal solutions.
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Our aim is to develop variants of the deflected subgradient method, which are
likely to be more convenient from the computational point of view. We do this by
considering a more general Lagrangian form and prove that the main convergence
properties established in [8] are preserved.

Our general Lagrangian is the sum of the objective function plus two additional
terms. One of these terms is an augmenting function, and the other is the linear
(classical) term. The augmenting term is a penalty expression given by a general
function satisfying some mild assumptions. The classical linear term is transformed
by means of a general symmetric (scaling) matrix. The constraint functions appear-
ing in the penalty term remain unscaled, though.

For this general kind of Lagrangian, we prove convergence and existence results
for the deflected subgradient method. Because the scaling matrix can be any sym-
metric matrix, the case when the matrix is zero represents the classical penalty
function method, with any positive valued continuous function acting as the
penalty term. Therefore our results apply, in particular, to the analysis of classi-
cal penalty methods, as well as a family of new penalty function methods, because
of the generality of the function in the penalizing term.

For a numerical implementation of our method, we propose seven functional
forms for the function in the penalty term. Six of these can be collected into two
groups: one involving �1, �2 and �∞ norms and the other involving an exponential
of these norms. The seventh form is a hybrid form involving the �2 norm. Although
it is possible to consider many other functional forms (e.g., as in [5], albeit in [5]
different Lagrangian forms are investigated for differentiable problems), we restrict
our attention to these seven forms only, for the purposes of illustrating the use of the
method with alternative choices of the function in the penalty term and the scaling
matrix. As the scaling matrix we choose the identity and zero matrices, the latter
giving rise to penalty functions.

We have chosen 16 test problems from the literature for the numerical experi-
ments. We report the results of the experiments in terms of the number of iterations
the deflected subgradient methods takes as well as the number of Lagrange function
evaluations.

The chapter is organized as follows. In Sect. 2, we recall the duality properties
our Lagrangian scheme. In Sect. 3, we state the deflected subgradient method. In
Sects. 4 and 5, we give the convergence and existence results. In Sect. 6, we define
practical step-sizes for a numerical implementation, and demonstrate their use on
test problems.

2 Duality Framework for Augmented Lagrangians

We consider the nonlinear programming problem:

(P) minimize f0 (x) over all x in X satisfying f (x) = 0,
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where X is a compact subset of IRn, and the functions f0 : IRn → IR and f : IRn → IRm

are continuous. Our duality analysis is based on the work [7] and hence we start
off by recalling the duality framework presented there. Denote by d(·, ·) the metric
distance in X and by X0 := {x∈ X : f (x) = 0} the constraint set of problem (P). Let

MP := inf
x∈X0

f0(x),

be the optimal value of the problem (P). Let Λ be a nonempty set (to which dual
variables will belong). Consider a function L : X×Λ → IR. Given the set Λ and the
function L : X ×Λ → IR, define the dual function H : Λ → IR∪{−∞} as H(λ ) :=
infx∈X L(x,λ ), so that the dual problem for (P) is

(D) max
λ∈Λ

H(λ ),

and hence the optimal dual value is MD := supλ∈Λ H(λ ). In such a context we
consider L as a Lagrange-type function. We say that the weak duality with respect
to L holds if

inf
x∈X

L(x,λ )≤MP,

for all λ ∈ Λ . And we say that the strong duality with respect to L (in another
terminology, zero duality gap with respect to L) holds if MP = MD, that is

sup
λ∈Λ

inf
x∈X

L(x,λ ) = MP.

In the study developed in [7], the conditions for zero duality gap are given
through a set of requirements on the Lagrangian and the data of the problem. We
list these requirements below:

(A1) For all α < MP, the level set {z ∈ X | f0(z)≤ α} is compact.
(H1) f0(x) = L(x,λ ) for all x ∈ X0 and all λ ∈Λ .

Assume there exists a subset Λ0 ⊂Λ such that

(H2(Λ0)) ∀α < MP and ∀δ > 0

sup
λ∈Λ0

⎡
⎢⎢⎣ inf

x ∈ X
d(x,X0)≥ δ

L(x,λ )

⎤
⎥⎥⎦ > α.

(H3(Λ0))
f0(x)≤ L(x,λ ),

for all x ∈ X , λ ∈Λ0.

We quote the following result.
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Theorem 1 ( [7], Theorem 2). Assume that there exists Λ0 ⊂ Λ such that (H1),
(H2(Λ0)) and (H3(Λ0)) are satisfied, and suppose also that condition (A1) holds
for f0, then MP = MD.

Definition 1. Consider the set of dual variables given by Λ := IRm × IR+ and a
continuous function σ : IRm → IR such that σ(z) > 0 for all z ∈ IRm \{0} and σ(0) =
0. Let A ∈ IRm×m be a symmetric matrix. Our Lagrangian function L : IRn×Λ → IR
is defined as

L(x,(u,c)) := f0(x)+ cσ( f (x))−〈Au, f (x)〉. (1)

From now on, we will always assume that σ and A are as stated in Definition 1.

Remark 1. The Lagrangian in Definition 1 verifies the assumptions of Theorem 1
for the choice Λ0 := {0}× IR+. Indeed, note that our basic assumptions on X and f0

trivially yield (A1). It can be checked in a way similar to the one in [7, Example 3.1]
that conditions (H1), (H2(Λ0)) and (H3(Λ0)) also hold. As a consequence, our
duality scheme enjoys the zero duality gap property. Moreover, the dual function
H : IRm× IR+ → IR is defined as

H(u,c) = min
x∈X

[ f0(x)+ cσ( f (x))−〈Au, f (x)〉] . (2)

Since H is the minimum of concave and upper-semicontinuous (more precisely,
affine) functions of c,u, we conclude that H is concave and upper-semicontinuous.
The dual problem of (P) is therefore a convex problem given by

(D) : max
(u,c)∈IRm×IR+

H(u,c).

Since H is finite on IRm × IR+, this maximization problem is effectively uncon-
strained. By concavity, H is continuous everywhere.

Remark 2. For A = I and σ(·) = ‖ · ‖, where ‖ · ‖ is the (Euclidean) �2-norm, the
Lagrangian in Definition 1 becomes the so-called sharp Lagrangian, introduced in
[27, Example 11.58] and used in [8, 10, 11]. For A = 0, the Lagrangian becomes a
penalty function with the penalty term given by cσ( f (x)).

The solution set of problem (P) is denoted by S(P). We typically denote an ele-
ment of S(P) by x̄. The solution set of problem (D) is denoted by S(D). We typically
denote an element in S(D) by z̄ = (ū, c̄). For convenience, we introduce the set

X(u,c) = argmin
x∈X

[ f0(x)+ cσ( f (x))−〈Au, f (x)〉] . (3)

The proof of the next lemma is similar to the one in [11] for the special case of
σ(·) = ‖ · ‖ and A = I. We include it here for the reader’s convenience.
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Lemma 1. Let H be the dual function defined above. For every (u,c) ∈ IRm× IR+,
take x̃ ∈ X(u,c). Then:

(a) (−A f (x̃),σ( f (x̃))(1+ γ)) ∈ ∂cγσ( f (x̃))H(u,c) for every γ ≥ 0. In particular, we
have that (−A f (x̃),σ( f (x̃))) ∈ ∂H(u,c).

(b) If (u,c) ∈ S(D), then (u,d) ∈ S(D) for each d > c. In this situation, for every
x̂ ∈ X(u,d) we must have f (x̂) = 0.

Proof. (a) We must prove that for all (u′,c′) ∈ IRm× IR+ it holds

H(u′,c′)≤ H(u,c)+ 〈u′ −u,−A f (x̃)〉+(c′ − c)(1 + γ)σ( f (x̃)).

Indeed, by definition of H we have that

H(u′,c′) = minx∈X L(x,(u′,c′))
≤ f0(x̃)+ cσ( f (x̃))−〈Au, f (x̃)〉

+(c′ − c)σ( f (x̃))+ 〈u′ −u,−A f (x̃)〉
≤ H(u,c)+ 〈u′ −u,−A f (x̃)〉+(c′ − c)(1 + γ)σ( f (x̃))−(c′ − c)γσ( f (x̃))
≤ H(u,c)+ 〈u′ −u,−A f (x̃)〉+(c′ − c)(1 + γ)σ( f (x̃))+ cγσ( f (x̃)),

where we used the fact that c′ ≥ 0 is the last inequality. The second statement follows
from the first one for γ = 0. The proof of (a) is complete.
(b) Since (u,c) ∈ S(D), we must have H(u,c) ≥ H(u,d). On the other hand, take
x̂ ∈ X(u,d), where d > c. By item (a), we have

H(u,d) ≤ H(u,c) ≤ H(u,d)+ 〈u−u,−A f (x̂)〉+(c−d)σ( f (x̂))
= H(u,d)+ (c−d)σ( f (x̂))
≤ H(u,d) ,

where we also used that σ ≥ 0. Altogether, H(u,c) = H(u,d) and hence (u,d) is
also a dual solution. Since d− c > 0 we must have f (x̂) = 0.

The distance between two given points in the dual space, w,z ∈ IRm× IR+, will
be taken as d(w,z) := ‖w− z‖2. The following notation will be used throughout the
chapter.

zk := (uk,ck),
xk ∈ X(uk,ck),
fk := f (xk),
Hk := H(uk,ck),
H := H(ū, c̄),
dk := d(z,zk).

The theorem below is a trivial modification of the analogous one proved in [13].
It will be used as a stopping criteria in the next section, so we include here its short
proof.

Theorem 2. Let MP ≥MD and suppose that x ∈ X(u,c). Then x is a solution of (P)
and (u,c) is a solution of (D) if and only if f (x) = 0.
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Proof. It is enough to prove that x̄ is a solution, since the converse is trivial.
Assume that f (x̄) = 0 and x̄ ∈ X(ū, c̄), then L(x̄,(ū, c̄)) = f0(x̄)≥MP. On the other
hand, L(x̄,(ū, c̄)) = minx∈X L(x,(ū, c̄)) = H(ū, c̄)≤MD ≤MP. Where we used weak
duality in the last inequality. Thus we have f0(x̄) = MP and hence x̄ is a solu-
tion of (P).

3 The DSG Algorithm and Motivation

We propose the following deflected subgradient (DSG) algorithm for solving Prob-
lem (P), which is described as follows.

The DSG Algorithm:
Step 0 Choose (u0,c0) with c0 ≥ 0. Set k = 1.
Step k Given (uk,ck):

Step k.1 Find the vector
xk ∈ X(uk,ck).

If fk = 0, STOP.
Step k.2 Set

uk+1 := uk− skA( fk) ,

ck+1 := ck +(sk + εk)σ( fk) ,

where sk,εk > 0. Set k = k + 1 and repeat Step k.

Let ‖ · ‖ be the �2 norm in IRm. We will make the following basic assumption on
σ and A.

(L1) σ(z)≥ ‖A(z)‖ for all z ∈ IRm.

Remark 3. The sharp Lagrangian (i.e., when σ(·) := ‖ ·‖ and A = I in Definition 1)
verifies (L1). If A = 0, any nonnegative function σ verifying the assumptions of
Definition 1 will satisfy (L1).

The motivation for condition (L1) rests on part (b) of the proposition below,
where we prove that the search direction of the DSG algorithm produces strict im-
provement of the values of H if and only if the Lagrangian verifies (L1).

Proposition 1. Consider the notation and definitions of the DSG algorithm:

(a) Hk+1−Hk ≤ sk(‖A( fk)‖2 +σ( fk)2)+ εkσ( fk)2.
(b) The following statements hold:

(i) If the augmenting function σ verifies (L1), then the DSG steps produce a
sequence {Hk} which is strictly increasing. More precisely, if (uk,ck) /∈ S(D)
then Hk+1 > Hk.
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(ii) Assume that σ(z) = σ(−z) for every z ∈ IRm. If for every problem of the form
(P) the DSG steps produce a sequence {Hk} which is strictly increasing, then
σ must verify (L1).

Proof. Applying Lemma 1(a), we get

Hk+1−Hk ≤ 〈uk+1−uk,−A fk〉+(ck+1− ck)σ( fk).

Using also the definition of the algorithm, the right-hand-side of the expression
above can be rewritten as

Hk+1−Hk ≤ sk‖A fk‖2 +(sk + εk)σ( fk)2,

which readily implies the conclusion. This proves item (a). Let us now prove (i) in
item (b). Note that the assumption (uk,ck) �∈ S(D) and Theorem 2 yield fk �= 0.
Therefore σ( fk) > 0. Using the definition of the algorithm we can write

Hk+1 = minx∈X f0(x)+ ck+1σ( f (x))−〈Auk+1, f (x)〉

= minx∈X f0(x)+ ck+1σ( f (x))−〈uk+1,A( f (x))〉

= minx∈X f0(x)+ [ck +(sk + εk)σ( fk)]σ( f (x))−〈[uk− skA( fk)],A( f (x))〉

= minx∈X f0(x)+ ckσ( f (x))−〈Auk, f (x)〉+(sk + εk)σ( fk)σ( f (x))
+sk〈A( fk),A( f (x))〉

≥ minx∈X f0(x)+ ckσ( f (x))−〈Auk, f (x)〉+(sk + εk)σ( fk)σ( f (x))
−skσ( fk)σ( f (x))

= minx∈X f0(x)+ (ck + εkσ( fk))σ( f (x))−〈Auk, f (x)〉

= H(uk,ck + εkσ( fk)),

where we used Cauchy–Schwartz and (L1) in the inequality. Let x̂k ∈ X be a so-
lution of the minimization problem above. In other words x̂k ∈ X(uk,ck + εkσ( fk)).
Assume first that f (x̂k) = 0. In this case Theorem 2 yields (uk,ck +εkσ( fk))∈ S(D).
On the other hand, since (uk,ck) �∈ S(D) we must have H(uk,ck) < H(uk,ck +
εkσ( fk)) ≤ Hk+1. Therefore the conclusion holds in this case. Assume now that
f (x̂k) �= 0. Then σ( f (x̂k)) > 0 and

Hk+1 ≥ minx∈X f0(x)+ (ck + εkσ( fk))σ( f (x))−〈Auk, f (x)〉
= f0(x̂k)+ (ck + εkσ( fk))σ( f (x̂k))−〈Auk, f (x̂k)〉
= L(x̂k,(uk,ck))+ εkσ( fk)σ( f (x̂k))
≥ minx∈X L(x,(uk,ck))+ εkσ( fk)σ( f (x̂k)) = Hk + εkσ( fk)σ( f (x̂k)).

Therefore
Hk+1 ≥ Hk + εkσ( fk)σ( f (x̂k)) > Hk (4)
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and the conclusion is proved also for this case. For the converse stated in (b)(ii), we
now show that, if (L1) does not hold, then we can find a problem (P) for which the
sequence {Hk} generated by DSG is not strictly increasing. If (L1) does not hold,
then there exists z̄ ∈ IRm such that σ(z̄)−‖Az̄‖ < 0. Hence z̄ �= 0. Let r := ‖z̄‖ > 0.
Consider problem (P) with f0(x) = σ(x)−‖Ax‖, X = B(0,r) the closed ball of
center zero and radius r, and constraint function f (x) = x. It is clear that MP = 0. Let
x̄ ∈ argminx∈B(0,r)σ(x)−‖Ax‖. By our assumption, we have that f0(x̄)≤ f0(z̄) < 0.
Take now (u0,c0) = (0,0), so we can take

x0 := x̄ ∈ argmin
x∈B(0,r)

σ(x)−‖Ax‖= X(u0,c0),

and H0 = H(u0,c0) = f0(x0) < 0 = MP. Because f (x0) = x0 �= 0 we can perform a
DSG step. Let us take s0,ε0 such that

s0

ε0
>

σ(x0)2

‖Ax0‖2−σ(x0)2 > 0.

From the DSG step we have (u1,c1) = (−s0Ax0,(s0 + ε0)σ(x0)), so

H1 = minx∈B(0,r)σ(x)−‖Ax‖+(s0 + ε0)σ(x0)σ(x)+ s0〈Ax0,Ax〉

≤ σ(−x0)−‖A(−x0)‖+ s0(σ(−x0)2−‖Ax0‖2)+ ε0σ(−x0)σ(x0)

= σ(x0)−‖A(x0)‖+ s0(σ(x0)2−‖Ax0‖2)+ ε0σ(x0)2

< σ(x0)−‖Ax0‖= H0,

where we used the fact that −x0 ∈ B(0,r) in the first inequality, the assumption
σ(z) = σ(−z) in the second equality, and the condition on s0,ε0 in the second
inequality. The above expression contradicts the assumption that DSG produces
strictly improving dual values, so we must have that (L1) holds.

Remark 4. Note that (4) in the proof above provides a lower bound on the improve-
ment of the value of H. Then the following corollary can be stated. Obviously, when
the deflection parameter εk = 0, there is no guarantee on the improvement of the
value of H, although {Hk} would still be nondecreasing.

Corollary 1. Consider the notation and definitions of the DSG algorithm and as-
sume that (L1) holds. Then for all k we have

εkσ( fk)σ( f (x̂k))≤ Hk+1−Hk ≤ sk‖A fk‖2 +(sk + εk)σ( fk)2 ,

where x̂k ∈ X(uk,ck + εkσ( fk)).

From now on, we always assume that (L1) holds. We establish below a necessary
and sufficient condition on the step-sizes sk and εk for guaranteeing boundedness of
the dual sequence.
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Lemma 2. Consider the notation and definitions of the DSG algorithm. The
following statements are equivalent:

(a)
∞

∑
k=0

(sk + εk)σ( fk) < ∞.

(b) The sequence {zk} is bounded.

Proof. From the DSG algorithm

cm+1− c0 =
m

∑
k=0

(sk + εk)σ( fk) and ‖um+1−u0‖ ≤
m

∑
k=0

sk‖A fk‖. (5)

By (L1) we have ‖A fk‖ ≤ σ( fk). If (a) holds then clearly the sequence {ck} is
bounded. On the other hand,

‖um+1−u0‖ ≤
m

∑
k=0

sk‖A fk‖ ≤
m

∑
k=0

skσ( fk) < +∞,

which yields boundedness of the sequence {uk}. Assume now that (b) holds. By (5)
we must have condition (a).

4 Existence and Convergence Results

Conditions that guarantee the existence of dual solutions are often related to prop-
erties of the perturbation function associated with the problem under considera-
tion. Unfortunately, the calculation of the perturbation function is very difficult, and
hence it makes sense to establish alternative ways of guaranteeing existence of dual
solutions. Conditions of this kind can be found in [28–31]. We give below a new ex-
istence condition by using the dual sequence generated by the DSG algorithm using
a rather general step-size sk. The proofs of the results in this section and the next one
can be deduced (with some suitable modifications) from those in references [8, 11],
which were given for σ(·) = ‖ ·‖ and A = I. We include here these proofs, however,
for the sake of completeness.

Lemma 3. Let H be the optimal value of (P) (i.e., H := MD = MP). Assume that the
sequence {zk} generated by the DSG algorithm is bounded and that the step-size sk

satisfies

sk ≥ η
(H−Hk)
σ( fk)2 , (6)

for some fixed η > 0. Then {Hk} converges to H and every accumulation point of
{zk} is a dual solution. In particular, S(D) �= /0.

Proof. By (5), boundedness of the sequence implies that

∞

∑
k=0

skσ( fk) < +∞. (7)
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Let (ū, c̄) be an accumulation point of the sequence {(uk,ck)}, and denote by K the
infinite set of indices such that

lim
k ∈K,
k→ ∞

(uk,ck) = (ū, c̄).

We will prove that (ū, c̄) ∈ S(D). By boundedness of {xk}, we can also assume
that the whole sequence {xk}k∈K converges to some x̄. If f (x̄) = 0, we claim that
x̄ ∈ X(ū, c̄). In this case, Theorem 2 implies that (ū, c̄) ∈ S(D). Indeed, by definition
of xk, we have that

f0(xk)+ ckσ( f (xk))−〈Auk, f (xk)〉 ≤ f0(x)+ ckσ( f (x))−〈Auk, f (x)〉,

for all x ∈ X and for all k. Taking limits for k ∈K, k → ∞ in the above expression
we get

f0(x̄)+ c̄σ( f (x̄))−〈Aū, f (x̄)〉 ≤ f0(x)+ c̄σ( f (x))−〈Aū, f (x)〉,

for all x ∈ X . Hence x̄ ∈ X(ū, c̄) and thus (ū, c̄) ∈ S(D). Assume now that f (x̄) �= 0.
This fact, together with (7), implies that the sequence {sk}k∈K converges to zero.
Using also (6) for k ∈K, we conclude that the subsequence of dual values {Hk}k∈K

converges to H. By continuity of H we have that

H(ū, c̄) = limsup
k ∈K,
k→ ∞

H(uk,ck) = H.

This shows that H(ū, c̄) has optimal functional value H and hence (ū, c̄) ∈ S(D).
Moreover, from Corollary 1 we know that {Hk} is strictly increasing. Since it has
a convergent subsequence, the whole sequence must converge to H. The proof is
complete.

The following simple estimate will be useful.

Lemma 4. Fix z = (u,c) ∈ IRm× IR+. Then

dk+1−dk ≤ (s2
k‖A fk‖2 +(sk + εk)2σ( fk)2)+2[sk(Hk−H(u,c))− εkσ( fk)(c− ck)].

Proof. Note that

dk+1−dk = ‖z− zk+1‖2−‖z− zk‖2

= ‖zk− zk+1‖2 + 2〈z− zk,zk− zk+1〉.

Call Ak := ‖zk−zk+1‖2 and Bk := 〈z−zk,zk−zk+1〉. Using the definition of the DSG
algorithm, we can write

Ak = ‖uk−uk+1‖2 + |ck− ck+1|2 = s2
k ‖A fk‖2 +(sk + εk)2σ( fk)2.
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Combining the two previous expressions, we get

dk+1−dk = s2
k ‖A fk‖2 +(sk + εk)2σ( fk)2 + 2Bk. (8)

The term Bk is written out as follows:

Bk = 〈u−uk,uk−uk+1〉+(c− ck)(ck− ck+1)
= 〈u−uk,sk A fk〉− (c− ck)(sk + εk)σ( fk)
= sk [〈u−uk,A fk〉− (c− ck)σ( fk)]− εk (c− ck)σ( fk).

(9)

In order to estimate the expression between brackets, we use the subgradient
inequality:

H(u,c)≤ H(uk,ck)+ 〈(−A fk,σ( fk)),(u−uk,c− ck)〉

or
[〈u−uk,A fk〉− (c− ck)σ( fk)]≤ Hk−H(u,c).

Using this in (9), we obtain

Bk ≤ sk (Hk−H(u,c))− εk (c− ck)σ( fk).

Equation (8) now yields

dk+1−dk ≤ s2
k ‖A fk‖2 +(sk + εk)2σ( fk)2−2 [sk (H(u,c)−Hk)

+ εk (c− ck)σ( fk)] , (10)

which completes the proof.

Lemma 4 allows us to prove that the dual sequence is convergent. For proving
that the limit is in fact optimal we will need extra assumptions on the step-sizes (see
Theorem 4).

Theorem 3. If the sequence generated by DSG is bounded, then it is convergent.

Proof. Assume that the sequence {zk} is bounded and let ẑ be an accumulation point
of {zk}. Call {zk j} j a subsequence converging to ẑ. Using Lemma 4 for the choice
z := ẑ = (û, ĉ), we conclude that the sequence {d(ẑ,zk)} verifies

d(ẑ,zk+1)−d(ẑ,zk) ≤ s2
k‖A fk‖2 +(sk + εk)2σ( fk)2

−2sk(H(ẑ)−Hk)−2εkσ( fk)(ĉ− ck).

By Corollary 1, {Hk} is a strictly increasing and therefore limk Hk = supk Hk =
lim j Hkj = H(ẑ). Using now the upper-semicontinuity of H we get

H(ẑ)≥ limsup
j

Hkj = lim
j

Hkj = sup
j

Hj ≥ Hk for every k ∈ IN.

So (H(ẑ)−Hk) ≥ 0 for all k. Using also that {ck} is a strictly increasing sequence,
we have that (ĉ− ck)≥ 0 for all k. Hence,
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d(ẑ,zk+1)−d(ẑ,zk)≤ s2
k‖A fk‖2 +(sk + εk)2σ( fk)2.

Since {zk} is bounded, we can use Lemma 2 to conclude that the series with general
term ak := s2

k‖A fk‖2 + (sk + εk)2σ( fk)2 is convergent, and this implies (by [23,
Lemma 2.2.2]) that the sequence {d(ẑ,zk)}k is convergent. But the subsequence
{d(ẑ,zk j )} j of this sequence converges to zero, and so the whole sequence con-
verges to zero, yielding the uniqueness of the accumulation point.

It has been established in [8, Example 1] that the sequence xk generated by DSG
may not converge to a primal solution. However, if we consider the slightly per-
turbed sequence {x̃k} such that x̃k ∈ X(uk,ck + β ) for a fixed β > 0, then we can
prove that all its accumulation points are primal solutions. We call such a sequence
a primal sequence.

Theorem 4 (Primal–dual convergence). Assume that the sequence {(uk,ck)} gen-
erated by the DSG algorithm is bounded. Assume also that for some η > 0 the
step-size sk satisfies

sk ≥ η
(H−Hk)
σ( fk)2 . (11)

Then the limit of the sequence {zk} is a dual solution. Additionally, all accumulation
points of {x̃k} are solutions of (P).

Proof. By Corollary 1 the sequence {Hk} is strictly increasing. Moreover, Lemma 3
implies that Hk → H and every accumulation point of {zk} is a dual solution. Since
{zk} is bounded, Theorem 3 allows us to conclude that {zk} is convergent. Com-
bining these two facts, we get that {zk} converges to a dual solution. Now we
will show that all accumulation points of the primal sequence {x̃k} are solutions
of Problem (P). In order to prove this fact, we will show that the numerical se-
quence {σ( f̃k)} has zero as its unique accumulation point. Fix β > 0 and take
x̃k ∈ X(uk,ck + β ) for all k. Take a ≥ 0 as an accumulation point of the sequence
{σ( f̃k)}. So there exists a subsequence {σ( f̃k j )} such that a = lim j→∞ σ( f̃k j ). Then

H(ukj ,ckj ) = Hkj ≤ H(ukj ,ckj +β )+ 〈(−A f̃k j ,σ( f̃k j )),(0,−β )〉
≤ H(ukj ,ckj +β )−βσ( f̃k j).

We can rewrite this as

βσ( f̃k j )≤ H(ukj ,ckj +βσ( fk j ))−Hkj ≤ H−Hkj .

Using the fact that lim j H−Hkj = 0 we get

a = lim
j→∞

σ( f̃k j ) = 0. (12)

Thus the sequence {σ( f̃k)} converges to zero. Take now x̃ as an accumulation point
of {x̃k}. Since zero is the limit of {σ( f̃k)}, we must have f (x̃) = 0. Without loss of
generality, assume the whole sequence {x̃k} converges to x̃. Then
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MP ≤ f0(x̃) = lim
k

f0(x̃k)+ (ck +β )σ( f (x̃k))−〈Auk, f (x̃k)〉
= lim

k
min
x∈X

f0(x)+ (ck +β )σ( f (x))−〈Auk, f (x)〉
= lim

k
H(uk,ck +β )≤ H̄ = MD,

where we have used the definition of x̃k in the second equality. By weak duality, we
must have f0(x̃) = MP and since f (x̃) = 0, x̃ is a primal solution.

5 On a Special Choice of sk

In this section, we study a special choice of the parameter sk for which nonemptiness
of S(D) is equivalent to the boundedness of {zk}. The step-size we consider is as
follows:

η
H−Hk

σ( fk)2 ≤ sk ≤ 2
H−Hk

σ( fk)2 , (13)

with η ∈ (0,2).
For establishing the announced fact, we need an auxiliary result.

Lemma 5. Assume that S(D) �= /0 and let {zk} be the sequence generated by the
DSG algorithm with step-size {sk} satisfying

liminf
k

[
2

H−Hk

σ( fk)2 − sk

]
>−∞. (14)

Then {zk} is bounded.

Proof. Fix a dual solution (ū, c̄) ∈ S(D). For contradiction purposes, assume that
{zk} is unbounded. This means that either {uk} or {ck} are unbounded. If {uk} is
unbounded, then

∞=∑
k

sk‖A fk‖ ≤∑
k

skσ( fk)≤∑
k

(sk + εk)σ( fk),

where we also used (L1). So {ck}must be unbounded. Hence in either case we must
have {ck} unbounded. Since it is a strictly increasing sequence, it tends to infinity.
On the other hand, by definition of the DSG algorithm,

‖ū−uk+1‖2 = ‖ū−uk + skA fk‖2

= ‖ū−uk‖2 + 2sk〈ū−uk,A fk〉+ s2
k ‖A fk‖2 .

(15)

In order to estimate the middle term of the expression above we use the subgradient
inequality,

H−Hk ≤ 〈ū−uk,−A fk〉+(c̄− ck)σ( fk). (16)

Multiply both sides by 2sk and rearrange the resulting expression, to get

2sk〈ū−uk,A fk〉 ≤ −2sk(H−Hk)+ 2sk(c̄− ck)σ( fk).
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Combine this fact with (L1) and (15) to obtain

‖ū−uk+1‖2 ≤ ‖ū−uk‖2−2sk(H−Hk)+ 2sk(c̄− ck)σ( fk)+ s2
k‖A fk‖2

≤ ‖ū−uk‖2 + skσ( fk)2

[
sk− 2(H−Hk)

σ( fk)2 +
2(c̄− ck)
σ( fk)

]
.

(17)

Assumption (14) means that there exist a constant ρ ∈ IR and an index k0 such that

sk− 2(H−Hk)
σ( fk)2 ≤ ρ ,

for all k ≥ k0. As pointed out above, {ck} tends to infinity and hence there exists an
index k1 ≥ k0 such that

ρ ≤ 2(ck− c̄)
σ( fk)

for all k ≥ k1,

where we are also using the fact that the sequence {σ( fk)} is bounded. Altogether,
we conclude that for all k≥ k1,

sk− 2(H−Hk)
σ( fk)2 +

2(c̄− ck)
σ( fk)

≤ 0.

This fact, combined with (17), yields ‖ū−uk+1‖ ≤ ‖ū−uk‖ for all k ≥ k1 and this
implies that {uk} is bounded. Using Cauchy–Schartz inequality in (16), we get

(ck− c̄)σ( fk)≤−(H−Hk)+‖A fk‖‖ū−uk‖ ≤ ‖A fk‖‖ū−uk‖ ≤ σ( fk)‖ū−uk‖,

where we used assumption (L1) in the rightmost inequality. Note that, if fk0 = 0 for
some k0, then the corresponding (uk0 ,ck0) ∈ S(D) and the DSG stops at k0. In this
case the sequence is finite and therefore bounded. So the unboundedness assumption
implies that fk �= 0 for all k. Using this fact in the previous expression, we get

(ck− c̄)≤ ‖ū−uk‖,

and hence {ck} must be bounded, a contradiction. This implies that the sequence
{zk} must be bounded.

Condition (14) is not practical from an algorithmic point of view, because it can-
not be verified during the process. For this reason, and also for simplicity of exposi-
tion, we replace it by the right-hand side inequality in (13), which can be effectively
checked at each iteration. The latter condition readily implies (14).

