The Feed-Forward Chain
as a Filter-Amplifier Motif
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Abstract Hudspeth, Magnasco, and collaborators have suggested that the auditory
system works by tuning a collection of hair cells near Hopf bifurcation, but each
with a different frequency. An incoming sound signal to the cochlea then resonates
most strongly with one of these hair cells, which then informs the auditory neu-
ronal system of the frequency of the incoming signal. In this chapter, we discuss
two mathematical issues. First, we describe how periodic forcing of systems near a
point of Hopf bifurcation is generally more complicated than the description given
in these auditory system models. Second, we discuss how the periodic forcing of
coupling identical systems whose internal dynamics is each tuned near a point of
Hopf bifurcation leads naturally to successive amplification of the incoming signal.
We call this coupled system a feed-forward chain and suggest that it is a mathemat-
ical candidate for a motif.

Introduction

In this chapter, we discuss how the periodic forcing of the first node in a chain
of coupled identical systems, whose internal dynamics is each tuned near a point
of Hopf bifurcation, can lead naturally to successive amplification of the incoming
signal. We call this coupled system a feed-forward chain and suggest that it is a
mathematical candidate for a motif [1]. Periodic forcing of these chains was con-
sidered experimentally by McCullen et al. [26]. That study contained observations
concerning the amplitude response of solutions down the chain and the effectiveness
of the chain as a filter amplifier. This chapter sheds light on these observations.
Our observations motivate the need for a theory of periodic forcing of systems
tuned near a point of Hopf bifurcation. Given such a system with Hopf frequency
wy, we periodically force this system at frequency w ¢. The response curve is a
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graph of the amplitude of the resulting solution as a function of w ¢. In this chapter,
we show that the response curve will, in general, be asymmetric and may even have
regions of multiple responses when w s ~ wpy.

This second set of results has implication for certain models of the auditory
system, in particular, models of the basilar membrane and attached hair bundles.
Several authors [5-7, 21, 23,27, 28] model the hair bundles by systems of differ-
ential equations tuned near a point of Hopf bifurcation; however, in their models
they assume precisely the nongeneric condition that leads to a symmetric response
curve. Since asymmetric response curves are seen experimentally, these authors then
attempt to explain that the asymmetry follows from coupling of the hair bundles. Al-
though this coupling may be reasonable on physiological grounds, our results show
that it is not needed if one were only attempting to understand the observed response
curve asymmetry.

Sections “Synchrony-Breaking Hopf Bifurcations” and “Periodic Forcing of
Feed-Forward Chains” discuss the feed-forward chain and sections “Periodic Forc-
ing near Hopf Bifurcation” and “Cochlear Modeling” discuss periodic forcing of
systems near Hopf bifurcation and the auditory system. The remainder of this intro-
duction describes our results in more detail.

The theory of coupled systems of identical differential equations [15, 16, 31]
and their bifurcations [8, 11, 12,24] singles out one three-cell network for both its
simplicity and the surprising dynamics it produces via a synchrony-breaking Hopf
bifurcation. We have called that network the feed-forward chain and it is pictured in
Fig. 1. Note that the arrow from cell 1 to itself represents self-coupling.

The general coupled cell theory [16] associates to the feed-forward chain a class
of differential equations of the form

X] = f(xl,xl,)t)
X2 = f(x2,x1,4) (D
X3 = f(x3,x2,4)

where x; € R¥ is the vector of state variables of node j, A € Ris a bifurcation
parameter, and f : R¥ x R x R — R¥. We assume that the differential equations
f in each cell are identical, and because of this the synchrony subspace S = {x; =
X2 = x3} is a flow-invariant subspace; that is, a solution with initial conditions in
S stays in S for all time. Synchronous equilibria can be expected to occur in such
systems and without loss of generality we may assume that such an equilibrium is
at the origin; that is, we assume (0,0, 1) = 0. Because of the self-coupling in cell
1, each cell receives exactly one input and the function f can be the same in each
equation in (1).

Fig. 1 The feed-forward C@ —_— @ R — @
chain
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Recall that in generic Hopf bifurcation in a system with bifurcation parameter
A, the growth in amplitude of the bifurcating periodic solutions is of order A2. As
reviewed in section “Synchrony-Breaking Hopf Bifurcations” synchrony-breaking
Hopf bifurcation leads to a family of periodic solutions whose amplitude grows
with the unexpectedly large growth rate of A6 [8,12]. This growth rate suggests that
when the feed-forward chain is tuned near a synchrony-breaking Hopf bifurcation,
it can serve to amplify periodic signals whose frequency w ¢ is near the frequency
of Hopf bifurcation wy and dampen signals when wy is far from wy. This filter-
amplifier motif-like behavior is described in section “Periodic Forcing near Hopf
Bifurcation”.

Experiments by McCullen et al. [26] with a feed-forward chain consisting of
(approximately) identical coupled electronic circuits whose cells are decidedly not
in normal form but with sinusoidal forcing confirm the band-pass filter role that a
feed-forward chain can assume and the expected growth rates of the output. Addi-
tionally, simulations, when the system is in Hopf normal form and the forcing is
spiking, also confirm the behavior predicted for the simplified setup. These results
are discussed in sections “Simulations” and “Experiments” under “Periodic Forcing
of Feed-Forward Chains”, and motivate the need for a more general theory of pe-
riodic forcing of systems near Hopf bifurcation. We note that the lack of a general
theory is more than just a question of mathematical rigor.

