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Abstract In the mammalian brain, gain modulation is a ubiquitous mechanism for
integrating information from various sources. When a parameter modulates the gain
of a neuron, the cell’s overall response amplitude changes, but the relative effec-
tiveness with which different stimuli are able to excite the cell does not. Thus,
modulating the gain of a neuron is akin to turning up or down its “loudness”. A well-
known example is that of visually sensitive neurons in parietal cortex, which are
gain-modulated by proprioceptive signals such as eye and head position. Theoretical
work has shown that, in a network, even relatively weak modulation by a parameter
P has an effect that is functionally equivalent to turning on and off different subsets
of neurons as a function of P . Equipped with this capacity to switch, a neural circuit
can change its functional connectivity very quickly. Gain modulation thus allows an
organism to respond in multiple ways to a given stimulus, so it serves as a basis
for flexible, nonreflexive behavior. Here we discuss a variety of tasks, and their cor-
responding neural circuits, in which such flexibility is paramount and where gain
modulation could play a key role.

The Problem of Behavioral Flexibility

The appropriate response to a stimulus depends heavily on the context in which
the stimulus appears. For example, when James Brown yells “Help me!” in the
middle of a song, it calls for a different response than when someone yells the same
thing from inside a burning building. Normally, the two situations are not confused:
concert goers don’t rush onstage to try to save James Brown and firemen don’t take
to dancing outside of burning buildings. This is an extreme example, but to a certain
degree, even the most basic sensory stimuli are subject to similar interpretations
that depend on the ongoing behavioral context. For instance, the sight and smell
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of food may elicit very different responses depending on how hungry an animal is.
Such context sensitivity is tremendously advantageous, but what are the neuronal
mechanisms behind it?

Gain modulation is a mechanism whereby neurons integrate information from
various sources [47, 48]. With it, contextual and sensory signals may be combined
in such a way that the same sensory information can lead to different behavioral
outcomes. In essence, gain modulation is the neural correlate of a switch that can
turn on or off different subnetworks in a circuit, and thus provides, at least in part,
a potential solution to the problem of generating flexible, context-sensitive behavior
illustrated in the previous paragraph. This chapter will address three main questions:
What is gain modulation? What are some of its experimental manifestations? And,
what computational operations does it enable? We will show that relatively weak
modulatory influences like those observed experimentally may effectively change
the functional connectivity of a network in a drastic way.

What is Gain Modulation?

When a parameter modulates the gain of a neuron, the cell’s response amplitude
changes, but its selectivity with respect to other parameters does not. Let’s elaborate
on this. To describe gain modulation, we must consider the response of a neuron as
a function of two quantities; call them x and y. To take a concrete example, suppose
that x is the location of a visual stimulus with respect to the fixation point and y is
the position of the eye along the horizontal axis. The schematic in Fig. 1 shows the
relationship between these variables. First, fix the value of y, say it is equal to 10ı
to the left, and measure the response of a visual neuron as a function of stimulus
location, x. Assume that the response to a stimulus is quantified by the number of
action potentials evoked by that stimulus within a fixed time window, which is a
standard procedure. When the evoked firing rate r is plotted against x, the result
will be a curve like those shown in Fig. 2, with a peak at the preferred stimulus
location of the cell. Now repeat the measurements with a different value of y, say
10ı to the right this time. How does the second curve (r vs. x) compare with the
first one?

y
x

Fig. 1 Reference points for locating an object. The cross indicates the fixation point and the star
indicates a visual stimulus. The angle of the eye in the orbit is y. The position of the object in
eye-centered coordinates (i.e., relative to the fixation point) is x
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Fig. 2 Hypothetical
responses of four neurons that
are sensitive to two quantities,
x and y. Each panel shows
the firing rate as a function of
x for two values of y, which
are distinguished by thin and
thick lines. (a–c), Three
neurons that are
gain-modulated by y. (d), A
neuron that combines x- and
y- dependencies linearly, and
so is not gainmodulated
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If the neuron is not sensitive to eye position at all, then the new curve will be
the same as the old one. This would be the case, for instance, with the ganglion
cells of the retina, which respond depending on where light falls on the retina. On
the other hand, if the neuron is gain-modulated by eye position, then the second
curve will be a scaled version of the first one. That is, the two curves will have the
same shapes but different amplitudes. This is illustrated in Fig. 2b and c, where thin
and thick lines are used to distinguish the two y conditions. This is precisely what
happens in the posterior parietal cortex [1, 2, 12], where this phenomenon was first
documented by Andersen and Mountcastle [3]. To describe the dependency on the
modulatory quantity y, these authors coined the term “gain field,” in analogy with
the receptive field, which describes the dependency on the sensory stimulus x. Of
course, to properly characterize the gain field of a cell, more values of y need to be
tested [2], but for the moment we will keep discussing only two.