Theorem 5. Assume the step-size in the DSG algorithm is chosen according to (13),
then the following statements are equivalent:

(a) The sequence {zk} is bounded.
(b) S(D) �= /0.
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Proof. The fact that (a) implies (b) is a consequence of Theorem 3 and the left-hand
side inequality in (13). Indeed, Theorem 3 implies that every accumulation point of
{zk} is a dual solution. In particular, S(D) is nonempty. In order to show that (b)
implies (a), observe that this follows from Lemma 5 and the fact that the right-hand
side inequality in (13) implies (14).

In the theorem below, we consider again the sequence {x̃k} such that x̃k ∈
X(uk,ck + β ), where β > 0. We recover the same convergence results as the ones
reported in Theorem 4, but without the assumption of boundedness of {zk}.
Theorem 6. Assume the step-size in the DSG algorithm is chosen according to (13).
Suppose also that S(D) �= /0. Then:

(i) The dual sequence {zk} converges to a dual solution.
(ii) The sequence of dual values {Hk} converges to an optimal dual value.
(iii) All accumulation points of the primal sequence {x̃k} are solutions of

Problem (P).

Proof. By Theorem 5 and the fact that S(D) �= /0, we conclude that {zk} is bounded.
Using now the left-hand side of (13) and Theorem 4, we conclude that statements
(i)–(iii) hold.

The following simple result is useful for an implementation of the algorithm.

Proposition 2. Assume that one of the following conditions holds:

(i) The step-size sk satisfies (6) and {zk} is bounded.
(ii) The step-size sk satisfies (13) and S(D) �= /0.

Then there exists a dual solution (ū, c̄) such that c̄ > ck for all k.

Proof. Under assumption (i), by Theorem 3 it holds that S(D) �= /0. So under either
assumption, we must have S(D) �= /0. Now fix a dual solution (ū, c̄). Under assump-
tion (ii), and using Theorem 5, we conclude that the sequence {zk} is bounded. So
again under either assumption, we must have {zk} bounded. Thus there exists ĉ≥ ck

for all k. Using Lemma 1(b), we have that (ū, ĉ + c̄) is also a dual solution, and this
dual solution is as in the statement of the proposition.

6 Numerical Implementation

In Sect. 6.1, we select practical step-size parameters for a numerical implementation
of the deflected subgradient method. In Sect. 6.2, we list the functional forms we use
for the augmenting function σ , and in Sect. 6.3 point to the special case of a penalty
function method. In Sect. 6.4, we demonstrate the method with the proposed step-
sizes and example choices of σ and A on test problems.
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6.1 Step-Size Selection

We assume that the dual sequence {zk} generated by the deflected subgradient
method is bounded. Although a wide range of step-sizes can be chosen using (11),
we will restrict our attention to the estimate given in Lemma 4 in deriving a step-
size, because it reflects the structure of the problem.

For simplicity let sk and εk be related through sk = α εk, where α > 0. Since the
hypotheses of Proposition 2(i) are satisfied, there exists a dual solution (ū, c̄) such
that c̄ ≥ ck for all k. Now, Lemma 4 for z := (ū, c̄) and εk = αsk yields, after trivial
manipulations,

sk

[
2

(H−Hk)+α (c̄− ck)σ( fk)
‖A fk‖+(1 +α)2σ( fk)2 − sk

]
≤ dk−dk+1

‖A fk‖+(1 +α)2σ( fk)2 . (18)

Taking now sk such that

sk = δ
(H−Hk)+α (c̄− ck)σ( fk)

[1 +(1 +α)2]σ( fk)2 , 0 < δ < 2 , (19)

and recalling σ( fk) ≥ ‖A fk‖ in Assumption (L1), we see that the left-hand side of
the expression in (18) is nonnegative, and therefore the sequence {dk} is nonincreas-
ing, and hence convergent. This choice of sk forces convergence of the dual values
towards the optimal value H.

The value of the cost function at any point satisfying the constraints constitutes
an upper bound Ĥ for H. In the numerical experiments in this chapter, we use Ĥ
in the place of H to illustrate the behaviour of the deflected subgradient method.
In some problems, H is known exactly, for example, in some formulations of the
problem of solving a nonlinear system of equations H = 0. Because in general H is
not known but is necessary to use for a relatively more efficient implementation of
subgradient methods, methods are proposed in the nonlinear programming literature
for getting around this difficulty [2, 33].

Recall that any ĉ ≥ c̄ is also a dual solution. So we can replace c̄ in (19) by an
upper bound ĉ for c̄. So we set the step-size sk as

sk = δ
(Ĥ−Hk)+α (ĉ− ck)σ( fk)

[1 +(1 +α)2]σ( fk)2 , 0 < δ < 2 , α > 0 . (20)

It must be noted that when H is replaced by Ĥ ≥ H the right-hand inequality
in (13) does not hold. Therefore, Theorems 5 and 6 cannot be stated. However, the
main convergence theorems 3–4 would still hold.

Substitution of the step-size in (20) into the dual variable update formulas in
Step k.2 of the DSG algorithm gives

ck+1 = ck +
(1 +α)δ

1 +(1 +α)2

[
Ĥ−Hk

σ( fk)
+α (ĉ− ck)

]
, (21)
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uk+1 = uk− ck+1− ck

(1 +α)σ( fk)
A fk , 0 < δ < 2 , α > 0 . (22)

6.2 Augmenting Functional Forms

For testing the proposed method, the following seven functional forms for σ have
been chosen:

Norm functional forms : ‖ · ‖2 , ‖ · ‖1 ,
√

m‖ · ‖∞
Exponential functional forms : e‖·‖2−1 , e‖·‖1−1 ,

√
m
(
e‖·‖∞ −1

)
Hybrid functional form : max(‖ · ‖2,‖ · ‖2

2)

In these forms, m is the number of constraints (i.e., m is the dimension of the
codomain of the constraint function f : IRn → IRm in problem (P)). All of these forms
satisfy the requirement that

σ(z)≥ ‖Az‖ , z ∈ IRm ,

where two particular choices of A are considered: A = I, the identity matrix, and
A = 0, the zero matrix. Many other functional forms can be shown to satisfy the
above condition. However, we restrict our implementation and comparison to the
forms we have chosen above. A much wider choice of functional forms for σ and
different choices of matrices for A should be the subject of a comprehensive com-
parison study.

6.3 A Special Case: Penalty Methods

One should note that the choice of A = 0 makes the augmented Lagrangian a penalty
function with the penalty term cσ(·). In this case, any nonnegative functionσ(·) can
be used. The deflected subgradient method then reduces to a penalty method, with
the attractive feature that the penalty parameter c is updated automatically.

It is not common in the nonlinear programming literature to find an update rule
for the penalty parameter c, which is derived from the structure of the problem. The
authors presented an update rule in [10] for c in the penalty function

fc(x) = f0(x)+ c‖ f (x)‖ ,

using the sharp Lagrangian (i.e., when σ(z) = ‖z‖ and A = I). The setting we have
for the deflected subgradient method prescribes the update rule (21) for the penalty
parameter c in the much more general penalty function

fc(x) = f0(x)+ cσ( f (x)) .
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Table 1 Parameters and initial guesses used for the deflected subgradient method

Problem x0 c0 u0 Ĥ ĉ α δ
PQR-T1-7 −(5,5,5) 1.5 (1,1,1,1,1,1,1) 0 10 1 0.5
GLR-P1-1 (0,0,0) 50 (0,0,0,0) −20,000 10,000 1 0.5
PPR-P1-3 (5,5,5,5) 0.5 (1,1,1,1,1,1,1,1,1,1) 20 5 1 0.1
PGR-P1-3 (0,0,0,0,0) 0.0001 (0,0) 0.5 1 1 0.1
GQR-T1-5 (1,1,1) 1.5 (0,0) 2 20 1 0.1
QIP [8, 11] −(2,2,2,2) 1 −(1,1,1,1,1) −19 20 3 0.1

Mur-Sau [8, 11] 0.5(1,1,1,1,1) 0.5 (0,1,1) 0.05 2 1 0.05
Control [8, 11, 17] 0.5(1,1,1,1,1) 1.5 −(1,1,4) 4 4 2 0.1

SQR-P1-1 (0,0) 0.2 (0,0,0) 2 5 1 0.1
GQR-P1-1 (90,10) 1 (1,1,1,1,1,1,1) 0 5 1 0.1
QQR-P1-1 (0,0,0) 0.1 (1,1) 0 5 1 0.1
QQR-P1-2 (2,2,2) 0.1 (1,1,1,1,1) 1,000 5 1 0.1
PPR-P1-2 (1,1,1) 0.1 (1,1,1,1) 10,000 200 1 0.1
LGR-P1-1 (1,1,1) 0.1 (0,0,0,0,0,0,0,0) 1 2 1 0.1
LPR-P1-1 (1,1,1,1) 1 (0,0,0,0,0,0,0,0,0,0) 1,000 50,000 1 0.1
GPR-P1-2 (−2,2,2,−1,−1) 0.7 (1,1,1,1,1,1,1,1,1,1,1) 0.1 3 1 0.1

6.4 Example Applications

We have tested the deflected subgradient method on 16 test problems from the liter-
ature [8, 11, 16]. For each problem, a different set of parameters and initial guesses
have been used. These are shown in Table 1. All those test problems listed without
a citation are from the Hock and Schittkowski collection [16]. We report the results
in Tables 2 and 3.

For solving the subproblem we have used MATLAB’s fminsearch, which
implements the Nelder–Mead downhill simplex method. We have replaced the in-
equality constraints of the form

g(x)≤ 0

in the test problems by their nonsmooth equivalent

max{g(x),0}= 0 ,

so that all problems were converted into an equality constrained optimization
problem.

We ran the numerical experiments under two major cases, namely (1) A = I, that
is, an augmented Lagrangian case, and (2) A = 0, that is, a penalty function case.
Under each case, we report the number of iterations and function evaluations it took
for the deflected subgradient method to find a solution. The cases when a solution
could not be found are indicated by a dash. For each test problem, the least number
of function evaluations have been framed by a box.
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Observations

In order to draw statistical, far reaching, conclusions regarding the augmented
Lagrangian and penalty function cases with a sample of augmenting functional
forms, one might need a much wider range of problems than the number we have in-
cluded in this chapter. However, at least for the small-scale problems we have listed,
it is worthwhile to make the following observations:

• Overall, 224 (2× 7× 16) experiments have been conducted using the deflected
subgradient method with the parameters and initial guesses listed in Table 1.
In the augmented Lagrangian case (A = I), no solution could be found in 18
experiments (16%). In the penalty function case, 29 of the experiments failed to
find a solution (26%). If one does not discriminate amongst the functional forms
of σ , then it might be fair to say that overall it is more advantageous to use an
augmented Lagrangian function formulation rather than a penalty function one.

• Next we look at the overall failure rates for the three separate groups of aug-
menting functional forms, in both of the A = I and A = 0 cases. The group of
norm augmenting functions has a failure rate of 33/96, that is, 34%. The failure
rate for the exponential group is only 9/96, that is, 9.4%. The hybrid functional
form has failed at the rate 3/16, that is, 19%. One might argue that the number of
experiments for the hybrid group may not be large enough to draw conclusions.
Nevertheless, the overall percentage failure rates point to the fact that the expo-
nential augmenting functions we have chosen are more successful compared to
the norm augmenting functions.

• How efficient are each of the three groups, when they happen to be success-
ful, with respect to one another? In the experiments, the exponential augmenting
function group is the winner in 11 of the 16 problems, as opposed to the five times
winner norm augmenting function group. The hybrid group has never achieved
the least number of function evaluations in any of the problems.

• It is interesting to note that the sharp augmented Lagrangian formulation (where
σ(·) = ‖ · ‖2 and A = I) seems to be amongst the least successful of all of the
augmented Lagrangian formulations considered in the experiments. The classical
�1-penalty function (where σ(·) = ‖ · ‖1 and A = 0) also seems to be the least
successful amongst all of the penalty function formulations here.

We should note that a majority of these test problems come originally from dif-
ferentiable problems and that in their original form they can be solved by simply
applying Newton-type methods with far fewer function evaluations. We often re-
formulated these differentiable problems in a way that the resulting problem was
nondifferentiable. In this sense, these problems only serve to test the performance
of the different augmented Lagrangian formulations that we have introduced in our
chapter.
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On Weak Multifunction Equilibrium Problems

Adela Capătă, Gábor Kassay, and Boglárka Mosoni

Abstract This chapter deals with an extended form of the scalar equilibrium
problem called the weak multifunction equilibrium problem. New existence results
are obtained in the general setting using a well-known separation theorem in infi-
nite dimensional spaces. These results are applied for the particular case of real-
valued multifunctions. Furthermore, two gap functions associated with the studied
problems are constructed, where, for one of them, the Fenchel duality theory of
optimization is used.

1 Introduction

In the last 15 years, the so-called scalar equilibrium problem has been extensively
studied within nonlinear analysis especially due to its important particular cases
such as scalar and vector optimization problems, saddle point/minimax problems,
variational and hemivariational inequalities (see, for instance, [3–5,7–9,14,23–25]).
These problems are useful models of many practical situations arising in economics,
engineering, physics, chemistry, etc. (see [2]).

In recent years the vector and multifunction form of the equilibrium problem
has been studied (see, e.g., [7, 13]). In this chapter, we extend the results from [7],
obtained for the vector equilibrium problems, to the so-called weak multifunction
equilibrium problems. These problems can be formulated as follows. Recall that a
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subset C of a topological vector space is called cone if λC⊆C for every λ ≥ 0. The
cone C is said to be:

1. solid, if intC �= /0;
2. pointed, if C∩ (−C) = {0}.

Let A be a nonempty subset of a topological vector space X , B a nonempty set, Z
a topological vector space, C ⊂ Z a convex and solid cone, and ϕ : A×B→ Z be a
vector-valued function.

The weak vector equilibrium problem is

(WVEP) find ā ∈ A such that ϕ(ā,b) /∈ −intC for all b ∈ B.

Now, if ϕ : A× B → 2Z , the weak multifunction equilibrium problem can be
defined in two ways:

(WWMEP) find ā ∈ A such that ϕ(ā,b) �−intC for all b ∈ B,

(SWMEP) find ā ∈ A such that ϕ(ā,b)∩ (−intC) = /0 for all b ∈ B.

Observe that both problems reduce to (WVEP) when ϕ is single valued. It is obvi-
ous that each solution of (SWMEP) is a solution of (WWMEP), but not vice versa.
Indeed, let A = R, B = [0,∞), C = R

2
+ and ϕ : A×B→ 2R

2
, defined by

ϕ(a,b) = {(a,y)|y ∈ [−b,b]}.

Take ā = −1. It is easy to see that ā is a solution of (WWMEP), but not a solution
of (SWMEP).

The chapter is organized as follows. In the remaining part of the introduction, we
recall some notions and properties considered in the past necessary for our investi-
gations.

In Sect. 2, we state existence theorems for (WWMEP), by applying a separation
result of two convex sets in infinite dimensional spaces. The first one (Lemma 4)
is very general, but rather technical; we use it to obtain an existence result (Theo-
rem 1) where the technical assumptions of Lemma 4 are replaced by more familiar
(generalized) convexity and continuity hypothesis. In the last part of this section, we
consider (WW MEP) for a multifunction whose values are subsets of the real line,
denoted by (MEP).

Since gap (or merit) functions help us to detect if a point is solution of the
problem (WWMEP), in Sect. 3 we introduce a new gap function for multifunc-
tion equilibrium problems in infinite dimensional spaces. For a particular form of
the multifunction ϕ , our results recover some of the results of [13]. It turns out that
(MEP) is equivalent to a scalar equilibrium problem, therefore using the Fenchel
duality theory of optimization we are able to give another gap function for it. Fi-
nally, we conclude this section dealing with gap functions associated to (MEP).
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Next we recall the following definitions needed in the sequel.

Definition 1 ( [20] ). Let T : X → 2Z be a multifunction. T is said to be upper
C-continuous at x0 ∈ X if for every open set V in Z, containing T (x0) there ex-
ists an open neighborhood U of x0 such that T (x) ⊆ V +C for all x ∈ U . If T is
upper C-continuous at each point x0 ∈ X we say that T is upper C-continuous on X .

The next continuity type definition for multifunctions in metric spaces can be
found in [12] and [22].

Definition 2. Let (Z,d) be a metric space, T : X → 2Z a multifunction and x0 ∈
X . T is said to be d-upper semicontinuous at x0 if, for any ε > 0 there exists a
neighborhood U of x0 such that

T (x)⊂ B(T (x0),ε) for all x ∈U,

where B(T (x0),ε) is defined as{
y ∈ Z| inf

z∈T (x0)
d(y,z) < ε

}
.

If T is d-upper semicontinuous at each point x0 ∈ X we say that T is d-upper semi-
continuous on X .

A neighborhood U of zero is said to be balanced, if λU ⊆U for each scalar with
| λ |≤ 1.

Let us recall the following convexity concepts for multifunctions.

Definition 3. Let T : X → 2Z be a multifunction, C ⊂ Z a convex and solid cone.
T is said to be:

(i) C-convex if for all x1, x2 ∈ X and t ∈ (0,1)

tT (x1)+ (1− t)T(x2)⊂ T (tx1 +(1− t)x2)+C;

(ii) C-convexlike on X if for all x1, x2 ∈ X and t ∈ (0,1)

tT (x1)+ (1− t)T(x2)⊂ T (X)+C;

(iii) C-subconvexlike on X if there exists θ ∈ intC such that for all x1, x2 ∈ X ,
t ∈ (0,1) and ε > 0

εθ + tT (x1)+ (1− t)T(x2)⊂ T (X)+C.

We say that T is C-subconcavelike on X if −T is C-subconvexlike on X .

The first definition has been considered by S.X. Li in [18]. For the vector case
(ii) has been introduced by Paeck in [26] and (iii) by Jeyakumar in [16]. These
notions have been considered for multifunctions by Z.F. Li in [19].

The next characterizations of C-subconvexlikeness can be found in [19].
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Lemma 1. For the multifunction T : X → 2Z, the following properties are
equivalent:

(i) T is C-subconvexlike on X.
(ii) For all x1, x2 ∈ X, t ∈ (0,1) there exists θ ∈C such that for each ε > 0

εθ + tT (x1)+ (1− t)T(x2)⊂ T (X)+C.

(iii) For all θ ′ ∈ intC, x1, x2 ∈ X and t ∈ (0,1)

θ
′
+ tT (x1)+ (1− t)T(x2)⊂ T (X)+ intC.

Lemma 2. A multifunction T : X → 2Z is C-subconvexlike (respectively C-
convexlike) on X if and only if the set T (X)+ intC (respectively T(X)+C) is convex.

Example 1. For showing that the concept of C-subconvexlike multifunction is more
general than that of C-convexlike multifunction we consider X = {(x1,x2) | x1 ≥ 0,
x2 ≥ 0, x1 + x2 > 1}, Z = R

2, C = R
2
+ and F : X → 2Z, defined by

F(x1,x2) = {(x1,x2),(0,1),(1,0)}.

It is easy to see that F(X)+ intR2
+ is a convex set, but the set F(X)+R

2
+ is not

convex.

Definition 4. Let A be a nonempty convex subset of the space X , T : A → 2Z and
t ∈ (0,1). The multifunction T is said to be (see [11]):

(i) t-Convex if for any a1,a2 ∈ A:

tT (a1)+ (1− t)T(a2)⊆ T (ta1 +(1− t)a2);

(ii) t-Concave if for any a1,a2 ∈ A:

T (ta1 +(1− t)a2)⊆ tT (a1)+ (1− t)T(a2).

We denote by X∗ the topological dual of X , which is the set of all continuous and
linear real functionals, and by x∗(x) the value of x∗ ∈ X∗ at x ∈ X . Recall that the
dual cone of C, denoted by C∗ is the set

C∗ = {z∗ ∈ Z∗ | z∗(c)≥ 0 for all c ∈C}.

In the sequel, we shall need the following simple property.

Lemma 3. If z∗ ∈C∗ is a nonzero functional, then z∗(c) > 0 for all c ∈ intC.

We shall conclude this section by recalling some well-known results from the
Fenchel–Moreau duality theory.

Definition 5. Let the functions fi : X → R∪ {+∞}, i ∈ {1, . . . ,k}, be given. The
function f1� · · ·� fk : X →R∪{±∞} defined by
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f1� · · ·� fk(x) = inf

{
k

∑
i=1

fi(xi) :
k

∑
i=1

xi = x

}

is called the infimal convolution function of f1, . . . , fk. The infimal convolution
f1� · · ·� fk is said to be exact at x ∈ X if there exist some xi ∈ X , i ∈ {1, . . . ,k},
such that ∑k

i=1 xi = x and

f1� · · ·� fk(x) = f1(x1)+ · · ·+ fk(xk).

For a function f : X →R∪{+∞}, we denote by dom f = {x ∈ X : f (x) < ∞} its
effective domain. The function f is called proper if dom f �= /0.

Definition 6. The Fenchel–Moreau conjugate function of a function f : X → R∪
{+∞}, where X is a real locally convex space, is f ∗ : X∗ → R∪{+∞} defined by

f ∗(x∗) = sup
x∈X

[x∗(x)− f (x)].

We recall, that for a nonempty subset A⊆ X , the indicator function is defined by

δA(x) =
{

0, if x ∈ A;
+∞, otherwise;

while the support function is σA(x∗) = supx∈A x∗(x).
Let f ,g : X → R∪{+∞} be proper, convex and lower semicontinuous functions

such that dom f ∩domg �= /0 and consider the following optimization problem

(P) inf
x∈X
{ f (x)+ g(x)}.

The Fenchel dual problem for (P) is

(D) sup
p∈X∗

{− f ∗(−p)−g∗(p)}.

The existence of strong duality between a convex optimization problem and its
Fenchel dual [the optimal value of (P) equals the optimal value of (D) and (D)
admits a solution] was established in [6], under the following (weak) regularity
condition:

(FRC) f ∗�g∗ is a lower semicontinuous function and exact at 0.

Theorem 1. Let (FRC) be fulfilled. Then the value of (P) equals the value of (D)
and (D) admits an optimal solution.
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2 Existence Results

By C (Z) we denote the set of all compact subsets of the space Z.
We need the following technical result whose proof is based on a separation

theorem in infinite dimensional spaces.

Lemma 4. Let ϕ : A×B→ C (Z) be a multifunction. For each b ∈ B and c ∈ intC
define the set Ub,k = {a ∈ A|ϕ(a,b)+ k ⊆ −intC}. Suppose that the following as-
sumptions hold:

(i) If the system {Ub,k | b ∈ B, k ∈ intC} covers A, then it contains a finite sub-
cover.

(ii) For each a1, . . . ,am ∈ A, λ1, . . . ,λm ≥ 0 with ∑m
i=1λi = 1, b1, . . . ,bn ∈ B, for

all di
j ∈ ϕ(ai,b j) where i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n} there exists u∗ ∈C∗ \ {0}

such that

min
1≤ j≤n

m

∑
i=1

λiu
∗(di

j)≤ sup
a∈A

min
1≤ j≤n

max u∗(ϕ(a,b j)),

where max u∗(ϕ(a,b j)) is the greatest element of the compact set u∗(ϕ(a,b j))⊆R.
(iii) For each b1, . . . ,bn ∈ B and z∗1, . . . ,z

∗
n ∈C∗ not all zero

sup
a∈A

n

∑
j=1

max z∗j(ϕ(a,b j))≥ 0.

Then the equilibrium problem (WWMEP) admits a solution.

Proof. Suppose by contradiction that (WWMEP) has no solution, that is, for each
a ∈ A there exists b ∈ B with the property ϕ(a,b)⊆−intC. Since ϕ takes compact
values, this means that for each a ∈ A there exist b ∈ B and k ∈ intC such that

ϕ(a,b)+ k⊆−intC.

Hence the family {Ub,k} covers the set A, and by assumption (i) there exists a fi-
nite subcover which covers the same set A, that is, there exist b1, . . . ,bn ∈ B and
k1, . . . ,kn ∈ intC such that

A⊆
n⋃

j=1

Ub j ,k j . (1)

For these k1, . . . ,kn ∈ intC, we have that there exist V1, . . . ,Vn balanced neighbor-
hoods of the origin of Z such that k j +Vj ⊂C for all j ∈ {1, . . . ,n}.

Define V := V1∩·· ·∩Vn, thus V is a balanced neighborhood of the origin of the
space Z. Let k0 ∈V ∩ intC, so we have −k0 ∈V . Hence,

k j− k0 ∈ k j +V ⊆ k j +Vj ⊆C for all j ∈ {1, . . . ,n},

which gives
k j− k0 ∈C for all j ∈ {1, . . . ,n}. (2)
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Now we define the set-valued mapping F : A→ 2Zn
by

F(a) := [ϕ(a,b1)+ k0]×·· ·× [ϕ(a,bn)+ k0].

Assert that
coF(A)∩ (intC)n = /0, (3)

where coF(A) denotes the convex hull of the set F(A). Supposing the contrary, there
exist z1, . . . ,zm ∈ F(A) and λ1, . . . ,λm ≥ 0 with ∑m

i=1λi = 1 such that

m

∑
i=1

λizi ∈ (intC)n. (4)

Let a1, . . . ,am ∈ A such that zi ∈ [ϕ(ai,b1) + k0]× ·· · × [ϕ(ai,bn) + k0], where
i ∈ {1, . . . ,m}. This, together with (4) imply the existence of some di

j ∈ ϕ(ai,b j)
such that

m

∑
i=1

λid
i
j + k0 ∈ intC for each j ∈ {1, . . . ,n}. (5)

Now, let u∗ ∈C∗ be a nonzero functional for which (ii) holds. Applying u∗ to the
above relation and taking into account Lemma 3 we obtain that

m

∑
i=1

λiu
∗(di

j)+ u∗(k0) > 0 for each j ∈ {1, . . . ,n}.

Passing to the minimum over j yields

min
1≤ j≤n

m

∑
i=1

λiu
∗(di

j) >−u∗(k0), (6)

thus, assumption (ii) and relation (6) imply

sup
a∈A

min
1≤ j≤n

maxu∗(ϕ(a,b j)) >−u∗(k0). (7)

For each a ∈ A, by relation (1) we have that there exists j0 ∈ {1, . . . ,n} such that
a ∈Ub j0 ,k j0

, that is, ϕ(a,b j0)+ k j0 ⊆−intC. This, together with (2) give

ϕ(a,b j0)+ k0 ⊆−k j0 + k0− intC ⊆−intC.

By Lemma 3 and the fact that u∗ ∈ C∗ \ {0} we obtain for all a ∈ A that there
exists j0 ∈ {1, . . . ,n} such that for each d ∈ ϕ(a,b j0)

u∗(d)+ u∗(k0) < 0.

Using this, we deduce

maxu∗(ϕ(a,b j0)) <−u∗(k0).
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Passing to minimum over j ∈ {1, . . . ,n} and then to supremum over a ∈ A the
previous relation becomes

sup
a∈A

min
1≤ j≤n

maxu∗(ϕ(a,b j))≤−u∗(k0), (8)

which is a contradiction to (7). Thus, (3) is true.
By the well-known Hahn–Banach separation theorem (see, e.g., [15, p. 74] or

[27, p. 58]), we obtain that there exists a nonzero linear and continuous functional,
z∗ ∈ (Zn)∗ such that

z∗(u)≤ 0, for all u ∈ coF(A), (9)

z∗(c)≥ 0, for all c ∈ (intC)n. (10)

Assert that z∗(c) ≥ 0, for all c ∈ (intC)n, implies z∗j ∈ C∗ for all j ∈ {1, . . . ,n}.
Observe that, by the continuity of z∗, (10) holds for every c ∈Cn. Suppose the con-
trary, that is, there exist j0 ∈ {1, . . . ,n} and w0 ∈C such that

z∗j0(w0) < 0.

Fix c1, . . . ,c j0−1,c j0+1, . . . ,cn ∈ C. Then (c1, . . . ,c j0−1, tw0,c j0+1, . . . ,cn) ∈ Cn for
any t > 0 and by (10) we have that

n

∑
j=1, j �= j0

z∗j(c j)+ tz∗j0(w0)≥ 0.

Passing with t to infinity within the upper relation we obtain −∞ ≥ 0, which is
false. So, z∗j ∈C∗ for all j ∈ {1, . . . ,n}.

In particular, by (9), we have z∗(u) ≤ 0 for all u ∈ F(A). This means that for
every a ∈ A and ha := (da

1 + k0, . . . ,da
n + k0) ∈ F(a), where da

j ∈ ϕ(a,b j) for each
j ∈ {1, . . . ,n}, we have z∗(ha)≤ 0, or equivalently,

n

∑
j=1

z∗j(d
a
j + k0)≤ 0.

As not all z∗j are zero, this implies by Lemma 3 that

n

∑
j=1

z∗j (d
a
j )≤−

n

∑
j=1

z∗j (k0) < 0. (11)

In particular, this takes place for those da
j for which z∗j attains its maximal value on

the compact set ϕ(a,b j) for every j ∈ {1, . . . ,n}. Passing to supremum over a ∈ A
in (11), we deduce

sup
a∈A

n

∑
j=1

maxz∗j(ϕ(a,b j))≤−
n

∑
j=1

z∗j(k0) < 0,

which is a contradiction to assumption (iii). This completes the proof.
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Following the definition of C-subconvexlikeness (Definition 3(iii) and Lemma 1)
we introduce a new convexity notion.

Definition 7. Let Y be a topological space, T : X ×Y → 2Z be a multifunction and
C⊂ Z be a convex and solid cone. T is said to be C-subconvexlike in its first variable
if for each θ ∈ intC, x1, x2 ∈ X and t ∈ (0,1) there exists an x3 ∈ X such that

θ + tT(x1,y)+ (1− t)T(x2,y)⊂ T (x3,y)+ intC for all y ∈ Y.

We say that T is C-subconcavelike in its first variable if −T is C-subconvexlike
in its first variable.

The next result provides sufficient conditions for the existence of (WW MEP) by
means of convexity and continuity assumptions.

Theorem 1. Let A be a compact set and ϕ : A×B→ C (Z) such that:
(i) ϕ(·,b) is upper−C-continuous for all b ∈ B.
(ii) ϕ is C-subconcavelike in its first variable.
(iii) For each b1, . . . ,bn ∈ B and z∗1, . . . ,z

∗
n ∈C∗ not all zero yields

sup
a∈A

n

∑
j=1

max z∗j (ϕ(a,b j))≥ 0.

Then the equilibrium problem (WWMEP) admits a solution.

Proof. We shall verify the assumptions of Lemma 4. Let b ∈ B, k ∈ intC and a0 ∈
Ub,k. This implies

ϕ(a0,b)+ k⊆−intC.

Since V := −intC− k is an open set with the property ϕ(a0,b) ⊆ V and ϕ(·,b) is
upper−C-continuous, then there exists an open neighborhood U of a0 such that

ϕ(a,b)⊆V −C for all a ∈U.

Hence, Ub,k is an open set in the space X . This implies that if the family {Ub,k}
where b ∈ B and k ∈ intC covers the compact set A, then it is an open covering of it,
thus there exists a finite subcover of the set A. By this, assumption (i) of Lemma 4
is verified.

Now, let θ ∈ intC, a1, . . . ,am ∈ A, λ1, . . . ,λm ≥ 0 with ∑m
i=1λi = 1 and

b1, . . . ,bn ∈ B. By the definition of the C-subconcavelikeness in the first variable,
we have that there is an element a0 ∈ A such that

−θ +
m

∑
i=1
λiϕ(ai,b j)⊆ ϕ(a0,b j)− intC for all j ∈ {1, . . . ,n}.

