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Abstract Typically, the neuronal firing activity underlying brain functions exhibits
a high degree of variability both within and between trials. The key question is: are
these fluctuations just a concomitant effect of the neuronal substrate without playing
any computational role or do they have a functional relevance? In this chapter, we
first review the theoretical framework of stochastic neurodynamics that allows us to
investigate the roles of noise and neurodynamics in the computation of probabilistic
behavior. The relevance of this framework for neuroscience will be demonstrated
by focusing on the simplest type of perceptual task, namely sensory detection. We
focus on the following remarkable observation in a somatosensory task: when a
near-threshold vibrotactile stimulus is presented, a sensory percept may or may not
be produced. These perceptual judgments are believed to be determined by the fluc-
tuation in activity of early sensory cortices. We show, however, that the behavioral
outcomes associated with near-threshold stimuli depend of the neuronal fluctua-
tions of more central areas to early somatosensory cortices. The theoretical analysis
of the behavioral and neuronal correlates of sensation will show how variability at
the neuronal level in those central areas can give rise to probabilistic behavior at the
network level and how these fluctuations influence network dynamics.

Introduction

In this chapter, we consider how the noise contributed by the probabilistic spiking
times of neurons (spiking noise) plays an important and advantageous role in brain
function. We go beyond the deterministic noiseless description of the dynamics of
cortical networks, and show how the properties of the system are influenced by
the spiking noise. We show that the spiking noise has a significant contribution to
the outcome that is reached, in that this noise is a factor in a network with a finite
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(i.e., limited) number of neurons. This spiking noise can be described by introducing
statistical fluctuations into the finite-size system. It is important that the outcome
that is reached, and not just its time course, is influenced on each trial by these
statistical fluctuations.

In particular, we will use integrate-and-fire models with spiking neurons to model
the actual neuronal data that are obtained from neurophysiological experiments.
The integrate-and-fire simulations capture the stochastic nature of the computations.
However, we show that to understand analytically (mathematically) the stable points
of the network, for example what decisions may be reached, it is helpful to incorpo-
rate a mean field approach that is consistent with the integrate-and-fire model. The
mean field approach allows one to determine, for example, the synaptic strengths
of the interconnected neurons that will lead to stable states of the network, each of
which might correspond to a different decision, or no decision at all. The spiking
simulations then examine which fixed points (or decisions) are reached on individual
trials, and how the probabilistic spiking of the neurons influences these outcomes.

More specifically, we will show that both neurodynamics and stochastic fluc-
tuations matter, in the sense that both have an essential computational role for a
complete explanation of perception. To this purpose, we will take as a prototyp-
ical example the most elemental and historical task of perceptual detection. By
constructing and analyzing computational models, we will establish the link that
accounts for measurements both at the cellular and behavioral level. In particular,
we show that the behavioral correlate of perceptual detection is essentially given
by a noise driven transition in a multistable neurodynamical system. Thus, neuronal
fluctuations can be an advantage for brain processing, as they lead to probabilistic
behavior in decision-making in this and other sensory tasks. For example, decisions
may be difficult without noise. In the choice dilemma described in the medieval
Duns Scotus paradox, a donkey who could not decide between two equidistant food
rewards might suffer the consequences of the indecision. The problem raised is that
with a deterministic system, there is nothing to break the symmetry, and the sys-
tem can become deadlocked. In this situation, the addition of noise can produce
probabilistic choice, which is advantageous, as will be described in this paper.

Brain Dynamics: From Spiking Neurons to Reduced
Rate-Models

The computation underlying brain functions emerges from the collective dynamics
of spiking neuronal networks. A spiking neuron transforms a large set of incoming
input spike trains, coming from different neurons, into an output spike train. Thus,
at the microscopic level, neuronal circuits of the brain encode and process informa-
tion by spatiotemporal spike patterns. We assume that the transient (nonstationary)
dynamics of spiking neurons is properly captured by one-compartment, point-like
models of neurons, such as the leaky integrate-and-fire (LIF) model [38]. In the LIF
model, each neuron i can be fully described in terms of a single internal variable,
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namely the depolarization Vi .t/ of the neural membrane. The basic circuit of a LIF
model consists of a capacitor C in parallel with a resistor R driven by a synaptic
current (excitatory or inhibitory postsynaptic potential, EPSP or IPSP, respectively).
When the voltage across the capacitor reaches a threshold � , the circuit is shunted
to a reset potential Vreset, and a ı-pulse (spike) is generated and transmitted to other
neurons. The subthreshold membrane potential of each neuron evolves as a simple
RC -circuit, with a time constant � D RC given by the following equation:

�
dVi .t/

dt
D �ŒVi .t/ � VL�C �

NX

j D1

Jij

X

k

ı.t � t .k/
j /; (1)

where VL is the leak potential of the cell in the absence of external afferent inputs
and the total synaptic current flow into cell i is given by the sum of the contributions
of ı-spikes produced at presynaptic neurons, with Jij the efficacy of synapse j and

t
.k/
j the emission time of the kth spike from the j th presynaptic neuron.

In the brain, local neuronal networks comprise a large number of neurons which
are massively interconnected. The set of coupled differential equations (1) above
describe the underlying dynamics of such networks. Direct simulations of these
equations yield a complex spatiotemporal pattern, covering the individual trajectory
of the internal state of each neuron in the network. This type of direct simulation is
computationally expensive, making it very difficult to analyze how the underlying
connectivity relates to various dynamics. One way to overcome these difficulties
is by adopting the population density approach, using the Fokker–Planck formal-
ism [21, 22, 28]. We will follow here a derivation done by Stefano Fusi (private
communication). In this approach, individual integrate-and-fire neurons are grouped
together into populations of statistically similar neurons. A statistical description of
each population is given by a probability density function that expresses the distri-
bution of neuronal states (i.e., membrane potential) over the population. In general,
neurons with the same state V.t/ at a given time t have a different history because
of random fluctuations in the input current I.t/. The main source of randomness is
from fluctuations in the currents. The key assumption in the population density ap-
proach is that the afferent input currents impinging on neurons in one population are
uncorrelated. Thus, neurons sharing the same state V.t/ in a population are indistin-
guishable. The population density p.�; t/ expresses the fraction of neurons at time
t that have a membrane potential V.t/ in the interval Œ�; � C d��. The evolution of
the population density is given by the Chapman–Kolmogorov equation

p.�; t C dt/ D
Z C1

�1
p.� � "; t/�."j� � "/d"; (2)

where �."j�/ D ProbfV.t C dt/ D � C "jV.t/ D �g is the conditional probability
that generates an infinitesimal change " D V.tCdt/�V.t/ in the infinitesimal inter-
val dt . The temporal evolution of the population density can be reduced to a simpler
differential equation by the mean-field approximation. In this approximation, the
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currents impinging on each neuron in a population have the same statistics, because,
as mentioned above, the history of these currents is uncorrelated. The mean-field
approximation entails replacing the time-averaged discharge rate of individual cells
with a common time-dependent population activity (ensemble average). This as-
sumes ergodicity for all neurons in the population. The mean-field technique allows
us to discard the index denoting the identity of any single neuron. The resulting
differential equation describing the temporal evolution of the population density is
called the Fokker–Planck equation, and reads

@p.�; t/

@t
D 1

2�
�2.t/

@2p.�; t/

@�2
C @

@�

��
� � VL � �.t/

�

�

p.�; t/

�

: (3)

In the particular case that the drift is linear and the diffusion coefficient �2.t/ is
given by a constant, the Fokker–Planck equation describes a well-known stochas-
tic process called the Ornstein–Uhlenbeck process [31]. The Ornstein–Uhlenbeck
process describes the temporal evolution of the membrane potential V.t/ when the
input afferent current is �.t/C�p

�w.t/, with w.t/ a white noise process. This can
be interpreted, by means of the Central Limit Theorem, as the case in which the sum
of many Poisson processes becomes a normal random variable with mean �.t/ and
variance �2.