Analysis and simulation of periodic forcing of systems near Hopf bifurcation of-
ten assume that the forcing is small simple harmonic or sinusoidal forcing se'®/?
and that the system is in the simplest normal form for Hopf bifurcation (namely,
the system is in third order truncated normal form and the cubic term is assumed to
be real). A supercritical Hopf bifurcation vector field can always be transformed by
a smooth change of coordinates to be in normal form to third order and the cubic
term itself can be scaled to be —1 + iy. Simulations of a system in normal form for
Hopf bifurcation, but with y # 0 show phenomena not present in the simplest case
(see “Simulations” under “Periodic Forcing near Hopf Bifurcation”). In particular,
the amplitude of the response as a function of wy can be asymmetric (if y # 0)
and have a region of multiple solutions (if |y| is large enough). Asymmetry and
multiplicity have been noted by several authors. Bogoliubov and Mitropolsky [3]
analyze the sinusoidally forced Duffing equation and find multiplicity as the fre-
quency of the forcing is varied; Jordan and Smith [10] also analyze the forced
Duffing equation and find multiplicity as the amplitude of the forcing is varied; and
Montgomery et al. [27] see asymmetry in a forced system near Hopf bifurcation.

In section “Asymmetry and Multiplicity in Response Curve” we show that asym-
metry in the response curve occurs as w s is varied whenever y # 0 and that there
are precisely two kinds of response curves. In Theorem 1 we use singularity theo-
retic methods to prove that multiple solutions occur in a neighborhood of the Hopf
bifurcation precisely when |y| > +/3.

Additionally, when w ¢ is sufficiently close to wg, Kern and Stoop [23] and
Eguiluz et al. [7] together show that with a truncated normal form system and
harmonic forcing the amplitude of the resulting periodic solution is of order e3.
We make this result more precise in section “Scalings of Solution Amplitudes”.
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Consequently, in the feed-forward chain the amplitude of the periodic forcing can

be expected to grow as g3 in the second cell and &5 in the third cell. This expecta-
tion is observed in the simulations in section “Simulations” under “Periodic Forcing
of Feed-Forward Chains” even when the forcing is spiking. A general theory for the
study of periodic solutions occurring in a periodically forced system near a point of
Hopf bifurcation is being developed in [34].

The efficiency of band-pass filters is often measured by the Q-factor. We intro-
duce this concept in section “Q-factor’” and show, in forced normal form systems,
that the Q-factor scales linearly with the Hopf frequency. We verify this point with
simulations and note the perhaps surprising observation that spiking forcing seems
to lead to higher Q factors than does sinusoidal forcing.

In recent years many proposed models for the auditory system have relied on
the periodic forcing of systems near points of Hopf bifurcation, and a general the-
ory for periodic forcing of such systems would have direct application in these
models. In particular, Hudspeth and collaborators [6, 7, 18, 19] have considered
models for the cochlea that consist of periodically forced components that are
tuned near Hopf bifurcation. We discuss these models in section “Cochlear Mod-
eling”. In particular, we note that an asymmetry in the experimentally obtained
response curves from cochlea is consistent with what would have been obtained
in the models if the cubic term in the Hopf bifurcation was complex. Biophysi-
cally based cochlear models are sufficiently complicated that asymmetry could be
caused by many factors. To our knowledge, multiple solutions in the cochlear re-
sponse curve have not been observed; nevertheless, in section “Hopf Models of the
Auditory System”, we speculate briefly on the possible meaning of such multiplic-
ity. In section “Two-Frequency Forcing”, we briefly discuss some expectations for
two-frequency forcing that are based on simulations.

Synchrony-Breaking Hopf Bifurcations

We begin with a discussion of Hopf bifurcations that can be expected in systems of
the form (1). The coordinates in f(u, v, A) are arranged so that u is the vector of in-
ternal cell phase space coordinates and v is the vector of coordinates in the coupling
cell. Thus, the k x k matrix @ = £,(0, 0, 0) is the linearized internal dynamics and
the k x k matrix 8 = £,(0,0,0) is the linearized coupling matrix. The Jacobian
matrix for (1) is

a+p 0 0
J = B a 0. (2)
0 B «

Synchrony-breaking bifurcations correspond to bifurcations where the center sub-
space of J does not intersect the synchrony subspace S. Note that for y € R*
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y (@ + By
Jly|=|(e+By
y (¢ + By

Thus, the matrix of J|S is just @ + B and a synchrony-breaking bifurcation occurs
if some eigenvalue of J has zero real part and no eigenvalue of @ + f has zero real
part. We focus on the case where the synchrony-breaking bifurcation occurs from a
stable synchronous equilibrium; that is, we assume:

(H1) All eigenvalues of « + B have negative real part.

The lower diagonal block form of J shows that the remaining eigenvalues of J
are precisely the eigenvalues of o repeated twice. The generic existence of double
eigenvalues would be a surprise were it not for the the restrictions placed on J by the
network architecture pictured in Fig. 1. Synchrony-breaking Hopf bifurcation occurs
when

(H2) « has simple purely imaginary eigenvalues +wyi, where wy > 0, and
all other eigenvalues of « have negative real part.

The real part restriction on the remaining eigenvalues just ensures that bifurcation
occurs from a stable equilibrium. In fact, in this chapter, we only consider the
case where the internal dynamics in each cell is two-dimensional, that is, we as-
sume k=2.

It was observed in [12] and proved in [8] that generically synchrony-breaking
Hopf bifurcations lead to families of periodic solutions x*(¢) = (0, xé (1), xé (1)),
where the cell 2 amplitude |x§| grows at the expected rate of A2 and the cell 3

amplitude |x§| grows at the unexpected rate of A6 Thus, near bifurcation, the am-
plitude of the third cell oscillation is much bigger than the amplitude of the second
cell oscillation. An example of a periodic solution obtained by simulation of such
a coupled-cell system near a point of synchrony-breaking Hopf bifurcation is given
in Fig. 2.
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Fig. 2 Periodic solution near a synchrony-breaking Hopf bifurcation in the feed-forward chain.
The first coordinate in each cell is plotted. Cell 1 is constant at O (dotted curve); cell 2 is the smaller
signal (dashed curve); and cell 3 is the larger signal (solid curve) (see Figure 12 in [12])
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The large growth in cell 3 can be understood as a result of resonance in a non-
linear system. To see this, observe that assumption (H1) implies that x; = O is a
stable equilibrium for the first equation in (1). Thus, the asymptotic dynamics of the
second cell is governed by the system of differential equations

X2 = f(x2,0,4). 3)

Assumption (H2) implies that the system (3) undergoes a standard Hopf bifurcation
at A = 0. In addition, we assume

(H3) (3) undergoes a generic supercritical Hopf bifurcation at A = 0.