To quantify the strength of the modulation, consider the decrease in response am-
plitude observed as a neuron goes from its preferred to its nonpreferred y condition.
In panels a–c of Fig. 2, the resulting percent suppression is, respectively, 100%,
40%, and 15%. In the parietal cortex, and in experimental data in general, 100%
suppression is very rarely seen; on the contrary, the effects are often quite subtle
(more on this below). More importantly, however, the firing rate r of the neuron
can be described as a product of two factors, a function of x, which determines the
shape of the curves, times a gain factor that determines their amplitude:

rj .x; y/ D gj .y/fj.x/ (1)

where the index j indicates that this applies to neuron j . The functions f and g
may have different forms, so this is a very general expression. Much of the data
reported by Andersen and colleagues, as well as data from other laboratories, can be
fit quite well using (1) [2,12,30,31,57]. Note, however, that for the theoretical results
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discussed later on, the key property of the above expression is that it combines x
and y in a nonlinear way. Thus, in general, the theoretical results are still valid if the
relationship between x- and y-dependencies is not exactly multiplicative, as long as
it remains nonlinear. A crucial consequence of this is that a response that combines
x and y dependencies linearly, for instance,

rj .x; y/ D gj .y/C fj .x/ (2)

does not qualify as a gain-modulated response. Note how different this case is from
the multiplicative one: when y changes, a neuron that responds according to (2)
increases or decreases its firing rate by the same amount for all x values. This is
illustrated in Fig. 2d, where the peaked curve moves up and down as y is varied
but nothing else changes other than the baseline. Such a neuron is sensitive to both
x and y, but (1) it cannot be described as gain-modulated by y, because it combines
f and g linearly, and (2) it cannot perform the powerful computations that gain-
modulated neurons can.

Experimental Evidence for Gain Modulation

To give an idea of the diversity of neural circuits in which gain modulation may play
an important functional role, in this section we present a short survey of experimen-
tal preparations in which gain modulation has been observed. In all of these cases
the reported effects are roughly in accordance with (1). Note that, although the x
and y variables are different in all of these examples, all experiments are organized
like the one discussed in the previous section: the firing rate of a neuron is plotted
as a function of x for a fixed value of y; then y is varied and the response function
or tuning curve (r vs. x) of the cell is plotted again; finally, the results with different
y values are compared.

Modulation by Proprioceptive Information

To begin, we mention three representative examples of proprioceptive signals that
are capable of modulating the visually evoked activity of cortical neurons. First of
all, although initial work described responses tuned to stimulus location (x) with
gain fields that depend on eye position, an additional dependence on head position
was discovered later, such that the combination of head and eye angles – the gaze
angle – seems to be the relevant quantity [12]. Thus, the appropriate modulatory
parameter y is likely to be the gaze angle.

Another example of modulation by proprioceptive input is the effect of eye and
head velocity (which now play the role of y) on the responses of neurons that are
sensitive to heading direction (which now corresponds to x). Neurons in area MSTd
respond to the patterns of optic flow that are generated by self-motion; for instance,
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when a person is walking, or when you are inside a moving train and look out
the window. Under those conditions, the MSTd population encodes the direction of
heading. Tuning curves with a variety of shapes are observed when the responses of
these neurons are plotted as functions of heading direction, and crucially, for many
units those curves are gain-modulated by eye and head velocity [50].

A third example of proprioceptive modulation occurs in an area called the pari-
etal reach region, or PRR, where cells are tuned to the location of a reach target. The
reach may be directed toward the location of a visible object or toward its remem-
bered location; in either case, PRR cells are activated only when there is an intention
to reach for a point in space. The response of a typical PRR cell as a function of tar-
get location (the x parameter in this case) is peaked. A key modulatory quantity for
these cells is the initial location of the hand (this is y now): the amplitude of the
peaked responses to target location depends on the position of the hand before the
reach [7, 13]. We will come back to this example later on.

Attentional Modulation

Another modulatory signal that has been widely studied is attention, and its effects
on sensory-driven activity are often very close to multiplicative. For example, visual
neurons in area V4 are sensitive to the orientation of a bar shown in their receptive
field. The corresponding tuning curves of firing rate vs. bar orientation change de-
pending on where attention is directed by the subject. In particular, the tuning curves
obtained with attention directed inside vs. outside the receptive field are very nearly
scaled versions of each other, with an average suppression of about 20% in the non-
preferred condition [31]. The magnitude of this effect is not very large, but this is
with rather simple displays that include only two stimuli, a target and a distractor;
results reported using more crowded displays and more demanding tasks are two-
to-three times as large [14, 21].

Another cortical area where attentional effects have been carefully characterized
is area MT, which processes visual motion. There, neurons are sensitive to the di-
rection in which an object, or a cloud of objects, moves across their receptive fields.
Thus, for each neuron the relevant curve in this case is that of firing rate vs. move-
ment direction. What the experiments show is that the location where attention is
directed has an almost exactly multiplicative effect on the direction tuning curves
of MT cells. But interestingly, the amplitude of these curves also depends on the
specific movement direction that is being attended [30, 57]. Thus, as in V4 [21],
stronger suppression (of about 50%) can be observed when an appropriate combi-
nation of attended location and attended feature is chosen.

Nonlinear Interactions between Multiple Stimuli

In addition to studies in which two distinct variables are manipulated, there is a
vast literature demonstrating other nonlinear interactions that arise when multiple
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stimuli are displayed simultaneously. For instance, the response of a V1 neuron to
a single oriented bar or grating shown inside its receptive field may be enhanced or
suppressed by neighboring stimuli outside the receptive field [20, 25, 28, 51]. Thus,
stimuli that are ignored by a neuron when presented in isolation may have a strong
influence when displayed together with an effective stimulus. These are called “extra
classical receptive field” effects, because they involve stimuli outside the normal
activation window of a neuron.

