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Preface

New developments in experimental methods are leading to an increasingly detailed
description of how networks of interacting neurons process information. These
findings strongly suggest that dynamic network behaviors underlie information pro-
cessing, and that these activity patterns cannot be fully explained by simple concepts
such as synchrony and phase locking. These new results raise significant challenges,
and at the same time offer exciting opportunities, for experimental and theoretical
neuroscientists. Moreover, advances in understanding in this area will require inter-
disciplinary efforts aimed at developing improved quantitative models that provide
new insight into the emergence and function of experimentally observed behaviors
and lead to predictions that can guide future experimental investigations.

We have undertaken two major projects to promote the translation of these new
developments into scientific progress. First, we organized the workshop Coher-
ent behavior in neuronal networks, which took place on October 17–20, 2007, in
Mallorca, Spain, funded by the US National Science Foundation, the Spanish Min-
isterio de Educación y Ciencia, Govern de les Illes Balears, the Office of Naval
Research Global, Universitat de les Illes Balears, the Consejo Superior de Investi-
gaciones Cientı́ficas, the University of Houston, the University of Pittsburgh, and
the Ajuntament de Palma de Mallorca. This unique workshop brought together a
highly interdisciplinary and international mixture of 95 researchers with interests
in the functional relevance of, and the mechanisms underlying, coherent behavior
in neuronal networks. Reflecting the belief that understanding coherent behavior in
neuronal networks requires interdisciplinary approaches, a key component of the
meeting was the inclusion of linked back-to-back talks by experimental and theo-
retical collaborators, on their joint research endeavors. Scientifically, the meeting
was structured around multiple themes, including the possible roles of globally co-
herent rhythms in the coordination of distributed processing, the possible roles of
coherence in stimulus encoding and decoding, the interplay of coherence of neu-
ronal network activity with Hebbian plasticity, and the mechanisms and functional
implications of repeated spiking sequences. Participants responded quite positively
to the workshop, expressing a strong desire for further activities to encourage the
exchange of ideas and establishment of collaborative efforts in this field.

To address this need, and to reach a wider audience with interests in the broad
area of coherent behavior in neuronal networks, our second project has been editing
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vi Preface

this volume. The chapters collected here include work from some workshop par-
ticipants as well as some nonparticipants. The goal of the book is not to provide a
summary of workshop activities but rather to provide a representative sampling of
the diverse recent research activities and perspectives on coherent behavior in neu-
ronal networks, and to serve as a resource to the research community. Nonetheless,
we have made sure that the interdisciplinary flavor of the workshop has extended
to this volume. Indeed, many of the chapters are coauthored by collaborating theo-
rists and experimentalists. We hope that these chapters will provide useful examples
of how theoretical abstractions can be derived from experimental data and used
to attain general, mechanistic insights, and how theoretical insights can guide ex-
periments in turn. Several chapters also include reviews or examples of novel
methodologies, some experimental and some theoretical, that may be useful in ana-
lyzing coherent behavior in neuronal networks.

Scientifically, the book starts with a focus on ongoing or persistent cortical activ-
ity, as a baseline upon which sensory processing and faster oscillations must occur.
In particular, the first chapters consider spatiotemporal patterning of synaptic inputs
during such states, as well as the more abstract question of identifying repeating
motifs within these inputs. From there, the book moves to small networks and
small-scale interactions, including input-dominated cultured networks, which are
particularly well suited for the study of how network dynamics interact with plastic-
ity in an ongoing feedback cycle. Next, we return to larger scale but abstract issues,
but with a shift in focus to the spatiotemporal relationships observed in the activity
patterns of different cells, such as synchrony or causality. Subsequent chapters offer
a broad survey of coherence in encoding and decoding, such as in stimulus discrim-
ination and perception across systems such as motor, olfactory, and visual, with a
particular emphasis on the role of noise.

We believe this book is suitable for special topics courses for graduate students,
particularly in interdisciplinary neuroscience training programs, and for interdis-
ciplinary journal club discussions. More broadly, we hope this volume will be a
valuable resource for the many researchers, across a wide variety of disciplines, who
are working on problems relating to neuronal activity patterns. We look forward to
following and participating in future developments in the field, as interdisciplinary
collaborations become increasingly widespread and continue to generate exciting
advances in our understanding of coherent behavior in neuronal networks.

Houston, TX KreMsimir Josić
Pittsburgh, PA Jonathan Rubin
Palma de Mallorca, Spain Manuel A. Matı́as
Mexico, D.F. Ranulfo Romo



Contents

On the Dynamics of Synaptic Inputs During Ongoing Activity
in the Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Michael Okun, Alik Mokeichev, Yonatan Katz, and Ilan Lampl

Timing Excitation and Inhibition in the Cortical Network . . . . . . . . . . . . . . . . . . . . 17
Albert Compte, Ramon Reig, and Maria V. Sanchez-Vives

Finding Repeating Synaptic Inputs in a Single Neocortical
Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Gloster Aaron

Reverberatory Activity in Neuronal Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Pak-Ming Lau and Guo-Qiang Bi

Gap Junctions and Emergent Rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
S. Coombes and M. Zachariou

The Feed-Forward Chain as a Filter-Amplifier Motif . . . . . . . . . . . . . . . . . . . . . . . . . 95
Martin Golubitsky, LieJune Shiau, Claire Postlethwaite,
and Yanyan Zhang

Gain Modulation as a Mechanism for Switching Reference
Frames, Tasks, and Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
Emilio Salinas and Nicholas M. Bentley

Far in Space and Yet in Synchrony: Neuronal Mechanisms
for Zero-Lag Long-Range Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
Raul Vicente, Leonardo L. Gollo, Claudio R. Mirasso,
Ingo Fischer, and Gordon Pipa

Characterizing Oscillatory Cortical Networks with Granger
Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
Anil Bollimunta, Yonghong Chen, Charles E. Schroeder,
and Mingzhou Ding

vii



viii Contents

Neurophysiology of Interceptive Behavior in the Primate:
Encoding and Decoding Target Parameters
in the Parietofrontal System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
Hugo Merchant and Oswaldo Pérez
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On the Dynamics of Synaptic Inputs
During Ongoing Activity in the Cortex

Michael Okun1, Alik Mokeichev1, Yonatan Katz, and Ilan Lampl

Abstract In this chapter, we provide an overview of the dynamical properties of
spontaneous activity in the cortex, as represented by the subthreshold membrane
potential fluctuations of the cortical neurons. First, we discuss the main findings
from various intracellular recording studies performed in anesthetized animals as
well as from a handful of studies in awake animals. Then, we focus on two specific
questions pertaining to random and deterministic properties of cortical spontaneous
activity. One of the questions is the relationship between excitation and inhibition,
which is shown to posses a well-defined structure, owing to the spatio-temporal or-
ganization of the spontaneous activity in local cortical circuits at the millisecond
scale. The other question regards the spontaneous activity at a scale of seconds and
minutes. Here, examination of repeating patterns in subthreshold voltage fluctua-
tions failed to reveal any evidence for deterministic structures.

Introduction

Even in the absence of sensory stimuli, cortical activity is highly prominent. At the
single-cell level, spontaneous activity in the cortex is observed using extracellular,
intracellular, and calcium imaging recordings, whereas populations of cells can be
seen using voltage sensitive dyes. At a larger scale, spontaneous activity can be
observed in EEG, MEG, and fMRI recordings. In this chapter, we focus on the on-
going cortical activity as expressed by the dynamics of the subthreshold membrane
potential of single neurons. Since synaptic inputs are the main cause of membrane
potential fluctuations in cortical neurons [51], this technique is one of the most
powerful tools to probe the network activity. The intracellular recording technique

I. Lampl (�)
Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
e-mail: ilan.lampl@weizmann.ac.il

1 Equal contribution.

K. Josić et al. (eds.), Coherent Behavior in Neuronal Networks, Springer Series
in Computational Neuroscience 3, DOI 10.1007/978-1-4419-0389-1 1,
c� Springer Science+Business Media, LLC 2009
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provides the most accurate data in terms of spatial and temporal precision, which
comes at the expense of low yield of recorded cells and limited recording duration,
because of the mechanical sensitivity of the technique. Nevertheless, an increasing
number of studies have used this method to unveil the dynamics of spontaneous
activity in the cortex.

A particularly distinctive feature of the subthreshold dynamics in cortical neurons
is the appearance of Up-Down states of membrane potential, originally described
in anesthetized cats [52] and rats [17]. The Up-Down dynamics is characterized
by large (10–20 mV) depolarizations relative to the baseline potential, lasting for
several hundreds of milliseconds (the Up state), resulting in bimodal membrane po-
tential distribution (Fig. 1a). This activity pattern was also observed in other species,
including mice [42] and ferrets [23, 25]. Indirect EEG evidence for the presence of
Up-Down states is also available for monkeys [39] and humans [4,52]. In a series of
studies in drug-free cats, it was found that Up-Down dynamics occurs during slow
wave sleep (SWS) [53,54]. Similar behavior during SWS and periods of drowsiness
was observed in rats and mice as well [33,42]. On the other end of scale, Up-Down
dynamics was also reproduced in slices [49].

While Up-Down dynamics is readily observed under some conditions of anes-
thesia (urethane, ketamine-xylazine), quite a different activity pattern, characterized
by rather short (10–50 ms) depolarizations and membrane potential distribution that
is not bimodal, emerges with other anesthetics (most distinctively the inhaled ones,
such as isoflurane and halothane). This kind of activity appears to be a manifesta-
tion of lighter anesthesia when compared with the Up-Down dynamics, since the
bimodal distribution of the membrane potential tends to appear when the concentra-
tion of the inhaled anesthetic is increased (unpublished results). Furthermore, under
light gas anesthesia membrane dynamics is more similar to the activity observed in
awake animals (see below).

Since it is plausible that the spontaneous dynamics in awake animals differs
substantially from the anesthetized condition, intracellular recordings of cortical
neurons in awake animals have been performed as well. Rather unfortunately these
data are also most experimentally demanding to obtain, since intracellular record-
ings are extremely sensitive to mechanical instabilities, which are almost inevitable
in awake, drug-free animals. At present time only a handful of such studies were
performed, mostly in head fixed animals: monkeys [14, 35], cats [8, 53, 54], rats
[12, 20, 22, 34, 40], mice [18, 43], and bats [16]. A methodology for whole-cell
recording in behaving rodents is being developed as well [32].

Perhaps somewhat surprisingly, there exist large discrepancies between these
studies. Two recent investigations reported diametrically opposing results: one
group recorded neurons from the primary auditory cortex (A1) of rats [20, 27] and
the other recorded from the parietal association cortex in cats [46]. According to
Zador and his colleagues, the spontaneous subthreshold activity in the rat A1 is char-
acterized by infrequent large positive excursions (“bumps”), resulting in membrane
potential distribution with sharp peak and heavy tail at its positive side (average
kurtosis of �15), quite distinct from the Gaussian distribution. On the contrary,
in [46] the membrane potential exhibits activity resembling a continuous Up state,
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Fig. 1 Examples of subthreshold spontaneous activity. (a) Up-Down dynamics in a neuron in
the primary somatosensory cortex (S1) of ketamine-anesthetized rat, and the resulting membrane
potential distribution. (b) Spontaneous activity in parietal association cortex of an awake cat, data
from [9]. (c) Spontaneous activity in A1 of an awake rat, data from [27]. (d) Spontaneous activity
in S1 of an awake rat, data from [40]. (e) Spontaneous activity in S1 of an awake mouse, data from
[18] (To have a uniform scale, in all panels the data is reprinted in modified form from the original
publication, and spikes are cut.)

characterized by frequent, small fluctuations and membrane potential distribution
which is close to normal. In particular, independent excitatory and inhibitory synap-
tic inputs that follow the Ornstein–Uhlenbeck stochastic differential equation are
shown to provide a rather accurate approximation of the observed activity.

Intracellular recordings in awake animals were carried out in several addi-
tional works, but unlike the two papers above, in these studies the investigation
of spontaneous dynamics was not the primary goal. Nevertheless, they provide an
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additional opportunity to examine the ongoing activity in the cortex. In most of these
studies recordings were conducted in the rodent barrel cortex: [12, 18, 22, 34, 43].
When inspecting these recordings, as well as our own (Fig. 1d), the dynamics ap-
pears to be somewhere in between the two extremes of [20,27] and [46]. On the one
hand, the potential fluctuations do not seem to be produced by entirely uncorrelated
synaptic inputs, as suggested in [46] while at the same time the bumps are smaller
and more frequent than in [20]. In particular, in our recordings voltage distribution
is approximately normal (kurtosis �0). However, we note that the presently avail-
able experimental data on the patterns of spontaneous activity in the barrel cortex
of awake rodents are not fully consistent on their own, since recordings in mice
[18, 43], see Fig. 1e, show a very bumpy activity. In these mice studies, bump am-
plitude appears to be several times larger than in rats and more importantly their
durations are substantially longer than in the rat traces.

At the present stage we are not aware of any persuasive explanation for the dis-
crepancies just described. Possible factors that might contribute to the observed
differences are the animal species used, the cortical areas, layers, and specific neu-
ron types from which the recordings were made, as well as the state of the animal
(its level of stress, alertness, etc.). At the first sight the discrepancies between the
handful of currently available datasets seem to be of a highly significant nature. Be-
cause ongoing activity can have substantial effect on the neural response to sensory
stimuli, e.g., see [24,42], cortical spontaneous activity may play a significant role in
sensory processing. However, it is not clear whether the differences in spontaneous
cortical dynamics are manifested during behavioral states, such as sensory process-
ing, memory tasks, attention, and awareness. Though it is unlikely, it might be the
case that these large differences from the point of view of the researcher are of no
major importance for the processing of information in the cortex.

Synchrony in Spontaneous Activity

A significant difference in the amount of synchrony at the network level exists
between the model of spontaneous activity proposed in [46] (Fig. 1b) and that of
[20, 27] (Fig. 1c). In the first case, the dynamics is suggested to be asynchronous,
with each presynaptic neuron firing independently of the others. However, the dis-
tinctive short bumps, as in Fig. 1c, indicate that firing of hundreds of presynaptic
neurons is synchronized, since unitary synaptic potentials (uPSPs) are of the or-
der of 1 mV or less. Owing to the enormous connectivity in the cortex, even if the
presynaptic neurons do fire in synchrony, it is possible that nearby neurons receive
inputs from independent pools of inputs. Simultaneous dual intracellular recordings,
however, indicate that neurons in the local cortical network receive synaptic inputs
with highly similar pattern and magnitude. In anesthetized animals, dual record-
ings reveal a very high correlation between the subthreshold activities in pairs of
cells (Fig. 2a) [25, 31, 40, 56]. Since there is good evidence that the probability of
nearby cells to receive inputs from the same presynaptic neuron is low, e.g., [50], and
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since a lag of several milliseconds may exist between their activities [31,33,40,56],
this synchrony indicates that most of the cortical spontaneous activity consists of
waves, with large portions of local cortical circuits participating in their propaga-
tion [29, 33, 42].

It was shown that synchrony in the cortex increases with the level of anesthesia
[15]. For example, the Up-Down activity (Fig. 1a) is synchronous across large ar-
eas of the cortex (several mm apart) [56]. The high synchrony of large neuronal
populations during Up-Down activity is further evidenced by high correlation
between membrane potential and EEG, e.g., see [52]. Moreover, even the small
synaptic events that appear within individual Up-states are synchronized across
cells [25].

Under lighter anesthesia conditions that do not exhibit Up-Down dynamics, co-
herent subthreshold activity in pairs of nearby neurons is still observed even though
global brain synchrony is very low, which is evident from the low correlation of
EEG and membrane potential [31,40]. Possibly this kind of local synchrony is simi-
lar to the synchrony existing within single Up states. The degree of synchrony in an
awake animal is probably even lower than in the lightly anesthetized one; however,
recent imaging studies and dual intracellular recordings in awake animals [43] show
that it does not disappear altogether.

Excitation and Inhibition During Spontaneous Activity

The interplay between the excitatory and inhibitory synaptic inputs is a long studied
topic in the computational neuroscience community. A careful examination of the
spiking statistics of single cortical neurons has suggested that they are constantly
bombarded by excitatory and inhibitory inputs that on average balance each other
[47, 48]. Furthermore, theoretical studies showed that networks which exhibit sus-
tained activity with an approximate balance between the excitatory and inhibitory
neurons indeed exist, e.g., see the review in [55].

Intracellular recordings allow direct measurement of the excitatory and the in-
hibitory synaptic inputs associated with some reproducible stereotypical event (such
as a sensory stimulus), by a method introduced in [11] (for an up-to-date review see
[38]). Using this methodology, a balanced excitatory and inhibitory activity was
indeed discovered during Up states in the ferret cortex, both in vitro [49] and in
vivo [23]. Specifically, it was found that in the beginning of an Up state, both
synaptic conductances are high and they tend to progressively decrease, but their
ratio remains constant and approximately equal to 1. It should be noted, however,
that questions relating to the balance between excitation and inhibition during the
Up state are still not settled. A study of Up-Down activity in association cortex of
awake cats [46] reports inhibitory conductance that is several times higher than the
excitatory one. On the contrary, it was also argued that during Up states in the rat
somatosensory cortex the inhibitory conductance is only about 10% of the excita-
tory conductance and that the duration of an Up state is at least partially determined
by intrinsic mechanisms [58].
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It is important to observe that a particular membrane potential value can be pro-
duced by different combinations of excitatory and inhibitory synaptic inputs. For
example, a positive change in membrane potential can be caused both by an in-
creased excitation without any significant change in inhibition, and by withdrawal
of inhibitory input (disinhibition). Hence, the single-cell conductance measurement
methodology, whether in voltage or current clamp mode, can only provide the mean
relation between these inputs, calculated from the average event recorded at different
holding potentials. Because of this important limitation, the relationship between the
excitatory and inhibitory inputs during spontaneous activity which does not exhibit
stereotypic Up states remained unknown.

As we already discussed at length in the Introduction, different studies report
very distinct dynamics of ongoing activity. However, the presence of synchrony in
inputs of nearby neurons appears to be common to all types of activity, since it was
observed in all studies involving dual intracellular recordings or single-electrode
intracellular with nearby imaging or LFP recordings [19, 31, 40, 42, 56], though to a
different degree. This synchrony provides a method for measuring at the same time
both the excitatory and the inhibitory synaptic inputs to the local circuit, by means
of simultaneous dual intracellular recording [40]. In each pair of neurons, one cell
is recorded near the reversal potential of inhibition so that positive excursions of its
membrane potential reflect excitatory currents, at the same time a positive current
is injected into the other cell to reveal inhibitory potentials. In fact, this is the only
presently available experimental methodology that provides an adequate single-trial
picture of the magnitude and timing of both excitatory and inhibitory inputs and that
is suitable for elucidating the excitatory–inhibitory dynamics during ongoing activ-
ity and evoked responses. An example of such a recording is presented in Fig. 2.
The two cells receive synchronized excitatory (Fig. 2a) and inhibitory (Fig. 2b) in-
puts. Furthermore, when one cell was depolarized (by positive current injection)
to reveal inhibitory potentials, while the second cell was recorded near its resting
level (Fig. 2c and vice versa in Fig. 2d), a high synchrony between the excitatory
and inhibitory potentials was revealed.

The shape and amplitude of the synaptic events are highly variable when
recorded at the neuron’s resting potential (e.g., as in Fig. 2a). A priori, the variability
in the amplitude of these events could reflect considerable changes in the contribu-
tion of the excitatory and inhibitory synaptic inputs, ranging between the following
two diametrically opposing possibilities. It might be the case that large bumps occur
when the inhibitory activity, which can shunt the excitation, is weak, whereas small
bumps reflect shunted excitatory inputs. Alternatively, both types of synaptic inputs
might reflect the overall level of activity in the local network and go hand in hand.
We have used the same experimental approach to resolve this issue. We found that
the amplitudes of spontaneous events were significantly correlated, both for the
depolarizing potentials, when the two cells were held near their resting potential,
and when one cell was depolarized to reveal inhibitory potentials (Fig. 2e–f). Hence,
the latter alternative is correct; that is, the larger the excitatory drive in the local
circuit, the larger the inhibitory one. In addition, we used one of the cells as a
reference to measure the relative timing of excitatory and inhibitory bumps in the
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Fig. 2 Correlation of excitatory and inhibitory synaptic inputs during spontaneous activity. (a–d)
Examples of simultaneous dual intracellular recordings, when both cells are hyperpolarized (a),
depolarized (b) and intermixed (c, d). (e) Synaptic events in the second cell (Cell 2) of a pair
are shown at the bottom, sorted by their amplitude (indicated by the color intensity). The corre-
sponding events in Cell 1 are shown above with the same color. At first, both neurons were in the
hyperpolarized mode. Then, the first cell was recorded in the depolarized mode. (f) Amplitudes of
the events presented in (e). A significant correlation between the amplitudes is clearly visible in
each case.

other cell. We found that during spontaneous activity the onset of inhibition lags by
few milliseconds behind the excitatory input (Fig. 3).

The same experimental method was used more recently in an in vitro study of
gamma oscillations in the hippocampus. This study also found a tight amplitude
correlation between the excitatory and inhibitory inputs when analyzed on a cycle
by cycle basis [6]. The coordinated activity of excitation and inhibition across two
neurons strongly suggests that variations in excitation and inhibition reflect mostly
changes in the local network activity rather than “private” variability of the inputs
of individual cells.
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Fig. 3 Lag analysis based on
onsets of the average events.
Averages of the membrane
potentials for the two
recording conditions,
triggered by events during
�100 s of recording. Dashed
lines mark the onsets (10%
from the peak).

Repeating Patterns in the Spontaneous Subthreshold Membrane
Potential Fluctuations of Cortical Neurons

The notion that distinct and large depolarizing excursions of membrane potential re-
flect synchronized activity in the network was used in a recent study which reported
on the surprising finding that patterns of spontaneous synaptic activity can repeat
with high precision [28] (see also Chapter 3 in this volume). In this work, long
and continuous records of spontaneous subthreshold membrane potential fluctua-
tions obtained both in vivo and in brain slices were analyzed, and it was found that
specific patterns of activity can reappear seconds to minutes apart (Fig. 4). These
repeats of membrane potential fluctuations, also termed “motifs” [28, 37], typically
span 1–2 s and include several large bumpy synaptic potentials separated by qui-
escent periods. What cortical mechanism could generate such precisely timed and
long activity patterns? In [28], motifs were suggested to provide a strong supporting
evidence for the existence of special cortical mechanisms, such as the synfire chain
operation mode of the cortical network, which generate exact firing patterns with a
millisecond precision.

According to the synfire chain model, cortical cells are organized into pools of
cells [1]. Each pool is connected to the next by a set of diverging and converging
connections, forming together a chain of pools. Despite the low transmission re-
liability between pairs of cells, a secure transmission of information is suggested
to be accomplished by synchronous firing within each pool and its propagation
from a pool of neurons to the following one. That is, after one pool of neurons
was synchronously activated, a synchronous activation of the next pool of neurons
follows with a typical synaptic delay. Processing of information may include mul-
tiple feedbacks, so that a single neuron might be a member in several pools along
the chain. For such a neuron, activation of the chain would result in a sequence
of large synaptic potentials, where each one is generated by a different group of
presynaptic neurons. Because of the high reliability of the chain, such sequence of
synaptic potentials is expected to repeat with high temporal precision once the first
pool of neurons in the chain is reactivated, generating a repeated firing and synaptic
pattern (motif).

The synfire chain model proposes an efficient mechanism for propagating a sig-
nal with a low number of spikes, in addition to a compact way of information
encoding. The amount of information that might be encoded by precise temporal
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Fig. 4 Examples of repeating motifs from two different cells. The similarity between motif rep-
etitions was quantified by the High Resolution Index (HRI, for further details see [28, 37] and
Chapter 3 in this volume). Each row presents examples from the same cell, first the two motifs
with the highest HRI values, then a motif which has the 1,000th highest HRI rank (still showing a
marked similarity). Such highly similar motifs were found in all the recorded cells in spite of the
differences in the statistical properties of their subthreshold activities.

structures is far larger when compared with encoding by spike rate or spike count
alone [36]. If motifs do not result from stimulation locking [41], then they may
support higher level processes such as binding together different features of an
object [1, 21, 57]. Few synaptic connections between reverberating synfire chains
may facilitate the binding of several smaller chains, representing specific features,
into a larger super-assembly [2, 3, 10] which could be a substrate of higher level
perceptual processes. For example, it has been recently suggested that large-scale
spatio-temporal activation patterns spreading over superior-temporal and inferior-
frontal cortices, observed during processing of speech stimuli, are best explained by
interarea synfire chain propagation [45].

The synfire chain model was supported by an analysis of spike sequences
recorded simultaneously from several neurons of the frontal cortex of behaving
monkeys [3, 44], which showed that the number of spike motifs exceeded what
could be expected by chance in surrogate data [3]. While the propagation of the
signal might be purely feedforward, so that a motif includes only one spike per neu-
ron, most of the motifs that were described in the above studies were composed of
patterns of spikes originating from a single unit. Therefore, the authors concluded
that synfire chains typically contain feedback connections [3, 44].

Subsequent studies questioned the significance of temporal patterns by compar-
ing the number of repeating patterns of spikes in the recordings and in surrogate
data generated by shuffling the original spike times using different stochastic mod-
els [7,41]. Their analysis of spike times recorded from the lateral geniculate nucleus
(LGN) and primary visual cortex of behaving monkeys showed that adding more
constraints to the surrogate data brings the number of repeating patterns closer to the
recorded data. Hence, choosing the right stochastic model has critical consequences
regarding the conclusions. For example, in surrogates that preserved the number
of spikes per trial and the firing probability distribution, the number of motifs was
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much closer to the original than in surrogates generated with more simple assump-
tions such as a Poisson process. Baker and Lemon and Oram et al. [7, 41] therefore
suggested that the appearance of spike motifs reflects the coarse dynamics of firing
rate modulations rather than the existence of special network mechanisms for their
generation. A lack of evidence for the occurrence of precise spike patterns beyond
what is expected by chance was also reported in [7], where spike patterns recorded
from multiple units of the primary motor cortex (M1) and the supplementary motor
area (SMA) in monkeys were analyzed.

Research aimed to find in the subthreshold traces the synaptic inputs that cre-
ate the precise spike patterns observed in some of the above described studies was
reported by Ikegaya et al. in [28]. In contrast to the above studies, which searched
for precise spike patterns in awake behaving monkeys, the repeating patterns re-
ported in [28] were found in subthreshold membrane potential fluctuations recorded
in-vivo in anesthetized cats and were generated spontaneously, in the absence of
external sensory stimulation. Recently, we have reexamined the statistical signifi-
cance of such spontaneously repeating patterns in intracellular recordings from the
rat barrel cortex (S1) and the cat primary visual cortex (V1) of anesthetized animals
[37]. In most of the recordings, the dynamics of spontaneous activity was similar
to those reported in [28]. Using a search algorithm similar to the one described by
Ikegaya and his colleagues, we found a large number of motifs. To test their statis-
tical significance, we used three different methods to generate surrogate data, each
corresponding to a different model of randomness. In the first method, the surro-
gate data were constructed by a time domain shuffling of the original trace (Fig. 5a).
In the second method, the data were randomized in the frequency domain. In the
third method, the parameters of Poisson distributed synaptic inputs of a simulated
passive cell were optimized to elicit an activity with dynamics similar to that of the
recorded cell. Perhaps surprisingly, a large number of motifs were found in all types
of surrogate data.

The close resemblance between the distributions of similarity scores of motifs
found in physiological spontaneous activity and in the different types of surrogate

Fig. 5 Generation of surrogate data by time domain interval shuffling. (a) Time domain interval
shuffling: Using two levels of potentials (determined from 1/3 and 2/3 of the density distribution),
the data were fragmented into short segments. Each segment starts and ends at one of the two
levels and its duration was the longest possible below 500 ms. Five different segments are marked.
The fragments were then randomly assembled to generate a new continuous voltage trace. (b)
Membrane potential distribution and (c) power spectrum of the recorded data and its time domain
shuffled surrogate.
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Fig. 6 (a) Example of HRI scores distributions in one of the cells analyzed in [37], sorted in
decreasing order. Recorded data and the three types of surrogate data have very similar distribu-
tions of HRI scores. The interval shuffled curve is the average of 40 independent shuffles of the
original recording, and the dashed green curves are its confidence intervals .p D 0:99/. (b) Rank
ordered HRI scores of all motifs found in surrogate data of 20 min in duration with 20 implanted
motif repeats, and its 40 interval shuffled surrogates. To test whether motifs of high similarity that
occur beyond chance level could be detected, we implanted into a surrogate data of 20 min in du-
ration a single motif of 1-s duration that repeated every minute on average. The surrogate was
produced from physiological recordings by shuffling it in the time domain. It is evident that the
HRI scores of the top ranked motifs that were found in data with implanted motifs are much higher
than those of all 40 shuffles. These results demonstrate that even a single motif that repeats several
times with high similarity is identified by our methods.

data (Fig. 6a) suggests that the motifs in physiological data emerge by chance. Of
the three methods for generating surrogate data, the time domain interval shuffling
preserved both the power spectrum and the voltage distribution of recorded data
most accurately (Fig. 5b–c). Surrogates produced with this method also had motif
statistics that were closest to the original. These results suggest that physiological
motifs could simply arise as a result of the coarse constraints on the subthresh-
old fluctuations dynamics, imposed by a wide range of properties of the cortical
neuronal networks. An important issue of concern with any method that produces
surrogate data from the original recordings is its effect on genuine motifs, if they
do exist. To test this, we have implanted several highly similar repeats into a long
continuous recording. Such artificial motif is easily detected by comparing the simi-
larity scores distribution of the synthetic data to its shuffled versions (Fig. 6b). These
results further support the conclusion that physiological records did not contain re-
peating motifs above what is expected at chance level.

Additional statistic that compared between physiological and surrogate data sets
was the number of times motifs reappear. This particular comparison is of a par-
ticular interest since a theoretical analysis of synfire chains [26] demonstrates that
typical cortical columns are not large enough to support many synfire chains of a
duration as long as 1 s. Therefore, if the recorded 1 s repeats are generated at the col-
umn level, one would expect a small number of motifs that repeat numerous times
rather than a large number of different motifs repeating small number of times. The
analysis performed in [37] found that the statistics of the number of motif repetitions
in the original traces and the surrogates was the same.
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The tight continuous synchrony of spontaneous membrane potential fluctuations
of cortical neurons that is observed across extended cortical regions [5, 56] also
stands in contrast to the idea that the observed long repeating patterns reflect a prop-
agation of synfire chain within a single cortical column. This discrepancy is further
demonstrated by our experiment in which intracellular voltages were recorded si-
multaneously from pairs of neurons (in the barrel cortex of an anesthetized rat).
Some of the synchronized cells were laterally separated by about �500�m, thus
typically belonged to two distinct columns and to different layers. The same measure
that was used to quantify the degree of similarity between repeats of a motif may
also be used to measure similarity of simultaneously (or almost simultaneously2)
recorded epochs in a pair of cells. The inter-neuron similarity of simultaneous in-
tervals was very high, much higher than the similarity between repeats within the
recording of individual neuron (Fig. 7). This indicates that the vast majority of re-
occurring temporal patterns in the spontaneous activity of the cortex do not reflect
a column specific processing, rather they are a consequence of waves propagating
across wider cortical regions. The dual recordings also provide an answer to an issue
of concern not fully addressed in [37], regarding the possibility that the stochastic
nature of motifs is due to intrinsic noise, unrelated to network activity. The results in
Fig. 7 indicate that this is not the case. Finally, we note that [28] described in vitro
motifs of firing sequences within a population of neurons whose size is of the order

Fig. 7 Comparison between the similarity of motif repeats that were found within a continuous
recording of a single cell, and the similarity of the first repeat to the corresponding epoch in another
simultaneously recorded cell. Most points lie above the diagonal line. This implies that nearby cells
have similar patterns of synaptic inputs and that these patterns do not reoccur with a comparable
similarity at different times.

2 In most of the cases, the temporal pattern of synaptic inputs recorded in one cell appeared in the
other cell after a short delay of a few milliseconds, an indication of a traveling wave in the cortex.
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of a single cortical column, an indication that the mechanisms that are involved in
their generation are different than those that may support the generation of motifs
in the much larger scales of in vivo cortical activity.

The above results provide no evidence for the existence of cortical mechanisms to
support precisely timed, long-lasting spike patterns that propagate recurrently in the
local cortical network. These results are consistent with other electrophysiological
studies in vivo [30, 33, 48] that do not support a millisecond precision in cortical
function. Moreover, [13] showed that the jitter of firing (measured by the standard
deviation of the latency across multiple trials following local stimulation) is directly
proportional to the latency of the propagating wave that activates them, suggesting
that precise propagation of spike patterns cannot be maintained for long durations.
However, we cannot exclude the existence of statistically significant motifs of much
shorter duration. A study of Luczak et al. [33] has shown that different cortical
cells exhibit unique patterns of modulation in firing rate that are associated with the
onset of Up states and last around 100 ms. The typical patterns emerge regardless
of the direction from which the propagating wave arrives, and therefore it has been
hypothesized that they reflect the local functional organization of the network [33].
In summary, our data provide indications that long motifs of spontaneous activity
are generated stochastically as a result of the coarse dynamics of cortical activity.

Conclusions

Spontaneous activity in the cortex was extensively investigated in the recent years,
from the level of individual cells all the way to activity in whole cortical areas. The
intracellular recording technique provides a powerful tool for probing cortical dy-
namics and synaptic inputs during spontaneous and evoked activities. In particular,
our own works examined different and even opposing views regarding the organiza-
tion of neuronal activity in the local cortical network, ranging from approximately
independent firing to highly structured spike patterns, generated by synfire chains.
On one hand, using in-vivo dual intracellular recordings of nearby cortical cells,
we have shown that a highly coordinated activity in the local network exists at
the millisecond time scale. This coordinated activity, in which both excitatory and
inhibitory inputs participate, is manifested as brief bursts of network activity, in-
terleaved with lower activity levels. On the contrary, on the time scale of seconds,
spontaneous network activity appears to be governed by stochastic mechanisms,
with no strong evidence for temporal patterns repeating above chance levels.
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Timing Excitation and Inhibition in the Cortical
Network

Albert Compte, Ramon Reig, and Maria V. Sanchez-Vives

Abstract The interaction between excitation and inhibition in the cerebral cortex
network determines the emergent patterns of activity. Here we analyze the specific
engagement of excitation and inhibition during a physiological network function
such as slow oscillatory activity (<1 Hz), during which up and down cortical states
alternate. This slow rhythm represents a well-characterized physiological activity
with a range of experimental models from in vitro maintained cortical slices to
sleeping animals. Excitatory and inhibitory events impinging on individual neurons
were identified during up and down network states, which were recognized by the
population activity. The accumulation of excitatory and inhibitory events at the be-
ginning of up states was remarkably synchronized in the cortex both in vitro and
in vivo. The same synchronization prevailed during the transition from up to down
states. The absolute number of detected synaptic events pointed as well towards a
delicate balance between excitation and inhibition in the network. The mechanis-
tic and connectivity rules that can support these experimental findings are explored
using a biologically inspired computer model of the cortical network.

Excitation and Inhibition During Cortical Up and Down States

Basal excitability and recurrent connectivity in the cerebral cortical network [18, 22]
induce neuronal firing that reverberates in the circuit, resulting in an emergent net-
work activity. During slow-wave sleep and anesthesia, this activity is organized in
the cerebral cortex network in a slow (<1Hz) rhythmic pattern consisting of in-
terspersed up (or activated) and down (or silent) states (Fig. 1) [21, 41, 44]. This
rhythm is recorded in the thalamocortical loop, but persists in the cortex following
thalamectomy [42]. Furthermore, it can be generated in cortical slices maintained
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Fig. 1 Slow rhythmic activity in excitatory and inhibitory neurons in vivo. (a) Successive up
states recorded intracellularly from a regular spiking neuron in vivo (top trace). Inset illustrates an
averaged action potential. Local field potential in the close vicinity (ca 100�m) reflects network
activity (bottom trace). (b) Successive up states recorded intracellularly from a fast spiking neuron
in vivo (top trace). Note the higher firing frequency during up states displayed by the fast spiking
neuron. Averaged action potential is represented in the inset. Local field potential from the vicinity
in the bottom trace

in vitro [35], bearing a remarkable similarity to cortical activity during slow-wave
sleep or anesthesia. Spontaneous slow rhythmic activity can also be recorded from
disconnected cortical slabs in vivo [47]. Therefore, the slow rhythm is generated
in the local cortical network, although the thalamic network can generate a similar
rhythm if activated by metabotropic glutamate receptors [52].

The understanding of the detailed cellular and network mechanisms that regu-
late the aforementioned emergent activity provides a valuable insight into cortical
function, and more generally into properties and regulation in neuronal networks.
A key element in the balance and control of either spontaneous emergent or evoked
cortical activity is the relation between excitation and inhibition. Slow oscillatory
activity represents a well-characterized physiological activity with a range of exper-
imental models, from in vitro to sleeping animals, where the specific engagement
of excitation and inhibition in physiological network function can be studied. This
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chapter will be devoted to excitatory and inhibitory activation during the occurrence
of up and down spontaneous cortical states both in the real and in a modeled cor-
tical network. The purpose is to understand how the network properties are tuned
to achieve functional equilibrium and how this equilibrium can be eventually lost,
as for instance in epilepsy. The approach we will present is both experimental and
theoretical. In the experiments, we measure the time of occurrence of excitatory and
inhibitory synaptic potentials during network activity. In the computational model,
the relationship between structural parameters of network connectivity and the tim-
ing of excitatory and inhibitory inputs is explored.

The activated periods during rhythmic activity, or up states, are periods of in-
tense synaptic activity that generate neuronal firing by pushing neuronal membrane
potential above firing threshold. Both excitatory and inhibitory neurons fire during
up states, while they remain relatively silent during down states. Several lines of
evidence confirm that both types of neurons fire during up states (Fig. 1). From the
first studies oscillations [41] it was already reported that not only excitatory elec-
trophysiological types but also inhibitory also inhibitory ones (fast spiking neurons)
fired during up states. membrane potential to different values by means of current
injection further illustrated the coexistence of both excitatory and inhibitory poten-
tials during up states in vivo and in vitro (Fig. 2) [35, 41]. Indeed, practically every
recorded neuron participated in the rhythm with enhanced firing during the up state
[7, 8, 35, 41, 43]. Quantification in striatal neurons also confirmed the participation
of both excitatory and inhibitory events during participation of both excitatory and
inhibitory events during Although all this evidence supports the simultaneous activa-
tion of Although all this evidence supports the simultaneous activation of oscillation,
the issue of the timing of both types of events remains unsettled. A computational
model of propagating slow oscillations predicted that inhibitory neurons should acti-
vate to their maximal rate slightly ahead in time than neighboring pyramidal neurons
at the beginning of the up states pyramidal neurons at the beginning of the up states
that this could be supported experimentally, although the trend did not reach statisti-
cal significance [17]. At the end of the up state, instead, experiments in vivo indicate
that excitatory firing outlasts inhibitory firing [17].

So far, most studies have analyzed the relative contribution of excitation and inhi-
bition to the conductance changes that neurons experience in the course of network
activity [1,4,17,29,30,34,38]. A related aspect that has received much less attention
is how the timing of excitatory and inhibitory events contributes to the excitation-
inhibition balance [6]. Conductance measurements during up states reveal that the
weight of excitation and inhibition is well balanced in vivo [17], and similarly in
vitro [38], as also argued theoretically [5]. Still, there are some contradictory find-
ings reported in the literature. Conductance measurements suggest that excitatory
conductance dominates slightly at the beginning and the end of the up states but is
otherwise comparable to inhibitory conductance [17]. Other studies, instead, report
that the inhibitory conductance is much larger during up states [34].

The general understanding achieved by different methods is that excitation and
inhibition balance each other, and this has been reported both during spontaneous
or sensory activated cortical activity [1, 17, 27, 29, 37–39, 51]. However, we do not
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Fig. 2 Excitatory and inhibitory synaptic potentials during slow oscillations in the auditory cortex
in vivo. In the three panels (A, B and C) the unfiltered local field potential on top and intracellular
recordings at the bottom. (a) Intracellular membrane potential at �15mV to illustrate the IPSPs oc-
curring during the up states. Sodium action potentials have been inactivated by depolarization. (b)
Intracellular membrane potential at �45 mV illustrates a mix of IPSPs and EPSPs, while sodium
action potentials are partially inactivated by depolarization. (c) Intracellular membrane potential at
�75mV illustrating suprathreshold up states. All intracellular recordings are from the same neuron

know exactly how this balance is achieved in terms of the contrasting proportions of
inhibitory and excitatory mechanisms in the cortex. Indeed, changes in conductance
during synaptic activity are determined by the combination of a number of factors:
the firing rate of presynaptic neurons, the number of presynaptic neurons, the num-
ber of synaptic contacts from each presynaptic neuron, or the conductance change
(excitatory or inhibitory) induced at a single contact by a presynaptic action poten-
tial, among others. It is estimated that a single pyramidal cell in the cortex receives
its input from as many as 1,000 other excitatory neurons (that would make some
5,000 contacts) and as many as 75 inhibitory neurons (that would make some 750
contacts) [31], and the proportion is of 30,000 excitatory against 1,700 inhibitory
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for CA1 pyramidal neurons [26]. This anatomical disproportion contrasts with the
functional balance between excitation and inhibition. Different factors seem to con-
tribute to the counter-balance of inhibition. Lesser failures of inhibitory transmission
achieved by multiple presynaptic contacts from the same inhibitory neuron [40, 45]
is one of them, as well as the larger synchronization between inhibitory neurons due
to electric coupling [15, 16]. Even more critical is the segregation of inputs onto
pyramidal neurons, where inhibitory contacts are restricted to the soma and prox-
imal dendrites [20, 26], while excitatory inputs only innervate further than 50�m
away from the soma [13,14]. Not only this results in a larger weight at the soma for
inhibitory inputs, but also in a control over the excitatory inputs that reach the soma
[2, 36, 48]. There is an additional element and that is the firing rate of inhibitory
neurons with respect to excitatory neurons. Fast spiking neurons are known to fire
at higher frequencies (Fig. 1b) [25, 28], as a consequence of the presence of KC
channels (Kv3) that allow for a fast repolarization [12] and the lack of fast spike fre-
quency adaptation [10,25], which can contribute to the excitation/inhibition balance
by imposing larger numbers of presynaptic events.