The consequence of assumption (H3) is that for A > 0 the system (3) has a unique
small amplitude stable periodic solution x% (t) whose amplitude grows at the ex-

pected rate A2 and whose frequency is approximately wy.
It follows from (H3) that the asymptotic dynamics of the cell 3 system of differ-
ential equations reduces to the periodically forced system

X3 = f(x3,x2 (1), A). 4)

Since the system x3 = f(x3,0, A), which is identical to (3), is operating near a Hopf
bifurcation with frequency wy and the periodic forcing itself has frequency near wy;
it follows that (4) is being forced near resonance. Therefore, it is not surprising that
the amplitude of cell 3 is greater than that of cell 2. It is not transparent, however, that
cell 3 will undergo stable periodic oscillation and that the growth of the amplitude

of that periodic solution will be A 6. These facts are proved in [8, 12].

Remark 1. Itis natural to ask what happens at synchrony-breaking Hopf bifurcation
if extra cells are added to the feed-forward chain. The answer is simple: periodic
solutions are found whose cell j amplitude grows at a rate that is the cube root of
the growth in the amplitude of cell j — 1; that is, the amplitude of cell 4 grows at

1
the rate A 18, etc.

Remark 2. Tt was shown in [12] that the periodic solution in (1), that we have just
described can itself undergo a secondary Hopf bifurcation to a quasiperiodic solu-
tion (see Fig. 3). This observation leads naturally to questions of frequency locking
and Arnold tongues, which are discussed in Broer and Vegter [4].

Periodic Forcing of Feed-Forward Chains

An important characteristic of a network motif is that it performs some function [1].
Numerical simulations and experiments [26] with identical coupled circuits support
the notion that the feed-forward chain can act as an efficient filter-amplifier, and



The Feed-Forward Chain as a Filter-Amplifier Motif 101

-33
10219 : : : :
— 5 T
1y
0.
-5 L L L L
0 20 40 60 80 100
1 : : : :
-1 L L L L
0 20 40 60 80 100
2 : : : :
_2 . . . .
0 20 40 60 80 100

Fig. 3 ([12, Figure 13]) Quasiperiodic solution near a secondary bifurcation from a periodic solu-
tion obtained by synchrony-breaking Hopf bifurcation in (1)

Fig. 4 The feed-forward

chain Eg(wft)C@ > @ _>@

hence be a motif. However, the general theoretical results that support this assertion
have been proved only under restrictive assumptions. It this section, we present
numerical and experimental evidence in favor of the feed-forward chain being a
motif.

We assume that the feed-forward chain in Fig. 1 is modified so that a small am-
plitude ¢ periodic forcing of frequency w ¢ is added to the coupling in the first cell
(see Fig.4). We assume further that there is a bifurcation parameter A for the inter-
nal cell dynamics that is tuned near a point of Hopf bifurcation. The question we
address is: What are the amplitudes of the responses in cells 2 and 3 as a function
of the forcing frequency w s ? Due to resonance that response should be large when
the forcing frequency is near the Hopf frequency and small otherwise.

Simulations

The general form of the differential equations for the periodically forced feed-
forward chain is
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X1 = f(x1,x1 +egwrt), A)
X2 = f(x2,x1,4) ()
X3 = f(X3,X2,)&)

where x; € RF is the phase variable of cell j, g : R — R¥ is a 2 periodic forcing
function, and A is a bifurcation parameter for a Hopf bifurcation.

To proceed with the simulations we need to specify f and g. Specifically, we
assume that the cell dynamics satisfy:

(B1) The internal cell phase space is two-dimensional and identified with C,
(B2) The internal cell dynamics is in truncated normal form for Hopf bifurcation,
(B3) The Hopf bifurcation is supercritical so that the origin is stable for A < 0,
(B4) The cubic term in this normal form is real, and

(BS) The coupling is linear.

In addition, we normalize the cubic term to be —1 and simplify the coupling to be
—y; that is, we assume

fy,A) = A+ oni—|zHz—y (6)

where z, y € C. We assume that A < 0 is small so that the internal dynamics is
tuned near the point of Hopf bifurcation.

We will perform simulations with two types of forcing: simple harmonic and
spiking (see Fig.5). In simple harmonic forcing g(z) = e'’. In spike forcing g is
obtained numerically as a solution to the Fitzhugh—Nagumo equations

b = 6.4 — 120m3h(v — 115) — 36n*(v + 12) — 0.3(v — 10.5989),

) (N
n=a,(1—n)—PBun,
1 2
0.8
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Fig. 5 First coordinate of time series of 2x-periodic forcings. (Left) Simple harmonic forcing
cos t. (Right) Spike forcing obtained from the Fitzhugh—-Nagumo equations (7).
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where
h=08—n m=an/(Cm~+ Bm) o = 0.1(25 — v)el~(25-1/10

Bm = 4e™/18 o, = 0.01(10 — v)e!~10=V/10 g — (). 125¢7"/80,

To obtain g(¢) we normalize (v(¢), n(t)) so that it has mean zero and diameter 2. The
first coordinate of the time series for the spiking forcing is shown in Fig. 5 (right).
This time series is compared to simple harmonic forcing in Fig. 5 (left).

Recall that for sufficiently small ¢, periodic forcing of amplitude ¢, of a system
of ODEs near a stable equilibrium, always produces an order ¢ periodic response.
The frequency of the response equals that of the forcing. Hence, (H1) implies that
the periodic output x; (¢) from cell 1 will be of order & with frequency w .

The periodic output x;(¢) is fed into cell 2. Although A < 0 implies that the
origin in the cell 2 equation is stable, the fact that A is near a bifurcation point
implies that the rate of attraction of that equilibrium will be small. Thus, only if ¢ is
very small will the periodic output of cell 2 be of order ¢.