The nonstationary solutions of the Fokker–Planck equation (3) describe the
dynamical behavior of the network. However, these simulations, as the direct
simulation of the original network of spiking neurons (1), are computationally ex-
pensive and their results probabilistic, which makes them unsuitable for systematic
explorations of parameter space. On the other hand, the stationary solutions of
the Fokker–Planck equation (3) represent the stationary solutions of the original
integrate-and-fire neuronal system. The stationary solution of the Fokker–Planck
equation satisfying specific boundary conditions (see [3, 23, 30]) yields the popula-
tion transfer function of Ricciardi (
):

� D
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�
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where erf.x/ D 2=
p
�
R x

0
ey2

dy. In last equation tref is the refractory time.
The population transfer function gives the average population firing rate as a

function of the average input current. For more than one population, the network is
partitioned into populations of neurons whose input currents share the same statis-
tical properties and fire spikes independently at the same rate. The set of stationary,
self-reproducing rates �i for different populations i in the network can be found by
solving a set of coupled self-consistency equations, given by:

�i D 
.�i ; �i /; (5)



Stochastic Neural Dynamics as a Principle of Perception 251

This reduced system of equations allows a thorough investigation of the pa-
rameters. In particular, one can construct bifurcation diagrams to understand the
nonlinear mechanisms underlying equilibrium dynamics and in this way solve the
“inverse problem,” i.e., the selection of the parameters that generate the attractors
(steady states) that are consistent with the experimental evidence. This is the crucial
role of the mean-field approximation: to simplify analyses through the stationary
solutions of the Fokker–Planck equation for a population density under the diffu-
sion approximation (Ornstein–Uhlenbeck process) in a self-consistent form. After
that, one can perform full nonstationary simulations using these parameters in the
integrate-and-fire scheme to generate true dynamics. The mean field approach en-
sures that these dynamics will converge to a stationary attractor that is consistent
with the steady-state dynamics we require [3, 16]. The stochastic (random) firing
times of neurons introduces noise into neuronal networks, and it is the consequences
of this randomness expressed in a finite (limited) sized network of such neurons with
which we are concerned in this review. We show that the noise in such systems not
only helps us to understand many aspects of decision-making as implemented in the
brain, but is in fact beneficial to the operation of decision-making processes.

The mean-field approach has been applied to model single neuronal responses,
fMRI activation patterns, psychophysical measurements, and the effects of pharma-
cological agents and of local cortical lesions [4, 5, 8, 10–15, 32, 37].

Perceptual Detection and Stochastic Dynamics

Neurophysiology

The detection of sensory stimuli is among the simplest perceptual experiences and
is a prerequisite for any further sensory processing. A fundamental problem posed
by the sensory detection tasks is that repeated presentation of a near-threshold stim-
ulus might unpredictably fail or succeed in producing a sensory percept. Where in
the brain are the neuronal correlates of these varying perceptual judgments? Pio-
neering studies on the neuronal correlates of sensory detection showed that, in the
case of vibrotactile stimuli, the responses of S1 neurons account for the measured
psychophysical accuracy [27]. However direct comparisons between S1 responses
and detection performance were not directly addressed and, therefore, it is not clear
whether the activity of S1 accounts for the variability of the behavioral responses.
Psychophysical performance was measured in human observers and S1 recordings
were made in anesthetized monkeys.

This problem has been recently addressed [6, 7]. These authors trained monkeys
to perform a detection task. In each trial, the animal had to report whether the tip
of a mechanical stimulator vibrated or not. Stimuli were sinusoidal, had a fixed
frequency of 20 Hz and were delivered to the glabrous skin of one fingertip. Cru-
cially, they varied in amplitude across trials. Stimulus-present trials were interleaved
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with an equal number of stimulus-absent trials in which no mechanical vibrations
were delivered. Depending on the monkeys’ responses, trials could be classified into
four types of responses: hits and misses in the stimulus-present condition, and cor-
rect rejections and false alarms in the stimulus-absent condition. Stimulus detection
thresholds were calculated from the behavioral responses. Thus an important issue
in this and similar tasks is to determine the neuronal correlates that account for these
behavioral reports.

De Lafuente and Romo [6] simultaneously characterized the activity of S1 neu-
rons (areas 3b and 1) and the monkey’s psychophysical performance by recording
the extracellular spike potentials of single S1 neurons while the monkeys performed
the detection task. Figure 1 shows the experimental design and main results. To test
whether the responses of S1 neurons accounted for the monkey’s psychophysical
performance, [6] calculated neurometric detection curves and compared them with
the psychometric curves. The proportion of “yes” responses for neurometric curves
was defined, for a given amplitude, as the proportion of trials in which the neuron’s
firing rate reached or exceeded a criterion value [6, 18]. For each neuron, this crite-
rion was chosen to maximize the number of correct responses. Pairwise comparisons
of detection thresholds obtained from logistic fits to the simultaneously obtained
neurometric and psychometric data showed that the detection thresholds of individ-
ual S1 neurons were not significantly different from the animals’ psychophysical
thresholds, and the two thresholds measures highly covaried. In addition, the shape