Resolving the contribution of all these mechanisms in achieving the physio-
logical excitation-inhibition balance in the cortex remains a challenge. Current
estimations from slow oscillatory activity in the cortex indicate that firing rates
differing by around a mere factor of two between regular spiking and fast spik-
ing neurons result in excitatory and inhibitory synaptic conductances that are in
balance [17]. This is surprising given the difference in orders of magnitude of the
connectivity parameters for excitation and inhibition in the cortex (see above). In
order to dissect further the mechanisms that link spiking activity and synaptic cur-
rent for excitation and inhibition in the cortex, we look here at the relative timing
of excitation and inhibition by detecting the times of occurrence of excitatory and
inhibitory synaptic events impacting on pyramidal cortical neurons. We then an-
alyze how synaptic event timing and neuronal spiking are related through some
connectivity parameters in a computer model of slow oscillatory activity in the cor-
tex [5]. Finally, we discuss the implications that these computational results have in
interpreting our experimental findings and their relation to functional structure and
dynamics of excitation and inhibition in the cortical network.

Experimental Procedures and Detection of Synaptic Events

Intracellular and Extracellular Recordings In Vitro and In Vivo

In vitro recordings were obtained as previously described [6, 35] and detailed in
the Appendix. In brief, cortical slices from ferret prefrontal or visual cortex were
prepared and bathed in an ACSF solution containing ionic concentrations that
closely mimic the conditions in situ. In these conditions, spontaneous rhythmic ac-
tivity (<1Hz) is generated in the circuit [35]. Recordings were also obtained from
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anesthetized rat neocortex (auditory and barrel cortex) [32] and the recorded activity
showed the characteristic slow oscillations of this state, which is closely related
to slow-wave sleep [41]. Thus, both the in vitro and in vivo preparations reflect a
very similar rhythm and are presumably engaging similar mechanisms of the corti-
cal circuit [35].

We investigated the properties of this rhythmic activity in vitro and in vivo by
recording intracellularly with sharp electrodes and extracellularly with tungsten
electrodes. In all cases, intracellular recordings were recorded in close vicinity of
the extracellular recording, in order to relate single-neuron activity to the surround-
ing population dynamics. For a more detailed methodological description, see the
Appendix.

Data Analysis

We used an analysis protocol described elsewhere [6] to identify the timing of exci-
tatory and inhibitory synaptic events recorded intracellularly at different membrane
potentials (Fig. 2) and relate them to the ongoing population dynamics (up and down
states). The extracellular recording was used to detect the times of transitions be-
tween up and down states as illustrated in Fig. 3a and described in the Appendix.
From intracellular recordings at different holding voltages, the times of synaptic
events were identified as sharp upward or downward deflections in the membrane
potential (Fig. 3b, c) and were aligned to the beginning or end of the up state by us-
ing the transitions detected from the extracellular recording. This alignment allows
to compare the timing of events recorded nonsimultaneously at different holding
voltages, because the extracellular recording remains unchanged as the conditions
of the intracellular recording are modified. A more detailed description of these
methods can be found in the Appendix and in [6].

A Short Discussion on the Method

In order to detect excitatory and inhibitory events in this study we recorded intra-
cellularly from a neuron at membrane potentials that are the reversal potentials of
glutamatergic excitation (0mV) and GABAA inhibition (�70mV). In this way, the
postsynaptic events that correspond to excitation and inhibition respectively can be
isolated. Extremes of the first derivative provide timings for transitions of either
EPSPs (if at �70mV) or IPSPs (if at 0mV). A threshold is set based on statistical
criteria and those events that surpass the threshold separating them from the noise
are taken into account as valid synaptic events. An envelope of the local field po-
tential trace determines the times of transition and separates the periods of up and
down states. This study focuses on the timing of excitatory and inhibitory events
with respect to up and down transitions.
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Fig. 3 Detection of IPSPs and EPSPs during slow oscillations in the cortex. (a) Detection of
up and down states from the extracellular recording was performed by filtering it between 2 and
150 Hz to obtain a local field potential (LFP) signal. An Envelope was then computed (see the
Appendix), from which a simple thresholding allowed us to detect up states (thick black lines
below LFP). (b, c) We detected the timing of synaptic events from each intracellular recording
(Vm/. To this end, we computed its derivative (dVm=dt ), and then thresholded it at 2–4 interquartile
ranges to detect excitatory events (red dots) and inhibitory events (blue dots). We did this for an
intracellular recording at a depolarized membrane potential (b) and at a hyperpolarized membrane
potential (c) for each neuron, so we could have a more reliable identification of synaptic events
of each kind. Because the extracellular recording remained unchanged while we modified Vm,
aligning event timing to the up state beginning and end (detected from the extracellular record),
allowed us to compare the timing of excitatory and inhibitory events. Data shown here correspond
to an in vitro recording, but identical methods were applied to in vivo data.

There are some caveats associated to this method. The absolute number of events
may be underestimated since those events below threshold are not considered. They
may also remain undetected if their rise time is not sharp enough to appear as an
independent event, e.g., because they are embedded in a group of events or because
they occurred far out in the dendritic arbor. Regarding this, synchronous events may
be underestimated by being considered under the same detected event. Because of
the higher synchronization of inhibitory neurons [15,16], this may affect especially
inhibitory events. Similarly, slower post-synaptic voltage dynamics will blur post-
synaptic responses and induce more false negatives in our detection method. Thus,
there may be limitations derived from the different excitatory and inhibitory kinetics
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and from the particular distribution of inhibitory connections (soma and proximal
dendrites) vs. excitatory connections (distal dendrites). This could bias the detection
towards inhibition, since it is going to generate faster events and therefore easier to
detect with the first derivative method. Different excitatory and inhibitory potential
kinetics could thus bias the detection towards faster, sharper events. Still, the sys-
tem has been carefully validated in [6], where the influence of threshold on event
detection was explored.

Another aspect of this method to consider (and indeed of all conductance de-
tection methods, for a review see [27] is that given that the Vm is held at different
values (0, �70mV) for the detection of IPSPs/EPSPs respectively, the up states that
are studied are never the same for both types of events. Still, each quantification of
synaptic events (Figs. 5–10) is the result of averaging 17–187 up states, and there-
fore individual variations between up states are not taken into account. Finally, our
derivative method included a low-pass filter with cut-off at 200 Hz. This could also
limit the detection of closely spaced events (<5ms). However, we tested this by
repeating the analysis using a cut-off at 500 Hz and we did not find any significant
increase in the number of synaptic events detected. Despite all these caveats, this is
to our knowledge the only method so far to have an approximation to the timing of
the individual synaptic inputs being received by a single pyramidal neuron during
physiological network activity. Apart from other possible sources of error, both EP-
SPs and IPSPs are being recorded Š70mV apart from their reversal potential and
therefore their driving force should be the same. Our main interest is on the rela-
tive timing of both types of events. We consider the method particularly valid on
that regard, given that for timing considerations the absolute number of events has
been normalized. Still, we dare to have a look into the absolute number of events
(see Figs. 5, 8), assuming a comparable error in the detection of excitatory and in-
hibitory events and considering that we can still learn from their proportions.

Experimental Results

We applied our synaptic event detection method to nD 10 neurons recorded in
vitro and nD 5 neurons recorded in vivo. For each of these neurons, intracellular
recordings of variable duration (range 60–729 s) were obtained, one at a depolarized
potential (around 0 mV) and one at a hyperpolarized potential (around �70mV).
A closely adjacent extracellular recording was simultaneously registered to deter-
mine the transition times between up states and down states (Fig. 3). We were
thus able to obtain putative excitatory events (from the �70mV recording), and
putative inhibitory events (from the 0 mV recording) for each neuron, and attribute
them to the up state or down state (as identified from the extracellular signal).

We first extracted general statistics from this analysis, concerning the char-
acteristics of individual EPSPs and IPSPs (Fig. 4, Table 1) and the comparative
quantification of synaptic events during up and down states (Table 2). We found
that, in vitro, the amplitudes of putative excitatory postynaptic potentials were
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Fig. 4 Amplitudes and time-course of average post-synaptic potentials for neurons in our
database, in vitro (a, n D 10) and in vivo (b, n D 5). Inhibitory (excitatory) events were de-
tected from intracellular recordings in neurons held at �0mV (��70mV) as illustrated in Fig. 3.
Events that did not occur within 100 ms of other events were used to align pieces of the intracellular
signal and average them to obtain the average inhibitory (blue) and excitatory (red) post-synaptic
potentials. Different number of events were used for averaging each trace, ranging from 17 to 187
in vitro, and 70 to 846 in vivo. Each panel shows averages for a given neuron in our database.
Vertical calibration bars indicate 1 mV in (a) and 5 mV in (b). The time base is the same for all
panels, as indicated in the last set of traces in each panel.

Table 1 Amplitude and decay time of Vm deflections for isolated synaptic events (no other event
occurring in a 100-ms window) detected at either depolarized (Vm � 0mV) or hyperpolarized
(Vm��70mV) voltages (Fig. 4)

In vitro recordings
(nD 10)

In vivo recordings
(n D 5)

Vm � 0mV Vm � �70mV Vm � 0mV Vm � �70mV

Amplitude of
isolated events

2:58˙ 0:45mV
(0.44–5.23 mV)

> 1:17˙ 0:21mV
(0.41–2.67 mV)

4:6˙ 1:1mV
(1.2–7.4 mV)

3:6˙ 0:96mV
(1.2–6.3 mV)

Decay time of
isolated events

27:9˙ 10:1ms
(0.66–13.8 s)

28˙ 13ms
(3–127 ms)

31˙ 10ms
(4–52 ms)

33˙ 13ms
(7–62 ms)

Population data is reported as mean ˙ s.e.m. and ranges are indicated in parenthesis. Significant differ-
ences (paired t -test, p < 0:05) are indicated with the symbol>

significantly smaller than those of putative inhibitory postsynaptic potentials (paired
t-test, p D 0:007). Such difference was not detected in vivo (Table 1). We did not
detect differences in the decay dynamics of synaptic events either in vivo or in vitro.
Regarding up and down states (Table 2), we found that up states were significantly
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Table 2 Comparative statistics of excitatory and inhibitory events during up and down states in
vitro and in vivo

In vitro recordings (n D 10) In vivo recordings (n D 5)

Up states Down states Up states Down states

Duration 878 ˙ 66 ms�

(531–1,607 ms)
< 3:21 ˙ 0:77 s

(0.66–13.8 s)
792 ˙ 296 ms�

(342–2,172 ms)
580 ˙ 86 ms�

(329–886 ms)

No. detected
excitatory events

27 ˙ 5 (14–65) 15:7 ˙ 8:9

(0–19)
25:9 ˙ 12:2

(4–72)
16:1 ˙ 6:4

(1–36)

No. detected
inhibitory events

24 ˙ 4 (13–53) 18:5 ˙ 9:3

(0–81)
19:3 ˙ 5:5

(10–39)
10:4 ˙ 4:3

(1–26)

Rate detected
excitatory events

36:6 ˙ 5:8 s�1�

(10–73 s�1/

> 3:2 ˙ 0:8 s�1

(0:2–7:2 s�1/

33:5 ˙ 10 s�1�

(7–67 s�1/

> 25:2 ˙ 8:9 s�1�

(1:5–56 s�1/

Rate detected
inhibitory events

26:7 ˙ 2:5 s�1�

(15–43 s�1/

> 5:9 ˙ 2:1 s�1

(0:1–23 s�1/

31:4 ˙ 7:7 s�1�

(16–60 s�1/

> 21:1 ˙ 9:5 s�1�

(2–57 s�1/

Population data is reported as mean ˙ s.e.m. and ranges are indicated in parenthesis. Significant differences (one-tailed
paired t -test, p < 0:05) are indicated with the symbols > and <. � This is an over-estimate, as states shorter than
250 ms were discarded from the analysis. � This is an under-estimate, because of the over-estimation in �

shorter than down states in vitro (one-tailed paired t-test, p D 0:0037, n D 20),
but not so in vivo (paired t-test p D 0:2, n D 5). Synaptic event rates were always
significantly higher in the up states than in the down states, both in vitro and in vivo,
although the difference was more accentuated in vitro.

Comparing the statistics numbers between in vivo and in vitro, we found that
up state durations were comparable between the two conditions (two-sample t-test,
p D 0:64), but down state durations were significantly shorter in vivo than in vitro
(two-sample t-test, p D 0:023). The amplitudes of excitatory postsynaptic events
were significantly smaller in vitro than in vivo (two-sample t-test, p D 0:006), but
their kinetics were comparable. Regarding detected synaptic events, only the rate
of events during the down state differed significantly between these two conditions
(two-sample t-test, p < 0:05). Inhibitory events occurred significantly more fre-
quently in the down state in vivo than in vitro (p D 0:004), and excitatory events
showed a similar, marginally significant trend (p D 0:054). This result indicates the
presence of more basal synaptic activity in vivo than in vitro, and also shows that
network activations in the two conditions do not differ significantly.

Excitatory and Inhibitory Events During Risetime of Up States
In Vitro

For each neuron, excitatory and inhibitory events detected intracellularly were
aligned at the time of up state initiation, as detected in the neighboring simulta-
neous extracellular recording (Fig. 3). Synaptic event histograms (in bins of 5 ms)
were then averaged across neurons after realigning them to the steepest increase
in excitatory synaptic events (arbitrarily considered time zero, see Fig. 7). In terms
of detected event rate, we found no consistent difference between the event rate of
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Fig. 5 Synaptic event rates through the duration of the up state in each of 10 neurons in vitro.
Time-histograms of synaptic events detected from intracellular records (Fig. 3) and aligned to up
state onset (I) or up state offset (J), as detected from the extracellular record (Fig. 3). Excitatory
events (red) arrive at a higher peak rate than inhibitory events (blue) in (c), (f) and (h), whereas the
opposite is true in (a). For the rest of panels, peak event rate is approximately similar for excitatory
and inhibitory events. For each trace, the number n of up states from which spike events were
gathered is indicated. Horizontal calibration bars indicate 200 ms.

excitation and inhibition during the up state in vitro (Fig. 5). While some neurons
showed a higher peak rate of excitatory events (Fig. 5c, f, h), others showed a higher
peak rate for inhibitory events (Fig. 5a), and most (n D 6=10) presented approxi-
mately equal rates for both types of events. Such a delicate balance of event rate
between excitation and inhibition is remarkable. Even when the method used may
have a number of limitations (see above), it seems unlikely that this almost identical
number could be reached by chance. When the normalized risetime of EPSPs/IPSPs
to their maximal event rate was evaluated, individual neurons showed in most cases
(n D 8=10) a matching time course for excitation and inhibition (Fig. 6). From the
other two cells, one shows an early rise of excitation (by �50ms, Fig. 6f) and the
other one of inhibition (by �20ms, Fig. 6h). The occurrence of excitatory and in-
hibitory events during the risetime of up states averaged across cells revealed that
the increase in both types of events is synchronous in our population of in vitro
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Fig. 6 Normalized synaptic events through the duration of the up state in each of 10 neurons
in vitro. Time-histograms of synaptic events from Fig. 6 were normalized to peak event rate to
compare the dynamics of excitation and inhibition at up state onset (I) and at up state offset (J).
During up state onset, excitatory events (red) increase ahead than inhibitory events (blue) in (f),
whereas the opposite is true in (h). For the rest of panels, excitatory and inhibitory events increase
to their maximal rate at approximately the same point in time. Also extinction at up state offset
occurs concomitantly for excitation and inhibition, except in (b), (c), and (g) (excitation outlasts
inhibition) and in (h) and (j) (inhibition outlasts excitation). For each trace, the number n of up
states from which spike events were gathered is indicated. Horizontal calibration bars indicate
200 ms.

recordings. The take off from the down state occurs simultaneously, with no signifi-
cant deviation between excitation and inhibition until well after the peak in PSPs is
reached (Fig. 7a, b).

Excitatory and Inhibitory Events During the End of Up States
In Vitro

In order to analyze the occurrence of excitatory and inhibitory events during the
termination of the up states, synaptic events in each cell were aligned at the off-
set of the up state, as detected from extracellular recordings, and then realigned to



Timing Excitation and Inhibition in the Cortical Network 29

Fig. 7 Population analysis of EPSPs/ IPSPs timing at the beginning and end of the up states in
vitro. (a) Excitatory (red) and inhibitory (blue) synaptic events detected from intracellular record-
ings in vitro (n D 10) accumulated at comparable rate at the onset of the up state. Synaptic event
histograms from Fig. 7 were averaged across neurons after aligning them to the steepest increase
in excitatory synaptic events (corresponding to time zero in a, b). (b) Difference in event accumu-
lation to peak event rate between inhibition and excitation (black line). Positive (negative) values
indicate excess of inhibition (excitation). Gray shadow is the 95% confidence interval calculated
with a jackknife procedure over neurons (n D 10). During up state onset, there was no significant
difference in the time of fastest accumulation of excitatory and inhibitory events. Periods with sig-
nificant difference between excitation and inhibition are marked on a with a thick black line along
the x-axis. (c) Same as a, but synaptic events into each cell were aligned at the offset of the up
state (J in Fig. 6), and then realigned to the steepest decrease in the excitatory histogram before
computing the average over neurons. (d) Same as b for the data in c. Synaptic event extinction at
the end of the up state did not differ for excitation and inhibition at the 95% confidence level.

the steepest decrease in the excitatory histogram before computing the average over
neurons (Fig. 7c, d). When the average obtained in this way is observed, we can see
that the peak in both EPSPs and IPSPs before the transition to the down state is ini-
tiated is reached at the same time. From that moment, the decrease in excitation and
inhibition is in average mostly synchronous, with no significant difference between
both within a 95% confidence interval (Fig. 7c, d). When we look at individual neu-
rons, the relation between excitation and inhibition during up state termination is
more heterogeneous than during its initiation (Fig. 6). While in 5 out of 10 neurons,
there is a synchronous decrease in EPSPs and IPSPs, in 4 out of 10 the decrease in
inhibition precedes that of excitation in time, although with a similar time course
(Fig. 6b, c, g, h). In just one case, it is the excitation the one that decreases first,
followed by inhibition (Fig. 6j). Therefore, even when the result of the average sug-
gests an equilibrium between the timing of decrease of EPSPs and IPSPs at the
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end of the up states, the EPSPs and IPSPs at the end of the up states, the individ-
ual cases heterogeneity also exists regarding the absolute number of excitatory and
inhibitory events. Even when the general trend gravitates towards the comparable
number in both cases, individual neurons display either larger numbers of EPSPs or
IPSPs (Fig. 5).

In spite of individual variations, we conclude that when the timing of excitatory
and inhibitory events is analyzed during the risetime and the repolarization of the
up states in vitro it is noteworthy that both events increase to start an up state, and
decrease to finish it up with a remarkable synchrony. Furthermore, the total number
of events, even within certain individual variability, could be considered to be quite
similar, in at least half the neurons virtually identical.

Excitatory and Inhibitory Events During Risetime
of Up States In Vivo

For each neuron, events detected intracellularly were aligned at the time of up
state initiation, as detected in the neighboring simultaneous extracellular recording.
Synaptic event histograms were then averaged across neurons after realigning them
to the steepest increase in excitatory synaptic events (corresponding to time zero
in Fig. 10a, b). During up state onset, there was no significant difference between
excitation and inhibition rate of increase in our population of in vivo recordings
(Fig. 10a, b, n D 5), quite similarly to what was observed in vitro (Fig. 7). Different
from in vitro was, though, a faster rate in the accumulation of synaptic events. Exci-
tatory events accumulated at a rate of 1.307%/ms (range 0.309–3.93%/ms) in vitro
and 1.815%/ms (range 0.312–4.97%/ms) in vivo. Inhibitory events accumulated at a
rate of 1.380%/ms (range 0.533–3.32%/ms) in vitro and 1.704%/ms (range 1.396–
2.076%/ms) in vivo. Although nonsignificant (two-sample t-test p > 0:5; Wilcoxon
rank sum test p > 0:3, n D 10; 5), the trend in difference between in vitro and in
vivo measurements agrees with what is observed at the membrane level (Figs. 1
and 2), where transitions between up and down states are often faster in vivo than
in vitro.

Another interesting difference between in vitro and in vivo conditions revealed by
the average of synaptic events is the decay in accumulated EPSPs as soon as the up
state is reached (Fig. 10a), what could be the result of spike frequency adaptation in
pyramidal neurons, and/or synaptic depression in excitatory synapses to pyramidals.
This time course observed for excitatory events is not followed by inhibitory events,
that remained in a plateau once the up state was reached. Note that this analysis is
normalized and provides information about timing of occurrence, but not about the
absolute number of excitatory/inhibitory events.

Focusing on individual neurons, the normalized events (Fig. 9) are indicative of a
remarkable analogous timing of accumulation of excitatory and inhibitory events in
vivo as well as in vitro (see above). Even when there is a slight variation in 2 out of
5 cases, the predominant trend is a well synchronized accumulation of events. If the
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Fig. 8 Synaptic event rates through the duration of the up state in each of 5 neurons in vivo.
Time-histograms of synaptic events detected from intracellular records (Fig. 3) and aligned to up
state onset (I) or up state offset (J), as detected from the extracellular record (Fig. 3). Excitatory
events (red) arrive at a higher peak rate than inhibitory events (blue) in all panels, but only in (e)
the difference was sizeable. For each trace, the number n of up states from which spike events were
gathered is indicated. Horizontal calibration bars indicate 100 ms.

absolute – and not the normalized – number of events is considered, the same trend
is maintained, although it allows to evaluate the relative number of events (Fig. 7).
In all five neurons studied here the absolute number of excitatory synaptic events
that lead to the up state is larger than that of inhibitory events, but for a propor-
tion not larger than 25% (except in Fig. 8e, where the excess of excitatory events is
around 50%).

Excitatory and Inhibitory Events During the End of Up States
In Vivo

Synaptic events in each cell were aligned at the offset of the up state, as detected
from extracellular recordings, and then realigned to the steepest decrease in the ex-
citatory histogram before computing the average over neurons (Fig. 10c, d). The
average across five neurons recorded in vivo revealed a simultaneous decay in the
rate of occurrence of EPSPs and IPSPs, although for a brief time (few tens of ms)
excitatory events extinguished earlier than inhibitory ones, as assessed at the 95%
confidence level (Fig. 10c, d). A larger sample would be necessary to confirm this
trend.

The timing of synaptic events at the end of the up states for individual neurons
is illustrated in Fig. 9. Again, the simultaneous decrease of both excitatory and in-
hibitory events is striking in these plots. When each individual case is explored in
detail, we can see that both excitatory or inhibitory events can lead the extinction
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Fig. 9 Normalized synaptic events through the duration of the up state in each of 5 neurons in
vivo. Time-histograms of synaptic events from Fig. 9 were normalized to peak event rate to com-
pare the dynamics of excitation and inhibition at up state onset (I) and at up state offset (J).
During up state onset, inhibitory events (blue) increase ahead than excitatory events (red) in (a),
(c), and (d). For the rest of panels, excitatory and inhibitory events increase to their maximal rate
at approximately the same point in time. Extinction at up state offset occurs first for excitation in
(a) and (c), first for inhibition in (e), and concomitantly for excitation and inhibition in (b) and
(d). For each trace, the number n of up states from which spike events were gathered is indicated.
Horizontal calibration bars indicate 100 ms.

of synaptic events, but that the time course of the decay is invariably similar. If the
absolute number of events are evaluated (Fig. 8), then it can be observed that the
similarity of time course can indeed conceal a remarkable difference in the number
of synaptic events.

Excitation and Inhibition in Up and Down states Generated
in a Cortical Model

The results of our experimental study of excitation and inhibition are difficult to rec-
oncile with the predictions of the computer model of slow oscillatory activity ([5];
Fig. 11a). This computer model can reproduce intracellular and extracellular data
of slow oscillatory activity in cortical slices [35], with interneurons and pyramidal
neurons firing practically in phase through the slow oscillation (Fig. 11b). Excitatory
and inhibitory conductances were found to maintain a proportionality in this model,
as found experimentally [38]. Model inhibitory neurons display a higher firing rate
during up states (ca. 30 Hz) while excitatory neurons have a firing frequency which
is lower (ca. 15 Hz) (for comparison with experimental results see Fig. 1). How-
ever, one feature of the model seems at odds with the experimental results reported
here. The presynaptic firing of model inhibitory neurons leads the beginning of the
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Fig. 10 Population analysis of EPSPs/IPSPs timing during the beginning and end of the up states
in vivo. (a) Excitatory (red) and inhibitory (blue) synaptic events detected from intracellular record-
ings in vivo (n D 5) accumulated at comparable rate at the onset of the up state. Normalized
synaptic event histograms (Fig. 10) were averaged across neurons after aligning them to the steep-
est increase in excitatory synaptic events (corresponding to time zero in a). (b) Difference in event
accumulation to peak event rate between inhibition and excitation (black line). Positive (negative)
values indicate excess of inhibition (excitation). Gray shadow is the 95% confidence interval cal-
culated with a jackknife procedure over neurons (n D 5). During up state onset, there was no
significant difference between excitation and inhibition rate of increase. However, a significant
fraction of excitatory events remained confined to a short time window after up state initiation,
possibly indicating adaptation dynamics. Instead, inhibitory events remained constant over up state
duration. (c) Same as (a), but synaptic events into each cell were aligned at the offset of the up state,
and then realigned to the steepest decrease in the excitatory histogram before computing the aver-
age over neurons. (d) Same as b for the data in c. Inhibitory synaptic events extinguished later than
excitatory synaptic events during the transition from the up state to the down state, as assessed at
the 95% confidence level.

up states by tens of milliseconds and persists at their ending (Fig. 11c). In contrast,
in our experiments we found that synaptic events detected intracellularly, both in
vitro and in vivo, showed a remarkable matching of both event rate and timing of
onset for excitatory and inhibitory events. We therefore turned back to our computer
model to explore mechanistically the compatibility between the model and the ex-
perimental results regarding the timing and event rate magnitude of excitation and
inhibition during the slow oscillation.

Modeling the Cortex

We used the network model of [5], with exactly the same parameters as in their con-
trol condition. Briefly, the network model consists of a population of 1024 pyramidal
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0

Fig. 11 Model architecture and function: i-cells lead e-cells during up state initiation. (a) The
model consisted of excitatory (red) and inhibitory (blue) neurons (in a relation 4:1) connected
through conductance-based synapses. The existence of a functional synapse between any two neu-
rons was decided at the beginning of the simulation based on a Gaussian probability distribution.
The footprint � of this connectivity distribution could differ for excitatory and inhibitory connec-
tions. In the control case in [5], �E D 2�I. Each neuron only had a limited number of postsynaptic
partners. In the control network in [5], both pyramidals and interneurons connected to 20 pyrami-
dal neurons and 20 interneurons, respectively. (b) Sample network activity, shown as an array of
multiunit spike trains, reflects slow oscillatory activity with interneurons (blue) and pyramidal neu-
rons (red) firing in phase during the slow oscillation. (c) A closer look at neuronal activity around
the time of up state initiation, shows that interneurons rise to their maximal firing rate ahead of
closely adjacent pyramidal neurons (Adapted with permission from Figs. 2 and 3 in [5].).

cells and 256 interneurons equidistantly distributed on a line and interconnected
through biologically plausible synaptic dynamics (Fig. 11a). Some of the intrinsic
parameters of the cells are randomly distributed, so that the populations are het-
erogeneous. This and the random connectivity are the only sources of noise in the
network.

Our model pyramidal cells have a somatic and a dendritic compartment. The
spiking currents, INa and IK, are located in the soma, together with a leak current
IL, a fast A-type KC-current IA, a noninactivating slow KC-current IKS and a NaC-
dependent KC-current IKNa. The dendrite contains a high threshold Ca2C current
ICa, a Ca2C-dependent KC-current IKCa, a noninactivating (persistent) NaC cur-
rent INaP and an inward rectifier (activated by hyperpolarization) noninactivating
KC current IAR. Explicit equations and parameters for these Hodgkin–Huxley-type
currents can be found in [5]. In our simulations, all excitatory synapses target the
dendritic compartment and all inhibitory synapses are localized on the somatic com-
partment of postsynaptic pyramidal neurons. Interneurons are modeled with just
Hodgkin–Huxley spiking currents, INa and IK, and a leak current IL in their single
compartment [50]. Model pyramidal neurons set according to these parameters fire
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at an average of 22 Hz when they are injected a depolarizing current of 0.25 nA for
0.5 s. The firing pattern corresponds to a regular spiking neuron with some adapta-
tion. In contrast, a model interneuron fires at about 75 Hz when equally stimulated
and has the firing pattern of a fast spiking neuron.

Synaptic currents are conductance-based and their kinetics are modeled to mimic
AMPAR-, NMDAR-, and GABAA R-mediated synaptic transmission [5,49]. All pa-
rameters for synaptic transmission are taken from the control network in [5]. These
values were chosen so that the network would show stable periodic propagating
discharges with characteristics compatible with experimental observations.

The neurons in the network are sparsely connected to each other through a fixed
number of connections that are set at the beginning of the simulation. In our con-
trol network, neurons make 20 ˙ 5 contacts (mean ˙ standard deviation) to their
postsynaptic partners (multiple contacts onto the same target, but no autapses, are
allowed). For each pair of neurons, the probability that they are connected in each
direction is decided by a Gaussian probability distribution centered at 0 and with a
prescribed standard deviation.

The model was implemented in CCC and simulated using a fourth-order Runge–
Kutta method with a time-step of 0.06 ms.

Excitatory and Inhibitory Events During Up States In Computo

We analyzed spiking activity in inhibitory and excitatory neurons, and the timing
of excitatory and inhibitory synaptic events into excitatory neurons, averaging data
from five different network simulations (with different noise realizations to define
the connectivity and neuron properties). We confirmed that the average firing rates
of neurons followed the results reported in [5], namely that inhibitory neurons fired
at higher rates (Fig. 12b), and increased earlier to their maximal rate (Fig. 13b) than
excitatory neurons in our control network model. However, when the rates of incom-
ing synaptic events into excitatory neurons were analyzed we found that the peak
rate of excitatory events exceeded that of inhibitory events (Fig. 12a), while both ex-
citatory and inhibitory events raised to their maximal rate in synchrony (Fig. 13a).
These results may appear paradoxical: although interneurons fired more and ahead
in time, inhibitory event rate was lower and did not show appreciable advance with
respect to excitatory event rate. This reflects the multiple parameters that link firing
rate to incoming synaptic rates, to the point of being able to distort significantly
the relative values for excitation and inhibition, both in magnitude and timing. We
examined this point in the model by testing two specific parameters that define the
connectivity in our model network.

The relative length of excitatory and inhibitory horizontal connections in our net-
work controlled the relative timing of arrival of excitatory and inhibitory events into
model neurons. In the control network, excitatory neurons connected to other neu-
rons in the network with a symmetric Gaussian probability distribution of standard
deviation �E twice as large as the standard deviation �I of inhibitory projections
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Fig. 12 Rate of excitatory and inhibitory synaptic events and spiking of excitatory and inhibitory
neurons during the beginning and end of the up states in computo. (a) Rate of synaptic events
(red D excitatory, blue D inhibitory) into pyramidal neurons and (b) Firing rate of adjacent exci-
tatory (red) and inhibitory (blue) neurons during the up state in the computational network model
of slow oscillatory activity [5]. In the model, although inhibitory neurons fire at more than double
the rate than excitatory neurons, the rate of synaptic events coming into an excitatory neuron is
higher for excitation than inhibition. This is due to the larger fraction of excitatory neurons in the
network and their approximately equal connectivity (all neurons have 20 postsynaptic partners of
each kind, excitatory or inhibitory). One-minute-long simulation data from 128 neurons equidis-
tantly spaced along the network were used for the analysis. When the divergence of inhibitory
connections was increased (by a factor four), firing rates increased slightly (d) and so did synap-
tic event rates (c). When inhibition was made denser than excitation by increasing twofold the
number of synaptic contacts that each interneuron makes, inhibitory synaptic event rates increased
markedly (e) whereas firing rates remained unaffected (f).

(Fig. 11a). Excitatory neurons had longer horizontal connections than inhibitory
ones. Thus, when a front of activity propagated along the network, changes in ex-
citatory rates were projected to neurons further away than changes in inhibitory
rates. This compensated for the delayed firing of excitatory neurons at up state onset
(Fig. 13b), and neurons received synchronous increases of excitatory and inhibitory
synaptic events (Fig. 13a). These synaptic events caused firing first in the inhibitory
neurons, possibly because of their lower firing threshold and their faster time con-
stant. To test this mechanistic interpretation, we modified the relative footprint of
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Fig. 13 Timing of excitatory and inhibitory synaptic events and spiking of excitatory and in-
hibitory neurons during the beginning and end of the up states in computo. (a) Rate of synaptic
events normalized to peak event rate (red D excitatory; blue D inhibitory) into pyramidal neurons
and (b) Normalized firing rate of adjacent excitatory (red) and inhibitory (blue) neurons during the
up state in the computational network model of slow oscillatory activity [5]. In the model, although
inhibitory neurons increase to their maximal rate ahead than excitatory neurons during up state on-
set (b), the accumulation of synaptic events coming into an excitatory neuron is equal for excitation
than inhibition (a). This is due to the broader connectivity footprint for excitation than for inhibi-
tion. When the divergence of inhibitory connections was increased (by a factor four), inhibitory
rates still accumulated slightly ahead than pyramidal neurons (d) and so did now synaptic event
rates, too (c). When inhibition was made denser than excitation by increasing twofold the number
of synaptic contacts that each interneuron makes, the timing relations of the control network (a,
b) were not affected: synaptic event rates varied concomitantly for excitation and inhibition (e)
and interneurons increased their firing ahead than pyramidals (f). In all cases, inhibitory events
(neurons) outlasted excitatory events (neurons) at the end of the up state.

excitatory and inhibitory connections to make inhibitory projections more diver-
gent (�I D 2�E/. We found that the slight advance in inhibitory neuron firing
rate increase at up state onset (Fig. 13d) was mimicked by an advanced arrival of
inhibitory events to excitatory neurons in the network (Fig. 13c). In this case, be-
cause excitatory projections did not exceed the inhibitory footprint, they could not
compensate interneuron advanced firing at up state onset. This manipulation also



38 A. Compte et al.

increased slightly the event rates and firing rates of neurons during the self-sustained
slow oscillation, but did not modify the relative magnitudes between excitation and
inhibition (Fig. 12c, d).

The average number of connections that each cell type made with postsynaptic
neurons of either kind in the network were parameters that controlled the relative
magnitude of inhibitory and excitatory synaptic event rates. In the control network,
although inhibitory neurons fired at a higher rate (Fig. 12b), because there were
four times more excitatory neurons in the network, and excitatory and inhibitory
neurons made the same average number of contacts on postsynaptic neurons, the
rate of excitatory events received by postsynaptic neurons exceeded by a significant
factor the rate of inhibitory events (Fig. 12a). Instead, if we manipulated the con-
nectivity of the network and had interneurons make more postsynaptic contacts on
average than excitatory neurons (per i-cell, 80 ˙ 5 inhibitory contacts to e-cells,
same to i-cells; per e-cell, 20 ˙ 5 excitatory contacts to e-cells, same to i-cells;
mean ˙ s.d. Concomitantly to this increase in number of inhibitory synapses, we
diminished the conductance of an individual inhibitory synapse by a factor 1=4, so
that overall inhibitory currents remained unchanged), we found that the number
of inhibitory events received by pyramidal neurons now exceeded that of excita-
tory events (Fig. 12e) by approximately the same ratio as in neuronal firing rates
(Fig. 12f). This is consistent with the fact that the neuronal ratio of 4:1 in cell
number (excitatory to inhibitory) was now compensated by a connectivity contact
ratio of 1:4, so spiking events translated by a common factor to synaptic events and
maintained their relative relationship. Notice that neuronal firing rates during the up
states of the slow oscillations did not change appreciably with respect to the control
network (Fig. 12f compared with Fig. 12b), because of the rescaling of inhibitory
conductances to compensate the increase in inhibitory connectivity. In relation to
the timing of excitation and inhibition at up state onset, this manipulation did not
induce any appreciable change relative to the control case (Fig. 13a, b): Interneurons
kept firing ahead than pyramidal neurons at up state onset (Fig. 13f), but inhibitory
and excitatory events arrived in synchrony to their postsynaptic targets (Fig. 13e).

We found that in our model network, inhibitory firing and inhibitory synaptic
events outlasted in all cases excitation at the end of the up state (Fig. 13). This per-
sistence of inhibitory events after excitatory event extinction was accentuated when
the footprint of inhibitory projections was increased (Fig. 13c), as would be ex-
pected. This effect was seen in some of the experimental recordings (Fig. 6h, j and
Fig. 9a), but was not generally true in our population of neurons in vitro (Fig. 7c),
although it appeared significant in our small sample of in vivo neurons (Fig. 10c).

Timing of Excitation and Inhibition in Cortical Activity

Here we have analyzed the timing of inhibitory and excitatory events during the up
and down states occurring in the cortex in vitro, in vivo, and in a computer model.

An equilibrium between excitation and inhibition in the recurrent network of
the cerebral cortex has been proposed to be critical to maintain the stability of its
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function. Changes in excitatory and inhibitory conductances in vitro reveal that both
increase and decrease at the beginning/end of up states in close association with
each other [38]. Not only in time, but also the amplitude of both were related, with
a slope of 0.68 (Gi=Ge) in the aforementioned study. Our approach is different,
and provides information regarding timing of both types of events as well as an
estimation of the number of events. In agreement to what was reported in [38], we
find a remarkable coincidence in the accumulation of both excitatory and inhibitory
events during the rise of an up state, suggesting reverberation of activity in the local
cortical microcircuits. In six out of ten cases the absolute number of excitatory and
inhibitory synaptic events recorded from neurons in vitro is very similar as well.

Individual pyramidal neurons receive on average inputs from 1,000 excitatory
neurons vs. 75 inhibitory ones, resulting in a number of contacts of 5,000 vs. 750,
respectively [31]. Besides, most of cortical neurons participate in up states [41]. The
open question is then, how can the number of excitatory and inhibitory events re-
ceived by a pyramidal neuron be similar? A simple answer to it is the higher firing
rate of inhibitory neurons, that would compensate for the lesser number of inhibitory
synaptic connections. Cortical fast spiking neurons, known to be gabaergic [19,45],
have steeper input–output (intensity-frequency) relationships [25, 28] as a result of
their intrinsic properties [12]. Furthermore, fast spiking neurons respond with much
longer trains of action potentials when activated synaptically during up states [38].
We and others [43] have also observed that the firing of fast spiking neurons ac-
tivated synaptically during up states [38]. We and (Fig. 1) although we have not
carried out a systematic fast spiking neurons during up states is higher than that of
rate could compensate, at least in part, for the lesser number of inhibitory presy-
naptic contacts. In spite of the disproportion between anatomical excitatory and
inhibitory contacts onto pyramidal cells, not only did we find that there are similar
numbers of excitatory and inhibitory events but also that the inhibitory ones are of
significantly larger average amplitude (2.78 mV) than the excitatory ones (0.8 mV)
in vitro. Somatic and proximal innervation of gabaergic inputs is probably a main
factor on this difference, although synchrony of inputs due to presynaptic electrical
coupling could also contribute [15, 16]. Even when we consider that the caveats of
this method (see section “A Short Discussion on the Method”) would equally affect
both IPSPs and EPSPs, the possibility remains that one of them was consistently un-
derestimated. The method used here could result in an overestimation of inhibitory
synaptic events with respect to the excitatory ones. Inhibition occurs in the soma
or proximal dendrites [13, 14] while excitation takes place further away from the
soma. Therefore, excitatory events would have smaller amplitudes and remain be-
low threshold, or because occurring further away from the soma, their kinetics are
slower and they are more difficult to detect. We cannot rule out that possiblity. How-
ever, our detection procedure has been tested in detail and the number of excitatory
(inhibitory) events decreases (increases) as expected with depolarizing (hyperpo-
larizing) membrane potential values [6]. Moreover, even if EPSPs underestimation
happens, only the absolute EPSPs/IPSPs measurements would be affected, but not
the normalized comparisons, and thus the relative times of occurrence of both types
of events that would remain valid.
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In few cases, synaptic activity is detected during down states, predominantly
inhibitory activity (Fig. 5d, e, i). In spite of down states being periods of hyper-
polarization [7, 35] and excitatory disfacilitation [46], there is some neuronal firing
during down states, mostly reported in layer 5 neurons, where up states start. This
activity is illustrated in ([35], Fig. 2b), or in ([5], Fig. 1). In [38], it is reported that
43% of the recorded layer 5 neurons have some firing during down states, of an
average rate of 3.6 Hz vs. 17.1 Hz during up states. This firing is, according to our
model, implicated in the generation of the subsequent up state [5]. The synaptic
events reported in Fig. 5d, e, i were obtained from supragranular layers, and thus the
inhibitory activity during the down states, which was of 5–20 Hz can be the result
of excitatory innervation from layer 5 to inhibitory interneurons in layers 2/3 [9].
Still, such continuous rate of IPSPs was rather unusual. The average rate for down
states was 3 and 6 events/s while 37 and 27 events/s (excitatory and inhibitory, re-
spectively) during up states. Up states in vivo revealed an almost identical average
rate of events during up states (33 and 31 events/s excitatory and inhibitory, respec-
tively). These numbers are remarkably lower than the ones reported for up states
in striatum-cortex-substantia nigra cocultures, which reached a rate of 800 events/s
against 10–20 events/s during down states [3].

Activation of excitatory vs. inhibitory neurons during up states in vivo has been
reported in [17, 43]. There, the initiation, the initiation, maintenance, and termina-
tion of up states in fast to follow network dynamics similar to those in pyramidal
cells. Here, we find that the accumulation of excitatory and inhibitory synaptic
events is also quite synchronous in vivo as we reported for in vitro. Similar findings
were reported in [17], where PSTHs were built with the firing of both excitatory and
inhibitory neurons. In our case, we find that the accumulation of synaptic events is
1.4 times faster in vivo than in vitro. We make similar observations if we look at
the rise time of the membrane potential, given that the average time for depolariza-
tion to the up state is shorter in vivo than in vitro (unpublished observations). The
preservation of the thalamocortical loop and of horizontal connections while in vivo
can contribute to this faster slope of up states.