Nonlinear summation effects, however, may also be observed when multiple
stimuli are shown inside the receptive field of a cell. For example, suppose that a
moving dot is presented inside the receptive field of an MT neuron and the evoked
response is r1. Then another moving dot is shown moving in the same direction but
at a different location in the receptive field, and the response is now r2. What hap-
pens if the two moving dots are displayed simultaneously? In that case, the evoked
response is well described by

r D ˛
�
rn

1 C rn
2

	1=n
(3)

where ˛ is a scale factor and n is an exponent that determines the strength of the
nonlinearity [11]. This expression is interesting because it captures a variety of pos-
sible effects, from simple response averaging (˛D0:5, nD1) or summation (˛D1,
nD1), to winner-take-all behavior (˛D1, n large). Neurons in MT generally show
a wide variety of n exponents [11], typically larger than 1, meaning that the pres-
ence of one stimulus modulates nonlinearly the response to the other. Neurons in
V4 show similar nonlinear summation [21].

In general, many interactions between stimuli are well described by divisive nor-
malization models [52, 53], of which (3) is an example. Such models implement
another form of gain control where two or more inputs are combined nonlinearly.

Context- and Task-Dependent Modulation

Finally, there are numerous experiments in which more general contextual effects
have been observed. This means that activity that is clearly driven by the physical
attributes of a sensory stimulus is also affected by more abstract factors, such as the
task that the subject needs to perform, or the subject’s motivation. These phenom-
ena are often encountered in higher-order areas, such as the prefrontal cortex. For
example, Lauwereyns and colleagues designed a task in which a monkey observed
a cloud of moving dots and then, depending on a cue at the beginning of each trial,
had to respond according to either the color or the direction of movement of the
dots [27]. Prefrontal neurons were clearly activated by the moving dots; however,
the firing rates evoked by identical stimuli varied quite dramatically depending on
which feature was imporant in a given trial, color or movement direction.

Another striking case of task-dependent modulation was revealed by Koida and
Komatsu [26] using color as a variable. They trained monkeys to perform two color-
based tasks. In one of them, the monkeys had to classify a single color patch into
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one of two categories, reddish or greenish. In the other task, the monkeys had to
indicate which of two color patches matched a previously shown sample. Neuronal
responses in inferior-temporal cortex (IT) were recorded while the monkeys per-
formed these two tasks plus a passive fixation task, in which the same stimuli were
presented but no motor reactions were required. The responses of many IT neu-
rons were strongly gain-modulated by the task: their color tuning curves had similar
shapes in all cases, but the overall amplitude of their responses depended on which
task was performed. This means that their activity was well described by (1), with x
being color and y being the current task. Note that, in these experiments, the exact
same stimuli were used in all tasks – what varied was the way the sensory informa-
tion was processed. Furthermore, the classification and discrimination tasks were of
approximately equal difficulty, so it is unlikely that the observed modulation was
due to factors such as motivation or reward rate. Nevertheless, these two variables
are known to modulate many types of neurons quite substantially [36, 49], so the
extent of their influence is hard to determine.

A last example of modulation due to task contingencies comes from neurophys-
iological work in the supplementary and presupplementary motor areas, which are
involved in fine aspects of motor control such as the planning of movement se-
quences. Sohn and Lee made recordings in these areas while monkeys performed
sequences of joystick movements [54]. Each individual movement was instructed
by a visual cue, but importantly, the monkey was rewarded only after correct com-
pletion of a full sequence, which consisted of 5–10 movements. The activity of the
recorded neurons varied as a function of movement direction, as expected in a mo-
tor area, but interestingly, it also varied quite strongly according to the number of
remaining movements in a sequence. It is possible that the true relevant variable
here is the amount of time or the number of movements until a reward is obtained.
Regardless of this, remarkably, the interaction between movement direction (the x
variable in this case) and the number of remaining movements in a sequence (the y
variable) was predominantly multiplicative, in accordance with (1).

In summary, there is an extremely wide range of experimental preparations and
neuronal circuits that reveal strongly nonlinear modulation of evoked activity. The
next sections discuss (1) some computational operations that neuronal networks can
implement relatively easily based on such nonlinearities, and (2) a variety of behav-
iors and tasks where such operations could play crucial functional roles.

Computations Based on Gain Modulation

The previous section reviewed a large variety of experimental conditions under
which gain modulation – understood as a nonlinear interaction between x- and y-
dependencies – is observed. What is interesting about the chosen examples, and
is not immediately obvious, is that all of those effects may be related to similar
computational operations. That is precisely what theoretical and modeling stud-
ies have shown, that gain modulation serves to implement a type of mathematical
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transformation that arises under many circumstances. It is relatively well established
that gain modulation plays an important role in carrying out coordinate transfor-
mations [4, 38, 46, 48], so that is the first type of operation that we will discuss.
However, the applicability of gain modulation goes way beyond the traditional
notion of coordinate transformation [41].

Coordinate Transformations

The first clue that gain modulation is a powerful computing mechanism was pro-
vided by Zipser and Andersen [63], who trained an artificial neural network to
transform the neural representation of stimulus location from one reference frame
to another. Their network had three layers of model neurons. The activities in the
input and output layers were known – they were given to the model – and the job of
the model was to determine the responses of the units in the middle layer. The input
layer had two types of neurons, ones that encoded the location of a visual stimulus in
eye-centered coordinates, i.e., with respect to the fixation point, and others that en-
coded the gaze angle. Thus, stimulus location was x and gaze angle was y, exactly
as discussed in the section “What is Gain Modulation.” In contrast, the neurons in
the output layer encoded the location of the stimulus in head-centered coordinates,
which for this problem means that they responded as functions of x C y. It can be
seen from Fig. 1 that x C y in this case gives the location of the stimulus relative to
the head.