Because of resonance, we expect that the amplitude of x,(¢) will be large when
wy is near wy. Indeed, Kern and Stoop [23] observe that when the differential
equation f is (6) with ¢ > |A|§, then the growth of the periodic output will be
of order £3. We revisit this point in section “Periodic Forcing near Hopf Bifurca-
tion” when we discuss some of the theory behind the amplification. Moreover, we
can expect the amplitude of x3(¢) to be even larger in this range; that is, we can
expect the amplitude of cell 3 to grow at the rate €.

To illustrate these statements we perform the following simulation. Fix ¢ > 0
and A < 0, and plot the amplitudes of the periodic states in cells 1, 2, and 3 as a
function of the forcing frequency w . The results are given in Fig. 6. Note that the
input forcing is amplified when wy ~ wy and that the qualitative results do not
depend particularly on the form of g. In particular, note that the response curves are
symmetric in w f = wpy.

Harmonic Forcing: €=0.03 A=-0.01

0.4
0.6 0.35
05 03
[0} o 025
go4 3
= £ o2
£03 PN £
S . AN @ 0.15
’ Y
0.2 ’ N
R . 0.1
0.1 - o 0.05
o 0

Spike Forcing: €=0.03 A=-0.01

Fig. 6 Amplitudes of cells 1 (dotted curve), 2 (dashed curve) and 3 (solid curve) as a function
of forcing frequency; A = —0.01, ¢ = 0.03, oy = 1, 0.7 < w; < 1.3. (Left) simple harmonic
forcing; (right) spike forcing
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Fig.7 Log-log plot of amplitudes of response in cells 1 (), 2 (X), and 3 (+), as a function of ¢, for
harmonic forcing and spiking forcing. Also shown are lines of slope 1, 1/3, and 1/9 (from bottom
to top). Parameters are w; = wy = 1, A = —0.01, (a) 0.0005 < & < 0.36, (b) 0.0025 < & < 0.9

In Fig. 7, we show the amplitudes of the responses in the three cells as a function
of &, for both harmonic and spiking forcing. In both cases we see a similar pattern
of growth rate of amplitude. The amplitude in the first cell grows linearly with e.
In the second cell, as ¢ increases, the growth rate tends toward “cube root,” that is
r ~ €'/3. Similarly in the third cell, for large enough &, we see r ~ £'/%. As ¢
increases from zero, there is a transition region into these regimes. This appears to
occur for different values of ¢ for the different types of forcing. However, since it
is not clear how one should define the “amplitude” of the spiking forcing, and we
have arbitrarily chosen to set the diameters of the two forcings equal, this is not
unexpected. We investigate the transition region for harmonic forcing more fully in
section “Periodic Forcing near Hopf Bifurcation”.

Experiments

McCullen et al. [26] performed experiments on a feed-forward chain of coupled
nonlinear modified van der Pol autonomous oscillators. Even though the McCullen
experiments were performed with a system that was not in normal form, the results
conform well with the simulations. The responses to a simple harmonic forcing with
varying frequency are shown in Fig. 8. Note the similarity with the simulation results
in Fig. 6. The plot on the right of Fig. 8 shows the expected cube root scaling in the
amplitude of cell 3 as a function of the amplitude cell 2.

Recall that a band-pass filter allows signals in a certain range of frequencies
to pass, whereas signals with frequencies outside this range are attenuated. As we
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Fig. 8 (Left) [26, Fig. 2]: Cells 2 and 3 amplitudes as a function of forcing frequency in oscillator
experiment. (Right) [26, Fig. 5]: Log—log plot of amplitudes of oscillations in cells 2 and 3 as a
function of forcing frequency near Hopf bifurcation point

have seen, the feed-forward chain can act as a kind of band-pass filter by exciting
small amplitude signals to an amplitude larger than some threshold only if the input
frequency is near enough to the Hopf frequency. To determine the frequency of an
incoming sound, the human auditory system should have the capability of acting
like a band-pass filter. As noted, several authors have suggested that the structure of
outer hair cells on the basilar membrane is tuned to be a linear array of coupled cells
each tuned near a Hopf bifurcation point but at different frequencies (see “Cochlear
Modeling”).

Periodic Forcing near Hopf Bifurcation

In section “Periodic Forcing of Feed-Forward Chains,” we discussed numerical sim-
ulations and experiments which suggest that the amplification results for forced
feed-forward chains near normal form Hopf bifurcation with sinusoidal forcing ap-
pear to hold even when the forcing is not sinusoidal or the system is not in normal
form. These observations motivate the need for a general theory of periodic forcing
of systems near Hopf bifurcation. In this section, we make a transition from study-
ing feed-forward chains to the simpler situation of periodic forcing of systems near
Hopf bifurcation.

In particular we show that when the cubic term in Hopf bifurcation has a suf-
ficiently large complex part, then multiple periodic solutions will occur as w ¢ is
varied near wy. The importance of the complex part of the cubic term in differ-
ent aspects of forced Hopf bifurcation systems was noted previously by Wang and
Young [33]. The existence of regions of multiplicity motivates the need for a gen-
eral theory of periodic forcing of systems near Hopf bifurcation. A detailed study
of these forced systems, based on equivariant singularity theory, is being developed
in [34].



106 M. Golubitsky et al.

Simulations

As in section “Periodic Forcing of Feed-Forward Chains,” we assume that the sys-
tem we are forcing is in truncated normal form. More precisely, we assume that this
system satisfies (B1-B3), but we do not assume that the cubic term is real. We also
assume that the forcing is additive so that the equation is

2= (A +ion)z + clz]*z + e, (8)
where A < 0 and ¢ > 0 are small, ¢ = cg + ic; and cg < 0. We can rescale 7 to set
cr = —1. The scaled equation has the form

=R +ion)z+ (=1 +iy)zz + '@, 9)
where y = —c;/ck.