Our findings also relate to the debate regarding the relative magnitude of ex-
citatory and inhibitory conductances during the up state. In vitro, we find that
inhibitory and synaptic events arrive at a similar rate in the postsynaptic neuron,
which could lend support to the balanced conductance observations of Shu et al.
[38, 39]. However, we also observed that voltage deflections caused by inhibitory
events were almost 4 times larger than those caused by excitatory events, in condi-
tions where driving forces should be approximately equal for both types of events.
Then, the overall inhibitory conductance would be larger by a factor 4 than ex-
citatory conductances, as proposed by [33]. In vivo, instead, we did not find a
major difference between excitatory and inhibitory synaptic potential amplitudes
while we still observed similar rates for inhibitory and excitatory events during up
states, in agreement with the results in [17]. Other authors though report larger in-
hibitory conductances during up states in vivo in average, although approximately
half of their recorded neurons showed similar levels of excitatory and inhibitory
conductance [34].
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Our computational model has allowed us to demonstrate how the precise relation-
ship between excitation and inhibition inputs depends on the structural parameters
defining the connectivity in the local cortical circuit. In the light of the large di-
vergence in connectivity parameters for excitatory and inhibitory transmission in
the cortex (see “Introduction”), the approximate balance both in timing and mag-
nitude of excitatory and inhibitory synaptic conductances measured experimentally
[17, 33, 38, 39] is remarkable and reflects compensation in various of these param-
eters. By detecting synaptic event timing, rather than synaptic conductance, we can
now eliminate one parameter from the equations: the value of excitatory and in-
hibitory unitary synaptic conductance changes. We find that the number and timing
of incoming synaptic events are also approximately matched, so that the unitary
synaptic conductances are not the major compensating mechanism for achieving
the excitatory–inhibitory balance in the cortex. Instead, our computational model
suggests that compensation might be achieved through the tuning of presynaptic fir-
ing rate and postsynaptic contacts. Thus, inhibitory interneurons fire at higher rates
than pyramidal neurons, and each individual interneuron makes more contacts onto
a given postsynaptic neuron [31], so that these factors can balance the fact that pyra-
midal neurons outnumber inhibitory neurons in the local cortical circuit. However,
in light of the caveats of our detection method (section “A Short Discussion on the
Method”.), we are not in a position of making a strong case in relation with the
absolute value of synaptic event rates in the up states.

Instead, the relative timing of excitatory and inhibitory events seems a more ro-
bust estimation. Given that pyramidal cortical neurons are known to have a rich
local axonal arborization which is typically larger than that of most GABAergic in-
terneurons [23], our experimental finding of a simultaneous arrival of excitatory and
inhibitory events is likely to reflect the early firing of inhibitory neurons relative to
neighboring excitatory neurons in the transition to the up state, as suggested compu-
tationally in [5]. Experimentally, a nonsignificant trend for inhibitory firing leading
excitatory firing has been reported in [17,34], but this data generally indicates an ac-
tivation close to simultaneous for fast spiking and regular spiking neurons. Based on
our model simulations, this would indicate an approximately equal horizontal pro-
jection length for excitation and inhibition in the cortex, suggesting that intracortical
inhibition in the wavefront of the slow oscillation might be principally mediated by
the subclass of inhibitory neurons formed by basket cells, which have the longest
projection axons among cortical interneurons [24,40]. This prediction can be tested
experimentally in the future.
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Appendix

Intracellular and Population Recordings In Vitro and In Vivo

In Vitro Recordings

The methods for preparing cortical slices were similar to those described previously
[35]. Briefly, 400�m cortical prefrontal or visual slices were prepared from 3- to
10 month-old ferrets of either sex that were deeply anesthetized. After prepara-
tion, slices were placed in an interface-style recording chamber and bathed in ACSF
containing (in mM): NaCl, 124; KCl, 2.5; MgSO4, 2; NaHPO4, 1.25; CaCl2, 2;
NaHCO3, 26; and dextrose, 10, and was aerated with 95% O2, 5% CO2 to a final
pH of 7.4. Bath temperature was maintained at 35–36ıC. Intracellular recordings
were initiated after 2 h of recovery. In order for spontaneous rhythmic activity to be
generated, the solution was switched to “in vivo-like” ACSF containing (in mM):
NaCl, 124; KCl, 3.5; MgSO4, 1; NaHPO4, 1.25; CaCl2, 1–1.2; NaHCO3, 26; and
dextrose, 10.

In Vivo Recordings

Intracellular recordings in vivo were obtained from rat neocortex (auditory and
barrel cortex) as in [32]. Anesthesia was induced by intraperitoneal injection of
ketamine (100 mg/kg) and xylacine (8–10 mg/kg) and were not paralyzed. The
maintenance dose of ketamine was 75 mg/kg/h. Anesthesia levels were monitored
by the recording of low-frequency electroencephalogram (EEG) and the absence
of reflexes. Through a craniotomy over the desired area the local field potential
was recorded with a tungsten electrode. Intracellular recordings (see below) were
obtained in close vicinity from the extracellular recording electrode with identical
micropipettes to the ones used to record from the cortical slices.

Recordings and Stimulation

Extracellular multiunit recordings were obtained with 2–4M� tungsten electrodes.
The signal was recorded unfiltered at a sampling frequency between 1 and 10 kHz.
For intracellular recordings (sampling frequency 10–20 kHz), sharp electrodes of
50–100M� filled with 2 M potassium acetate were used. Sodium channel blocker
QX314 (100�M) was often included in the electrode solution to hold the membrane
voltage (Vm) at depolarized potentials while preventing firing.
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Data Analysis and Detection of Synaptic Events

Extracellular recordings were used to identify up and down state onsets. To this end,
extracellular recordings were high-pass filtered above 1 Hz to remove slow linear
trends in the signal. Then, the envelope of the resulting time series was evaluated
as the amplitude of its analytic signal (complex Hilbert transform), high-pass fil-
tered above 0.1 Hz to remove the DC, and smoothed with a running-average square
window of 100 ms (Fig. 3). The mean value of this signal was the threshold for the
detection of transitions between up state and down state in all recordings. Up states
and down states shorter than 250 ms were discarded from the analysis.

Intracellular current clamp recordings were maintained at different membrane
voltages by means of current injection. At least two membrane voltages were usu-
ally attained: (1) around �70mV, to achieve chloride reversal potential and isolate
EPSPs and (2) around 0 mV, to isolate IPSPs. The timing of presynaptic events of
excitatory or inhibitory type were extracted from these intracellular recordings at
different membrane voltages (Fig. 3). This was achieved by passing the membrane
voltage signal through a differentiator filter with a low-pass cutoff at 200 Hz, thus
evaluating a smoothed first time derivative (Fig. 3). This cutoff was not significantly
limiting the number of detected synaptic events, as changing it to 500 Hz did not
modify our conclusions appreciably. The method has been described in detail in [6].
The timing of synaptic events was detected from sharp voltage deflections in in-
tracellular recordings. Local maxima (minima) are then candidates for excitatory
(inhibitory) events, as they represent the fastest voltage upward (downward) deflec-
tions in a neighborhood of data points. The central values of these local extremes
are typically Gaussian distributed, but extreme values are distributed according to
long tails. These long tails presumably contain actual synaptic events, which stick
out from noisy membrane voltage fluctuations. To estimate the threshold value that
separates these random voltage fluctuations from actual synaptic event voltage de-
flections, we detected events in the tails of the distribution beyond thresholds set
at a fixed number n of interquartile ranges � from the median of the distribution.
We used n in the range n D 2–5, and its precise value was chosen independently
for each recorded cell so that more inhibitory events were detected in the depolar-
ized than in the hyperpolarized recording, while at the same time more excitatory
events were detected in the hyperpolarized relative to the depolarized recording [6].
For all our analyses here, inhibitory events were extracted just from the depolar-
ized membrane voltage recording and excitatory events just from the hyperpolarized
membrane voltage recording.
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22. Lorente de Nó R (1938) Analysis of the activity of the chains of internuncial neurons.
J Neurophysiol 1:207–244.

23. Lund, JS and Wu, CQ (1997) Local circuit neurons of macaque monkey striate cortex: IV.
Neurons of laminae 1–3A. J Comp Neurol 384:109–126.

24. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons
of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807.

25. McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology
of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806.

26. Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory
and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527–540.

27. Monier C, Fournier J, Fregnac Y (2008) In vitro and in vivo measures of evoked excitatory and
inhibitory conductance dynamics in sensory cortices. J Neurosci Methods 169:323–365.



Timing Excitation and Inhibition in the Cortical Network 45

28. Nowak LG, Azouz R, Sanchez-Vives MV, Gray CM, McCormick DA (2003) Electrophysiolog-
ical classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses.
J Neurophysiol 89:1541–1566.

29. Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition during ongoing
and sensory-evoked activities. Nat Neurosci 11:535–537.

30. Pare D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic
activity on the resting properties of cat neocortical pyramidal neurons in vivo. J Neurophysiol
79:1450–1460.

31. Peters A (2002) Examining neocortical circuits: some background and facts. J Neurocytol
31:183–193.

32. Reig R, Sanchez-Vives MV (2007) Synaptic transmission and plasticity in an active cortical
network. Plos One 2(7):e670.
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Finding Repeating Synaptic Inputs in a Single
Neocortical Neuron

Gloster Aaron

Abstract A goal in neuroscience is to understand what occurs when large numbers
of interconnected neurons actively communicate with each other to create percep-
tion. An important part in this goal is to observe large numbers of neurons engaged
in such communication. Outlined here is an approach to this challenge. This ap-
proach uses a single neuron as a “microphone” of cortical activity. As potentially
thousands of neurons may connect with a single neuron in the mammalian sen-
sory neocortex, then it may be possible to record large networks by recording the
synaptic inputs to a single neuron. In pursuing this goal, we observed patterns in the
recordings that appeared to repeat with remarkable precision. Whether this finding
is evidence that the cortex can produce precisely repeating patterns is a matter of
contention, and we describe recent investigations of this question.

Introduction

A neuron in the mammalian sensory neocortex can receive thousands of synaptic in-
puts from other neurons. The great majority of those synaptic inputs originate from
other neocortical neurons within the same column of cortex. It is thus not surprising
that when a slice of neocortex is observed, bereft of any thalamic inputs, that the
remaining neocortical circuits in the slice generate spontaneous activity. This spon-
taneous activity has been shown to contain structure in the form of upstates [1, 2] –
events when many neurons fire action potentials simultaneously – and in the form of
oscillations [3]. It has also been shown that the spontaneous upstates in layer 4 are
significantly similar to the activation of layer 4 that immediately follows stimulation
of the thalamus in a thalamo-cortical slice preparation [4]. Such findings suggest that
the neocortex is a pattern generator, a device that can create patterned output in the
absence of any patterned input [5]. Other studies suggest that the spatio-temporal
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patterns of neuronal activity that can be produced in cortical circuits are surpris-
ingly precise in their repeatability, possibly displaying a precision on the scale of a
millisecond [6–11], while other studies dispute these findings [12–14].

What kind of patterns of activity are created in cortical circuits, and how can they
be observed? This chapter examines a technique that may help answer such ques-
tions, and while we do not have a priori knowledge of the characteristics of these
patterns, we can still attempt to find patterns. One approach is to search for repeats –
that is, sequences of synaptic inputs that repeat later in the recording with significant
precision. This is analogous to a study of human language by a completely naive ob-
server: a language has a finite vocabulary, and the words composing this vocabulary
can be identified via a search for repeats.

Of course, neuronal activity is harder to read. In “seeing” activity, we wish to
have a record of the action potentials produced by single neurons, and ideally we
record a large number of those neurons simultaneously. The number of neurons in
one cortical column in the rodent sensory neocortex is on the order of 104, so the
challenge of capturing a significant fraction of that number is great. There are now
many ways of capturing the activity of several hundreds of neurons with the use of
multiple electrodes and imaging techniques.

Repeat Detection

The technique discussed here uses intracellular recordings from single neurons as a
means to “listen” to potentially all of the activity of all neurons that form synapses
with that recorded neuron. As a single pyramidal neuron may receive 1,000s of
synapses from other neurons, most of them locally, then this technique has the po-
tential to yield information about a large fraction of a cortical column (Fig. 1).

The technique is to record a single neuron intracellularly for several minutes
and then examine the recording, looking for repeats [10, 14]. The cross-covariance
function is at the heart of this analysis, and this function quantifies the temporal sim-
ilarities of the recorded waveforms. There are two stages in the analysis: LRI (low
resolution index) and HRI (high resolution index). The LRI compares 1-s segments
of the recorded waveform, using a nested loop of template matching with cross-
covariance as the measurement of the match or mismatch. Equation (1) describes
the cross-covariance calculation that is performed every time a potential motif and
repeat are lifted from the original recording for comparison:

h .�/ D

TP

tD�T
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Fig. 1 Searching for and finding putative repeats with the low resolution index (LRI). (a) A car-
toon illustrating how repeats of action potential sequences in a cortical network can be recorded
in a single neuron. The picture depicts a pyramidal neuron being recorded with an intracellular
electrode that measures postsynaptic currents (PSCs) during voltage-clamp recordings. A series
of action potentials in three neurons forming synapses with the neuron can be recorded. The blue
trace represents such a sequence that was recorded, and the red trace shows the same sequence re-
peating at some later time. (b) A continuous 10-s stretch of intracellularly recording postsynaptic
currents (PSCs) is displayed. The program scans this recording, comparing every 1-s interval with
every other 1-s interval. Here, the blue and red brackets represent these 1-s scanning windows.
These 1-s segments are compared against each other via a cross-covariance equation (1). If there
were a perfect repeat of intracellular activity, then the correlation coefficient at the zeroth lag time
would be 1.0.

Here, x and y are amplitudes from the respective motif and its potential repeat,
and 2T C 1 are the number of samples in each at 1 point per ms. The length of
x and y is 1 s (1,000 points at 1 point per millisecond), and � represents the lag
time between x and y. The actual time delay between the two traces x and y, how-
ever, is not accounted for in this equation. Rather, that time delay is remembered
by the program for subsequent retrieval. The denominator normalizes the result so
that in all cases the range of answers is from �1 to 1. In Matlab, the software plat-
form that supports the detector, the above equation is represented in the following
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Fig. 2 Aligning the extracted motif-repeat. The peak of the cross-correlogram produced by (1) is
used to reposition the 2nd search window (red) relative to the 1st (blue). (ai) Two 1-s segments
of the recording have been extracted and aligned according to the 250-ms jump in the extraction
windows. (aii) Applying (1), a correlogram is produced, indicating a large peak at a 50-ms lag time.
Arrow indicates the zeroth lag time. (bi) The 1-s motif-repeat candidates are realigned according
to the peak lag time in bi. (bii) Using (1), a new correlogram is recalculated from the traces shown
in bi, producing a correlogram with the maximum peak value at approximately the zeroth lag time
(i.e., h .0/ produces the largest correlation coefficient).

command: xcov(x,y,‘coef’). The motifs and repeats are defined by these lengths and
the incremental jump from one potential repeat to another is 250 ms (in Fig. 1 this
would represent the incremental movements of the colored brackets). As jumps of
250 ms are unlikely to find the regions of precise overlap, the program realigns the
traces according to the difference between the peak value of the covariance func-
tion (correlation coefficient) and the zeroth lag of this function (i.e., the value at
� D 0) and then recomputes the function (Fig. 2). This alignment procedure is re-
iterated up to 4�, or until the peak is within 1 ms of the zeroth lag. The value at
the zeroth lag .h.0// is then recorded. The highest values for each 1-s interval and
those passing a set threshold were collected for each recording and formed our low
resolution similarity index (LRI). The threshold was set according to a level that
yielded a reasonable number of putative motif-repeats that could be analyzed with
subsequent HRI analysis. “Reasonable” is defined here as taking less than a few
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Fig. 3 Motif-repeat segments that yield a minimum threshold h .0/ value during LRI calculations
are remembered and subsequently analyzed via a high resolution index (HRI). Using voltage-clamp
recordings, a 20-ms window is used to extract small segments from the aligned motif and repeat
for calculation of T values (2). As shown above, this 20-ms window corresponds to the width of
the brackets to the left of the arrow, indicating multiple extract of 20-ms segments. This 20-ms
window corresponds approximately to the average width of a postsynaptic current, shown above
as the sharp, downward deflections in the motif and repeat.

days of computation time with HRI analysis, and per recording this would mean on
the order of 10,000 putative repeats. For this particular case, the threshold was set
to 0.45. In this sense, the thresholds here not in any way considered definitive.

The 1-s length of the potential motif and repeat is also arbitrary, and, as discussed
later, problematic. This initial identification is, however, somewhat justified in re-
ducing what would otherwise be an overly burdensome computational task. That is,
the LRI is used to identify putative repeats, remember the locations of those puta-
tive repeats, and then analyze more carefully those segments in subsequent analyses.
Segments that do not pass a minimum threshold are passed over and not analyzed
further, saving some time in the subsequent intensive analysis.

HRI examines the 1-s intervals indicated by LRI using 20-ms comparison win-
dows, respectively ((2) and (3), Fig. 3). The 20 ms is roughly matched to the length
of the average PSC in the recording. In analyzing current-clamp recordings, a
100-ms window is used, as the longer window better matches the broadening in time
of the postsynaptic potential imposed by the RC filtering of the neuronal membrane.
In contrast, the 1-s window used in the LRI was chosen arbitrarily and isn’t neces-
sarily matched well for putative repeats, a problem discussed later in the manuscript:
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The calculation of HRI itself is a two-step process, and the goal of this process is
to find very similar PSCs recurring in a precise sequence. This procedure begins
by retrieving a temporally aligned motif and repeat saved during the LRI procedure
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(Fig. 1, Fig. 2, and (1)). This motif and repeat are then also aligned in the amplitude
domain by normalizing the entire motif and repeat according to the average pA or
mV value in the motif and repeat, respectively. Thereby, the aligned motif -repeat,
as designated in (3), is then scanned with a 20-ms time window (Fig. 3). This 20-ms
window extracts 20 points from the motif and repeat, with each 20 point segment
designated in (2) as m and r, respectively. Correlation coefficients are computed ac-
cording to (1). In this calculation, h20 .0/ corresponds to (1), but here x and y are
replaced with m and r, and in this case only a correlation coefficient for � D 0 is cal-
culated as the segments are already aligned. This 20-ms window selects multiple m
and r segments at 1-ms increments, calculating a T value at each of these increments
(yielding 981 T values per motif -repeat). The largest T values for all nonoverlap-
ping 20-ms increments that pass a set threshold are recorded (threshold is typically
0.55, again, somewhat arbitrary). If there are more than two such threshold-passing
m and r segments, then results are passed to (3). Finally, the number .n/ of precisely
occurring PSCs in a motif -repeat sequence and their respective threshold-passing T
values (from (2)) are incorporated in the HRI calculation (3), yielding an index of re-
peatability. As shown, HRI incorporates the average threshold-passing T value, the
number of such T values, and is normalized according to the standard deviations
and amplitude differences in the motif -repeat segments.

We used these search programs in analyzing long voltage-clamp intracellular
recordings (8 min) from slices of mouse visual cortex as well as recordings from
single neurons in cat visual cortex and mouse somatosensory cortex, both in vivo.
These were all spontaneous recordings, meaning no stimulation was applied to the
slices or to the unconscious, anesthetized animals. Thus, the currents or potentials
identified in the recordings were presumably the result of synaptic activity, created
in large part by the action potential activity of synaptically coupled neurons. The
search algorithms described here were able to find instances of surprising repeata-
bility, as judged by eye (Fig. 4).

Significance Testing

Given a long enough recording (several minutes) and many synaptic events, it should
be expected that some repeating patterns are found. The question is then whether the
patterns we find are beyond a level that could be expected to occur by chance. In
fact, it is undetermined as to whether the specific examples shown in Fig. 4 are to
be expected in a randomly firing network, although there is strong evidence that
nonrandom patterns do emerge in these recordings ([10], however, see also [14]).
The development of surrogate recordings – artificial data that is based on the real –
is one way to deal with this issue. These surrogate data can then be compared with
the real to see which produces more putative repeats (repeats being judged by the
index methods in Figs. 1–3). If the real data produce more putative repeats than a
large number of generated surrogate data sets, then some evidence is given for a
nonrandom generation of these repeats.
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Fig. 4 Apparent repeats of synaptic events found. (ai) Two segments from a voltage-clamp record-
ing are displayed, superimposed on each other. The blue trace occurred some time before the red
trace, and yet the sequence of synaptic events appears similar. Arrows indicate time points where
these synaptic events appear to repeat, and the brackets indicate segments that are temporally ex-
panded below. (aii) Another example of a repeat from a different recording.

To address this issue, Ikegaya et al. [10] identified the putative PSCs (or PSPs) us-
ing a correlation procedure and pulled them out of the original recording, imposing
them on a zero baseline. PSCs were detected by computing a covariance function of
a mean PSC risetime waveform against the entire spontaneous recording, ms by ms:
this produced a correlation trace whose peaks marked the onset of PSCs, and peaks
passing a set threshold (typically, 0.9) were taken as the start times of PSCs. PSCs
were then extracted from the recording by pulling the start time C20-ms window of
the recording out for each identified PSC. This procedure preserves the shape of the
individual PSCs as well as the timing of those events, creating an “extracted trace.”
Surrogate traces were constructed from the extracted trace by shuffling the time
intervals between the PSCs, while preserving the temporal order of those events.

A more recent study [14] has argued that our shuffling method may be too le-
nient in that trivial repeats comprised of just two PSCs, possibly produced by the
stereotypical firing pattern of a single presynaptic neuron, would be destroyed by
our shuffling method. We agree with this argument. Their solution was to devise a
shuffling technique that divided the intracellular recording into segments of approx-
imately 400 ms. Surrogates were constructed by shuffling these segments. Thus,
most of the two-event sequences are preserved in this manner.

A potential problem is that this shuffling procedure essentially shuffles the trace
less thoroughly, and so the difference between surrogates and the original may not
be detectable, even if deterministic repeats do exist. That is, the sensitivity of the de-
tector (i.e., the search program that finds repeats) may not be equipped for the task.
A test of the sensitivity is applied by injecting a 1-s artificial repeat (i.e., inject the
same 1-s segment multiple times) into the original recording, and then performs the
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400-ms shuffling tests on this repeat-injected trace [14]. The detector does indeed
distinguish the original with artificial repeat very well from the shuffled surrogates,
arguing that the detector is sufficiently sensitive.

However, there is a problem with this sensitivity test: the detector window itself
is matched perfectly to the length of the artificial repeat (1 s). The basis of the detec-
tor algorithm is cross-covariance, and this function performs poorly if the detector
window (set at 1 s in this program) does not match the actual length of the repeat to
be detected. As previously stated, the original rationale for this suboptimal detector
(i.e., the LRI detection) is that it is merely a first-pass and saves much computation
time. The actual values produced in the final analysis from HRI do not suffer from
this defect since the detector window is matched to the width of the individual PSCs
(20 ms) or PSPs (100 ms). Unfortunately, there can be many false negatives from
this 1st pass in the detector algorithm such that many candidates never exceed the
threshold for gaining HRI analysis.

Implanted, Artificial Repeats

We investigate this potential problem in the detector program by implanting repeats
that are not matched to the LRI detector window: the implanted motif is 850 ms,
vs. the 1-s detector window (Fig. 5). The implanted motif consisted of a series of
5 PSPs, and this motif was summed into the original 190-s cat in vivo current-
clamp recording every 10 s, yielding 171 motif-repeat pairs. This implanted trace
was then shuffled using the 400-ms interval shuffling technique, producing 50 sur-
rogate traces. Using the LRI-HRI detection program, no difference could be found
between the implanted trace and its shuffled surrogates (Fig. 5).

An Improved Repeat Detector

In response to these results, we strived to create a detector program that could detect
artificial implanted repeats in the face of the 400-ms interval shuffle test [15]. Our
first goal was to remove the pitfalls of an arbitrary 1-s LRI detector. Instead, putative
repeats were detected by the timings of PSPs. This new detector, PHRI (PSP-based
detection, high resolution index), identifies the onsets of PSPs by their stereotyp-
ical risetimes, and then uses those timings as the pointers for the subsequent HRI
analysis (Fig. 6). That is, every identified PSP is used as a point of alignment for a
motif-repeat pair; the two selected PSPs, occurring at disparate times in the record-
ing, are aligned, and the trace that follows each is included as the motif-repeat pair
to be examined. The PSPs are identified by their risetimes in a method nearly iden-
tical to that from Ikegaya et al. (2004) with regards to the extraction of PSPs in
that paper. PSPs were detected by computing a covariance function of a mean PSP
risetime waveform (4–6 ms in duration) against the entire spontaneous recording;
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Fig. 5 Implanting an artificial repeating motif into a shuffled recording. (a) A 400-ms shuffled sur-
rogate from an original cat in vivo current-clamp recording is composed. A 1-s segment from this
shuffled surrogate recording is displayed (blue) with another 1-s segment from 9 s later superim-
posed (red). (b) The implant: a series of PSPs is constructed from the original recording, imposed
on a 0-mV baseline. (c) The implant is summed into the 1-s segments, producing an implanted
trace with recurring repeats. The implants are added approximate every 10 s into a 190-s record-
ing, yielding 171 repeats. (d) Fifty 400-ms shuffle surrogates are constructed from the implanted
recording, and the HRI values produced from those surrogates are compared with the values pro-
duced from the unshuffled implant recording. As shown, the LRI–HRI detection algorithm does
not distinguish the implanted recording from the shuffled surrogates.

this produced a waveform whose peaks marked the onset of PSPs, and peaks pass-
ing a set threshold (typically, 0.9) were taken as the start times of PSPs. In some
cases, an amplitude threshold was used in conjunction with the covariance function
threshold. Thresholds were adjusted so that the fewest false positives and false neg-
ative results appeared, as can be judged in viewing Fig. 6. Importantly, the number
of identified PSPs found in surrogate traces vs. original traces was unchanged by
the creation of 400-ms shuffled surrogate traces.

The beginning of each PSP was then used as the points of alignment for com-
paring two different stretches of a recording, called here a putative motif-repeat
(Fig. 7). A potential cost to this approach is that the identification of PSPs may not
be precise, such that the realignment of traces based on those calculations could be
impaired. In order to account for this, the initial alignment of the motif-repeat based
on the two PSPs selected is altered according to the peak of the cross-covariance
function produced by those PSPs. This is the same approach used to better align
the traces during LRI analysis (Fig. 2), except that two individual PSPs are aligned,
rather than the 1-s long traces.
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Fig. 6 Repeat detection with PHRI. The onset times of putative PSPs are estimated by calcu-
lating all cross-covariance values of an average risetime waveform against the entire recording.
This yields correlation values for every point in the recording, and those points with a high cross-
covariance value and minimum amplitude are marked as onset time of a PSP, as shown above by
the tally marks below the recording. These onset times comprise the comparisons that will be per-
formed – n onset times yields n .n� 1/ =2 comparisons. One such comparison is shown above:
two putative PSPs are identified with the longest blue tally and longest red tally. These PSPs are
then aligned such that they yield the highest T value (using 30-ms window, see (2)). This alignment
is preserved with respect to the comparisons made between the subsequent PSPs in each respective
trace extracted from the recording. The T values are calculated for the intervals dictated by the PSP
onset times in the motif trace (blue), indicated with blue arrows. T values below a set threshold are
discarded from the HRI calculation, thus the black “X.” The minimum and maximum lengths of
the motif-repeat traces that are included in the HRI calculation are 800 and 1200 ms, respectively.
The minimum number of T values required for an HRI calculation is 3 (same as LRI–HRI crite-
ria), and HRI is calculated as per (3). The HRI values for all lengths between 800 and 1200 ms are
saved, and the motif-repeat length that yields the highest HRI value is saved. In the above example,
the length of the motif and repeat is 853 ms, the PHRI D 5:3, and the delay between the motif and
repeat is approximately 42 s.

The 190-s long in vivo cat recording used in Fig. 6 contained 1351 identified
PSPs, yielding 911925 motif-repeat pairs to be examined for subsequent HRI anal-
ysis – more than 100� the number of pairs identified with LRI analysis (6750 pairs).
In order to reduce this substantial increase in computation time, the HRI analysis in
PHRI is reduced by computing T values only in the regions identified as having
PSPs (Fig. 6). In contrast, the LRI-HRI technique measures T values for every 1-ms
interval of the 1-s trace (yielding 900 T value calculations). These T values are
then used just as before in the calculation of HRI (3). With this PHRI technique, the
length of the motif-repeat is determined by length that yields the highest HRI value,
and it is constrained by having a minimum of 800 ms and a maximum of 1200 ms.
This constraint is enacted with respect to the shuffle surrogate technique described
below: if motif-repeats are allowed that are the same length of the shuffle lengths
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Fig. 7 The improved detector finds implanted motifs and distinguishes the original recording from
its 400-ms shuffled surrogates. (a) The original LRI-HRI detector is unable to distinguish the im-
planted recording from its shuffled surrogates. (b) The PHRI detector, applied to the same data set
as A, appears to distinguish the unshuffled (blue) from the shuffled surrogates (red). (c) The orig-
inal 190-s cat in vivo current-clamp recording and fifty 400-ms shuffle surrogates are examined
with the PHRI detector. The rank ordered values from the original are shown in blue, and shuffled
surrogates in red. As these values were normally distributed for each rank order, it was possible
to construct confidence intervals for the distribution, and the 99% confidence interval is shown
(dashed black line). The original recording results (blue line) are clearly distinguished from the
99% confidence interval .p < 0:01/.

(400 ms), then the shuffling is likely to keep many of the motif-repeats intact. (It
would be analogous to using the LRI-HRI technique and shuffling with 1000-ms
segments.) The mean length of the ten best repeats from the cat in vivo trace in
Fig. 7, using PHRI, is 933 ˙ 32ms. As in the LRI-HRI technique, a minimum of
three T values that pass threshold is required.

The various parameters of the PHRI analysis were varied in order to enable it
to distinguish the implanted trace (Fig. 5) from shuffled surrogates. When compar-
ing PHRI values from 50 shuffled surrogates of the implanted trace to those of the
unshuffled implanted trace there appears to be a significant difference in the distri-
bution (Fig. 7b), or at least a much great difference in the difference compared with
results obtained with the LRI-HRI method (Fig. 7a).

We show that this new detector is indeed sensitive enough to detect these ar-
tificially implanted repeats and distinguish the implanted trace from its respective
shuffled surrogates (Fig. 6). Furthermore, when applying the PHRI detector to cat in
vivo recordings (no implants), the number of repeats found is greater in the original
vs. shuffled surrogates (Fig. 7). We have also found similar results with regards to
in vivo recordings in mouse sensory neocortex.

Recording Conditions and Effects on Synaptic Repeat Detection

The experienced neuroscientist may notice that membrane potential of the in vivo
recordings displayed in Figs. 5 and 6 is unusually hyperpolarized (see y-axes).
During those recordings, a tonic DC hyperpolarization was applied to prevent action
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Fig. 8 Intracellular recordings in different conditions. (a) Whole cell voltage-clamp recording in
vitro from a layer 5 pyramidal neuron, mouse V1 cortex. Vclamp D �70mV. (b) Sharp electrode
current-clamp recording from cat visual cortex, supragranular layer, with a large tonic hyperpolar-
izing current. (c) Current-clamp recording from mouse cortex, in vivo and no tonic hyperpolarizing
current. Note the similarities in recordings from A and B and how they both differ from C

potential generation, yielding a recording of only PSPs and possibly some voltage-
activated currents. Interestingly, in current-clamp recordings that do not contain
such a tonic hyperpolarization, it is always the case that almost any surrogate data
set can produce as many repeats as the original [14]. That is, significant repeats can-
not be detected in such recordings. Why would repeats be detected in voltage-clamp
recordings, and in recordings that contain strong hyperpolarizations? One possibil-
ity is that the synaptic events that supposedly comprise the repeats are “hidden” in
current-clamp recordings at more natural and depolarized membrane potentials. At a
membrane potential of �55mV, for example, the EPSPs and IPSPs impinging on
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the neuron drive the membrane potential in opposite directions, possibly distorting
the risetimes and waveforms comprising those individual events. In addition, many
voltage activated currents are gated at depolarized values, and such currents intrin-
sic to the neuronal membrane itself may mask the alteration of membrane potential
from synaptic currents alone. Hyperpolarizing a neuron to about �90mV, how-
ever, removes many fast voltage-gated currents and also creates a condition where
both IPSPs and EPSPs are depolarizing, allowing PSPs to rise out of a relatively
steady baseline. Likewise, a voltage-clamp recording at �70mV reduces almost all
voltage-gated currents (voltage is clamped), and EPSCs and IPSCs are also deflect-
ing in the same direction (Fig. 8).

Given the initial design of the experiment (Fig. 1), it seems critical that record-
ing conditions allow identification of PSPs or PSCs in the recording, as these are
the reflections of network activity that the technique attempts to analyze. We be-
lieve that the different recording conditions in recent investigations may account for
conflicting results. Future experiments that record neurons in conditions that may
favor a recording that reflects synaptic activity (hyperpolarized recordings, and/or
voltage-clamp recordings) can be compared with recordings that do not. Ideally,
future investigations will investigate the hypothesis directly by recording the same
neuron under these two conditions sequentially and comparing these two parts of the
recording and measuring repeats in both conditions. Furthermore, these recordings
can be made in conjunction with recordings of several neurons via calcium imaging
[1, 10, 16]. If the above hypothesis is correct, then the correlation of the intracellu-
lar recording with network dynamics should be greater during more hyperpolarized
recordings.
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Reverberatory Activity in Neuronal Networks�

Pak-Ming Lau and Guo-Qiang Bi

Abstract Reverberatory activity in neuronal cell assemblies has been proposed to
carry “online” memory traces in the brain. However, the dynamics and cellular
mechanism of such reverberation have been difficult to study because of the enor-
mous complexity of intact circuits. To overcome this difficulty, small networks of
interconnected neurons have been grown in culture dishes to provide a model sys-
tem for studies using patch-clamp recording and fluorescent imaging approaches.
In such networks, brief stimulation could elicit rhythmic reverberation that con-
sists of repeating motifs of specific patterns of population activation in the network.
Experimental and modeling analysis suggested that the reverberation is driven by
recurrent excitation, is sustained by the oft-overlooked asynchronous synaptic trans-
mission modulated by intracellular calcium, and is terminated by a slow component
of short-term synaptic depression. More recent data suggest that Hebbian synaptic
plasticity could underlie activity-induced emergence of reverberation. Thus, these
in vitro networks may serve as prototypic Hebbian cell assemblies for the study of
potential mechanisms of information representation and storage in brain circuits.

Background

The idea that neuronal activity could “reverberate” within closed-loop rings or
“self-reexciting” chains of neurons was first proposed in the early 1930s to ex-
plain electrophysiological observations such as the reflex after-discharge [44]. In the
late 1940s, Donald Hebb suggested that reverberation might exist in more elaborate
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Fig. 1 Hebb’s “cell assembly” and its activity-dependent growth. Arrows represent neural path-
ways firing sequentially according to the numbers on each. Reverberatory activity might persist in
such a circuit. With repeated activation, a weakly-connected circuit (gray arrows) is strengthened
(black arrows) so that the stability of the circuit is increased (Adapted from [34].)

circuits in the brain that he called the “cell assemblies” (Fig. 1). Such reverberation
can persist for a period of time after the cessations of the input stimulus and serve
as a short-term memory trace, which the brain can use to act on information prior to
immediate sensory input [34].

In addition to suggesting that cell assemblies capable of holding reverberatory ac-
tivity may function as elementary units underlying the thought process, Hebb further
proposed that appropriate rules of synaptic modification can lead to the formation
and stabilization of such assemblies, thereby converting short-term memory traces
into long-term engrams [34], as stated in his famous “neurophysiological postulate”:

“Let us assume then that the persistence or repetition of a reverberatory activity
(or ‘trace’) tends to induce lasting cellular changes that adds to its stability. The as-
sumption can be precisely stated as follows: When an axon of cell A is near enough
to excite a cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased.”

The cellular mechanism that Hebb postulated here, now known as “Hebb’s learn-
ing rule” or “the Hebbian synapse,” has gained popular supports from experimental
studies of synaptic plasticity that has been a hot topic of extensive study over the past
few decades [15, 16, 56, 65]. In particular, studies of long-term potentiation (LTP)
and long-term depression (LTD) have revealed exquisite molecular mechanisms
[4, 15, 23, 41, 48, 49, 66]. More recently, the discovery of a form of synaptic modifi-
cation that depends on the precise timing of pre- and postsynaptic action potentials,
i.e., spike-timing-dependent plasticity (STDP), has further provided a quantitative
and more extensive notion for Hebb’s rule [1, 10, 11, 14, 20, 21, 47, 51, 54, 79].

The major driving forces in the study of reverberatory activity have been theoreti-
cal analyses and simulations [24,61,75]. In fact, even in the early 1940s, McCulloch
and Pitts have demonstrated the computational implications of similar reverberatory
activity in their idealized few-cell networks [53]. In the past decades, reverbera-
tion dynamics and potential cellular mechanisms have been explored extensively in
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various attractor models [2,3,31,35,37,39,62,67,74,80]. In most models, recurrent
excitation as an internal positive feedback mechanism keeps the network, or cell
assembly, in distinct “up-states” of persistent firing activity without external drive,
thus providing short-term memory traces of input stimuli.

Experimentally, it has long been known from in vivo experiments that during be-
havioral tasks such as working memory, neurons in the prefrontal cortex and other
brain areas can fire persistently after the cessation of cue stimuli [24,27,28,38,75].
It has also been suggested that coordinated temporal fluctuations of neural activity
observed in sensory modalities and in the hippocampus may reflect the organization
and activation of cell assemblies during internal cognitive processing [33]. However,
because of the complexity of native circuits, it has been difficult to demonstrate ex-
perimentally how reverberatory activity is implemented at the network level, and it
has remained unclear whether network reverberation indeed underlies the observed
persistent activity in vivo [75].

The application of various electrophysiological and optical techniques with
in vitro preparations has allowed for new routes in the study of neuronal networks.
Because of the simplicity and accessibility of the reduced system, patterns of pop-
ulation activity are more easily studied. In brain slices, stereotypic spatiotemporal
patterns of spontaneous network activation have been observed [18,26,36,63]. Sim-
ilar population bursting activity has also been characterized in cultured neurons and
cultured slices [8, 9, 46, 60, 71, 73]. Although in most cases such network activation
does not last beyond tens of milliseconds, and thus differs from the reverberatory
activity assumed to be involved in tasks such as working memory, it does reflect
the existence of intrinsic network structures and their capability of self-organization
reminiscent of the cell assembly.

In small networks of cultured hippocampal neurons, we recently observed a new
form of coherence network activity [40]. Such network activity can last for seconds
after brief stimulation, similar to the proposed reverberatory activity in the Hebbian
cell assembly. The simplicity of in vitro systems provides a unique opportunity to
address fundamental issues regarding the cellular mechanisms underlying reverber-
atory activity in neuronal networks [24, 61, 75]. For example, what is the minimum
requirement for cellular substrates to support persistent reverberation? Can recur-
rent synaptic excitation alone sufficiently sustain persistent activity, or is bistability
of single neurons needed? What components of synaptic currents are responsible
for sustaining stable reverberation? How is synaptic plasticity involved in the emer-
gence and evolution of reverberation? In this chapter, we will describe experimental
and theoretical findings regarding network reverberation inside culture dishes, with
an emphasis on the cellular mechanisms underlying its dynamics and plasticity.

Reverberatory Activity in Cultured Neuronal Networks

Neuronal cultures in most studies are prepared directly from animal brain tissues,
and are thus called “primary cultures” in contrast to cell cultures derived from im-
mortal cell lines [6]. Primary neuronal cultures have the advantage of preserving
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many biophysical and cell biological properties similar to their in vivo counterparts.
However, it must be noted that even in a primary culture, cells are grown in condi-
tions quite different from their native environment; and environmental factors (e.g.,
tropic factors, guidance cues, sensory inputs, etc.) play important roles in neuronal
development. Furthermore, it is unlikely that cultured neurons can keep their na-
tive circuitry structure, which is important for their network functions. These must
be kept in mind when interpreting phenomena observed in such in vitro prepara-
tions. Nevertheless, with cautions properly practiced, culture systems can help us
gain valuable insights into the fundamental principles and mechanisms underlying
the behavior of neurons and neuronal networks.

Rat hippocampal culture has been a good choice for in vitro studies partly
because of the relative homogeneity of neuronal cell types [6]. To prepare such cul-
tures, hippocampi are first dissected from rat embryos, followed by enzymatic and
mechanical dissociation, before plating in petri dishes containing culture medium
[6]. For many studies, neurons need to be grown on glass coverslips. These cover-
slips must be first coated with a layer of molecular substrate in order for the cells to
adhere to the surface. In our experiments, the coverslips are precoated with patterns
of poly-L-lysine spots of �1-mm diameter using custom-made stamps. Confined by
these patterns, neurons grow to form small networks that are relatively isolated from
one another, each with an “island” of a monolayer of glial cells (Fig. 2).

Fig. 2 A network of cultured hippocampal neurons grown on glass surface coated with poly-L-
lysine dots. Under proper conditions, a monolayer of glial cells from the same source usually forms
underneath the neurons (Adapted from [40].)
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About 1 week after being plated in culture (7 days in vitro or DIV), hippocam-
pal neurons begin to form synapses and neuronal activity begins to emerge and
evolve. Such activities can be recorded by electrophysiological recordings and vari-
ous imaging methods. In small (e.g., 10 neurons) and young (e.g., 10 DIV) networks
when spontaneous activity is rare, brief external stimuli can often elicit sizable net-
work responses. Typically, such a response is comprised of multiple polysynaptic
voltage or current components and lasts for �50ms [12], suggesting the activation
of a cascade of neurons via multiple pathways by a stimulus. In larger (e.g., 100
neurons) and more mature (e.g., 15 DIV) networks, in additions to short polysy-
naptic responses, the same brief stimulus could often elicit recurring or persistent
responses lasting for seconds (Fig. 3). Because typical synaptic delay is only sev-
eral milliseconds, cascade activation lasting for seconds will require thousands of
neurons in such a pathway. Therefore, the long-lasting response of a network with
�100 neurons must involve repeated activation of the same neurons, similar to the
reverberatory activity Hebb hypothesized for the cell assembly.

