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Abstract Gap-junction coupling is ubiquitous in the brain, particularly between
the dendritic trees of inhibitory interneurons. Such direct nonsynaptic interaction
allows for direct electrical communication between cells. Unlike spike-time driven
synaptic neural network models, which are event based, any model with gap junc-
tions must necessarily involve a single neuron model that can represent the shape
of an action potential. Indeed, not only do neurons communicating via gaps feel
super-threshold spikes, but they also experience, and respond to, sub-threshold volt-
age signals. In this chapter, we show that the so-called absolute integrate-and-fire
model is ideally suited to such studies. At the single neuron level voltage traces
for the model may be obtained in closed form, and are shown to mimic those of
fast-spiking inhibitory neurons. Interestingly, in the presence of a slow spike adap-
tation current, the model is shown to support periodic bursting oscillations. For both
tonic and bursting modes, the phase response curve can be calculated in closed
form. At the network level we focus on global gap junction coupling and show
how to analyze the asynchronous firing state in large networks. Importantly, we are
able to determine the emergence of nontrivial network rhythms due to strong cou-
pling instabilities. To illustrate the use of our theoretical techniques (particularly the
phase-density formalism used to determine stability) we focus on a spike adaptation
induced transition from asynchronous tonic activity to synchronous bursting in a
gap-junction coupled network.

Introduction

Gap-junction coupling is known to occur between many cell types, including for
example pancreatic-ˇ cells [13], heart cells [15], astrocytes [6], and neurons [22].
In this latter context, these junctions are primarily found between inhibitory cells
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[26]. Interestingly, interneurons are known to play a key role in the generation of
hippocampal and cortical rhythms, such as those at gamma frequency (30–100 Hz)
[9, 21]. Gap junctions allow for the direct electrical communication between cells,
and without the need for receptors to recognize chemical messengers are much
faster than chemical synapses at relaying signals. The synaptic delay for a chemical
synapse is typically in the range 1–100 ms, while the synaptic delay for an electri-
cal synapse may be only about 0:2ms. There is now little doubt that gap junctions
play a substantial role in the generation of neural rhythms [5, 28], both functional
[1, 5, 25, 28] and pathological [17, 51]. One natural question therefore is how does
the presence of gap-junction coupling affect synchronous neuronal firing [4,24,40].
Independent experimental studies have proposed that gaps synchronize neuronal
firing even in the absence of chemical synapses [16, 37]. However, other studies
have demonstrated that synchrony can result from the interplay of electrical and
chemical signaling and that gaps alone are not sufficient for obtaining synchronous
activity [7, 47]. Contradictory results have been reported in the case of inspiratory
motorneurons, where gaps desynchronize neural activity whereas synaptic inhibi-
tion alone promotes synchrony [8]. From a theoretical perspective the theory of
weakly coupled oscillators has often been used to understand how gap junction cou-
pling promotes synchrony or antisynchrony depending on the nature of the neural
oscillator and the shape of the action potential [18, 31, 32, 35, 36, 41, 42, 46]. By
its very nature, however, this sort of approach cannot tackle gap-induced variations
in single neuron firing rate and is thus not ideally suited to answering questions
about how the strength of gap junctions contributes to coherent neuronal behavior.
Thus, we are led to the search for a tractable network model that can be analyzed in
the strong coupling limit. In this chapter, we show how one can make progress in the
strong coupling regime for a certain class of spiking neuron model that mimics the
behavior of fast-spiking interneurons. Importantly, we are able to quantify a tran-
sition from asynchronous tonic spiking to synchronized bursting oscillations in a
large globally gap-junction coupled network.

The layout of this chapter is as follows. In section “The Absolute Integrate-and-
Fire Model,” we introduce our single neuron model of choice, namely a nonlinear
integrate-and-fire model, with a piece-wise linear nonlinearity. We show that this
model can mimic the behavior of a fast-spiking interneuron whilst being analyti-
cally tractable. In illustration, we calculate periodic orbits and the phase response
curve in closed form. A simple model of spike adaptation is used to augment this
basic model so that it can also fire in a burst mode. Next in section “Gap-Junction
Coupling,” we pursue the analysis of large globally gap-junction coupled networks.
The focus here is on asynchronous states that generate a constant mean field signal.
These are calculated in closed form and provide the starting point for a subsequent
stability analysis. This makes use of ideas originally developed by van Vreeswijk
[48] for the study of synaptic interactions. Importantly, we are able to generate the
instability borders in parameter space beyond which an asynchronous state is un-
stable to periodic temporal perturbations. Direct numerical simulations confirm the
correctness of our calculations and show that the dominant solution to emerge be-
yond an instability is one where the mean-field signal shows a classical bursting
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signature. Moreover, neurons in this state are synchronized at the level of their firing
rate, but not at the level of individual spikes. Finally in section “Discussion,” we dis-
cuss natural extensions of the work in this chapter.