�������������������������������������������������������������������!
Fig. 1 The detection task. (a) Drawing of monkey working in the detection task. (b) The se-
quence of events during the detection trials. Trials began when the stimulation probe indented the
skin of one fingertip of the left, retrained hand (probe down, PD). The monkey then placed its right,
free hand on an immovable key (key down, KD). On half of the randomly selected trials, after a
variable prestimulus period (Prestim, 1.5–3.5 s), a vibratory stimulus (Stim, 20 Hz, 0.5 s) was pre-
sented. Then, after a fixed delay period (Delay, 3 s), the stimulator probe moved up (probe up, UP),
indicating to the monkey that it could make the response movement (MT) to one of the two buttons.
The button pressed indicated whether or not the monkey felt the stimulus. Henceforth referred to
as yes and no responses, respectively. (c) Depending on whether the stimulus was present or absent
and on the behavioral response, trial outcome was classified as a hit, miss, false alarm (FA), or cor-
rect reject (CR). Trials were pseudo-randomly chosen: 90 trials were stimulus absent (amplitude
0), and 90 trials were stimulus present with varying amplitudes (9 amplitudes with 10 repetitions
each). (d) Classical psychometric detection curve obtained by plotting the proportion of yes re-
sponses as a function of the stimulus amplitude. (e) Mean firing rate of hit trials for S1 (n D 59)
and MPC (n D 50) neurons. (f) Comparison of normalized neuronal population activity of S1
neurons during hits and misses for near-threshold stimuli, and during correct rejections and false
alarms in stimulus-absent trials. Normalized activity was calculated as a function of time, using a
200 ms window displaced every 50 ms. This was calculated by substractng the mean activity and
dividing by the standard deviation of the activity from a 200 ms window of the prestimulus period.
Lower panels show the choice probability index as a function of time. This quantity measures the
overlap between two response distributions: in this case, between hits and misses and between cor-
rect rejection and false alarm trials. Dotted lines mark significance levels. (g) The same as in f, but
for a neuronal population activity of MPC neurons. Adapted with permission from De LaFuente
and Romo, 2006
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of the mean neurometric curve resulting from the activity of the S1 neurons showed
close correspondence with the shape of the mean psychometric curve.

An important question addressed in this study is whether the activity of S1 neu-
rons covaries with the perceptual “yes”–“no” judgments that the monkeys made on a
trial-by-trial basis [6]. To test this, these authors compared the activity during hit and
miss trials for the near-threshold stimulus, as well as for the corresponding activity
in correct reject and false alarm trials in the stimulus-absent condition. They found
no significant differences in the activity of S1 neurons between hits and misses, nor
between correct rejections and false alarms. This indicated that activity of individ-
ual S1 neurons did not predict the monkey’s behavior. To further quantify this, [6]
calculated a choice probability index, which estimates the probability with which
the behavioral outcome can be predicted from the neuronal responses [2,20]. Again
they found no significant differences between hits and misses, or between correct
rejections and false alarm trials.

The low choice probability values are consistent with a detection model in which
the activity of S1 serves as input to an additional processing stage(s) that determines
whether a stimulus has occurred or not. Under this hypothesis, the correlation be-
tween S1 activity and the final decision about the stimulus presence or absence is
highly dependent on the amount of correlated-noise among sensory neurons [39].
Indeed, [6] found that the mean noise correlation coefficient across pairs of S1 neu-
rons was 0:16˙ 0:02. This amount of correlated-noise is similar to that reported in
previous studies [1,35,39], and is also consistent with the near chance choice prob-
ability values reported in the study of [6]. These results further support a detection
model in which a central area(s) must be observing the activity of S1 neurons to
judge about the stimulus presence or absence. Therefore, the functional role of S1
in this and other perceptual tasks may be mainly to generate a neural representa-
tion of the sensory stimulus for further processing in areas central to it [19, 33–36].
However, a previous study found that fMRI signals in primary visual cortex (V1)
reflected the percepts of human subjects, rather than the encoded stimulus features
[29]. This result suggests that, in V1, top-down signals (nonsensory inputs deliv-
ered to visual cortex via feedback projections) can be combined with bottom-up
(sensory) information and contribute to sensory percepts [29]. S1 data did not show
evidence for this type of neural interaction; rather, it indicated that S1 represents
the physical properties of stimuli and contributes little to near-threshold percepts
[6]. The discrepancy could be due to fundamentally different organizations across
sensory cortices, or to differences between species. Another possibility to consider
is that the modulation revealed through fMRI may have an effect that is invisible
from the point of view of single neurons. This would happen if, for instance, such
modulation acted only to synchronize the spikes of multiple target neurons [17].