Let di
j ∈ ϕ(ai,b j), where i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}. Then there are da0

j ∈
ϕ(a0,b j) and c j ∈ intC with
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−θ +
m

∑
i=1

λid
i
j = da0

j − c j for all j ∈ {1, . . . ,n}. (12)

For any u∗ ∈C∗ \ {0}, by relation (12), we obtain

−u∗(θ )+
m

∑
i=1

λiu
∗(di

j) < u∗(da0
j ) for each j ∈ {1, . . . ,n}.

This implies

−u∗(θ )+
m

∑
i=1
λiu

∗(di
j) < maxu∗(ϕ(a0,b j)) for each j ∈ {1, . . . ,n},

where passing to minimum over j and then to supremum over a we get

−u∗(θ )+ min
1≤ j≤n

m

∑
i=1

λiu
∗(di

j) < min
1≤ j≤n

maxu∗(ϕ(a0,b j))

≤ sup
a∈A

min
1≤ j≤n

maxu∗(ϕ(a,b j)).

Since this holds for every θ ∈ intC we deduce

min
1≤ j≤n

m

∑
i=1

λiu
∗(di

j)≤ sup
a∈A

min
1≤ j≤n

maxu∗(ϕ(a,b j)),

which is nothing else than assumption (ii) of Lemma 4. Thus the assertion follows
from this lemma.

Now, let us consider the particular case Z = R and C = R+. Then ϕ : A×B→ 2R

and (WWMEP) becomes

(MEP) find ā ∈ A such that ϕ(ā,b) �− intR+ for all b ∈ B.

For this particular case, using the previous results we obtain the following.

Corollary 1. Let ϕ : A×B→ C (R) be a multifunction. For each b ∈ B and k > 0
define the set Ub,k = {a ∈ A|ϕ(a,b) + k ⊆ −intR+}. Suppose that the following
assumptions hold:

(i) If the system {Ub,k | b ∈ B, k > 0} covers A, then it contains a finite subcover.
(ii) For each a1, . . . ,am ∈ A, λ1, . . . ,λm ≥ 0 with ∑m

i=1λi = 1, b1, . . . ,bn ∈ B, for
all di

j ∈ ϕ(ai,b j), where i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}

min
1≤ j≤n

m

∑
i=1

λid
i
j ≤ sup

a∈A
min

1≤ j≤n
max ϕ(a,b j).

(iii) For each b1, . . . ,bn ∈ B and z∗1, . . . ,z
∗
n ≥ 0 not all zero

sup
a∈A

n

∑
j=1

max z∗j(ϕ(a,b j))≥ 0.
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Then the equilibrium problem (MEP) admits a solution.

Corollary 2. Let A be a compact set and ϕ : A×B→ C (R) such that:
(i) ϕ(·,b) is upper−R+-continuous for all b ∈ B.
(ii) ϕ is R+-subconcavelike in its first variable.
(iii) For each b1, . . . ,bn ∈ B and z∗1, . . . ,z

∗
n ≥ 0 not all zero yields

sup
a∈A

n

∑
j=1

maxz∗j(ϕ(a,b j))≥ 0.

Then the equilibrium problem (MEP) admits a solution.

3 Gap Functions

In connection with the scalar equilibrium problem and its particular cases (e.g.,
variational inequalities) the so-called gap functions play an important role. Namely,
they help to analyze if a point is a solution of these problems, by reducing them to
an optimization problem (see [1, 10, 21]).

3.1 Gap Functions for (WWMEP)

Definition 8 ( [13] ). A multifunction T : A→ 2Z is a gap function for (WWMEP) if:
(i) T (a)⊆−C for all a ∈ A.
(ii) 0 ∈ T (a) if and only if a is a solution of (WWMEP).

In what follows, we give an example of gap function for this problem. In this way,
we extend a result from [13] to a multifunction that takes values in a topological
vector space.

Let A = B and consider the following assumption:
Assumption A.

If a ∈ A is a solution of (WWMEP), then
⋂
b∈A

{ϕ(a,b)∩C} �= /0.

Theorem 1. Suppose that C is a pointed cone, ϕ(a,a) ⊆ −C for all a ∈ A
and Assumption A holds. Then the multifunction T : A → 2Z, defined by
T (a) =

⋂
b∈Aϕ(a,b) for each a ∈ A is a gap function for (WWMEP).

Proof. Let a∈ A. Since T (a) =
⋂

b∈Aϕ(a,b), by the assumptions of the theorem we
deduce

T (a)⊆ ϕ(a,a)⊆−C. (13)

Hence, the condition (i) of Definition 8 is verified.
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To verify condition (ii) of Definition 8, let 0 ∈ T (a). This is equivalent to
0 ∈⋂b∈Aϕ(a,b), or 0 ∈ ϕ(a,b) for all b ∈ A. By this, we deduce

ϕ(a,b) �−intC for each b ∈ A.

Thus, a ∈ A is a solution of (WWMEP).
For the reverse implication, take a ∈ A a solution of (WWMEP). Hence, by As-

sumption A we deduce that

T (a)∩C =
⋂
b∈A

{ϕ(a,b)∩C} �= /0. (14)

By relations (13) and (14), we obtain 0 ∈ T (a), and condition (ii) of Definition 8 is
satisfied.

Now let us consider a particular case of (WWMEP), which has been studied in
[13]. For n ∈ N, N = {1, . . . ,n} and Fl : A×A→ 2R, l ∈ N, consider the problem
(WW MEP) for the multifunction defined by F(a,b) = F1(a,b)×·· ·×Fn(a,b), that
is, (see [13]):

(GFVEP1) find ā ∈ A such that F(ā,b) �− intRn
+ for all b ∈ A.

Define a multifunction T1 : A→ 2R as follows:

T1(a) =
⋂
b∈A

⋃
l∈N

Fl(a,b) for all a ∈ A (15)

and consider the following assumption [13]:

Assumption B. Let a ∈ A be given. If for any b ∈ A the relation
⋃

l∈N Fl(a,b)∩
R+ �= /0 holds, then

⋂
b∈A
⋃

l∈N{Fl(a,b)∩R+} �= /0.

Corollary 3 (Theorem 4.4 [13]). If for any a ∈ A and each l ∈ N,Fl(a,a) ⊆ −R+
and Assumption B holds, then the multifunction T1 defined by (15) is a gap function
for (GFV EP1) in the same sense of Definition 8 where C = R+.

Proof. We show that the assumptions of Theorem 1 are satisfied for ϕ : A×A→ 2R,
defined by

ϕ(a,b) =
⋃
l∈N

Fl(a,b) for all a,b ∈ A.

Indeed, by the hypothesis ϕ(a,a) =
⋃
l∈N

Fl(a,a)⊆−R+ for each a ∈ A.

Suppose that a is a solution for (GFVEP1), or equivalently

⋃
l∈N

Fl(a,b)∩R+ �= /0 for all b ∈ A.



On Weak Multifunction Equilibrium Problems 145

Therefore, by Assumption B⋂
b∈A

ϕ(a,b)∩R+ =
⋂
b∈A

⋃
l∈N

{Fl(a,b)∩R+} �= /0.

Hence, by Theorem 1 the multifunction T1 is a gap function for (GFVEP1). This
completes the proof.

3.2 Gap Functions for (MEP)

In what follows, A = B is a nonempty, closed, and convex subset of a real locally
convex space and suppose that ϕ(a,b) is a compact subset of R for each a,b ∈ A.
We observe that (MEP) is equivalent to the problem:

find ā ∈ A such that max ϕ(ā,b)≥ 0 for all b ∈ A,

or, in order words:

(EP) find ā ∈ A such that ψ(ā,b)≥ 0 for all b ∈ A,

where ψ : X × X → R ∪ {+∞}, with A × A ⊆ dom f , defined by ψ(a,b) =
maxϕ(a,b) for all a,b ∈ A. Further, suppose that maxϕ(a,a) = 0 for all a ∈ A.
Let a ∈ X . According to [1], (EP) can be reduced to the optimization problem

P(a) inf
b∈A

ψ(a,b).

Is easy to check that ā ∈ A is a solution of (EP) if and only if it is a solution of
P(ā).

The next definition is a particular case of Definition 8, when C = −R+. A func-
tion γ : X →R∪{±∞} is said to be a gap function for (EP) (see [21]), if it satisfies
the properties:

(i) γ(a)≥ 0 for all a ∈ A.
(ii) γ(a) = 0 and a ∈ A if and only if a is a solution for (EP).

In what follows, we will give a gap function using the duality theory of optimization.
Considering the indicator function δA, we can rewrite the optimization problem as

P(a) inf
b∈X
{ψ(a,b)+ δA(b)}.

Proposition 1. If, for each a∈ A the multifunction b 	→ϕ(a,b) is t-concave for each
t ∈ (0,1) and d-upper semicontinuous, where d is the euclidian metric on R, then
the function b 	→ ψ(a,b) is convex and lower semicontinuous on A.
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Proof. Take b1,b2 ∈ A and t ∈ (0,1). Since b 	→ ϕ(a,b) is t-concave in its second
variable on A we have

ϕ(a, tb1 +(1− t)b2)⊆ tϕ(a,b1)+ (1− t)ϕ(a,b2) for all a ∈ A.

By this, we obtain

ψ(a, tb1 +(1− t)b2) ≤ max{tϕ(a,b1)+ (1− t)ϕ(a,b2)}
≤ tψ(a,b1)+ (1− t)ψ(a,b2) for any a ∈ A,

which is nothing else than the convexity of the function b 	→ ψ(a,b).
Take ε > 0, a∈ A and b0 ∈A. By the d-upper semicontinuity of the multifunction

b 	→ ϕ(a,b), there exists a neighborhood U of b0 such that

ϕ(a,b)⊆ ϕ(a,b0)+
(
−ε

2
,
ε
2

)
,

for all b ∈U . So,

ψ(a,b0)≤ ψ(a,b)+
ε
2

for all b ∈U.

Hence, b 	→ ψ(a,b) is convex and lower semicontinuous on A.

Let the assumptions of the previous proposition be satisfied. The Fenchel dual of
P(a) is

D(a) sup
p∈X∗

{−ψ∗b (a, p)−σA(−p)},

where ψ∗b (a, p) = supb∈X [〈p,b〉−ψ(a,b)]. By v(P(a)) and v(D(a)), we denote the
optimal value of P(a) and D(a), respectively.

The regularity condition (FRC) introduced in [6] (see Sect. 2 before), for our
problem becomes

(FRC;a) ψ∗b �σA is a lower semicontinuous function and exact at 0,

where (ψ∗b �σA)(p) = inf{ψ∗b (p1)+σA(p2) | p1 + p2 = p}.
Using Theorem 3.1 from [1], we are able to give gap functions for (MEP) (which

is equivalent to (EP)).

Theorem 2 ([6]). Assume that for all a ∈ A the regularity condition (FRC;a) be
fulfilled. For each a∈ A, let b 	→ψ(a,b) be convex and lower semicontinuous. Then
γ(EP), defined by

γ(EP)(a) =−v(D(a))

is a gap function for (EP).

Theorem 3. Let the regularity condition (FRC;a) be fulfilled for each a ∈ A and
b 	→ ϕ(a,b) is t-convex for each t ∈ (0,1) and d-upper semicontinuous on A. Then
γ(EP) is a gap function for (MEP).
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Proof. By Proposition 1, the function b 	→ ψ(a,b) is convex and lower
semicontinuous. By the weak duality, which always holds we have

v(D(a))≤ v(P(a))≤ ψ(a,a) = 0.

This implies that
γ(EP)(a)≥ 0 for all a ∈ A.

Further suppose that ā is a solution for P(ā). Since the regularity condition
(FRC;a) is fulfilled, the strong duality holds. Hence, by Theorem 2 we obtain that
γ(EP) is a gap function for (EP) and therefore for (MEP).
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Optimality Conditions for a Simple Convex
Bilevel Programming Problem

S. Dempe, N. Dinh, and J. Dutta

Abstract The problem to find a best solution within the set of optimal solutions
of a convex optimization problem is modeled as a bilevel programming problem.
It is shown that regularity conditions like Slater’s constraint qualification are never
satisfied for this problem. If the lower-level problem is replaced with its (necessary
and sufficient) optimality conditions, it is possible to derive a necessary optimality
condition for the resulting problem. An example is used to show that this condition
in not sufficient even if the initial problem is a convex one. If the lower-level problem
is replaced using its optimal value, it is possible to obtain an optimality condition
that is both necessary and sufficient in the convex case.

1 Introduction

In this chapter, we are interested in studying optimality conditions for the following
bilevel problem (BP)

min f (x) subject to x ∈ S,

S. Dempe
Department of Mathematics and Computer Science, TU Bergakademie Freiberg,
Freiberg, Germany
e-mail: dempe@tu-freiberg.de

N. Dinh
Department of Mathematics, International University, Vietnam National University
of Ho Chi Minh city, Ho Chi Minh city, Vietnam
e-mail: ndinh02@yahoo.fr

J. Dutta
Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, India
e-mail: jdutta@iitk.ac.in

R.S. Burachik and J.-C. Yao (eds.), Variational Analysis and Generalized Differentiation 149
in Optimization and Control, Springer Optimization and Its Applications 47,
DOI 10.1007/978-1-4419-0437-9 7, c© Springer Science+Business Media, LLC 2010

dempe@tu-freiberg.de
ndinh02@yahoo.fr
jdutta@iitk.ac.in


150 S. Dempe et al.

where S is given as

S = argmin{h(x) : x ∈Θ}.

Here f and h are real-valued convex functions on R
n and Θ is a convex subset of

R
n. Thus it is clear that S is a convex set and, hence, problem (BP) is a convex

programming problem. We refer to (BP) as a simple convex bilevel programming
problem. This problem was first studied by Solodov [15], who developed a nice
algorithm for the problem and also gave a convergence criterium for the algorithm.
In this paper, Solodov also shows that as a special case the problem (BP) contains
the standard differentiable convex optimization problem of the form

min f (x) subject to g(x)≤ 0,Ax = b,

where f : R
n→R is a differentiable convex function, g : R

n→R
m is a differentiable

convex function, A is a l× n matrix and b ∈ R
l . This problem can be posed as the

problem (BP) by simply assuming that the lower-level function h is given as

h(x) = ||Ax−b||2 + ||max{0,g(x)}||2

and the lower-level problem is to minimize the function h over R
n. It is important to

note that in the above expression the maximum is taken coordinate-wise.
In this chapter, we want to analyze optimality conditions for the problem (BP).

Given the inherent bilevel structure of the problem, it appears that it seems not be
straightforward to write down the optimality conditions for (BP). To motivate our
study, it might be a good idea to take a brief tour of the usual bilevel programming
problem. In general, a bilevel programming problem is given as follows

min
x

F(x,y), subject to x ∈ X ,y ∈Ψ (x),

where F : R
n×R

n → R, X is a closed subset of R
n and Ψ is a set-valued map

denoting the solution set mapping of the following parametric optimization problem,

min
y

f (x,y), subject to y ∈Θ(x),

where f : R
n×R

m →R andΘ(x) is a set depending on the parameter x. The bilevel
programming problem has been often referred to as an optimization formulation of
the Stackelberg game [16]. The leaders problem is the so-called upper-level problem
where the minimization is carried out on the variable x while the followers prob-
lem is called the lower-level problem where for each of the input x by the leader
the follower optimizes his objective function f (x,y) using the variable y depending
on some constraints that depend on the input provided. It must be now apparent
why we call the problem at hand a simple bilevel programming problem. However,
an important point is that, unless for each x the lower-level problem or the fol-
lower’s problem has an unique solution, the upper-level objective is a set-valued
map. So in the general scenario a bilevel programming problem can be viewed as
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a mathematical programming problem with set-valued maps. In order to avoid the
set-valued objective, two different approaches, namely the optimistic approach and
the pessimistic approach, have been introduced mainly to have the final objective
function as a single-valued one. For details on these approaches see, for example,
Dempe [2], Dutta and Dempe [10], Dempe et al. [3, 4] and the references there in.

Let us note that the overall bilevel programming problem is in general a non-
convex problem even if the problem data are convex. Further, a major drawback is
that for a bilevel programming problem most standard constraint qualification con-
ditions like the Mangasarian–Fromovitz constraint qualification are never satisfied.
Let us note that our problem (BP), which is a convex problem, is also not free from
such a drawback. If we assume that the set S is non-empty and put α = infx∈Θ h,
then the problem (BP) is equivalent to the reformulated problem (RP)

min f (x), subject to h(x)≤ α,x ∈Θ .

It is simple to notice that the Slater’s constraint qualification does not hold for
this problem, and since the Slater’s constraint qualification is equivalent to the
Mangasarian–Fromovitz constraint qualification for a convex programming prob-
lem, thus even for this simple bilevel problem we are faced with the same issues of
the usual bilevel programming problem. As we had stated earlier, our main aim is
to study optimality conditions for the problem (BP). In fact, our main aim would
be to develop a necessary and sufficient optimality condition. In our first approach,
we will consider the problem data to be smooth and in fact we will assume that
the lower-level function h is twice continuously differentiable while the upper-level
objective f is just differentiable and hence continuously differentiable since f is
convex. In this setting, we will take the approach as considered for a bilevel pro-
gramming problem with convex lower-level problems in Dutta and Dempe [10].
However, the optimality condition that we will get is a necessary one and not suffi-
cient even though the problem (BP) is a convex problem. In fact, using this approach
we will see that the Lagrange multipliers are related to the coderivative of the normal
cone map to the set Θ . This co-derivative appears to be quiet difficult to compute
though very recently some advances have been made by Henrion et al. [11]. This ap-
proach will be demonstrated in Sect. 2. The natural question is whether it is possible
to develop an optimality condition that is both necessary and sufficient for problem
(BP). This will be achieved through an alternative approach of reformulating the
bilevel program (BP) as the convex programming problem (RP) that never satisfies
Slater’s constraint qualification. We use very recent results in convex optimization to
develop a simple necessary and sufficient optimality condition for the problem (BP)
using this reformulation. Our notations are standard. Further, instead of collecting
all the preliminary definitions and results in one section, we present the basic tools
in the main sections as and when needed.
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2 Optimality Conditions: The Bilevel Approach

In this section, we will use techniques from variational analysis to develop a neces-
sary optimality condition for the problem (BP). Assume that the convex function f
is differentiable and the convex function h is twice continuously differentiable. We
will show through an example that the optimality condition that we develop in this
section is necessary but not sufficient. We begin our study by observing that the set
S can equivalently be written as

S = {x ∈Θ : 0 ∈ ∇h(x)+ NΘ (x)}.

Let us denote by F(x) = (x,−∇h(x))T, where T denotes transpose. Then we can
write S as

S = {x ∈Θ : F(x) ∈ gphNΘ} , (1)

where gphNΘ is the graph of the normal cone map NΘ , which is given as

NΘ (x) = {v ∈R
n : 〈v,y− x〉 ≤ 0, for all y ∈Θ}

if x ∈ Θ and NΘ (x) = /0 if x �∈ Θ . In what follows, we also need to consider the
limiting normal cone or the Mordukhovich normal cone to the graph of the normal
cone map to the feasible set Θ of the lower-level problem. Hence, we now briefly
describe the limiting normal cone. For more details, see Rockafellar and Wets [14].

Given a set C ⊆ R
n and an element x̄ ∈ C an element v ∈ R

n is called a regular
normal vector or a Frechét normal vector to C at x̄ if

v ∈ N̂C(x̄) := {v ∈R
n : 〈v,x− x̄〉 ≤ o(||x− x̄||), ∀x ∈C},

where o(t)
t → 0 as t → 0. The set of all regular or Frechét normal vectors to C at x̄ is

denoted by N̂C(x̄) and forms a cone which is known as the regular of Frechét normal
cone to C at x̄. This cone is a closed and convex but suffers from the drawback that
it can reduce to the trivial cone containing only the zero element at some points of
the boundary of C. This problem is eliminated by defining the limiting normal cone
or the Mordukhovich normal cone.

Given a set C⊆R
n and x̄∈C a vector v∈R

n is said to be a limiting normal vector
or a Mordukhovich normal vector to C at x̄ if there exist sequences vk→ v and xk→ x̄
with xk ∈ C and vk ∈ N̂C(xk). The set of all limiting normal vectors to the set C at
x̄ forms a cone and is denoted by NL

C(x̄), which is known as the limiting normal
cone or the Mordukhovich normal cone. This cone is not convex in general but it is
always closed in our finite dimensional setting. Moreover, the limiting normal cone
never reduces to the trivial cone containing only the zero element at the boundary
points of C. Of course, if x̄ is an interior point of C then NL

C(x̄) = {0}. We will now
state the main result of this section.

Theorem 1. Let us consider the bilevel programming problem (BP) where the
upper-level objective function f is convex and differentiable, the lower-level ob-
jective function is convex and twice continuously differentiable and Θ is a convex
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set. Let x̄ be a solution of the problem (BP). Assume that the following qualification
condition holds at x̄: (w,v) ∈ NL

gphNΘ
(x̄,−∇h(x̄)) satisfying the condition

0 ∈ w−∇2h(x̄)T w+ NΘ(x̄),

implies that w = 0,v = 0. Then there exists (w̄, v̄) ∈ NL
gphNΘ

(x̄,−∇h(x̄)) such that

0 ∈ ∇ f (x̄)+ w̄−∇2h(x̄)T w̄+ NΘ(x̄).

Proof. Once we have expressed S as in (1) the result follows easily by an appli-
cation Theorem 6.14 in Rockafellar and Wets [14]. Observe that the qualification
condition given in the above theorem is the same as the one given in Theorem 6.14
of Rockafellar and Wets [14].

It is important to note that the above optimality condition is just necessary and
not sufficient. We demonstrate this fact through the following example.

Example 1. Consider the problem (BP) with the function f : R → R given by
f (x) = x2 and the lower-level objective h : R → R given as follows: h(x) = x3

when x ≥ 0 and h(x) = 0, x ≤ 0. The lower-level constraint set is Θ = [−1,+1].
Observe that S = [−1,0]. Thus x = 0 is the only solution to the problem. How-
ever, the optimality condition given in Theorem 1 is satisfied at the point x = −1
which we know is not a solution of the problem. This fact can be seen by noting
that (−1,0)T ∈ gphNΘ and also observing that ∇ f (−1) = −2, ∇2h(−1) = 0 and
(4,0)T ∈ NL

gphNΘ
(−1,0). Now the optimality condition is satisfied by choosing the

element −2 from NΘ (−1) = (−∞,0].

However, observe that (BP) is overall a convex optimization problem. So nat-
urally one would like to develop necessary and sufficient optimality conditions for
the problem (BP). As we have seen in this section that formulation of the problem as
done above only produces a necessary optimality condition. In the next section, we
demonstrate how we can develop a necessary and sufficient optimality condition.

3 Optimality Conditions: An Alternative Approach

In this section, we proceed to develop necessary and sufficient optimality conditions
for the bilevel problem (BP) by reformulating it as the single-level convex optimiza-
tion problem (RP). We have mentioned that the reformulated problem never satisfies
Slater’s constraint qualification and, hence, we need modern tools of convex opti-
mization to address this issue. We shall divide this section into three subsections.
In the first, one we will describe the tools from convex optimization needed for our
study. In the second subsection, we show how this can be used to develop necessary
and sufficient optimality conditions for the problem (BP) while in the last one we
consider the case where the feasible set Θ of the lower-level problem is described
through cone constraints and an abstract constraint.



154 S. Dempe et al.

3.1 Recent Tools from Convex Optimization

We deal with a class of cone-convex programs given as

minϑ(x) subject to g(x) ∈ −D, and x ∈C, (2)

where ϑ : R
n → R := (−∞,∞] is a proper, convex, lower semicontinuous (l.s.c.)

function with values in the extended real line R, g : R
n → R

m is a continuous
D-convex mapping with D is a closed convex cone in R

m and C ⊂ R
n is a closed

and convex subset.
For a set C ⊂ R

n, the indicator function δC is defined as δC(x) = 0 if x ∈C and
δC(x) = +∞ if x /∈ D. Let us recall that if C is nonempty, closed and convex, then
δC is a proper l.s.c. convex function. Let A = {x ∈C | g(x) ∈ −D}. Further, let D+

be the positive dual cone of D, i.e.,

D+ := {s∗ ∈ R
m | 〈s∗,s〉 ≥ 0, ∀s ∈ D} .

Assume that dom f ∩A �= /0.
Considering further an extended-real-valued function ϕ : R

n → R with the do-
main domϕ := {x ∈ R

n| ϕ(x) < ∞}, we always assume that it is proper, i.e.,
ϕ(x) �≡ ∞ on R

n. The conjugate function ϕ∗ : R
n →R to ϕ is defined by

ϕ∗(x∗) := sup
{〈x∗,x〉−ϕ(x)

∣∣ x ∈R
n
}

= sup
{〈x∗,x〉−ϕ(x)

∣∣ x ∈ domϕ
}
.

(3)

Definition 1 (Farkas–Minkowski (FM) constraint qualification). We say that
problem (2) satisfies the Farkas–Minkowski constraint qualification, (FM) in brief,
if the cone

K :=
⋃

λ∈D+

epi(λg)∗+ epiδ ∗C (4)

is closed in the space R
n×R.

It is important to note that the set
⋃
λ∈D+ epi(λg)∗ is a closed convex cone. This

was shown in [13].

Definition 2 ((CC) constraint qualification). We say that problem (2) satisfies the
(CC) constraint qualification, if the

epi(ϑ)∗+ K (5)

is closed in the space R
n×R, where K is given in (4).

Remark 1. The constraint qualification conditions (CC) and (FM) are often known
as closedness conditions and closed cone constraint qualification. The first one was
introduced in [1] for the first time and the second one was proposed in the un-
published manuscript [12] (it is called (CCCQ) condition), all for dealing with the
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problem of model (2) in Banach space setting. They have been used extensively in
[6, 8, 9], and others (see the references in the papers listed above) to establish opti-
mality conditions, duality results for DC programs subject to cone constraints, and
extended to infinite convex and DC problems (infinitely many convex constraints,
in infinite dimensional spaces) in [5, 7]. These are also used to establish necessary
conditions for bilevel programs in [6]. It was shown in the papers mentioned above
that (FM) condition [(CC) condition] is much weaker than the classical constraint
qualification of Slater-type (weaker than many combinations of Slater-type condi-
tions and qualification conditions such as the requirement that the cost functional f
must be continuous at some point in the feasible set of the problem in consideration,
respectively). As we will see below, when reformulated the simple bilevel program
as an optimization problem, the new problems never satisfies the Slater’s condition
while the (CC) and (FM) may hold.

Remark 2. It is worth noting that if f is continuous at one point in A then [5]

epi( f + δA)∗ = cl{epi f ∗+ epiδ ∗A}= epi f ∗+ epiδ ∗A = epi f ∗+ clK,

where clA denotes the closure of the set A⊂R
n. So, if (FM) holds (i.e., K is closed),

then (CC) holds.

The following optimality condition for (2) was established in [8].

Theorem 2 ( [8] Necessary and sufficient optimality conditions for cone-convex
programs). Let the qualification condition (CC) hold for the convex program (2).
Then x̄ ∈ A∩ domϑ is a (global) solution to (2) if and only if there is λ ∈ D+

such that

0 ∈ ∂ϑ(x̄)+ ∂ (λg)(x̄)+ NC(x̄), (6)

λg(x̄) = 0. (7)

Remark 3. It is worth noting that the above necessary and sufficient optimality was
also proved in the infinite dimensional setting by Burachik and Jeyakumar [1] pro-
vided that both the conditions (FM) and (CC) hold. It can be shown [9] that (CC)
is not the same as both (CC) and (FM). Note also that in the case where (ϑ)∗ is
continuous at one point in A then (CC) is equivalent to both (CC) and (FM).

3.2 Applications to the Simple Bilevel Problem

Let us consider the simple bilevel programming problem (BP) given in Sect. 1. We
have already stated in Sect. 1 that the problem (BP) is equivalent to the following
convex optimization problem (RP)

min f (x) subject to h(x)−α ≤ 0, x ∈Θ .
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We would just like to recall that α = infx∈Θ h and further we also assume that α is
a finite real number.

It is worth noting that Slater’s constraint qualification (and other interior-types of
constraint qualification conditions) never hold for the problem (RP).

We now give an optimality condition for (RP) [which is an optimality condition
for problem (BP) as well] that is a consequence of Theorem 2.

Theorem 3. For the problem (RP), assume that

{cone{(0,1)}∪ cone [(0,α)+ epih∗]}+ epiδ ∗Θ

is closed. Then x̄ ∈ Θ is a (global) solution to (RP) if and only if there is λ ∈ R+
such that

0 ∈ ∂ f (x̄)+λ∂h(x̄)+ NΘ (x̄), (8)

λ [h(x̄)−α] = 0. (9)

Proof. We observe firstly that problem (RP) is of the type (2) with D = D+ = R+
and C =Θ . Secondly, for each u∗ ∈R

n, and μ ∈R+

(μ(h(.)−α))∗(u∗) = μα+(μh)∗(u∗).

It then follows that

epi(μ(h(.)−α))∗ = (0,μα)+ epi(μh)∗.

Now observe that when μ = 0 we have

epi(μh)∗ = cone{(0,1)},

and when μ > 0 we have

epi(μh)∗ = μepih∗.

Thus we have

epi(μ(h(.)−α))∗ = cone{(0,1)}∪
{⋃
μ>0

μ [(0,α)+ epih∗]

}
.

Noting that cone{(0,1)}∪{(0,0)}= cone{(0,1)} we have

epi(μ(h(.)−α))∗ = cone{(0,1)}∪ cone[(0,α)+ epih∗].

Now from the hypothesis of the theorem it is clear that the problem (RP) satisfies
(FM) and hence, it satisfies (CC) since f is continuous (see Remark 2). It now
follows from Theorem 2 that there is λ ∈ R+ such that
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0 ∈ ∂ f (x̄)+λ∂ [h(.)−α](x̄)+ NΘ (x̄), (10)

λ [h(x̄)−α] = 0.

Since ∂ [h(.)−α](x̄) = ∂h(x̄), the conclusion follows.

Example 2. Let us consider the bilevel problem of the model (2) where f (x) =
x2 + 1,Θ = [−1,1], and h(x) = max{0,x}.

It is easy to see that epiδ ∗Θ = epi |.|, S = [−1,0], and α = 0. The optimization
problem reformulated from this bilevel problem is

min f (x) := x2 + 1 subject to h(x) = max{0,x} ≤ 0, x ∈ [−1,1]. (11)

Note that for each u ∈R,

h∗(u) =
{

+∞ if u < 0 or u > 1,
0 if u ∈ [0,1].

We have
epih∗ = {(u,r) | u ∈ [0,1],r ≥ 0}= [0,1]×R+,

and
cone {epih∗}+ epiδ ∗Θ = R

2
+∪{(u,r) | u≤ 0, r ≥−u}

is a closed subset of R
2. This shows that for the problem (11), (FM) holds since

cone{(0,1)} ⊂ epih∗. Since f is continuous, (CC) holds as well [note that the
Slater’s condition fails to hold for (11)]. It is easy to see that x̄ = 0 is a solu-
tion of the bilevel problem. Since NΘ (0) = {0}, ∂ f (0) = {0}, and ∂h(0) = [0,1],
(8)–(9) are satisfied with λ = 0.

3.3 Lower-Level Problem with Explicit Constraints

We now consider the bilevel problem of the type (2),

inf
x∈S

f (x), (12)

where S is the solution set of the lower-level problem:

minh(x) subject to g1(x) ∈ −D1, x ∈C. (13)

Here the data are as in Sect. 3.1. Concretely, h : R
n → R := (−∞,∞] is a proper,

convex, lower semicontinuous (l.s.c.) function, and g1 : R
n → R

m is a D1-convex
mapping with D1 is a closed convex cone in R

m and C ⊂ R
n is a closed and convex

set. Further, assume that the mapping g1 is continuous on R
n.