We show the results of simulation of (9) when y = 0 (the case that is most often
analyzed in the literature) and when y = 10. Both simulations show amplification
of the forcing when wys ~ wy = 1. However, when y # 0, we find that there
can be bistability of periodic solutions. Figure 9 (right) shows results of two sets of
simulations, with different initial conditions. For a range of @ 7, there are two stable
solutions with different amplitude r = |z|.

Asymmetry and Multiplicity in Response Curve

It is well known that the normal form for Hopf bifurcation has phase shift symmetry
and hence that the normal form equations can be solved in rotating coordinates.

0.25
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0.05
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02 04 06 038 1 12 14 16 1.8 02 04 06 08 1 12 14 16 18
U.)f Wf

Fig. 9 Amplitudes of solutions as function of Hopf frequency of (9), withwy = 1, A = —0.0218,
e = 0.02. (Left) y = 0. (Right) y = 10; The o’s and X’s indicate two separate sets of simulations
with different initial conditions. For 0.35 < w, < 0.7, there are two stable solutions



The Feed-Forward Chain as a Filter-Amplifier Motif 107

Rotating coordinates can also be used in the forced system. Write (9) in rotating
coordinates z = ue! @~ where 6 is an arbitrary phase shift, to obtain

= A+ io)u+ (=1 + iy)|u?u — el

where @ = wy — w . Note that stationary solutions in u, for any 6, correspond to
periodic solutions z() with frequency w . We set it = 0 and solve

g) = A+ iw)u + (=1 + iy)|ul?u = el (10)

for any u and 6. Note that finding a solution to (10) for some 6 is equivalent to
finding u such that

lgw)? =& (11)
Note also that

lg@))? = (A + o®)|ul* + 2(@y — Dlul* + (1 + y?)|ul®.

That is, |g(«)|?> depends only on |u|?.
Set § = &% and R = |u|?. We can write (11) as

G(R: A, w,7.8) = (1+ )R> +2(wy — V)R> + (A + 0*)R—5§ =0. (12)

Since G(R;A,w,y,§) is invariant under the parameter symmetry (w,y) —
(—w,—y), we can assume y > 0. Additionally, if y = 0, then G(R; A, w,y, )
is invariant under the parameter symmetry @ — —o.

Fix A < 0,8 > 0and y > 0. We seek to answer the following question. Deter-
mine the bifurcation diagram consisting of solutions R > 0to (12) as w varies. Note
that variation of w corresponds to variation of either @ y or wy in the original forced
equation (8). In Fig. 10, we plot sample bifurcation diagrams of (12) for three values
of y. We see that as y is increased, asymmetry occurs in the bifurcation diagram,
ultimately leading to multiple solutions.

0.2 0.2 0.2,
0.18 0.18 0.18
0.16 0.16 0.16)
0.14 0.14 0.14
0.12 0.12 0.12

& oot = 04 < 0.1
0.08 0.08 0.08
0.06 0.06 0.06
0.04 0.04 0.04
0.02 0.02 0.02

£o
€o

w

@y=0 M) y= ©y=6

Fig. 10 Bifurcation diagrams of solutions to (12) for varying y. As y is increased, the response
curve becomes asymmetric, and as it is increased further, for some values of @ there are multiple
solutions. Parameters used are § = 0.01, A = —0.109
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We use bifurcation theory, in particular hysteresis points, to prove that multiplic-
ity occurs for arbitrarily small A < 0 and § > 0. Hysteresis points correspond to
points where the bifurcation diagram has a vertical cubic order tangent and such
points are defined by

GZGRZGRRZO and GQ);éO;éGRRR
See [13, Proposition 9.1, p. 94]. Multiplicity of solutions occurs if variation of y

leads to a universal unfolding of the hysteresis point. It is shown in [13, Proposi-
tion 4.3, p. 136] that y is a universal unfolding parameter if and only if

det (g‘*’ g‘”l’:) £ 0. (13)
Y Y

In this application of singularity theory we will need the following:

G=(1+y)R>+2(wy—MR*+ A +0>)R—-5=0, (14)

Gr =314+ y>)R* + 4(wy — MR+ (A*> + 0?) =0, (15)
Grr = 6(1 + YR + 4(wy — 1) =0, (16)
Grrr = 6(1 +y?) > 0, (17)
Gw = 2R(YR + w) # 0, (18)
and
Gwr = 2(2¥R + ), (19)
Gy =2R*(yR + w), (20)
Gyr = 2R(3YR + 2w). 21)

Note that the determinant in (13) is just G2, which is nonzero at any hysteresis
point. Hence, variation of y will always lead to a universal unfolding of a hysteresis
point and to multiple solutions for fixed w.

Theorem 1 For every small A < 0 and § > O there exists a unique hysteresis point
of Gat R = R:(8,1), w = we(8, 1), y = yc(8,A). Moreover,

we(8,0) = —/3(28)5  1.(8,0) =3  R.(5,0) = (i)3 RNCY))

Proof. We assert that (14)—(16) define R., w., y. uniquely in terms of § and A.
Specifically, we show that

Re(8,1) = (14-8;/2)3 > 0. (23)
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A+ V3w,
31 = : 24
Moreover, let
p(w) = ° — V310 + 120 — V313, (25)
Then w. (8, A) is the unique solution to the equation
plwe) = —6+/36. (26)

We can compute these quantities explicitly when A = 0. Specifically, (26) reduces
w2 = —6+/38. It is now straightforward to verify (22).
To verify (24) combine (15) and (16) to yield

_ 2wy =) nd R = A2+ w?

3(1+ y2) =31 492) @7

More precisely, the first equation is obtained by solving Ggg = 0 and the second by
solving RGrr— G g = 0. Multiplying the first equation in (27) by R and substituting
for R? in the second equation yields

2(wy — AR = —(A% + 0?). (28)
Substituting (28) into (14) yields

R3 )

= 29
1+y2 9
thus verifying (23).
We eliminate R from (27) in two ways, obtaining
8 —2)3 4 —2)?
_ (wy ) _ an (wy ) =22 + @2 (30)
27(1 + y2)? 3(1+y?)