To test whether the neuronal correlates of the perceptual decisions associated
with detection might reside outside S1, [6] recorded neurons from the medial pre-
motor cortex (MPC), a frontal cortical area known to be involved in the evaluation
of sensory information and in decision-making processes [20, 24]. They found that,
in contrast to the graded dependence on stimulus amplitude observed in S1, MPC
neurons responded in an all-or-none manner that was only weakly modulated by
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the stimulus amplitude, but that closely correlated with “yes” and “no” behav-
ioral responses. The mean normalized activity across the MPC neurons was strong
and sustained, and with near-threshold stimuli it was clearly different for hit and
miss trials. Moreover, almost 70% of the false alarm trials were predicted from in-
creases in neuronal activity in stimulus-absent trials. de Lafuente and Romo [6] also
found that the MPC activity preceding stimulus onset was higher during hits than
during misses. These early increases in activity predicted detection success signif-
icantly above chance levels, as is shown by the choice probability plots. Although
de Lafuente and Romo (2005, 2006) do not know the role of this increased pres-
timulus activity, they speculate that it might be associated with trial history during
a run. To support this conjecture, [6] wondered about the behavioral responses on
trials previous to false alarm responses. They found that the probability of an “yes”
response was increased in those trials preceding a false alarm, supporting the no-
tion that monkeys were biased toward “yes” responses. de Lafuente and Romo [6]
speculated that given that “yes” responses to the three subthreshold amplitudes were
rewarded, this could have encouraged the monkeys to respond “yes” in the next trial,
producing a false alarm response. The results indicate that the responses of all MPC
neurons studied were associated with stimulus presence or with false alarms; that is,
with “yes” responses. They did not find neurons whose increases in their activities
were associated with “no” responses. [6] do not know the reason for this but they
speculate that “no” is the default response that is installed from trial beginning and
that the stimulus presentation overrides this default response.

The close association between neuronal responses and behavioral responses, and
the weak relationship between neuronal activity and stimulus amplitude, supported
the interpretation that MPC neurons do not code the physical attributes of stimuli,
but rather represent perceptual judgments about their presence of absence. As the
monkeys reported their decisions by a motor act, a key question needed to be an-
swered: was the MPC activity truly related to stimulus perception, or was it simply
reflecting the different motor actions associated with the two response buttons? To
test this, [6] designed a control task in which the correct response button was il-
luminated at the beginning of every trial. In this variant of the detection task, the
monkeys simply had to wait until the end of the trial to push the illuminated button,
without the need to attend to the presence or absence of the mechanical vibration.
It is important to note that in this test condition all-or-none activity was still ob-
served in response to the near-threshold stimulus, and the probability of activation
depended on the stimulus amplitude, similar to that observed in the standard de-
tection task. Given that in the control test the monkeys did not have to choose a
response button based on the vibratory stimulus, the results are consistent with the
interpretation that the activity of MPC neurons is related to the subjective perception
of sensory stimuli, rather than to the selection of the motor plan. These results there-
fore favor the hypothesis that this MPC population reflects the failure or success of
the near-threshold stimulus in triggering a sensory percept.
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A Computational Model of Probabilistic Detection

An aim of this chapter is to show how stochastic dynamics helps to understand
the computational mechanisms involved in perceptual detection. The computa-
tional analysis of detection focuses on the paradigm and experimental results of
[6] described above. In summary, they used a behavioral task where trained awake
monkeys report the presence or absence of a mechanical vibration applied to their
fingertips by pressing one of two pushbuttons. They found that the activity of MPC
neurons was only weakly modulated by the stimulus amplitude, and covaried with
the monkeys’ trial-by-trial reports. On the contrary, S1 neurons did not covary with
the animals’ perceptual reports, but their firing rate did show a monotonically in-
creasing graded dependence on the stimulus amplitude (see Fig. 1d and e). The fact
that MPC neurons correlate with the behavioral performance, with a high firing rate
for an “yes” report and a low firing rate for a “no” report, suggests an underlying
bistable dynamic in an attractor framework.