Suppose that
α = inf

g1(x)∈−D1,x∈C
h(x) < +∞.
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For the sake of simplicity, assume that α = 0. This can be achieved by setting
h(x) := h(x)−α. Then the bilevel program (12) is equivalent to the following opti-
mization problem:

min f (x) subject to h(x)≤ 0, g1(x) ∈−D1, x ∈C. (14)

Now let
D := R+×D1, g : R

n →R
m+1, g(x) = (h(x),g1(x)).

Then, problem (14) can be reformulated as

min f (x) subject to g(x) ∈ −D, x ∈C, (15)

which is of the type (2).
The next theorem gives necessary and sufficient conditions for optimality of the

bilevel programming problem (12).

Theorem 4. For the problem (12), assume that

coneepih∗+
⋃

λ∈D+
1

epi(λg1)∗+ epiδ ∗C

is closed. Then x̄ ∈ g−1(−D)∩C is a (global) solution to (12) if and only if there is
r ∈R+ and λ ∈ D+

1 such that

0 ∈ ∂ f (x̄)+ r∂h(x̄)+ ∂ (λg1)(x̄)+ NC(x̄), (16)

rh(x̄) = 0 and λg1(x̄) = 0. (17)

Proof. Observe that D+ = R+×D+
1 and for any λ̃ = (r,λ ) ∈D+,

(λ̃g)(x) = rh(x)+ (λg1)(x).

Moreover,

epi(λ̃g)∗ = cl{epi(rh)∗+ epi(λg1)∗}
= epi(rh)∗+ epi(λg1)∗

= r · epih∗+ epi(λg1)∗.

Therefore,⋃
λ̃∈D+

epi(λ̃g)∗+ epiδ ∗C = coneepih∗+
⋃

λ∈D+
1

epi(λg1)∗+ epiδ ∗C .

By assumption, this set is closed. Hence, (FM) holds for the problem (15). Since f
is continuous, (CC) holds for (15) as well (see Remark 2). Since the problem (12) is
equivalent to (15) [also (14)], by Theorem 2, x̄ ∈ A is an optimal solution of (12) if
and only if there exists λ̃ = (r,λ ) ∈ D+ such that
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0 ∈ ∂ f (x̄)+ ∂ (λ̃g)(x̄)+ NC(x̄), (18)

(λ̃g)(x̄) = 0. (19)

It is obvious that

∂ (λ̃g)(x̄) = r∂h(x̄)+ ∂ (λg1)(x̄).

On the other hand,

(λ̃g)(x̄) = rh(x̄)+λg1(x̄) = 0.

Since r≥ 0, h(x̄)≤ 0, λg1(x̄)≤ 0, we get rh(x̄) = 0 and λg1(x̄) = 0. It then follows
from (18)–(19) that

0 ∈ ∂ f (x̄)+ r∂h(x̄)+ ∂ (λg1)(x̄)+ NC(x̄),
rh(x̄) = 0 and λg1(x̄) = 0,

which is desired.

It will be interesting to revisit Example 1 in the light of the above theorem. This is
what we present below.

Example 3 (Example 1 revisited). Recall that in Example 1 we consider the problem
(BP) with the function f : R→ R given by f (x) = x2 and the lower-level objective
h : R→ R given as follows: h(x) = x3 when x ≥ 0 and h(x) = 0, x ≤ 0. The lower-
level constraint set is C = [−1,+1]. This problem is of the model (12)–(13), where
g1 ≡ 0.

A direct calculation gives epiδ ∗C = epi | · | while for u ∈ R,

h∗(u) =
{

+∞ if u < 0,
0 if u≥ 0.

Therefore, epih∗ = coneepih∗ = R
2
+ and hence,

coneepih∗+ epiδ ∗C = R
2
+ + epi| · |

is closed in R
2 which shows that the closedness condition in Theorem 4 holds for

(BP). It is easy the see that the system (16) [applies to (BP)] leads to the unique
solution x = 0. So, by Theorem 4, x = 0 is the solution of (BP).

4 Conclusion

The problem (BP) of finding a “best” optimal solution of a convex optimization
problem

min{h(x) : x ∈Θ}, (20)
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where Θ is a convex set and h a convex function defined on Θ with respect to a
convex function f is modeled as a bilevel programming problem. Using the neces-
sary and sufficient optimality conditions

0 ∈ ∇h(x)+ NΘ(x)

for the lower-level problem, optimality conditions for problem (BP) can be derived.
An example shows that these optimality conditions are necessary but not sufficient
in general, even if problem (BP) is a convex optimization problem.

To formulate necessary and sufficient optimality conditions for problem (BP),
this needs to be transformed using the optimal function value of problem (20).
Then, using tools from cone-convex optimization optimality conditions of Karush–
Kuhn–Tucker type can be developed provided some weak constraint qualification is
satisfied.

The results presented again show that the reformulation of the bilevel program-
ming problem using the optimal value function for the lower-level problem is more
promising than using the (necessary and sufficient) optimality conditions of the
lower-level problem itself, see also [4, 10].
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Smooth Representations of Optimal Solution
Sets of Piecewise Linear Parametric
Multiobjective Programs

Ya Ping Fang and Xiao Qi Yang

Abstract In this chapter, we investigate the smooth representation of the (weakly)
efficient solution set of a piecewise linear parametric multiobjective program. We
show that if the data of a piecewise linear multiobjective program are smooth func-
tions of a parameter then the (weakly) efficient solution set of the problem can be
locally represented as a union of finitely many polyhedra whose vertices and direc-
tions are smooth functions of the parameter.

1 Introduction

Multiobjective programs have been extensively studied and applied to various
decision-making problems in economics, management science, and engineering
(see, e.g., [1, 2, 5–7, 10, 13, 14, 24, 25, 27–29]). One of the most important topics
in multiobjective programs is the study of the structure of optimal solution sets (see,
e.g., [1, 5, 10, 14, 25–27, 29]). Arrow, Barankin, and Blackwell, in their pioneering
paper [1], proved that if the feasible set and the ordering cone are polyhedral, re-
spectively, then the (weakly) efficient solution set of a linear multiobjective program
in the setting of finite-dimensional spaces is connected and the union of finitely
many polyhedra. This result has been known as the ABB Theorem. Recently, the
ABB Theorem has been generalized to the piecewise linear case. Zheng and Yang
[27] proved that if the objective function is a piecewise linear function between two
normed spaces and if the ordering cone and feasible set are polyhedral then the set
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of all weak Pareto solutions is the union of finitely many polyhedra and that if the
objective function is a convex piecewise linear function, the feasible set is polyhe-
dral and the ordering cone is a convex and closed cone, not necessarily a polyhedra
one, then the set of all weak Pareto solutions is connected and the union of finitely
many polyhedra. Yang and Yen [25] further generalized Zheng and Yang’s result
to the efficient solution set case. Yang and Yen also [25] showed that the set of all
efficient solutions of a nonconvex piecewise linear multiobjective program is not
necessarily the union of finitely many polyhedra, but the union of finitely many
semiclosed polyhedra. Very recently, Fang and Yang [8] showed that the (weakly)
efficient solution set of a discontinuously piecewise linear multiobjective program is
the union of finitely many semiclosed polyhedra. For more works on the extensions
on the ABB Theorem, we refer the reader to [29] and the references therein.

Another important topic in multiobjective programs is the study of stability.
When the data of a multiobjective program depends on a parameter, we obtain a
parametric multiobjective program. The stability problem of multiobjective pro-
grams deals with the continuity properties of their solution maps. There exists an
extensive literature devoted to the study of stability in multiobjective programs. For
details, we refer the reader to [2,13,17,18,20,23] and the references therein. Sensi-
tivity analysis arising in single-objective programs deals with the differentiability of
the solution map and has been extensively studied (see, e.g., [4,9,11,12]). Different
from the single-objective case, the study of sensitivity in multiobjective programs
is very limited because its solution map is set-valued in general. The techniques
developed for single-objective programs cannot be applied to the study of the sen-
sitivity of multiobjective programs. Up to now, there exist two approaches to study
the sensitivity of multiobjective programs. The first approach is based on the use of
generalized derivatives for set-valued maps (see, e.g., [3, 12, 19, 21]). The second
approach, developed for the linear case in the works [15,16], is based on the smooth
representation of a parametric polyhedron by vertices and recession directions. Us-
ing the second approach, Thuan and Luc [24] proved that if the data of a linear
multiobjective program are smooth functions of a parameter then the (weakly) ef-
ficient solution set of the problem can be locally represented as a union of finitely
many polyhedra whose vertices and directions are smooth functions of the parame-
ter. Thuan and Luc’s result is an interesting extension of the ABB Theorem.

The purpose of this chapter is to extend Thuan and Luc’s result to the piecewise
linear case. We shall show that if the data of a convex piecewise linear multiobjective
program are smooth functions of a parameter then the (weakly) efficient solution set
of the problem can be locally represented as a union of finitely many polyhedra
whose vertices and directions are smooth functions of the parameter. The convexity
requirement plays an important role here as the establishment of the main results
will use a linear scalarization approach. Our results can be regarded as extensions
of the corresponding results in [24, 25, 27].
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2 Preliminaries

Let C be a closed, convex and pointed cone of R
m with intC �= /0, where int C denotes

the topological interior of C. Denote by C∗ the dual cone of C, i.e.,

C∗ = {ξ ∈ R
m : 〈ξ ,x〉 ≥ 0, ∀x ∈C}.

Given a nonempty set A ⊂ R
m, a point a ∈ A is called an efficient point of A (with

respect to C) if there is no a′ ∈ A such that a−a′ ∈C\{0}. Similarly, a point a ∈ A
is called a weakly efficient point of A (with respect to C) if there is no a′ ∈ A such
that a−a′ ∈ intC. The sets of all efficient points and all weakly efficient points of A
are denoted by MinA and WMinA, respectively.

Definition 1. A subset P of R
n is called a polyhedron if it is the intersection of

finitely many closed half-spaces, i.e., ∃{x∗1,x∗2, . . . ,x∗l }⊂R
n and {c1,c2, . . . ,cl} ⊂R

such that

P = {x ∈ R
n : 〈x∗i ,x〉 ≤ ci, i = 1,2, . . . , l}.

For the definitions of face, extreme point and extreme direction of a polyhedron,
please refer to [22].

The following lemma is important to establish our main results, whose proof can
be found in [13, 29].

Lemma 1. Let A = ∪l
i=1Ai with Ai being a polyhedron in R

m and C be a pointed,
closed, and convex cone of R

m with int C �= /0. If A+C is convex, then the following
conclusions hold:

(i) x ∈ MinA (resp. W MinA) if and only if there exists ξ ∈ int C∗ (resp. C∗\{0})
such that

x ∈ Lξ (A) :=
{

y ∈ A : ξ (y) = min
y′∈A

ξ (y′)
}

.

(ii) There exist Λ1,Λ2, . . . ,Λl with Λi ⊂ intC∗ (resp. C∗\{0}) being a finite set such
that

MinA (resp. WMinA) = ∪l
i=1

[∪ξ∈Λi
Ai∩Lξ (A)

]
.

(iii) MinA (resp. W MinA) is a union of a finite family consisting of some faces of
Ai, i = 1,2, . . . , l.

Lemma 2. Let A =∪l
i=1Ai with Ai being a polyhedron in R

m, C be a pointed, closed,
and convex cone of R

m with int C �= /0 and A+C be convex. Suppose that Fi is a face
of Ai. Then, Fi ⊂MinA if and only if there exists x̂ ∈ riFi such that x̂ ∈MinA, where
ri denotes the relative interior of a set.

Proof. If Fi ⊂MinA, then every point of its relative interior is an efficient one of A
by definition.
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Conversely, suppose that there exists x̂ ∈ riFi such that x̂ ∈ MinA. By (i) of
Lemma 1, there exists ξ ∈ int C∗ such that x̂ ∈ Lξ (A). Then,

ξ (x)≥ ξ (x̂), ∀x ∈ Fi.

It is clear that x̂ belongs to the face of the convex set A+C, which is determined by
the hyperplane ξ (x) = ξ (x̂). As x̂ is a relative interior point of Fi⊆ A+C, we deduce
that Fi lies in that hyperplane too. In other words, every point of Fi minimizes ξ (·)
on A +C, hence on A as well. By Lemma 1, it is efficient. ��

Given a nonempty set X ⊂ R
n and a vector-valued function f : R

n → R
m, the

multiobjective program,
(MP) C−min

x∈X
f (x)

consists of finding a point x0 ∈ X such that f (x0) is an efficient point or a weakly
efficient point of f (X) (with respect to C). Such x0 is called an efficient solution or
a weakly efficient solution of (MP). The sets of all efficient solutions and all weakly
efficient solutions of (MP) are denoted by S( f ,X) and WS( f ,X), respectively.

Definition 2. See [25, 27, 28]. A function f : R
n → R

m is said to be piecewise lin-
ear if there exist polyhedra P1,P2, . . . ,Pl in R

n, matrices T1,T2, . . . ,Tl in R
m×n and

vectors b1,b2, . . . ,bl in R
m such that

R
n = ∪l

i=1Pi and f (x) = Tix + bi, ∀x ∈ Pi and 1≤ i≤ l. (1)

Definition 3. Let C be a pointed, closed, and convex cone of R
m and f : R

n → R
m.

f is said to be C-convex if

f (tx1 +(1− t)x2)− t f (x1)− (1− t) f (x2) ∈ −C, ∀t ∈ [0,1] and x1,x2 ∈ R
n.

3 Sensitivity Analysis

In this section, we study the sensitivity of piecewise linear multiobjective programs
by using the approach developed in [15, 16, 24]. First we recall some results on
parametric polyhedra.

Set the parametric polyhedron as follows:

N(ω) = {x ∈ R
m : 〈ai(ω),x〉 ≤ ci(ω), i = 1,2, . . . ,τ} , (2)

where ai and ci are functions of the parameterω on R
r. For convenience, we always

say that N(ω) defined by (2) is of class Cd if ai and ci are of class Cd for all i.

Lemma 3 ([15]). Let N(ω) be a parametric polyhedron of class Cd. Then, for any
open set W ⊂ R

r, there exists an open nonempty set W0 ⊂W such that either

N(ω) = /0, ∀ω ∈W0
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or there exist functions v1,v2, . . . ,vs of class Cd and integer 0 < k ≤ s such that, for
any w ∈W0,

N(ω) =

{
x ∈ R

m : x =
s

∑
i=1

λivi(ω),
k

∑
i=1

λi = 1,λi ≥ 0, i = 1,2, . . . ,s

}
.

Lemma 4 ( [24] ). Let N(ω) be of class Cd. Then, for any open set W ⊂ R
r, there

exist an open nonempty set W0 ⊂ W, an integer κ ≥ 1 and 2κ finite index sets
I1, . . . , Iκ and J1, . . . ,Jκ , 2κ families U1, . . . ,Uκ and D1, . . . ,Dκ with Ui = {uk ∈
Cd : k ∈ Ii} and Di = {dk′ ∈Cd : k′ ∈ Ji} such that for any ω ∈W0,

N(ω) = ∪κi=1Ni(ω),

where
Ni(ω) = co{uk(ω) : k ∈ Ii}+ cone{dk′(ω) : k′ ∈ Ji}

is the face of N(ω), uk(ω) is the vertex of N(ω) and dk′(ω) is the extreme direction
of N(ω).

As a direct consequence of Lemma 4, we have

Lemma 5. Let A(ω) = ∪l
i=1Ai(ω) with Ai(ω) being a parametric polyhedron of

class Cd. Then, for any set W ⊂ R
r, there exist an open nonempty subset W0 ⊂

W, index sets Ii
j and Ji

j, j = 1, . . . ,κi (each κi is a natural number); i = 1, . . . , l

and families U i
j and D i

j with U i
j = {uk(ω) ∈Cd : k ∈ Ii

j} and D i
j = {dk′(ω) ∈Cd :

k′ ∈ Ji
j} such that for any ω ∈W0,

A(ω) = ∪l
i=1∪κi

j=1 Fi
j (ω),

where
Fi

j (ω) = co{uk(ω) : k ∈ Ii
j}+ cone{dk′(ω) : k′ ∈ Ji

j}
is the face of Ai(ω), uk(ω) with k ∈ Ii

j is the vertex of Ai(ω), and dk′(ω) with k′ ∈ Ji
j

is the extreme direction of Ai(ω).

Lemma 6. Let A(ω),W0 and Fi
j (ω) be as in Lemma 5. Suppose that A(ω)+C is

convex for all ω ∈R
r and Fi

j (ω0)⊂MinA(ω0) for some ω0 ∈W0. Then there exists
an open neighborhood W1 ⊂W0 of ω0 such that

Fi
j (ω)⊂MinA(ω), ∀ω ∈W1.

Proof. Let x̂0 ∈ riFi
j (ω0). Then x̂0 ∈MinA(ω0) since Fi

j (ω0)⊂MinA(ω0). By the
Minkowski’s theorem [7], there exist {λk > 0 : k ∈ Ii

j} with ∑k∈Ii
j
λk = 1 and {tk′ >

0 : k′ ∈ Ji
j} such that

x̂0 = ∑
k∈Ii

j

λkuk(ω0)+ ∑
k′∈Ji

j

tk′dk′(ω0).
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Define

x̂(ω) = ∑
k∈Ii

j

λkuk(ω)+ ∑
k′∈Ji

j

tk′dk′(ω).

Clearly, x̂(ω) is of class Cd and x̂(ω0) = x̂0.
Set

I = ∪l
i′=1∪

κi′
j′=1 Ii′

j′ and J = ∪l
i′=1∪

κi′
j′=1 Ji′

j′ .

By Lemma 1, there exists ξ0 ∈ int C∗ such that

x̂0 ∈ Ai(ω0)∩Lξ0
(A(ω0)).

Take

Î = {k ∈ I : 〈ξ0,uk(ω0)〉= 〈ξ0, x̂0〉} and Ĵ =
{

k′ ∈ J : 〈ξ0,dk′(ω0)〉= 0
}

.

Clearly, Ii
j ⊂ Î and Ji

j ⊂ Ĵ. Consider the following two systems for w ∈ R
r:

{ 〈ξ ,uk(ω)− x̂(ω)〉= 0, k ∈ Î,
〈ξ ,dk′(ω)〉= 0, k′ ∈ Ĵ,

(3)

and { 〈ξ ,uk(ω)− x̂(ω)〉> 0, k ∈ I\Î,
〈ξ ,dk′(ω)〉> 0, k′ ∈ J\Ĵ.

(4)

Then systems (3) and (4) have a common solution ξ0 when ω = ω0. By Lemma 3,
there exist an open neighborhood W1 ⊂W0 of ω0, and functions ξk(ω), k = 1, . . . , p,
of Cd such that every solution of system (3) can be written in the form

ξ (ω) =
p

∑
k=1

βkξk(ω), βk ≥ 0,

for all ω ∈W1. Since ξ0 = ξ (ω0) ∈ intC∗, ξ (ω)∈ intC∗ when ω is sufficiently near
to ω0.

Since { 〈ξ (ω0),uk(ω0)− x̂(ω0)〉> 0, k ∈ I\Î,
〈ξ (ω0),dk′(ω0)〉> 0, k′ ∈ J\Ĵ,

and ξ ,uk, x̂,dk′ are continuous, ξ (ω) is a solution of system (4) when ω is suffi-
ciently near to ω0.

So, without loss of generality, we can suppose that ξ (ω) is a common solution
of systems (3) and (4), and ξ (ω) ∈ intC∗ for all ω ∈W1.

Next we prove that for any ω ∈W1,

x̂(ω) ∈ Lξ (ω)(A(ω)).
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Assume to the contrary that there exists x ∈ A(ω) such that

〈ξ (ω),x〉< 〈ξ (ω), x̂(ω)〉.

By the Minkowski’s theorem [7], there exist index sets Ii0
j0

and Ji0
j0

, {λk ≥ 0 : k ∈ Ii0
j0
}

with ∑
k∈I

i0
j0

λk = 1 and {tk′ ≥ 0 : k′ ∈ Ji0
j0
} such that

x = ∑
k∈I

i0
j0

λkuk(ω)+ ∑
k′∈J

i0
j0

tk′dk′(ω).

It follows that

〈ξ (ω),x〉 = ∑
k∈I

i0
j0

λk〈ξ (ω),uk(ω)〉+ ∑
k′∈J

i0
j0

tk′ 〈ξ (ω),dk′(ω)〉

≥ ∑
k∈I

i0
j0

λk〈ξ (ω), x̂(ω)〉= 〈ξ (ω), x̂(ω)〉,

a contradiction. So x̂(ω) ∈ Lξ (ω)(A(ω)) for all ω ∈ W1. By Lemma 1, x̂(ω) ∈
MinA(ω). Since x̂(ω) ∈ riFi

j (ω), it follows from Lemma 2 that Fi
j (ω)⊂MinA(ω)

for all ω ∈W1. ��
Lemma 7. Let A(ω),W0 ⊂W and Fi

j (ω) be as in Lemma 5. Suppose that A(ω)+C

is convex for all ω ∈ R
r and Fi

j (ω0) �⊂WMinA(ω0) for some ω0 ∈W0. Then there
exists an open neighborhood W1 ⊂W0 of ω0 such that

Fi
j (ω) �⊂WMinA(ω), ∀ω ∈W1.

Proof. Since Fi
j (ω0) �⊂W MinA(ω0), there exists x0 ∈ Fi

j (ω0) and x ∈ A(ω0) such
that x0− x ∈ intC. By Lemma 5, there exists an open neighborhood W ′

1 ⊂W0 of ω0

such that for any ω ∈W ′
1,

Fi
j (ω) = co{uk(ω) : k ∈ Ii

j}+ cone{dk′(ω) : k′ ∈ Ji
j}

and
A(ω) = ∪l

i′=1∪
κi′
j′=1 Fi′

j′ (ω),

where uk(ω) and dk′(ω) are functions defined as in Lemma 5. Since x0 ∈ Fi
j (ω0),

there exist {λk ≥ 0 : k ∈ Ii
j} with ∑k∈Ii

j
λk = 1 and {tk′ ≥ 0 : k′ ∈ Ji

j} such that

x0 = ∑
k∈Ii

j

λkuk(ω0)+ ∑
k′∈Ji

j

tk′dk′(ω0).

Define
x0(ω) = ∑

k∈Ii
j

λkuk(ω)+ ∑
k′∈Ji

j

tk′dk′(ω), ∀ω ∈ R
r.
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Then x0(ω) is of class Cd such that for any ω ∈W ′
1,

x0(ω) ∈ Fi
j (ω) and x0(ω0) = x0.

Since x ∈ A(ω0) and
A(ω) = ∪l

i′=1∪
κi′
j′=1 Fi′

j′ (ω),

by same arguments we can find a function x(ω) of class Cd such that for anyω ∈W ′
1,

x(ω) ∈ A(ω) and x(ω0) = x.

It follows that limω→ω0 x0(ω) = x0 and limω→ω0 x(ω) = x. Since x0 − x ∈ int C,
x0(ω)− x(ω) ∈ intC when ω is sufficiently near to ω0. Therefore, there exists
an open neighborhood W1 ⊂ W0 of ω0 such that Fi

j (ω) �⊂ WMinA(ω) for all
ω ∈W1. ��
Remark 1. The conclusion of Lemma 6 is not true for the weakly efficient point set,
while the conclusion of Lemma 7 is not true for the efficient point set. This has been
pointed out by Thuan and Luc [24] in the linear case.

With the above lemmas in hand, we are ready to establish the main results of this
chapter. In the case where the feasible set X and the objective function f of (MP)
depend on a parameter ω in R

r, we obtain the following parametric multiobjective
program:

(MP)ω C- min
x∈X(ω)

f (ω ,x).

In the sequel we need the following assumption.

Hypothesis (H): Let f : R
r×R

n → R
m be such that:

(i) There exist parametric polyhedra Pi(ω), i = 1, . . . , l, of class Cd such that

∪l
i=1Pi(ω) = R

n, ∀ω ∈ R
r

and
f (ω ,x) = Ti(ω)x + bi(ω), ∀x ∈ Pi(ω) and i ∈ {1,2, . . . , l},

where Ti(ω)∈R
m×n is a matrix with its entries being of class Cd , and bi(ω)∈R

m

is of class Cd .
(ii) f (ω , ·) : R

n → R
m is C-convex for all ω ∈ R

r.
(iii) X(ω)⊂ R

n is a parametric polyhedron of class Cd on R
r.

Remark 2. Assume that Hypothesis (H) holds. It follows from Lemma 2.2 of [27]
that (MP)ω is equivalent to the following program:

C-min y
s.t. x ∈ X(ω),

Ti(ω)x + bi(ω)− y ∈ −C, 1≤ i≤ l.
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In addition, if C is a polyhedral cone, i.e., C = {y ∈ R
m : Dy ∈ −R

k} for some
k×m-matrix D, then (MP)ω collapses to the following linear parametric
multiobjective program:

C-min y
s.t. x ∈ X(ω),

D(Ti(ω)x + bi(ω))−Dy ∈ −R
k, 1≤ i≤ l.

The sensitivity analysis of the above linear parametric multiobjective program has
been investigated in [24].

Theorem 1. Assume that Hypothesis (H) holds and V (ω) = Min f (ω ,X(ω)). Then,
for any open nonempty set W ⊂R

r, there exist an open set W0 ⊂W , two finite index
sets I and J, and two families {uk(ω) ∈Cd : k ∈ I} and {dk′(ω) ∈Cd : k′ ∈ J} such
that:

(i) Either V (ω) = /0 for all ω ∈W0;
(ii) Or there exist an integer l∗ ≥ 1 and 2l∗ index sets,

I1, . . . , Il∗ ⊂ I, J1, . . . ,Jl∗ ⊂ J

such that for any ω ∈W0,

V (ω) = ∪l∗
j=1Nj(ω),

where
Nj(ω) = co{uk(ω) : k ∈ I j}+ cone{dk′(ω) : k′ ∈ Jj}

is a face of the set Ti(ω)(X(ω)∩Pi(ω))+ bi(ω) for some i ∈ {1, . . . , l}.
Proof. Set

A(ω) = f (ω ,X(ω)), Ai(ω) = Ti(w)(X(ω)∩Pi(ω))+ bi(ω), i = 1, . . . , l.

Then each Ai(ω) is a parametric polyhedron of class Cd and

A(ω) = ∪l
i=1Ai(ω).

By Lemma 5, there exist an open set W1 ⊂W , index sets Ii
j and Ji

j, j = 1, . . . ,κi;

i = 1, . . . , l and families U i
j and D i

j with U i
j = {uk(ω) ∈ Cd : k ∈ Ii

j} and D i
j =

{dk′(ω) ∈Cd : k′ ∈ Ji
j} such that for any ω ∈W1,

A(ω) = ∪l
i=1∪κi

j=1 Fi
j (ω),

where
Fi

j (ω) = co{uk(ω) : k ∈ Ii
j}+ cone{dk′(ω) : k′ ∈ Ji

j}
is the face of Ai(ω), uk(ω) with k ∈ Ii

j is the vertex of Ai(ω), and dk′(ω) with k′ ∈ Ji
j

is the extreme direction of Ai(ω).
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If V (ω) = /0 for all ω ∈W1, the proof is completed. Now we suppose that

V (ω0) �= /0, for some ω0 ∈W1.

Since f (ω0, ·) is C-convex, A(ω0)+C is convex. By (iii) of Lemma 1, V (ω0) is a
union of a finite family consisting of some faces of Ai(ω0), i = 1, . . . , l. By Lemma 6,
there exists an open neighborhood W2 ⊂W1 of ω0 such that

V (ω) �= /0, ∀ω ∈W2.

For any ω ∈W2, let l(ω) be the number of the sets Fi
j (ω) with Fi

j(ω)⊂V (ω). It is
easy to see that there exists ω∗ ∈W2 such that

l∗ := l(ω∗) = max
ω∈W2

l(ω).

Let N1(ω∗), . . . ,Nl∗(ω∗) be the sets Fi
j (ω∗) which are contained in V (ω∗), i.e.,

V (ω∗) = ∪l∗
j=1Nj(ω∗).

By Lemma 6, there exists an open neighborhood W0 ⊂W2 of ω∗ such that

∪l∗
j=1Nj(ω)⊂V (ω), ∀ω ∈W0.

By the definition of l∗,

∪l∗
j=1Nj(ω) = V (ω), ∀ω ∈W0.

��
Corollary 1. Assume that Hypothesis (H) holds and S(ω) = {x ∈ X(ω) : f (ω ,x) ∈
V (ω)}. Then, for any open set W ⊂ R

r, there exist an open set W0 ⊂W, two index
sets Ī and J̄, and two families {vk(ω) ∈Cd : k ∈ Ī} and {hk′(ω) ∈Cd : k′ ∈ J̄} such
that:

(i) Either S(ω) = /0 for all ω ∈W0;
(ii) Or there exist an integer l∗ ≥ 1 and 2l∗ index sets,

I1, . . . , Il∗ ⊂ Ī, J1, . . . ,Jl∗ ⊂ J̄

such that for any ω ∈W0,

S(ω) = ∪l∗
j=1Fj(ω),

where
Fj(ω) = co{vk(ω) : k ∈ I j}+ cone{hk′(ω) : k′ ∈ Jj}.

Proof. By Theorem 1, there exist an open set W0 ⊂W , two index sets I and J, and
two families {uk(ω) ∈Cd : k ∈ I} and {dk′(ω) ∈Cd : k′ ∈ J} such that:
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(a) Either V (ω) = /0 for all ω ∈W0;
(b) Or there exist a number l∗ ≥ 1 and 2l∗ index sets,

I1, . . . , Il∗ ⊂ I, J1, . . . ,Jl∗ ⊂ J

such that for any ω ∈W0,

V (ω) = ∪l∗
j=1Nj(ω),

where
Nj(ω) = co{uk(ω) : k ∈ I j}+ cone{uk′(ω) : k′ ∈ Jj}.

Conclusion (i) holds trivially if (a) holds. So we suppose that (b) holds. By Hypoth-
esis (H),

S(ω) = X(ω)∩ f−1(ω , ·)(V (ω))

= X(ω)∩ f−1(ω , ·)(∪l∗
j=1Nj(ω))

= X(ω)∩ [∪l
i=1Pi(ω)∩ f−1(ω , ·)(∪l∗

j=1Nj(ω))]

= ∪l
i=1∪l∗

j=1 [X(ω)∩Pi(ω)∩T−1
i (ω , ·)(Nj(ω)−bi(ω))], ∀ω ∈W0. (5)

It is easy to verify that each X(ω)∩Pi(ω)∩T−1
i (ω , ·)(Nj(ω)−bi(ω)) is a paramet-

ric polyhedron of class Cd . Therefore, the conclusion follows directly from (5) and
Lemma 5. ��
Theorem 2. Assume that Hypothesis (H) holds and V w(ω) = W Min f (ω ,X(ω)).
Then, for any open set W ⊂ R

r, there exist an open set W0 ⊂W , two index sets
I and J, and two families {uk(ω) ∈Cd : k ∈ I} and {dk′(ω) ∈Cd : k′ ∈ J} such that:

(i) Either V w(ω) = /0 for all ω ∈W0;
(ii) Or there exist a number l∗ ≥ 1 and 2l∗ index sets,

I1, . . . , Il∗ ⊂ I, J1, . . . ,Jl∗ ⊂ J

such that for any ω ∈W0,

V w(ω) = ∪l∗
j=1Nj(ω),

where
Nj(ω) = co{uk(ω) : k ∈ I j}+ cone{uk′(ω) : k′ ∈ Jj}

is a face of the set Ti(ω)(X(ω)∩Pi(ω))+ bi(ω) for some i ∈ {1, . . . , l}.
Proof. Let A(ω) and Ai(ω) be the same as in the proof of Theorem 1. By the same
arguments, we can find an open set W1 ⊂W , index sets Ii

j and Ji
j, j = 1, . . . ,κi;

i = 1, . . . , l and families U i
j and D i

j with U i
j = {uk(ω) ∈ Cd : k ∈ Ii

j} and D i
j =

{dk(ω) ∈Cd : k ∈ Ji
j} such that for any ω ∈W1,

A(ω) = ∪l
i=1∪κi

j=1 Fi
j (ω), (6)
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where
Fi

j (ω) = co{uk(ω) : k ∈ Ii
j}+ cone{dk′(ω) : k′ ∈ Ji

j}
is the face of Ai(ω), uk(ω) with k ∈ Ii

j is the vertex of Ai(ω), and dk′(ω) with k′ ∈ Ji
j

is the extreme direction of Ai(ω).
If V w(ω0) = /0 for some ω0 ∈W1, then V w(ω) = /0 for all ω sufficiently near to

ω0. So we can suppose that

V w(ω) �= /0, ∀ω ∈W1.