The Absolute Integrate-and-Fire Model

The presence of gap-junctional coupling in a neuronal network necessarily means
that neurons directly “feel” the shape of action potentials from other neurons to
which they are connected. From a modeling perspective one must therefore be
careful to work with single neuron models that have an accurate representation of
an action potential shape. On the other hand it is also desirable to work with a
model that can be analyzed. A recent paper [12] advocates the use of piece-wise
linear planar models. As an alternative we consider here the use of a nonlinear
integrate-and-fire (IF) model. Indeed the quadratic IF model is a common choice
for computational studies (and unlike the leaky IF model does generate an action
potential shape). However for arbitrary time-dependent forcing formal closed solu-
tions are not known. A somewhat overlooked tractable nonlinear IF model is that of
Karbowski and Kopell [30], with a voltage dynamics given by

Pv D f .v/C I; (1)

subject to v ! vr if v D vth. Here the function f .v/ has a shape like jv � vsj and
hence the name absolute integrate-and-fire (aif) model, for some switch value vs.
The firing times T n, n 2 Z, are defined according to

T n D infft j v.t/ � vth I t � T n�1g: (2)

Because of the choice of a piece-wise linear form of the nonlinearity, the aif model
can be explicitly analyzed. To see that it is capable of generating behavior consistent
with that of a fast-spiking interneuron we compare it with a more detailed biophysi-
cal model. A generic model for a neocortical fast-spiking interneuron is that of Wang
and Buzsáki [52] (originally developed to describe CA1 hippocampal interneurons).
The kinetics and maximal conductances, which are Hodgkin and Huxley style, are
chosen so that the model displays two salient features of hippocampal and neocorti-
cal fast-spiking interneurons. The first being that the action potential is followed by
a brief after-hyperpolarization, and the second that the model fires repetitive spikes
at high frequencies. A plot of the response of this model to constant current injection
is shown in Fig. 1. In the same figure we also show response of the aif model with
the choice

f .v/ D
(
.v � vs/ v > vs

�˛.v � vs/ v � vs

; ˛ > 0: (3)
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Fig. 1 Top: Periodic orbit in the Wang–Buzsáki model with constant current injection I D 1.
Bottom: Periodic orbit in the aif model with vr D �65, vs D �50, vth D 25, ˛ D 0:03, and I D 1

It is clear that an appropriately parametrized aif model can indeed capture the
essential spike shape and frequency response of the more detailed biophysical
model. Note that for accurate numerical computation of the spike times where
v � vs (and solutions diverge as et ) it is useful to consider the transformed vari-
able x D ln.1C v � vs/ and solve the dynamical system Px D 1C .I � 1/e�x and
then match to solutions with v < vs.

Spike Adaptation

As well as supporting a tonic mode of spiking some interneurons have been reported
to exhibit bursting [14, 38, 53]. With this in mind we show that by incorporating a
form of spike adaptation [49] the aif model can exhibit both tonic and bursting be-
havior. For simplicity, we shall henceforth work with the explicit choice f .v/ D jvj.
In more detail we write