Fig. 3 Reverberatory activity in cultured neuronal networks. (a) Current-clamp recordings of tran-
sient polysynaptic potential (gray) and persistent reverberatory activity (black) evoked by brief
(1 ms) stimulation of the recorded neuron in a network. (b) Voltage-clamp recordings of transient
polysynaptic current (gray) and reverberatory activity (black) in response to 1-ms stimuli of the
recorded neuron in the same network. (c) Expanded view of three reverberatory events (polysy-
naptic current clusters) within the above episode of network reverberation (Adapted from [40].).
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Reverberatory activity in cultured networks exhibits several interesting dynamic
features:

(1) In response to external stimuli, reverberatory activity is elicited in an all-or-none
fashion. The distribution of the duration of network activity is highly bimodal:
either reverberatory activity lasting for seconds or short polysynaptic responses
lasting for tens of milliseconds are generated.

(2) For most neurons in a reverberatory network, their membrane potentials are
generally maintained in a depolarized state for the duration of reverberation
that usually lasts for several seconds, during which active neurons fire action
potentials at a moderate rate of �10Hz. This is to some extent similar to the in
vivo persistent activity as well as the “up-state” observed in other preparations.

(3) Throughout an episode of reverberation, network activation happens in a
rhythmic and coherent fashion: short periods (�50ms each) of reverbera-
tory “events” are interleaved by “silent” periods of similar or slightly longer
durations. Neuronal firing occurs mostly during the periods of these reverber-
ation events, as reflected by clusters of polysynaptic currents in voltage-clamp
recording traces.

(4) Different reverberatory events in a network may have conserved spatiotemporal
patterns of neuronal activation, as indicated by the similarity among polysy-
naptic current clusters (reflecting sequential neuronal firing presynaptic to the
recorded cell).

Biophysical Mechanisms Underlying Persistent
In Vitro Reverberation

The simplicity and accessibility to electrophysiological and pharmacological ma-
nipulations of in vitro systems has allowed for careful dissection of the cellular
and biophysical mechanisms underlying reverberatory activity. In this chapter, we
discuss the involvement of recurrent excitation and inhibition, and focus on the im-
portance of oft-overlooked asynchronous synaptic transmission.

Intrinsic Bistability vs. Recurrent Excitation

In principle, a network of neurons can be maintained in an active state in the absence
of continuous external drive by appropriate positive feedback. At least two distinct
biophysical mechanisms could potentially achieve this: cellular bistability and net-
work recurrent excitation. The first can involve a few “driver” neurons that are
intrinsically capable of firing persistently once initiated. The second is similar to
Hebb’s scenario of the cell assembly, and is likely to underlie the observed rever-
beratory activity in cultured neuronal networks.
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Intrinsic membrane bistability (or multistability) has been found in some neu-
ronal types including layer V pyramidal neurons of the entorhinal cortex [25] and
cerebellar Purkinje cells [43]. Upon proper initiation, these neurons could fire action
potentials persistently without continued stimulation. Several ion channels, includ-
ing the Ca2C-sensitive cationic channels and noninactivating voltage-gated NaC
channels, could potentially underlie membrane bistability. It is conceivable that if a
network contains some bistable neurons, then the persistent firing activity of these
cells could drive the whole network into persistent activation, thereby carrying short-
term memory traces.

In hippocampal cultures, however, none of the neurons examined were found to
exhibit intrinsic bistability that was capable of driving persistent firing [40]. Fur-
thermore, reverberation in cultured hippocampal neurons was highly sensitive to
CNQX, an antagonist of AMPA-type glutamate receptors, suggesting the impor-
tance of excitatory synaptic connections. In fact, even partial inhibition of AMPA
receptor-mediated synaptic current could dramatically reduce or abolish reverbera-
tory activity. This is consistent with a mechanism of recurrent excitation and does
not support the idea of persistent spiking of a few bistable driver neurons. Nonethe-
less, properties of intrinsic membrane excitability (not necessarily bistability) of
individual neurons could play important roles in the robustness and dynamic char-
acteristics of network reverberation.

It is estimated that �10–20% cultured hippocampal neurons are GABAergic
interneurons which are inhibitory at the stage of network experiments [6,40]. Block-
ade of GABA-A receptors facilitates the occurrence and prolongs the duration of
evoked network reverberation [40]. In some larger networks, blockade of inhibition
could lead to initial high-frequency firing (Lau and Bi, unpublished observations),
similar to epileptiform activity observed in other systems [52]. This is consis-
tent with a scenario that reverberation is driven by recurrent excitation, whereas
GABA-A receptor-mediated inhibition plays a balancing role by suppressing rever-
beration. Additionally, it is also possible that GABAergic interneurons in the largely
excitatory network could play a role in controlling spike timing and regulating the
rhymicity of reverberation [50, 76, 77].

Asynchronous Synaptic Transmission

An intriguing feature in reverberatory activity observed in cultured hippocampal
neurons is the existence of “silent” periods interleaving reverberatory events: rounds
of network firing (see feature #3 in 1.2). The question is: if there is no neuronal fir-
ing during these periods, usually ranging from 50 to 100 ms, then some “signals” or
“traces” must be left by each round of network firing to initiate the next. The major
component of excitatory synaptic current mediated by AMPA type glutamate recep-
tors typically lasts for �10 to 20 ms, apparently not enough to carry out the task.
Another type of glutamate receptor, the NMDA receptor, has a needed slow kinet-
ics and has been suggested to play a crucial role in maintaining persistent network
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activity in the prefrontal cortex [74]. However, NMDA current constitutes only a
very small portion of excitatory synaptic current in cultured hippocampal neurons.
Furthermore, some networks are still capable of reverberation with complete block-
ade of NMDA receptors [40]. Therefore, there must be another player to bridge the
gaps between adjacent reverberatory events.

A closer look at the voltage-clamp traces of evoked reverberation reveals a slow
phase of the polysynaptic currents following the more synchronized component of
the PSC cluster (Fig. 4a). Moreover, in networks where reverberation was not trig-
gered by a single pulse stimulation of an input neuron, paired-pulse stimuli (PPS)

Fig. 4 Asynchronous phase of polysynaptic currents bridge reverberatory events. (a) Paired-pulse
stimulation causes elevated asynchronous synaptic currents and elicits reverberation in a network
that does not respond to a single pulse stimulus. (b) Buffering intracellular Ca2C with EGTA-AM
suppresses reverberatory activity in a network that normally exhibits reverberation. Note that asyn-
chronous synaptic transmission is substantially suppressed in the presence of EGTA. (c) Elevating
asynchronous release with extracellular Sr2C substantially enhances both the occurrence and the
duration of reverberation (Adapted from [40].)
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could enhance this slow current component and often elicit reverberation (Fig. 4a).
This slow phase of polysynaptic current is most likely a result of the so-called
“asynchronous” synaptic transmitter release that was first observed by Katz and
his colleagues in their original studies of the neuromuscular junctions and was later
found in many preparations of central neurons [5, 7, 19, 22, 29, 45, 55, 58]. Through
these classical studies, it has been well established that asynchronous release is
caused by increased probability of synaptic vesicle fusion in response to residual
calcium elevation after action potentials that trigger the “synchronous” phase of
synaptic transmission.

Two pieces of experimental evidence confirm the critical role of asynchronous
release in network reverberation. First, EGTA-AM, a slow calcium chelator that
buffers residual calcium elevation and thereby suppresses asynchronous release
while allowing normal synchronous transmission [19, 32] could virtually abolish
reverberation (Fig. 4b). Second, when part of the extracellular calcium was replaced
by strontium, a divalent cation that partially supports synaptic transmission and has
been shown to enhance asynchronous transmitter release at various nerve terminals
[29, 55, 78], both the duration and the occurrence probability of reverberation were
substantially enhanced (Fig. 4c).

Compared with the fast decay of “synchronous” phase of synaptic transmission,
asynchronous release typically has a long time constant of a few hundred millisec-
onds that is determined to a large extent by slow calcium clearance [19, 29, 32].
Meanwhile, at low activity levels, the contribution of asynchronous transmitter
release to synaptic currents often appears to be insignificant compared with “syn-
chronous” release [58]. Therefore, asynchronous release is often regarded as a
“noise” of synaptic transmission. However, the slow kinetics of this oft-overlooked
component of synaptic transmission makes it ideally situated for bridging the gap
between adjacent reverberatory events. In addition, asynchronous release can be
much more prominent following repeated presynaptic activation because of the
accumulation of residual calcium [19, 32]. Therefore, during reverberation asyn-
chronous transmission is “facilitating” so that once a reverberation episode gets
started, more asynchronous release would happen, thereby more likely to reiniti-
ate the next rounds of reverberatory events. This facilitation provides another level
of positive feedback to stabilize reverberation and can explain the all-or-none nature
of its activation.

At the functional level, the facilitation may also enable a network to detect phys-
iologically relevant repetitive input stimuli. Several attractor models predict that
a slow component of excitatory synaptic transmission is needed for the stability of
various forms of network activity such as desynchronized persistent firing and robust
graded persistent activity [62, 67, 74]. In these models, NMDA receptor-mediated
excitatory synaptic current has been proposed to play this role by virtue of its slow
time constant. It is possible that asynchronous transmitter release could also play
a similar role in these other forms of functionally relevant persistent activities, es-
pecially in systems such as hippocampal neurons where excitatory transmission is
mainly mediated by AMPA currents.
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Asynchronous release is a fundamental component of synaptic transmission
[5, 7, 19, 22, 29, 45, 55, 58] and is likely to exist in various synapses in the brain.
It will be interesting to see whether it plays similar roles in the observed persis-
tent activity in vivo. Moreover, asynchronous release can be affected by various
cellular processes such as calcium uptake into and release from intracellular stores
[42, 59, 64] that involves intricate inter- and intracellular signaling systems [70]. It
is not unlikely that these regulatory processes may be involved in modulating per-
sistent activity relevant to system behaviors such as attention. Meanwhile, defects
in the regulation could lead to system dysfunctions such as epilepsy. Understanding
these basic mechanisms and their relevance in vivo will provide important insights
into both normal brain functions and related diseases.

Short-Term Synaptic Dynamics

Another important feature of synaptic transmission is short-term synaptic dynam-
ics including short-term facilitation and short-term depression [81] that must have
significant influence on collective network dynamics [68,69]. This can be tested ex-
perimentally by manipulating key factors such as extracellular Ca2C concentration
[81]. The exact consequence of such manipulation on network reverberation can be
complicated. For example, moderate decrease in extracellular Ca2C could result in
enhanced reverberation, apparently because of a reduction in short-term depression.
Further decrease in Ca2C, however, has the opposite effect because the synaptic
drive is too low to initiate reverberation (P Lau & G Bi, unpublished results).

In cultured hippocampal neurons, short-term depression is the dominant form
of synaptic dynamics [30, 32]. It is generally believed that short-term depression is
because of the limited sizes of synaptic vesicle pools (e.g., the readily releasable
pool) and the finite rates of their recovery after usage [81]. With the consideration
of synaptic depression on multiple timescales together with presynaptic calcium
dynamics that determines asynchronous vesicle release, a biophysically tractable
model was constructed to explore the synaptic mechanisms underlying network
reverberation [72]. The model successfully reproduced reverberatory activity in sim-
ulated networks of 50–100 neurons (Fig. 5).

Simulation results from the model confirm the key intuition obtained from ex-
perimental observations: asynchronous transmitter release plays the key role in
reverberation by bridging the gap between adjacent reverberatory events. It was
also found that a fast component of short-term depression in synchronous synap-
tic transmission ends each round of network activation (reverberatory event). Then
asynchronous release “driven” by residual calcium was able to reinitiate the next
round of network activation following sufficient recovery from the fast depres-
sion. Therefore, the interplay between synchronous and asynchronous transmission
is responsible for the oscillatory nature of network activation during reverbera-
tion. Finally, the reverberation is terminated by a slow component of short-term
depression (reflected by the “s” state in Fig. 5a) that outlasts residual calcium or
asynchronous release.
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Fig. 5 Computational
simulation of reverberatory
activity in small neuronal
networks. Upper panel
illustrates synaptic
mechanisms, including
short-term synaptic
depression and asynchronous
release, which are the key
factors influencing
reverberatory activity. Lower
panel shows simulated
reverberation (compare with
Fig. 3) (Courtesy of Dr.
Vladislav Volman. For
details, see [72].)

Summary and Outlook

The simplicity of the culture system has allowed us to answer several key questions
regarding the mechanism of network reverberation: (1) Persistent reverberatory ac-
tivity can exist in cultured neuronal networks that appear to form randomly without
any predefined anatomical specializations; (2) Reverberation can be driven by re-
current excitation without special requirements for bistability of single neurons,
although the latter could exist in other systems and play a role in ensuring the robust-
ness of reverberation; (3) Asynchronous synaptic transmission plays a critical role
in sustaining reverberation by bridging adjacent reverberatory events. Consequently,
cellular mechanisms regulating intracellular calcium stores and thus asynchronous
release could be novel functional nodes in the modulation of network reverberation;
(4) multitimescale synaptic dynamics determines the dynamic features of reverber-
ation: a fast component of short-term depression causes oscillatory activation of
network reverberation, whereas a slow component of short-term depression leads to
the termination of reverberation.

More questions remain to be answered. Relevant to Hebb’s theory, a critical
question is: how does reverberation emerge in a cultured network during its develop-
ment? In particular, what are the roles for activity and activity-dependent Hebbian
synaptic plasticity in the formation of reverberatory circuits? Furthermore, can a
network maintain stable reverberation under the influence of Hebbian plasticity that
is essentially a positive feedback process? From the point of view of information
coding, the conserved spatiotemporal patterns of neuronal activation observed dur-
ing reverberation is intriguing. The question is: how many different patterns can
coexist in a network? Can a network be trained to store specific patterns?

Fortunately, in simplified cell culture system, these questions can be directly ad-
dressed with currently available technology, especially the combination of electro-
physiology and imaging approaches. For example, our recent experiments suggest
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that Hebbian synaptic modification, similar to STDP [1, 11, 13, 17, 51], could in-
deed underlie activity-induced emergence of network reverberation (P. Lau & G.
Bi, unpublished results). Therefore, to some extent, we can regard these cultured
networks as prototypic Hebbian cell assemblies. Meanwhile, it was also found that
reverberatory circuits could still develop in the absence of activity, as long as home-
ostatic plasticity scales up the overall strength of excitatory synapses in the network
(R. Gerkin, P. Lau & G. Bi, unpublished results). However, reverberation developed
in the absence of activity is often not stable and tends to evolve into uncontrolled
spontaneous activity, whereas normally developed reverberation generally remains
stable, suggesting the action of another layer of homeostatic mechanism that regu-
lates the expression of synaptic plasticity.

Does reverberatory activity exist in native neuronal circuits in vivo as observed
in culture? A well-known issue is that cultured neurons often form strong synap-
tic connections so that the activation of individual neurons is sufficient to trigger
polysynaptic responses, whereas in native circuits, individual connections are gener-
ally subthreshold. Intriguingly, it has been observed recently that in human cerebral
cortex, individual spikes could initiate complex polysynaptic responses, suggest-
ing that single action potentials might be more important for the human brain
than previously thought [57]. Still, dynamic properties of small networks do not
simply scale up. Therefore, it is ultimately important to obtain direct evidence of
reverberatory network dynamics in vivo during relevant behavior, probably using
revolutionary new methodologies. Nevertheless, the existence of reverberation in
generic, randomly connected neurons suggests that such activity could result from
basic mechanisms and principles guiding the self-organization of neuronal circuits.
Therefore, in the spirit of Hebb’s legacy, we could speculate that collective network
dynamics similar to reverberation might act as a basic unit of cognitive and per-
ceptual processes such as online memory and decision making; deficiency in such
dynamics might underlie pathological conditions such as epilepsy, chronic pain, and
schizophrenia. Whereas the jury is still out on the physiological significance of net-
work reverberation, it is likely that the basic principles and mechanisms learned
from in vitro systems could provide new insights into circuit operation in vivo and
could guide its study in the future.
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Gap Junctions and Emergent Rhythms

S. Coombes and M. Zachariou

Abstract Gap-junction coupling is ubiquitous in the brain, particularly between
the dendritic trees of inhibitory interneurons. Such direct nonsynaptic interaction
allows for direct electrical communication between cells. Unlike spike-time driven
synaptic neural network models, which are event based, any model with gap junc-
tions must necessarily involve a single neuron model that can represent the shape
of an action potential. Indeed, not only do neurons communicating via gaps feel
super-threshold spikes, but they also experience, and respond to, sub-threshold volt-
age signals. In this chapter, we show that the so-called absolute integrate-and-fire
model is ideally suited to such studies. At the single neuron level voltage traces
for the model may be obtained in closed form, and are shown to mimic those of
fast-spiking inhibitory neurons. Interestingly, in the presence of a slow spike adap-
tation current, the model is shown to support periodic bursting oscillations. For both
tonic and bursting modes, the phase response curve can be calculated in closed
form. At the network level we focus on global gap junction coupling and show
how to analyze the asynchronous firing state in large networks. Importantly, we are
able to determine the emergence of nontrivial network rhythms due to strong cou-
pling instabilities. To illustrate the use of our theoretical techniques (particularly the
phase-density formalism used to determine stability) we focus on a spike adaptation
induced transition from asynchronous tonic activity to synchronous bursting in a
gap-junction coupled network.

Introduction

Gap-junction coupling is known to occur between many cell types, including for
example pancreatic-ˇ cells [13], heart cells [15], astrocytes [6], and neurons [22].
In this latter context, these junctions are primarily found between inhibitory cells
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[26]. Interestingly, interneurons are known to play a key role in the generation of
hippocampal and cortical rhythms, such as those at gamma frequency (30–100 Hz)
[9, 21]. Gap junctions allow for the direct electrical communication between cells,
and without the need for receptors to recognize chemical messengers are much
faster than chemical synapses at relaying signals. The synaptic delay for a chemical
synapse is typically in the range 1–100 ms, while the synaptic delay for an electri-
cal synapse may be only about 0:2ms. There is now little doubt that gap junctions
play a substantial role in the generation of neural rhythms [5, 28], both functional
[1, 5, 25, 28] and pathological [17, 51]. One natural question therefore is how does
the presence of gap-junction coupling affect synchronous neuronal firing [4,24,40].
Independent experimental studies have proposed that gaps synchronize neuronal
firing even in the absence of chemical synapses [16, 37]. However, other studies
have demonstrated that synchrony can result from the interplay of electrical and
chemical signaling and that gaps alone are not sufficient for obtaining synchronous
activity [7, 47]. Contradictory results have been reported in the case of inspiratory
motorneurons, where gaps desynchronize neural activity whereas synaptic inhibi-
tion alone promotes synchrony [8]. From a theoretical perspective the theory of
weakly coupled oscillators has often been used to understand how gap junction cou-
pling promotes synchrony or antisynchrony depending on the nature of the neural
oscillator and the shape of the action potential [18, 31, 32, 35, 36, 41, 42, 46]. By
its very nature, however, this sort of approach cannot tackle gap-induced variations
in single neuron firing rate and is thus not ideally suited to answering questions
about how the strength of gap junctions contributes to coherent neuronal behavior.
Thus, we are led to the search for a tractable network model that can be analyzed in
the strong coupling limit. In this chapter, we show how one can make progress in the
strong coupling regime for a certain class of spiking neuron model that mimics the
behavior of fast-spiking interneurons. Importantly, we are able to quantify a tran-
sition from asynchronous tonic spiking to synchronized bursting oscillations in a
large globally gap-junction coupled network.

The layout of this chapter is as follows. In section “The Absolute Integrate-and-
Fire Model,” we introduce our single neuron model of choice, namely a nonlinear
integrate-and-fire model, with a piece-wise linear nonlinearity. We show that this
model can mimic the behavior of a fast-spiking interneuron whilst being analyti-
cally tractable. In illustration, we calculate periodic orbits and the phase response
curve in closed form. A simple model of spike adaptation is used to augment this
basic model so that it can also fire in a burst mode. Next in section “Gap-Junction
Coupling,” we pursue the analysis of large globally gap-junction coupled networks.
The focus here is on asynchronous states that generate a constant mean field signal.
These are calculated in closed form and provide the starting point for a subsequent
stability analysis. This makes use of ideas originally developed by van Vreeswijk
[48] for the study of synaptic interactions. Importantly, we are able to generate the
instability borders in parameter space beyond which an asynchronous state is un-
stable to periodic temporal perturbations. Direct numerical simulations confirm the
correctness of our calculations and show that the dominant solution to emerge be-
yond an instability is one where the mean-field signal shows a classical bursting
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signature. Moreover, neurons in this state are synchronized at the level of their firing
rate, but not at the level of individual spikes. Finally in section “Discussion,” we dis-
cuss natural extensions of the work in this chapter.

The Absolute Integrate-and-Fire Model

The presence of gap-junctional coupling in a neuronal network necessarily means
that neurons directly “feel” the shape of action potentials from other neurons to
which they are connected. From a modeling perspective one must therefore be
careful to work with single neuron models that have an accurate representation of
an action potential shape. On the other hand it is also desirable to work with a
model that can be analyzed. A recent paper [12] advocates the use of piece-wise
linear planar models. As an alternative we consider here the use of a nonlinear
integrate-and-fire (IF) model. Indeed the quadratic IF model is a common choice
for computational studies (and unlike the leaky IF model does generate an action
potential shape). However for arbitrary time-dependent forcing formal closed solu-
tions are not known. A somewhat overlooked tractable nonlinear IF model is that of
Karbowski and Kopell [30], with a voltage dynamics given by

Pv D f .v/C I; (1)

subject to v ! vr if v D vth. Here the function f .v/ has a shape like jv � vsj and
hence the name absolute integrate-and-fire (aif) model, for some switch value vs.
The firing times T n, n 2 Z, are defined according to

T n D infft j v.t/ � vth I t � T n�1g: (2)

Because of the choice of a piece-wise linear form of the nonlinearity, the aif model
can be explicitly analyzed. To see that it is capable of generating behavior consistent
with that of a fast-spiking interneuron we compare it with a more detailed biophysi-
cal model. A generic model for a neocortical fast-spiking interneuron is that of Wang
and Buzsáki [52] (originally developed to describe CA1 hippocampal interneurons).
The kinetics and maximal conductances, which are Hodgkin and Huxley style, are
chosen so that the model displays two salient features of hippocampal and neocorti-
cal fast-spiking interneurons. The first being that the action potential is followed by
a brief after-hyperpolarization, and the second that the model fires repetitive spikes
at high frequencies. A plot of the response of this model to constant current injection
is shown in Fig. 1. In the same figure we also show response of the aif model with
the choice

f .v/ D
(
.v � vs/ v > vs

�˛.v � vs/ v � vs

; ˛ > 0: (3)
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Fig. 1 Top: Periodic orbit in the Wang–Buzsáki model with constant current injection I D 1.
Bottom: Periodic orbit in the aif model with vr D �65, vs D �50, vth D 25, ˛ D 0:03, and I D 1

It is clear that an appropriately parametrized aif model can indeed capture the
essential spike shape and frequency response of the more detailed biophysical
model. Note that for accurate numerical computation of the spike times where
v � vs (and solutions diverge as et ) it is useful to consider the transformed vari-
able x D ln.1C v � vs/ and solve the dynamical system Px D 1C .I � 1/e�x and
then match to solutions with v < vs.

Spike Adaptation

As well as supporting a tonic mode of spiking some interneurons have been reported
to exhibit bursting [14, 38, 53]. With this in mind we show that by incorporating a
form of spike adaptation [49] the aif model can exhibit both tonic and bursting be-
havior. For simplicity, we shall henceforth work with the explicit choice f .v/ D jvj.
In more detail we write

Pv D jvj C I � a; Pa D �a=�a; �a > 0; (4)

subject to the usual IF reset mechanism as well as the adaptive step a.T m/ !
a.Tm/Cga=�a, for some ga > 0. For sufficiently small ga , the model fires tonically
as shown in Fig. 2. Since the model is now a 2D (discontinuous) dynamical system
it is also useful to view orbits in the .v; a/ plane, where one can also plot the system
nullclines, as shown in Fig. 3. For larger values of ga , the model can also fire in
a burst mode as shown in Fig. 4. The mechanism for this behavior is most easily
understood in reference to the geometry of the phase-plane, as shown in Fig. 5. First
consider that the dynamics after reset is such that the adaptive current is sufficiently
strong so as to pull the trajectory toward the left-hand side of the voltage nullcline.
If the separation of time-scales between the v and a variables is large (namely that
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Fig. 2 Tonic firing in the aif
model with spike adaptation.
Here �a D 3, vr D 0:2,
vth D 1, I D 0:1, and
ga D 0:75 0
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Fig. 3 A periodic orbit in the
.v; a/ plane corresponding to
the tonic spiking trajectory
shown in Fig. 2. Also shown
is the voltage nullcline as
well as the value of the reset
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Fig. 4 Burst firing in the aif
model with spike adaptation.
Here �a D 75, vr D 0:2,
vth D 1, I D 0:1, and ga D 2
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Fig. 5 A periodic orbit in the
.v; a/ plane corresponding to
the bursting trajectory shown
in Fig. 4
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�a is large), then the trajectory will slowly track this nullcline (a D I � v) until it
reaches v D 0, where there is a switch in the dynamics (from f .v/ D �v to f .v/ D
Cv). After the switch the neuron is able to fire for as long as threshold can be
reached – namely until a becomes so large as to preclude further firing. Thus, it is
the negative feedback from the adaptive current that ultimately terminates a burst,
and initiates a slow phase of subthreshold dynamics.

To solve the full nonlinear dynamical model, it is convenient to break the phase
space into two regions separated by the line v D 0, so that in each region the dynam-
ics (up to threshold and reset) is governed by a linear system. If we denote by vC
and v� the solution for v > 0 and v < 0, respectively, then variation of parameters
gives us the closed form solution

v˙.t/ D v˙.t0/e˙.t�t0/ C
Z t

t0

e�.s�t/ŒI � a.s/�ds; (5)

with initial data v˙.t0/ and t > t0. For example, considering the 	-periodic tonic
solution shown in Fig. 3, where v > 0 always, then we have that a.t/ D ae�t=�a ,
with a determined self-consistently from a.	/C ga=�a D a, giving

a D ga

�a

1

1 � e��=�a
: (6)

Hence, from (5), the voltage varies according to

v.t/ D vre
t C I.et � 1/� a�a

1C �a .e
t � e�t=�a /: (7)

The period is determined self-consistently by demanding that v.	/ D vth. A plot
of the firing frequency f D 	�1 as a function of ga is shown in Fig. 6. From
this we see that the frequency of tonic firing drops off with increasing adaptation,
as expected. Note that one may also construct more complicated orbits (such as

Fig. 6 Frequency of tonic
firing as a function of the
strength of adaptation ga for
the parameters of Fig. 2
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tonic solutions which visit v < 0, period doubled tonic solutions, bursting states,
etc.) using the ideas above. The main effort being in piecing together trajectories
across v D 0.

Phase Response Curve

It is common practice to characterize a neuronal oscillator in terms of its phase
response to a perturbation. This gives rise to the notion of a so-called phase response
curve (PRC). For a detailed discussion of PRCs we refer the reader to [19, 20, 27].
Suffice to say that for a weak external perturbation, such that .Pv; Pa/ ! .Pv; Pa/ C

.A1.t/; A2.t//, and 
 small, then we can introduce a phase � 2 .0; 1/ along a
	-periodic orbit that evolves according to

P� D 1

	
C 
QT .A1.t/; A2.t//: (8)

The (vector) PRC, is given asQ	, whereQ obeys the so-called adjoint equation

dQ

dt
D �DFT.t/Q; (9)

and DF.t/ is the Jacobian of the dynamical systems evaluated along the time-
dependent orbit. To enforce the condition that P� D 1=	 for 
 D 0 we must choose
initial data forQ that guaranteesQT.Pv; Pa/ D 	�1. For a continuous trajectory this
normalization condition need only be enforced at a single point in time. However,
for the aif model with adaptation there is a single discontinuity in the orbit (at reset)
and soQ is not continuous. We therefore need to establish the conditions that ensure
Q.	C/ D Q.0/. Introducing components of Q as Q D .q1; q2/ this is equivalent
to demanding continuity of dq1=dq2 at reset.

For the orbit given by (7) with v > 0 the Jacobian is simply the constant matrix

DF D
�
1 �1
0 �1=�a

�

; (10)

and the adjoint equation (9) may be solved in closed form as

q1.t/ D q1.0/e�t ; q2.t/ D q2.0/et=�a C q1.0/
�a

1C �a Œe
t=�a � e�t �: (11)

The condition for continuity of dq1=dq2 at reset yields the relationship

q2.0/

q1.0/
D q2.	/

q1.	/
D � �a

1C �a ; (12)
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Fig. 7 AdjointQ for the
tonic spiking orbit shown
in Fig. 3
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whilst the normalization condition gives

q1.0/Œvr C I � a� � q2.0/
a

�a
D 1

	
: (13)

The simultaneous solutions of (12) and (13) then gives the adjoint in the closed form

Q.t/ D �

	
e�t

�
1

��a=.1C �a/
�

; t 2 Œ0;	/; (14)

and � D Œvr C I � a�a=.1C �a/�
�1. A plot of the adjoint for the tonic orbit (7) is

shown in Fig. 7. Note that the orbit and PRC for other periodic solutions (crossing
through v D 0) can be obtained in a similar fashion.

Gap-Junction Coupling

To model the direct gap-junction coupling between two cells, one labeled post and
the other pre, we introduce an extra current to the right-hand side of equation (1) in
the form

ggap.vpre � vpost/; (15)

where ggap is the conductance of the gap junction. Indexing neurons in a network
with the label iD1; : : : ; N and defining a gap-junction conductance strength
between neurons i and j as gij means that neuron i experiences a drive of the form
N�1

PN
j D1 gij.vj � vi /. For a phase locked state then .vi .t/; ai .t//D.v.t � i	/;

a.t � i	//, .v.t/; a.t// D .v.t C 	/; a.t C 	//, (for some constant phases
i 2 Œ0; 1/) and we haveN equations distinguished by the driving termsN�1

PN
j D1

gij .v.t C .i � j /T / � v.t//. For globally coupled networks with gij D g, maxi-
mally symmetric solutions describing synchronous, asynchronous, and cluster states
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are expected to be generic [2]. Here we shall focus on asynchronous states defined
by i D i=N . Such solutions are often called splay or merry-go-round states, since
all oscillators in the network pass through some fixed phase at regularly spaced time
intervals of 	=N .

Existence of the Asynchronous State

Here we will focus on a globally coupled network in the large N limit. In this case,
we have the useful result that network averages may be replaced by time averages.
In this case, the coupling term for an asynchronous state becomes

lim
N !1

1

N

NX

j D1

v.t C j	=N/ D 1

	

Z �

0

v.t/dt; (16)

which is independent of both i and t . Hence, for an asynchronous state every neuron
in the network is described by the same dynamical system, namely

Pv D jvj � gv C I � aC gv0; Pa D �a=�a; (17)

where

v0 D 1

	

Z �

0

v.t/dt: (18)

Once again we may use variation of parameters to obtain a closed form solution for
the trajectory:

v˙.t/ D v˙.t0/e˙.t�t0/=�
˙ C

Z t

t0

e�.s�t/=�
˙ ŒIg � a.s/�ds; (19)

where �˙ D 1=.1� g/ and Ig D I C gv0. A self-consistent solution for the pair
.	; v0/ is now obtained from the simultaneous solution of the two equations v.	/ D
vth and v0 D 	�1

R �

0
v.t/dt . For example an orbit with v > 0 is easily constructed

and generates the two equations

vth D vre
�=�

C C Ig�C.e�=�
C � 1/� a�.e�=�

C � e��=�a /; (20)

v0 D �Ig�C C 1

	

n
�CŒe�=�

C � 1�Œvr C Ig�C � a��C a��aŒ1 � e��=�a �
o
; (21)

where 1=� D 1=�C C 1=�a. A plot of .	; v0/ as a function of the gap strength g is
shown in Fig. 8.
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Fig. 8 Period 	 and constant
mean field signal v0 as a
function of gap strength g.
Other parameters as in
Fig. 3 left
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Stability of the Asynchronous State

Here we use a phase reduction technique, first developed by van Vreeswijk [48] for
synaptic coupling, to study the stability of the asynchronous state. To do this we
write the coupling term N�1

PN
j D1 vj .t/ in a more convenient form for studying

perturbations of the mean field, namely we write

lim
N !1

1

N

NX

j D1

vj .t/ D lim
N !1

1

N

NX

j D1

X

m2Z

u.t � Tm
j /; (22)

where Tm
j D m	C j	=N . Here u.t/ D 0 for t < 0 and is chosen such that v.t/ DP

m2Z
u.t � m	/, ensuring that v.t/ D v.t C	/. For arbitrary values of the firing-

times T m
j the coupling term (22) is time-dependent, and we may write it in the form

E.t/ D
Z 1

0

f .t � s/u.s/ds; f .t/ D lim
N !1

1

N

X

j;m

ı.t � Tm
j /; (23)

where we recognize f .t/ as a firing rate. We now consider perturbations of the mean
field such that E.t/ (the average membrane voltage) is split into a stationary part
(arising from the asynchronous state) and an infinitesimal perturbation. Namely we
writeE.t/ D v0 C
.t/, with small 
.t/. Since this perturbation to the asynchronous
oscillator defined by (17) is small we may use phase reduction techniques to study
the stability of the asynchronous state.

In terms of a phase � 2 .0; 1/ along the asynchronous state we can write the
evolution of this phase variable in response to a perturbation in the mean field as

d�

dt
D 1

	
C g� .�	/
.t/; (24)
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where � is the g-dependent voltage component of the adjoint for the asynchronous
state. This can again be calculated in closed form using the techniques developed in
section “Phase Response Curve,” and takes the explicit form

� .t/ D �.g/

	
e�t=�

C ; (25)

where �.g/ D Œvr=�C C Ig � a�a=.1 C �a/�
�1. In fact we need to treat N phase

variables �i , each described by an equation of the form (24), which are coupled by
the dependence of 
.t/ on these variables. To make this more explicit we write


.t/ D
Z 1

0

ıf .t � s/u.s/ds; (26)

and use a phase density description to calculate the dependence of the perturbed
firing rate ıf on the phases. We define a phase density function as the fraction of
neurons in the interval Œ�; � C d�� namely �.�; t/ D N�1

P
j ı.�j .t/ � �/. Intro-

ducing the flux J.�; t/ D �.�; t/ P� , we have the continuity equation

@�

@t
D �@J

@�
; (27)

with boundary condition J.1; t/ D J.0; t/. The firing rate is the flux through � D 1,
so that f .t/ D J.1; t/. In the asynchronous state the phase density function is in-
dependent of time. Considering perturbations around this state, .�; J / D .1;	�1/,
means writing �.�; t/ D 1C ı�.�; t/, with a corresponding perturbation of the flux
that takes the form ıJ.�; t/ D ı�.�; t/=	Cg� .�	/
.t/. Differentiation of ıJ.�; t/
gives the partial differential equation

@tıJ.�; t/ D � 1
	
@�ıJ.�; t/C g� .�	/
0.t/; (28)

where


.t/ D
Z 1

0

u.s/ıJ.1; t � s/ds: (29)

Assuming a solution of the form ıJ.�; t/ D e�tıJ.�/, gives


.t/ D ıJ.1/e�teu.�/; (30)

whereeu.�/ D R1
0

u.t/e��t dt . In this case 
0.t/ D �
.t/. Equation (28) then re-
duces to the ordinary differential equation

d

d�
ıJ.�/e��� D g�	� .�	/ıJ.1/eu.�/e��� : (31)
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Integrating (31) from � D 0 to � D 1 and using the fact that ıJ.1/ D ıJ.0/ yields
an implicit equation for � in the form E.�/ D 0, where

E.�/ D e�� � 1 � g�	eu.�/
Z 1

0

� .�	/e���d�: (32)

We see that E.0/ D 0 so that � D 0 is always an eigenvalue. Writing � D � C i!

then the pair .�; !/ may be found by the simultaneous solution of ER.�; !/ D 0 and
EI.�; !/ D 0, where ER.�; !/ D Re E.� C i!/ and EI.�; !/ D Im E.� C i!/.

For the adjoint calculated given by (25) a simple calculation gives

Z 1

0

� .�	/e���d� D �.g/

	

1

	

e�.��1=�
C

/ � 1
.� � 1=�C/ : (33)

For the calculation ofeu.�/we use the result that
R1

0 u.t/e��t dtD R �

0 v.tCs/e��t dt ,
for some arbitrary time-translation s 2 .0;	/, with v.t/ the splay solution, def-
ined for t 2 .0;	/. In contrast to the calculations in [12] for continuous periodic
orbits, those of the aif model are discontinuous and so one must carefully treat this
extra degree of freedom. Since we do not a priori know the phase of the signal v.t/
with respect to the time origin of the oscillator model we simply average over all
possible phases and write

eu.�/ D 1

	

Z �

0

(Z �

0

v.t C s/e��t dt

)

ds: (34)

For the splay solution of section “Existence of the Asynchronous State,” a short
calculation gives

eu.�/

e�� � 1 D vr C Ig�C � a�
� � 1=�C

�C
	
.e��.��1=�

C

/ � e���/ � Ig�C
e���

�

� a�

�C 1=�a
�a

	
.e��.�C1=�a/ � e���/; Re � < 1=�C: (35)

For � 2 R the condition for an eigenvalue to cross through zero from below is
equivalent to the occurrence of a double zero of E.�/ at � D 0. However, it is easy
to show that E 0.0/ ¤ 0 so that no instabilities can arise in this fashion. Examples
of the spectrum obtained from the zeros of E.�/=.e�� � 1/ are shown in Fig. 9 (the
remaining zeros of E.�/ being at �	 D 2�in, n 2 Z).

Here we see that for fixed g and increasing ga, a pair of complex conjugate
eigenvalues crosses through the imaginary axis at a nonzero value of !. This signals
the onset of a dynamic instability, which is more easily quantified with the aid of
Fig. 10 which tracks the first pair .�; !/ to pass through � D 0 as a function of ga.
Until now we have assumed that the splay state exists for all parameters of choice.
However, because the underlying model is described by a discontinuous flow then
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Fig. 9 Spectrum for the asynchronous state. Eigenvalues are at the positions where the red and
blue curves intersect. Parameters as in Fig. 4 with g D 0:5. Left: ga D 1:5, with .	; v0/ D
.4:0575; 0:46685/. Right: ga D 2:5, with .	; v0/ D .6:6757; 0:39433/. Note the unstable mode
with ! � ˙1 in the right-hand figure.

Fig. 10 A plot of .�; !/,
where E.� C i!/ D 0, as a
function of ga, with other
parameters as in Fig. 9. Note
the bifurcation at ga � 2:1,
where � crosses zero from
below with a nonzero
value of !.

−0.2

−0.1

0

0.1

0.2

0.3

1.5 2 2.5 3

1

1.2

1.4

1.6

ν

ν

ga

ω

ω

there is also the possibility that a nonsmooth bifurcation can occur. For example a
splay state with v � 0 may tangentially intersect the surface v D 0, where there is a
switch in the dynamics for v. In this case, a new orbit will emerge that can either be
tonic or bursting. The conditions defining this nonsmooth bifurcation are v.t�/ D 0

and Pv.t�/ D 0 for some t� 2 .0;	/. For the splay state considered here, we find that
a dynamic instability, defined by E.i!/ D 0, is always met before the onset of a
nonsmooth bifurcation.

By tracking the bifurcation point � D 0 in parameter space it is possible to map
out those regions where the asynchronous state is stable. We do this in Fig. 11 which
basically shows that if an asynchronous state is stable for fixed .g; �a/ then it can
always be destabilized by increasing ga beyond some critical value.
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Fig. 11 Curves showing solutions of E.i!/ D 0 obtained by tracking the bifurcation point in
Fig. 10. Parameters as in Fig. 9. Left: �a D 75. Right: g D 0:5. Beyond an instability point of the
asynchronous solution one typically sees the emergence of synchronized bursting states, as shown
in Fig. 12

1

100

0 500 1000 1500 2000t

0

0.5

1

0 500 1000 1500 2000

E

t

Fig. 12 A plot showing an instability of the asynchronous state in a network with N D 100

neurons, starting from random initial conditions. Here ga is switched from the value in Fig. 9 left
(asynchronous state stable) to that in Fig. 9 right (asynchronous state unstable) at t D 500. Note
the emergence of a synchronized bursting state. The lower plot shows the time variation of the
mean-field signal E.t/ D N�1

PN
iD1 vi .t /, as well as the value of v0 – the mean field signal for

the asynchronous state (dashed and dotted lines). Parameters as in Fig. 9
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To determine the types of solutions that emerge beyond the instability borders
we have performed direct numerical simulations. Not only do these confirm the
correctness of our bifurcation theory, they show that a dominant emergent solution
is a bursting mode in which neurons are synchronized at the level of their firing
rates, but not at the level of individual spikes (within a burst). An example of a
network state that switches from asynchronous tonic spiking to synchronized burst-
ing with a switch in ga across the bifurcation point is shown in Fig. 12. Here we
plot both a raster diagram showing spike times as well as the mean field signal
E.t/ D N�1

PN
iD1 vi .t/ for a network of 100 neurons. Interestingly the plot of the

mean field signal suggests that bursting terminates roughly at the point where it
reaches the value of v0 for the unstable asynchronous orbit.

Discussion

In this chapter, we have shown how the absolute integrate-and-fire model is ideally
suited for the theoretical study of gap-junction coupled networks. One such network
where theory may help shed further light on function is that of the inferior olivary
nucleus, which has extensive electrotonic coupling between dendrites. Chorev et al.
[11] have shown that in vivo intracellular recordings from olivary neurons (of anes-
thetized rats) exhibit subthreshold oscillations of membrane voltage, organized in
epochs, lasting from half a second to several seconds. If recorded, spikes were
locked to the depolarized phase of these subthreshold oscillations. Thus it is of
interest to probe the way in which neurons supporting both subthreshold oscilla-
tions and spikes use gap-junction coupling to coordinate spatiotemporal patterns for
holding and then transferring rhythmic information to cerebellar circuits [50]. The
techniques we have developed here are ideally suited to this task.