Since f (ω , ·) is C-convex, A(ω)+C is convex. By (iii) of Lemma 1, V w(ω0) is a
union of a finite family consisting of some faces Fi

j (ω0) of Ai(ω0), i = 1, . . . , l. Let
s∗ denote the number of the sets Fi

j (ω) presented in the right set of (6). For any
ω ∈W1, let l(ω) be the number of all the sets Fi

j (ω) contained in V w(ω). Then
there exists ω∗ ∈W1 such that

s∗ − l∗ := s∗ − l(ω∗) = max{s∗ − l(ω) : ω ∈W1}.

Let N̂1(ω∗), . . . , N̂s∗−l∗(ω∗) be the sets Fi
j (ω∗) which are not contained in V w(ω∗),

i.e.,
N̂j(ω∗) �⊂V w(ω∗), j = 1,2, . . . ,s∗ − l∗.

By Lemma 7, there exists an open neighborhood W0 ⊂W1 of ω∗ such that for any
ω ∈W0,

N̂j(ω) �⊂V w(ω), j = 1,2, . . . ,s∗ − l∗.

By the definition of s∗ − l∗, V w(ω) is a union of a family consisting of l∗ faces of
Ai(ω), i = 1,2, . . . , l. ��
Corollary 2. Assume that Hypothesis (H) holds and Sw(ω) = {x∈ X(ω) : f (ω ,x)∈
V w(ω)}. Then, for any open set W ⊂ R

r, there exist an open set W0 ⊂W, two index
sets Ī and J̄, and two families {vk(ω) ∈Cd : k ∈ Ī} and {hk′(ω) ∈Cd : k′ ∈ J̄} such
that:

(i) Either Sw(ω) = /0 for all ω ∈W0;
(ii) Or there exist an integer l∗ ≥ 1 and 2l∗ index set,

I1, . . . , Il∗ ⊂ Ī, J1, . . . ,Jl∗ ⊂ J̄

such that for any ω ∈W0,

Sw(ω) = ∪l∗
j=1Fj(ω),

where
Fj(ω) = co{vk(ω) : k ∈ I j}+ cone{hk′(ω) : k′ ∈ Jj}.

Proof. The conclusion follows from Theorem 2 and the same argument as in the
proof of Corollary 1. ��
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Global Optimality Conditions for Classes
of Non-convex Multi-objective Quadratic
Optimization Problems

V. Jeyakumar, G.M. Lee, and G. Li

Abstract We present necessary and sufficient conditions for identifying global
weak minimizers of non-convex multi-objective quadratic optimization problems.
We derive these results by exploiting the hidden convexity of the joint range of
(non-convex) quadratic functions. We also present numerical examples to illustrate
our results.

1 Introduction

Consider the following multi-objective non-convex quadratic optimization problem

(MP) min ( f1(x), . . . , fp(x))
s.t. g j(x)≤ 0, j = 1, . . . ,m,

where fi(x) = 1
2 xT Aix + aT

i x, g j(x) = 1
2 xT B jx + bT

j x + c j, Ai,B j ∈ Sn, the space of
all (n×n) symmetric matrices, ai,b j ∈ Rn and c j ∈ R.

One of the fundamental studies in the area of multi-objective optimization is to
develop dual conditions for identifying global (weak) minimizers of (MP) in terms
of Lagrange multipliers. Such results in multi-objective optimization have useful
economic interpretations (e.g., see Arrow [1]) and hence have attracted a great deal
of researchers (see [4] for a comprehensive and excellent survey).

Over the years, significant advances have been made in identifying solutions of
multi-objective convex optimization problems. However, the development of global
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optimality conditions for non-convex quadratic optimization problems has so far
been limited to some classes of single-objective quadratic optimization problems
(see, e.g., [3, 7–9, 11] and the references therein). Notably, one of the main ingredi-
ent in developing such global optimality conditions for single-objective non-convex
quadratic optimization problems has been the hidden convexity of the joint range of
quadratic functions.

The purpose of this chapter is to derive Lagrange multiplier conditions for global
weak minimizers of multi-objective optimization problems (MP). We derive neces-
sary as well as sufficient Lagrange multiplier conditions for global weak minimizers
of (MP) by first establishing joint range convexity results for systems of quadratic
functions.

2 Joint-Range Convexity Conditions

We begin this section by fixing the notation and definitions that will be used through-
out this chapter. The real line is denoted by R and the n-dimensional Euclidean space
is denoted by Rn. The set of all non-negative vectors of Rn is denoted by Rn

+, and the
interior of Rn

+ is denoted by intRn
+. The space of all (n× n) symmetric matrices is

denoted by Sn. The notation A$ B means that the matrix A−B is positive semidef-
inite. Moreover, the notation A% B means the matrix A−B is positive definite. The
positive semidefinite cone is defined by Sn

+ := {M ∈ Sn : M $ 0}. The n-simplex
{(x1, . . . ,xn) ∈ Rn : xi ≥ 0,∑n

i=1 xi = 1} is denoted by Δn.
Let us give the following generalized Gordan alternative theorem, which can be

established by following a similar argument as in [6, Theorem 2.1]. For the reader’s
convenience, we also provide the proof here. This alternative theorem plays a key
role in deriving dual global optimality conditions.

Theorem 1. Let hi, i = 1, . . . , p, be real-valued functions on Rn such that (h1, . . . ,hp)
(Rn)+ intRp

+ is convex where (h1, . . . ,hp)(Rn) = {(h1(x), . . . ,hp(x)) : x∈ Rn}. Then,
exactly one of the following two statements holds:

(i) ∃x ∈ Rn, hi(x) < 0, i = 1, . . . , p.
(ii) (∃λ ∈ Rp

+\{0}) (∀x ∈ Rn) ∑p
i=1λihi(x)≥ 0.

Proof. It suffices to show Not(i)⇒ (ii) as the converse implication holds always.
Suppose that (i) does not hold. Then we have

0 /∈ (h1, . . . ,hp)(Rn)+ intRp
+.

As (h1, . . . ,hp)(Rn)+ intRp
+ is a convex set, by the convex separation theorem, there

exists λ = (λ1, . . . ,λp) ∈ Rp\{0} such that

p

∑
i=1

λiai ≥ 0, for all a = (a1, . . . ,an) ∈ (h1, . . . ,hp)(Rn)+ intRp
+. (1)
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In particular, we have each λi ≥ 0, i = 1, . . . , p, and so, λ = (λ1, . . . ,λp) ∈ Rp
+\{0}.

Moreover, fix an arbitrary x ∈ Rn. Then, for any ε > 0, we have

(h1(x)+ ε, . . . ,hp(x)+ ε) ∈ (h1, . . . ,hp)(Rn)+ intRp
+,

and (1) implies that
p

∑
i=1

λi(hi(x)+ ε)≥ 0.

Letting ε→ 0, we have ∑p
i=1λihi(x)≥ 0. Hence, (ii) holds. ��

It is clear that if each hi, i = 1, . . . , p is convex, then (h1, . . . ,hp)(Rn)+ intRp
+ is a

convex set.
Now, we give some sufficient conditions ensuring the convexity of

(h1, . . . ,hp)(Rn)+ intRp
+ when hi, i = 1, . . . , p are non-convex quadratic functions.

Proposition 1. The set (h1, . . . ,hp)(Rn)+ intRp
+ is convex if any one of the following

conditions holds:

(1) p = 2, hi(x) = 1
2 xT Aix, i = 1,2, where Ai ∈ Sn.

(2) n≥ 2, p = 2, hi(x) = 1
2 xT Aix +bT

i x + ci, i = 1,2, where Ai ∈ Sn and there exists
(μ1,μ2) ∈ R2 such that

μ1A1 + μ2A2 % 0.

(3) n ≥ 3, p = 3, hi(x) = 1
2 xT Aix, i = 1,2,3, where Ai ∈ Sn and there exists

(μ1,μ2,μ3) ∈ R3 such that

μ1A1 + μ2A2 + μ3A3 % 0.

(4) p ∈ N, hi(x) = 1
2 xT Aix, i = 1, . . . , p, where Ai ∈ Sn and the matrices A1, . . . ,Ap

commute.
(5) p ∈ N, hi(x) = 1

2 xT Aix + bT
i x + ci, i = 1, . . . , p, where Ai ∈ Sn

+, i = 1, . . . , p−1,

Ap ∈ Sn, bi ∈ Rn, ci ∈ R and there exists v ∈ ⋂p−1
i=1 {d ∈ Rn : Aid = 0,bT

i d ≤ 0}
such that vT Apv < 0.

Proof.
Proof of (1): By Dine’s Theorem (cf. [5]), (h1,h2)(Rn) is convex in R2 and hence

(h1,h2)(Rn)+ intR2
+ is also convex.

Proof of (2): By [12, Theorem 2.2], (h1,h2)(Rn) is convex in R2 and hence
(h1,h2)(Rn)+ intR2

+ is also convex.
Proof of (3): By [12, Theorem 2.1], (h1,h2,h3)(Rn) is convex in R3 and hence

(h1,h2,h3)(Rn)+ intR3
+ is also convex.

Proof of (4): By [12, Proposition 3.7], (h1, . . . ,hp)(Rn) is convex in Rp and hence
(h1, . . . ,hp)(Rn)+ intRp

+ is also convex.

Proof of (5): Let M := (h1, . . . ,hp−1)(Rn)+ intRp−1
+ . Since hi, i = 1, . . . , p− 1,

are convex (by the fact that Ai $ 0, i = 1, . . . , p− 1), M is a convex set. Indeed, let
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(x1, . . . ,xp−1) ∈ M, (y1, . . . ,yp−1) ∈ M and λ ∈ (0,1). Then, there exist u,v ∈ Rn

such that
hi(u) < xi and hi(v) < yi, i = 1, . . . , p−1.

Thus, by the convexity of hi i = 1, . . . , p−1, for all i = 1, . . . , p−1

hi(λu +(1−λ )v)≤ λhi(u)+ (1−λ )hi(v) < λxi +(1−λ )yi.

Thus λ (x1, . . . ,xp−1)+ (1−λ )(y1, . . . ,yp−1) ∈M and hence M is convex in Rp−1.
Now we verify that N := (h1, . . . ,hp)(Rn)+ intRp

+ is convex in Rp. Let (x1, . . . ,xp)∈
N, (y1, . . . ,yp) ∈ N and λ ∈ (0,1). From the above argument,

(λx1 +(1−λ )y1, . . . ,λxp−1 +(1−λ )yp−1) ∈M := (h1, . . . ,hp−1)(Rn)+ intRp−1
+ .

Thus, there exists u0 ∈ Rn such that for all i = 1, . . . , p−1

hi(u0) < λxi +(1−λ )yi.

Consider ut := u0 + tv, where v is defined as in the assumption in (5) and t ≥ 0.
Then, for i = 1, . . . , p−1 and t ≥ 0,

hi(ut) =
1
2

uT
t Aiut + bT

i ut + ci

=
1
2
(u0 + tv)T Ai(u0 + tv)+ bT

i (u0 + tv)+ ci

≤ 1
2

uT
0 Aiu0 + bT

i u0 + ci

= hi(u0) < λxi +(1−λ )yi.

Moreover, note that

hp(ut) =
1
2

uT
t Aput + bT

p ut + cp

=
1
2
(u0 + tv)T Ap(u0 + tv)+ bT

p(u0 + tv)+ cp

=
(

1
2

vT Apv

)
t2 +

(
vT Apu0 + bT

p v
)

t +
(

1
2

uT
0 Apu0 + bT

p u0 + cp

)
.

Thus since vT Apv < 0, limt→+∞ hp(ut) = −∞, and hence there exists t0 > 0 such
that

hp(ut0) < λxp +(1−λ )yp.

Therefore, hi(ut0) < λxi + (1− λ )yi, i = 1, . . . , p. It follows that λ (x1, . . . ,xp) +
(1−λ )(y1, . . . ,yp) ∈ N. Hence N is convex in Rp. ��

It is worth noting that, in our condition (5), we require the existence of a vector v
such that hi, i = 1, . . . , p−1, is non-increasing along this direction and hp approaches
−∞ along this direction. As we will see later (e.g., Example 4), the condition (5) can
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be used as a sufficient condition to verify the convexity of (h1, . . . ,hp)(Rn)+ intRp
+

when h1, . . . ,hp are not all convex, and so, plays an important role in verifying the
global optimality condition for the corresponding non-convex quadratic optimiza-
tion problem.

To end this section, we give an example showing that the set (h1, . . . ,hp)(Rn)+
intRp

+ may not be convex when hi, i = 1, . . . , p are general quadratic functions.

Example 1. Let h1(x1,x2) = x1, h2(x1,x2) = −x2
1 + x2

2 and h3(x1,x2) = −x1. Let
M = (h1,h2,h3)(R2)+ intR3

+. Since h1(0,0) = h2(0,0) = h3(0,0) = 0, h1(1,0) = 1
and h2(1,0) = h3(1,0) =−1, a := ( 1

10 , 1
10 , 1

10 )∈M and b := ( 11
10 , −9

10 , −9
10 )∈M. Con-

sider the point a+b
2 = ( 12

20 , −8
20 , −8

20 ). Note that the following system has no solution:

x1 <
12
20

, −x2
1 + x2

2 <− 8
20

, −x1 <− 8
20

.

Thus a+b
2 /∈M. So, M is not convex in this example.

3 Necessary and Sufficient Optimality Conditions

Recall the multi-objective non-convex quadratic optimization problem

(MP) min ( f1(x), . . . , fp(x))
s.t. g j(x)≤ 0, j = 1, . . . ,m,

where fi(x) = 1
2 xT Aix+aT

i x, g j(x) = 1
2 xT B jx+bT

j x+c j, Ai,B j ∈ Sn, the space of all
(n×n) symmetric matrices, ai,b j ∈ Rn and c j ∈ R. Denote FP = {x∈ Rn : g j(x)≤ 0,
j = 1, . . . ,m}. A point x∈ FP is called a weak minimizer of (MP) if there do not exist
x ∈ FP such that fi(x) < fi(x), i = 1, . . . , p.

In this section, we derive Lagrange multiplier conditions for a weak minimizer
of (MP).

Theorem 2 (Necessary optimality theorem). Suppose that ( f1, . . . , fp,g1, . . . ,gm)
(Rn) + intRp+m

+ is convex in Rp+m and there exists x0 ∈ Rm such that g j(x0) < 0
j = 1, . . . ,m. Assume that x ∈ FP is a weak minimizer of (MP). Then there exists
(λ ,μ) ∈ Δp×Rm

+ such that for all x ∈ Rn

p

∑
i=1

λ i( fi(x)− fi(x))+
m

∑
j=1

μ jg j(x)≥ 0. (2)

In particular, we have

p

∑
i=1

λ i∇ fi(x)+
m

∑
j=1

μ j∇g j(x) = 0, (3)

μ jg j(x) = 0, j = 1, . . . ,m, (4)
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p

∑
i=1

λ iAi +
m

∑
j=1

μ jB j $ 0. (5)

Proof. Let x be a weak minimizer of (MP). Then the following system has no
solution:

fi(x)− fi(x) < 0, i = 1, . . . , p, g j(x)≤ 0, j = 1, . . . ,m.

Hence the following system also has no solution:

fi(x)− fi(x) < 0, i = 1, . . . , p, g j(x) < 0, j = 1, . . . ,m.

So, by Theorem 1, there exists (λ1, . . . ,λp,μ1, . . . ,μm) ∈ Rp+m
+ \{0} such that for all

x ∈ Rn
p

∑
i=1

λi( fi(x)− fi(x))+
m

∑
j=1

μ jg j(x)≥ 0.

If (λ1, . . . ,λp) = (0, . . . ,0), then ∑m
j=1 μ jg j(x) ≥ 0 for all x ∈ Rn. Since there

exists x0 ∈ Rn such that g j(x0) < 0, j = 1, . . . ,m this is impossible. Thus

(λ1, . . . ,λp) �= (0, . . . ,0) and hence ∑p
i=1λi > 0. Therefore, define λ i = λi

∑p
i=1λi

and

μ j = μ j

∑p
i=1 λi

. Then λ = (λ 1, . . . ,λ p) ∈ Δp, μ = (μ1, . . . ,μm) ∈ Rm
+ and (2) holds.

From (2), one has ∑m
j=1 μ jg j(x)≥ 0. Since x ∈ FP, μ jg j(x)≤ 0. Thus μ jg j(x) = 0,

j = 1, . . . ,m. Define L(x,λ ,μ) = ∑p
i=1λ i fi(x) +∑m

j=1 μ jg j(x). It follows from (2)

that ∇xL(x,λ ,μ) = 0 and ∇2
xxL(x,λ ,μ)$ 0. Thus (3)–(5) hold. ��

Theorem 3 (Sufficient optimality theorem). Let x ∈ FP.

(1) If there exists (λ ,μ) ∈ Δp×Rm
+ such that for all x ∈ Rn (2) holds, then x is a

weak minimizer of (MP).
(2) If there exists (λ ,μ)∈Δp×Rm

+ such that (3)–(5) hold, then x is a weak minimizer
of (MP).

Proof.
Proof of (1): Suppose that there exist λ ∈ Δp and μ ∈ Rm

+ such that for all x ∈ Rn

(2) holds. Then for any x ∈ FP,

p

∑
i=1

λ i fi(x)≥
p

∑
i=1

λ i fi(x). (6)

Now, suppose on the contrary that x is not a weak minimizer of (MP). Then, there
exists x̂ ∈ FP such that

fi(x̂) < fi(x), i = 1, . . . , p.

Thus, from λ ∈ Δp one has

p

∑
i=1

λ i fi(x̂) <
p

∑
i=1

λ i fi(x).
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This contradicts the inequality (6).
Proof of (2): Note that (3)–(5) hold if and only if (2) holds. Thus (2) follows. ��
The following example shows that our sufficient optimality condition in the pre-

ceding theorem can be used for finding weak minimizer even when the range con-
dition “(h1, . . . ,hp)(Rn)+ intRp

+ is convex” does not hold.

Example 2. Consider the following multi-objective non-convex quadratic optimiza-
tion problem

(MP) min (x1,−x2
1 + x2

2)
s.t. −x1 ≤ 0.

Let f1(x1,x2) = x1, f2(x1,x2) =−x2
1 +x2

2 and g1(x1,x2) =−x1. Let FP = {(x1,x2)∈
R2 : g1(x1,x2)≤ 0}. Then FP = {(x1,x2) : x1 ≥ 0} and M := ( f1, f2,g1)(R2)+ intR3

+
is not convex (see Example 1). Thus our necessary optimality theorem cannot be
applied to this example. However, our sufficient optimality theorem still can be
applied. Let (x1,x2) ∈ {(0,x2) : x2 ∈ R}. Then ∇ f1(x1,x2) = (1,0), ∇ f2(x1,x2) =
(0,2x2), ∇g1(x1,x2) = (−1,0) and hence the following holds with (λ 1,λ 2,μ1) =
(1,0,1):

λ 1∇ f1(x1,x2)+λ2∇ f2(x1,x2)+ μ1∇g1(x1,x2) = 0 and μ1g1(x1,x2) = 0.

Let A1 = ∇2 f1(x1,x2), A2 = ∇2 f2(x1,x2) and B1 = ∇2g1(x1,x2). Then, one has

A1 =
(

0 0
0 0

)
, A2 =

(−2 0
0 2

)
and B1 =

(
0 0
0 0

)
,

and hence λ 1A1 +λ 2A2 + μ1B1 = A1 + B1 $ 0. Hence, it follows from our suffi-
cient optimality theorem that (x1,x2) is a weak minimizer of (MP). In fact, since
( f1, f2)(Fp) = {(x1,x2) ∈ R2 : x1 ≥ 0,x2 ≥−x2

1}, the set of all weak minimizers is

{(0,x2) : x2 ∈ R}∪{(x1,0) : x1 > 0}.

Now, we define a Karush–Kuhn–Tucker (KKT) point of (MP) as follows.

Definition 1. A point x ∈ FP is called a KKT point of (MP) if there exists (λ ,μ) ∈
Δp×Rm

+ such that (3)-(4) hold.

Next, we present an example showing that a KKT point of (MP) need not be a weak
minimizer of (MP).

Example 3. Consider the following quadratic multi-objective optimization problem

(MP) min (x1,−x2
1− x2

2)
s.t. x2

1 + x2
2 ≤ 1.

Let f1(x1,x2) = x1, f2(x1,x2) = −x2
1− x2

2 and g1(x1,x2) = x2
1 + x2

2− 1. Then the
feasible set is FP = {(x1,x2)∈R2 : x2

1 +x2
2≤ 1}. Since ( f1, f2)(FP)= {(x1,x2) :−1≤
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x2 ≤ −x2
1}, the set consisting of all the weak minimizer is {(x1,x2) : x2

1 + x2
2 = 1}.

Let (x1,x2) = (0,0) and (λ 1,λ 2,μ1) = (0,1,0). Then, one has μ1g(x1,x2) = 0 and

λ 1∇ f1(x1,x2)+λ 2∇ f2(x1,x2)+ μ1∇g1(x1,x2) = 0.

Thus (x1,x2) is a KKT point but not a weak minimizer of (MP).

Now, we consider a special case of multi-objective non-convex quadratic opti-
mization problem in which any non-zero KKT point is a weak minimizer.

Consider the following multi-objective non-convex quadratic problem with ho-
mogeneous quadratic objective functions and convex quadratic constraint functions:

(HMP) min

(
1
2

xT A1x, . . . ,
1
2

xT Apx

)

s.t.
1
2

xT B jx≤ 1, j = 1, . . . ,m,

where Ai ∈ Sn, i = 1, . . . , p, B j ∈ Sn
+, j = 1, . . . ,m. We denote the feasible set of

(HMP) by FHP. Let A ∈ Sn. We denote the ith eigenvalue of A by σi(A). The eigen-
values are ordered as follows σ1(A)≤ σ2(A) · · · ≤ σn(A).

Theorem 4. Assume that x ∈ FHP is a non-zero KKT point of (HMP) with (λ ,μ) ∈
Δp×Rm

+. If σ2(∑
p
i=1λ iAi) > 0, then ∑p

i=1λ iAi +∑m
j=1μ jB j $ 0 and so, x is a weak

minimizer of (HMP).

Proof. Since x ∈ FHP is a KKT point of (HMP), one has(
p

∑
i=1

λ iAi +
m

∑
j=1

μ jB j

)
x = 0.

Note that x �= 0. It follows that 0 is an eigenvalue of ∑p
i=1λ iAi +∑m

j=1 μ jB j. On the
other hand, note that ∑m

j=1 μ jB j $ 0 (since B j ∈ Sn
+ and μ j ≥ 0 j = 1, . . . ,m) and

σk(∑
p
i=1λ iAi)≥ σ2(∑p

i=1λ iAi) k = 2, . . . ,n. Thus, for all k = 2, . . . ,n we have

σk

(
p

∑
i=1

λ iAi +
m

∑
j=1

μ jB j

)
≥ σk

(
p

∑
i=1

λ iAi

)
+σ1

(
m

∑
j=1

μ jB j

)

≥ σ2

(
p

∑
i=1

λ iAi

)
> 0,

where the first inequality follows from [10, Lemma 2] and [2, III.2.2]. Therefore,
we have for all k = 1, . . . ,n

σk

(
p

∑
i=1

λ iAi +
m

∑
j=1

μ jB j

)
≥ 0,
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and so, ∑p
i=1λ iAi +∑m

j=1 μ jB j $ 0. Thus, it follows from Theorem 3(2) that x is a
weak minimizer of (HMP). ��

Finally, we give an example illustrating Proposition 1(5) and Theorems 2 and 3.

Example 4. Consider the following multi-objective indefinite quadratic optimization
problem:

(MP) min (x1,x
2
1− x2

2)
s.t. x2

1− x1 ≤ 0.

Let f1(x1,x2) = x1, f2(x1,x2) = x2
1− x2

2 and g1(x1,x2) = x2
1− x1. The feasible set

is FP = {(x1,x2) : x2
1− x1 ≤ 0}. Then fi(x) = 1

2 xT Aix + aT
i x, i = 1,2 and g1(x) =

1
2 xT B1x + bT

1 x, where x = (x1,x2) ∈ R2, a1 = (1,0), a2 = (0,0), b1 = (−1,0) and

A1 =
(

0 0
0 0

)
, A2 =

(
2 0
0 −2

)
, and B1 =

(
2 0
0 0

)
.

(1) Note that A1 $ 0 and B1 $ 0. Since

Ω := {d = (d1,d2) ∈ R2 : A1d = 0,aT
1 d ≤ 0,B1d = 0,bT

1 d ≤ 0}
= {(0,d2) : d2 ∈ R},

v := (0,1)∈Ω . It can be verified that vT A2v =−2 < 0. Thus, all the assumptions
in Proposition 1(5) are satisfied. Thus ( f1, f2,g1)(R2)+ intR3

+ is convex.
(2) It can be verified that {(x1,x2) ∈ FP : ∃(λ ,μ) ∈ Δ2 × R+ such that (x1,x2)

is a KKT point of (MP) with ∑2
i=1λ iAi + μ1B1 $ 0} = {(0,x2) : x2 ∈ R}. It

follows from Theorems 2 and 3 that the set consisting of all weak minimizers is
{(0,x2) : x2 ∈ R}.
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Application of Variational Analysis and Control
Theory to Nonparametric Maximum Likelihood
Estimation of a Density Function

Ilya Shvartsman

Abstract In this chapter, we propose a new approach to the estimation of the
probability density function based on the maximum likelihood method if it is known
that the underlying density function is Lipschitz. We treat this problem as an opti-
mal control problem and prove convergence results using techniques of variational
analysis.

1 Introduction and Preliminaries

The probability density function is a fundamental concept in probability and statis-
tics. Consider a random variable X that has a probability density function f . Then
probabilities associated with X can be found from the relation

P(α < x < β ) =
∫ β

α
f (x)dx for α < β .

Let x1,x2, . . . ,xn be independent realizations of the random variable X with unknown
density function f . Density estimation is the construction of an estimate of the den-
sity function from the observed data.

An overview of methods of density estimation can be found, for example, in
[16]. The simplest method of density estimation is by means of a histogram, which
is widely used in applied statistical problems. The price paid for simplicity of this
method is discontinuity of the histogram and its dependence on the choice of the
bin width. In 1957, the so-called kernel method was introduced in [12] and has been
thoroughly investigated since then (see, e.g., [13, 14, 20] and references therein).
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A kernel density estimator for f at an arbitrary fixed x is

f̂ (x) =
1

nh

n

∑
i=1

ϕ
(

x− xi

h

)
, (1)

where the kernel ϕ is such that
∫ ∞
−∞ϕ(x)dx = 1 determines the shape of the “bumps”

centered at each data point, and h is the smoothing parameter: as h tends to zero, f̂
tends to a sum of Dirac delta functions with spikes at the observations, while as h
becomes large, the features of the distribution become obscured. A histogram is a
special case of a kernel estimator with h equal to the bin width and

ϕ(x) =

{
1, |x| ≤ 1/2,

0, |x|> 1/2.

If ϕ is smooth, a kernel estimator for f can be viewed as a smoothed version of a
histogram.

Both the histogram and the kernel methods are derived in an ad hoc way from the
definition of density. The maximum likelihood method is a commonly used statistical
technique, which we describe below. Assume for illustration purposes that f belongs
to a parametric family f = f (x,θ ), where θ is a finite-dimensional parameter to be
estimated. The likelihood of θ as a function of x1,x2, . . . ,xn is defined as

lik(θ ) =
n

∏
i=1

f (xi, θ ).

The maximum likelihood estimator (mle) of θ is a value of θ that maximizes the
likelihood – that is, makes the observed data “most probable.” Rather than maxi-
mizing the likelihood itself, it is usually easier to maximize its natural logarithm,
(the so-called log-likelihood)

l(θ ) =
n

∑
i=1

ln[ f (xi, θ )].

Assume, for example, that the sample is taken from the normal distribution with
mean μ and variance σ :

f (x,μ ,σ) =
1

σ
√

2π
e−

(x−μ)2

2σ2 , −∞< x < ∞,

where the parameters μ and σ are to be estimated. In this case, the log-likelihood is

l(μ ,σ) =−n lnσ − n
2

ln2π− 1
2σ2

n

∑
i=1

(xi− μ)2.

Setting the partial derivatives with respect to μ and σ equal to zero and solving the
resulting equations, we obtain

μ̂ =
1
n

n

∑
i=1

xi =: x̄, σ̂2 =
1
n

n

∑
i=1

(xi− x̄)2.
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Finding parameters of interest is not always possible in a closed form (e.g., for
gamma distribution), but there are numerical algorithms for finding the maximum
likelihood estimator built in a lot of statistical software.

What makes the maximum likelihood method very common and useful in para-
metric density estimation is its asymptotic property: Under certain smoothness as-
sumptions on f , maximum likelihood estimator θ̂ converges to the true parameter
θ in probability. Moreover, the probability distribution of

√
nI(θ )(θ̂ − θ ) tends to

standard normal as n→ ∞, where I(θ ) = E[ ∂∂θ ln f (X |θ )]2 is the so-called Fisher
information (e.g., [2]), that is, asymptotically,

θ̂ −θ ∼ N

(
0,

1
nI(θ )

)
. (2)

Can the maximum likelihood method be similarly applied to problems of non-
parametric density estimation? It is easy to see that the likelihood

lik(x1, . . . ,xn; f ) =
n

∏
i=1

f (xi)

has no finite maximum over the class of all (even continuous) densities because by
taking f to be the sum of Dirac-type spikes at the observations, the likelihood can
be made arbitrarily large, while still satisfying the constraint

∫
f (x)dx = 1. To get

around this difficulty, a method of penalized likelihood was originally introduced
in [5] and developed in a series of works (see, e.g., [1, 3, 9]). The essence of this
method is that a penalized likelihood function

lα( f ) :=
n

∑
i=1

ln f (xi)−αR( f ) (3)

is maximized. Hereα is the smoothing parameter and R( f ) is the roughness penalty.
The penalized likelihood is a way of quantifying the trade-off between smoothness
and goodness-of-fit to the data. Possible choices of R( f ) suggested in [5] are, for
γ =

√
f ,

R( f ) =
∫
γ ′2(x)dx and R( f ) =

∫
γ ′′2(x)dx

or a linear combination of those. The first choice penalizes for the slope, while the
second choice penalizes for the curvature.