Pv D jvj C I � a; Pa D �a=�a; �a > 0; (4)

subject to the usual IF reset mechanism as well as the adaptive step a.T m/ !
a.Tm/Cga=�a, for some ga > 0. For sufficiently small ga , the model fires tonically
as shown in Fig. 2. Since the model is now a 2D (discontinuous) dynamical system
it is also useful to view orbits in the .v; a/ plane, where one can also plot the system
nullclines, as shown in Fig. 3. For larger values of ga , the model can also fire in
a burst mode as shown in Fig. 4. The mechanism for this behavior is most easily
understood in reference to the geometry of the phase-plane, as shown in Fig. 5. First
consider that the dynamics after reset is such that the adaptive current is sufficiently
strong so as to pull the trajectory toward the left-hand side of the voltage nullcline.
If the separation of time-scales between the v and a variables is large (namely that
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Fig. 2 Tonic firing in the aif
model with spike adaptation.
Here �a D 3, vr D 0:2,
vth D 1, I D 0:1, and
ga D 0:75 0
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Fig. 3 A periodic orbit in the
.v; a/ plane corresponding to
the tonic spiking trajectory
shown in Fig. 2. Also shown
is the voltage nullcline as
well as the value of the reset
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Fig. 4 Burst firing in the aif
model with spike adaptation.
Here �a D 75, vr D 0:2,
vth D 1, I D 0:1, and ga D 2
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Fig. 5 A periodic orbit in the
.v; a/ plane corresponding to
the bursting trajectory shown
in Fig. 4
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�a is large), then the trajectory will slowly track this nullcline (a D I � v) until it
reaches v D 0, where there is a switch in the dynamics (from f .v/ D �v to f .v/ D
Cv). After the switch the neuron is able to fire for as long as threshold can be
reached – namely until a becomes so large as to preclude further firing. Thus, it is
the negative feedback from the adaptive current that ultimately terminates a burst,
and initiates a slow phase of subthreshold dynamics.

To solve the full nonlinear dynamical model, it is convenient to break the phase
space into two regions separated by the line v D 0, so that in each region the dynam-
ics (up to threshold and reset) is governed by a linear system. If we denote by vC
and v� the solution for v > 0 and v < 0, respectively, then variation of parameters
gives us the closed form solution

v˙.t/ D v˙.t0/e˙.t�t0/ C
Z t

t0

e�.s�t/ŒI � a.s/�ds; (5)

with initial data v˙.t0/ and t > t0. For example, considering the 	-periodic tonic
solution shown in Fig. 3, where v > 0 always, then we have that a.t/ D ae�t=�a ,
with a determined self-consistently from a.	/C ga=�a D a, giving

a D ga

�a

1

1 � e��=�a
: (6)

Hence, from (5), the voltage varies according to

v.t/ D vre
t C I.et � 1/� a�a

1C �a .e
t � e�t=�a /: (7)

The period is determined self-consistently by demanding that v.	/ D vth. A plot
of the firing frequency f D 	�1 as a function of ga is shown in Fig. 6. From
this we see that the frequency of tonic firing drops off with increasing adaptation,
as expected. Note that one may also construct more complicated orbits (such as

Fig. 6 Frequency of tonic
firing as a function of the
strength of adaptation ga for
the parameters of Fig. 2
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tonic solutions which visit v < 0, period doubled tonic solutions, bursting states,
etc.) using the ideas above. The main effort being in piecing together trajectories
across v D 0.

Phase Response Curve

It is common practice to characterize a neuronal oscillator in terms of its phase
response to a perturbation. This gives rise to the notion of a so-called phase response
curve (PRC). For a detailed discussion of PRCs we refer the reader to [19, 20, 27].
Suffice to say that for a weak external perturbation, such that .Pv; Pa/ ! .Pv; Pa/ C

.A1.t/; A2.t//, and 
 small, then we can introduce a phase � 2 .0; 1/ along a
	-periodic orbit that evolves according to

P� D 1

	
C 
QT .A1.t/; A2.t//: (8)

The (vector) PRC, is given asQ	, whereQ obeys the so-called adjoint equation

dQ

dt
D �DFT.t/Q; (9)

and DF.t/ is the Jacobian of the dynamical systems evaluated along the time-
dependent orbit. To enforce the condition that P� D 1=	 for 
 D 0 we must choose
initial data forQ that guaranteesQT.Pv; Pa/ D 	�1. For a continuous trajectory this
normalization condition need only be enforced at a single point in time. However,
for the aif model with adaptation there is a single discontinuity in the orbit (at reset)
and soQ is not continuous. We therefore need to establish the conditions that ensure
Q.	C/ D Q.0/. Introducing components of Q as Q D .q1; q2/ this is equivalent
to demanding continuity of dq1=dq2 at reset.