To verify the first equation in (30), cube the first equation in (27) and use (29) to
substitute for R3. To verify the second equation, square the first equation in (27) and
use the second equation in (27) to substitute for R?.

Next we derive (24). Rewrite the second equation in (30) to obtain

0?(y? = 3) —8wyA + A%(1 —3y?) =0, (31)
which can be factored as

(y(a) —V3)— (A + «/3(1))) (y(w £ V30 — (L — «/350)) —0. (32
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Thus, potentially, there are two solutions for y,; namely,

A 3
_ A+ ow 33)
o —0o~/3A
where 0 = %1, depending on which bracket is chosen in (32).
Next use (32) to show that
)&2 2
oy —r=v3 T (34)
ow— /31
Squaring the second equation in (30) and substituting the first yields
8(wy — )3
A%+ 0%)? = 6(wy — A = —68(wy — A). 35
G2+ =60y =)\, = 65y —2) (35)
Next use (34) to eliminate wy — A. A short calculation leads to
(% + A2) (0w — V/31) = —6+/36. (36)

Since § > 0, we must have ow — +/31 < 0, or ow < /31 < 0.

We claim that for y > 0, we must choose 0 = +1. Since A < 0 and ow < 0,
the numerator of (33) is negative. If o = —1, then the denominator of (33) is 0 (cw—
V/3X) > 0, since 0w — +/31 < 0. Hence y < 0. We thus write 0 = +1 and verify
(24).

We claim that given § and A there is a unique solution w to (36). Observe that the
cubic polynomial in @ on the left side of (36) is (25). Since

P (@) = (V3w — 1) (37)

p(w) is monotonic; and there is a unique solution w,, as claimed.
Finally, we must show that G, is nonzero at R., w., y.. We do this by showing
that
Ve(§,A)Rc(8,A) + wc(8,A) <O.

By cubing the first equation in (30) and dividing by the square of the second equa-
tion, we can eliminate the wy — A factor and show that

o _ A+ o)

Hre=" s
Using this alongside (29) we write R, as
§YE s 387 38

c

T+ T el Aol
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Then use (34) to substitute for y, to find

38 A+3o. A+ V3w

Roye = - ,
Ve T 02 4 w2 o, — /30 23

where we have used (36) to simplify the denominator. Therefore

V3w, — A 1( 1 ) 1
Reye + w0, = = we — Al < we —/31) <0,
v 243 2 V3 2< )

where the penultimate inequality follows because j3k > /3. O

Scalings of Solution Amplitudes

Kern and Stoop [23] and Eguiluz et. al [7] consider the system (9) with y = 0, and
observe that there are regions of parameter space in which the input signal (forcing)
is amplified — that is, the solution z(¢) = re'@*% has an amplitude  which scales
like £/3.

Specifically, Eguiluz et. al [7] specialize (9) exactly at the bifurcation point (A =
0) and show that the solution has an amplitude r ~ e'/3 whenwy = @ 7 Away from
resonance, (wg # ), they show that for & small enough (small enough forcing),
the response r ~ ¢/|wu — wr|. Kern and Stoop [23] consider forcing exactly at
the Hopf frequency (i.e., oy = wy), and show that the solution has an amplitude
r ~ ¢'/3 when A = 0, and when A < 0 the amplitude r ~ /||

In the following, we make precise the meaning of “cube-root growth,” and ad-
ditionally, do not assume y = 0. We show that, in some parameter regime, the
response r can be bounded between two curves, specifically, that

(0) ==
<r<esl,
V2

that is, r lies between two lines in log—log plots. In Fig. 11, we show the result of
numerical simulations of (9) as ¢ is varied along with the two lines given above.
For large enough ¢, the response amplitude lies between these lines. Compare also
with Fig.7 — we could perform a similar process here of bounding the amplitudes
of response to determine regions of different growth rates.

The width of this region is in some sense arbitrary — choosing a different lower
boundary would merely result in different constants in the proof of the lemmas given
below. We consider here only the scaling of the amplitude of the maximum response
(as a function of w), but note that our calculations can easily be extended beyond
this regime.
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log e

Fig. 11 For “cube root growth,” the amplitude r is bounded by two straight lines in a plot of
logr vs. loge

For consistency with the previous section, we work with R = r? and § = &2; it
is clear that similar relations will hold between R and §. Recall

GR: A, 0,7.8) = (1 +yH)R? +2(wy — M)R* + (A2 + w?)R — 6,

where = wy — o ¢. The amplitude of solutions is given by G(R; A, w, y,8) = 0.
Consider the amplitude as w is varied, then the maximum response R occurs when
Gy, = 0, that is, at o = —yR, which is nonzero for y # 0. At y = 0, the response
curve is symmetric in w, and so the maximum must occur at w = 0.
Write
GR: A, w,9,8) =T(R; A, w,y) — 8, (38)

so the amplitude squared of the response, R, is related to the amplitude squared of
the forcing, §, by
F'(R;A,w,y) =34.

Consider the function I'(R; A, w, y) evaluated at the value of w for which the
maximum response occurs, that is, compute

[(R;A,—yR,y) = R® —2AR? + A?R,

which turns out to be independent of y, and so write G (R; A) = T'(R; A, —yR, y).
Moreover, since A < 0, G (R; A) is monotonically increasing in R and hence invert-
ible. Therefore, the response curve has a unique maxima for all y.

Write H(8; 1) = G (R;A)"!. Then for given §, A, the maximum R satisfies
R ="H(5;M).