Adding x plus y seems deceivingly simple, but the problem is rather hard be-
cause x, y, and x C y are encoded by populations of neurons where each unit
responds nonlinearly to one of those three quantities. The middle neurons in the
model network had to respond to each pattern of evoked activity (in the first layer)
and produce the correct output pattern (in the third layer). The way the authors were
able to “train” the middle layer units was by using a synaptic modification rule,
the backpropagation algorithm, which modified the network connections each time
an input and a matching output pattern were presented, and thousands of input and
output examples were necessary to learn the mapping with high accuracy. But the
training procedure is not very important; what is noteworthy is that, after learn-
ing, the model units in the middle layer had developed gaze-dependent gain fields,
much like those found in parietal cortex. This indicated that the visual responses
modulated by gaze angle are an efficient means to compute the required coordinate
transformation.

Further intuition about the relation between gain fields and coordinate trans-
formations came from work by Salinas and Abbott [43], who asked the following
question. Consider a population of parietal neurons that respond to a visual stimulus
at retinal location x and are gain-modulated by gaze angle y. Suppose that the gain-
modulated neurons drive, through synaptic connections, a downstream population of
neurons involved in generating an arm movement toward a target. To actually reach
the target with any possible combination of target location and gaze angle, these
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downstream neurons must encode target location in body-centered coordinates, that
is, they must respond as functions of x C y (approximately). Under what condi-
tions will this happen? Salinas and Abbott developed a mathematical description
of the problem, found those conditions, and showed that, when driven by gain-
modulated neurons, the downstream units can explicitly encode the sum x C y or
any other linear combination of x and y. In other words, the gain-field representa-
tion is powerful because downstream neurons can extract from the same modulated
neurons any quantity c1x C c2y with arbitrary coefficients c1 and c2, and this can
be done quite easily – “easily” meaning through correlation-based synaptic modifi-
cation rules [43, 44]. Work by Pouget and Sejnowski [37] extended these results by
showing that a population of neurons tuned to x and gain-modulated by y can be
used to generate a very wide variety of functions of x and y downstream, not only
linear combinations.

A crucial consequence of these theoretical results is that when gain-modulated
neurons are found in area A, it is likely that neurons in a downstream area B will
have response curves as functions of x that shift whenever y is varied. This is be-
cause a tuning curve that is a function of c1x C c2y will shift along the x-axis
when y changes. To illustrate this point, consider another example of a coordinate
transformation; this case goes back to the responses of PRR cells mentioned in the
section “Modulation by Proprioceptive Information.”

The activity of a typical PRR cell depends on the location of a target that is to
be reached, but is also gain-modulated by the initial position of the hand before the
reach [7, 13]. Thus, now x is the target’s location and y is the initial hand position
(both quantities in eye-centered coordinates). Fig. 3a–c illustrates the correspond-
ing experimental setup with three values of y: with the hand initially to the left,
in the middle, or to the right. In each diagram, the small dots indicate the possible
locations of the reach target, and the two gray disks represent the receptive fields of
two neurons. The response of a hypothetical PRR neuron is shown in Fig. 3e, which
includes three plots, one for each of the three initial hand positions. In accordance
with the reported data [7, 13], the gain of this PRR cell changes as a function of
initial hand position. The other two cells depicted in the figure correspond to ideal-
ized responses upstream and downstream from the PRR. Figure 3d shows the firing
rate of an upstream cell that is insensitive to hand position y, so its receptive field
(light disk in Fig. 3a–c) does not change. This cell is representative of a neural pop-
ulation that responds only as a function of x, and simply encodes target location in
eye-centered coordinates. In contrast, Fig. 3f plots the tuning curve of a hypothetical
neuron downstream from the PRR. The curve shifts when the initial hand position
changes because it is a function of x � y (as explained above, but with c1 D 1 and
c2 D �1). For such neurons, the receptive field (dark disk in Fig. 3a–c) moves as
a function of hand position. This cell is representative of a population that encodes
target location in hand-centered coordinates: the firing responses are the same when-
ever the target maintains the same spatial relationship relative to the hand. Neurons
like this one are found in parietal area 5, which is downstream from the PRR [13].
They can be constructed by combining the responses of multiple gain-modulated
neurons like that in Fig. 3e, but with diverse target and hand-location preferences.
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Fig. 3 Hypothetical responses of three neurons that play a role in reaching a target. (a–c), Three
experimental conditions tested. Dots indicate the possible locations of a reach target. Conditions
differ in the initial hand position (y). Circles indicate visual receptive fields of two hypothetical
neurons, as marked by gray disks below. (d–f), Firing rate as a function of target location (x)
for three idealized neurons. Each neuron is tested in the three conditions shown above. Gaze is
assumed to be fixed straight ahead in all cases