A minimal network model is now described that captures the computation in-
volved in perceptual detection and is consistent with the neurophysiological and
behavioral evidence described [9]. The main idea of the model is to establish a
neurodynamics that shows two possible bistable decision states associated with
the two possible behavioral responses: “stimulus detection” and “no stimulus de-
tection.” The computation underlying perceptual detection is then understood as a
fluctuation-driven, probabilistic transition to one of the two possible bistable deci-
sion states.

A patch of MPC neurons in the frontal lobe is modeled by a network of inter-
acting neurons organized into a discrete set of populations. Populations are defined
as groups of excitatory or inhibitory neurons sharing the same inputs and connec-
tivities. Some of the excitatory population of neurons have a selective response,
which reflects the sensitivity to an external applied vibrotactile stimulus (note that
for simplicity in 1A only one selective population is shown for the single specific
vibrotactile frequency utilized in the experiment). All other excitatory neurons are
grouped in a “Non-selective” population. There is also one inhibitory population
of local inhibitory neurons that regulates the overall activity by implementing com-
petition in the network. Neurons in the networks are connected via three types of
receptors that mediate the synaptic currents flowing into them: AMPA and NMDA
glutamate receptors, and GABA receptors. Neurons within a specific excitatory
population are mutually coupled with a strong weight !C. Neurons between two
different selective populations have anticorrelated activity, which results in weaker
connections !�.

In this model, activity in a selective excitatory population corresponds to the
detection of a percept associated with an external applied vibrotactile stimulus. The
strength of the input (�) impinging on that excitatory population is proportional
to the strength of the presented vibrotactile stimulus (as for example encoded in
S1, i.e., the input to MPC is transmitted from S1). When a stimulus is presented,
there is just one population sensitive to it. To model this characteristic, we use a
network composed of two selective populations, but only one will be selective to
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the stimuli applied. The relevant bistability is therefore given by the state where the
excitatory populations have low activity (corresponding to no detection of a percept,
i.e., a “no” response), and the state where the excitatory population sensitive to the
presented vibrotactile stimulus is highly activated (corresponding to the detection of
the percept, i.e., an “yes” response). We refer to this model as “Non-Competing Yes-
Neurons” (NCYN) (Fig. 2a). Just the selective population sensitive to the applied
vibrotactile stimulation used in the experiment is represented by a specific excitatory
population. (A full specification of the whole connectivity is provided in [9].)

The characteristics of the network in the stationary conditions were studied with
the mean-field approach reviewed above. Using this approximation, the relevant
parameter space given by the population cohesion !C vs. the external input � was
scanned. The mean-field results for the NCYN-model are illustrated in a phase di-
agram (Fig. 2b) that shows different regimes of the network. For small values of �
and for a weak population cohesion, the network has one stable state where all popu-
lations are firing at a weak level (spontaneous state). This spontaneous state encodes
the “no” response in the NYCN model. For higher population cohesion and higher
values of �, a state corresponding to strong activation of the selective population
sensitive to the applied vibrotactile stimulation emerges. We call this excited state
encoding the “yes” response, the “yes” state. Between these two regions, there is
a bistable region where the state corresponding to weak (“no” response) or strong
(“yes” response) activation states of the selective population sensitive to the applied
vibrotactile stimulation are both stable.

To study the probabilistic behavior of the neuronal dynamics of the network, the
spiking simulations of the configurations corresponding to the region of bistability
were analyzed with methods similar to those used for the neurophysiological data
by [6].