For the orbit given by (7) with v > 0 the Jacobian is simply the constant matrix

DF D
�
1 �1
0 �1=�a

�

; (10)

and the adjoint equation (9) may be solved in closed form as

q1.t/ D q1.0/e�t ; q2.t/ D q2.0/et=�a C q1.0/
�a

1C �a Œe
t=�a � e�t �: (11)

The condition for continuity of dq1=dq2 at reset yields the relationship

q2.0/

q1.0/
D q2.	/

q1.	/
D � �a

1C �a ; (12)
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Fig. 7 AdjointQ for the
tonic spiking orbit shown
in Fig. 3
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whilst the normalization condition gives

q1.0/Œvr C I � a� � q2.0/
a

�a
D 1

	
: (13)

The simultaneous solutions of (12) and (13) then gives the adjoint in the closed form

Q.t/ D �

	
e�t

�
1

��a=.1C �a/
�

; t 2 Œ0;	/; (14)

and � D Œvr C I � a�a=.1C �a/�
�1. A plot of the adjoint for the tonic orbit (7) is

shown in Fig. 7. Note that the orbit and PRC for other periodic solutions (crossing
through v D 0) can be obtained in a similar fashion.

Gap-Junction Coupling

To model the direct gap-junction coupling between two cells, one labeled post and
the other pre, we introduce an extra current to the right-hand side of equation (1) in
the form

ggap.vpre � vpost/; (15)

where ggap is the conductance of the gap junction. Indexing neurons in a network
with the label iD1; : : : ; N and defining a gap-junction conductance strength
between neurons i and j as gij means that neuron i experiences a drive of the form
N�1

PN
j D1 gij.vj � vi /. For a phase locked state then .vi .t/; ai .t//D.v.t � 
i	/;

a.t � 
i	//, .v.t/; a.t// D .v.t C 	/; a.t C 	//, (for some constant phases

i 2 Œ0; 1/) and we haveN equations distinguished by the driving termsN�1

PN
j D1

gij .v.t C .
i � 
j /T / � v.t//. For globally coupled networks with gij D g, maxi-
mally symmetric solutions describing synchronous, asynchronous, and cluster states
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are expected to be generic [2]. Here we shall focus on asynchronous states defined
by 
i D i=N . Such solutions are often called splay or merry-go-round states, since
all oscillators in the network pass through some fixed phase at regularly spaced time
intervals of 	=N .

Existence of the Asynchronous State

Here we will focus on a globally coupled network in the large N limit. In this case,
we have the useful result that network averages may be replaced by time averages.
In this case, the coupling term for an asynchronous state becomes

lim
N !1

1

N

NX

j D1

v.t C j	=N/ D 1

	

Z �

0

v.t/dt; (16)

which is independent of both i and t . Hence, for an asynchronous state every neuron
in the network is described by the same dynamical system, namely

Pv D jvj � gv C I � aC gv0; Pa D �a=�a; (17)

where

v0 D 1

	

Z �

0

v.t/dt: (18)

Once again we may use variation of parameters to obtain a closed form solution for
the trajectory:

v˙.t/ D v˙.t0/e˙.t�t0/=�
˙ C

Z t

t0

e�.s�t/=�
˙ ŒIg � a.s/�ds; (19)

where �˙ D 1=.1� g/ and Ig D I C gv0. A self-consistent solution for the pair
.	; v0/ is now obtained from the simultaneous solution of the two equations v.	/ D
vth and v0 D 	�1

R �

0
v.t/dt . For example an orbit with v > 0 is easily constructed

and generates the two equations

vth D vre
�=�

C C Ig�C.e�=�
C � 1/� a�.e�=�

C � e��=�a /; (20)

v0 D �Ig�C C 1

	

n
�CŒe�=�

C � 1�Œvr C Ig�C � a��C a��aŒ1 � e��=�a �
o
; (21)

where 1=� D 1=�C C 1=�a. A plot of .	; v0/ as a function of the gap strength g is
shown in Fig. 8.
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Fig. 8 Period 	 and constant
mean field signal v0 as a
function of gap strength g.
Other parameters as in
Fig. 3 left
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Stability of the Asynchronous State

Here we use a phase reduction technique, first developed by van Vreeswijk [48] for
synaptic coupling, to study the stability of the asynchronous state. To do this we
write the coupling term N�1