At the level of the single neuron we have shown how to construct both the
periodic orbit and the phase response curve. This is particularly useful for the de-
velopment of a weakly coupled oscillator theory for network studies, for both gap
and synaptic coupling, as in the work of Kazanci and Ermentrout [31]. However,
we have chosen here to instead pursue a strongly coupled network analysis. The
tractability of the chosen model has allowed the explicit calculation of the asyn-
chronous state, including the determination of its linear stability, in large globally
gap-junction coupled networks. In the presence of a simple form of spike adaptation
we have quantified a bifurcation from asynchrony to synchronized bursting. Inter-
estingly, burst synchronization has been observed in both cell cultures and brain
areas such as the basal ganglia. For a review of experiments and theory relating to
burst synchronization we refer the reader to the article by Rubin [44]. One natural
progression of the work in this chapter would be to analyze the properties of burst-
ing in more detail, and in particular the synchronization properties of bursts relating
to both gap and synaptic parameters. Techniques for doing this are relatively under-
developed as compared to those for studying synchronized tonic spiking. However,
it is well to point out the work of Izhikevich [29], de Vries and Sherman [13], and



92 S. Coombes and M. Zachariou

Matveev et al. [39] in this area, as well as more recent numerical studies [43, 45].
The development of such a theory is especially relevant to so-called neural signa-
tures, which consist of cell-specific spike timings in the bursting activity of neurons.
These very precise intra-burst firing patterns may be quantified using computational
techniques discussed in [33]. We refer the reader to [34] for a recent discussion
of neural signatures in the context of the pyloric central pattern generator of the
crustacean stomatogastric ganglion (where gaps are known to play a role in rhythm
generation).

From a biological perspective it is important to emphasize that gaps are not the
static structures that we have suggested here by treating gap strength as a single
parameter. Indeed the connexin channels that underlie such junctions are dynamic
and are in fact modulated by the voltage across the membrane. Baigent et al. [3]
have developed a model of the dependency between the cell potentials and the
state of the gap junctions. In this context the state of an individual channel cor-
responds to the conformation of the two connexons forming the pore. Of the four
possible states (both open, both closed, or one open, and one closed), the scenario
where both are closed is ignored. Because each cell–cell junction is composed of
many channels, the state of the junction is determined by the distribution of chan-
nels amongst the three different states. Thus it would be interesting to combine
the model we have presented here with this channel model and explore the conse-
quences for coherent network behavior. Another form of gap-junction modulation
can be traced to cannabinoids. Gap-junction coupling can be found among irregular
spiking GABAergic interneurons that express cannabinoid receptors [23]. Interest-
ingly, the potentiation of such coupling by cannabinoids has recently been reported
[10]. All of the above are topics of current investigation and will be reported upon
elsewhere.
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References

1. A. V. Alvarez, C. C. Chow, E. J. V. Bockstaele, and J. T. Williams. Frequency-dependent syn-
chrony in locus ceruleus: Role of electrotonic coupling. Proceedings of the National Academy
of Sciences, 99(6):4032–4036, 2002.

2. P. Ashwin and J. W. Swift. The dynamics of n weakly coupled identical oscillators. Journal of
Nonlinear Science, 2:69–108, 1992.

3. S. Baigent, J. Stark, and A. Warner. Modelling the effect of gap junction nonlinearities in
systems of coupled cells. Journal of Theoretical Biology, 186:223–239, Jan 1997.

4. M. Beierlein, J. R. Gibson, and B. W. Connors. A network of electrically coupled interneurons
drives synchronized inhibition in neocortex. Nature Neuroscience, 3(9):904–910, 2000.

5. M. V. L. Bennet and R. S. Zukin. Electrical coupling and neuronal synchronization in the
mammalian brain. Neuron, 41:495–511, 2004.

6. M. Bennett, J. Contreras, F. Bukauskas, and J. Sáez. New roles for astrocytes: gap junction
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The Feed-Forward Chain
as a Filter-Amplifier Motif

Martin Golubitsky, LieJune Shiau, Claire Postlethwaite, and Yanyan Zhang

Abstract Hudspeth, Magnasco, and collaborators have suggested that the auditory
system works by tuning a collection of hair cells near Hopf bifurcation, but each
with a different frequency. An incoming sound signal to the cochlea then resonates
most strongly with one of these hair cells, which then informs the auditory neu-
ronal system of the frequency of the incoming signal. In this chapter, we discuss
two mathematical issues. First, we describe how periodic forcing of systems near a
point of Hopf bifurcation is generally more complicated than the description given
in these auditory system models. Second, we discuss how the periodic forcing of
coupling identical systems whose internal dynamics is each tuned near a point of
Hopf bifurcation leads naturally to successive amplification of the incoming signal.
We call this coupled system a feed-forward chain and suggest that it is a mathemat-
ical candidate for a motif.

Introduction

In this chapter, we discuss how the periodic forcing of the first node in a chain
of coupled identical systems, whose internal dynamics is each tuned near a point
of Hopf bifurcation, can lead naturally to successive amplification of the incoming
signal. We call this coupled system a feed-forward chain and suggest that it is a
mathematical candidate for a motif [1]. Periodic forcing of these chains was con-
sidered experimentally by McCullen et al. [26]. That study contained observations
concerning the amplitude response of solutions down the chain and the effectiveness
of the chain as a filter amplifier. This chapter sheds light on these observations.

Our observations motivate the need for a theory of periodic forcing of systems
tuned near a point of Hopf bifurcation. Given such a system with Hopf frequency
!H, we periodically force this system at frequency !f . The response curve is a
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graph of the amplitude of the resulting solution as a function of !f . In this chapter,
we show that the response curve will, in general, be asymmetric and may even have
regions of multiple responses when !f � !H.

This second set of results has implication for certain models of the auditory
system, in particular, models of the basilar membrane and attached hair bundles.
Several authors [5–7, 21, 23, 27, 28] model the hair bundles by systems of differ-
ential equations tuned near a point of Hopf bifurcation; however, in their models
they assume precisely the nongeneric condition that leads to a symmetric response
curve. Since asymmetric response curves are seen experimentally, these authors then
attempt to explain that the asymmetry follows from coupling of the hair bundles. Al-
though this coupling may be reasonable on physiological grounds, our results show
that it is not needed if one were only attempting to understand the observed response
curve asymmetry.

Sections “Synchrony-Breaking Hopf Bifurcations” and “Periodic Forcing of
Feed-Forward Chains” discuss the feed-forward chain and sections “Periodic Forc-
ing near Hopf Bifurcation” and “Cochlear Modeling” discuss periodic forcing of
systems near Hopf bifurcation and the auditory system. The remainder of this intro-
duction describes our results in more detail.

The theory of coupled systems of identical differential equations [15, 16, 31]
and their bifurcations [8, 11, 12, 24] singles out one three-cell network for both its
simplicity and the surprising dynamics it produces via a synchrony-breaking Hopf
bifurcation. We have called that network the feed-forward chain and it is pictured in
Fig. 1. Note that the arrow from cell 1 to itself represents self-coupling.

The general coupled cell theory [16] associates to the feed-forward chain a class
of differential equations of the form

Px1 D f .x1; x1; �/

Px2 D f .x2; x1; �/

Px3 D f .x3; x2; �/

(1)

where xj 2 Rk is the vector of state variables of node j , � 2 R is a bifurcation
parameter, and f W Rk � Rk � R ! Rk . We assume that the differential equations
f in each cell are identical, and because of this the synchrony subspace S D fx1 D
x2 D x3g is a flow-invariant subspace; that is, a solution with initial conditions in
S stays in S for all time. Synchronous equilibria can be expected to occur in such
systems and without loss of generality we may assume that such an equilibrium is
at the origin; that is, we assume f .0; 0; �/ D 0. Because of the self-coupling in cell
1, each cell receives exactly one input and the function f can be the same in each
equation in (1).

Fig. 1 The feed-forward
chain

1 2 3
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Recall that in generic Hopf bifurcation in a system with bifurcation parameter
�, the growth in amplitude of the bifurcating periodic solutions is of order �

1
2 . As

reviewed in section “Synchrony-Breaking Hopf Bifurcations” synchrony-breaking
Hopf bifurcation leads to a family of periodic solutions whose amplitude grows
with the unexpectedly large growth rate of �

1
6 [8,12]. This growth rate suggests that

when the feed-forward chain is tuned near a synchrony-breaking Hopf bifurcation,
it can serve to amplify periodic signals whose frequency !f is near the frequency
of Hopf bifurcation !H and dampen signals when !f is far from !H. This filter-
amplifier motif-like behavior is described in section “Periodic Forcing near Hopf
Bifurcation”.

Experiments by McCullen et al. [26] with a feed-forward chain consisting of
(approximately) identical coupled electronic circuits whose cells are decidedly not
in normal form but with sinusoidal forcing confirm the band-pass filter role that a
feed-forward chain can assume and the expected growth rates of the output. Addi-
tionally, simulations, when the system is in Hopf normal form and the forcing is
spiking, also confirm the behavior predicted for the simplified setup. These results
are discussed in sections “Simulations” and “Experiments” under “Periodic Forcing
of Feed-Forward Chains”, and motivate the need for a more general theory of pe-
riodic forcing of systems near Hopf bifurcation. We note that the lack of a general
theory is more than just a question of mathematical rigor.

Analysis and simulation of periodic forcing of systems near Hopf bifurcation of-
ten assume that the forcing is small simple harmonic or sinusoidal forcing "ei!f t

and that the system is in the simplest normal form for Hopf bifurcation (namely,
the system is in third order truncated normal form and the cubic term is assumed to
be real). A supercritical Hopf bifurcation vector field can always be transformed by
a smooth change of coordinates to be in normal form to third order and the cubic
term itself can be scaled to be �1C i� . Simulations of a system in normal form for
Hopf bifurcation, but with � ¤ 0 show phenomena not present in the simplest case
(see “Simulations” under “Periodic Forcing near Hopf Bifurcation”). In particular,
the amplitude of the response as a function of !f can be asymmetric (if � ¤ 0)
and have a region of multiple solutions (if j� j is large enough). Asymmetry and
multiplicity have been noted by several authors. Bogoliubov and Mitropolsky [3]
analyze the sinusoidally forced Duffing equation and find multiplicity as the fre-
quency of the forcing is varied; Jordan and Smith [10] also analyze the forced
Duffing equation and find multiplicity as the amplitude of the forcing is varied; and
Montgomery et al. [27] see asymmetry in a forced system near Hopf bifurcation.

In section “Asymmetry and Multiplicity in Response Curve” we show that asym-
metry in the response curve occurs as !f is varied whenever � ¤ 0 and that there
are precisely two kinds of response curves. In Theorem 1 we use singularity theo-
retic methods to prove that multiple solutions occur in a neighborhood of the Hopf
bifurcation precisely when j� j > p

3.
Additionally, when !f is sufficiently close to !H , Kern and Stoop [23] and

Eguı́luz et al. [7] together show that with a truncated normal form system and
harmonic forcing the amplitude of the resulting periodic solution is of order "

1
3 .

We make this result more precise in section “Scalings of Solution Amplitudes”.
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Consequently, in the feed-forward chain the amplitude of the periodic forcing can
be expected to grow as "

1
3 in the second cell and "

1
9 in the third cell. This expecta-

tion is observed in the simulations in section “Simulations” under “Periodic Forcing
of Feed-Forward Chains” even when the forcing is spiking. A general theory for the
study of periodic solutions occurring in a periodically forced system near a point of
Hopf bifurcation is being developed in [34].

The efficiency of band-pass filters is often measured by the Q-factor. We intro-
duce this concept in section “Q-factor” and show, in forced normal form systems,
that theQ-factor scales linearly with the Hopf frequency. We verify this point with
simulations and note the perhaps surprising observation that spiking forcing seems
to lead to higherQ factors than does sinusoidal forcing.

In recent years many proposed models for the auditory system have relied on
the periodic forcing of systems near points of Hopf bifurcation, and a general the-
ory for periodic forcing of such systems would have direct application in these
models. In particular, Hudspeth and collaborators [6, 7, 18, 19] have considered
models for the cochlea that consist of periodically forced components that are
tuned near Hopf bifurcation. We discuss these models in section “Cochlear Mod-
eling”. In particular, we note that an asymmetry in the experimentally obtained
response curves from cochlea is consistent with what would have been obtained
in the models if the cubic term in the Hopf bifurcation was complex. Biophysi-
cally based cochlear models are sufficiently complicated that asymmetry could be
caused by many factors. To our knowledge, multiple solutions in the cochlear re-
sponse curve have not been observed; nevertheless, in section “Hopf Models of the
Auditory System”, we speculate briefly on the possible meaning of such multiplic-
ity. In section “Two-Frequency Forcing”, we briefly discuss some expectations for
two-frequency forcing that are based on simulations.

Synchrony-Breaking Hopf Bifurcations

We begin with a discussion of Hopf bifurcations that can be expected in systems of
the form (1). The coordinates in f .u; v; �/ are arranged so that u is the vector of in-
ternal cell phase space coordinates and v is the vector of coordinates in the coupling
cell. Thus, the k � k matrix ˛ D fu.0; 0; 0/ is the linearized internal dynamics and
the k � k matrix ˇ D fv.0; 0; 0/ is the linearized coupling matrix. The Jacobian
matrix for (1) is

J D
2

4
˛ C ˇ 0 0

ˇ ˛ 0

0 ˇ ˛

3

5 : (2)

Synchrony-breaking bifurcations correspond to bifurcations where the center sub-
space of J does not intersect the synchrony subspace S . Note that for y 2 Rk
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J

2

4
y

y

y

3

5 D
2

4
.˛ C ˇ/y
.˛ C ˇ/y
.˛ C ˇ/y

3

5 :

Thus, the matrix of J jS is just ˛ C ˇ and a synchrony-breaking bifurcation occurs
if some eigenvalue of J has zero real part and no eigenvalue of ˛ C ˇ has zero real
part. We focus on the case where the synchrony-breaking bifurcation occurs from a
stable synchronous equilibrium; that is, we assume:

(H1) All eigenvalues of ˛ C ˇ have negative real part.

The lower diagonal block form of J shows that the remaining eigenvalues of J
are precisely the eigenvalues of ˛ repeated twice. The generic existence of double
eigenvalues would be a surprise were it not for the the restrictions placed on J by the
network architecture pictured in Fig. 1. Synchrony-breaking Hopf bifurcation occurs
when

(H2) ˛ has simple purely imaginary eigenvalues ˙!Hi, where !H > 0, and
all other eigenvalues of ˛ have negative real part.

The real part restriction on the remaining eigenvalues just ensures that bifurcation
occurs from a stable equilibrium. In fact, in this chapter, we only consider the
case where the internal dynamics in each cell is two-dimensional, that is, we as-
sume kD2.

It was observed in [12] and proved in [8] that generically synchrony-breaking
Hopf bifurcations lead to families of periodic solutions x�.t/ D .0; x�

2 .t/; x
�
3 .t//,

where the cell 2 amplitude jx�
2 j grows at the expected rate of �

1
2 and the cell 3

amplitude jx�
3 j grows at the unexpected rate of �

1
6 . Thus, near bifurcation, the am-

plitude of the third cell oscillation is much bigger than the amplitude of the second
cell oscillation. An example of a periodic solution obtained by simulation of such
a coupled-cell system near a point of synchrony-breaking Hopf bifurcation is given
in Fig. 2.
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Fig. 2 Periodic solution near a synchrony-breaking Hopf bifurcation in the feed-forward chain.
The first coordinate in each cell is plotted. Cell 1 is constant at 0 (dotted curve); cell 2 is the smaller
signal (dashed curve); and cell 3 is the larger signal (solid curve) (see Figure 12 in [12])
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The large growth in cell 3 can be understood as a result of resonance in a non-
linear system. To see this, observe that assumption (H1) implies that x1 D 0 is a
stable equilibrium for the first equation in (1). Thus, the asymptotic dynamics of the
second cell is governed by the system of differential equations

Px2 D f .x2; 0; �/: (3)

Assumption (H2) implies that the system (3) undergoes a standard Hopf bifurcation
at � D 0. In addition, we assume

(H3) (3) undergoes a generic supercritical Hopf bifurcation at � D 0.

The consequence of assumption (H3) is that for � > 0 the system (3) has a unique
small amplitude stable periodic solution x�

2 .t/ whose amplitude grows at the ex-

pected rate �
1
2 and whose frequency is approximately !H.

It follows from (H3) that the asymptotic dynamics of the cell 3 system of differ-
ential equations reduces to the periodically forced system

Px3 D f .x3; x
�
2 .t/; �/: (4)

Since the system Px3 D f .x3; 0; �/, which is identical to (3), is operating near a Hopf
bifurcation with frequency!H and the periodic forcing itself has frequency near !H;
it follows that (4) is being forced near resonance. Therefore, it is not surprising that
the amplitude of cell 3 is greater than that of cell 2. It is not transparent, however, that
cell 3 will undergo stable periodic oscillation and that the growth of the amplitude
of that periodic solution will be �

1
6 . These facts are proved in [8, 12].

Remark 1. It is natural to ask what happens at synchrony-breaking Hopf bifurcation
if extra cells are added to the feed-forward chain. The answer is simple: periodic
solutions are found whose cell j amplitude grows at a rate that is the cube root of
the growth in the amplitude of cell j � 1; that is, the amplitude of cell 4 grows at
the rate �

1
18 , etc.

Remark 2. It was shown in [12] that the periodic solution in (1), that we have just
described can itself undergo a secondary Hopf bifurcation to a quasiperiodic solu-
tion (see Fig. 3). This observation leads naturally to questions of frequency locking
and Arnold tongues, which are discussed in Broer and Vegter [4].

Periodic Forcing of Feed-Forward Chains

An important characteristic of a network motif is that it performs some function [1].
Numerical simulations and experiments [26] with identical coupled circuits support
the notion that the feed-forward chain can act as an efficient filter-amplifier, and
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Fig. 3 ([12, Figure 13]) Quasiperiodic solution near a secondary bifurcation from a periodic solu-
tion obtained by synchrony-breaking Hopf bifurcation in (1)

Fig. 4 The feed-forward
chain

1 3
"g(!ft) 2

hence be a motif. However, the general theoretical results that support this assertion
have been proved only under restrictive assumptions. It this section, we present
numerical and experimental evidence in favor of the feed-forward chain being a
motif.

We assume that the feed-forward chain in Fig. 1 is modified so that a small am-
plitude " periodic forcing of frequency !f is added to the coupling in the first cell
(see Fig. 4). We assume further that there is a bifurcation parameter � for the inter-
nal cell dynamics that is tuned near a point of Hopf bifurcation. The question we
address is: What are the amplitudes of the responses in cells 2 and 3 as a function
of the forcing frequency !f ? Due to resonance that response should be large when
the forcing frequency is near the Hopf frequency and small otherwise.

Simulations

The general form of the differential equations for the periodically forced feed-
forward chain is
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Px1 D f .x1; x1 C "g.!f t/; �/

Px2 D f .x2; x1; �/

Px3 D f .x3; x2; �/

(5)

where xj 2 Rk is the phase variable of cell j , g W R ! Rk is a 2� periodic forcing
function, and � is a bifurcation parameter for a Hopf bifurcation.

To proceed with the simulations we need to specify f and g. Specifically, we
assume that the cell dynamics satisfy:

(B1) The internal cell phase space is two-dimensional and identified with C,
(B2) The internal cell dynamics is in truncated normal form for Hopf bifurcation,
(B3) The Hopf bifurcation is supercritical so that the origin is stable for � < 0,
(B4) The cubic term in this normal form is real, and
(B5) The coupling is linear.

In addition, we normalize the cubic term to be �1 and simplify the coupling to be
�y; that is, we assume

f .z; y; �/ D .�C !Hi � jzj2/z � y (6)

where z; y 2 C. We assume that � < 0 is small so that the internal dynamics is
tuned near the point of Hopf bifurcation.

We will perform simulations with two types of forcing: simple harmonic and
spiking (see Fig. 5). In simple harmonic forcing g.t/ D ei t . In spike forcing g is
obtained numerically as a solution to the Fitzhugh–Nagumo equations

Pv D 6:4 � 120m3h.v � 115/� 36n4.v C 12/� 0:3.v � 10:5989/;
Pn D ˛n.1 � n/ � ˇnn;

(7)
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Fig. 5 First coordinate of time series of 2�-periodic forcings. (Left) Simple harmonic forcing
cos t . (Right) Spike forcing obtained from the Fitzhugh–Nagumo equations (7).
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where

h D 0:8 � n m D ˛m=.˛m C ˇm/ ˛m D 0:1.25� v/e1�.25�v/=10

ˇm D 4e�v=18 ˛n D 0:01.10� v/e1�.10�v/=10 ˇn D 0:125e�v=80:

To obtain g.t/we normalize .v.t/; n.t// so that it has mean zero and diameter 2. The
first coordinate of the time series for the spiking forcing is shown in Fig. 5 (right).
This time series is compared to simple harmonic forcing in Fig. 5 (left).

Recall that for sufficiently small ", periodic forcing of amplitude ", of a system
of ODEs near a stable equilibrium, always produces an order " periodic response.
The frequency of the response equals that of the forcing. Hence, (H1) implies that
the periodic output x1.t/ from cell 1 will be of order " with frequency !f .

The periodic output x1.t/ is fed into cell 2. Although � < 0 implies that the
origin in the cell 2 equation is stable, the fact that � is near a bifurcation point
implies that the rate of attraction of that equilibrium will be small. Thus, only if " is
very small will the periodic output of cell 2 be of order ".

Because of resonance, we expect that the amplitude of x2.t/ will be large when
!f is near !H. Indeed, Kern and Stoop [23] observe that when the differential

equation f is (6) with " > j�j 3
2 , then the growth of the periodic output will be

of order "
1
3 . We revisit this point in section “Periodic Forcing near Hopf Bifurca-

tion” when we discuss some of the theory behind the amplification. Moreover, we
can expect the amplitude of x3.t/ to be even larger in this range; that is, we can
expect the amplitude of cell 3 to grow at the rate "

1
9 .

To illustrate these statements we perform the following simulation. Fix " > 0
and � < 0, and plot the amplitudes of the periodic states in cells 1, 2, and 3 as a
function of the forcing frequency !f . The results are given in Fig. 6. Note that the
input forcing is amplified when !f � !H and that the qualitative results do not
depend particularly on the form of g. In particular, note that the response curves are
symmetric in !f D !H.
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Fig. 6 Amplitudes of cells 1 (dotted curve), 2 (dashed curve) and 3 (solid curve) as a function
of forcing frequency; � D �0:01, " D 0:03, !H D 1, 0:7 � !f � 1:3. (Left) simple harmonic
forcing; (right) spike forcing
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Fig. 7 Log–log plot of amplitudes of response in cells 1 (ı), 2 (�), and 3 (C), as a function of ", for
harmonic forcing and spiking forcing. Also shown are lines of slope 1, 1=3, and 1=9 (from bottom
to top). Parameters are !f D !H D 1, � D �0:01, (a) 0:0005 < " < 0:36, (b) 0:0025 < " < 0:9

In Fig. 7, we show the amplitudes of the responses in the three cells as a function
of ", for both harmonic and spiking forcing. In both cases we see a similar pattern
of growth rate of amplitude. The amplitude in the first cell grows linearly with ".
In the second cell, as " increases, the growth rate tends toward “cube root,” that is
r � "1=3. Similarly in the third cell, for large enough ", we see r � "1=9. As "
increases from zero, there is a transition region into these regimes. This appears to
occur for different values of " for the different types of forcing. However, since it
is not clear how one should define the “amplitude” of the spiking forcing, and we
have arbitrarily chosen to set the diameters of the two forcings equal, this is not
unexpected. We investigate the transition region for harmonic forcing more fully in
section “Periodic Forcing near Hopf Bifurcation”.

Experiments

McCullen et al. [26] performed experiments on a feed-forward chain of coupled
nonlinear modified van der Pol autonomous oscillators. Even though the McCullen
experiments were performed with a system that was not in normal form, the results
conform well with the simulations. The responses to a simple harmonic forcing with
varying frequency are shown in Fig. 8. Note the similarity with the simulation results
in Fig. 6. The plot on the right of Fig. 8 shows the expected cube root scaling in the
amplitude of cell 3 as a function of the amplitude cell 2.

Recall that a band-pass filter allows signals in a certain range of frequencies
to pass, whereas signals with frequencies outside this range are attenuated. As we
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Fig. 8 (Left) [26, Fig. 2]: Cells 2 and 3 amplitudes as a function of forcing frequency in oscillator
experiment. (Right) [26, Fig. 5]: Log–log plot of amplitudes of oscillations in cells 2 and 3 as a
function of forcing frequency near Hopf bifurcation point

have seen, the feed-forward chain can act as a kind of band-pass filter by exciting
small amplitude signals to an amplitude larger than some threshold only if the input
frequency is near enough to the Hopf frequency. To determine the frequency of an
incoming sound, the human auditory system should have the capability of acting
like a band-pass filter. As noted, several authors have suggested that the structure of
outer hair cells on the basilar membrane is tuned to be a linear array of coupled cells
each tuned near a Hopf bifurcation point but at different frequencies (see “Cochlear
Modeling”).

Periodic Forcing near Hopf Bifurcation

In section “Periodic Forcing of Feed-Forward Chains,” we discussed numerical sim-
ulations and experiments which suggest that the amplification results for forced
feed-forward chains near normal form Hopf bifurcation with sinusoidal forcing ap-
pear to hold even when the forcing is not sinusoidal or the system is not in normal
form. These observations motivate the need for a general theory of periodic forcing
of systems near Hopf bifurcation. In this section, we make a transition from study-
ing feed-forward chains to the simpler situation of periodic forcing of systems near
Hopf bifurcation.

In particular we show that when the cubic term in Hopf bifurcation has a suf-
ficiently large complex part, then multiple periodic solutions will occur as !f is
varied near !H. The importance of the complex part of the cubic term in differ-
ent aspects of forced Hopf bifurcation systems was noted previously by Wang and
Young [33]. The existence of regions of multiplicity motivates the need for a gen-
eral theory of periodic forcing of systems near Hopf bifurcation. A detailed study
of these forced systems, based on equivariant singularity theory, is being developed
in [34].
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Simulations

As in section “Periodic Forcing of Feed-Forward Chains,” we assume that the sys-
tem we are forcing is in truncated normal form. More precisely, we assume that this
system satisfies (B1–B3), but we do not assume that the cubic term is real. We also
assume that the forcing is additive so that the equation is

Pz D .�C i!H/z C cjzj2z C "ei!f t ; (8)

where � < 0 and " > 0 are small, c D cR C icI and cR < 0. We can rescale z to set
cR D �1. The scaled equation has the form

Pz D .�C i!H/z C .�1C i�/jzj2z C "ei!f t ; (9)

We show the results of simulation of (9) when � D 0 (the case that is most often
analyzed in the literature) and when � D 10. Both simulations show amplification
of the forcing when !f � !H D 1. However, when � ¤ 0, we find that there
can be bistability of periodic solutions. Figure 9 (right) shows results of two sets of
simulations, with different initial conditions. For a range of !f , there are two stable
solutions with different amplitude r D jzj.

Asymmetry and Multiplicity in Response Curve

It is well known that the normal form for Hopf bifurcation has phase shift symmetry
and hence that the normal form equations can be solved in rotating coordinates.
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Fig. 9 Amplitudes of solutions as function of Hopf frequency of (9), with !H D 1, � D �0:0218,
" D 0:02. (Left) � D 0. (Right) � D 10; The ı’s and �’s indicate two separate sets of simulations
with different initial conditions. For 0:35 < !f < 0:7, there are two stable solutions

where � D �cI=cR.
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Rotating coordinates can also be used in the forced system. Write (9) in rotating
coordinates z D uei.!f t��/, where � is an arbitrary phase shift, to obtain

Pu D .�C i!/u C .�1C i�/juj2u � "ei�

where ! D !H � !f . Note that stationary solutions in u, for any � , correspond to
periodic solutions z.t/ with frequency !f . We set Pu D 0 and solve

g.u/ 	 .�C i!/u C .�1C i�/juj2u D "ei� (10)

for any u and � . Note that finding a solution to (10) for some � is equivalent to
finding u such that

jg.u/j2 D "2: (11)

Note also that

jg.u/j2 D .�2 C !2/juj2 C 2.!� � �/juj4 C .1C �2/juj6:

That is, jg.u/j2 depends only on juj2.
Set ı D "2 and R D juj2. We can write (11) as

G.RI�; !; �; ı/ 	 .1C �2/R3 C 2.!� � �/R2 C .�2 C !2/R � ı D 0: (12)

Since G.RI�; !; �; ı/ is invariant under the parameter symmetry .!; �/ !
.�!;��/, we can assume � � 0. Additionally, if � D 0, then G.RI�; !; �; ı/
is invariant under the parameter symmetry ! ! �!.

Fix � < 0, ı > 0 and � � 0. We seek to answer the following question. Deter-
mine the bifurcation diagram consisting of solutionsR > 0 to (12) as ! varies. Note
that variation of ! corresponds to variation of either !f or !H in the original forced
equation (8). In Fig. 10, we plot sample bifurcation diagrams of (12) for three values
of � . We see that as � is increased, asymmetry occurs in the bifurcation diagram,
ultimately leading to multiple solutions.
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Fig. 10 Bifurcation diagrams of solutions to (12) for varying � . As � is increased, the response
curve becomes asymmetric, and as it is increased further, for some values of ! there are multiple
solutions. Parameters used are ı D 0:01, � D �0:109



108 M. Golubitsky et al.

We use bifurcation theory, in particular hysteresis points, to prove that multiplic-
ity occurs for arbitrarily small � < 0 and ı > 0. Hysteresis points correspond to
points where the bifurcation diagram has a vertical cubic order tangent and such
points are defined by

G D GR D GRR D 0 and G! ¤ 0 ¤ GRRR

See [13, Proposition 9.1, p. 94]. Multiplicity of solutions occurs if variation of �
leads to a universal unfolding of the hysteresis point. It is shown in [13, Proposi-
tion 4.3, p. 136] that � is a universal unfolding parameter if and only if

det

�
G! G!R

G� G�R

�

¤ 0: (13)

In this application of singularity theory we will need the following:

G D .1C �2/R3 C 2.!� � �/R2 C .�2 C !2/R � ı D 0; (14)

GR D 3.1C �2/R2 C 4.!� � �/RC .�2 C !2/ D 0; (15)

GRR D 6.1C �2/RC 4.!� � �/ D 0; (16)

GRRR D 6.1C �2/ > 0; (17)

G! D 2R.�RC !/ ¤ 0; (18)

and

G!R D 2.2�RC !/; (19)

G� D 2R2.�RC !/; (20)

G�R D 2R.3�RC 2!/: (21)

Note that the determinant in (13) is just G2
! , which is nonzero at any hysteresis

point. Hence, variation of � will always lead to a universal unfolding of a hysteresis
point and to multiple solutions for fixed !.

Theorem 1 For every small � < 0 and ı > 0 there exists a unique hysteresis point
of G at R D Rc.ı; �/, ! D !c.ı; �/, � D �c.ı; �/. Moreover,

!c.ı; 0/ D �p
3.2ı/

1
3 �c.ı; 0/ D p

3 Rc.ı; 0/ D
�
ı

4

� 1
3

: (22)

Proof. We assert that (14)–(16) define Rc , !c , �c uniquely in terms of ı and �.
Specifically, we show that

Rc.ı; �/ D
�

ı

1C �2
c

� 1
3

> 0: (23)
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�c.ı; �/ D �C p
3!c

!c � p
3�
: (24)

Moreover, let
p.!/ D !3 � p

3�!2 C �2! � p
3�3: (25)

Then !c.ı; �/ is the unique solution to the equation

p.!c/ D �6p3ı: (26)

We can compute these quantities explicitly when � D 0. Specifically, (26) reduces
!3

c D �6p3ı. It is now straightforward to verify (22).
To verify (24) combine (15) and (16) to yield

R D �2.!� � �/
3.1C �2/

and R2 D �2 C !2

3.1C �2/
: (27)

More precisely, the first equation is obtained by solvingGRR D 0 and the second by
solving RGRR �GR D 0. Multiplying the first equation in (27) byR and substituting
for R2 in the second equation yields

2.!� � �/R D �.�2 C !2/: (28)

Substituting (28) into (14) yields

R3 D ı

1C �2
(29)

thus verifying (23).
We eliminate R from (27) in two ways, obtaining

� 8.!� � �/3
27.1C �2/2

D ı and
4.!� � �/2
3.1C �2/

D �2 C !2 (30)

To verify the first equation in (30), cube the first equation in (27) and use (29) to
substitute forR3. To verify the second equation, square the first equation in (27) and
use the second equation in (27) to substitute for R2.

Next we derive (24). Rewrite the second equation in (30) to obtain

!2.�2 � 3/� 8!��C �2.1 � 3�2/ D 0; (31)

which can be factored as
�
�.! � p

3�/� .�C p
3!/

� �
�.! C p

3�/ � .� � p
3!/

�
D 0: (32)
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Thus, potentially, there are two solutions for �c ; namely,

� D �C p
3�!

! � �p
3�
; (33)

where � D ˙1, depending on which bracket is chosen in (32).
Next use (32) to show that

!� � � D p
3
�2 C !2

�! � p
3�
: (34)

Squaring the second equation in (30) and substituting the first yields

.�2 C !2/2 D 6.!� � �/ 8.!� � �/3
27.1C �2/2

D �6ı.!� � �/: (35)

Next use (34) to eliminate !� � �. A short calculation leads to

.!2 C �2/.�! � p
3�/ D �6p3ı: (36)

Since ı > 0, we must have �! � p
3� < 0, or �! <

p
3� < 0.

We claim that for � � 0, we must choose � D C1. Since � < 0 and �! < 0,
the numerator of (33) is negative. If � D �1, then the denominator of (33) is �.�!�p
3�/ > 0, since �! � p

3� < 0. Hence � < 0. We thus write � D C1 and verify
(24).

We claim that given ı and � there is a unique solution ! to (36). Observe that the
cubic polynomial in ! on the left side of (36) is (25). Since

p0.!/ D .
p
3! � �/2; (37)

p.!/ is monotonic; and there is a unique solution !c , as claimed.
Finally, we must show that G! is nonzero at Rc ; !c ; �c . We do this by showing

that
�c.ı; �/Rc.ı; �/C !c.ı; �/ < 0:

By cubing the first equation in (30) and dividing by the square of the second equa-
tion, we can eliminate the !� � � factor and show that

1C �2
c D .�2 C !2

c /
3

27ı2
:

Using this alongside (29) we write Rc as

Rc D ı1=3

.1C �2
c /

1=3
D ı1=3 3ı2=3

�2 C !2
c

D 3ı

�2 C !2
c

:
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Then use (34) to substitute for �c to find

Rc�c D 3ı

�2 C !2
c

�C p
3!c

!c � p
3�

D ��C p
3!c

2
p
3

;

where we have used (36) to simplify the denominator. Therefore

Rc�c C !c D
p
3!c � �
2
p
3

D 1

2

�

!c � 1p
3
�

�

<
1

2

�
!c � p

3�
�
< 0;

where the penultimate inequality follows because 1p
3
� >

p
3�. ut

Scalings of Solution Amplitudes

Kern and Stoop [23] and et. al [7] consider the system (9) with � D 0, and
observe that there are regions of parameter space in which the input signal (forcing)
is amplified – that is, the solution z.t/ D rei.!tC�/ has an amplitude r which scales
like "1=3.

Specifically, et. al [7] specialize (9) exactly at the bifurcation point (� D
0) and show that the solution has an amplitude r � "1=3 when!H D !f . Away from
resonance, (!H ¤ !f ), they show that for " small enough (small enough forcing),
the response r � "=j!H � !f j. Kern and Stoop [23] consider forcing exactly at
the Hopf frequency (i.e., !H D !f ), and show that the solution has an amplitude
r � "1=3 when � D 0, and when � < 0 the amplitude r � "=j�j.

In the following, we make precise the meaning of “cube-root growth,” and ad-
ditionally, do not assume � D 0. We show that, in some parameter regime, the
response r can be bounded between two curves, specifically, that

�
"p
2

� 1
3

< r < "
1
3 ;

that is, r lies between two lines in log–log plots. In Fig. 11, we show the result of
numerical simulations of (9) as " is varied along with the two lines given above.
For large enough ", the response amplitude lies between these lines. Compare also
with Fig. 7 – we could perform a similar process here of bounding the amplitudes
of response to determine regions of different growth rates.

The width of this region is in some sense arbitrary – choosing a different lower
boundary would merely result in different constants in the proof of the lemmas given
below. We consider here only the scaling of the amplitude of the maximum response
(as a function of !), but note that our calculations can easily be extended beyond
this regime.

Eguı́luz

Eguı́luz
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Fig. 11 For “cube root growth,” the amplitude r is bounded by two straight lines in a plot of
log r vs. log "

For consistency with the previous section, we work with R D r2 and ı D "2; it
is clear that similar relations will hold between R and ı. Recall

G.RI�; !; �; ı/ D .1C �2/R3 C 2.!� � �/R2 C .�2 C !2/R � ı;

where ! D !H � !f . The amplitude of solutions is given by G.RI�; !; �; ı/ D 0.
Consider the amplitude as ! is varied, then the maximum response R occurs when
G! D 0, that is, at ! D ��R, which is nonzero for � ¤ 0. At � D 0, the response
curve is symmetric in !, and so the maximum must occur at ! D 0.

Write
G.RI�; !; �; ı/ D �.RI�; !; �/� ı; (38)

so the amplitude squared of the response, R, is related to the amplitude squared of
the forcing, ı, by

�.RI�; !; �/ D ı:

Consider the function �.RI�; !; �/ evaluated at the value of ! for which the
maximum response occurs, that is, compute

�.RI�;��R; �/ D R3 � 2�R2 C �2R;

which turns out to be independent of � , and so write G .RI�/ 	 �.RI�;��R; �/.
Moreover, since � < 0, G .RI�/ is monotonically increasing in R and hence invert-
ible. Therefore, the response curve has a unique maxima for all � .

Write H.ıI�/ 	 G .RI�/�1. Then for given ı, �, the maximum R satisfies
R D H.ıI�/.

Observe that for jRj small, G .RI�/ � �2R, and for jRj large, G .RI�/ � R3.
Therefore, for jıj small we expect R D H.ıI�/ � ı=�2, and for jıj large, R D
H.ıI�/ � ı1=3. We make these statements precise in the following lemmas.



The Feed-Forward Chain as a Filter-Amplifier Motif 113

Lemma 1. If j�j < 0:33 ı1=3, then

�
ı

2

�1=3

< H.ıI�/ < ı1=3:

Remark 3. The constant 0:33 in the statement of Lemma 1 can be replaced by k1,
the unique positive root of y2 C 22=3y � 2�2=3 D 0. The hypothesis in this lemma
can then read j�j < k1ı

1=3. In the proof we use k1 rather than 0:33.

Proof. Since G .RI�/ is monotonic increasing, we need to show that

G
 �
ı

2

�1=3

I�
!

< ı < G
�
ı1=3I�

�
:

Since � < 0 and ı > 0 the second inequality follows from

G
�
ı1=3I�

�
D ı � 2�ı2=3 C �2ı1=3 > ı:

For the first inequality, we have

G
 �
ı

2

�1=3

I�
!

D ı

2
� 21=3�ı2=3 C �2 ı

1=3

21=3
:

We have assumed �� < k1ı
1=3; so

G
��
ı

2

�

I�
�

<
ı

2
C 21=3k1ı C k2

1

ı

21=3
D 1

21=3

�
1

22=3
C 22=3k1 C k2

1

�

ı D ı;

since k2
1 C 22=3k1 D 2�2=3. ut

Lemma 2. If j�j > 1:06 ı1=3, then

ı

2�2
< H.ıI�/ < ı

�2
:

Remark 4. The constant 1:06 in the statement of Lemma 2 can be replaced by k2,

where y D k3
2 is the unique positive root of 4y2 � 4y � 1 D 0. The hypothesis in

this lemma can then read j�j > k2ı
1=3. In the proof we use k2 rather than 1:06.

Proof. Since G .RI�/ is monotonic increasing in R, we have to show that

G
�
ı

2�2
I�
�

< ı < G
�
ı

�2
I�
�

:
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Since � < 0 and ı > 0 the second inequality follows from

G
�
ı

�2
I�
�

D ı3

�6
� 2 ı

2

�3
C ı > ı:

For the first inequality, we have

G
�
ı

2�2
I�
�

D ı3

8�6
� ı2

2�3
C ı

2
:

We assumed �6 > k6
2ı

2 and ��3 > k3
2ı. So

G
�
ı

2�2
I�
�

<
ı3

8k6
2ı

2
C ı2

2k3
2ı

C ı

2
D 1

8k6
2

.4k6
2 C 4k3

2 C 1/ı D ı;

since 4k3
2 C 1 D 4k6

2 . ut
Remark 5. Note that k1 � 0:33 and k2 � 1:06, so k1 < k2. It follows that the
region of linear amplitude (") growth is very small, whereas the region of cube root
growth is quite large. In Fig. 12, we illustrate this point by graphing the curves that
separate the regions; namely " D .�=k1/

3=2 (dashed curve for cube root growth)
and " D .�=k2/

3=2 (continuous curve for linear growth). Since 1
k2
< 1

k1
the linear

and cube root growth regions are disjoint.
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Fig. 12 Regions of linear and cube root growth in the �-" plane
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Remark 6. The maximum amplitude r satisfies G �r2I�	 D "2, where G .RI�/ is an
increasing function ofR. Hence r increases as " increases. Recall that the maximum
r occurs at ! D ��r2. Hence with fixed parameters � < 0, � ¤ 0, the forcing
frequency for which the maximum amplitude occurs, varies as the amplitude of the
forcing (") increases.

Remark 7. It is simple to extend this type of reasoning into regions away from
the maximum amplitude of response, to find linear growth rates for ! far from the
maximum response. However, the algebra is rather messy and so we do not include
the details here.

Q-Factor

Engineers use the Q-factor to measure the efficiency of a band-pass filter. The Q-
factor is nondimensional and defined by

Q D !max

d!
;

where !max is the forcing frequency at which maximum response amplitude rmax

occurs, and d! is the width of the amplitude response curve when it has half the
maximum height. In Fig. 13, we give a schematic of a response curve and show how
Q is calculated.

The larger the Q, the better the filter. Quantitatively, there is a curious observa-
tion. It can be shown that for our Hopf normal form, Q varies linearly with !H.
The response curve in !–r space is defined implicitly by (12) (recall R D r2,
ı D "2). This curve depends only on ! (not on !f or !H independently). Therefore,

r

ωf
ωmax

dω

Fig. 13 Schematic of a response curve as !f is varied, for fixed !H. The Q-factor is !max=d!
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as !H varies, the curve will be translated, but its shape will not change. Hence the
width of the curve, d!, is independent of !H.