The results are presented of the nonstationary probabilistic analysis calculated by
means of the full spiking simulations averaged over several trials. In all cases, the
aim was to model the behavior of the MPC neurons which are shown in Fig. 1d and e,
which reflect detection of the percept [6]. It is proposed that the perceptual response
results from a neurodynamical bistability [9]. In this framework, each of the sta-
ble states corresponds to one possible perceptual response: “stimulus detected” or
“stimulus not detected.” The probability of detecting the stimulus is given by the
transitions between these two states. In fact, the probabilistic character of the system
results from the stochastic nature of the networks. The source of this stochasticity
is the approximately random spiking of the neurons in the finite-size network. We
note that there are two sources of noise in such spiking networks: the randomly ar-
riving external Poissonian spike trains and the fluctuations due to the finite size of
the network. Here we refer to finite-size effects due to the fact that the populations
are described by a finite number N of neurons. In the mean-field framework, (see
[25,26]) “incoherent” fluctuations due to quenched randomness in the neurons’ con-
nectivity and/or to external input are already taken into account in the variance, and
“coherent” fluctuations give rise to new phenomena. In fact, the number of spikes
emitted by the network in a time interval Œt; t C dt/ is a Poisson variable with mean
and varianceN�.t/dt . The estimate of �.t/, is then a stochastic process �N .t/, well
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described in the limit of large N� by �N .t/ ' �.t/ C p
�.t/=N�.t/, where �.t/

is Gaussian white noise with zero mean and unit variance, and �.t/ is the proba-
bility of emitting a spike per unit time in the infinite-size network. Such finite-N
fluctuations, which affect the global activity �N , are coherently felt by all neurons
in the network and lead to an additive Gaussian noise corrections in the mean-field
equations.

To compare the theoretical results with the experimental results, the character-
istics of the bistable neurodynamical model NCYN were studied. The behavior of
the relevant populations encoding the different bistable states corresponding to the
two alternative choices is shown in Fig. 3. Figure 3a plots the proportion of “yes”
responses as a function of the intensity of the applied vibrotactile stimulation, i.e.,
as a function of the strength � of the stimulus presented. The figure shows that the
proportion of “yes” responses (hits) increases as the intensity of the stimulus ap-
plied grows. The model is consistent with the experimental results of Lafuente and
Romo shown in Fig. 1. Hence, the model shows a probabilistic behavior that emu-
lates the real behavior of subjects detecting a vibrotactile stimulus [6]. Let us now
concentrate on the level of firing activity observed in MPC neurons that covary with
the behavioral responses. Figure 3b shows the activity of the neurons encoding the
“yes” response (selective excitatory population sensitive to the applied vibrotactile
stimulus) averaged over trials that reported a percept (hits). In the model, the mean
firing activity is almost constant and is not linearly related to the stimulus ampli-
tude, as reflected in the experimental results. The fact that neurons encoding the
“yes” response present a relatively constant level of activation on trials that report
a detected percept, whereas on trials that fail to detect a percept these neurons have
low activity (spontaneous level), is consistent with an attractor network. Therefore
the transitions driven by the spiking-related statistical fluctuations are consistent
with the behavioral data.

Deco et al. [9] studied also a second different bistable network model called
“Competing Yes-No-Neurons” (CYNN). Both models (NCYN and CYNN) are con-
sistent with the existing single cell recordings, but they involve different types of
bistable decision states, and consequently different types of computation and neuro-
dynamics. By analyzing the temporal evolution of the firing rate activity of neurons
on trials associated with the two different behavioral responses, they were able to
produce evidence in favor of the CYNN model. Specifically, the CYNN model pre-
dicts the existence of some neurons that encode the “no” response, and other neurons
that encode the “yes” response. The first set of neurons slightly decrease their activ-
ity at the end of the trial, whereas the second group of neurons increase their firing
activity when a stimulus is presented. Thus in this case, the simulations indicate that
the CYNN model fits the experimental data better than the NCYN model.

In conclusion, computational stochastic neurodynamical models provide a deeper
understanding of the fundamental mechanisms underlying perceptual detection and
how these are related to experimental neuroscience data. We argue that address-
ing such a task is a prerequisite for grounding empirical neuroscience in a cogent
theoretical framework.
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Fig. 3 Simulated results plotting the detection curves resulting from 200 trials (overall perfor-
mance) and the mean rate activity of hit trials at a function of the input strength � for the MPC
neurons for the experimental design of de Lafuente and Romo (2005). (a) Probability of an “yes”
response (hit). (b) Mean firing rate activity of neurons in the “yes” population on “yes” trials. The
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performed by a full spiking and synaptic simulation of the network
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