PN
j D1 vj .t/ in a more convenient form for studying

perturbations of the mean field, namely we write

lim
N !1

1

N

NX

j D1

vj .t/ D lim
N !1

1

N

NX

j D1

X

m2Z

u.t � Tm
j /; (22)

where Tm
j D m	C j	=N . Here u.t/ D 0 for t < 0 and is chosen such that v.t/ DP

m2Z
u.t � m	/, ensuring that v.t/ D v.t C	/. For arbitrary values of the firing-

times T m
j the coupling term (22) is time-dependent, and we may write it in the form

E.t/ D
Z 1

0

f .t � s/u.s/ds; f .t/ D lim
N !1

1

N

X

j;m

ı.t � Tm
j /; (23)

where we recognize f .t/ as a firing rate. We now consider perturbations of the mean
field such that E.t/ (the average membrane voltage) is split into a stationary part
(arising from the asynchronous state) and an infinitesimal perturbation. Namely we
writeE.t/ D v0 C
.t/, with small 
.t/. Since this perturbation to the asynchronous
oscillator defined by (17) is small we may use phase reduction techniques to study
the stability of the asynchronous state.

In terms of a phase � 2 .0; 1/ along the asynchronous state we can write the
evolution of this phase variable in response to a perturbation in the mean field as

d�

dt
D 1

	
C g� .�	/
.t/; (24)
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where � is the g-dependent voltage component of the adjoint for the asynchronous
state. This can again be calculated in closed form using the techniques developed in
section “Phase Response Curve,” and takes the explicit form

� .t/ D �.g/

	
e�t=�

C ; (25)

where �.g/ D Œvr=�C C Ig � a�a=.1 C �a/�
�1. In fact we need to treat N phase

variables �i , each described by an equation of the form (24), which are coupled by
the dependence of 
.t/ on these variables. To make this more explicit we write


.t/ D
Z 1

0

ıf .t � s/u.s/ds; (26)

and use a phase density description to calculate the dependence of the perturbed
firing rate ıf on the phases. We define a phase density function as the fraction of
neurons in the interval Œ�; � C d�� namely �.�; t/ D N�1

P
j ı.�j .t/ � �/. Intro-

ducing the flux J.�; t/ D �.�; t/ P� , we have the continuity equation

@�

@t
D �@J

@�
; (27)

with boundary condition J.1; t/ D J.0; t/. The firing rate is the flux through � D 1,
so that f .t/ D J.1; t/. In the asynchronous state the phase density function is in-
dependent of time. Considering perturbations around this state, .�; J / D .1;	�1/,
means writing �.�; t/ D 1C ı�.�; t/, with a corresponding perturbation of the flux
that takes the form ıJ.�; t/ D ı�.�; t/=	Cg� .�	/
.t/. Differentiation of ıJ.�; t/
gives the partial differential equation

@tıJ.�; t/ D � 1
	
@�ıJ.�; t/C g� .�	/
0.t/; (28)

where


.t/ D
Z 1

0

u.s/ıJ.1; t � s/ds: (29)

Assuming a solution of the form ıJ.�; t/ D e�tıJ.�/, gives


.t/ D ıJ.1/e�teu.�/; (30)

whereeu.�/ D R1
0

u.t/e��t dt . In this case 
0.t/ D �
.t/. Equation (28) then re-
duces to the ordinary differential equation

d

d�
ıJ.�/e��� D g�	� .�	/ıJ.1/eu.�/e��� : (31)
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Integrating (31) from � D 0 to � D 1 and using the fact that ıJ.1/ D ıJ.0/ yields
an implicit equation for � in the form E.�/ D 0, where

E.�/ D e�� � 1 � g�	eu.�/
Z 1

0

� .�	/e���d�: (32)

We see that E.0/ D 0 so that � D 0 is always an eigenvalue. Writing � D � C i!

then the pair .�; !/ may be found by the simultaneous solution of ER.�; !/ D 0 and
EI.�; !/ D 0, where ER.�; !/ D Re E.� C i!/ and EI.�; !/ D Im E.� C i!/.