To apply the maximum likelihood method directly (without penalization), the
class of potential estimators must be large enough to be of interest, and, at the same
time, small enough so that the maximum likelihood estimator exists. To the best
of the author’s knowledge, direct maximum likelihood method has been applied
in the context of monotone densities (e.g., [7]), densities with monotone hazard
rate r(x) := f (x)/(1− ∫ x

−∞ f (t)dt) [8], unimodal densities (e.g., [4, 18]) (a density
function is said to be unimodal if it has exactly one local maximum), and to densities
which are finite linear combinations of indicator functions of disjoint intervals [19].
In this chapter, we suggest application of this method to Lipschitz functions with a
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known bound on the Lipschitz constant. This is a natural assumption because we
often do not expect the underlying density function to change much on a small
interval, and it seems to be less restrictive than, say, unimodality.

In what follows, we will denote the true unknown density by f0 : [a,b]→ IR, the
maximum likelihood estimator by f̂ or f̂n to emphasize its dependence on n where
relevant. We assume that f0 and f̂n belong to the class F of density functions with
Lipschitz constant l:

F :=
{

f : [a,b]→ IR| f ≥ 0,

∫ b

a
f (x)dx = 1, | f (γ1)− f (γ2)|

≤ l|γ1− γ2| ∀γ1,γ2 ∈ [a,b]
}

. (4)

We consider the following two problems:

(P1) Find a maximum likelihood estimator f̂n of f0

(P2) Investigate asymptotic properties of f̂n as n→ ∞

Although these problems are statistical in nature, problem (P1), as we will see in
Sect. 2, can be reduced to and analysed as an optimal control problem. Problem (P2)
will be dealt with in Sect. 3 applying methodology typical to variational analysis –
by introducing approximations and passing to the limit.

The main result of this chapter is the following theorem.

Theorem 1.
(a) The sequence of maximum likelihood estimators f̂n converges to f0 uniformly

in probability on [a,b]. This means that for any positive ε and δ there exists a
number N such that for all n > N

P

(
max

x∈[a,b]

∣∣ f̂n(x)− f0(x)
∣∣> ε

)
< δ . (5)

(Here, and below, P(A) stands for the probability of event A.)
(b) There exists a constant K > 0 such that for any x ∈ [a,b] where f0(x) > 0, for

any z > 0, the following estimate holds asymptotically:

P
(∣∣ f̂n(x)− f0(x)

∣∣> z
)≤ 2

[
1−Φ

(
K
√

f0(x)
l(l + 1)3

√
n

lnn
z4

)]
, (6)

where

Φ(y) =
1√
2π

∫ y

−∞
e−

x2
2 dx

is the cumulative standard normal distribution.
(c) For any x ∈ [a,b] such that f0 is equal to zero on some open interval contain-

ing x, the confidence interval is narrower for 0 < z < 1:

P
(∣∣ f̂n(x)− f0(x)

∣∣> z
)≤ 2

[
1−Φ

(
K
l

√
n

lnn
z2
)]

. (7)
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Note that Φ(y) ≈ 1 for y ≥ 3 and Φ(0) = 1/2. It is natural to observe that the
convergence slows down as l increases.

Convergence of the estimator to the true density (consistency) is essential for any
useful estimator. It is shown in [15] that the kernel estimator (1) is consistent in the
sense that

sup
x

∣∣ f̂n(x)− f0(x)
∣∣→ 0 in probability as n→ ∞

under very mild assumptions of uniform continuity of f0 and the following relation-
ship between h and n:

h→ 0 and
lnn
nh
→ 0 as n→ ∞.

The rate of this convergence was shown in [6] to be of the order O((lnn/nh)1/2).
This estimate was obtained under the assumption of integrability of f ′′0 , which is
a standard assumption for kernel estimators, although it does not hold for simplest
nonsmooth functions. For the penalized maximum likelihood estimator, under a
rather restrictive assumption on integrability of f ′′0 and f ′20 / f0 the convergence rate
was shown to be of the order O(n−2/5) if the smoothing parameter α(n) in (3) is of
the order O(n−1/5). Theorem 1 establishes convergence at the much quicker normal
convergence rate, generalizing, to some extend, the finite-dimensional convergence
result (2).

The structure of the chapter is as follows. In Sect. 2, we show that the estimator
can be found as a solution of a finite-dimensional mathematical program, and we
consider a few simple examples. Section 3 is devoted to the proof of Theorem 1. In
this manuscript, we are not suggesting a numerical method for finding the estimator
– this may be addressed in future work. At the same time, it is common in vari-
ational analysis (in mathematical programming and optimal control in particular)
to establish certain desirable properties of optimizers (like Lipschitz continuity or
differentiability) only from the conditions of optimality, without finding optimizers
explicitly.

2 Problem (P1) as an Optimal Control Problem

The problem (P1) can be stated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize ϕ( f ) :=
n

∑
i=1

ln f (xi)

over f ∈W 1,1[a,b] satisfying

f (x) ≥ 0,∫ b

a
f (x)dx = 1,

| f ′(x)| ≤ l for a.a. x ∈ [a,b].

(8)
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Denote

y1(x) :=
∫ x

a
f (s)ds,

y2(x) := f (x), x ∈ [a,b],

and introduce the control function u as u(x) := f ′(x) = y′2(x). Then system (8) can
be represented as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize ϕ̃(u) :=−
n

∑
i=1

lny2(xi)

over measurable u : [a,b]→ IR subject to contraints

y′1 = y2,

y′2 = u,

y2(x)≥ 0,

y1(a) = 0,

y1(b) = 1,

|u(x)| ≤ l for a.a. x ∈ [a,b].

(9)

This is an optimal control problem where the objective function includes interior
points and this problem also contains a state constraint. Such problems are studied,
in a more general nonsmooth framework, in [10], [11], and [17].

Set x0 := a and xn+1 := b. The necessary optimality conditions for u imply the
following on each of the intervals (xi,xi+1), i = 0, . . . ,n where y2(x) > 0.

There exist adjoint functions p1, p2 : [a,b]→ IR satisfying the equations

p′1 = 0,

p′2 =−p1.
(10)

Furthermore, the function p2 may have jumps at the points xi, i = 1, . . . ,n satisfying
p2(xi + 0)− p2(xi−0)≤ 0, while the function p1 is continuous on [a,b]. It follows
from (9) that the function p2 is linear on each of the intervals (xi,xi+1) (if the state
constraint is inactive), hence it changes its sign at most once on these intervals. The
optimal control u must maximize the function H(p2,u) = p2u for a.a. x ∈ [a,b], i.e.,
is given by

u(x) = l sgn p2(x).

Therefore, the optimal control u is bang-bang with at most one point of switch on
(xi,xi+1). A typical graph of y2(x) = f̂ (x) corresponding to an optimal control u is
shown below.

a bx1 x2 xn

f̂
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Thus the infinite-dimensional problem (P1) is reduced to a finite-dimensional
mathematical program of maximizing ∑ ln f (xi) (with f (xi), i = 1, . . . ,n being the
parameters) with a constraint that the area below the curve (broken line) is a one.
Below we consider simple examples with just two and three sample points and show
that the solution is not intuitively obvious.

Examples.
Two-point problem. We have the data x1,x2. Denote

τ = |x2− x1|.

If x1 and x2 are sufficiently far from each other and the interval endpoints (precisely,
if τ ≥√2/l), then the graph of the maximum likelihood estimator f̂ contains two
“triangles,” each with area 1/2 and height

√
l/2.

a bx1 x2

√
l=2

f̂

If these points are close to each other (τ <
√

2/l), then the graph of f̂ contains
“clustered triangles” with common height h := f̂ (x1) = f̂ (x2), whose total area can
be shown to be equal to h2/l + τh− lτ2/4.

a bx1 x2

h

f̂

Therefore, h is the solution of the quadratic equation

h2

l
+ τh− lτ2

4
= 1.

Three-point problem. It may seem natural to conjecture that the maximum like-
lihood estimator f̂n is such that each data point xi contributes equally 1/n to the
cumulative distribution (that is, F̂n(xi+1)− F̂n(xi) = 1/n), which is the case for the
empirical cumulative distribution function

F̂n =
1
n
(#xi ≤ x).

However, it turns out not to be the case as we will see.
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Consider the situation when two of the three points are close to each other (so that
the corresponding triangles overlap) and the third one is far from them, as shown in
Fig. 1.

a bx1 x2 x3

h1

h2

f̂

Fig. 1 Graph of f̂ for three observation points

Set h1 := f̂ (x1), h2 := f̂ (x2) = f̂ (x3) and τ = |x3− x2|. The total area under the
curve of f̂ is h2

1/l + h2
2/l + τh2− lτ2/4, which implies the constraint on h1 and h2

h2
1

l
+

h2
2

l
+ τh2− lτ2

4
= 1. (11)

The log-likelihood to be maximized is L (h1,h2) = lnh1 + 2lnh2, therefore the
Lagrangian is

L = lnh1 + 2lnh2−λ
(

h2
1

l
+

h2
2

l
+ τh2− lτ2

4
−1

)
,

where λ is the Lagrange multiplier.
Setting the partial derivatives Lh1 , Lh2 equal to zero we get a system

1
h1
− 2λh1

l
= 0,

2
h2
− 2λh2

l
−λτ = 0.

From the first equation, we obtain λ = l/(2h2
1). Substituting it into the second equa-

tion, we get
2
h2
− h2

h2
1

− τl

2h2
1

= 0,

or, equivalently,

4h2
1−2h2

2−h2τl = 0,

which, together with constraint (11) gives a system with respect to h1 and h2 if τ is
sufficiently small (precise range can be shown to be τ ≤ 2/

√
3l).



Application of Variational Analysis and Control Theory to Density Estimation 195

The solution of this system is

h2 =
1

12

(√
49l2τ2 + 96l−5lτ

)
,

h2
1 =

11
72

l2τ2 +
l
3
− lτ

72

√
49l2τ2 + 96l.

The graph of h2
1/l (the area of the single triangle in Fig. 1) as a function of τ is

shown in the case l = 1.

1

3

2

3

0.28

0.3

1
3

h21

t

We can see that the “single” point x1 contributes less than a third of what the “clus-
tered” points x2 and x3 do to the cumulative distribution, and the minimum of this
contribution occurs close to the mid-interval. This is a very nonintuitive result.

If we have more than three data points, the problem of finding the maximum
likelihood estimator, in general, can no longer be solved analytically; numerical
algorithms have to be developed.

3 Asymptotic Properties of the Maximum Likelihood Estimators

In this section, we will prove Theorem 1. Below, unless stated otherwise, by con-
vergence an → a we mean convergence in probability, that is, if P(|an−a|> ε)→ 0
for any ε > 0 as n→ ∞.

Proof of Theorem 1. Recall that f̂n is a maximizer of the log-likelihood functional
∑n

i=1 ln f (xi) or, equivalently, of the averaged log-likelihood functional

Ln( f ) :=
1
n

n

∑
i=1

ln f (xi)
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over the class F given by (4). For fixed f ∈F , the expected value of Ln( f ) with
respect to the realization of x1, . . . ,xn is given by the functional

J( f ) := E[ln f (X)] =
∫ b

a
ln f (x) f0(x)dx, (12)

where f0 ∈F is the true unknown density function.
Set

I := {x ∈ [a,b] | f0(x) > 0} and
∫

[a,b]\I
ln f (x) f0(x)dx := 0

even if f is zero at some points in [a,b]\ I. Then

J( f ) =
∫

I
ln f (x) f0(x)dx

and the domain of J consists of all f for which this integral is finite (in particular,
for positive f bounded above and separated below from zero).

Our idea is to carry out the proof along the following lines. First, we would want
to show that

Ln( f )→ J( f ) as n→ ∞ (13)

uniformly over a class of functions that contains all possible estimators f̂n. Then we
would consider the identity

J( f0)− J( f̂n) = [J( f0)−Ln( f0)]+
[
Ln( f0)−Ln( f̂n)

]
+
[
Ln( f̂n)− J( f̂n)

]
. (14)

The second difference on the right side of (14) is nonpositive, and if (13) is true, then
the first and the third differences on the right side converge to zero in probability.
On the other hand, it is possible to show that f0 is the unique maximizer of the
functional J over F , therefore the left side of (14) is nonnegative. This would imply
that J( f̂n)→ J( f0) and we would be able to deduce uniform convergence f̂n → f0

and other assertions of Theorem 1.
There is, however, an obstacle on this way: if it happens that f̂n is equal to zero on

a set where f0 �= 0 (which is possible), then J( f̂n) =
∫

I ln f̂n(x) f0(x)dx is undefined,
so we cannot talk about the convergence (13). To get around this difficulty, for c > 0
(to be specified later) we define

f̂ c
n := max{ f̂n,c}.

Since f̂ c
n is separated from zero and bounded, the value of J( f̂ c

n ) is finite.
Let Fc be the class of nonnegative functions with Lipschitz constant

l(1 + c(b−a)) and whose integral over [a,b] does not exceed 1 + c(b−a), that is,

Fc :=
{

f : [a,b]→ IR| f ≥ 0, | f (γ1)− f (γ2)| ≤ l(1 + c(b−a)) ∀γ1,γ2 ∈ [a,b],

∫ b

a
f (x)dx ≤ 1 + c(b−a)

}
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and set
f c
0 := (1 + c(b−a)) f0. (15)

By construction, f̂ c
n and f c

0 belong to Fc. Let us show that the functional J is
maximized over Fc by f c

0 . Note that

J( f c
0 ) = ln(1 + c(b−a))+

∫
I
ln f0(x) f0(x)dx >−∞

since the product y lny is bounded for bounded positive y.
Take any f ∈Fc such that J( f ) >−∞. Since for any y,y0 > 0

lny− lny0 =
y− y0

y0
− (y− y0)2

2ξ 2

for some ξ between y and y0 due to Taylor’s Theorem, we have

J( f c
0 )− J( f ) =

∫
I
[ln f c

0 (x)− ln f (x)] f0(x)dx

=
∫

I

[
f c
0 (x)− f (x)

f c
0 (x)

+
( f (x)− f c

0 (x))2

2ξ 2(x)

]
f0(x)dx

=
∫

I

f c
0 (x)− f (x)

1 + c(b−a)
dx +

∫
I

( f (x)− f c
0 (x))2

2ξ 2(x)
f0(x)dx.

(16)

It is obvious that the second integral on the right side is nonnegative; the first in-
tegral is also nonnegative because

∫
I f c

0 (x)dx = 1 + c(b− a), while
∫

I f (x)dx ≤
1 + c(b− a). Moreover, the right side in (16) is equal to zero if and only if f = f c

0
on I and, hence, on all of [a,b] (otherwise, if f = f c

0 on I, but not on [a,b]\ I, then∫ b
a f (x)dx > 1 + c(b− a)). Therefore, f = f c

0 is the unique global maximizer of J
over Fc .

Take f ∈Fc such that f (x) ≥ c for all x ∈ [a,b]. We have

J( f c
0 )− J( f ) = [J( f c

0 )−Ln( f c
0 )]+ [Ln( f c

0 )−Ln( f )]+ [Ln( f )− J( f )]
= [J( f0)−Ln( f0)]+ [Ln( f c

0 )−Ln( f )]+ [Ln( f )− J( f )].
(17)

(Here we used the fact that J( f c
0 ) = ln[1 + c(b − a)] + J( f0) and Ln( f c

0 ) =
ln[1 + c(b− a)] + Ln( f0).) The first and the third differences on the right side
are differences between the averages of independent identically distributed random
variables Ln( f0) and Ln( f ), and their corresponding mathematical expectations.
Due to the Central Limit Theorem, [Ln( f ) − J( f )] is asymptotically normally
distributed with zero mean and variance

σ2 =
1
n

Var [ln f (X)] =
1
n

[∫
I
(ln f (x))2 f0(x)dx−

(∫
I
ln f (x) f0(x)dx

)2
]

≤ 1
n

sup
x∈I

(ln f (x))2
∫

I
f0(x)dx =

1
n

sup
x∈I

(ln f (x))2.
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Since f is Lipschitz with Lipschitz constant l(1 + c(b−a)) and bounded below by
c > 0, we have an estimate

σ2 ≤ 1
n

sup
x∈I

(ln f (x))2 ≤ 1
n

K1((lnc)2 +(ln l)2 + 1)

with some constant K1 independent of f .
The value of c does not have to be independent of n, so we set c = n−α with some

α > 0 to be specified later. Thus we have asymptotic estimate of variance

σ2 ≤ K1(lnn−α)2

n
=
α2K1(lnn)2

n
→ 0 as n→ ∞. (18)

Therefore, for any z > 0 and any f ∈Fc, f ≥ c, we have, asymptotically,

P((Ln( f )− J( f )) > z) = 1−Φ
( z
σ

)
≤ 1−Φ

( √
n

α
√

K1 lnn
z

)
,

where

Φ(y) =
1√
2π

∫ y

−∞
e−

x2
2 dx

is the cumulative standard normal distribution.
In what follows, we will use the following fact: If Y := Y1 +Y2 is a sum of two

(not necessarily independent) random variables, then for any β > 0

P(Y > β )≤ P(Y1 > β/2)+ P(Y2 > β/2). (19)

Indeed, for Y > β it is necessary that either Y1 > β/2 or Y2 > β/2. Further, if events
A and B are such that A implies B, then P(A)≤ P(B). Therefore

P(Y > β )≤ P(Y1 > β/2 or Y2 > β/2)≤ P(Y1 > β/2)+ P(Y2 > β/2),

which proves (19).
Taking (19) into account, for the sum of the first and the third differences on the

right side of (17) we have the estimate

P[(J( f0)−Ln( f0))+ (Ln( f )− J( f )) > z] ≤ P
[
J( f0)−Ln( f0) >

z
2

]
+P
[
J( f )−Ln( f ) >

z
2

]
≤ 2

[
1−Φ

( √
n

2α
√

K1 lnn
z

)]
. (20)

Set f = f̂n in (17) and notice that, for the second difference,

Ln( f c
0 )−Ln( f̂ c

n )≤ ln[1 + c(b−a)]. (21)
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Indeed,

Ln( f c
0 )−Ln( f̂ c

n ) ={ln[1 + c(b−a)]+Ln( f0)}− [Ln( f̂ c
n )−Ln( f̂n)]

− [Ln( f̂n)−Ln( f0)]−Ln( f0)

= ln[1 + c(b−a)]− [Ln( f̂ c
n )−Ln( f̂n)]− [Ln( f̂n)−Ln( f0)].

The difference [Ln( f̂ c
n ) − Ln( f̂n)] on the right side is nonnegative because

f̂ c
n ≥ f̂n, the difference [Ln( f̂n)−Ln( f0)] is nonnegative because f̂n maximizes

the log-likelihood Ln, whence (21) follows. Combining now (16), (17), and (21),
we obtain

∫
I

f c
0 (x)− f̂ c

n (x)
1 + c(b−a)

dx +
∫

I

( f̂ c
n (x)− f c

0 (x))2

2ξ 2(x)
f0(x)dx≤ Yn + ln[1 + c(b−a)], (22)

where Yn is a random variable (as a function of realization of x1, . . . ,xn) defined by

Yn := [J( f0)−Ln( f0)]+
[
Ln( f̂ c

n )− J( f̂ c
n )
]→ 0 as n→ ∞

due to (20).
Taking into account that f̂ c

n (x) = f̂n(x) + O(c) and [ f̂ c
n (x) − f c

0 (x)]2 =
[ f̂n(x)− f0(x)]2 + O(c), we can write (22) as

∫
I
[ f0(x)− f̂n(x)]dx +

∫
I

[ f̂n(x)− f0(x)]2

2ξ 2(x)
f0(x)dx≤ Yn + O(n−α). (23)

The right side of (23) converges to zero in probability as n→ ∞; therefore, so does
each term on the left side since both integrals are necessarily nonnegative. From the
convergence ∫

I
[ f0(x)− f̂n(x)]dx→ 0 as n→ ∞,

it follows that
∫

I f̂n(x)dx → 1 as n → ∞, hence, for any x ∈ [a,b] \ I, f̂n(x) →
0 = f0(x).

To prove the convergence f̂n(x)→ f0(x) on the set I, consider the estimate

∫
I

[ f̂n(x)− f0(x)]2

2ξ 2(x)
f0(x)dx≤ Yn + O(n−α),

which follows from (23). Since ξ is a function between f c
0 and f̂ c

n , we have

0 < ξ ≤max
y∈I

{
f c
0 (y), f̂ c

n (y)
}

= K2(l + 1)+ O(c),

with some uniform constant K2. Therefore∫
I
[ f̂n(x)− f0(x)]2 f0(x)dx≤ 2[K2(l + 1)]2[Yn + O(n−α)]. (24)
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The remainder of the proof of Theorem 1 is based on the following propositions.

Proposition 1. Let Ω =
⋃

i[ai,bi] be a union of finitely or countably many nonover-
lapping intervals with a≤ ai < bi≤ b for all i. Further, let ϕn : Ω→ IR be a sequence
of uniformly bounded nonnegative Lipschitz functions with a common Lipschitz con-
stant � > 0, ψ : Ω → IR be continuous and positive on Ω except at the endpoints ci

and di (where ψ(ci) = ψ(di) = 0), and let
∫
Ω
ϕn(x)ψ(x)dx≤ an

for some sequence an → 0 (deterministically). Then the sequence ϕn converges uni-
formly to zero on Ω , and, for any x ∈ Ω such that ψ(x) > 0, we have the estimate

ϕn(x)≤
√

16�

3ψ(x)
an. (25)

Proposition 2. Let ϕn : [c,d]→ IR be a sequence of uniformly bounded nonnegative
Lipschitz functions with a common Lipschitz constant � > 0 and let

∫ d

c
ϕn(x)dx≤ an

for some sequence an → 0 (deterministically). Then for any x ∈ [c,d], we have the
estimate

ϕn(x)≤
√

8�

3
an. (26)

The proof of these propositions can be found in the Appendix.

Since the closure of I has the same structure as Ω in Proposition 1, the right
side of (24) tends to zero in probability as n → ∞ and the difference ( f̂n− f0)2 is
Lipschitz with Lipschitz constant K3l(l +1), we conclude that fn → f0 uniformly in
probability on [a,b]. Estimate (25) implies that

[ f̂n(x)− f0(x)]2 ≤
{

16×2K3l(l + 1)K2
2 (l + 1)2

3 f0(x)
[Yn + O(n−α)]

}1/2

or, equivalently,

| f̂n(x)− f0(x)| ≤
{

32K3K2
2 l(l + 1)3

3 f0(x)
[Yn + O(n−α)]

}1/4

.
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Therefore, for any z > 0

P(| f̂n(x)− f0(x)|> z)≤ P

[
32K3K2

2 l(l + 1)3

3 f0(x)
(Yn + O(n−α)) > z4

]

= P

[
Yn + O(n−α) >

3 f0(x)
32K3K2

2 l(l + 1)3
z4
]

≤ P

[
Yn >

1
2

3 f0(x)
32K3K2

2 l(l + 1)3
z4
]

+ P

[
O(n−α) >

1
2

3 f0(x)
32K3K2

2 l(l + 1)3
z4
]
,

where the last inequality is due to (19).
Since α in O(n−α) can be set arbitrarily large, we can assume without loss of

generality that the second probability on the right side of the formula above is zero.
Due to (20), we arrive at the estimate

P(| f̂n(x)− f0(x)|> z)≤ 2

{
1−Φ

[
K f0(x)

l(l + 1)3

√
n

lnn
z4
]}

,

where K = [(3/128)α
√

K1K3K2
2 ]−1. This proves (6).

The proof (7) similarly follows from Proposition 2 and the estimate∫
I
[ f0(x)− f̂n(x)]dx≤ Yn + O(n−α),

which is equivalent to ∫
[a,b]\I

f̂n(x)dx≤ Yn + O(n−α).

Appendix

In this section, we prove Propositions 1 and 2.

Proof of Proposition 1. Let us notice first that for any x ∈ Ω such that ψ(x) > 0
we have ϕn(x)→ 0. Indeed, take a sufficiently small interval Ix containing x such
that ψ ≥ γ1 > 0 on Ix. If, arguing by the contrary, we assume ϕn(x) ≥ γ2 > 0 for
all n, then, from Lipschitz continuity of ϕn, we can show that

∫
Ix ϕn(x)ψ(x)dx does

not converge to zero as n → ∞, which is not possible. Convergence ϕn(x)→ 0 at
the points where ψ(x) = 0 (the set of such points has measure zero by assumption)
follows from Lipschitz continuity of ϕn. Hence, ϕn(x)→ 0 pointwise on Ω .

It is not difficult to establish that the convergence ϕn → 0 on Ω is, actually, uni-
form. Indeed, if it was not the case, there would exist ε > 0 and a subsequence from
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n = 1,2, . . . (we do not relabel) such that supx∈Ω |ϕn(x)| ≥ ε . However, since the
sequence ϕn, n = 1,2, . . . is uniformly bounded and equicontinuous, it must contain
a uniformly convergent subsequence converging to the pointwise limit, which we
excluded by the assumption supx∈Ω |ϕn(x)| ≥ ε .

Let us prove estimate (25). Take x∗ ∈Ω such thatψ(x∗) > 0. Then on the interval

[x∗,x∗+δ ] for sufficiently small δ we have ψ(x)≥ ψ(x∗)
2 (if x∗ happens to coincide

with the right endpoint of the set Ω , consider the interval [x∗−δ ,x∗] instead). For n
sufficiently large we have δ ≥ ϕn(x∗)/(2�) and, since ϕn is Lipschitz with Lipschitz
constant �, we have

ϕn(x)≥ ϕn(x∗)− �(x− x∗), x≥ x∗

Therefore

an ≥
∫
Ω
ϕn(x)ψ(x)dx≥ ψ(x∗)

2

∫ x∗+δ

x∗
ϕn(x)dx≥ ψ(x∗)

2

∫ x∗+ϕn(x∗)/(2�)

x∗
ϕn(x)dx

≥ ψ(x∗)
2

∫ x∗+ϕn(x∗)/(2�)

x∗
[ϕn(x∗)− �(x− x∗)]dx =

ψ(x∗)
2

3ϕ2
n (x∗)
8�

,

which implies the required estimate

ϕn(x∗)≤
√

16�

3ψ(x∗)
an

Proof of Proposition 2. Similarly to the proof of Proposition 1, we have

an ≥
∫ x∗+δ

x∗
ϕn(x)dx≥

∫ x∗+ϕn(x∗)/(2�)

x∗
ϕn(x)dx

≥
∫ x∗+ϕn(x∗)/(2�)

x∗
[ϕn(x∗)− �(x− x∗)]dx =

3ϕ2
n (x∗)
8�

,

which implies the required estimate (26).
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Parametric Variational System
with a Smooth-Boundary Constraint Set

J.-C. Yao and N.D. Yen

Abstract Solution stability of parametric variational systems with smooth-boundary
constraint sets is investigated. Sufficient conditions for the lower semicontinuity,
Lipschitz-like property, and local metric regularity in Robinson’s sense of the so-
lution map are obtained by using a calculus rule for the normal second-order sub-
differential from B.S. Mordukhovich (Variational Analysis and Generalized Dif-
ferentiation, Vol. I: Basic Theory, Vol. II: Applications, Springer, Berlin, 2006) and
the implicit function theorems for multifunctions from G.M. Lee, N.N. Tam and
N.D. Yen (J Math Anal Appl 338:11–22, 2008).

1 Introduction

Let X be a Banach space with the dual X∗ and the second dual X∗∗. The canonical
pairing between a Banach space and its dual is denoted by 〈,〉. Given a C2-smooth
function ψ : X → R, we put

C = {x ∈ X : ψ(x)≤ 0}. (1)

Let there be given also a single-valued map f : X×P→ X∗, where P is a subset of
a normed space and f (·, p) is a C1-smooth function for each p ∈ P. Consider the
variational system

0 ∈ f (x, p)+ N(x;C) (2)
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with p ∈ P being a parameter. Here N(x;C) denotes the normal cone in the sense of
Mordukhovich to a C at x (see [12, Definition 1.1] and a definition given below),
which coincides with the Clarke normal cone to a C at x (see [4, Corollary 2,
pp. 56–57] and Lemma 3.7 in Sect. 3). Since the boundary ∂C of C is given by

∂C = {x ∈ X : ψ(x) = 0}

and ψ is a C2-smooth function, we will call (2) a parametric variational system with
a smooth-boundary constraint set. The solution set of (2) will be denoted by S(p).

Since it is not assumed that the function ψ is convex, C can be convex or non-
convex as well. If C is convex, then

N(x;C) = {x∗ ∈ X∗ : 〈x∗,u− x〉 ≤ 0 for all u ∈C}
and (2) can be rewritten equivalently as a variational inequality in the classical form

x ∈C, 〈 f (x, p),u− x〉 ≥ 0, ∀u ∈C. (3)

Thus (2) is a generalization of (3).
Stability of the solution map of parametric variational systems in general,

and of parametric variational inequalities in particular, has attracted attention
of many researchers. We refer to Robinson [17] for a pioneering paper and to
Mordukhovich [12, Chap. 4] (see also a recent paper by Aragón Artacho and
Mordukhovich [1]) for significant results together with fresh and comprehensive
information on the subject.

Our aim in this chapter is to investigate a new way of deriving verifiable sufficient
conditions for the lower semicontinuity, Lipschitz-like property, and local metric
regularity in Robinson’s sense of the solution map of (2). We will combine a calculus
rule for the normal second-order subdifferential from [12, Theorem 1.127] with the
implicit function theorems for multifunctions from [9]. This approach allows us
to avoid computing coderivative of f (x, p) on both variables; thus it is somewhat
different from the one used in [12, Chap. 4] (see also [21] and the references therein).
Some technical difficulties related to the appearance of a metric projection operator
in the implicit function theorems of [9] will be overcome by employing the specific
structure of (2) and the generalized differentiation theory from [12].

It is well known that (1) lower semicontinuity of the solution map is an important
stability sign of a parametric system, (2) the Lipschitz-like property of multifunc-
tions (called also the pseudo-Lipschitz property, the Aubin property, the Aubin con-
tinuity property) was introduced by Aubin [2], and (3) the local metric regularity in
Robinson’s sense of implicit multifunction (called also the Robinson robust stability
[3]) has the origin in the classical paper of Robinson [16]. The interested reader is
referred to [3] for a recent study on the relationships between the Robinson robust
stability and the Aubin continuity property of implicit multifunctions. (Note that the
solution map S(·) of (2) is an implicit multifunction of a special type.)