Why are such shifting tuning curves useful? Because the transformation in the
representation of target location from Fig. 3d to Fig. 3f partially solves the prob-
lem of how to acquire a desired target. In order to reach an object, the brain must
combine information about target location with information about hand position to
produce a vector. This vector, sometimes called the “motor error” vector, encodes
how much the hand needs to move and in what direction. Cells like the one in Fig. 3d
do not encode this vector at all, because they have no knowledge of hand position.
Cells that are gain modulated by hand position, as in Fig. 3e, combine information
about x and y, so they do encode the motor vector, but they do so implicitly. This
means that actually reading out the motor vector from their evoked activity requires
considerable computational processing. In contrast, neurons like the one in Fig. 3f
encode the motor vector explicitly: reading out the motor vector from their evoked
activity requires much simpler operations.
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To see this, draw an arrow from the hand to the center of the shifting receptive
field (the dark disk) in Fig. 3a–c. You will notice that the vector is the same regard-
less of hand position; it has the same length L and points in the same direction,
straight ahead, in the three conditions shown. Thus, a strong activation of the ide-
alized neuron of Fig. 3f, which is elicited when x is equal to the peak value of the
tuning curve, can be easily translated into a specific motor command; such activa-
tion means “move the handL centimeters straight ahead and you’ll reach the target.”
Conversely, for this command to be valid all the time, the preferred target position
of the cell must move whenever the hand moves.

In reality, area 5 neurons typically do not show full shifts [13]; that is, their curves
do shift but by an amount that is smaller than the change in hand position. This is
because their activity still depends to a certain extent on eye position. It may be that
areas further downstream from area 5 encode target position in a fully hand-centered
representation, but it is also possible that such a representation is not necessary for
the accurate generation of motor commands. In fact, although full tuning curve shifts
associated with a variety of coordinate transformations have been documented in
many brain areas, partial shifts are more common [6, 19, 22, 24, 50, 55]. This may
actually reflect efficiency in the underlying neural circuits: according to modeling
work [16,62], partial shifts should occur when more than two quantities x and y are
simultaneously involved in a transformation, which is typically the case. Anyhow,
the point is that a gain-modulated representation allows a circuit to construct shifting
curves downstream, which encode information in a format that is typically more
accessible to the motor apparatus.

A final note before closing this section. Many coordinate transformations make
sense as a way to facilitate the interaction with objects in the world, as in the
examples just discussed. But the shifting of receptive fields, and in general the trans-
formation of visual information from an eye-centered representation to a reference
frame that is independent of the eye may be an important operation for percep-
tion as well. For instance, to a certain degree, humans are able to recognize objects
regardless of their size, perspective, and position in the visual field [15, 18]. This
phenomenon is paralleled by neurons in area IT, which respond primarily depend-
ing on the type of image presented, and to some extent are insensitive to object
location, scale or perspective [17,56,64]. For constructing such invariant responses,
visual information must be transformed from its original retinocentered representa-
tion, and modeling work suggests that gain modulation could play an important role
in such perceptual transformations too, because the underlying operations are sim-
ilar. In particular, directing attention to different locations in space alters the gain
of many visual neurons that are sensitive to local features of an image, such as ori-
entation [14]. According to the theory [44,45], this attentional modulation could be
used to generate selective visual responses similar to those in IT, which are scale-
and translation-invariant. Such responses would represent visual information in an
attention-centered reference frame, and there is evidence from psychophysical ex-
periments in humans [29] indicating that object recognition indeed operates in a
coordinate frame centered on the currently attended location.
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Arbitrary Sensory-Motor Remapping

In the original modeling studies on gain modulation, proprioceptive input combined
with spatial sensory information led to changes in reference frame. It is also pos-
sible, however, to use gain modulation to integrate sensory information with other
types of signals. Indeed, the mechanism also works for establishing arbitrary asso-
ciations between sensory stimuli and motor actions on the basis of more abstract
contextual information.

In many tasks and behaviors, a given stimulus is arbitrarily associated with two
or more motor responses, depending on separate cues that we will refer to as “the
context.” Figure 4 schematizes one such task. Here, the shape of the fixation point in-
dicates whether the correct response to a bar is a movement to the left or to the right
(arrows in Fig. 4a and b). Importantly, the same set of bars (Fig. 4c) can be parti-
tioned in many ways; for instance, according to orientation (horizontal vs. vertical),
color (filled vs. not filled), or depending on the presence of a feature (gap vs. no
gap). Therefore, there are many possible maps between the eight stimuli and the
two motor responses, and the contextual cue that determines the correct map is
rather arbitrary.

Neurophysiological recordings during such tasks typically reveal neuronal re-
sponses that are sensitive to both the ongoing sensory information and the current
context or valid cue, with the interaction between them being nonlinear [5, 27,
58, 59]. Some of these effects were mentioned in the section “Context- and Task-
Dependent Modulation.” The key point is that, as the context changes in such tasks,
there is (1) a nonlinear modulation of the sensory-triggered activity, and (2) a func-
tional reconnection between sensory and motor networks that must be very fast.
How is this reconnection accomplished by the nervous system?

a

Time

Horiz. Vert.

b

Gap No gap

c

Fig. 4 A context-dependent classification task. The shape of the fixation point determines the
correct response to a stimulus. (a), Events in a single trial in which a bar is classified according to
orientation. (b), Events in a single trial in which a bar is classified according to whether it has a
gap or not. (c), Stimulus set of eight bars
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How the Contextual Switch Works

The answer is that such abstract transformations can be easily generated if the
sensory information is gain-modulated by the context. According to modeling
work [40,41], when this happens, multiple maps between sensory stimuli and motor
actions are possible but only one map, depending on the context, is implemented at
any given time. Let’s sketch how this works.