For the adjoint calculated given by (25) a simple calculation gives

Z 1

0

� .�	/e���d� D �.g/

	

1

	

e�.��1=�
C

/ � 1
.� � 1=�C/ : (33)

For the calculation ofeu.�/we use the result that
R1

0 u.t/e��t dtD R �

0 v.tCs/e��t dt ,
for some arbitrary time-translation s 2 .0;	/, with v.t/ the splay solution, def-
ined for t 2 .0;	/. In contrast to the calculations in [12] for continuous periodic
orbits, those of the aif model are discontinuous and so one must carefully treat this
extra degree of freedom. Since we do not a priori know the phase of the signal v.t/
with respect to the time origin of the oscillator model we simply average over all
possible phases and write

eu.�/ D 1

	

Z �

0

(Z �

0

v.t C s/e��t dt

)

ds: (34)

For the splay solution of section “Existence of the Asynchronous State,” a short
calculation gives

eu.�/

e�� � 1 D vr C Ig�C � a�
� � 1=�C

�C
	
.e��.��1=�

C

/ � e���/� Ig�C
e���

�

� a�

�C 1=�a
�a

	
.e��.�C1=�a/ � e���/; Re � < 1=�C: (35)

For � 2 R the condition for an eigenvalue to cross through zero from below is
equivalent to the occurrence of a double zero of E.�/ at � D 0. However, it is easy
to show that E 0.0/ ¤ 0 so that no instabilities can arise in this fashion. Examples
of the spectrum obtained from the zeros of E.�/=.e�� � 1/ are shown in Fig. 9 (the
remaining zeros of E.�/ being at �	 D 2�in, n 2 Z).

Here we see that for fixed g and increasing ga, a pair of complex conjugate
eigenvalues crosses through the imaginary axis at a nonzero value of !. This signals
the onset of a dynamic instability, which is more easily quantified with the aid of
Fig. 10 which tracks the first pair .�; !/ to pass through � D 0 as a function of ga.
Until now we have assumed that the splay state exists for all parameters of choice.
However, because the underlying model is described by a discontinuous flow then



Gap Junctions and Emergent Rhythms 89

−0.5 0 0.5
−2

0

2

ν

ω

−0.5 0 0.5
−2

0

2

ν

ω

Fig. 9 Spectrum for the asynchronous state. Eigenvalues are at the positions where the red and
blue curves intersect. Parameters as in Fig. 4 with g D 0:5. Left: ga D 1:5, with .	; v0/ D
.4:0575; 0:46685/. Right: ga D 2:5, with .	; v0/ D .6:6757; 0:39433/. Note the unstable mode
with ! � ˙1 in the right-hand figure.

Fig. 10 A plot of .�; !/,
where E.� C i!/ D 0, as a
function of ga, with other
parameters as in Fig. 9. Note
the bifurcation at ga � 2:1,
where � crosses zero from
below with a nonzero
value of !.
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there is also the possibility that a nonsmooth bifurcation can occur. For example a
splay state with v � 0 may tangentially intersect the surface v D 0, where there is a
switch in the dynamics for v. In this case, a new orbit will emerge that can either be
tonic or bursting. The conditions defining this nonsmooth bifurcation are v.t�/ D 0

and Pv.t�/ D 0 for some t� 2 .0;	/. For the splay state considered here, we find that
a dynamic instability, defined by E.i!/ D 0, is always met before the onset of a
nonsmooth bifurcation.

By tracking the bifurcation point � D 0 in parameter space it is possible to map
out those regions where the asynchronous state is stable. We do this in Fig. 11 which
basically shows that if an asynchronous state is stable for fixed .g; �a/ then it can
always be destabilized by increasing ga beyond some critical value.
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Fig. 11 Curves showing solutions of E.i!/ D 0 obtained by tracking the bifurcation point in
Fig. 10. Parameters as in Fig. 9. Left: �a D 75. Right: g D 0:5. Beyond an instability point of the
asynchronous solution one typically sees the emergence of synchronized bursting states, as shown
in Fig. 12
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Fig. 12 A plot showing an instability of the asynchronous state in a network with N D 100

neurons, starting from random initial conditions. Here ga is switched from the value in Fig. 9 left
(asynchronous state stable) to that in Fig. 9 right (asynchronous state unstable) at t D 500. Note
the emergence of a synchronized bursting state. The lower plot shows the time variation of the
mean-field signal E.t/ D N�1