Observe that for |R| small, G (R; 1) =~ A2R, and for |R| large, G (R; L) ~ R3.
Therefore, for |§| small we expect R = H(8;A) ~ §/A2%, and for |§| large, R =
H(8; A) ~ §1/3. We make these statements precise in the following lemmas.
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Lemma 1. If|A| < 0.33 §1/3, then

$ 1/3
(2) < H@:A) < 83,

Remark 3. The constant 0.33 in the statement of Lemma 1 can be replaced by k1,
the unique positive root of y2 + 22/3y —272/3 = (. The hypothesis in this lemma
can then read || < k18'/3. In the proof we use k; rather than 0.33.

Proof. Since G (R; A) is monotonic increasing, we need to show that

g ((i)lB;A) <§<gG (81/3;1) )

Since A < 0 and 6 > 0 the second inequality follows from
G (813 0) = 6 22677 4 225"/ > 5.

For the first inequality, we have

5\'/? 5, §1/3
. _ 9 51/34¢2/3 2
Q((z) ,A)_z 27 °A8% 7 A S1/3°

We have assumed —A < k181/3; so

LAY 8 1/3 5 0 1 1 2/3 5
g((z),l)<2+2 k15+k121/3=21/3 22/3+2 ki +ki)é =2,
since k? + 223k = 272/3, .
Lemma 2. [f|2] > 1.06 8"/, then
$ 8

2 <H@G;A) < s

Remark 4. The constant 1.06 in the statement of Lemma 2 can be replaced by k-,

where y = k3 is the unique positive root of 4y? — 4y — 1 = 0. The hypothesis in
this lemma can then read |A| > k»81/3. In the proof we use k5 rather than 1.06.

Proof. Since G (R; A) is monotonic increasing in R, we have to show that

5 5
Q(ZAZ,A) <8<Q(AZ,A).
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Since A < 0 and § > 0 the second inequality follows from

) 53 52
g(xz;)‘) = 16_213 +8>38.

For the first inequality, we have

5 FERF A
A = — .
: (212 ) 816~ 223 T 2

We assumed A° > k$62 and —A> > k335. So

M. Golubitsky et al.

§ 83 §2 6 1
g(w;x) (4kS + 4k3 4+ 1)8 = 6,

< =
8ks2 T 2k25 T2 T sks

since 4k§ +1= 4k§.

|

Remark 5. Note that k1 ~ 0.33 and k> ~ 1.06, so k1 < ko. It follows that the
region of linear amplitude (&) growth is very small, whereas the region of cube root
growth is quite large. In Fig. 12, we illustrate this point by graphing the curves that
separate the regions; namely ¢ = (1/k)%? (dashed curve for cube root growth)

1

and ¢ = (1/ k)32 (continuous curve for linear growth). Since klz <, the linear

and cube root growth regions are disjoint.

1.8

1.6} N

1.4f N
1.2} N

w At N

0.6+ ~ . cube root growth

0.4t N

0.2

linear growth

0 L L L L I —
-05 -0.45 -04 -0.35 -0.3 —&.25 -0.2 -0.15 -0.1 -0.05 O

Fig. 12 Regions of linear and cube root growth in the A-¢ plane
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Remark 6. The maximum amplitude r satisfies G (rz; A) = g2, where G (R; 1) isan
increasing function of R. Hence r increases as ¢ increases. Recall that the maximum
r occurs at @ = —yr?2. Hence with fixed parameters A < 0, y # 0, the forcing
frequency for which the maximum amplitude occurs, varies as the amplitude of the
forcing (¢) increases.

Remark 7. Tt is simple to extend this type of reasoning into regions away from
the maximum amplitude of response, to find linear growth rates for w far from the
maximum response. However, the algebra is rather messy and so we do not include
the details here.

Q-Factor

Engineers use the Q-factor to measure the efficiency of a band-pass filter. The Q-
factor is nondimensional and defined by

wmax

Q:dw

where wnax 1s the forcing frequency at which maximum response amplitude 7y,
occurs, and dw is the width of the amplitude response curve when it has half the
maximum height. In Fig. 13, we give a schematic of a response curve and show how
Q is calculated.

The larger the Q, the better the filter. Quantitatively, there is a curious observa-
tion. It can be shown that for our Hopf normal form, Q varies linearly with wy.
The response curve in w—r space is defined implicitly by (12) (recall R = r2,
8 = &?). This curve depends only on @ (noton @ s or wy independently). Therefore,

dw

Wmaa: L(Jf

Fig. 13 Schematic of a response curve as w  is varied, for fixed wy. The Q-factor is wpax /dw
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as wy varies, the curve will be translated, but its shape will not change. Hence the
width of the curve, dw, is independent of wy.

As shown in section “Scalings of Solution Amplitudes,” the maximum response
rmax 1S independent of wy. The position of the maximum response is given by
w=—yr2 ,oros = wy + yr2, . Hence

2
wy + Y nax

Q= dw

and so depends linearly on wy.

In addition, we find from simulations that for any given wy the Q-factor of the
system is better for spiking forcing than for sinusoidal forcing. Figure 14 shows
results of simulations of the three cell feed-forward network from section “Sim-
ulations” under “Periodic Forcing of Feed-Forward Chains” using sinusoidal and
spiking forcing. From these figures, we see two, perhaps surprising, results. First,
that the Q-factor for spiking forcing is almost five times higher than that of sinu-
soidal forcing. Second, that for both forcings, the Q-factor for cell 3 is less than that
of cell 2.

We explain the first observation by the following analogy. Consider the limit of
very narrow spiking forcing, on a damped harmonic oscillator, for example, pushing
a swing. Resonant amplification can only be achieved if the frequency of the forcing
and the oscillations exactly match. If they are slightly off, then the forcing occurs at
a time when the swing is not in the correct position and so only a small amplitude
solution can occur.

We further note that although the output from a cell receiving spiking forcing is
not sinusoidal, it is closer to sinusoidal than the input. That is, as the signal proceeds
along the feed-forward chain, at each cell the output is closer to sinusoidal than the
last. Combining this observation with the first explains why the Q-factor of cell 3
should be less than that for cell 2.