In essence, the mechanism for solving the task in Fig. 4, or other tasks like it, is
very similar to the mechanism for generating coordinate transformations (i.e., shift-
ing receptive fields) described in section “Coordinate Transformations,” except that
x now describes the stimulus set and y the possible contexts. Instead of continuous
quantities, such as stimulus location and eye position, these two variables may now
be considered indices that point to individual elements of a set. For instance, xD1
may indicate that the first bar in Fig. 4c was shown, x D 2 may indicate that the
second bar was shown, etc. In this way, the expression fj .x/ still makes sense: it
stands for the firing rate of cell j in response to each stimulus in the set. Similarly,
yD1 now means that the current context is context 1, yD2 means that the current
context is context 2, and so on. Therefore, the response of a sensory neuron j that
is gain-modulated by context can be written exactly as in (1),

rj .x; y/ D gj .y/fj .x/ (4)

except that now rj .x D 3; y D 1/ D 10 means “neuron j fires at a rate of 10
spikes/s when stimulus number 3 is shown and the context is context 1.” Although
x and y may represent quantities with extremely different physical properties,
practically all of the important mathematical properties of (1) remain the same re-
gardless of whether x and y vary smoothly or discretely. As a consequence, although
the coordinate transformations in Figs. 1 and 3 may feel different from the remap-
ping task of Fig. 4, mathematically they represent the very same problem, and the
respective neural implementations may thus have a lot in common.

Now consider the activity of a downstream neuron that is driven by a population
of gain-modulated responses through a set of synaptic weights,

R.x; y/ D
X

j

wjgj .y/fj .x/ (5)

where wj is the connection from modulated neuron j to the downstream unit. Notice
that the weights and modulatory factors can be grouped together into a term that
effectively behaves like a context-dependent synaptic connection. That is, consider
the downstream response in context 1,

R.x; y D 1/ D
X

j

u.1/
j fj .x/ (6)
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where we have defined u.1/
j D wjgj .y D 1/. The set of coefficients u.1/

j represents
the effective synaptic weights that are active in context 1. Now comes the crucial
result: because the modulatory factors gj change as functions of context, those
effective weights will be different in context 2, and so will be the downstream re-
sponse,

R.x; y D 2/ D
X

j

u.2/
j fj .x/ (7)

where u.2/
j Dwjgj .y D 2/. Thus, the effective network connections are u.1/

j in one

context and u.2/
j in the other. The point is that the downstream response in the two

contexts, given by (6) and (7), can produce completely different functions of x.
That is exactly what needs to happen in the classification task of Fig. 4a and b – the
downstream motor response to the same stimulus (x) must be able to vary arbitrarily
from one context to another. The three expressions above show why the mechanism
works: the multiplicative changes in the gain of the sensory responses act exactly as
if the connectivity of the network changed from one context to the next, from a set
of connections u.1/

j to a set u.2/
j .

Figure 5 illustrates this with a model that performs the task in Fig. 4, classifying
a stimulus set differently in three possible contexts. In contexts 1 and 2, the stimuli
trigger left and right movements according, respectively, to their orientation or to
whether they have a gap or not, as in Fig. 4a and b. In contrast, in context 3 the
correct response is to make no movement at all; this is a no-go condition. The model
network used to generate Fig. 5 included 160 gain-modulated sensory neurons in
the first layer and 50 motor neurons in the second, or output layer. Each sensory
neuron responded differently to a set of eight distinct stimuli like those shown in
Fig. 4c. For each cell, the maximum suppression across the three contexts varied
between 0 and 30%, with a mean of 15%. The figure shows the responses of all the
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Fig. 5 A model network that performs the remapping task of Fig. 4. Gray-scale images represent
the responses of 160 gain-modulated sensory neurons to the combinations of x (stimulus) and y
(context) values shown above. White and black correspond to firing rates of 3 and 40 spikes/s,
respectively. Plots at the bottom show the responses of 50 motor neurons driven by the gain-
modulated units through synaptic connections. Identical stimuli lead to radically different motor
responses depending on the current context
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neurons in the network in four stimulus-context combinations. The firing rates of
the gain-modulated neurons of the first layer are indicated by the gray-level maps.
In these maps, the neurons are ordered such that their position along the x-axis
roughly reflects their preferred stimulus, which goes from 1 to 8. The firing rates of
the 50 motor units of the second layer are plotted below. For those cells, the location
of the peak of activity encodes the location of a motor response.

There are a couple of notable things here. First, that the sensory activity changes
quite markedly from one stimulus to another (compare the two conditions with
y D 1), but much less so from one context to another (compare the two condi-
tions with xD2). This is because the modulatory factors do not need to change very
much in order to produce a complete change in connectivity (more on this below).
Second, what the model accomplishes is a drastic change in the motor responses
of the second layer to the same stimulus, as a function of context. This includes
the possibility of silencing the motor responses altogether or not, as can be seen by
comparing the two conditions with xD7.

In summary, in this type of network a set of sensory responses are nonlinearly
modulated by contextual cues, but these do not need to be related in any way to the
physical attributes of the stimuli. The model works extremely well, in that accuracy
is limited simply by the variability (random fluctuations) in the gain-modulated re-
sponses and by the number of independent contexts [40]. In theory, it should work
in any situation that involves choosing or switching between multiple functions or
maps, as long as the modulation is nonlinear – as mentioned earlier, an exact mul-
tiplication as in (4) is not necessary, as long as x and y are combined nonlinearly.
With the correct synaptic connections driving a group of downstream neurons, such
a network can perform a variety of remapping tasks on the basis of a single trans-
formation step between the two layers [40–42].