As shown in section “Scalings of Solution Amplitudes,” the maximum response
rmax is independent of !H. The position of the maximum response is given by
! D ��r2

max, or !f D !H C �r2
max. Hence

Q D !H C �r2
max

d!

and so depends linearly on !H.
In addition, we find from simulations that for any given !H the Q-factor of the

system is better for spiking forcing than for sinusoidal forcing. Figure 14 shows
results of simulations of the three cell feed-forward network from section “Sim-
ulations” under “Periodic Forcing of Feed-Forward Chains” using sinusoidal and
spiking forcing. From these figures, we see two, perhaps surprising, results. First,
that the Q-factor for spiking forcing is almost five times higher than that of sinu-
soidal forcing. Second, that for both forcings, theQ-factor for cell 3 is less than that
of cell 2.

We explain the first observation by the following analogy. Consider the limit of
very narrow spiking forcing, on a damped harmonic oscillator, for example, pushing
a swing. Resonant amplification can only be achieved if the frequency of the forcing
and the oscillations exactly match. If they are slightly off, then the forcing occurs at
a time when the swing is not in the correct position and so only a small amplitude
solution can occur.

We further note that although the output from a cell receiving spiking forcing is
not sinusoidal, it is closer to sinusoidal than the input. That is, as the signal proceeds
along the feed-forward chain, at each cell the output is closer to sinusoidal than the
last. Combining this observation with the first explains why the Q-factor of cell 3
should be less than that for cell 2.
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Fig. 14 The figures show theQ factor as !H is varied for sinusoidal forcing (left) and spiking forc-
ing (right) for each cell in the feed-forward network from section “Simulations” under “Periodic
Forcing of Feed-Forward Chains”. In these simulations � D �0:01 and " D 0:08
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Cochlear Modeling

The cochlea in the inner ear is a fluid filled tube divided lengthwise into three cham-
bers. The basilar membrane (BM) divides two of these chambers and is central to
auditory perception. Auditory receptor cells, or hair cells, sit on the BM. Hair bun-
dles (cilia) protrude from these cells, and some of the cilia are embedded in the
tectorial membrane in the middle chamber. For reviews of the mechanics of the
auditory system, see [2, 17, 29].

When a sound wave enters the cochlea, a pressure wave in the fluid perturbs the
BM near its base. This initiates a wave along the BM, with varying amplitude, that
propagates toward the apex of the cochlea. The envelope of this wave has a maxi-
mum amplitude, the position of which depends on the frequency of the input. High
frequencies lead to maximum vibrations at the stiffer base of the BM, and low fre-
quencies lead to maximum vibrations at the floppier apex of the BM. As discussed
in [22], each point along the BM oscillates at the input frequency. As the sound
wave bends the BM, the hair cells convert the mechanical energy into neuronal sig-
nals. There is evidence [6,23,25] that the oscillations of the hair cells have a natural
frequency which varies with the position of the hair cell along the BM.

Experiments have shown that the ear has a sharp frequency tuning mechanism
along with a nonlinear amplification system – there is no audible sound soft enough
to suggest that the cochlear response is linear. Many authors [5–7,21,23,27,28] have
suggested that these two phenomena indicate that the auditory system may be tuned
near a Hopf bifurcation. Detailed models of parts of the auditory system (Hudspeth
and Lewis [18,19], Choe, Magnasco, and Hudspeth [6]) have been shown to contain
Hopf bifurcations for biologically realistic parameter values.

Hopf Models of the Auditory System

Most simplified models model a single hair cell as a forced Hopf oscillator, similar
to (9), but with the imaginary part of the cubic term (� ) set equal to zero. As we
have shown in section “Periodic Forcing near Hopf Bifurcation”, this assumption
leads to nongeneric behavior, in particular, that the response curve is symmetric in
!. In fact, a center manifold reduction of the model of Hudspeth and Lewis [18,19]
by Montgomery et al. [27] finds that � ¤ 0. Specifically, they find � D �1:07.

Furthermore, the response curve in the auditory system has been shown exper-
imentally (see [29] and references within) to be asymmetric. Two papers [23, 25]
have considered the dynamics of an array of Hopf oscillators (rather than the single
oscillators studied by most other authors). They achieve the aforementioned asym-
metry through couplings between the oscillators via a traveling wave which supplies
the forcing terms. This complicates the matter significantly, so that analytical results
cannot be obtained.

However, we note that merely having a complex, rather than real, cubic term
in the Hopf oscillator model would have a similar effect. The value of � found
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by Montgomery et al. [27] is in the regime where we observe asymmetry, but not
multiplicity of solutions. Multiple solutions in this model could correspond to per-
ception of a sound of either low or high amplitude for the same input forcing. We
have seen no mention of this phenomena in the literature.

Two-Frequency Forcing

It is clear that stimuli received by the auditory system are not single frequency, but
contain multiple frequencies. If each hair cell is to be modeled as a Hopf oscillator,
we are interested in the effect of multifrequency forcing on an array of Hopf oscil-
lators. We give here some numerical results from an array of N uncoupled Hopf
oscillators:

Pzj D .�C i!H.j //z C .�1C i�/jzj j2zj C "g.t/; j D 1; : : : ; N; (39)

where !H.j / D !1 C j	!, for some !1, 	!, that is, the Hopf frequency in-
creases linearly along the array of oscillators. Note that all oscillators receive the
same forcing.

Consider forcing which contains two frequency components, for instance:

g.t/ D eit C e
p

5it : (40)

In Fig. 15, we plot the mean amplitude of the responses of each oscillator in the
array. The response clearly has two peaks, one close to each frequency component
of the input.
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Fig. 15 The mean amplitude for each of an array of forced Hopf oscillators (39), with forcing
given in (40). The phase plane portraits for the outputs of the oscillators with!H D 1 and !H D 1:6

are shown in Fig. 16. Remaining parameters are � D �0:01, " D 0:05, � D �1
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Fig. 16 The phase plane portraits for Hopf oscillators with !H D 1 (left) and !H D 1:6 (right),
with forcing as given in (40). The left figure is almost periodic, but the right is clearly quasiperiodic.
Remaining parameters are � D �0:01, " D 0:05, � D �1

Note also that the forcing g.t/ is quasiperiodic. In those oscillators which have
a Hopf frequency close to one component of the forcing, only that component is
amplified. This results in an output which is close to periodic. In Fig. 16 we show
the resulting phase plane solutions from two of the Hopf oscillators. The first has
!H D 1, so the first component of the forcing is amplified, and the solution is close
to periodic. The second has !H D 1:6, which is far from both 1 and

p
5. Hence

neither component is amplified and the output is quasiperiodic.
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15. M. Golubitsky and I. Stewart. Nonlinear dynamics of networks: the groupoid formalism. Bull.
Amer. Math. Soc. 43 No. 3 (2006) 305–364.

16. M. Golubitsky, I. Stewart, and A. Török. Patterns of synchrony in coupled cell networks with
multiple arrows. SIAM J. Appl. Dynam. Sys. 4 (1) (2005) 78–100.

17. A.J. Hudspeth. Mechanical amplification of stimuli by hair cells, Curr. Opin. Neurobiol. 7
(1997) 480–486.

18. A.J. Hudspeth and R.S. Lewis. Kinetic-analysis of voltage-dependent and ion-dependent con-
ductances in saccular hair-cells of the bull frog, rana catesbeiana. J. Physiol. 400 (1988)
237–274.

19. A.J. Hudspeth and R.S. Lewis. A model for electrical resonance and frequency tuning in sac-
cular hair cells of the bull frog, rana catesbeiana. J. Physiol. 400 (1988) 275–297.

20. T.S.A. Jaffer, H. Kunov, and W. Wong. A model cochlear partition involving longitudinal elas-
ticity. J. Acoust. Soc. Am. 112 No. 2 (2002) 576–589.
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Gain Modulation as a Mechanism for Switching
Reference Frames, Tasks, and Targets

Emilio Salinas and Nicholas M. Bentley

Abstract In the mammalian brain, gain modulation is a ubiquitous mechanism for
integrating information from various sources. When a parameter modulates the gain
of a neuron, the cell’s overall response amplitude changes, but the relative effec-
tiveness with which different stimuli are able to excite the cell does not. Thus,
modulating the gain of a neuron is akin to turning up or down its “loudness”. A well-
known example is that of visually sensitive neurons in parietal cortex, which are
gain-modulated by proprioceptive signals such as eye and head position. Theoretical
work has shown that, in a network, even relatively weak modulation by a parameter
P has an effect that is functionally equivalent to turning on and off different subsets
of neurons as a function of P . Equipped with this capacity to switch, a neural circuit
can change its functional connectivity very quickly. Gain modulation thus allows an
organism to respond in multiple ways to a given stimulus, so it serves as a basis
for flexible, nonreflexive behavior. Here we discuss a variety of tasks, and their cor-
responding neural circuits, in which such flexibility is paramount and where gain
modulation could play a key role.

The Problem of Behavioral Flexibility

The appropriate response to a stimulus depends heavily on the context in which
the stimulus appears. For example, when James Brown yells “Help me!” in the
middle of a song, it calls for a different response than when someone yells the same
thing from inside a burning building. Normally, the two situations are not confused:
concert goers don’t rush onstage to try to save James Brown and firemen don’t take
to dancing outside of burning buildings. This is an extreme example, but to a certain
degree, even the most basic sensory stimuli are subject to similar interpretations
that depend on the ongoing behavioral context. For instance, the sight and smell
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of food may elicit very different responses depending on how hungry an animal is.
Such context sensitivity is tremendously advantageous, but what are the neuronal
mechanisms behind it?

Gain modulation is a mechanism whereby neurons integrate information from
various sources [47, 48]. With it, contextual and sensory signals may be combined
in such a way that the same sensory information can lead to different behavioral
outcomes. In essence, gain modulation is the neural correlate of a switch that can
turn on or off different subnetworks in a circuit, and thus provides, at least in part,
a potential solution to the problem of generating flexible, context-sensitive behavior
illustrated in the previous paragraph. This chapter will address three main questions:
What is gain modulation? What are some of its experimental manifestations? And,
what computational operations does it enable? We will show that relatively weak
modulatory influences like those observed experimentally may effectively change
the functional connectivity of a network in a drastic way.

What is Gain Modulation?

When a parameter modulates the gain of a neuron, the cell’s response amplitude
changes, but its selectivity with respect to other parameters does not. Let’s elaborate
on this. To describe gain modulation, we must consider the response of a neuron as
a function of two quantities; call them x and y. To take a concrete example, suppose
that x is the location of a visual stimulus with respect to the fixation point and y is
the position of the eye along the horizontal axis. The schematic in Fig. 1 shows the
relationship between these variables. First, fix the value of y, say it is equal to 10ı
to the left, and measure the response of a visual neuron as a function of stimulus
location, x. Assume that the response to a stimulus is quantified by the number of
action potentials evoked by that stimulus within a fixed time window, which is a
standard procedure. When the evoked firing rate r is plotted against x, the result
will be a curve like those shown in Fig. 2, with a peak at the preferred stimulus
location of the cell. Now repeat the measurements with a different value of y, say
10ı to the right this time. How does the second curve (r vs. x) compare with the
first one?

y
x

Fig. 1 Reference points for locating an object. The cross indicates the fixation point and the star
indicates a visual stimulus. The angle of the eye in the orbit is y. The position of the object in
eye-centered coordinates (i.e., relative to the fixation point) is x
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Fig. 2 Hypothetical
responses of four neurons that
are sensitive to two quantities,
x and y. Each panel shows
the firing rate as a function of
x for two values of y, which
are distinguished by thin and
thick lines. (a–c), Three
neurons that are
gain-modulated by y. (d), A
neuron that combines x- and
y- dependencies linearly, and
so is not gainmodulated
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If the neuron is not sensitive to eye position at all, then the new curve will be
the same as the old one. This would be the case, for instance, with the ganglion
cells of the retina, which respond depending on where light falls on the retina. On
the other hand, if the neuron is gain-modulated by eye position, then the second
curve will be a scaled version of the first one. That is, the two curves will have the
same shapes but different amplitudes. This is illustrated in Fig. 2b and c, where thin
and thick lines are used to distinguish the two y conditions. This is precisely what
happens in the posterior parietal cortex [1, 2, 12], where this phenomenon was first
documented by Andersen and Mountcastle [3]. To describe the dependency on the
modulatory quantity y, these authors coined the term “gain field,” in analogy with
the receptive field, which describes the dependency on the sensory stimulus x. Of
course, to properly characterize the gain field of a cell, more values of y need to be
tested [2], but for the moment we will keep discussing only two.

To quantify the strength of the modulation, consider the decrease in response am-
plitude observed as a neuron goes from its preferred to its nonpreferred y condition.
In panels a–c of Fig. 2, the resulting percent suppression is, respectively, 100%,
40%, and 15%. In the parietal cortex, and in experimental data in general, 100%
suppression is very rarely seen; on the contrary, the effects are often quite subtle
(more on this below). More importantly, however, the firing rate r of the neuron
can be described as a product of two factors, a function of x, which determines the
shape of the curves, times a gain factor that determines their amplitude:

rj .x; y/ D gj .y/fj.x/ (1)

where the index j indicates that this applies to neuron j . The functions f and g
may have different forms, so this is a very general expression. Much of the data
reported by Andersen and colleagues, as well as data from other laboratories, can be
fit quite well using (1) [2,12,30,31,57]. Note, however, that for the theoretical results
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discussed later on, the key property of the above expression is that it combines x
and y in a nonlinear way. Thus, in general, the theoretical results are still valid if the
relationship between x- and y-dependencies is not exactly multiplicative, as long as
it remains nonlinear. A crucial consequence of this is that a response that combines
x and y dependencies linearly, for instance,

rj .x; y/ D gj .y/C fj .x/ (2)

does not qualify as a gain-modulated response. Note how different this case is from
the multiplicative one: when y changes, a neuron that responds according to (2)
increases or decreases its firing rate by the same amount for all x values. This is
illustrated in Fig. 2d, where the peaked curve moves up and down as y is varied
but nothing else changes other than the baseline. Such a neuron is sensitive to both
x and y, but (1) it cannot be described as gain-modulated by y, because it combines
f and g linearly, and (2) it cannot perform the powerful computations that gain-
modulated neurons can.

Experimental Evidence for Gain Modulation

To give an idea of the diversity of neural circuits in which gain modulation may play
an important functional role, in this section we present a short survey of experimen-
tal preparations in which gain modulation has been observed. In all of these cases
the reported effects are roughly in accordance with (1). Note that, although the x
and y variables are different in all of these examples, all experiments are organized
like the one discussed in the previous section: the firing rate of a neuron is plotted
as a function of x for a fixed value of y; then y is varied and the response function
or tuning curve (r vs. x) of the cell is plotted again; finally, the results with different
y values are compared.

Modulation by Proprioceptive Information

To begin, we mention three representative examples of proprioceptive signals that
are capable of modulating the visually evoked activity of cortical neurons. First of
all, although initial work described responses tuned to stimulus location (x) with
gain fields that depend on eye position, an additional dependence on head position
was discovered later, such that the combination of head and eye angles – the gaze
angle – seems to be the relevant quantity [12]. Thus, the appropriate modulatory
parameter y is likely to be the gaze angle.

Another example of modulation by proprioceptive input is the effect of eye and
head velocity (which now play the role of y) on the responses of neurons that are
sensitive to heading direction (which now corresponds to x). Neurons in area MSTd
respond to the patterns of optic flow that are generated by self-motion; for instance,
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when a person is walking, or when you are inside a moving train and look out
the window. Under those conditions, the MSTd population encodes the direction of
heading. Tuning curves with a variety of shapes are observed when the responses of
these neurons are plotted as functions of heading direction, and crucially, for many
units those curves are gain-modulated by eye and head velocity [50].

A third example of proprioceptive modulation occurs in an area called the pari-
etal reach region, or PRR, where cells are tuned to the location of a reach target. The
reach may be directed toward the location of a visible object or toward its remem-
bered location; in either case, PRR cells are activated only when there is an intention
to reach for a point in space. The response of a typical PRR cell as a function of tar-
get location (the x parameter in this case) is peaked. A key modulatory quantity for
these cells is the initial location of the hand (this is y now): the amplitude of the
peaked responses to target location depends on the position of the hand before the
reach [7, 13]. We will come back to this example later on.

Attentional Modulation

Another modulatory signal that has been widely studied is attention, and its effects
on sensory-driven activity are often very close to multiplicative. For example, visual
neurons in area V4 are sensitive to the orientation of a bar shown in their receptive
field. The corresponding tuning curves of firing rate vs. bar orientation change de-
pending on where attention is directed by the subject. In particular, the tuning curves
obtained with attention directed inside vs. outside the receptive field are very nearly
scaled versions of each other, with an average suppression of about 20% in the non-
preferred condition [31]. The magnitude of this effect is not very large, but this is
with rather simple displays that include only two stimuli, a target and a distractor;
results reported using more crowded displays and more demanding tasks are two-
to-three times as large [14, 21].

Another cortical area where attentional effects have been carefully characterized
is area MT, which processes visual motion. There, neurons are sensitive to the di-
rection in which an object, or a cloud of objects, moves across their receptive fields.
Thus, for each neuron the relevant curve in this case is that of firing rate vs. move-
ment direction. What the experiments show is that the location where attention is
directed has an almost exactly multiplicative effect on the direction tuning curves
of MT cells. But interestingly, the amplitude of these curves also depends on the
specific movement direction that is being attended [30, 57]. Thus, as in V4 [21],
stronger suppression (of about 50%) can be observed when an appropriate combi-
nation of attended location and attended feature is chosen.

Nonlinear Interactions between Multiple Stimuli

In addition to studies in which two distinct variables are manipulated, there is a
vast literature demonstrating other nonlinear interactions that arise when multiple
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stimuli are displayed simultaneously. For instance, the response of a V1 neuron to
a single oriented bar or grating shown inside its receptive field may be enhanced or
suppressed by neighboring stimuli outside the receptive field [20, 25, 28, 51]. Thus,
stimuli that are ignored by a neuron when presented in isolation may have a strong
influence when displayed together with an effective stimulus. These are called “extra
classical receptive field” effects, because they involve stimuli outside the normal
activation window of a neuron.

Nonlinear summation effects, however, may also be observed when multiple
stimuli are shown inside the receptive field of a cell. For example, suppose that a
moving dot is presented inside the receptive field of an MT neuron and the evoked
response is r1. Then another moving dot is shown moving in the same direction but
at a different location in the receptive field, and the response is now r2. What hap-
pens if the two moving dots are displayed simultaneously? In that case, the evoked
response is well described by

r D ˛
�
rn

1 C rn
2

	1=n
(3)

where ˛ is a scale factor and n is an exponent that determines the strength of the
nonlinearity [11]. This expression is interesting because it captures a variety of pos-
sible effects, from simple response averaging (˛D0:5, nD1) or summation (˛D1,
nD1), to winner-take-all behavior (˛D1, n large). Neurons in MT generally show
a wide variety of n exponents [11], typically larger than 1, meaning that the pres-
ence of one stimulus modulates nonlinearly the response to the other. Neurons in
V4 show similar nonlinear summation [21].

In general, many interactions between stimuli are well described by divisive nor-
malization models [52, 53], of which (3) is an example. Such models implement
another form of gain control where two or more inputs are combined nonlinearly.

Context- and Task-Dependent Modulation

Finally, there are numerous experiments in which more general contextual effects
have been observed. This means that activity that is clearly driven by the physical
attributes of a sensory stimulus is also affected by more abstract factors, such as the
task that the subject needs to perform, or the subject’s motivation. These phenom-
ena are often encountered in higher-order areas, such as the prefrontal cortex. For
example, Lauwereyns and colleagues designed a task in which a monkey observed
a cloud of moving dots and then, depending on a cue at the beginning of each trial,
had to respond according to either the color or the direction of movement of the
dots [27]. Prefrontal neurons were clearly activated by the moving dots; however,
the firing rates evoked by identical stimuli varied quite dramatically depending on
which feature was imporant in a given trial, color or movement direction.

Another striking case of task-dependent modulation was revealed by Koida and
Komatsu [26] using color as a variable. They trained monkeys to perform two color-
based tasks. In one of them, the monkeys had to classify a single color patch into
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one of two categories, reddish or greenish. In the other task, the monkeys had to
indicate which of two color patches matched a previously shown sample. Neuronal
responses in inferior-temporal cortex (IT) were recorded while the monkeys per-
formed these two tasks plus a passive fixation task, in which the same stimuli were
presented but no motor reactions were required. The responses of many IT neu-
rons were strongly gain-modulated by the task: their color tuning curves had similar
shapes in all cases, but the overall amplitude of their responses depended on which
task was performed. This means that their activity was well described by (1), with x
being color and y being the current task. Note that, in these experiments, the exact
same stimuli were used in all tasks – what varied was the way the sensory informa-
tion was processed. Furthermore, the classification and discrimination tasks were of
approximately equal difficulty, so it is unlikely that the observed modulation was
due to factors such as motivation or reward rate. Nevertheless, these two variables
are known to modulate many types of neurons quite substantially [36, 49], so the
extent of their influence is hard to determine.

A last example of modulation due to task contingencies comes from neurophys-
iological work in the supplementary and presupplementary motor areas, which are
involved in fine aspects of motor control such as the planning of movement se-
quences. Sohn and Lee made recordings in these areas while monkeys performed
sequences of joystick movements [54]. Each individual movement was instructed
by a visual cue, but importantly, the monkey was rewarded only after correct com-
pletion of a full sequence, which consisted of 5–10 movements. The activity of the
recorded neurons varied as a function of movement direction, as expected in a mo-
tor area, but interestingly, it also varied quite strongly according to the number of
remaining movements in a sequence. It is possible that the true relevant variable
here is the amount of time or the number of movements until a reward is obtained.
Regardless of this, remarkably, the interaction between movement direction (the x
variable in this case) and the number of remaining movements in a sequence (the y
variable) was predominantly multiplicative, in accordance with (1).

In summary, there is an extremely wide range of experimental preparations and
neuronal circuits that reveal strongly nonlinear modulation of evoked activity. The
next sections discuss (1) some computational operations that neuronal networks can
implement relatively easily based on such nonlinearities, and (2) a variety of behav-
iors and tasks where such operations could play crucial functional roles.

Computations Based on Gain Modulation

The previous section reviewed a large variety of experimental conditions under
which gain modulation – understood as a nonlinear interaction between x- and y-
dependencies – is observed. What is interesting about the chosen examples, and
is not immediately obvious, is that all of those effects may be related to similar
computational operations. That is precisely what theoretical and modeling stud-
ies have shown, that gain modulation serves to implement a type of mathematical
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transformation that arises under many circumstances. It is relatively well established
that gain modulation plays an important role in carrying out coordinate transfor-
mations [4, 38, 46, 48], so that is the first type of operation that we will discuss.
However, the applicability of gain modulation goes way beyond the traditional
notion of coordinate transformation [41].

Coordinate Transformations

The first clue that gain modulation is a powerful computing mechanism was pro-
vided by Zipser and Andersen [63], who trained an artificial neural network to
transform the neural representation of stimulus location from one reference frame
to another. Their network had three layers of model neurons. The activities in the
input and output layers were known – they were given to the model – and the job of
the model was to determine the responses of the units in the middle layer. The input
layer had two types of neurons, ones that encoded the location of a visual stimulus in
eye-centered coordinates, i.e., with respect to the fixation point, and others that en-
coded the gaze angle. Thus, stimulus location was x and gaze angle was y, exactly
as discussed in the section “What is Gain Modulation.” In contrast, the neurons in
the output layer encoded the location of the stimulus in head-centered coordinates,
which for this problem means that they responded as functions of x C y. It can be
seen from Fig. 1 that x C y in this case gives the location of the stimulus relative to
the head.

Adding x plus y seems deceivingly simple, but the problem is rather hard be-
cause x, y, and x C y are encoded by populations of neurons where each unit
responds nonlinearly to one of those three quantities. The middle neurons in the
model network had to respond to each pattern of evoked activity (in the first layer)
and produce the correct output pattern (in the third layer). The way the authors were
able to “train” the middle layer units was by using a synaptic modification rule,
the backpropagation algorithm, which modified the network connections each time
an input and a matching output pattern were presented, and thousands of input and
output examples were necessary to learn the mapping with high accuracy. But the
training procedure is not very important; what is noteworthy is that, after learn-
ing, the model units in the middle layer had developed gaze-dependent gain fields,
much like those found in parietal cortex. This indicated that the visual responses
modulated by gaze angle are an efficient means to compute the required coordinate
transformation.

Further intuition about the relation between gain fields and coordinate trans-
formations came from work by Salinas and Abbott [43], who asked the following
question. Consider a population of parietal neurons that respond to a visual stimulus
at retinal location x and are gain-modulated by gaze angle y. Suppose that the gain-
modulated neurons drive, through synaptic connections, a downstream population of
neurons involved in generating an arm movement toward a target. To actually reach
the target with any possible combination of target location and gaze angle, these
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downstream neurons must encode target location in body-centered coordinates, that
is, they must respond as functions of x C y (approximately). Under what condi-
tions will this happen? Salinas and Abbott developed a mathematical description
of the problem, found those conditions, and showed that, when driven by gain-
modulated neurons, the downstream units can explicitly encode the sum x C y or
any other linear combination of x and y. In other words, the gain-field representa-
tion is powerful because downstream neurons can extract from the same modulated
neurons any quantity c1x C c2y with arbitrary coefficients c1 and c2, and this can
be done quite easily – “easily” meaning through correlation-based synaptic modifi-
cation rules [43, 44]. Work by Pouget and Sejnowski [37] extended these results by
showing that a population of neurons tuned to x and gain-modulated by y can be
used to generate a very wide variety of functions of x and y downstream, not only
linear combinations.

A crucial consequence of these theoretical results is that when gain-modulated
neurons are found in area A, it is likely that neurons in a downstream area B will
have response curves as functions of x that shift whenever y is varied. This is be-
cause a tuning curve that is a function of c1x C c2y will shift along the x-axis
when y changes. To illustrate this point, consider another example of a coordinate
transformation; this case goes back to the responses of PRR cells mentioned in the
section “Modulation by Proprioceptive Information.”

The activity of a typical PRR cell depends on the location of a target that is to
be reached, but is also gain-modulated by the initial position of the hand before the
reach [7, 13]. Thus, now x is the target’s location and y is the initial hand position
(both quantities in eye-centered coordinates). Fig. 3a–c illustrates the correspond-
ing experimental setup with three values of y: with the hand initially to the left,
in the middle, or to the right. In each diagram, the small dots indicate the possible
locations of the reach target, and the two gray disks represent the receptive fields of
two neurons. The response of a hypothetical PRR neuron is shown in Fig. 3e, which
includes three plots, one for each of the three initial hand positions. In accordance
with the reported data [7, 13], the gain of this PRR cell changes as a function of
initial hand position. The other two cells depicted in the figure correspond to ideal-
ized responses upstream and downstream from the PRR. Figure 3d shows the firing
rate of an upstream cell that is insensitive to hand position y, so its receptive field
(light disk in Fig. 3a–c) does not change. This cell is representative of a neural pop-
ulation that responds only as a function of x, and simply encodes target location in
eye-centered coordinates. In contrast, Fig. 3f plots the tuning curve of a hypothetical
neuron downstream from the PRR. The curve shifts when the initial hand position
changes because it is a function of x � y (as explained above, but with c1 D 1 and
c2 D �1). For such neurons, the receptive field (dark disk in Fig. 3a–c) moves as
a function of hand position. This cell is representative of a population that encodes
target location in hand-centered coordinates: the firing responses are the same when-
ever the target maintains the same spatial relationship relative to the hand. Neurons
like this one are found in parietal area 5, which is downstream from the PRR [13].
They can be constructed by combining the responses of multiple gain-modulated
neurons like that in Fig. 3e, but with diverse target and hand-location preferences.
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Fig. 3 Hypothetical responses of three neurons that play a role in reaching a target. (a–c), Three
experimental conditions tested. Dots indicate the possible locations of a reach target. Conditions
differ in the initial hand position (y). Circles indicate visual receptive fields of two hypothetical
neurons, as marked by gray disks below. (d–f), Firing rate as a function of target location (x)
for three idealized neurons. Each neuron is tested in the three conditions shown above. Gaze is
assumed to be fixed straight ahead in all cases

Why are such shifting tuning curves useful? Because the transformation in the
representation of target location from Fig. 3d to Fig. 3f partially solves the prob-
lem of how to acquire a desired target. In order to reach an object, the brain must
combine information about target location with information about hand position to
produce a vector. This vector, sometimes called the “motor error” vector, encodes
how much the hand needs to move and in what direction. Cells like the one in Fig. 3d
do not encode this vector at all, because they have no knowledge of hand position.
Cells that are gain modulated by hand position, as in Fig. 3e, combine information
about x and y, so they do encode the motor vector, but they do so implicitly. This
means that actually reading out the motor vector from their evoked activity requires
considerable computational processing. In contrast, neurons like the one in Fig. 3f
encode the motor vector explicitly: reading out the motor vector from their evoked
activity requires much simpler operations.
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To see this, draw an arrow from the hand to the center of the shifting receptive
field (the dark disk) in Fig. 3a–c. You will notice that the vector is the same regard-
less of hand position; it has the same length L and points in the same direction,
straight ahead, in the three conditions shown. Thus, a strong activation of the ide-
alized neuron of Fig. 3f, which is elicited when x is equal to the peak value of the
tuning curve, can be easily translated into a specific motor command; such activa-
tion means “move the handL centimeters straight ahead and you’ll reach the target.”
Conversely, for this command to be valid all the time, the preferred target position
of the cell must move whenever the hand moves.

In reality, area 5 neurons typically do not show full shifts [13]; that is, their curves
do shift but by an amount that is smaller than the change in hand position. This is
because their activity still depends to a certain extent on eye position. It may be that
areas further downstream from area 5 encode target position in a fully hand-centered
representation, but it is also possible that such a representation is not necessary for
the accurate generation of motor commands. In fact, although full tuning curve shifts
associated with a variety of coordinate transformations have been documented in
many brain areas, partial shifts are more common [6, 19, 22, 24, 50, 55]. This may
actually reflect efficiency in the underlying neural circuits: according to modeling
work [16,62], partial shifts should occur when more than two quantities x and y are
simultaneously involved in a transformation, which is typically the case. Anyhow,
the point is that a gain-modulated representation allows a circuit to construct shifting
curves downstream, which encode information in a format that is typically more
accessible to the motor apparatus.

A final note before closing this section. Many coordinate transformations make
sense as a way to facilitate the interaction with objects in the world, as in the
examples just discussed. But the shifting of receptive fields, and in general the trans-
formation of visual information from an eye-centered representation to a reference
frame that is independent of the eye may be an important operation for percep-
tion as well. For instance, to a certain degree, humans are able to recognize objects
regardless of their size, perspective, and position in the visual field [15, 18]. This
phenomenon is paralleled by neurons in area IT, which respond primarily depend-
ing on the type of image presented, and to some extent are insensitive to object
location, scale or perspective [17,56,64]. For constructing such invariant responses,
visual information must be transformed from its original retinocentered representa-
tion, and modeling work suggests that gain modulation could play an important role
in such perceptual transformations too, because the underlying operations are sim-
ilar. In particular, directing attention to different locations in space alters the gain
of many visual neurons that are sensitive to local features of an image, such as ori-
entation [14]. According to the theory [44,45], this attentional modulation could be
used to generate selective visual responses similar to those in IT, which are scale-
and translation-invariant. Such responses would represent visual information in an
attention-centered reference frame, and there is evidence from psychophysical ex-
periments in humans [29] indicating that object recognition indeed operates in a
coordinate frame centered on the currently attended location.
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Arbitrary Sensory-Motor Remapping

In the original modeling studies on gain modulation, proprioceptive input combined
with spatial sensory information led to changes in reference frame. It is also pos-
sible, however, to use gain modulation to integrate sensory information with other
types of signals. Indeed, the mechanism also works for establishing arbitrary asso-
ciations between sensory stimuli and motor actions on the basis of more abstract
contextual information.

In many tasks and behaviors, a given stimulus is arbitrarily associated with two
or more motor responses, depending on separate cues that we will refer to as “the
context.” Figure 4 schematizes one such task. Here, the shape of the fixation point in-
dicates whether the correct response to a bar is a movement to the left or to the right
(arrows in Fig. 4a and b). Importantly, the same set of bars (Fig. 4c) can be parti-
tioned in many ways; for instance, according to orientation (horizontal vs. vertical),
color (filled vs. not filled), or depending on the presence of a feature (gap vs. no
gap). Therefore, there are many possible maps between the eight stimuli and the
two motor responses, and the contextual cue that determines the correct map is
rather arbitrary.

Neurophysiological recordings during such tasks typically reveal neuronal re-
sponses that are sensitive to both the ongoing sensory information and the current
context or valid cue, with the interaction between them being nonlinear [5, 27,
58, 59]. Some of these effects were mentioned in the section “Context- and Task-
Dependent Modulation.” The key point is that, as the context changes in such tasks,
there is (1) a nonlinear modulation of the sensory-triggered activity, and (2) a func-
tional reconnection between sensory and motor networks that must be very fast.
How is this reconnection accomplished by the nervous system?

a

Time

Horiz. Vert.

b

Gap No gap

c

Fig. 4 A context-dependent classification task. The shape of the fixation point determines the
correct response to a stimulus. (a), Events in a single trial in which a bar is classified according to
orientation. (b), Events in a single trial in which a bar is classified according to whether it has a
gap or not. (c), Stimulus set of eight bars
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How the Contextual Switch Works

The answer is that such abstract transformations can be easily generated if the
sensory information is gain-modulated by the context. According to modeling
work [40,41], when this happens, multiple maps between sensory stimuli and motor
actions are possible but only one map, depending on the context, is implemented at
any given time. Let’s sketch how this works.

In essence, the mechanism for solving the task in Fig. 4, or other tasks like it, is
very similar to the mechanism for generating coordinate transformations (i.e., shift-
ing receptive fields) described in section “Coordinate Transformations,” except that
x now describes the stimulus set and y the possible contexts. Instead of continuous
quantities, such as stimulus location and eye position, these two variables may now
be considered indices that point to individual elements of a set. For instance, xD1
may indicate that the first bar in Fig. 4c was shown, x D 2 may indicate that the
second bar was shown, etc. In this way, the expression fj .x/ still makes sense: it
stands for the firing rate of cell j in response to each stimulus in the set. Similarly,
yD1 now means that the current context is context 1, yD2 means that the current
context is context 2, and so on. Therefore, the response of a sensory neuron j that
is gain-modulated by context can be written exactly as in (1),

rj .x; y/ D gj .y/fj .x/ (4)

except that now rj .x D 3; y D 1/ D 10 means “neuron j fires at a rate of 10
spikes/s when stimulus number 3 is shown and the context is context 1.” Although
x and y may represent quantities with extremely different physical properties,
practically all of the important mathematical properties of (1) remain the same re-
gardless of whether x and y vary smoothly or discretely. As a consequence, although
the coordinate transformations in Figs. 1 and 3 may feel different from the remap-
ping task of Fig. 4, mathematically they represent the very same problem, and the
respective neural implementations may thus have a lot in common.

Now consider the activity of a downstream neuron that is driven by a population
of gain-modulated responses through a set of synaptic weights,

R.x; y/ D
X

j

wjgj .y/fj .x/ (5)

where wj is the connection from modulated neuron j to the downstream unit. Notice
that the weights and modulatory factors can be grouped together into a term that
effectively behaves like a context-dependent synaptic connection. That is, consider
the downstream response in context 1,

R.x; y D 1/ D
X

j

u.1/
j fj .x/ (6)
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where we have defined u.1/
j D wjgj .y D 1/. The set of coefficients u.1/

j represents
the effective synaptic weights that are active in context 1. Now comes the crucial
result: because the modulatory factors gj change as functions of context, those
effective weights will be different in context 2, and so will be the downstream re-
sponse,

R.x; y D 2/ D
X

j

u.2/
j fj .x/ (7)

where u.2/
j Dwjgj .y D 2/. Thus, the effective network connections are u.1/

j in one

context and u.2/
j in the other. The point is that the downstream response in the two

contexts, given by (6) and (7), can produce completely different functions of x.
That is exactly what needs to happen in the classification task of Fig. 4a and b – the
downstream motor response to the same stimulus (x) must be able to vary arbitrarily
from one context to another. The three expressions above show why the mechanism
works: the multiplicative changes in the gain of the sensory responses act exactly as
if the connectivity of the network changed from one context to the next, from a set
of connections u.1/

j to a set u.2/
j .

Figure 5 illustrates this with a model that performs the task in Fig. 4, classifying
a stimulus set differently in three possible contexts. In contexts 1 and 2, the stimuli
trigger left and right movements according, respectively, to their orientation or to
whether they have a gap or not, as in Fig. 4a and b. In contrast, in context 3 the
correct response is to make no movement at all; this is a no-go condition. The model
network used to generate Fig. 5 included 160 gain-modulated sensory neurons in
the first layer and 50 motor neurons in the second, or output layer. Each sensory
neuron responded differently to a set of eight distinct stimuli like those shown in
Fig. 4c. For each cell, the maximum suppression across the three contexts varied
between 0 and 30%, with a mean of 15%. The figure shows the responses of all the
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Fig. 5 A model network that performs the remapping task of Fig. 4. Gray-scale images represent
the responses of 160 gain-modulated sensory neurons to the combinations of x (stimulus) and y
(context) values shown above. White and black correspond to firing rates of 3 and 40 spikes/s,
respectively. Plots at the bottom show the responses of 50 motor neurons driven by the gain-
modulated units through synaptic connections. Identical stimuli lead to radically different motor
responses depending on the current context
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neurons in the network in four stimulus-context combinations. The firing rates of
the gain-modulated neurons of the first layer are indicated by the gray-level maps.
In these maps, the neurons are ordered such that their position along the x-axis
roughly reflects their preferred stimulus, which goes from 1 to 8. The firing rates of
the 50 motor units of the second layer are plotted below. For those cells, the location
of the peak of activity encodes the location of a motor response.

There are a couple of notable things here. First, that the sensory activity changes
quite markedly from one stimulus to another (compare the two conditions with
y D 1), but much less so from one context to another (compare the two condi-
tions with xD2). This is because the modulatory factors do not need to change very
much in order to produce a complete change in connectivity (more on this below).
Second, what the model accomplishes is a drastic change in the motor responses
of the second layer to the same stimulus, as a function of context. This includes
the possibility of silencing the motor responses altogether or not, as can be seen by
comparing the two conditions with xD7.

In summary, in this type of network a set of sensory responses are nonlinearly
modulated by contextual cues, but these do not need to be related in any way to the
physical attributes of the stimuli. The model works extremely well, in that accuracy
is limited simply by the variability (random fluctuations) in the gain-modulated re-
sponses and by the number of independent contexts [40]. In theory, it should work
in any situation that involves choosing or switching between multiple functions or
maps, as long as the modulation is nonlinear – as mentioned earlier, an exact mul-
tiplication as in (4) is not necessary, as long as x and y are combined nonlinearly.
With the correct synaptic connections driving a group of downstream neurons, such
a network can perform a variety of remapping tasks on the basis of a single trans-
formation step between the two layers [40–42].

Switching as a Fundamental Operation

The model network discussed in the previous section can be thought of as imple-
menting a context-dependent switch that changes the functional mapping between
the two layers in the network. In fact, it can be shown that gain modulation has
an effect that is equivalent to turning on and off different subsets of neurons as a
function of context, or more generally, of the modulatory quantity y [41].

To illustrate this, consider the problem of routing information from a network A
to two possible target networks B and C , such that either the connections A ! B

are active or the connections A ! C are active, but not both. An example of this
is a task in which the subject has to reach for an object that may appear at a variety
of locations, but depending on the shape of the fixation point, or some other cue,
he must reach with either the left or the right hand. In this situation, the contextual
cue must act as a switch that activates one or the other downstream motor circuit,
but it must do so for any stimulus value.
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Fig. 6 Two possible schemes
for routing information to
either of two motor networks.
One motor network should
respond in context 1 and the
other in context 2. (a) With
two subpopulations of
“switching neurons,” which
are 100% suppressed in their
nonpreferred contexts. (b)
With one population of
partially modulated neurons,
which show mild suppression
in their nonpreferred contexts

Figure 6 schematizes two possible ways in which such a switch could be imple-
mented. In the network of Fig. 6a, there are two separate sets of sensory responses
that are switched on and off according to the context, and each subpopulation drives
its own motor population downstream. This scheme requires true “switching neu-
rons” that can be fully suppressed by the nonpreferred context. This type of neuron
would need to respond as in Fig. 2a. This, admittedly, is a rather extreme and un-
realistic possibility, but it nonetheless provides an interesting point of comparison:
clearly, with such switching neurons it is trivial to direct the sensory information
about target location to the correct motor network; and it is also clear that the two
motor networks could respond in different ways to the same sensory input. In a way,
the problem has simply been pushed back one step in the process.

An alternative network organization is shown in Fig. 6b. In this case, one single
set of gain-modulated sensory neurons is connected to the two motor populations.
What can be shown theoretically [41], is that any sensory-motor mapping that can be
achieved with switching neurons (as in Fig. 6a), can also be implemented with stan-
dard, partially modulated neurons (as in Fig. 6b). Of course the necessary synaptic
weights will be different in the two cases, but in principle, under very general con-
ditions, if something can be done with 100% suppression, it can also be done with a
much smaller amount of suppression (there may be a cost in terms of accuracy, but
this depends on the level of noise in the responses and on the size of the network,
among other factors [41]). In particular, a suppression of 100% is not necessary to
produce a switch in the activated downstream population, as required by the task
just discussed in which either the left or the right hand is used. This result offers a
unique intuition as to why gain modulation is so powerful: modulating the activity
of a population is equivalent to flipping a switch that turns on or off various sets of
neurons.

This result is illustrated in Fig. 7, which shows the responses of a model network
that has the architecture depicted in Fig. 6b. The x and y variables here are, re-
spectively, the location of a stimulus, which takes a variety of values between �16
and 16, and the context, which takes two values. Figure 7a, c shows the activity
of the 100 gain-modulated sensory neurons in the network in contexts 1 and 2,
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Fig. 7 Responses in a model network that routes information to two separate motor populations,
as in Fig. ch07:fig6b. In context 1, one motor population is active and responds to all stimulus loca-
tions (x); in context 2, the other motor population is active. a, c Responses of the gain-modulated
sensory neurons in contexts 1 and 2, respectively. b, d Responses of the motor neurons in contexts
1 and 2, respectively

respectively. These units are tuned to stimulus location, so they have peaked tuning
curves like those in Fig. 2b, c. The 100 units have been split into two groups, those
that have a higher gain or response amplitude in context 1 (units 1–50) and those
that have a higher gain in context 2 (units 51–100). The neurons in each group are
arranged according to their preferred stimulus location. This is why Fig. 7a and c
show two bands: for each value of x, the neurons that fire most strongly in each
group are those that have preferred values close to x. Notice that the activity pat-
terns in Fig. 7a, c are very similar. This is because the differences in gain across the
two contexts are not large: the percent suppression in this case ranged between 0
and 65%, with a mean of 32%.