Concerning the special constraint set in (1), we would like to make some remarks.
If C is the solution set of a system of finitely many inequalities or, more generally,
C is the solution set of a generalized inequality system of the form
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C = {x ∈ X : Ψ(x) ∈ K}, (4)

where Ψ : X → Z is a map between Banach spaces and K ⊂ Z is a closed con-
vex cone, then ∂C may have many “corners” (roughly speaking, a corner is a point
where the contingent cone – see for example [12, Definition 1.8] – to ∂C is not a
linear subspace of X). In this case, the stability analysis of (2) is rather complicated.
Various index sets are needed to describe the normal and Fréchet coderivatives of
the normal-cone mapping N(·;C) : X ⇒ X∗. The case whereΨ is an affine operator
and K is a polyhedral convex set have been considered, e.g., by Dontchev and Rock-
afellar [5], Henrion and Römisch [8], Yao and Yen [18,19] (X is a finite dimensional
Euclidean space), Henrion, Mordukhovich, and Nam [6] (X is a finite or infinite di-
mensional Banach space). The case whereΨ is a nonlinear mapping and X is finite
dimensional has been considered by Mordukhovich and Outrata [13], Henrion, Out-
rata, and Surowiec [7]. In contrast to the case of the generalized inequality system
(4), in (1) there is only one inequality given by a C2-smooth function. If x̄ ∈ ∂C and
∇ψ(x̄) �= 0, then the contingent cone to ∂C is a linear subspace of codimension 1
in X . The differentiability analysis of the normal-cone operator N(·;C) is simpler
than that in the just mentioned papers: no index set is needed. Meanwhile, many
mechanical bodies can be represented in the form (1). Hence (2) can model cer-
tain equilibrium problems in mechanics. Since we have studied [18,19] the solution
stability of variational inequalities with a polyhedral convex constraint set, here we
will focus our attention on the behavior of the solution maps of parametric varia-
tional systems with smooth-boundary constraint sets. The obtained results help us
to understand deeper the value of the central result of the second-order subdifferen-
tial calculus in general Banach spaces [12, Theorem 1.127]. The interested reader
is referred to [12, pp. 167–170] for detailed comments on the development of the
second-order generalized differentiation theory.

After some preliminaries, we derive formulae for computing the normal
coderivative of the multifunction f (·, p) + N(·;C) in Sect. 2. Stability of the so-
lution map S(·) is studied in Sect. 3. An analysis of Theorem 3.1, the main result of
this chapter, is given in Sect. 4.

We now present several notations and notions that will be needed in the sequel.
For a subsetΩ ⊂ X , the symbolsΩ and intΩ , respectively, denote the closure of

Ω and the interior of Ω . The distance from x ∈ X to Ω is

dist(x,Ω) := inf{‖x−u‖ : u ∈Ω},

where inf /0 := +∞. Denote by Bρ(x) and BX , respectively, the closed ball centered
at x with radius ρ and the closed unit ball in X . If A : X → Y is a bounded linear
operator, then A∗ denotes the adjoint of A. The symbol L (X ,Y ) stands for the set
of bounded linear operators mapping X into Y . Let R = [−∞,∞].

A multifunction Φ : X ⇒ Y between Banach spaces is said to be lower semicon-
tinuous at x ∈ domΦ := {x ∈ X : Φ(x) �= /0} if for any open set V ⊂ Y satisfying
V ∩Φ(x) �= /0 there exists a neighborhood U of x such that V ∩Φ(u) �= /0 for all
u ∈U . One says that Φ is lower semicompact on its effective domain around x̄ ∈ X
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if there exists a neighborhood U of x̄ such that for any x ∈ U and any sequence

xk
domΦ−−−→ x, there is a sequence yk ∈ Φ(xk), k = 1,2, . . . , which contains a subse-

quence convergent in the norm topology of Y . Here the notation xk
domΦ−−−→ x means

xk → x and xk ∈ domΦ for all k ∈ N.
A Banach space X is called Asplund if every convex continuous function ϕ : U →

R defined on an open convex subset U of X is Fréchet differentiable on a dense
subset of U ; see [12, Definition 2.17]. The class of Asplund spaces is large. For
instance, any reflexive Banach space is an Asplund space. The calculus of normal
cones, coderivatives, and subdifferentials in Asplund spaces is simpler than that in
general Banach spaces [12, Chap. 3].

For a multifunction Φ : X ⇒ X∗, the expression Limsupx→x̄Φ(x) denotes the
sequential Kuratowski–Painlevé upper limit of Φ(x) as x → x̄ with respect to the
norm topology of X and the weak∗ topology of X∗, i.e.,

Limsup
x→x̄

Φ(x) =
{

x∗ ∈ X∗ : ∃ sequences xk → x̄, x∗k
w∗−→ x∗,

with x∗k ∈Φ(xk) for all k = 1,2, . . .
}
.

Let us recall some basic concepts of variational analysis from [12].
The set N̂ε (x;Ω) of the Fréchet ε-normals to Ω at x ∈Ω is given by

N̂ε (x;Ω) =

⎧⎨
⎩x∗ ∈ X∗ : limsup

u
Ω−→x

〈x∗,u− x〉
‖u− x‖ ≤ ε

⎫⎬
⎭ . (5)

One puts N̂ε (x;Ω) = /0 for all ε ≥ 0 whenever x /∈Ω . The set

N(x̄;Ω) := Limsup
x→x̄, ε↓0

N̂ε(x;Ω)

is the normal cone in the sense of Mordukhovich to Ω at x̄. If x̄ /∈Ω , then one puts
N(x̄;Ω) = /0.

Let Φ : X ⇒ Y be a set-valued map between Banach spaces. The multifunction
D∗NΦ(x̄, ȳ) : Y ∗ ⇒ X∗ defined by

D∗NΦ(x̄, ȳ)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N((x̄, ȳ);gphΦ)}, y∗ ∈ Y ∗, (6)

where gphΦ := {(x,y) ∈ X ×Y : y ∈ Φ(x)} denotes the graph of Φ , is said to be
the normal coderivative (called also the limiting coderivative and the coderivative
in the sense of Mordukhovich) of Φ at (x̄, ȳ). We put D∗NΦ(x̄, ȳ)(y∗) = /0 whenever
(x̄, ȳ) /∈ gphΦ .

Suppose that ϕ : X →R is finite at x̄ ∈ X . The set

∂ϕ(x̄) := {x∗ ∈ X∗ : (x∗,−1) ∈ N((x̄,ϕ(x̄));epiϕ)} ,
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where epiϕ := {(x,α) ∈ X×R : α ≥ ϕ(x)} denotes the epigraph of ϕ , is said to be
the basic subdifferential (or the limiting subdifferential) of ϕ at x̄. Let v̄∈ ∂ϕ(x̄), i.e.,
(x̄, v̄) belongs to the graph of the subdifferential mapping ∂ϕ : X ⇒ X∗, x 	→ ∂ϕ(x).
The map ∂ 2

Nϕ(x̄, v̄) : X∗∗ ⇒ X∗ with the values

∂ 2
Nϕ(x̄, v̄)(u) := (D∗N∂ϕ)(x̄, v̄)(u), u ∈ X∗∗,

is called the normal second-order subdifferential of ϕ at x̄ relative to v̄; see [12,
Definition 1.118].

As it will be seen in the next sections, normal second-order subdifferentials are
very useful for studying solution stability/sensitivity of (2).

2 Formulae for Coderivative

Using some results from [12, Chap. 1], we will compute the coderivative of the
multifunction

F(·, p) : X ⇒ X∗, F(x, p) := f (x, p)+ N(x;C), (7)

where f (x, p) and N(x;C) are as in (2).
Consider the normal-cone operator N(·;C) : X ⇒ X∗, where C is given by (1).

Formulae for computing the normal coderivative of N(·;C) and a point (x̄, v̄) ∈
gphN(·;C) will be obtained by using the central result of the second-order subdif-
ferential calculus in general Banach spaces which is stated as follows. (We mention
only the formula for computing the normal second-order subdifferential of the com-
posite function, omitting the formula for the mixed second-order subdifferential.)

Theorem 2.1. (see [12, Theorem 1.127]). Let v̄∈ ∂ (ϕ ◦g)(x̄) with g : X →Y and ϕ :
Y → R. Assume that g is C1-smooth around x̄ with the surjective derivative ∇g(x̄) :
X → Y and the derivative mapping ∇g : X →L (X ,Y ) is strictly differentiable at x̄.
Let y∗ ∈ Y ∗ be a unique element satisfying

v̄ =∇g(x̄)∗y∗ and y∗ ∈ ∂ϕ(ȳ) with ȳ := g(x̄).

Then for all u ∈ X∗∗ one has

∂ 2
N(ϕ ◦ g)(x̄, v̄)(u)⊂ ∇2〈y∗,g〉(x̄)∗u +∇g(x̄)∗∂ 2

Nϕ(ȳ,y∗)(∇g(x̄)∗∗u).

Moreover, the latter becomes an equality if the range of∇g(x̄)∗ is w∗-extensible [12,
Definition 1.122] in X∗. This is true under one of the following conditions:

(a) The range of ∇g(x̄)∗ is complemented in X∗ (it occurs, in particular, when the
kernel of ∇g(x̄) is complemented in X).

(b) The closed unit ball of X∗∗ is weak∗ sequentially compact (it occurs, in par-
ticular, when either X is reflexive or X∗ is separable).
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Let x̄ ∈C and v̄ ∈ X∗ be such that v̄ ∈ N(x̄;C), that is (x̄, v̄) ∈ gphN(·;C). Setting
Y = R, g = ψ , and ϕ(y) = 0 if y ≤ 0, ϕ(y) = +∞ if y > 0 (i.e., ϕ : Y → R is the
indicator function of the half-line R−), we remark that ϕ ◦ψ coincides with the
indicator function of C. Hence

N(x;C) = ∂ (ϕ ◦ψ)(x), ∀x ∈ X .

It follows that

D∗NN(·;C)(x̄, v̄)(u) = ∂ 2
N(ϕ ◦ψ)(x̄, v̄)(u), ∀u ∈ X∗∗.

If ψ(x̄) < 0, then ȳ < 0 and ϕ(ȳ) = {0}. This implies v̄ = 0. Besides, since

∂ (ϕ ◦ψ)(x) = N(x;C) = {0}, ∀x ∈ intC,

we have

∂ 2
N(ϕ ◦ψ)(x̄, v̄)(u) =

(
D∗N∂ (ϕ ◦ψ)

)
(x̄, v̄)(u) = {0}, ∀u ∈ X∗∗.

Suppose now that ψ(x̄) = 0 and ∇ψ(x̄) �= 0. By the chain rule in
[12, Proposition 1.112],

∂ (ϕ ◦ψ)(x̄) = ∇ψ(x̄)∗∂ϕ(ȳ)

with ȳ := ψ(x̄). Since v̄ ∈ N(x̄;C), we infer that there is y∗ ∈ ∂ϕ(ȳ) such that

v̄ = ∇ψ(x̄)∗y∗. (8)

As ∇ψ(x̄) �= 0, ∇ψ(x̄) : X → R is surjective, hence ∇ψ(x̄)∗ : R→ X∗ is injective
according to [12, Lemma 1.18]. In this case, for each v̄ ∈ N(x̄;C) there is a unique
y∗ ∈ ∂ϕ(ȳ) satisfying (8). Since

ker∇ψ(x̄) := {h ∈ X : ∇ψ(x̄)(h) = 0}

is a closed linear subspace of X with codimension 1, ker∇ψ(x̄) is complemented in
X , i.e., there exists a closed linear subspace L ⊂ X such that X =

(
ker∇ψ(x̄)

)⊕L.
By virtue of Theorem 2.1, for all u ∈ X∗∗ one has

∂ 2
N(ϕ ◦ψ)(x̄, v̄)(u) = ∇2〈y∗,ψ〉(x̄)∗u +∇ψ(x̄)∗∂ 2

Nϕ(ȳ,y∗)(∇ψ(x̄)∗∗u). (9)

As

∂ϕ(y) =

⎧⎪⎨
⎪⎩
{0} if y < 0,

[0,+∞) if y = 0,

/0 if y > 0,
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for every α ∈ R and ȳ = ψ(x̄) = 0, we find that

∂ 2
Nϕ(ȳ,y∗)(α)

=
{
β ∈ R : (β ,−α) ∈ N

(
(ȳ,y∗);gph∂ϕ

)}

=

⎧⎪⎨
⎪⎩
{β : (β ,−α) ∈R×{0}} if y∗ > 0

{β : (β ,−α) ∈ (R+×R−)∪ (R−×{0})∪ ({0}×R+)} if y∗ = 0

/0 if y∗ < 0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R if y∗ > 0,α = 0

/0 if y∗ > 0,α �= 0

R+ if y∗ = 0,α > 0

R if y∗ = 0,α = 0

{0} if y∗ = 0,α < 0

/0 if y∗ < 0.

Consequently, for α := ∇ψ(x̄)∗∗u = 〈u,∇ψ(x̄)〉 (the value of u ∈ X∗∗ at ∇ψ(x̄) ∈
X∗) and ȳ = 0,

∇ψ(x̄)∗∂ 2
Nϕ(ȳ,y∗)(∇ψ(x̄)∗∗u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R∇ψ(x̄) if y∗ > 0,α = 0

/0 if y∗ > 0,α �= 0

R+∇ψ(x̄) if y∗ = 0,α > 0

R∇ψ(x̄) if y∗ = 0,α = 0

{0} if y∗ = 0,α < 0

/0 if y∗ < 0.

Combining this with (9) gives

∂ 2
N(ϕ ◦ψ)(x̄, v̄)(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y∗∇2ψ(x̄)∗u +R∇ψ(x̄) if y∗ > 0,〈u,∇ψ(x̄)〉= 0

/0 if y∗ > 0,〈u,∇ψ(x̄)〉 �= 0

R+∇ψ(x̄) if y∗ = 0,〈u,∇ψ(x̄)〉> 0

R∇ψ(x̄) if y∗ = 0,〈u,∇ψ(x̄)〉= 0

{0} if y∗ = 0,〈u,∇ψ(x̄)〉< 0

/0 if y∗ < 0.

Setting
Δ := D∗N

(
f (·, p)+ N(·;C)

)
(x̄, f (x̄, p)+ v̄

)
(u) (10)

and invoking the sum rule in [12, Theorem 1.62(ii)] we have

Δ = ∇x f (x̄, p)∗u + D∗NN(·;C)(x̄, v̄)(u)
= ∇x f (x̄, p)∗u + ∂ 2

N(ϕ ◦ψ)(x̄, v̄)(u),
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where ∇x f (x̄, p) is the Fréchet derivative of f (·, p) at x̄. Therefore, if ψ(x̄) < 0 then

Δ =

{
∇x f (x̄, p)∗u for v̄ = 0

/0 otherwise
(11)

and, in the case where ψ(x̄) = 0,

Δ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇x f (x̄, p)∗u + y∗∇2ψ(x̄)∗u +R∇ψ(x̄) if y∗ > 0,〈u,∇ψ(x̄)〉= 0

/0 if y∗ > 0,〈u,∇ψ(x̄)〉 �= 0

∇x f (x̄, p)∗u +R+∇ψ(x̄) if y∗ = 0,〈u,∇ψ(x̄)〉> 0

∇x f (x̄, p)∗u +R∇ψ(x̄) if y∗ = 0,〈u,∇ψ(x̄)〉= 0

∇x f (x̄, p)∗u if y∗ = 0,〈u,∇ψ(x̄)〉< 0

/0 if y∗ < 0.

(12)

Theorem 2.2. Let (x̄, v̄) ∈ gphN(·;C). If ψ(x̄) < 0 then v̄ = 0, and for all u ∈ X∗∗
one has (11) where Δ is given by (10). If ψ(x̄) = 0 and ∇ψ(x̄) �= 0, then for all
u ∈ X∗∗ one has (12) where Δ is given by (10) and y∗ is defined uniquely via x̄ and
v̄ by (8).

3 Stability of the Solution Map

The main result of this chapter can be stated as follows.

Theorem 3.1. Assume that both X and X∗ are Asplund spaces. Let x̄ be a solution
of the parametric variational system with a smooth-boundary constraint set (2) at a
given parameter p = p̄ ∈ P, i.e., x̄ ∈ S(p̄), where C is defined by (1) with ψ being
C2-smooth. Suppose that f (·, p) is a C1-smooth function for each p ∈ P, the deriva-
tive mapping ∇x f : X ×P→ X∗ is continuous in the norm topology of X∗, and the
following conditions hold:

(a1) There is ᾱ > 0 such that 〈u,∇x f (x̄, p̄)∗u〉 ≥ ᾱ‖u‖2 for every u ∈ X∗∗.
(a2) There exists a neighborhood V0 of x̄ such that for any x ∈ V0∩ ∂C one has

∇ψ(x) �= 0 and 〈u,∇2ψ(x)∗u〉 ≥ 0 for all u ∈ X∗∗ satisfying 〈u,∇ψ(x)〉= 0.
(a3) There are neighborhoodsU of p̄ and V of x̄ such that for every (x, p)∈V×U

the map f (x, ·) is lower semicontinuous at p.
Then there exist a neighborhood U1 ⊂ U of p̄, an open convex neighborhood

V1 ⊂V of x̄ such that:
(i) S̃(p) := S(p)∩V1 is nonempty for every p ∈U1.
(ii) The multifunction S̃ is lower semicontinuous on U1.
(iii) S(·) is locally metrically regular in Robinson’s sense around (x̄, p̄,0), i.e.,

there exist neighborhoods U2 of p̄, V2 of x̄, and constants γ > 0, μ > 0 such that

dist(x,S(p))≤ γ dist(0,F(x, p))
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for every (x, p) ∈V2×U2 with dist(0,F(x, p)) < μ , where F(x, p) is defined by (7).
In addition, if
(a4) f (x, ·) is locally Lipschitz at p̄ uniformly with respect to x in a neighborhood

of x̄, i.e., there exist neighborhoods U3 of p̄, V3 of x̄, and a constant �̄ > 0 such that

‖ f (x, p′)− f (x, p)‖ ≤ �̄‖p′ − p‖ for all x ∈V3 and p, p′ ∈U3,

then the following property is valid:
(iv) S(·) is Lipschitz-like around (p̄, x̄), i.e., exist neighborhoods U4 of p̄, V4 of x̄,

and a constant � > 0 such that

S(p′)∩V4 ⊂ S(p)+ �‖p′ − p‖BX ∀p, p′ ∈U4.

Let X ,P be as above, Y a Banach space, F : X ×P ⇒ Y a multifunction. Let
(x̄, p̄) ∈ X×P be such that 0 ∈ F(x̄, p̄). The set-valued map G : P ⇒ X given by

G(p) := {x ∈ X : 0 ∈ F(x, p)} (13)

is called the implicit multifunction defined by the inclusion 0 ∈ F(x, p).
To obtain Theorem 3.1, we will rely on Theorem 2.2 and the implicit function

theorems from [9], which are grouped in the forthcoming statement.

Theorem 3.2. Let X ,Y be Asplund spaces, P a subset of a normed space, F : X ×
P ⇒ Y a multifunction, (x̄, p̄) ∈ X ×P a pair such that 0 ∈ F(x̄, p̄). Let Fp(·) :=
F(·, p). Suppose that there exists ρ > 0 such that for each p∈P the sets [gphFp(·)]∩
[Bδ (x̄)×Y ] and domFp(·)∩Bδ (x̄) are closed. Besides, suppose that there exist open
neighborhoods U of p̄, V of x̄, W of 0 ∈ Y such that

(A1) There is a constant c > 0 satisfying ‖y∗‖ ≤ c‖x∗‖ for all (x,y, p) ∈ V ×
W ×U, y ∈ Fp(x), y∗ ∈ Y ∗, x∗ ∈ D∗Fp(x,y)(y∗).

(A2) For any p ∈U and x ∈V, the multifunction Π(0,Fp(·)) defined by

Π(0,Fp(x)) := {v ∈ F(x, p) : ‖v‖= dist(0,F(x, p))} (x ∈ domFp(·))

has nonempty values and is lower semicompact on its effective domain around x.
(A3) For every (x, p) ∈ V ×U, the map F(x, ·) is lower semicontinuous at p

whenever p ∈ domF(x, ·).
Then the implicit multifunction (13) has the following properties:

(i) There exist a neighborhood U1 of p̄ and an open convex neighborhood V1 of
x̄ such that G̃(p) := G(p)∩V1 is nonempty for every p ∈U1.

(ii) The multifunction G̃ is lower semicontinuous on U1.
(iii) G is locally metrically regular in Robinson’s sense around (x̄, p̄,0) with the

constant γ := c, i.e., there exist neighborhoodsU2 of p̄, V2 of x̄, and a constant μ > 0
such that

dist(x,G(p))≤ γ dist(0,F(x, p))

for every (x, p) ∈V2×U2 with dist(0,F(x, p)) < μ .
In addition, if
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(A4) F(x, ·) is locally Lipschitz at p̄ uniformly with respect to x in a
neighborhood of x̄, i.e., there exist neighborhoods U3 of p̄, V3 of x̄, and a constant
�1 > 0 such that

F(x, p′)⊂ F(x, p)+ �1‖p′ − p‖BY ∀x ∈V3, ∀p, p′ ∈U3,

then
(iv) G is Lipschitz-like around (p̄, x̄) with the constant � := 2�1c, i.e., there exist

neighborhoods U4 of p̄, V4 of x̄ such that

G(p′)∩V4 ⊂ G(p)+ �‖p′ − p‖BX ∀p, p′ ∈U4.

Remark 3.3. In the formulation of the implicit function theorems in [9], there is an
requirement that F is nonempty-valued around (x̄, p̄), but the proofs remain valid
if one requires that domF(·, p)∩Bδ (x̄) is closed for every p ∈ P and applies the
Ekeland principle for vp(·) := dist(0,F(·, p)) on the set Bρ(x̄)∩(domF(·, p)) with a
sufficiently small ρ ∈ (0,δ ], where δ is prescribed in the formulation of the theorem.

Remark 3.4. Under the additional condition that F is lower semicontinuous at (x̄, p̄),
Theorem 3.2 of [9] asserts a property stronger than (iii) in the above Theorem 3.2.
Namely, in the notation of this chapter, that theorem infers that G is metrically reg-
ular near (x̄, p̄) with the constant γ := c, i.e., there exist neighborhoods U2 of p̄ and
V2 of x̄ such that

dist(x,G(p))≤ γ dist(0,F(x, p)) ∀(p,x) ∈U2×V2.

As observed in [21], for obtaining the local metric regularity (iii), it suffices to use
(A3) and some assumptions on the family of multifunctions F(·, p), p ∈ P.

Remark 3.5. In the implicit function theorems of [9], (A2) was formulated in a
stronger form: For any p∈U and x∈V , the multifunctionΠ(0,Fp(·)) is lower semi-
compact around x. The latter means that there exists a neighborhood Ux of x such
that for any u ∈Ux and any sequence uk → u, there is a sequence yk ∈Π(0,Fp(uk)),
k = 1,2, . . . , which contains a subsequence convergent in the norm topology of Y .
Note that the proofs of Theorems 3.1–3.3 in [9] are valid under our (A2). This is
because the proof of Theorem 6.1 in [14] (which was recalled in [9, Theorem 2.3])
works well under the assumption that the solution map in question is lower semi-
compact on its effective domain around the given point. The interested reader is
referred to [14, 21] for more details.

The proof of Theorem 3.1 requires another auxiliary result that is an easy conse-
quence of the following theorem.

Theorem 3.6. (see [12, Corollary 1.15 and Theorem 1.17]). Let f : X → Y be a
mapping between Banach spaces and Ω ⊂ Y be a subset with ȳ = f (x̄) ∈Ω . If f is
strictly differentiable at x̄ with surjective derivative, then

N
(
x̄; f−1(Ω)

)
=
(
∇ f (x̄)

)∗
N(ȳ;Ω).
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Lemma 3.7. If ψ(x̄) < 0, then N(x̄;C) = {0}. If ψ(x̄) = 0 and ∇ψ(x̄) �= 0, then

N(x̄;C) = R+∇ψ(x̄) := {λ∇ψ(x̄) : λ ≥ 0}. (14)

Proof. Setting Ω = (−∞,0], we see that C = ψ−1(Ω). If ψ(x̄) < 0, then N(x̄;C) =
{0} because x̄ ∈ intC. Suppose that ψ(x̄) = 0, i.e., x̄ ∈ ∂C. For ȳ := ψ(x̄), we have
N(ȳ;Ω) = R+. If ∇ψ(x̄) �= 0 then, according to Theorem 3.6,

N(x̄;C) = {∇ψ(x̄)∗y∗ : y∗ ∈R+}.

As

〈∇ψ(x̄)∗y∗,x〉= 〈y∗,∇ψ(x̄)x〉 = y∗(∇ψ(x̄)x)
= (y∗∇ψ(x̄))x

for every x ∈ X , we get

N(x̄;C) = {y∗∇ψ(x̄) : y∗ ∈ R+}= R+∇ψ(x̄),

as claimed in (14). ��

Proof of Theorem 3.1.
We set Y = X∗ and define F(x, p) by formula (7). Due to the assumptions of the

theorem, X and Y are Asplund spaces. It is clear that each claim of the theorem
follows from the corresponding one in the set of assertions (i)–(iv) of Theorem 3.6.
Thus, we only have to check the fulfillment of the conditions (A1)–(A4) and verify
the existence of δ > 0 such that, for every p ∈ P, the sets [gphFp(·)]∩ [Bδ (x̄)×Y ]
and domFp(·)∩Bδ (x̄) are closed. The latter is satisfied with any choice of δ > 0
because domFp(·) = C by Lemma 3.7.

If x̄ ∈ intC, then we choose δ > 0 as small as Bδ (x̄)⊂ intC. It is easy to see that

[gphFp(·)]∩ [Bδ (x̄)×Y ] = [gph f (·, p)]∩ [Bδ (x̄)×Y ],

and the set on the right-hand side is closed. If x̄ ∈ ∂C then ∇ψ(x̄) �= 0 by (a2). In
this case, we choose δ > 0 as small as ∇ψ(x) �= 0 for every x ∈ Bδ (x̄). For any

p ∈ P and sequences xk
Bδ (x̄)−−−→ x, x∗k → x∗ with x∗k ∈ f (xk, p)+N(xk;C) for all k ∈N,

we have (x,x∗) ∈ gphF(·, p), i.e., x∗ ∈ f (x, p) + N(x;C). Indeed, if there exists a
subsequence {xkj} of {xk} such that xkj ∈ intC for all j, then x∗k j

= f (xkj , p) for
all j. Hence, letting j→ ∞ yields

x∗ = f (x, p) ∈ f (x, p)+ N(x;C).

If there is a subsequence {xkj} of {xk} such that xkj ∈ ∂C for all j, then

x∗k j
= f (xkj , p)+λk j∇ψ(xkj ), (15)
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where, in agreement with Lemma 3.7, λk j ≥ 0 is uniquely defined by the last equal-
ity. Since ∇ψ(x) �= 0 by the choice of δ and the inclusion x ∈ Bδ (x̄), the sequence
λk j must be bounded; otherwise the estimates

‖x∗k j
‖= ‖ f (xkj , p)+λk j∇ψ(xkj )‖ ≥ λk j‖∇ψ(xkj )‖−‖ f (xkj , p)‖

would lead to a contradiction. Thus, we may suppose that λk j → λ . Passing (15) to
the limit as j→ ∞, we get

x∗ ∈ f (x, p)+λ∇ψ(x) ∈ f (x, p)+ N(x;C),

which shows that [gphFp(·)]∩ [Bδ (x̄)×Y ] is closed.
To see that (A1) is fulfilled, we invoke (a1) and the assumed continuity of ∇x f (·)

on X×P to find α ∈ (0, ᾱ) and neighborhoods Ũ of p̄ and Ṽ of x̄ such that

〈u,∇x f (x, p)∗u〉 ≥ α‖u‖2 ∀(x, p) ∈ Ṽ ×Ũ , ∀u ∈ X∗∗. (16)

There is no loss of generality in assuming that Ṽ ⊂ V0, where V0 is prescribed
by (a2). Put c = 1/α . Given any (x,y, p) ∈ Ṽ ×Y × Ũ , y ∈ Fp(x), u ∈ X∗∗, x∗ ∈
D∗Fp(x,y)(u), let us show that

‖u‖ ≤ c‖x∗‖. (17)

Since D∗Fp(x,y)(u) �= /0 we infer that x ∈ domFp = C. If x ∈ intC, then apply-
ing Theorem 2.2 for (x̄, v̄) := (x,y− f (x, p)), from (11) we derive v̄ = 0 and
x∗ = ∇x f (x, p)∗u. Then, due to (16),

α‖u‖2 ≤ 〈u,∇x f (x, p)∗u〉 ≤ ‖u‖‖x∗‖.

Hence (17) is valid. Suppose now that x ∈ ∂C, i.e., ψ(x) = 0. Using Theorem 2.2
once more for (x̄, v̄) := (x,y− f (x, p)), we obtain (12). As x∗ ∈ Δ , only four cases
can occur:

Case 1. One has x∗ ∈ ∇x f (x, p)∗u + y∗∇2ψ(x)∗u + R∇ψ(x) with y∗ > 0 and
〈u,∇ψ(x)〉= 0.

Case 2. One has x∗ ∈ ∇x f (x, p)∗u +R+∇ψ(x) with 〈u,∇ψ(x)〉 > 0.
Case 3. One has x∗ ∈ ∇x f (x, p)∗u +R∇ψ(x) with 〈u,∇ψ(x)〉= 0.
Case 4. One has x∗ = ∇x f (x, p)∗u with 〈u,∇ψ(x)〉< 0.
In Case 1, we find an β ∈ R such that

x∗ = ∇x f (x, p)∗u + y∗∇2ψ(x)∗u +β∇ψ(x).

Then, taking account of (16) and (a2), we get

‖u‖‖x∗‖ ≥ 〈u,x∗〉 = 〈u,∇x f (x, p)∗u + y∗∇2ψ(x)∗u +β∇ψ(x)〉
= 〈u,∇x f (x, p)∗u〉+ y∗〈u,∇2ψ(x)∗u〉
≥ α‖u‖2,
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establishing (17). Cases 2–4 can be treated in the same manner. We have seen that
assumption (A1) of Theorem 3.2 is satisfied with c = 1/α , V = Ṽ , W = Y , and
U = Ũ .

We now check (A2) with V , W , and U being selected as above. Without loss of
generality, we may assume that V ⊂ Bδ (x̄), where δ > 0 was chosen at the begin-
ning of the proof. First, let us show that domΠ(0,Fp(·))∩Bδ (x̄) = C∩Bδ (x̄) for
every p ∈U . Of course, domΠ(0,Fp(·))∩Bδ (x̄)⊂C∩Bδ (x̄). To obtain the reverse
inclusion, fix any x ∈C∩Bδ (x̄). If x ∈ intC, then Π(0,Fp(x)) = { f (x, p)} because
N(x;C) = {0}. If x ∈ ∂C and∇ψ(x) �= 0, thenΠ(0,Fp(x)) �= /0. Indeed, observe that
dist(0,F(x, p))≤ ‖ f (x, p)‖ and let

x∗k = f (x, p)+λk∇ψ(x) ∈ F(x, p) = f (x, p)+R+∇ψ(x) (k ∈ N, λk ≥ 0)

be such that limk→∞ ‖x∗k‖= dist(0,F(x, p)). Since the sequence {x∗k} is bounded and
∇ψ(x) �= 0, we may assume that λk → λ ∈ R+. Then

x∗ := lim
k→∞

x∗k = f (x, p)+λ∇ψ(x) ∈ F(x, p).

From what which has already been said it follows that x∗ ∈ Π(0,Fp(x)). We have
thus shown that domΠ(0,Fp(·))∩Bδ (x̄)=C∩Bδ (x̄). Next, to check the lower semi-

compactness ofΠ(0,Fp(·)) on C around any x∈V ∩C, we fix any sequence xk
C−→ x.