Switching as a Fundamental Operation

The model network discussed in the previous section can be thought of as imple-
menting a context-dependent switch that changes the functional mapping between
the two layers in the network. In fact, it can be shown that gain modulation has
an effect that is equivalent to turning on and off different subsets of neurons as a
function of context, or more generally, of the modulatory quantity y [41].

To illustrate this, consider the problem of routing information from a network A
to two possible target networks B and C , such that either the connections A ! B

are active or the connections A ! C are active, but not both. An example of this
is a task in which the subject has to reach for an object that may appear at a variety
of locations, but depending on the shape of the fixation point, or some other cue,
he must reach with either the left or the right hand. In this situation, the contextual
cue must act as a switch that activates one or the other downstream motor circuit,
but it must do so for any stimulus value.
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Fig. 6 Two possible schemes
for routing information to
either of two motor networks.
One motor network should
respond in context 1 and the
other in context 2. (a) With
two subpopulations of
“switching neurons,” which
are 100% suppressed in their
nonpreferred contexts. (b)
With one population of
partially modulated neurons,
which show mild suppression
in their nonpreferred contexts

Figure 6 schematizes two possible ways in which such a switch could be imple-
mented. In the network of Fig. 6a, there are two separate sets of sensory responses
that are switched on and off according to the context, and each subpopulation drives
its own motor population downstream. This scheme requires true “switching neu-
rons” that can be fully suppressed by the nonpreferred context. This type of neuron
would need to respond as in Fig. 2a. This, admittedly, is a rather extreme and un-
realistic possibility, but it nonetheless provides an interesting point of comparison:
clearly, with such switching neurons it is trivial to direct the sensory information
about target location to the correct motor network; and it is also clear that the two
motor networks could respond in different ways to the same sensory input. In a way,
the problem has simply been pushed back one step in the process.

An alternative network organization is shown in Fig. 6b. In this case, one single
set of gain-modulated sensory neurons is connected to the two motor populations.
What can be shown theoretically [41], is that any sensory-motor mapping that can be
achieved with switching neurons (as in Fig. 6a), can also be implemented with stan-
dard, partially modulated neurons (as in Fig. 6b). Of course the necessary synaptic
weights will be different in the two cases, but in principle, under very general con-
ditions, if something can be done with 100% suppression, it can also be done with a
much smaller amount of suppression (there may be a cost in terms of accuracy, but
this depends on the level of noise in the responses and on the size of the network,
among other factors [41]). In particular, a suppression of 100% is not necessary to
produce a switch in the activated downstream population, as required by the task
just discussed in which either the left or the right hand is used. This result offers a
unique intuition as to why gain modulation is so powerful: modulating the activity
of a population is equivalent to flipping a switch that turns on or off various sets of
neurons.

This result is illustrated in Fig. 7, which shows the responses of a model network
that has the architecture depicted in Fig. 6b. The x and y variables here are, re-
spectively, the location of a stimulus, which takes a variety of values between �16
and 16, and the context, which takes two values. Figure 7a, c shows the activity
of the 100 gain-modulated sensory neurons in the network in contexts 1 and 2,
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Fig. 7 Responses in a model network that routes information to two separate motor populations,
as in Fig. ch07:fig6b. In context 1, one motor population is active and responds to all stimulus loca-
tions (x); in context 2, the other motor population is active. a, c Responses of the gain-modulated
sensory neurons in contexts 1 and 2, respectively. b, d Responses of the motor neurons in contexts
1 and 2, respectively

respectively. These units are tuned to stimulus location, so they have peaked tuning
curves like those in Fig. 2b, c. The 100 units have been split into two groups, those
that have a higher gain or response amplitude in context 1 (units 1–50) and those
that have a higher gain in context 2 (units 51–100). The neurons in each group are
arranged according to their preferred stimulus location. This is why Fig. 7a and c
show two bands: for each value of x, the neurons that fire most strongly in each
group are those that have preferred values close to x. Notice that the activity pat-
terns in Fig. 7a, c are very similar. This is because the differences in gain across the
two contexts are not large: the percent suppression in this case ranged between 0
and 65%, with a mean of 32%.

What is interesting about this example is the behavior of the motor populations
downstream. In context 1, one population responds and the other is silent (Fig. 7b),
whereas in context 2 the roles are reversed, the second population responds and the
first is silent (Fig. 7d). Importantly, this does not occur just for one value or a small
number of values of x, but for any value. This switch, controlled by a contextual
cue y, is generated on the basis of relatively small modulatory effects in the top
layer. Thus, the modeling results reviewed here provide another interesting insight:
small variations in the response gain of neurons in area A may be a signature of
dramatically large variations in the activity of a downstream area B .
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In the example of Fig. 7, the activated motor population simply mirrors the
activation pattern in the sensory layer; that is, the sensory-motor map is one-to-one.
This simple case was chosen to illustrate the switching mechanism without further
complications, but in general, the relationship between stimulus location and the
encoded motor variable (motor location) may be both much more complicated and
different for the two contexts.