What is interesting about this example is the behavior of the motor populations
downstream. In context 1, one population responds and the other is silent (Fig. 7b),
whereas in context 2 the roles are reversed, the second population responds and the
first is silent (Fig. 7d). Importantly, this does not occur just for one value or a small
number of values of x, but for any value. This switch, controlled by a contextual
cue y, is generated on the basis of relatively small modulatory effects in the top
layer. Thus, the modeling results reviewed here provide another interesting insight:
small variations in the response gain of neurons in area A may be a signature of
dramatically large variations in the activity of a downstream area B .
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In the example of Fig. 7, the activated motor population simply mirrors the
activation pattern in the sensory layer; that is, the sensory-motor map is one-to-one.
This simple case was chosen to illustrate the switching mechanism without further
complications, but in general, the relationship between stimulus location and the
encoded motor variable (motor location) may be both much more complicated and
different for the two contexts.

Flexible Responses to Complex Stimuli

To recapitulate what has been presented: coordinate transformations and arbitrary
sensory-motor associations are types of mathematical problems that are akin to im-
plementing a switch from one function of x to another, with the switch depending
on a different variable y. Thus, in the mammalian brain, performing coordinate
transformations and establishing arbitrary sensory-motor maps should lead to the
deployment of similar neural mechanisms. Modeling work has shown that the non-
linear modulation of sensory activity can reduce the problem of implementing such a
switch quite substantially, and this is consistent with experimental reports of nonlin-
ear modulation by proprioceptive, task-dependent, and contextual cues in a variety
of tasks (“Experimental Evidence for Gain Modulation”).

There is, however, an important caveat. One potential limitation of gain mod-
ulation as a mechanism for performing transformations is that it may require an
impossibly large number of neurons, particularly in problems such as invariant ob-
ject recognition [18, 39, 44, 64] in which the dimensionality of the relevant space is
high. The argument goes like this. Suppose that there are N stimuli to be classified
according toM criteria, as a generalization of the task in Fig. 4. To perform this task,
a neuronal network will need neurons with all possible combinations of stimulus and
context sensitivities. Thus, there must be neurons that prefer stimuli 1; 2; : : : N in
context 1, neurons that prefer stimuli 1; 2; : : : N in context 2, and so on. Therefore,
the size of the network should grow as N �M , which can be extremely large. This
is sometimes referred to as “the curse of dimensionality.”

Although this is certainly a challenging problem, its real severity is still unclear.
In particular, O’Reilly and colleagues have argued [34, 35] that the combinatorial
explosion may be much less of a problem than generally assumed. In essence, they
say, this is because neurons are typically sensitive to a large range of input values,
and the redundancy or overlap in this coarse code may allow a network to solve such
problems accurately with many fewer than N � M units. At least in some model
networks, it has indeed been demonstrated that accurate performance can be ob-
tained with many fewer than the theoretical number of necessary units [10, 34, 35].
In practice, this means that it may be possible for real biological circuits to solve
many remapping tasks with relatively few neurons, if they exhibit the appropriate
set of broad responses to the stimuli and the contexts.

So, assuming that the curse of dimensionality does not impose a fundamen-
tal limitation, does gain modulation solve the flexibility problem discussed at the
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Fig. 8 Two examples of
scenes with multiple objects.
Each display can be
considered as a single
complex stimulus

a b

beginning of the chapter? No, it does not, and this is why. All of the tasks and be-
haviors mentioned so far have been applied to single, isolated stimuli. If an organism
always reacted to one stimulus at a time, then gain modulation would be enough for
selecting the correct motor response under any particular context, assuming enough
neurons or an appropriate coarse code. However, under natural conditions, a sensory
scene in any modality contains multiple objects, and choices and behaviors are dic-
tated by such crowded scenes. Other neural mechanisms are needed for (1) selecting
one relevant object from the scene, or (2) integrating information across different lo-
cations or objects within a scene (note that similar problems arise whenever a choice
needs to be made on the basis of a collection of objects, even if they appear one by
one spread out over time). Thus, to produce a flexible, context-dependent response
to a complex scene, gain modulation would need to be combined at least with other
neural mechanisms for solving these two problems.

To put a simple example, consider the two displays shown in Fig. 8. If each dis-
play is taken as one stimulus, then there are many possible ways to map those two
stimuli into “yes” or “no” responses. For instance, we can ask: Is there a triangle
present? Is an open circle present on the right side of the display? Are there five
objects in the scene? Or, are all objects different? Each one of these questions plays
the role of a specific context that controls the association between the two stimuli
and the two motor responses. The number of such potential questions (contexts) can
be very large, but the key problem is that answering them requires an evaluation of
the whole scene. Also, it is known from psychophysical experiments that subjects
can change from one question to another extremely rapidly [61]. Gain modulation
has the advantage of being very fast, and could indeed be used to switch these as-
sociations, but evidently the mechanisms for integrating information across a scene
must be equally important.

As a first step in exploring this problem, we have constructed a model network
that performs a variety of search tasks [8]. It analyzes a visual scene with up to eight
objects and activates one of two output units to indicate whether a target is present
or absent in the scene. As in the models described earlier, this network includes
sensory neurons, which are now modulated by the identity of the search target, and
output neurons that indicate the motor response. The target-dependent modulation
allows the network to switch targets, that is, to respond to the question, is there a
red vertical bar present, or to the question, is there a blue bar present, and so on.
Not surprisingly, this model does not work unless an additional layer is included
that integrates information across different parts of the scene. When this is done,
gain modulation indeed still allows the network to switch targets, but the proper-
ties of the integration layer become crucial for performance too. There are other
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models for visual search that do not switch targets based on gain modulation; these
are generally more abstract models [23, 60]. Our preliminary results [8] are encour-
aging because neurophysiological recordings in monkeys trained to perform search
tasks have revealed sensory responses to individual objects in a search array that are
indeed nonlinearly modulated according to the search target or the search instruc-
tions [9,33]. Furthermore, theoretical work by Navalpakkam and Itti has shown that
the gains of the sensory responses evoked by individual elements of a crowded scene
can be set for optimizing the detection of a target [32]. This suggests that there is
an optimal gain modulation strategy that depends on the demands of the task, and
psychophysical results in their study indicate that human subjects do employ this
optimal strategy [32].

In any case, the analysis of complex scenes should give a better idea of what can
and cannot be done using gain modulation, and should provide ample material for
future studies of the neural basis of flexible behavior.
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Far in Space and Yet in Synchrony: Neuronal
Mechanisms for Zero-Lag Long-Range
Synchronization

Raul Vicente, Leonardo L. Gollo, Claudio R. Mirasso, Ingo Fischer,
and Gordon Pipa

Abstract Distant neuronal populations are observed to synchronize their activity
patterns at zero-lag during certain stages of cognitive acts. This chapter provides
an overview of the problem of large-scale synchrony and some of the solutions
that have been proposed for attaining long-range coherence in the nervous system
despite long conduction delays. We also review in detail the synchronizing prop-
erties of a canonical neuronal microcircuit that naturally enhances the isochronous
discharge of remote neuronal resources. The basic idea behind this mechanism is
that when two neuronal populations relay their activities onto a third mediating
population, the redistribution of the dynamics performed by the latter leads to a self-
organized and lag-free synchronization among the pools of neurons being relayed.
Exploring the physiological relevance of this mechanism, we discuss the role of as-
sociative thalamic nuclei and their bidirectional interaction with the neocortex as a
relevant physiological structure in which the network module under study is densely
embedded. These results are further supported by the recently proposed role of tha-
lamocortical interactions as a substrate for the trans-areal cortical coordination.

Introduction

The development of multi-electrode recordings was a major breakthrough in the his-
tory of systems neuroscience [1]. The simultaneous monitoring of the extracellular
electrical activity of several neurons provided a solid experimental basis for elec-
trophysiologists to test the emergence of neuronal assemblies [2]. Specifically, the
parallel registration of spike events resulting from different cells permitted the eval-
uation of temporal relationships among their trains of action potentials, an eventual
signature of assembly organization. Modern multielectrode techniques have now
the capacity to simultaneously listen to a few hundreds of cells and, in contrast to
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serial single cell recordings, to reveal temporally coordinated firing among different
neurons that is not linked to any external stimulus but rather to internal neuronal
interactions. Only equipped with such class of technology it was possible to unveil
one of the most interesting scenarios of structured timing among neurons, namely
the consistent and precise simultaneous firing of several nerve cells, a process re-
ferred to as neuronal synchrony [3].

Neuronal synchronization has been hypothesized to underly the emergence of
cell assemblies and to provide an important mechanism for the large-scale integra-
tion of distributed brain activity [3,4]. One of the basic ideas in the field is called the
binding by synchrony theory which exploits the dimension that temporal domain
offers for coding [3, 5–8]. Essentially, it states that synchrony can be instrumen-
tal for temporally bringing together the processing output of different functionally
specialized areas in order to give rise to coherent percepts and behavior. The dif-
ferential effect that synchronous vs. temporally dispersed inputs can exert onto a
downstream neuron indicates how the temporal coherence of a set of neurons can
become a flexible and potentially information-carrying variable that can modulate
subsequent stages of processing [3,9,10]. Despite an ongoing debate about its func-
tional role in neuronal processing is still open, the last two decades have seen the
accumulation of large amount of data which show evidence, at least in a correlative
manner, for a role of synchrony and the oscillatory activity that often accompanies
it in a variety of cognitive processes ranging from perceptual grouping or stimulus
saliency to selective attention or working memory [7, 11–14].

Interestingly, neuronal synchrony is not restricted to the local environment of a
single cortical column or area. Rather, long-range synchrony across multiple brain
regions, even across inter-hemispheric domains, has been reported in several species
including the cat and primate cortex [15–20]. However, the zero-lag correlated ac-
tivity of remote neuronal populations seems to challenge a basic intuition. Namely,
one tends to tacitly assume that since the interaction among distant systems is re-
tarded by the conduction delays (and therefore, that it is the past dynamics of one
system what is influencing the other one at present) it is not possible that such inter-
action alone can induce the isochronous covariation of the dynamics of two remote
systems. Actually, the latencies associated with conducting nerve impulses down
axonal processes can amount to several tens of milliseconds for a typical long-range
fiber in species with medium- or large-sized brains [21–23]. These ranges of con-
duction delays are comparable with the time-scale in which neuronal processing
unfolds and therefore they cannot be simply discarded without further justification.
Furthermore, profound effects in the structure and dynamics of the nervous system
might have arisen just as a consequence of the communication conditions imposed
by the time delays [24, 25]. As an example, several proposals of the origin of the
lateralization of brain functions are based on the temporal penalty to maintaining
information transferring across both hemispheres [26, 27].

The aim of this chapter is to illustrate that appropriate neuronal circuitries can
circumvent the phase-shifts associated with conduction delays and give rise to
isochronous oscillations even for remote locations. The chapter begins with a brief
review of some theories that have been proposed to sustain long-range synchrony in
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the nervous system. Then we explore a novel and simple mechanism able to account
for zero-lag neuronal synchronization for a wide range of conduction delays [28–
31]. For that purpose, we shall investigate the synchronizing properties of a specific
network motif which is highly expressed in the cortico-thalamo-cortical loop and in
the cortex itself [32–34]. Such circuitry consists of the relaying of two pools of neu-
rons onto a third mediating population which indirectly connects them. The chapter
goes on by presenting the results of numerical simulations of the dynamics of this
circuit with two classes of models: first using Hodgkin and Huxley (HH) type of
cells and second building large-scale networks of Integrate and Fire (IF) neurons.
Finally, and after a detailed characterization of the influence of long-conduction de-
lays in the synchrony of this neural module, we discuss our results in the light of the
current theories about coherent cortical interactions.

How can Zero-Lag Long-Range Synchrony Emerge Despite
of Conduction Delays?

Before discussing different mechanisms proposed to cope with the long-range syn-
chrony problem, it is first necessary to understand the origin of the delay that arises
in neuronal interactions. As a rule, it is possible to dissect in at least five different
contributions the latency in the communication between two neurons via a proto-
typical axo-dendritic chemical synapse. For illustration purposes here we follow the
time excursion of an action potential generated in a presynaptic cell up to becoming
a triggering source for a new spike in a postsynaptic cell.

	 The first component is due to the propagation of an action potential from the
axon hillock to the synaptic terminal. The limited axonal conduction velocity
imposes a delay ranging from a few to tens of milliseconds depending on the
caliber, myelination, internodal distance, length of the axonal process, and even
the past history of impulse conduction along the axon [23, 35, 36].

	 A second element of brief latency occurs due to the synaptic transmission. Af-
ter the action potential has reached the presynaptic ending several processes
contribute to different degree to the so-called synaptic delay. These include the
exocytosis of neurotransmitters triggered by calcium influx, the diffusion of the
transmitters across the synaptic cleft, and their binding to the postsynaptic spe-
cializations. Altogether the complete process from the release to the binding to
specialized channels can typically span from 0:3ms to even 4ms [37].

	 Another source of delay is the rise time of the postsynaptic potential. Different
ionic channels show different time-scales in producing a change in the mem-
brane conductance which eventually induces the building-up of a significant
potential. For fast ionotropic AMPA or GABAA receptors it can take a time of
the order of half a millisecond for such a process to rise a postsynaptic potential
[38].
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	 Dendritic propagation toward the soma by either passive or active conduction is
also a source of a small lag which value depends on the dendritic morphology.

	 Finally, the postsynaptic neuron can exploit several mechanisms, such as mem-
brane potential fluctuations, to control to some degree an intrinsic latency in
triggering a new action potential [39].

For long-distance fibers the most important contribution of delay typically comes
from the axonal conduction. In human, an averaged-sized callosal axon connect-
ing the temporal lobes of both hemispheres is reported to accumulate a delay of
25ms [26]. This is certainly not a negligible quantity, specially in the light of
results showing an important role for precise temporal relations among neuron
discharges.

Nevertheless, a fiber connecting two brain regions is inevitably composed of non-
identical axons, which give rise to a broad spectrum of axonal delays rather than a
single latency value [26,40]. This is one of the possible substrates for the establish-
ment long-range synchrony, i.e., the systematic presence (within such a spectrum)
of very fast axons reciprocally interconnecting all possible areas susceptible of
expressing synchrony. Within this framework the combination of a hypothetical ex-
tensive network of very fast conducting axons with the phase resetting properties
of some class of neurons could in principle sustain an almost zero-lag long-range
synchrony process. GABAergic neurons have been indicated to meet the second of
such requirements. Via a powerful perisomatic control this type of cells can exert
a strong shunting and hyperpolarizing inhibition which can result in the resetting
of oscillations at their target cells [41–43]. Their critical role in generating several
local rhythms has been well described [44, 45]. However, their implication in the
establishment of long-distance synchrony is heavily compromised because the ex-
pression of fast long-range projections by interneurons is more the exception than
the rule [43, 45]. Another important consideration is that long-range connections
in a brain do not come for free. Even a small fraction of long-distance wiring can
occupy a considerably portion of brain volume, an important factor that severely
restricts the use of fast large-diameter fibers [26, 45].

Electrical synapses, and in special gap junctions, have also been involved in
explaining spread neuronal synchrony [46]. Gap junctions consist of clusters of spe-
cialized membrane channels that interconnect the intracellular media of two cells
and mediate a direct electrical coupling and the transferring of small molecules be-
tween them [47]. Evidence for gap junctions’ role in giving rise to fast rhythmic
activity has been put forward by observations that fast oscillations can be generated
in conditions where chemical synaptic transmission was blocked [48]. Gap junc-
tions also present two clear advantages over chemical synapses for the induction of
zero-lag synchrony. First, they are not affected by synaptic delays since no neuro-
transmitters are used. Second, the electrotonic coupling between cells mainly acts
via diffusion mechanisms and therefore, it tends to homogenize the membrane po-
tential of the cells involved. Thus, gap junctions can be considered of synchronizing
nature rather than excitatory or inhibitory class [46]. However, as we have pointed
out before for long-distance fibers the axonal delay is the largest component of la-
tency and the saving corresponding the elimination of the synaptic delay can just



Neuronal Mechanisms of Zero-Lag Long-Range Synchrony 147

correspond to a small fraction of the total. In any case, electrical synapses are be-
lieved to underly homogenization of firing among neurons and to foster synchrony
in moderately distributed networks [46, 49, 50].

Proposals for explaining the observed long-range synchronous fast dynamics in
the cortex have also been inspired by the study of coupling distant oscillations. In
this context, R. Traub and others investigated the effect of applying dual tetanic
stimulation in hippocampal slices [51]. The authors of [51] observed that a strong
simultaneous tetanic stimulation at two distant sites in a slice preparation induced
gamma-frequency oscillations that were synchronous. The concomitant firing of
spike doublets by some interneurons with such double stimulation condition plus
modeling support, led the authors to infer that a causal relationship between the
interneuron doublet and the establishment of long-range synchrony should hold
[51, 52].

From other perspective, it is important to recall that neuronal plasticity is a
key element in determining the structural skeleton upon which dynamical states
such as synchrony can be built. Therefore, the experience-driven process of shap-
ing neuronal connectivity can considerably impact the ability and characteristics
of synchronization of a given neuronal structure. Interestingly, this interaction can
go in both directions and correlated input activity can also influence the connec-
tivity stabilization via certain plasticity processes [53]. With respect to the specific
issue of the influence of axonal delays in long-range coherence, modeling studies
have shown that spike-timing-dependent plasticity rules can stabilize synchronous
gamma oscillations between distant cortical areas by reinforcing the connections the
delay of which matches the period of the oscillatory activity [54, 55].

In summary, there are a number of factors and mechanisms that have been put
forward to explain certain aspects of the long-range synchronization of nerve cells.
Synchronization is a process or tendency toward the establishment of a dynamical
order with many possible participating sources, and as a result it is not strange that
several mechanisms can simultaneously contribute or influence it. Thus, neural sys-
tems might use distinct strategies for the emergence of coherent activity at different
levels depending on the spatial scale (local or long-range), dynamical origin (intra-
cortical or subcortical oscillations), and physiological state (sleep or awake), among
others. Nevertheless, one should notice that a significant long-range synchronization
is observed across different species with different brain sizes and at different stages
of the developmental growth of brain structures. This point strongly suggests that
any robust mechanism for generating zero time-lag long-distance cortical synchrony
maintains its functionality for a wide range of axonal lengths. While it is possible
that developmental mechanisms compensate for the resulting delay variations [56]
it is still difficult to explain all the phenomenology of long-distance synchronization
without a mechanism that inherently allows for zero-lag synchronization for a broad
range of conduction delays and cell types. In the following parts of this chapter, we
focus our attention on a recently proposed scheme named dynamical relaying which
might contribute to such mechanism [28–31].
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Zero-Lag Long-Range Neuronal Synchrony
via Dynamical Relaying

In this section, we explore a simple network module that naturally accounts for
the zero-lag synchrony among two arbitrarily separated neuronal populations. The
basic idea that we shall further develop later, is that when two neuronal populations
relay their activities onto a mediating population, the redistribution of the dynamics
performed by this unit can lead to a robust and self-organized zero-lag synchrony
among the outer populations [28–31].

At this point it is important to recall the separation of processes generating lo-
cal rhythms or oscillations in a brain structure from the mechanisms responsible for
their mutual synchronization. The model and simulations that are presented below
provide a proof of principle for a synchronizing mechanism among remote neuronal
resources despite long axonal delays. No particular brain structure or physiological
condition is intended to be faithfully reproduced, rather the main objective is the
demonstration that under quite general conditions an appropriate connectivity can
circumvent the phase lags associated to conduction delays and induce a zero-lag
long-range synchrony among remote neuronal populations. In any case, it is worth
mentioning that the diffuse reciprocal connectivity, the dynamical consequences of
which we study below, is characteristic of the interaction of the neocortex with
several thalamic nuclei [32, 33]. Connectivity studies in primate cortex have also
identified the pattern of connections investigated here as the most frequently re-
peated network motif at the level of cortico-cortical connections [34, 57, 58].

Illustration of Dynamical Relaying in a Module of Three HH Cells

The most simple configuration to illustrate the effects of dynamical relaying corre-
sponds to the study of the activities of two neurons that interact by mutually relaying
their dynamics onto a third one. We begin then by investigating a circuit composed
of three HH cells with reciprocal delayed synaptic connections (see top panel in
Fig. 1 for an schematic representation of the network architecture). We first con-
sider a condition in which the isolated neurons already operate in an intrinsic spiking
state and observe how the synaptic activity modifies the timing of their action poten-
tials. To this end we add an intracellular constant current stimulation (10�A/cm2)
so that each isolated neuron develops a tonic firing mode with a natural period of
14:7ms. The initial phase of the oscillations of each cell is randomly chosen to ex-
clude any trivial coherent effect. Finally, we also set all axonal conduction delays in
the communication between neurons to a considerably long value of 8ms to mimic
the long-range nature of the synaptic interactions. Further details about the method-
ology used in the following simulations can be found at the “Methods” section at
the end of the chapter. In Fig. 1 we show the evolution of the membrane potentials
under such conditions before and after an excitatory synaptic coupling among the
cells is activated.



Neuronal Mechanisms of Zero-Lag Long-Range Synchrony 149

Time (ms)

M
em

br
an

e 
vo

lta
ge

 (
m

V
) −100

−50

0

50

−20 0 20 40 60 80 100 120

−100

−50

0

50

−100

−50

0

50

Neuron α

Neuron β

Neuron γ

Fig. 1 Time series of the membrane voltage of three coupled HH cells N˛ � N� � Nˇ . At time
t D 0 the excitatory synapses were activated. Conduction delay � D 8ms. Vertical lines help the
eye to compare the spike coherence before and after the interaction takes place

Previously to the switch-on of the synaptic coupling between the cells we can
observe how the three neurons fire out of phase as indicated by the left vertical
guide to the eye in Fig. 1. However, once the interaction becomes effective at t D 0

and synaptic activity is allowed to propagate, a self-organized process, in which the
outer neurons synchronize their periodic spikes at zero-phase even in the presence
of long conducting delays, is observed. It is important to notice that no external
agent or influence is responsible for the setting of the synchronous state but this is
entirely negotiated by the network itself. Furthermore, we checked that the present
synchrony is not just a phase condition between purely periodic oscillators but a true
temporal relationship. To that end, we added independent noisy membrane fluctua-
tions to each neuron that resulted in a nonperfectly deterministic firing of the three
neurons. In this case, the circuit maintained an approximated zero-lag synchrony
between the outer neurons, reflecting both the robustness of the synchrony mecha-
nism to moderate noise perturbations and showing that the synchrony process can
be generalized beyond a phase relation.

The mechanism responsible for synchronization depends on the ability of an
EPSP to modify the firing latencies of a postsynaptic neuron in a consistent man-
ner. It further relies on the symmetric relay that the central neuron provides for the
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indirect communication between the outer neurons. The key idea is that the network
motif under study allows for the outer neurons to exert an influence on each other
via the intermediate relay cell. Thus, the reciprocal connections from the relay cell
assure that the same influence that is propagating from one extreme of the network
to the other is also fed-back into the neuron which originated the perturbation and
therefore, promoting the synchronous state.

It must be noticed, however, that the effect of a postsynaptic potential on a neuron
strongly depends on the internal state of the receiving cell, and more specifically on
the phase of its spiking cycle at which a postsynaptic potential (PSP) arrives [59,60].
Since the neurons of the module are in general at different phases of their oscilla-
tory cycles (at least initially) the effects of the PSPs are different for the three cells.
The magnitude and direction of the phase-shifts induced by PSPs can be character-
ized by phase response curves. The important point here is that the accumulation
of such corrections to the interspike intervals of the outer neurons is such that after
receiving a few PSPs they compensate the initial phase difference and both cells end
up discharging isochronously, representing a stable state. Simulations predict that a
millisecond-precise locking of spikes can be achieved already after the exchange of
only a few spikes in the network (in a period as short as 100ms). This value is found
to be a function of the maximal synaptic conductivity and can be even shorter for
stronger synapses.

A key issue of the synchronization properties exhibited by such network archi-
tecture is whether the zero-lag correlation can be maintained for different axonal
lengths or whether it is specific to a narrow range of axonal delays. To resolve this
issue we need to test the robustness of the synchronous solution for other values of
the conduction delays. In Fig. 2, we show the quality of the zero-lag synchroniza-
tion for two HH cells as a function of the conduction delay. In that graph we plot the
results for two different scenarios: one in which the neurons are directly coupled via
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Fig. 2 Dependence of zero time-lag synchronization as a function of the axonal delay for a scheme
of two coupled cells (dashed line) and three coupled cells (solid line). In the case of the three
interacting cells only the synchrony between the outer neurons is plotted here
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excitatory synapses (dashed line) and a second one in which the two neurons interact
through a relay cell also in an excitatory manner (solid line). A quick comparison
already reveals that while the direct excitatory coupling exhibits large regions of
axonal conduction delays where the zero-lag synchrony is not achieved, the relay-
mediated interaction leads to zero time-lag synchrony in 28 out of the 30 delay
values explored, (1–30 ms). Only for the cases of � D 3ms and � D 10ms the
network motif under study does not converge to the isochronous discharge for the
outer neurons. For such latencies the three cells entered into a chaotic firing mode in
which the neurons neither oscillate with a stable frequency nor exhibit a consistent
relative lag between their respective spike trains.

Robust zero-lag synchrony among the outer neurons is also observed when the
synaptic interaction between the cells is inhibitory instead of excitatory. Different
synaptic rise and decay times within the typical range of fast AMPA and GABAA

mediated transmission were tested with identical results as those reported above.
These results indicate that the network motif of two neurons relaying their activities
through a third neuron leads to a robust zero-lag synchrony almost independently
of the delay times and type of synaptic interactions. We have also conducted simu-
lations to test the robustness of this type of synchrony with respect to the nature of
the relay cell. The results indicate that when a relay cell is operating in a parameter
regime different from the outer ones (such as different firing rate or conductances),
the zero-lag synchrony is not disturbed. Remarkably, even in the case where the
relay cell is operating in a subthreshold regime, and thus only spiking due to the ex-
citatory input from any of the outer neurons, the process of self-organization toward
the zero-lag synchrony is still observed. It is also worth mentioning that in all cases
such firing coherence is achieved through small shifts in the spiking latencies which
leave the mean frequency of discharges (or rate) almost unchanged.

Effect of a Broad Distribution of Conduction Delays

Axons show a significant dispersion in properties such as diameter, myelin thick-
ness, internodal distance, and past history of nerve conduction. Within a fiber bundle
the variability from one axon to another of these characteristics is directly related
to the speed of propagation of action potentials along them and eventually trans-
lates into the existence of a whole range of latencies in the neuronal communication
between two separated brain areas. Thus, conduction times along fibers are more
suitably considered as a spectrum or distribution rather than a single latency value
[26, 40].

A crucial question is therefore whether the synchronization transition that we
have described in the former section is restricted to single latency synaptic path-
ways or preserved also for broad distributions of axonal delays. To answer this issue
we model the dispersion of axonal latencies by assuming that individual temporal
delays of the arrivals of presynaptic potentials (i.e., latency times) are spread accord-
ing to a given distribution. This intends to mimic the variability among the different
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Fig. 3 Left panels: gamma distribution of delays with different shape factors (k D 1, 5, and 20)
and the same mean (� D 8ms). Right panel: synchronization index at zero-lag of the outer neurons
as a function of the shape factor and mean of the distribution of delays.

axons within a fiber bundle connecting two neuronal resources. Since data about ax-
onal distributions of conduction velocities in long-range fibers is limited, specially
in the case of humans [26,40], and there is probably not a unique prototypical form
of such distributions we explore a whole family of gamma distributions with dif-
ferent shapes (see the “Methods” section). The left panels shown in Fig. 3 illustrate
different gamma distributions of axonal delays for three different shape factors.

Our numerical simulations indicate that for a large region of mean delays (be-
tween 3 and 10ms) the outer neurons synchronize independently of the shape of the
distribution. These results can be observed in the right panel of Fig. 3 where we plot
the zero-lag synchronization index of the outer neurons of the network motif as a
function of the shape of the gamma distribution of axonal delays and its mean value.
Only distributions with unrealistic small shape factor (i.e., exponentially decaying
distributions) prevent synchrony irrespective of the average delay of the synaptic
connections. For more realistic distributions, there is a large region of axonal de-
lays that gives rise to the zero-lag synchrony among the outer neurons. As in the
case of single latencies, we find a drop in the synchrony quality for distributions
with a mean value around O� � .10�12/ms, where chaotic firing is observed. The
isochronous spiking coherence is in general recovered for larger mean delay values.

So far we have considered a rather symmetric situation in which similar distri-
butions of axonal delays are present in each of the two branches that connect the
relay neuron to the outer units. This assumption can only hold when the relay cell
is approximately equidistant from the outer ones. In the final section of this chapter
we refer to several results pointing to the thalamic nuclei and their circuitry as ideal
relay centers of cortical communication which approximately satisfy this condition.
It is nevertheless advisable to investigate the situation in which the axonal delays
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of each of the two pathways of the network motif are described by dissimilar dis-
tributions. In this case, we find that if the distributions of delays for each branch
have different mean values then a nonzero phase-lag appears between the dynamics
of the outer neurons. This effect is illustrated for gamma distributions of different
shape factors in Fig. 4. For delta distributions of delays (which is equivalent to the
single latency case) the lag amounts to the difference in mean values. Thus, if one
of the pathways is described by a delta distribution of delays centered at �a D 5ms
while the other is represented by a latency of �b D 7ms, then after some transient
the neuron closer to the relay cell consistently fires 2ms (i.e., �b � �a) in advance
to the other outer neuron. It is worth to note that such value is still much smaller
than the total delay accumulated to communicate both neurons (�a C �b D 12ms).
When studying the effect of broader distributions of delays, we observed that outer
cells tend to fire with a lag even smaller than the difference in the mean values of
the distributions. Thus, our results suggest that broader distributions of delays can
help distant neurons to fire almost isochronously.

Dynamical Relaying in Large-Scale Neuronal Networks

A further key step in demonstrating the feasibility of synchronizing widely sepa-
rated neurons via dynamical relaying is the extension of the previous results to the
level of neuronal populations, the scale at which neuronal microcircuits develop
their function [61]. Far from being independent, the dynamical response of any
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neuron is massively affected by the activity of the local neighborhood and by the
long-range afferents originating in distant populations. It is also important to con-
sider the random-like influences usually referred to as background noise, a term
that collects a variety of processes from spontaneous release of neurotransmitters to
fluctuations of unspecific inputs [62, 63]. In such a scenario, we explore whether
long-range fibers supporting dynamical relaying, and thus indirectly connecting
pools of neurons, are suitable to promote remote interpopulation synchrony in the
presence of local interactions and noise sources.

To check if zero-lag correlated firing is thus induced among neurons in differ-
ent populations we built three large networks of sparsely connected excitatory and
inhibitory IF neurons. We interconnect the three populations following the topol-
ogy of the network motif under study, i.e., the mutual relaying of activities of two
external populations onto an intermediate pool of relay neurons. For details on the
building of each network and their connectivity see the “Methods” section.

We first begin by initializing the three networks without the long-range inter-
population connections. Thus only the recurrent local connections and the Poisso-
nian external background are active and then responsible for any dynamics in the
stand-alone networks. Consequently, each population initially exhibits incoherent
spiking of their neurons with respect to neurons belonging to any of the other pop-
ulations. Once the long-range synapses are activated at t D 100ms, we observe
how the firing of the neurons organize toward the collective synchrony of the outer
populations. Thus, the firing cycles of the outer networks of neurons occur with
decreasing phase lags until both populations discharge near simultaneously and ex-
hibit almost zero-phase synchrony. Figure 5 illustrates the typical raster plots, firing
histograms, and cross-correlograms of neurons among the three inter-connected net-
works for a long conduction delay of 12ms. Similar results are observed when other
axonal delays in the range of 2–20 ms are explored.

The effective coupling of the networks modifies the relative timing among their
spikes yielding populations 1 and 3 to rapidly synchronize. However, the qualitative
dynamics of each single neuron seems to be not so much altered by the interaction
and periodic firing of comparable characteristics is found in both the coupled and
uncoupled case (compare the firing of the central population in Figs. 5 and 6 where
in the latter the population 2 remains uncoupled from other populations). Indeed,
the mean period of the coupled oscillatory activity (�32ms) is found to be close to
the local rhythm of an isolated network (�34ms), and therefore the coupling has
little effect on the frequency of oscillation. This indicates that zero-lag synchrony
can be brought by this mechanism via small latency shifts without hardly affect-
ing the nature of the neuronal dynamics. A different situation might appear when
no prominent oscillatory activity is present in the isolated networks before they are
functionally coupled. In that case (not illustrated here) we find that the reciprocal
coupling among the networks can act as a generator of oscillations and zero-lag syn-
chrony. In the latter case we find the period of the population oscillations strongly
influenced by the conduction delay times and as a result by the coupling.
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Fig. 5 Dynamics of three large-scale networks interacting through dynamical relaying. Panel (a)
raster plot of 300 neurons randomly selected among the three populations (neurons 1–100 are from
Pop. 1, 101–200 from Pop. 2, and 201–300 from Pop. 3). The top 20 neurons of each subpopulation
(plotted in gray) are inhibitory, and the rest excitatory (black). Panel (b) firing histogram of each
subpopulation of 100 randomly selected neurons (black, red, and blue colors code for populations
1, 2, and 3, respectively). Panel (c) averaged cross-correlogram between neurons of Pop. 1 and
Pop. 2. Panel (d) averaged cross-correlogram between neurons of Pop. 2 and Pop. 3. Panel (e)
averaged cross-correlogram between neurons of Pop. 1 and Pop. 3. At t D 100ms the external
interpopulation synapses become active. Bin sizes for the histogram and correlograms is set to
2ms. Interpopulation axonal delays are set to 12ms.

To better determine the role of the relay cells (Pop. 2) in shaping the synchro-
nization among cells belonging to remote neuronal networks (Pop. 1 and Pop. 3),
we designed the following control simulation. We investigated the neuronal dynam-
ics obtained under exactly the same conditions as in the former approach with the
only variation that this time the two outer networks interacted directly. The results
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Fig. 6 Dynamics of two large-scale networks interacting directly. Population 2 is disconnected
from other populations. Panel (a) raster plot of 300 neurons randomly selected among the three
populations (neurons 1–100 are from Pop. 1, 101–200 from Pop. 2, and 201–300 from Pop. 3).
The top 20 neurons of each subpopulation (plotted in gray) are inhibitory, and the rest excitatory
(black). Panel (b) firing histogram of each subpopulation of 100 randomly selected neurons (black,
red, and blue colors code for populations 1, 2, and 3, respectively). Panel (c) averaged cross-
correlogram between neurons of Pop. 1 and Pop. 2. Panel (d) averaged cross-correlogram between
neurons of Pop. 2 and Pop. 3. Panel (e) averaged cross-correlogram between neurons of Pop. 1
and Pop. 3. At t D 100ms the external interpopulation synapses become active. Bin sizes for the
histogram and correlograms is set to 2ms. Interpopulation axonal delays are set to 12ms.

are summarized in Fig. 6. Although only the topology of the connections has been
changed, this is enough to eliminate the zero-lag synchronization of networks 1
and 3, highlighting the essential role of a relaying population.
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So far we have focused on studying how a V-shaped network motif with recipro-
cal interactions determines the synchronization properties of the neurons composing
it and compared them to the case of a direct reciprocal coupling between two pop-
ulations. The results above indicate that the V-shaped structure can promote the
zero-lag synchrony between their indirectly coupled outer populations for long de-
lays, while just direct connections between two populations can sustain zero-lag
synchrony only for limited amounts of axonal latencies. However, usually both situ-
ations are expected to occur simultaneously, this is neuronal populations that need to
be coordinated might be linked by both direct (monosynaptic) and nondirect (mul-
tisynaptic) pathways. Therefore, we also conducted some numerical studies about
how the addition of a direct bidirectional coupling between the populations 1 and 3
(and thus closing the open end of the sketch shown in top of Fig. 5 to form a ring)
modified the synchronization properties formerly described, which were due only to
their indirect communication via population 2. We observed that when the connec-
tivity (or number of synapses) between the pools of neurons 1 and 3 is moderate and
smaller than the connectivity between these populations and the relay population 2,
then a zero-lag synchronous dynamics between the outer populations still emerges.
This holds even for the case when the synapses linking Pop. 1 and Pop. 3 have a
different delay than the ones linking these to the relay center. As expected, when
the reciprocal connectivity between pools 1 and 3 is stronger then direct coupling
dominates and, depending on the delay, it can impose a nonzero lag synchronous
solution.

Among other relevant networks that might sustain the emergence zero-lag syn-
chrony among some of its nodes stands the star topology where a central hub is
reciprocally connected to other nodes. For such an arrangement, which in some
sense can be understood as to be composed of several V-shaped motifs, numerical
simulations show that the outer elements of the star that are bidirectionally con-
nected to the central hub also tend to engage in zero-lag synchronous spiking.

General Discussion, Conclusions and Perspectives

In this chapter, we have dealt with the intriguing problem of explaining how long-
range synchrony can emerge in the presence of extensive conduction delays. This
challenging question that has attracted the attention of many researchers is still far
from being fully clarified. Nevertheless, our main goal in the previous pages was to
disseminate the idea that in addition to intrinsic cellular properties an appropriate
neuronal circuitry can be essential in circumventing the phase shifts associated
with conduction delays. In particular, here we have explored and shown how a
simple network topology can naturally enhance the zero-lag synchronization of
distant populations of neurons. The neuronal microcircuit that we have considered
consists of the relaying of two pools of neurons onto a third mediating popula-
tion which indirectly connects them. Simulations of Hodgkin and Huxley cells as
well as large networks of integrate and fire neurons arranged in the mentioned
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configuration demonstrated a self-organized tendency toward the zero-lag
synchronous state despite of large axonal delays. These results suggest that the pres-
ence of such connectivity pattern in neuronal circuits may contribute to the
large-scale synchronization phenomena reported in a number of experiments in
the last two decades [3, 4].

Is there in the brain any particular structure where such connectivity pattern is
significantly common and one of its main building blocks? Within the brain com-
plex network the thalamus and its bidirectional and radial connectivity with the
neocortex form a key partnership. Several authors have indicated that the reciprocal
coupling of cortical areas with the different thalamic nuclei may support mecha-
nisms of distributed cortical processing and even form a substrate for the emergence
of consciousness [64–67]. It has also been explicitly proposed that diffuse cortical
projections of matrix cells in the dorsal thalamus together layer V corticothalamic
projections are an ideal circuitry to extend thalamocortical activity and sustain the
synchronization of widespread cortical and thalamic cells [32,33]. The resemblance
of such circuitry with the topology studied here is evident once the identification
of the associative nuclei of the thalamus as our relay population for cortical activ-
ity is done. Altogether, the results described in this chapter point to the direction
that long axonal latencies associated with cortico-thalamo-cortical loops are still
perfectly compatible with the isochronous cortical synchronization across large dis-
tances. Within this scheme the most important requirement for the occurrence of
zero-lag synchronization is that the relay population of cells occupies a temporally
equidistant location from the pools of neurons to be synchronized. It is then highly
significant that recent studies have identified a constant temporal latency between
thalamic nuclei and almost any area in the mammalian neocortex [68]. Remarkably,
this occurs irrespectively of the very different distances that separate the thalamus
and the different cortex regions involved and relies on the adjustment of conduc-
tion velocity by myelination. Thus, thalamic nuclei occupy a central position for the
mediation of zero-phase solutions.

Coherent dynamics between remote cortical populations could of course be gen-
erated also by reciprocally coupling these areas to yet another cortical area or other
subcortical structures. It is important to remark that connectivity studies in primate
cortex have identified the pattern of connections studied here as the most frequently
repeated motif at the level of cortico-cortical connections in the visual and other
cortical systems [34, 57, 58]. The functional relevance of this topology in cortical
networks is unclear but according to our results is ideally suited to sustain coherent
activity.

In general, it is quite possible that a variety of mechanisms are responsible
for bringing synchrony at different levels (distinguishing for example, among lo-
cal and long-distance synchrony) and different cerebral structures. The fact that
each thalamus projects almost exclusively ipsilaterally (the massa intermedia is
clearly inadequate for supporting the required interthalamic communication) is al-
ready an indication that the callosal commissure should play a prominent role in
facilitating interhemispheric coherence. Lesion studies have since long confirmed
this view [69]. However, within a single hemisphere the disruption of intracortical
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connectivity by a deep coronal cut through the suprasylvian gyrus in the cat cor-
tex was observed to not disturb the synchrony of spindle oscillations across regions
of cortex located at both sides of the lesion [70]. This suggests that subcortical,
and in particular cortico-thalamic interactions, could be responsible not only for
the generation of oscillations but also for maintaining both the long-range cortical
and thalamic coherence found in such regimes. It is likely then that subcortical loops
with widespread connectivity such as the associative or nonspecific cortico-thalamo-
cortical circuits could run in parallel as an alternative pathway for the large-scale
integration of cortical activity within a single hemisphere [33, 61, 67]. As we have
proven here, with such connectivity pattern even large axonal conduction delays
would not represent an impediment for the observation of zero time-lag coherence.

We would like to stress here that conduction delays are an important variable
to consider not only in synchrony but in any temporal coding strategy. They con-
tribute with an intrinsic temporal latency to neuronal communication that adds to
the precise temporal dynamics of the neurons. Thus, they may have an important
implication in gating mechanisms based in temporal relationships. For instance,
when assisted by membrane oscillations neurons undergo repetitive periods of in-
terleaved high and low excitability and it has been reported that the impact of a
volley of spikes bombarding one of such oscillatory neuron is strongly influenced
by the phase of the cycle (variable influenced by conduction delays) at which the
action potentials reach the targeting neuron [39]. Conduction delays along with the
frequency and phase difference of two respective oscillatory processes determine
the timing of the arrival of inputs and therefore can control whether the incom-
ing signal will be relatively ignored (when coinciding the trough of excitability) or
processed further away (when reaching the neuron at the peak of the fluctuating
depolarization) [10,71]. By this mechanism it has been hypothesized that a dynami-
cally changing coherent activity pattern may ride on top of the anatomical structure
to provide flexible neuronal communication pathways [71]. Based on the properties
formerly reviewed subcortical structures such as some thalamic nuclei might be in
an excellent situation to play a role in regulating such coherence and contribute to
the large-scale cortical communication.