PN
iD1 vi .t /, as well as the value of v0 – the mean field signal for

the asynchronous state (dashed and dotted lines). Parameters as in Fig. 9
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To determine the types of solutions that emerge beyond the instability borders
we have performed direct numerical simulations. Not only do these confirm the
correctness of our bifurcation theory, they show that a dominant emergent solution
is a bursting mode in which neurons are synchronized at the level of their firing
rates, but not at the level of individual spikes (within a burst). An example of a
network state that switches from asynchronous tonic spiking to synchronized burst-
ing with a switch in ga across the bifurcation point is shown in Fig. 12. Here we
plot both a raster diagram showing spike times as well as the mean field signal
E.t/ D N�1

PN
iD1 vi .t/ for a network of 100 neurons. Interestingly the plot of the

mean field signal suggests that bursting terminates roughly at the point where it
reaches the value of v0 for the unstable asynchronous orbit.

Discussion

In this chapter, we have shown how the absolute integrate-and-fire model is ideally
suited for the theoretical study of gap-junction coupled networks. One such network
where theory may help shed further light on function is that of the inferior olivary
nucleus, which has extensive electrotonic coupling between dendrites. Chorev et al.
[11] have shown that in vivo intracellular recordings from olivary neurons (of anes-
thetized rats) exhibit subthreshold oscillations of membrane voltage, organized in
epochs, lasting from half a second to several seconds. If recorded, spikes were
locked to the depolarized phase of these subthreshold oscillations. Thus it is of
interest to probe the way in which neurons supporting both subthreshold oscilla-
tions and spikes use gap-junction coupling to coordinate spatiotemporal patterns for
holding and then transferring rhythmic information to cerebellar circuits [50]. The
techniques we have developed here are ideally suited to this task.

At the level of the single neuron we have shown how to construct both the
periodic orbit and the phase response curve. This is particularly useful for the de-
velopment of a weakly coupled oscillator theory for network studies, for both gap
and synaptic coupling, as in the work of Kazanci and Ermentrout [31]. However,
we have chosen here to instead pursue a strongly coupled network analysis. The
tractability of the chosen model has allowed the explicit calculation of the asyn-
chronous state, including the determination of its linear stability, in large globally
gap-junction coupled networks. In the presence of a simple form of spike adaptation
we have quantified a bifurcation from asynchrony to synchronized bursting. Inter-
estingly, burst synchronization has been observed in both cell cultures and brain
areas such as the basal ganglia. For a review of experiments and theory relating to
burst synchronization we refer the reader to the article by Rubin [44]. One natural
progression of the work in this chapter would be to analyze the properties of burst-
ing in more detail, and in particular the synchronization properties of bursts relating
to both gap and synaptic parameters. Techniques for doing this are relatively under-
developed as compared to those for studying synchronized tonic spiking. However,
it is well to point out the work of Izhikevich [29], de Vries and Sherman [13], and
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Matveev et al. [39] in this area, as well as more recent numerical studies [43, 45].
The development of such a theory is especially relevant to so-called neural signa-
tures, which consist of cell-specific spike timings in the bursting activity of neurons.
These very precise intra-burst firing patterns may be quantified using computational
techniques discussed in [33]. We refer the reader to [34] for a recent discussion
of neural signatures in the context of the pyloric central pattern generator of the
crustacean stomatogastric ganglion (where gaps are known to play a role in rhythm
generation).

From a biological perspective it is important to emphasize that gaps are not the
static structures that we have suggested here by treating gap strength as a single
parameter. Indeed the connexin channels that underlie such junctions are dynamic
and are in fact modulated by the voltage across the membrane. Baigent et al. [3]
have developed a model of the dependency between the cell potentials and the
state of the gap junctions. In this context the state of an individual channel cor-
responds to the conformation of the two connexons forming the pore. Of the four
possible states (both open, both closed, or one open, and one closed), the scenario
where both are closed is ignored. Because each cell–cell junction is composed of
many channels, the state of the junction is determined by the distribution of chan-
nels amongst the three different states. Thus it would be interesting to combine
the model we have presented here with this channel model and explore the conse-
quences for coherent network behavior. Another form of gap-junction modulation
can be traced to cannabinoids. Gap-junction coupling can be found among irregular
spiking GABAergic interneurons that express cannabinoid receptors [23]. Interest-
ingly, the potentiation of such coupling by cannabinoids has recently been reported
[10]. All of the above are topics of current investigation and will be reported upon
elsewhere.
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