Flexible Responses to Complex Stimuli

To recapitulate what has been presented: coordinate transformations and arbitrary
sensory-motor associations are types of mathematical problems that are akin to im-
plementing a switch from one function of x to another, with the switch depending
on a different variable y. Thus, in the mammalian brain, performing coordinate
transformations and establishing arbitrary sensory-motor maps should lead to the
deployment of similar neural mechanisms. Modeling work has shown that the non-
linear modulation of sensory activity can reduce the problem of implementing such a
switch quite substantially, and this is consistent with experimental reports of nonlin-
ear modulation by proprioceptive, task-dependent, and contextual cues in a variety
of tasks (“Experimental Evidence for Gain Modulation”).

There is, however, an important caveat. One potential limitation of gain mod-
ulation as a mechanism for performing transformations is that it may require an
impossibly large number of neurons, particularly in problems such as invariant ob-
ject recognition [18, 39, 44, 64] in which the dimensionality of the relevant space is
high. The argument goes like this. Suppose that there are N stimuli to be classified
according toM criteria, as a generalization of the task in Fig. 4. To perform this task,
a neuronal network will need neurons with all possible combinations of stimulus and
context sensitivities. Thus, there must be neurons that prefer stimuli 1; 2; : : : N in
context 1, neurons that prefer stimuli 1; 2; : : : N in context 2, and so on. Therefore,
the size of the network should grow as N �M , which can be extremely large. This
is sometimes referred to as “the curse of dimensionality.”

Although this is certainly a challenging problem, its real severity is still unclear.
In particular, O’Reilly and colleagues have argued [34, 35] that the combinatorial
explosion may be much less of a problem than generally assumed. In essence, they
say, this is because neurons are typically sensitive to a large range of input values,
and the redundancy or overlap in this coarse code may allow a network to solve such
problems accurately with many fewer than N � M units. At least in some model
networks, it has indeed been demonstrated that accurate performance can be ob-
tained with many fewer than the theoretical number of necessary units [10, 34, 35].
In practice, this means that it may be possible for real biological circuits to solve
many remapping tasks with relatively few neurons, if they exhibit the appropriate
set of broad responses to the stimuli and the contexts.

So, assuming that the curse of dimensionality does not impose a fundamen-
tal limitation, does gain modulation solve the flexibility problem discussed at the
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Fig. 8 Two examples of
scenes with multiple objects.
Each display can be
considered as a single
complex stimulus

a b

beginning of the chapter? No, it does not, and this is why. All of the tasks and be-
haviors mentioned so far have been applied to single, isolated stimuli. If an organism
always reacted to one stimulus at a time, then gain modulation would be enough for
selecting the correct motor response under any particular context, assuming enough
neurons or an appropriate coarse code. However, under natural conditions, a sensory
scene in any modality contains multiple objects, and choices and behaviors are dic-
tated by such crowded scenes. Other neural mechanisms are needed for (1) selecting
one relevant object from the scene, or (2) integrating information across different lo-
cations or objects within a scene (note that similar problems arise whenever a choice
needs to be made on the basis of a collection of objects, even if they appear one by
one spread out over time). Thus, to produce a flexible, context-dependent response
to a complex scene, gain modulation would need to be combined at least with other
neural mechanisms for solving these two problems.

To put a simple example, consider the two displays shown in Fig. 8. If each dis-
play is taken as one stimulus, then there are many possible ways to map those two
stimuli into “yes” or “no” responses. For instance, we can ask: Is there a triangle
present? Is an open circle present on the right side of the display? Are there five
objects in the scene? Or, are all objects different? Each one of these questions plays
the role of a specific context that controls the association between the two stimuli
and the two motor responses. The number of such potential questions (contexts) can
be very large, but the key problem is that answering them requires an evaluation of
the whole scene. Also, it is known from psychophysical experiments that subjects
can change from one question to another extremely rapidly [61]. Gain modulation
has the advantage of being very fast, and could indeed be used to switch these as-
sociations, but evidently the mechanisms for integrating information across a scene
must be equally important.

As a first step in exploring this problem, we have constructed a model network
that performs a variety of search tasks [8]. It analyzes a visual scene with up to eight
objects and activates one of two output units to indicate whether a target is present
or absent in the scene. As in the models described earlier, this network includes
sensory neurons, which are now modulated by the identity of the search target, and
output neurons that indicate the motor response. The target-dependent modulation
allows the network to switch targets, that is, to respond to the question, is there a
red vertical bar present, or to the question, is there a blue bar present, and so on.
Not surprisingly, this model does not work unless an additional layer is included
that integrates information across different parts of the scene. When this is done,
gain modulation indeed still allows the network to switch targets, but the proper-
ties of the integration layer become crucial for performance too. There are other
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models for visual search that do not switch targets based on gain modulation; these
are generally more abstract models [23, 60]. Our preliminary results [8] are encour-
aging because neurophysiological recordings in monkeys trained to perform search
tasks have revealed sensory responses to individual objects in a search array that are
indeed nonlinearly modulated according to the search target or the search instruc-
tions [9,33]. Furthermore, theoretical work by Navalpakkam and Itti has shown that
the gains of the sensory responses evoked by individual elements of a crowded scene
can be set for optimizing the detection of a target [32]. This suggests that there is
an optimal gain modulation strategy that depends on the demands of the task, and
psychophysical results in their study indicate that human subjects do employ this
optimal strategy [32].

In any case, the analysis of complex scenes should give a better idea of what can
and cannot be done using gain modulation, and should provide ample material for
future studies of the neural basis of flexible behavior.
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