For each k ∈ N, select a vector

x∗k = f (xk, p)+λk∇ψ(xk) ∈Π(0,Fp(xk)) (18)

with λk ≥ 0. Since ‖x∗k‖ ≤ ‖ f (xk, p)‖ and limk→∞ ‖ f (xkj , p)‖ = ‖ f (x, p)‖, {‖x∗k‖}
is a bounded sequence. Hence the estimates

‖x∗k‖= ‖ f (xk, p)+λk∇ψ(xk)‖ ≥ λk‖∇ψ(xk)‖−‖ f (xk, p)‖ (k = 1,2, . . .)

and the property limk→∞∇ψ(xk) = ∇ψ(x) �= 0 guarantee that the sequence {λk} is
bounded. Consequently, the latter has a subsequence λk j converging to some λ ≥ 0.
From the equality in (18) it follows that

x∗k j
→ x∗ := f (x, p)+λ∇ψ(x) ∈ Fp(x)

as j→ ∞. If x∗ /∈Π(0,Fp(x)), then we would find λ̃ ≥ 0 such that

x̃∗ := f (x, p)+ λ̃∇ψ(x) ∈ Fp(x)

satisfies the inequality
‖x̃∗‖< ‖x∗‖. (19)

Putting
x̃∗k j

= f (xkj , p)+ λ̃∇ψ(xkj ),
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we note that x̃∗k j
∈ Fp(xkj ) and x̃∗k j

→ x̃∗. By the choice of x∗k j
, we have ‖x∗k j

‖≤ ‖x̃∗k j
‖.

Passing to the limit as j→ ∞, from the last inequality we get ‖x∗‖ ≤ ‖x̃∗‖, contrary
to (19). We have obtained the inclusion x∗ ∈ Π(0,Fp(x)), which justifies the lower
semicompactness of Π(0,Fp(·)) on C around x and completes the proof, because
(a3) certainly implies (A3) and (a4) yields (A4). ��

4 An Analysis of Theorem 3.1

The assumption “X and X∗ are Asplund spaces” in Theorem 3.1 is satisfied if X is
a reflexive Banach space. Assumptions of this kind had appeared in the literature;
see, e.g., [12, Theorems 4.54 and 4.65(ii)]. In general, X∗ is not necessarily Asplund,
when X is an Asplund space. Indeed, X = c0 is an Asplund space because X∗ = l1
is a separable Banach space (see [15, Theorem 2.12]). However, X∗ = l1 is not an
Asplund space [15, p. 13]. Thus, the assumption “X and X∗ are Asplund spaces”
specifies a class of Asplund spaces to which Theorem 3.1 can be applied to.

The next example shows that the “positive definiteness of ∇x f (x̄, p̄)” in (a1) can-
not be replaced by a weaker assumption on “positive semidefiniteness of∇x f (x̄, p̄)”.

Example 4.1. Let X = R, P = R+, ψ(x) = x2− 1, f (x, p) = −px, x̄ = −1, p̄ = 0.
It is easy to verify that, except for (a1), all the other assumptions of Theorem 3.1
are satisfied. Note that we still have 〈u,∇x f (x̄, p̄)∗u〉 ≥ 0 for every u ∈ X∗∗. For any
p > 0, it holds S(p)∩ [−1,0) = /0. Hence all the properties (i)–(iv) in Theorem 3.1
are not valid.

Interestingly, if the assumption on “positive semidefiniteness of ∇2ψ(x) on the
tangent space to ∂C at any x ∈ ∂C sufficiently near to x̄” in (a2) is violated then, in
general, the assertions (i)–(iv) are no longer valid. (As far as we understand, the just
mentioned assumption does not imply that C is locally convex near x̄.)

Example 4.2. Let X = R
2, P = (−1,+∞), ψ(x) = x3

1 − x2 and f (x, p) = ((p +
1)x1,x2− p) for any x = (x1,x2) ∈ X and p ∈ P. Let x̄ = 0 and p̄ = 0. It is easy
to verify that, except for (a2), all the other assumptions of Theorem 3.1 are satisfied.
Note that we still have ∇ψ(x̄) �= 0 and 〈u,∇2ψ(x̄)∗u〉 ≥ 0 for any u∈ X∗∗ satisfying
〈u,∇ψ(x̄)〉 = 0. For any p ≥ 0, S(p) = {(0, p)} is a singleton. For p ∈ (−1,0), the
solution set

S(p) =
{
(x1,x2) : x1 = t1/3, x2 = t, p≤ t ≤ 0

}
is a curve. Note that the properties (i) and (ii) in Theorem 3.1 are valid, but (iv)
is not. The reason is that the condition “∇ψ(x) �= 0 and 〈u,∇2ψ(x)∗u〉 ≥ 0 for all
u ∈ X∗∗ satisfying 〈u,∇ψ(x)〉 = 0” in (a2) is violated at any x = (x1,x3

1) ∈ ∂C with
x1 < 0.

It is not difficult to show by examples that (a3) cannot be omitted if one wants to
have (iii), while (a4) is essential for the validity of (iv).



Parametric Variational System with a Smooth-Boundary Constraint Set 219

The problem of minimizing a linear-quadratic function under a convex quadratic
constraint is known as the trust-region subproblem (see [11] and the references
therein). Several stability properties of the problem have been obtained in [10].
Theorem 3.1 asserts some facts about the stability of strongly convex linear-
quadratic minimization under a C2-smooth convex constraint. The latter corresponds
to the easiest case of the trust-region subproblem where the objective function is
strongly convex.

Example 4.3. Let ϕ(x) = 1
2 〈x,Ax〉+ 〈b,x〉, where x ∈ R

n, A ∈ R
n×n is a given

symmetric matrix, b ∈ R
n a given vector. Let C = {x ∈ R

n : ψ(x) ≤ 0}, where
ψ : R

n →R is a C2-smooth convex function. It is well known that if x ∈C is a local
minimizer of ϕ on C then the variational system (2), where p = (A,b) ∈R

n×n×R
n

and f (x, p) = Ax + b, is satisfied. If A is positive semidefinite, then the converse is
valid. In the case under consideration, assumptions (a2)–(a4) of Theorem 3.1 auto-
matically hold. Under the assumption (a1), which means that A is positive matrix,
the solution set of our minimization problem is a singleton, say, S(p) = {x(p)}.
Moreover, according to Theorem 3.1, x(·) is a locally Lipschitz function. This result
is not new. For instance, it is immediate from [20, Theorem 2.1].

The next two numerical examples are designed to how Theorem 3.1 can be ap-
plied to concrete problems.

Example 4.4. Consider the system (2) with X = P = R, ψ(x) = x2− x, f (x, p) =
αx + p, and α ∈ R is a constant. Note that C = [0,1] ⊂ R. We study the local be-
havior of the solution map S(·) of (2) around the following points in its graph:

(a) (p̄, x̄) = (−αβ ,β ) with β ∈ (0,1).
(b) (p̄, x̄) = (β ,0) with β ≥ 0.
First, let (p̄, x̄) = (−αβ ,β ) with β ∈ (0,1). Since ∇x f (x̄, p̄) = [α], assumption

(a1) is satisfied if and only if α > 0. Other assumptions of Theorem 3.1 are ful-
filled. Hence, for α > 0, the map S(·) is Lipschitz-like around (p̄, x̄) and it is locally
metrically regular in Robinson’s sense around the point (x̄, p̄,0).

Next, suppose that (p̄, x̄) = (β ,0) with β > 0. Condition (a1) of Theorem 3.1 is
satisfied if and only if α > 0. As ψ(x̄) = 0, we have to verify condition (a2). Note
that ∇ψ(x̄) �= 0. Since {u∈ X∗∗ : 〈u,∇ψ(x̄)〉= 0}= {0}, (a2) is satisfied. Thus, by
Theorem 3.1, the map S(·) is Lipschitz-like around (p̄, x̄) and it is locally metrically
regular in Robinson’s sense around the point (x̄, p̄,0) for any α > 0.

Example 4.5. Consider the system (2) with X = P = R
2, ψ(x) = x2

2− x1, f (x, p) =[
x1− x2 + p1

2x2 + p2

]
for all x = (x1,x2) ∈ X and p = (p1, p2) ∈ P. Note that

C =
{

x = (x1,x2) : x1 ≥ x2
2

}
, ∂C =

{
x = (x1,x2) : x1 = x2

2

}
.

Let x̄ = (0,0), p̄ = (1,0). Since ∇x f (x̄, p̄) =
[

1 −1
0 2

]
, assumption (a1) of

Theorem 3.1 is fulfilled. As ψ(x̄) = 0, we have to check condition (a2). Since
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∇2ψ(x) =
[

0 0
0 2

]
is positive semidefinite for all x, (a2) is satisfied with V0 := R

2. By

Theorem 3.1, the map S(·) is Lipschitz-like around (p̄, x̄) and it is locally metrically
regular in Robinson’s sense around the point (x̄, p̄,0).

Acknowledgements This work was supported by the National Sun Yat-Sen University,
Kaohsiung, Taiwan and the National Foundation for Science & Technology Development,
Vietnam. The authors are indebted to Dr. N.Q. Huy, Mr. N.H. Chieu and Mr. T.D. Chuong
for an useful discussion on Asplund spaces. We thank the referee for helpful comments.

References

1. F. J. Aragón Artacho and B. S. Mordukhovich, Metric regularity and Lipschitzian stability of
parametric variational systems, Nonlinear Anal. 72 (2010), 1149–1170.

2. J.-P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res.
9 (1984), 87–111.

3. N. H. Chieu, J.-C. Yao and N. D. Yen, Relationships between the Robinson robust stabil-
ity and the Aubin continuity property of implicit multifunctions, Nonlinear Anal. 72 (2010),
3594–3601.

4. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
5. A. L. Dontchev and R. T. Rockafellar, Characterizations of strong regularity for variational

inequalities over polyhedral convex sets, SIAM J. Optim. 6 (1996), 1087–1105.
6. R. Henrion, B. S. Mordukhovich and N. M. Nam, Second-order analysis of polyhedral systems

in finite and infinite dimensions with applications to robust stability of variational inequalities,
SIAM J. Optim. 20 (2010), 2199–2227.

7. R. Henrion, J. Outrata and T. Surowiec, On the co-derivative of normal cone mappings to
inequality systems, Nonlinear Anal. 71 (2009), 1213–1226.

8. R. Henrion and W. Römisch, On M-stationary points for a stochastic equilibrium problem
under equilibrium constraints in electricity spot market modeling, Appl. Math. 52 (2007),
473–494.

9. G. M. Lee, N. N. Tam and N. D. Yen, Normal coderivative for multifunctions and implicit
function theorems, J. Math. Anal. Appl. 338 (2008), 11–22.

10. G. M. Lee, N. N. Tam and N. D. Yen, Stability of linear-quadratic minimization over Eu-
clidean balls, Institute of Mathematics, Vietnamese Academy of Science and Technology,
E-Preprint No. 2007/10/02. (Submitted).

11. S. Lucidi, L. Palagi and M. Roma, On some properties of quadratic programs with a convex
quadratic constraint, SIAM J. Optim. 8 (1998), 105–122.

12. B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Vol. I: Basic
Theory, Vol. II: Applications, Springer, Berlin, 2006.

13. B. S. Mordukhovich, J. V. Outrata, On second-order subdifferentials and their applications,
SIAM J. Optim. 12 (2001), 139–169.

14. B. S. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in Asplund spaces, Trans.
Am. Math. Soc. 348 (1996), 1235–1280.

15. R. R. Phelps, Convex Functions, Monotone Operators and Differentiablity, 2nd Edition,
Spinger, Berlin, 1993.

16. S. M. Robinson, Stability theory for systems of inequalities, II. Differentiable nonlinear sys-
tems, SIAM J. Numer. Anal. 13 (1976), 497–513.

17. S. M. Robinson, Generalized equations and their solutions, Part I: Basic theory, Math.
Program. Study 10 (1979), 128–141.

18. J.-C. Yao and N. D. Yen, Coderivative calculation related to a parametric affine variational
inequality. Part 1: Basic calculations. Acta Math. Vietnam. 34 (2009), 155–170.



Parametric Variational System with a Smooth-Boundary Constraint Set 221

19. J.-C. Yao and N. D. Yen, Coderivative calculation related to a parametric affine variational
inequality. Part 2: Applications. Pacific J. Optim. 3 (2009), 493–506.
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Exact Penalty in Constrained Optimization
and the Mordukhovich Basic Subdifferential

Alexander J. Zaslavski

Abstract In this chapter, we use the penalty approach to study two constrained
minimization problems in infinite-dimensional Asplund spaces. A penalty function
is said to have the exact penalty property if there is a penalty coefficient for which
a solution of an unconstrained penalized problem is a solution of the corresponding
constrained problem. We use the notion of the Mordukhovich basic subdifferential
and show that the exact penalty property is stable under perturbations of objective
functions.

1 Introduction

Penalty methods are an important and useful tool in constrained optimization. See,
for example, [3–7, 11, 14, 17, 18, 20, 21] and the references mentioned there. In this
chapter, we use the penalty approach to study two constrained nonconvex mini-
mization problems with Lipschitzian (on bounded sets) objective functions. The first
problem is an equality-constrained problem in an Asplund space with a locally Lip-
schitzian constraint function and the second problem is an inequality-constrained
problem in an Asplund space with a locally Lipschitzian constraint function. Note
that a Banach space is an Asplund space if and only if every separable subspace has
a separable dual [13].

A penalty function is said to have the exact penalty property if there is a penalty
coefficient for which a solution of an unconstrained penalized problem is a solution
of the corresponding constrained problem. The notion of exact penalization was in-
troduced by Eremin [9] and Zangwill [18] for use in the development of algorithms
for nonlinear constrained optimization. For a detailed historical review of the litera-
ture on exact penalization see [3, 5, 7].
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In [20], it was established the existence of a penalty coefficient for which
approximate solutions of the unconstrained penalized problem are close enough to
approximate solutions of the corresponding constrained problem. This is a novel
approach in the penalty type methods.

Consider a minimization problem h(z)→min, z ∈ X where h : X → R is a lower
semicontinuous bounded from below function on a Banach space X . If the space X
is infinite-dimensional or if the function h does not satisfy a coercivity assumption,
then the existence of solutions of the problem is not guaranteed and in this situation
we consider δ -approximate solutions. Namely, x∈ X is a δ -approximate solution of
the problem h(z)→min, z ∈ X , where δ > 0, if h(x)≤ inf{h(z) : z ∈ X}+ δ .

In [20] and [21], we consider minimization problems in a general Banach space
and in a general Asplund space, respectively. Therefore, we are interested in ap-
proximate solutions of the unconstrained penalized problem and in approximate so-
lutions of the corresponding constrained problem. Under certain mild assumptions,
we show the existence of a constant λ̄ > 0 such that the following property holds:

For each ε > 0, there exists δ (ε) > 0 which depends only on ε such that if x is
a δ (ε)-approximate solution of the unconstrained penalized problem whose penalty
coefficient is larger than λ̄ , then there exists an ε-approximate solution y of the
corresponding constrained problem such that ||y− x|| ≤ ε .

This property, which will be called here as the generalized exact penalty prop-
erty, implies that any exact solution of the unconstrained penalized problem whose
penalty coefficient is larger than λ̄ is an exact solution of the corresponding con-
strained problem. Indeed, let x be a solution of the unconstrained penalized problem
whose penalty coefficient is larger than λ̄ . Then for any ε > 0, the point x is also
a δ (ε)-approximate solution of the same unconstrained penalized problem and in
view of the property above there is an ε-approximate solution yε of the correspond-
ing constrained problem such that ||x− yε || ≤ ε . Since ε is an arbitrary positive
number we can easily deduce that x is an exact solution of the corresponding con-
strained problem. Therefore, our results also include the classical penalty result as a
special case.

In [20], the existence of the constant λ̄ for the equality-constrained problem was
established under the assumption that the set of admissible points does not contain
critical points of the constraint function. The notion of critical points used in [20] is
based on Clarke’s generalized gradients [20]. It should be mentioned that there ex-
ists also the construction of Mordukhovich basic subdifferential introduced in [12]
which is intensively used in the literature. See, for example, [13, 14] and the refer-
ences mentioned there. In [21], we generalize the results of [20] for minimization
problems on Asplund spaces using the (less restrictive) notion of critical points via
Mordukhovich basic subdifferential. In this chapter, we use the Mordukhovich ba-
sic subdifferential and show the stability of the generalized exact penalty property
under perturbations of objective functions. Note that the stability of the general-
ized exact penalty property is crucial in practice. One reason is that in practice we
deal with a problem that is an approximation of the problem we wish to consider.
Another reason is that the computations introduce numerical errors.
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2 The Main Result

Let X be an Asplund space and X∗ its dual equipped with the weak* topology w∗.
If F : X → 2X∗ is a set-valued mapping between the Banach space X and its dual

X∗, then the notation

limsup
x→x̄

F(x) :=
{

x∗ ∈ X∗ : there exist sequences xk → x̄ and x∗k
w∗→ x∗

as k→ ∞ with x∗k ∈ F(xk) for all natural numbers k} (1)

signifies the sequential Painleve–Kuratowski upper limit with respect to the norm
topology of X and the weak* topology of X∗.

For each x∗ ∈ X∗ and each r > 0, set

B∗(x∗,r) = {l ∈ X∗ : ||l− x∗|| ≤ r}

and for each x ∈ X and each r > 0 set

B(x,r) = {y ∈ X : ||y− x|| ≤ r}.

In this chapter, to obtain a sufficient condition for the existence of an exact
penalty we use the notion of Mordukhovich basic subdifferential introduced in
[12] (see also [13, p. 82]). To meet this goal, we first present the notion of an ε-
subdifferential (see [13, p. 87]).

Let φ : X → R, ε > 0 and let x̄ ∈ X . Then the set

∂̂εφ(x̄) := {x∗ ∈ X∗ : liminf
x→x̄

[(φ(x)−φ(x̄)−< x∗,x− x̄ >)||x− x̄||−1]≥−ε} (2)

is the analytic ε-subdifferential of φ at x̄.
By Theorem 1.8.9 of [13, p. 92], the set

∂φ(x̄) = limsup
x
φ→x̄, ε→0+

∂̂εφ(x) (3)

is Mordukhovich basic (limiting) subdifferential of the function φ at the point x̄.
It should be mentioned that in view of Theorem 2.34 of [13, p. 218],

∂φ(x̄) = limsup
x
φ→x̄

∂̂0φ(x).

Here we use the notation that x
φ→ x̄ if and only if x→ x̄ with φ(x)→ φ(x̄), where

φ(x)→ φ(x̄) is superfluous if φ is continuous at x̄.
Let f : X → R be a locally Lipschitzian function. For each x ∈ X , set

Ξ f (x) = inf{||l|| : l ∈ ∂ f (x)}. (4)
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(We suppose that infimum of an empty set is ∞.) It should be mentioned that an
analogous functional, defined using the Clarke subdifferentials, was introduced in
[19] and then used in [20].

A point x ∈ X is a critical point of f if 0 ∈ ∂ f (x).
A real number c ∈ R is called a critical value of f if there exists a critical point x

of f such that f (x) = c.
For each function h : X → R and each nonempty set A⊂ X , set

inf(h) = inf{h(z) : z ∈ X}, inf(h;A) = inf{h(z) : z ∈ A}.

For each x ∈ X and each A⊂ X , put

d(x,A) = inf{||x− y|| : y ∈ A}.

Denote by M the set of all continuous functions f : X → R. The set M is
equipped with the uniformity [10] determined by the following base:

U (M,q,r) =
{
( f ,g) ∈M ×M : | f (x)−g(x)| ≤ r for all x ∈ B(0,M)

}
∩
{

( f ,g) ∈M ×M : |( f −g)(x)− ( f −g)(y)|

≤ q||x− y|| for all x,y ∈ B(0,M)
}

, (5)

where M,q,r > 0. It is not difficult to see that this uniformity is metrizable and
complete.

Let φ : [0,∞)→ [0,∞) be an increasing function such that

lim
t→∞

φ(t) = ∞ (6)

and let ā > 0. Denote by Mφ ,ā the set of all functions f ∈M such that

f (x) ≥ φ(||x||)− ā for all x ∈ X . (7)

Let f0 : X → R be a function that is Lipschtzian on all bounded subsets of X and
such that

f0 ∈Mφ ,ā. (8)

Let g : X → R be a locally Lipschitzian function.
We say that the function g satisfies the Palais–Smale (P–S) condition on a set Z ⊂

X if for each norm-bounded sequence {zi}∞i=1⊂ Z such that the sequence {g(zi)}∞i=1
is bounded and liminfi→∞Ξg(zi) = 0 there exists a norm convergent subsequence of
{zi}∞i=1 [1, 2, 15, 19].

Let c ∈ R be such that g−1(c) �= /0.
We consider the following constrained minimization problems

f (x)→min subject to x ∈ g−1(c) (Pe)
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and
f (x)→min subject to x ∈ g−1((−∞,c]), (Pi)

where f ∈Mφ ,ā belongs to a neighborhood of f0 in M .
We associate with these two problems the corresponding families of uncon-

strained minimization problems

f (x)+λ |g(x)− c| →min, x ∈ X (Pλ e)

and
f (x)+λ max{g(x)− c,0}→min, x ∈ X , (Pλ i)

where λ > 0 and establish the existence of the exact penalty.
Fix

θ ∈ g−1(c). (9)

By (6), there exists a positive number M0 such that

M0 > ||θ ||+ 2 and φ(M0−2) > f0(θ )+ ā+ 2. (10)

For each f ∈Mφ ,ā and each λ > 0, set

ψ(e)
f ,λ (z) = f (z)+λ |g(z)− c|, z ∈ X , (11)

ψ(i)
f ,λ (z) = f (z)+λ max{g(z)− c,0}, z ∈ X . (12)

The following theorem is our main result.

Theorem 2.1. Assertion 1. Assume that there exists γ∗ > 0 such that the functions g
and −g satisfy the (P–S) condition on the set g−1([c− γ∗,c+ γ∗]) and the following
property holds:

If x ∈ g−1(c) is a critical point of the function g or a critical point of the function
−g, then f0(x) > inf( f0;g−1(c)).

Let A = g−1(c), ψ f ,λ = ψ(e)
f ,λ for each f ∈Mφ ,ā and each λ > 0 and let q > 0.

Then there exist positive numbers λ̄ , r such that the following property holds:
(Q) for each ε > 0 there exists δ ∈ (0,ε) such that if f ∈Mφ ,ā satisfies ( f , f0) ∈

U (M0,q,r), λ > λ̄ and if x∈ X satisfiesψ f ,λ (x)≤ inf(ψ f ,λ )+δ , then there is y∈A
such that ||y− x|| ≤ ε and f (y)≤ inf( f ;A)+ δ .

Assertion 2. Assume that there exists γ∗ > 0 such that the function g satisfies the
(P–S) condition on the set g−1([c,c + γ∗]) and the following property holds:

If x ∈ g−1(c) is a critical point of the function g, then

f0(x) > inf
(

f0;g−1(−∞,c]
)
.

Let A = g−1((−∞,c]), ψ f ,λ = ψ(i)
f ,λ for each f ∈Mφ ,ā and each λ > 0 and let

q > 0. Then there exist positive numbers λ̄ , r such that property (Q) holds.
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By Theorem 2.1, the existence of an exact penalty depends on a triplet ( f ,g,c).
For given functions f ,g, it is interesting to obtain an information about the set of all
real numbers c for which an exact penalty exists. If the space X is finite-dimensional
and the functions f ,g are Frechet differentiable, then by Theorem 2.1 and the clas-
sical Sard theorem [16] this set has a complement with the Lebesgue measure zero.

3 Proof of Theorem 2.1

We prove Assertions 1 and 2 simultaneously. Set

A = g−1(c) and ψ f ,λ = ψ(e)
f ,λ ∀ f ∈Mφ ,ā ∀λ > 0 (13)

in the case of Assertion 1 and

A = g−1((−∞,c]) and ψ f ,λ = ψ(i)
f ,λ ∀ f ∈Mφ ,ā ∀λ > 0 (14)

in the case of Assertion 2. Clearly, the function ψ f ,λ is continuous for all f ∈Mφ ,ā

and all λ > 0.
We show that there exist λ̄ > 0 and r > 0 such that the following property holds:
(P1) For each ε ∈ (0,1) there exists δ ∈ (0,ε) such that for each f ∈Mφ ,ā satis-

fying ( f , f0) ∈U (M0,q,r), each λ > λ̄ and each x ∈ X which satisfies

ψ f ,λ (x)≤ inf(ψ f ,λ )+ δ (15)

the set
{z ∈ A : ||x− z|| ≤ ε and ψ f ,λ (z) ≤ ψ f ,λ (x)} (16)

is nonempty.
It is not difficult to see that the existence of λ̄ ,r > 0 for which the property (P1)

holds implies the validity of Theorem 2.1.
Let us assume that there are no λ̄ ,r > 0 for which (P1) holds. Then for each

natural number k there exist

εk ∈ (0,1), λk > k, fk ∈Mφ ,ā, xk ∈ X (17)

such that

( fk, f0) ∈U (M0,q,k−1), (18)

ψ fk,λk
(xk)≤ inf(ψ fk,λk

)+ 2−1εkk−1 (19)

and

{z ∈ A : ||z− xk|| ≤ εk and ψ fk,λk
(z)≤ ψ fk,λk

(xk)}= /0. (20)

Let k be a natural number. It follows from (19) and Ekeland’s variational principle
[8] that there exists yk ∈ X such that
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ψ fk,λk
(yk)≤ ψ fk,λk

(xk), (21)

||yk− xk|| ≤ εk/2, (22)

ψ fk,λk
(yk)≤ ψ fk,λk

(z)+ k−1||z− yk|| for all z ∈ X . (23)

By (20), (21), and (22),

yk �∈ A for all natural numbers k. (24)

In the case of Assertion 2, we obtain that

g(yk) > c for all natural numbers k. (25)

In the case of Assertion 1, we obtain that for each natural number k either g(yk) > c
or g(yk) < c.

In the case of Assertion 1 by extracting a subsequence and re-indexing we may
assume that either g(yk) > c for all natural numbers k or g(yk) < c for all natural
numbers k. Replacing g with−g and c with−c if necessary we may assume without
loss of generality that (25) holds in the case of Assertion 1 too. Now (25) is valid in
both cases.

In view of (5), (7), (9)–(14), (17)–(19), and (21) for all natural numbers k,

φ(||yk||)− ā ≤ fk(yk)≤ ψ fk,λk
(yk)≤ ψ fk,λk

(xk)≤ inf(ψ fk,λk
)+ 2−1εkk−1

≤ ψ fk,λk
(θ )+ 2−1 = fk(θ )+ 2−1

= 2−1 + f0(θ )+ fk(θ )− f0(θ )≤ f0(θ )+ k−1 + 2−1. (26)

Equations (10) and (26) imply that

||yk|| ≤M0−2 for all natural numbers k. (27)

It follows from (5) and (18) that the restriction of fk to B(0,M0) is Lipschitz for all
natural number k.

Let k be a natural number. Then by (25) and (27) there is an open neighborhood
Vk of yk in X such that

Vk ⊂ B(0,M0−1), g(z) > c for all z ∈Vk. (28)

By (11)–(14), (23), and (28), for all z ∈Vk,

fk(yk)+λk(g(yk)− c) = ψ fk,λk
(yk)≤ ψ fk,λk

(z)+ k−1||z− yk||
= fk(z)+λk(g(z)− c)+ k−1||z− yk||. (29)

Put
φk(z) = fk(z)+λkg(z)+ k−1||z− yk||, z ∈Vk. (30)

In view of (28) and (30), the function φk : Vk → R is locally Lipschitz.
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By (2), (3), (29), and (30),
0 ∈ ∂ (φk)(yk). (31)

It follows from (28), (30), (31), and Theorem 3.36 of [13] that

0 ∈ ∂ fk(yk)+λk∂g(yk)+ k−1∂ (|| ·−yk||)(yk). (32)

By (5), (18), (28), Theorem 3.36 of [13], and Corollary 1.8.1 of [13],

∂ fk(yk)⊂ ∂ f0(yk)+ ∂ ( fk− f0)(yk)⊂ ∂ f0(yk)+ qB∗(0,1).

Together with (32) and Corollary 1.8.1 of [13] this implies that

0 ∈ ∂g(yk)+λ−1
k ∂ f0(yk)+λ−1

k qB∗(0,1)+λ−1
k k−1∂ (|| ·−yk||)(yk) (33)

⊂ ∂g(yk)+λ−1
k ∂ f0(yk)+λ−1

k qB∗(0,1)+λ−1
k k−1B∗(0,1).

Since the function f0 is Lipschitzian on bounded subsets of X it follows from (27)
and Corollary 1.8.1 of [13] that there exists L > 0 such that

∂ f0(yk)⊂ B∗(0,L) for all natural numbers k. (34)

By (33) and (34), for all natural numbers k,

0 ∈ ∂g(yk)+λ−1
k B∗(0,L)+λ−1

k qB∗(0,1)+λ−1
k k−1B∗(0,1)

and in view of (4) and (17),
lim
k→∞

Ξg(yk) = 0. (35)

By (7), (11)–(14), (17), (25), and (26) for all integers k≥ 1,

λk(g(yk)− c)− ā≤ φ(||yk||)+λk(g(yk)− c)− ā≤ fk(yk)+λk(g(yk)− c)

= ψ fk,λk
(yk)≤ f0(θ )+ k−1 + 2−1

and
0 < g(yk)− c≤ λ−1

k

[
f0(θ )+ ā+ k−1 + 2−1]→ 0 as k→ ∞. (36)

Hence there is a natural number k0 such that for all integers k ≥ k0

g(yk) ∈ (c,c + γ∗]. (37)

By (27), (35), (37), and the (P–S) condition, there exists a strictly increasing se-
quence of natural numbers {k j}∞j=1 such that {ykj}∞j=1 converges in the norm topol-
ogy to ȳ ∈ X . In view of (36),

g(ȳ) = c. (38)

By (5), (7)–(14), (18), (19), (21), and (27)

f0(ȳ) = lim
j→∞

f0(ykj ) = lim
j→∞

fk j (ykj )≤ limsup
j→∞

ψ fk j
,λk j

(ykj )
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≤ limsup
j→∞

inf(ψ fk j
,λk j

)≤ limsup
j→∞

inf(ψ fk j
,λk j

;A)

= limsup
j→∞

inf( fk j ;A)≤ limsup
j→∞

inf( fk j ;A∩B(0,M0))

= inf( f0;A∩B(0,M0)) = inf( f0;A).

Together with (13), (14), and (38), this implies that

f0(ȳ) = inf( f0;A). (39)

Since the function f0 is Lipschitz on bounded subsets of X there exists L0 ≥ 1 such
that

| f0(z1)− f0(z2)| ≤ L0||z1− z2|| for all z1,z2 ∈ B(0,M0). (40)

Let k be a natural number. By (5), (17), (18), (27)–(29), and (40) for all z∈Vk \{yk},

(g(z)−g(yk))||z− yk||−1 ≥ −||z− yk||−1| fk(yk)− fk(z)|λ−1
k − k−1λ−1

k

≥ −λ−1
k ||z− yk||−1(| f0(z)− f0(yk)|+ |( fk− f0)(z)

− ( fk− f0)(yk)|)−λ−1
k k−1

≥ −λ−1
k ||z− yk||−1(L0||z− yk||+ q||z− yk||)−λ−1

k k−1

≥ −k−1L0− k−1q− k−1 ≥−k−1(L0 + q + 1).

By the relation above and the definition (2),

0 ∈ ∂̂γk gk(yk)

with
γk = k−1(1 + L0 + q).

Together with (3) and the equality ȳ = lim j→∞ ykj in the norm topology, this implies
that 0 ∈ ∂g(ȳ). This contradicts to the relations (38) and (39). The contradiction we
have reached proves the existence of λ̄ > 0,r > 0 for which the property (P1) holds.

This completes the proof of Theorem 2.1.
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