Harmonic Forcing: €¢=0.08 »=-0.01

Spike Forcing: £=0.08 A=-0.01

120 700
- %-Cell 1 ’ ~ %- Cell1
100} | - o- Cell 2 800F | _ o- Cell2 L7
- - Cell 3| - - a- Cell3 L7
80 o’ - 500 -
N P _ o -
g e S 400 7 s
_57_1 60 - E e /,/’
© o - & 300 -4
40 -2 % o T
g -7 200 - i
% -7 _a’
20 B BT Rere
- L% 100 e |
0 g~ o & $---;--" " S T
0 10 20 30 40 50 60 70 80 o 10 20 30 40 50 60 70 80
Wy Wy

Fig. 14 The figures show the Q factor as wy is varied for sinusoidal forcing (left) and spiking forc-
ing (right) for each cell in the feed-forward network from section “Simulations” under “Periodic
Forcing of Feed-Forward Chains”. In these simulations A = —0.01 and ¢ = 0.08



The Feed-Forward Chain as a Filter-Amplifier Motif 117

Cochlear Modeling

The cochlea in the inner ear is a fluid filled tube divided lengthwise into three cham-
bers. The basilar membrane (BM) divides two of these chambers and is central to
auditory perception. Auditory receptor cells, or hair cells, sit on the BM. Hair bun-
dles (cilia) protrude from these cells, and some of the cilia are embedded in the
tectorial membrane in the middle chamber. For reviews of the mechanics of the
auditory system, see [2,17,29].

When a sound wave enters the cochlea, a pressure wave in the fluid perturbs the
BM near its base. This initiates a wave along the BM, with varying amplitude, that
propagates toward the apex of the cochlea. The envelope of this wave has a maxi-
mum amplitude, the position of which depends on the frequency of the input. High
frequencies lead to maximum vibrations at the stiffer base of the BM, and low fre-
quencies lead to maximum vibrations at the floppier apex of the BM. As discussed
in [22], each point along the BM oscillates at the input frequency. As the sound
wave bends the BM, the hair cells convert the mechanical energy into neuronal sig-
nals. There is evidence [6,23,25] that the oscillations of the hair cells have a natural
frequency which varies with the position of the hair cell along the BM.

Experiments have shown that the ear has a sharp frequency tuning mechanism
along with a nonlinear amplification system — there is no audible sound soft enough
to suggest that the cochlear response is linear. Many authors [5-7,21,23,27,28] have
suggested that these two phenomena indicate that the auditory system may be tuned
near a Hopf bifurcation. Detailed models of parts of the auditory system (Hudspeth
and Lewis [18,19], Choe, Magnasco, and Hudspeth [6]) have been shown to contain
Hopf bifurcations for biologically realistic parameter values.

Hopf Models of the Auditory System

Most simplified models model a single hair cell as a forced Hopf oscillator, similar
to (9), but with the imaginary part of the cubic term (y) set equal to zero. As we
have shown in section “Periodic Forcing near Hopf Bifurcation”, this assumption
leads to nongeneric behavior, in particular, that the response curve is symmetric in
. In fact, a center manifold reduction of the model of Hudspeth and Lewis [18,19]
by Montgomery et al. [27] finds that y # 0. Specifically, they find y = —1.07.

Furthermore, the response curve in the auditory system has been shown exper-
imentally (see [29] and references within) to be asymmetric. Two papers [23, 25]
have considered the dynamics of an array of Hopf oscillators (rather than the single
oscillators studied by most other authors). They achieve the aforementioned asym-
metry through couplings between the oscillators via a traveling wave which supplies
the forcing terms. This complicates the matter significantly, so that analytical results
cannot be obtained.

However, we note that merely having a complex, rather than real, cubic term
in the Hopf oscillator model would have a similar effect. The value of y found
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by Montgomery et al. [27] is in the regime where we observe asymmetry, but not
multiplicity of solutions. Multiple solutions in this model could correspond to per-
ception of a sound of either low or high amplitude for the same input forcing. We
have seen no mention of this phenomena in the literature.

Two-Frequency Forcing

It is clear that stimuli received by the auditory system are not single frequency, but
contain multiple frequencies. If each hair cell is to be modeled as a Hopf oscillator,
we are interested in the effect of multifrequency forcing on an array of Hopf oscil-
lators. We give here some numerical results from an array of N uncoupled Hopf
oscillators:

2 = A +ion()z+ (=1 +ip)lzj|?z; +eg®). j=1.....N, (39)

where wy(j) = w1 + jAw, for some wy, Aw, that is, the Hopf frequency in-
creases linearly along the array of oscillators. Note that all oscillators receive the
same forcing.

Consider forcing which contains two frequency components, for instance:

glt) = e + Vo, (40)

In Fig. 15, we plot the mean amplitude of the responses of each oscillator in the
array. The response clearly has two peaks, one close to each frequency component
of the input.

0.4

0.35}
0.3t

0.25¢

0.15¢
0.1t

0.05|

Fig. 15 The mean amplitude for each of an array of forced Hopt oscillators (39), with forcing
given in (40). The phase plane portraits for the outputs of the oscillators withwy = 1 and wy = 1.6
are shown in Fig. 16. Remaining parameters are A = —0.01, ¢ = 0.05, y = —1
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Fig. 16 The phase plane portraits for Hopf oscillators with wy = 1 (left) and wy = 1.6 (right),
with forcing as given in (40). The left figure is almost periodic, but the right is clearly quasiperiodic.
Remaining parameters are A = —0.01, ¢ = 0.05, y = —1

Note also that the forcing g(¢) is quasiperiodic. In those oscillators which have
a Hopf frequency close to one component of the forcing, only that component is
amplified. This results in an output which is close to periodic. In Fig. 16 we show
the resulting phase plane solutions from two of the Hopf oscillators. The first has
wy = 1, so the first component of the forcing is amplified, and the solution is close
to periodic. The second has wy = 1.6, which is far from both 1 and /5. Hence
neither component is amplified and the output is quasiperiodic.
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