In summary, the network motif highlighted here has the characteristic of naturally
inducing zero-lag synchrony among the firing of two separated neuronal popula-
tions. Interestingly, such property is found to hold for a wide range of conduction
delays, a highly convenient trait not easily reproduced by other proposed mech-
anisms, which have a more restricted functionality in terms of axonal latencies.
Regarding its physiological substrate, the associative thalamic nuclei have the cortex
as their main input and output sources and seem to represent active relay centers of
cortical activity with properties well suitable for enhancing cortical coherence [33].
The advantage of this approach in terms of axonal economy, specially compared to
an extensive network of fast long-range cortical links, is overwhelming. Ongoing
research is being directed to a detailed modeling of the interaction between cortex
and such nuclei with an emphasis in investigating the role of limited axonal conduc-
tion velocity. From the experimental side the relatively well controlled conditions
of thalamocortical slice experiments, allowing for the identification of synaptically
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coupled neurons and cell class, might be a first step for testing whether the topology
investigated here provides a significant substrate for coherent spiking activity. An
important issue related to the physical substrate of synchrony is how the dynamic
selection of the areas that engage and disengage into synchrony can be achieved but
that is a subject beyond the scope of the present chapter.

Methods

Models

Two neuronal models were simulated to test the synchronization properties of the
neuronal circuits investigated here.

In the most simplified version we focused on the dynamics of two single-
compartment neurons that interact with each other via reciprocal synaptic connec-
tions with an intermediate third neuron of the same type (see top panel in Fig. 1). The
dynamics of the membrane potential of each neuron was modeled by the classical
Hodgkin–Huxley equations [72] plus the inclusion of appropriate synaptic currents
that mimic the chemical interaction between nerve cells. The temporal evolution of
the voltage across the membrane of each neuron is given by

C
dV

dt
D �gNam

3h.V � ENa/� gKn
4.V � EK/

�gL.V �EL/C Iext C Isyn; (1)

whereCD1�F/cm2 is the membrane capacitance, the constants gNaD120mS=cm2,
gK D 36mS=cm2, and gL D 0:3mS=cm2 are the maximal conductances of the sod-
ium, potassium, and leakage channels, and ENa D 50mV; EK D �77mV, and
EL D �54:5mV stand for the corresponding reversal potentials. According to
Hodgkin and Huxley formulation the voltage-gated ion channels are described by
the following set of differential equations

dm

dt
D ˛m.V /.1 �m/� ˇm.V /m; (2)

dh

dt
D ˛h.V /.1 � h/ � ˇh.V /h; (3)

dn

dt
D ˛n.V /.1 � n/ � ˇn.V /n; (4)

where the gating variables m.t/, h.t/, and n.t/ represent the activation and in-
activation of the sodium channels and the activation of the potassium channels,
respectively. The experimentally fitted voltage-dependent transition rates are
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˛m.V / D 0:1.V C 40/
1 � exp .�.V C 40/=10/; (5)

ˇm.V / D 4 exp .�.V C 65/=18/ ; (6)

˛h.V / D 0:07 exp .�.V C 65/=20/ ; (7)

ˇh.V / D Œ1C exp .�.V C 35/=10/��1; (8)

˛n.V / D .V C 55/=10
1 � exp .�0:1.V C 55// ; (9)

ˇn.V / D 0:125 exp .�.V C 65/=80/ : (10)

The synaptic transmission between neurons is modeled by a postsynaptic con-
ductance change with the form of an alpha-function

˛.t/ D 1

�d � �r
.exp .�t=�d/� exp .�t=�r// ; (11)

where the parameters �d and �r stand for the decay and rise time of the function and
determine the duration of the response. Synaptic rise and decay times were set to
�r D 0:1 and �d D 3ms, respectively. Finally, the synaptic current takes the form

Isyn.t/ D �gmax

N

X

�l

X

spikes

˛
�
t � tspike � �l

	 �
V.t/ � Esyn

	
; (12)

where gmax (here fixed to 0:05mS=cm2) describes the maximal synaptic conduc-
tance and the internal sum is extended over the train of presynaptic spikes occurring
at tspike. The delays arising from the finite conduction velocity of axons are taken
into account through the latency time �l in the alpha-function. Thus, the external
sum covers the N different latencies that arise from the conduction velocities that
different axons may have in connecting two neuronal populations. N was typically
set to 500 in the simulations. For the single-latency case, all �l were set to the same
value, whereas when studying the effect of a distribution of delays we modeled such
dispersion by a gamma distribution with a probability density of

f .�l/ D �k�1
l

exp.��l=�/

�k� .k/
; (13)

where k and � are shape and scale parameters of the gamma distribution. The mean
time delay is given by O�l D k� .

Excitatory and inhibitory transmissions were differentiated by setting the synap-
tic reversal potential to beEsyn D 0mV orEsyn D �80mV, respectively. An external
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current stimulation Iext was adjusted to a constant value of 10�A/cm2. Under such
conditions a single HH type neuron enters into a periodic regime firing action
potentials at a natural period of Tnat D 14:66ms.

The second class of models we have considered consists of three large balanced
populations of integrate and fire neurons [73]. Top panel in Fig. 5 depicts a sketch
of the connectivity. Each network consists of 4,175 neurons of which 80% are
excitatory. The internal synaptic connectivity is chosen to be random, i.e., each
neuron synapses with a 10% of randomly selected neurons within the same pop-
ulation, such that the total number of synapses in each network amounts to about
1,700,000. Additionally, to model background noise, each neuron is subjected to the
influence of an external train of spikes with a Poissonian distribution as described
below. The interpopulation synaptic links are arranged such that each neuron in any
population receives input from 0.25% of the excitatory neurons in the neighbor-
ing population. This small number of interpopulation connections, compared to the
much larger number of intrapopulation contacts, allows us to consider the system
as three weakly interacting networks of neurons rather than a single homogeneous
network. Intrapopulation axonal delays are set to 1:5ms, whereas the fibers con-
necting different populations are assumed to involve much longer latencies in order
to mimic the long-range character of such links.

The voltage dynamics of each neuron was then given by the following equation

�m
dVi

dt
D �Vi .t/CRIi .t/; (14)

where �m stands for the membrane constant and I.t/ is a term collecting the currents
arriving to the soma. The latter is decomposed in postsynaptic currents and external
Poissonian noise

RIi .t/ D �m

X

j

Jj

X

k

ı.t � tkj � �l/C A�i ; (15)

where Jj is the postsynaptic potential amplitude, tkj is the emission time of the
kth spike at neuron j , and �l is the transmission axonal delay. The external noise
�i is simulated by subjecting each neuron to the simultaneous input of 1,000 in-
dependent homogeneous Poissonian action potential trains with an individual rate
of 5 Hz. Different cells were subjected to different realizations of the Poissonian
processes to ensure the independence of noise sources for each neuron. Jexc and A
amplitudes were set to 0.1 mV. The balance of the network was controlled by setting
Jinh D �3:5Jexc to compensate the outnumber of excitatory units.

The dynamics of each neuron evolved from the reset potential of Vr D 10mV by
means of the synaptic currents up to the time when the potential of the i th neurons
reached a threshold of 20 mV, value at which the neuron fires and its potential relaxes
to Vr. The potential is clamped then to this quantity for a refractory period of 2 ms
during which no event can perturb this neuron.
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Simulations

The set of equations (1–12) was numerically integrated using the Heun method with
a time step of 0.02 ms. For the first class of models we investigated, i.e., the three
HH cells neuronal circuit, we proceeded as follows. Starting from random initial
conditions each neuron was first simulated without any synaptic coupling for 200 ms
after which frequency adaptation occurred and each neuron settled into a periodic
firing regime with a well-defined frequency. The relation between the phases of the
oscillatory activities of the neurons at the end of this warm up time was entirely
determined by the initial conditions. Following this period and once the synaptic
transmission was activated, a simulation time of 3 s was recorded. This allowed
us to trace the change in the relative timing of the spikes induced by the synaptic
coupling in this neural circuit.

The second class of model involving the interaction of heterogeneous large pop-
ulations of neurons was built with the neuronal simulator package NEST [74]. The
simulation of such networks uses a precise time-driven algorithm with the charac-
teristic that the spike events are not constrained to the discrete time lattice. In a first
stage of the simulation, the three populations were initialized being isolated from
each other and let them to evolve just due to their internal local connectivity and
external Poissonian noise. In a subsequent phase, the three populations were inter-
connected according to the motif investigated here and simulated during 1 s.

Data Analysis

The strength of the synchronization and the phase-difference between each individ-
ual pair of neurons .m; n/ were derived for the first model of three HH neurons by
the computation of the order parameter defined as

�.t/ D 1

2
j exp.im.t//C exp.in.t//j; (16)

which takes the value of 1 when two systems oscillate in-phase and 0 when they
oscillate in an antiphase or in an uncorrelated fashion. To compute this quantifier
it is only necessary to estimate the phases of the individual neural oscillators. An
advantage of this method is that one can easily reconstruct the phase of a neuronal
oscillation from the train of spikes without the need of recording the full membrane
potential time series [75]. The idea behind is that the time interval between two
well-defined events (such as action potentials) define a complete cycle and the phase
increase during this time amounts to 2� . Then, linear interpolation is used to assign
a value to the phase between the spike events.

The synchrony among the large populations of neurons of the second model
described here was assessed by the computation of averaged cross-correlograms.
For that purpose, we randomly selected three neurons (one from each of the three
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populations) and computed for each pair of neurons belonging to different popula-
tions the histogram of coincidences (bin size of 2 ms) as a function of the time shift
of one of the spike trains. We computed the cross-correlograms within the time win-
dow ranging from 500 to 1,000 ms to avoid the transients toward the synchronous
state. The procedure was repeated 300 times to give rise to the estimated averaged
distributions of coincidences exhibited in Figs. 5 and 6.

Acknowledgments The authors would like to thank Wolf Singer, Carl van Vreeswijk, Christopher
J. Honey, and Nancy Kopell for fruitful discussions. This work was partially supported by the
Hertie Foundation, the European Commission Project GABA (FP6-NEST contract 043309), and
the Spanish MCyT and Feder under Project FISICO (FIS-2004-00953). R.V. and G.P. are also with
the Frankfurt Institute for Advanced Studies (FIAS).

References

1. Nicolelis M, Ribeiro S (2002) Multielectrode recordings: the next steps. Curr. Opin. Neurobio.
12:602–606

2. Singer W, Engel AK, Kreiter AK, Munk MHJ, Neuenschwander S, Roelfsema PR (1997)
Neuronal assemblies: necessity, signature and detectability. Trends Cogn. Sci. 1:252–260

3. Singer W (1999) Neuronal Synchrony: A Versatile Code for the Definition of Relations. Neu-
ron 24:49–65

4. Varela FJ, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization
and large-scale integration. Nat. Rev. Neurosci. 2:299–230

5. Milner PM (1974) A model for visual shape recognition. Psychol. Rev. 81:521–535
6. von der Malsburg, C (1981) The correlation theory of brain function. Intern. Rep. 81-2, Dept.

of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Gottingen, Germany
7. Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cor-

tex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature
338:334–337

8. Gray CM (1999) The temporal correlation hypothesis of visual feature integration. Neuron
24:31–47

9. Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on output firing rate and
variability in simple neuronal models. J. Neurosci. 20:6193–6209

10. Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neuronal infor-
mation. Nat. Rev. Neurosci. 2:539–550

11. Castelo-Branco M, Goebel R, Neuenschwander S, Singer W (2000) Neuronal synchrony cor-
relates with surface segregation rules. Nature 405:685–689

12. Fries P, Roelfsema PR, Engel AK, Konig P, Singer W (1997) Synchronization of oscillatory
responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl. Acad.
Sci. 94:12699–12704

13. Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal syn-
chronization by selective visual attention. Science 291:1560–1563

14. Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A (1998) Synchronization be-
tween prefrontal and posterior association cortex during human working memory. Proc. Natl.
Acad. Sci. 95:7092–7096

15. Roelfsema PR, Engel AK, Konig P, Singer W (1997) Visuomotor integration is associated
with zero time-lag synchronization among cortical areas. Nature 385:157–161

16. Rodriguez E et al. (1999) Perception’s shadow: long-distance synchronization of human brain
activity. Nature 397:430–433

17. Mima T, Oluwatimilehin T, Hiraoka T, Hallett M (2001) Transient Interhemispheric Neuronal
Synchrony Correlates with Object Recognition. J. Neurosci. 21:3942–3948



Neuronal Mechanisms of Zero-Lag Long-Range Synchrony 165

18. Uhlhaas PJ et al. (2006) Dysfunctional long-range coordination of neural activity during
Gestalt perception in schizofrenia. J. Neurosci. 26:8168–8175

19. Soteropoulus DS, Baker S (2006) Cortico-cerebellar coherence during a precision grip task in
the monkey. J. Neurophysiol. 95:1194–1206

20. Witham CL, Wang M, Baker S (2007) Cells in somatosensory areas show synchrony with beta
oscillations in monkey motor cortex. Eur. J. Neurosci. 26:2677–2686

21. Swadlow HA, Rosene DL, Waxman SG (1978) Characteristics of interhemispheric impulse
conduction between the prelunate gyri of the rhesus monkey. Exp. Brain Res. 33:455–467

22. Swadlow HA (1985) Physiological properties of individual cerebral axons studied in vivo for
as long as one year. J. Neurophysiol. 54:1346–1362

23. Swadlow HA (1994) Efferent neurons and suspected interneurons in motor cortex of the awake
rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic inputs. J. Neuro-
physiol. 71:437–453

24. Miller R (2000) Time and the brain. Harwood Press, Switzerland
25. Wen Q, Chkolvskii DB (2005) Seggregation of the brain into Gray and White matter: a design

minimiying conduction delays. PLoS Comput. Biol. 1:e78
26. Ringo JL, Doty RW, Demeter S, Simard, PY (1994) Time is the essence: A conjecture

that hemispheric specialization arises from interhemispheric conduction delay. Cereb. Cortex
4:331–343

27. Miller R (1996) Axonal conduction time and human cerebal laterality: a psychobiological
theory, 1st edn. Harwood Academics Publisher, Amsterdam

28. Vicente R, Gollo LL, Mirasso CR, Fischer I, Pipa G (2008) Dynamical relaying can yield
zero time lag neuronal synchrony despite long conduction delays. Proc. Natl. Acad. Sci.
105:17157–17162

29. Fischer I, Vicente R, Buldu JM, Peil M, Mirasso CR, Torrent MC, Garcia-Ojalvo J (2006)
Zero-lag long-range synchronization via dynamical relaying. Phys. Rev. Lett. 97:123902

30. Vicente R, Pipa G, Fischer I, Mirasso CR (2007) Zero-lag long range synchronization of neu-
rons is enhanced by dynamical relaying. Lect. Notes Comp. Sci. 4688:904–913

31. D’Huys O, Vicente R, Erneux T, Danckaert J, Fischer I (2008) Synchronization properties of
network motifs: Influence of coupling delay and symmetry. Chaos 18:037116

32. Jones EG (2002) Thalamic circuitry and thalamocortical synchrony. Phil. Trans. R. Soc. Lond.
B 357:1659–1673

33. Shipp S (2003) The functional logic of cortico-pulvinar connections. Phil. Trans. R. Soc. Lond.
B 358:1605–1624

34. Honey CJ, Kotter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex
shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. 104:10240–
10245

35. Soleng AF, Raastad M, Andersen P (1998) Conduction latency along CA3 hippocampal axons
from the rat. Hippocampus 13:953–961

36. Swadlow HA, Waxman SG (1975) Observations on impulse conduction along central axons.
Proc. Natl. Acad. Sci. 72:5156–5159

37. Katz B, Miledi R (1965) The measurement of synaptic delay, and the time course of acetyl-
choline release at the neuromuscular junction. Proc. R. Soc. Lond. Series B, Biol. Sci.
161:483–495

38. Shepherd GM (2004) The synaptic organization of the brain. Oxford University Press
39. Volgushev M, Chistiakova M, Singer W (1998) Modification of discharge patterns of neocor-

tical neurons by induced oscillations of the membrane potential. Neuroscience 83:15–25
40. Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus

callosum. Brain Behav. Evol. 598:143–153
41. Dickson CT, Biella G, de Curtis M (2003) Slow periodic events and their transition to

gamma oscillations in the entorhinal cortex of the isolated guinea pig brain. J. Neurophysiol.
900:39–46

42. Rizzuto DS, Madsen JR, Bromfield EB, Schulze-Bonhage A, Seelig D, Aschenbrenner-
Scheibe R, Kahana MJ (2003) Reset of human neocortical oscillations during a working
memory task. Proc. Natl. Acad. Sci. 100:7931–7936



166 R. Vicente et al.

43. Mann EO, Paulsen O (2007) Role of GABAergic inhibition in hippocampal network oscilla-
tions. Trends Neurosci. 30:343–349

44. Whittington MA, Doheny HC, Traub RD, LeBeau FEN, Buhl EH (2001) Differential
expression of synaptic and nonsynaptic mechanisms underlying stimulus-induced gamma os-
cillations in vitro. J. Neurosci. 21:1727–1738

45. Buzsaki G (2006) Rhythms of the brain. Oxford University Press
46. Bennet MVL, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mam-

malian brain. Neuron 41:495–511
47. Caspar DLD, Goddenough DA, Makowski L, Phillips WC (1977) Gap junction structures.

J. Cell Biol. 74:605–628
48. Draghun A, Traub RD, Schmitz D, Jefferys JGR (1998) Electrical coupling underlies high-

frequency oscillations in the hippocampus in vitro. Nature 394:189–192
49. Traub RD, Kopell N, Bibbig A, Buhl EH, Lebeau FEN, Whittington MA (2001) Gap junctions

between interneuron dendrites can enhance synchrony of gamma oscillations in distributed
networks. J. Neurosci. 21:9478–9486

50. Kopell N, Ermentrout GB (2004) Chemical and electrical synapses perform complementary
roles in the synchronization of interneuronal networks. Proc. Natl. Acad. Sci. 101:15482–
15487

51. Traub RD, Whittington MA, Stanford IM, Jefferys JGR (1996) A mechanism for generation
of long-range synchronous fast oscillations in the cortex. Nature 383:621–624

52. Bibbig A, Traub RD, Whittington MA (2002) Long-range synchronization of gamma and
beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model.
J. Neurophysiol. 88:1634–1654

53. Lowel S, Singer W (1992) Selection of intrinsic horizontal connections in the visual cortex by
correlated neuronal activity. Science 255:209–212

54. Knoblauch A, Sommer FT (2003) Synaptic plasticity, conduction delays, and inter-areal
phase relations of spike activity in a model of reciprocally connected areas. Neurocomputing
52–54:301–306

55. Izhikevich E (2006) Polychronization: computation with spikes. Neural Comput. 18:245–282
56. Swindale NV (2003) Neural synchrony, axonal path lengths, and general anesthesia: a hipoth-

esis. Neuroscientist 9:440–445
57. Sporns O, Kotter R (2004) Motifs in brain networks. PLoS Biol. 2:e369
58. Sporns O, Chialvo D, Kaiser M, Hiltetag CC (2004) Organization, development and function

of complex brain networks. Trends Cogn. Sci. 8:418–425
59. Ermentrout, JB (1996) Type I membranes, phase resetting curves, and synchrony. Neural

Comp. 8:979–1001
60. Reyes AD, Fetz EE (1993) Two modes of interspike interval shortening by brief transient

depolarizations in cat neocortical neurons. J. Neurophysiol. 69:1661–1672
61. Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu. Rev. Neurosci.

27:419–451
62. Pare D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic

activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol.
78:1450–1460

63. Arieli A, Sterkin A, Grinvald A, Aersten A (1996) Dynamics of ongoing activity: explanation
of the large variability in evoked cortical responses. Science 273:1868–1871

64. Llinas R, Pare D (1997) Coherent oscillations in specific and nonspecific thalamocortical net-
works and their role in cognition. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus.
Pergamon, New York.

65. Llinas R, Ribary U, Contreras D, Pedroarena C (1998) The neuronal basis for conciousness.
Phil. Trans. R. Soc. Lond. B 353:1841–1849

66. Ribary U, Ioannides AA, Singh KD, Hasson R, Bolton JPR, Lado F, Mogilner A, Llinas R
(1991) Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans.
Proc. Natl. Acad. Sci. 88:11037–11041

67. Sherman SM, Guillery, RW (2002) The role of the thalamus in the flow of information to the
cortex. Phil. Trans. R. Soc. Lond. B 357:1695–1708



Neuronal Mechanisms of Zero-Lag Long-Range Synchrony 167

68. Salami M, Itami C, Tsumoto T, Kimura F (2003) Change of conduction velocity by regional
myelination yields to constant latency irrespective of distance between thalamus to cortex.
Proc. Natl. Acad. Sci. 100:6174–6179

69. Engel AK, Kreiter AK, Koenig P, Singer W (1991) Synchronization of oscillatory neuronal
responses between striate and extrastriate visual cortical areas of the cat. Proc. Natl. Acad. Sci.
88:6048–6052

70. Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1996) Control of spatiotemporal coher-
ence of a thalamic oscillation by corticothalamic feedback. Science 274:771–774

71. Fries P (2005) Neuronal communication through neuronal coherence. Trends Cogn. Sci.
9:474–480

72. Hodgkin AL, Huxley AF (1952) A quantitative description of the membrane current and its
application to conduction and excitation in nerve. J. Physiol. 117:500–544

73. Brunel N (2000) Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory
Spiking Neurons. J. Comput. Neurosci. 8:183–208

74. Brette R, et al (2007) Simulation of networks of spiking neurons: A review of tools and strate-
gies. J. Comput. Neurosci. 23:349–398

75. Pikovsky A, Rosenblum M, Kurths J (2002) Synchronization: A universal Concept in Nonlin-
ear Science. Cambridge University Press



Characterizing Oscillatory Cortical Networks
with Granger Causality

Anil Bollimunta, Yonghong Chen, Charles E. Schroeder, and Mingzhou Ding

Abstract Multivariate neural recordings are becoming commonplace. Statistical
techniques such as Granger causality promise to reveal the patterns of neural in-
teractions and their functional significance in these data. In this chapter, we start
by reviewing the essential mathematical elements of Granger causality with special
emphasis on its spectral representation. Practical issues concerning the estimation
of such measures from time series data via autoregressive models are discussed.
Simulation examples are used to illustrate the technique. Finally, we analyze local
field potential recordings from the visual cortex of behaving monkeys to address the
neuronal mechanisms of the alpha oscillation.

Introduction

Oscillatory activities are ubiquitous in the cerebral cortex. Based on the frequency
of signal rhythmicity, neural oscillations are classified according to the following
approximate taxonomy: delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–
30 Hz) and gamma (31–90 Hz). A number of mechanisms have been identified that
contribute to the generation of neural oscillations. At the single cell level specific
combinations of ionic conductances can lead to rhythmic discharge through burst
firing [5, 11, 14, 21, 23]. This rhythmicity is then amplified by ensembles of neu-
rons with similar physiological properties. Oscillation can also occur as an emergent
phenomenon in an interconnected network of neurons [18]. In this case, no single
neuron is capable of discharging rhythmically in isolation, but a network of neurons
with reciprocal synaptic activations are the source of the oscillatory activity. While
the physiological generating mechanisms and functions of brain rhythms remain a
subject of debate, recent advances in experimental technology make it possible to
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record neural activity from multiple sites simultaneously in the intact cortex, paving
the way for understanding neuronal oscillations from a network perspective.

Multisite neural recordings produce massive quantities of data and these data
form the basis for unraveling the patterns of neural interactions in oscillatory cortical
networks. It has long been recognized that neural interactions are directional. Being
able to infer directions of neural interactions from data is an important capability for
fully realizing the potential of multisite data. Traditional interdependence measures
include cross correlation and spectral coherence. These techniques do not yield di-
rectional information reliably. Granger causality has emerged in recent years as a
statistically principled method for accomplishing that goal. The basis of Granger
causality estimation is the autoregressive models of time series. Recent work has
explored its application to multisite neural recordings [2, 3, 7, 13]. In this chapter,
we start with a brief summary of the basics of Granger causality with emphasis on
its spectral representation. The method is then demonstrated on simulation examples
where the network connectivity is known a priori. Finally, we address the neuronal
mechanisms underlying cortical alpha rhythm by applying the technique to laminar
local field potentials and multiunit activities recorded from an awake and behaving
monkey.

Granger Causality Analysis

The development below follows that of Geweke [8]. Also see Ding et al. [7] for more
details. Consider two jointly stationary stochastic processesXt and Yt . Individually,
Xt and Yt are described by the following two autoregressive (AR) models [7]

Xt D
1X

j D1

a1jXt�j C "1t ; (1)

Yt D
1X

j D1

d1jYt�j C �1t ; (2)

where the noise terms are uncorrelated over time with variances var."1t / D ˙1 and
var.�1t / D �1. Together, their joint autoregressive representation is

Xt D
1X

j D1

a2jXt�j C
1X

j D1

b2jYt�j C "2t ; (3)

Yt D
1X

j D1

c2jXt�j C
1X

j D1

d2jYt�j C �2t ; (4)
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where the noise vector is again uncorrelated over time and their contemporaneous
covariance matrix is

˙ D
�
˙2 �2

�2 �2

�

(5)

Here ˙2 D var."2t /; �2 D var.�2t /; and �2 D cov."2t ; �2t /. If Xt and Yt are
independent, then fb2j g and fc2j g are uniformly zero, �2 D 0,˙1 D ˙2, and �1 D
�2. This observation motivates the definition of total interdependence between Xt

and Yt as

FX;Y D ln
˙1�1

j˙ j (6)

where j 
 j is the symbol for determinant. Clearly,FX;Y D 0 when the two time series
are independent, and FX;Y > 0 when they are not.

Consider (1) and (3). The value of ˙1 measures the accuracy of the autore-
gressive prediction of Xt based on its previous values, whereas the value of ˙2

represents the accuracy of predicting the present value of Xt based on the previous
values of both Xt and Yt . According to Wiener [24] and Granger [10], if ˙2 is less
than ˙1 in some suitable statistical sense, then Yt is said to have a causal influence
on Xt . We quantify this causal influence by

FY !X D ln
˙1

˙2

: (7)

It is clear that FY !X D 0 when there is no causal influence from Y to X and
FY !X > 0 when there is. One can define causal influence from X to Y as

FX!Y D ln
�1

�2

: (8)

The value of this quantity can be similarly interpreted.
It is possible that the interdependence between Xt and Yt cannot be fully ex-

plained by their interactions. The remaining interdependence is captured by �2, the
covariance between "2t and �2t . This interdependence is referred to as instantaneous
causality and is characterized by

FX;Y D ln
˙2�2

j˙ j : (9)

When �2 is zero, FX;Y is also zero. When �2 is not zero, FX;Y > 0. From (6)–(9)
one concludes that

FX;Y D FX!Y C FY !X C FX;Y (10)

This formula demonstrates that the total interdependence between two time series
Xt and Yt can be decomposed into three components: two directional causal influ-
ences due to their interaction patterns, and the instantaneous causality due to factors
possibly exogenous to the .X; Y / system (e.g., a common driving input).
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To develop the spectral representation of Granger causality, we introduce the lag
operator L: LXt D Xt�1. Equations (3) and (4) can be rewritten as

�
A2.L/ B2.L/

C2.L/ D2.L/

��
Xt

Yt

�

D
�
"2t

�2t

�

; (11)

where A2.L/, B2.L/, C2.L/, and D2.L/ are power series in L with A2.0/ D 1,
B2.0/ D 0, C2.0/ D 0, andD2.0/ D 1. A Fourier transform of (11) yields

�
a2.!/ b2.!/

c2.!/ d2.!/

��
X.!/

Y.!/

�

D
�
Ex.!/

Ey.!/

�

; (12)

where ! D 2�f and the components of the coefficient matrix A.!/ are

a2.!/ D 1 �
1X

j D1

a2j e�i!j ; b2.!/ D �
1X

j D1

b2j e�i!j ;

c2.!/ D �
1X

j D1

c2j e�i!j ; d2.!/ D 1 �
1X

j D1

d2j e�i!j ;

In terms of transfer functions, (12) becomes

�
X.!/

Y.!/

�

D
�
Hxx.!/ Hxy.!/

Hyx.!/ Hyy.!/

��
Ex.!/

Ey.!/

�

; (13)

where H.!/ D A�1.!/ is the transfer function whose components are

Hxx.!/ D 1

detA
d2.!/; Hxy.!/ D � 1

detA
b2.!/;

Hyx.!/ D � 1

detA
c2.!/; Hyy.!/ D 1

detA
a2.!/: (14)

After proper ensemble averaging the spectral matrix is obtained according to

S.!/ D H.!/˙H�.!/ (15)

where � denotes complex conjugate and matrix transpose and ˙ is defined in (5).
The spectral matrix contains cross spectra (off-diagonal terms) and auto spectra

(diagonal terms). If Xt and Yt are independent, then the cross spectra are zero and
jS.!/j equals the product of two auto spectra. This observation, analogous to that
leading to the definition of total interdependence in the time domain in (6), motivates
the spectral domain representation of total interdependence between Xt and Yt as

fX;Y .!/ D ln
Sxx.!/Syy.!/

jS.!/j ; (16)
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where jS.!/j D Sxx.!/Syy.!/ � Sxy.!/Syx.!/ and Syx.!/ D S�
xy.!/. It is easy

to see that this decomposition of interdependence is related to coherence by the
following relation:

fX;Y .!/ D � ln.1 � C.!//; (17)

where coherence is defined as

C.!/ D jSxy.!/j2
Sxx.!/Syy.!/

: (18)

Coherence is a normalized quantity, with values ranging between 0 and 1, with 1
indicating maximum interdependence between the two time series at frequency !
and 0 indicating independence.

From (15), the auto spectrum of Xt is:

Sxx.!/ D Hxx.!/˙2H
�
xx.!/C 2�2Re.Hxx.!/H

�
xy.!//CHxy.!/�2H

�
xy.!/:

(19)

To fix ideas, let us start with �2 D 0. In this case there is no instantaneous causal-
ity and the interdependence between Xt and Yt is entirely due to their interactions
through the regression terms on the right-hand sides of (3) and (4). The spectrum
has two terms. The first term, involving only the variance of "2t which is the noise
term that drives the Xt time series, can be viewed as the intrinsic contribution to
the power of Xt . The second term, involving only the variance of �2t which is the
noise term that drives the Yt time series, can be viewed as the causal contribution to
the power of Xt from Yt . This decomposition of power into an intrinsic part and a
causal part forms the basis for defining spectral domain causality measures.

When �2 is not zero, Geweke [8] introduced the following transformation to
remove the cross term and make the identification of an intrinsic power term and a
causal power term possible. The procedure is called normalization and it consists of
left-multiplying

P D
 
1 0

� 	2

˙2
1

!

(20)

on both sides of (12). The result is

�
a2.!/ b2.!/

c3.!/ d3.!/

��
X.!/

Y.!/

�

D
�
Ex.!/
QEy.!/

�

; (21)

where c3.!/ D c2.!/ � 	2

˙2
a2.!/, d3.!/ D d2.!/ � 	2

˙2
b2.!/, QEy.!/ D

Ey.!/ � 	2

˙2
Ex.!/. The new transfer function QH.!/ for (21) is the inverse of the

new coefficient matrix QA.!/:

QH.!/ D
� QHxx.!/ QHxy.!/

QHyx.!/ QHyy.!/

�

D 1

det QA
�
d3.!/ �b2.!/

�c3.!/ a2.!/

�

: (22)
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Since det QA D det A we have

QHxx.!/ D Hxx.!/C �2

˙2

Hxy.!/; QHxy.!/ D Hxy.!/;

QHyx.!/ D Hyx.!/C �2

˙2

Hxx.!/; QHyy.!/ D Hyy.!/: (23)

From (21), following the same steps that lead to (19), the spectrum ofXt is found
to be:

Sxx.!/ D QHxx.!/˙2
QH�

xx.!/CHxy.!/ Q�2H
�
xy.!/: (24)

Here the first term is interpreted as the intrinsic power and the second term as the
causal power of Xt due to Yt . Based on this interpretation, we define the causal
influence from Yt to Xt at frequency ! as

fY !X .!/ D ln
Sxx.!/

QHxx.!/˙2
QH�

xx.!/
: (25)

According to this definition the causal influence is zero when the causal power is
zero (i.e., the intrinsic power equals the total power), and it increases as the causal
power increases.

By taking the transformation matrix as

 
1 � 	2


2

0 1

!

and performing the same anal-

ysis, we get the causal influence from Xt to Yt :

fX!Y .!/ D ln
Syy.!/

OHyy.!/�2
OH�

yy.!/
; (26)

where OHyy.!/ D Hyy.!/C 	2


2
Hyx.!/.

Letting the spectral decomposition of instantaneous causality be

fY:X .!/ D ln
. QHxx.!/˙2

QH�
xx.!//.

OHyy.!/�2
OH�

yy.!//

jS.!/j ; (27)

we obtain a spectral domain expression for the total interdependence that is analo-
gous to (10) in the time domain:

fX;Y .!/ D fX!Y .!/C fY !X .!/C fX:Y .!/: (28)

It is important to note that the spectral instantaneous causality may become negative
for some frequencies in certain situations and may not have a readily interpretable
physical meaning.
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Y Z
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a b

Fig. 1 Two possible coupling schemes for three time series. A pairwise causality analysis cannot
distinguish these two connectivity patterns

Geweke proved that [8], under general conditions, the above spectral causality
measures relate to the time domain measures through:

FX;Y D 1
2�

R �

�� fX;Y .!/d!;

FX!Y D 1
2�

R �

��
fX!Y .!/d!;

FY !X D 1
2�

R �

��
fY !X .!/d!;

FY;X D 1
2�

R �

��
fX;Y .!/d!:

If those conditions are not met, these equalities become inequalities.
When there are more than two time series a pairwise analysis may not fully re-

solve the connectivity pattern. Figure 1 shows two connectivity schemes among
three time series. A pairwise analysis will conclude that the connectivity pattern in
Fig. 1b applies to both cases. In other words, pairwise analysis cannot distinguish
whether the drive from Y to X has a direct component (Fig. 1b) or is mediated
entirely by Z (Fig. 1a). In addition, for three processes, if one process drives the
other two with differential time delays, a pairwise analysis would indicate a causal
influence from the process that receives an early input to the process that receives
a late input. To overcome these problems, conditional Granger causality [4, 9] has
been proposed in both the time as well as the frequency domain (see [7] for a more
detailed development of this measure).

Estimation of Autoregressive Models

The estimation of Granger causality involves fitting autoregressive models to time
series data. The basic steps are discussed below for the general case of p recording
channels. One emphasis is the incorporation of multiple time series segments into
the estimation procedure [6]. This consideration is motivated by the goal of applying
autoregressive modeling to neuroscience problems. It is typical in behavioral and
cognitive sciences that the same experiment be repeated on many successive trials.
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Under appropriate conditions, physiological data recorded from these repeated trials
may be viewed as realizations of a common underlying stochastic process.

Let X.t/ D ŒX1.t/; X2.t/; 
 
 
 ; Xp.t/�
T be a p dimensional random process.

Here T denotes matrix transposition. For multivariate neural data, p stands for the
total number of recording channels. To avoid confusion with the channel designa-
tion in the subscript, the time variable t is written as the argument of the process.
Assume that X.t/ is stationary and can be described by the following mth order
autoregressive equation

X.t/C A.1/X.t � 1/C 
 
 
 C A.m/X.t �m/ D E.t/ (29)

where A.i/ are p � p coefficient matrices and E.t/ D ŒE1.t/; E2.t/; : : : ; Ep.t/�
T

is a zero mean uncorrelated noise vector with covariance matrix ˙ .
To estimate A.i/ and ˙ , (29) is multiplied from the right by XT.t � k/, where

k D 1; 2; : : : ; m. Taking expectations, we obtain the Yule-Walker equations

R.�k/C A.1/R.�k C 1/C 
 
 
 C A.m/R.�k Cm/ D 0; (30)

where R.n/ D< X.t/XT.tCn/ > is X.t/’s covariance matrix of lag n and R.�n/ D
RT.n/. Here < E.t/XT.t � k/ >D 0 since E.t/ is an uncorrelated process.

Assume that L realizations of the X process are available, fxl.i/gN
iD1, where l D

1; 2; 3; : : : ; L. The ensemble mean is estimated and removed from each individual
realization. The covariance matrix in (30) is estimated by averaging the following
matrix over l :

QRl.n/ D 1

N � n
N �nX

iD1

xl.i/x
T
l .i C n/: (31)

For neural data, each trial is considered a realization.
Equation (29) contains a total of mp2 unknown model coefficients. In (30) there

is exactly the same number of simultaneous linear equations. One can simply solve
these equations to obtain the model coefficients. An alternative approach is to use
the Levinson, Wiggins, Robinson (LWR) algorithm, which is a more robust solu-
tion procedure based on the ideas of maximum entropy [6]. This algorithm was
implemented in the analysis of numerical examples and neural data described in the
following sections. The noise covariance matrix ˙ may be obtained as part of the
LWR algorithm. Otherwise one may obtain˙ through

˙ D R.0/C
mX

iD1

A.i/R.i/: (32)

The above estimation procedure can be carried out for any model order m.
The correct m, representing the tradeoff between sufficient spectral resolution and
over-parametrization, is usually determined by minimizing the Akaike Information
Criterion (AIC) defined as
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AIC.m/ D �2 logŒdet.˙/�C 2p2m

Ntotal
(33)

whereNtotal is the total number of data points from all the trials. Plotted as a function
of m the proper model order corresponds to the minimum of this function. It is
often the case that for neurobiological data Ntotal is very large. Consequently, for a
reasonable range ofm, the AIC function does not achieve a minimum. An alternative
criterion is the Bayesian Information Criterion (BIC), which is defined as

BIC.m/ D �2 logŒdet.˙/�C 2p2m logNtotal

Ntotal
: (34)

This criterion can compensate for the large number of data points and may perform
better in neural applications. A final step, necessary for determining whether the au-
toregressive time series model is suited for a given data set, is to check whether the
residual noise is white. Here the residual noise is obtained by computing the differ-
ence between the value predicted by the model, �.A.1/X.t �1/C
 
 
CA.m/X.t �
m//, and the actually measured value, X.t/.

Once an autoregressive model is adequately estimated, it becomes the basis for
both time domain and spectral domain Granger causality analysis. Specifically, in
the spectral domain, (29) can be written as

X.!/ D H.!/E.!/ (35)

where

H.!/ D .

mX

j D0

A.j /e�i!j /�1 (36)

is the transfer function with A.0/ being the identity matrix. From (35), after proper
ensemble averaging, we obtain the spectral matrix

S.!/ D H.!/˙H�.!/ (37)

According to the procedures outlined in the previous section, the transfer function,
the noise covariance, and the spectral matrix constitute the basis for carrying out
Granger causality analysis.

Numerical Simulations

In this section, we use three examples to illustrate various aspects of the approach
given earlier. Two of the examples involve coupled autoregressive models. Another
example is based on equations derived from neuronal population dynamics.
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Example 1. Consider the following two variable model:

Xt D "t ;

Yt D 0:5Yt�1 CXt�1 C �t ;
(38)

where "t ; �t are independent Gaussian white noise processes with zero means and
variances var."t / D 1, var.�t / D 0:09, respectively. Assume that each time step is
5 ms. The sampling rate is 200 Hz. For such a simple model, it is not hard to derive
the theoretical coherence betweenXt and Yt , which is 0.92 for all frequencies. Also,
from the construction of the model, it can be seen that there is only a unidirectional
causal influence fromXt to Yt ; the feedback from Yt toXt is zero. In addition, there
is no instantaneous causality since the two white noise processes are independent.
Based on (17), the unidirectional Granger causality from Xt to Yt is analytically
determined to be: fX!Y D � ln.1 � 0:92/ D 2:49.

Equation (38) was simulated to generate a data set of 500 realizations with each
realization consisting of 100 time points. Assuming no knowledge of (38), we fit-
ted an AR model to the simulation data set and computed coherence and Granger
causality spectra, which are shown in Fig. 2. The agreement between theoretical and
simulated values is excellent.

Example 2. A simple neural model is considered [12]. An excitatory and an in-
hibitory neuronal population are coupled to form a cortical column. The columns are
then coupled through mutually excitatory interactions to form a network (Fig. 3a):

d2xn.t/

dt2
C .aCb/dxn.t/

dt
Cabxn.t/ D �keiQ.yn.t/;Qm/C

C 1

N

NX

pD1

cnpQ.xp.t � �np/;Qm/C �xn .t/C In;
d2yn.t/

dt2
C .aC b/dyn.t/

dt
C abyn.t/ D kieQ.xn.t/;Qm/C �yn .t/: (39)

Here xn and yn represent the local field potentials of the excitatory and inhibitory
populations in the nth column, �xn

and �yn
are local white noise, and In is external

input. The constants a; b > 0 are parameters describing the intrinsic properties of

a b

Fig. 2 Coherence and Granger causality spectra for simulation example 1.
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a

b
c

Fig. 3 (a) General coupling topology of the neural population model in simulation example 2.
(b) and (c) Power and Granger causality spectra of two coupled columns.

each population. The parameter kie > 0 gives the coupling gain from the excitatory
(x) to the inhibitory (y) population, whereas kei > 0 represents the strength of the
reciprocal coupling. The coupling strength cnp is the gain from the excitatory popu-
lation of column p to the excitatory population of column n. The sigmoid coupling
functionQ can be found in [12].

The values of the parameters used in the simulation are: N D 2; a D 0:22; b D
0:72; kei D 0:4; kie D 0:1; c11 D c21 D c22 D 0; c12 D 0:5; �12 D 15ms;Qm D 5;

I1 D I2 D 0, and the variances of the white noise inputs are 0.04. In other words,
two columns were coupled together, where column 1 unidirectionally drives column
2 with no feedback from column 2 to column 1. The delayed differential equations
were solved using a fourth order Runge-Kutta method with a fixed step of 0.1 ms.
1,01,000 points were generated and later down sampled to 200 Hz after discarding
the first 1,000 transient points. The data set analyzed consisted of 2,000 data points.

An autoregressive model of order 5 was fitted to the data. Power, coherence, and
Granger causality spectra were computed based on the fitted model. The results for
power and Granger causality spectra are shown in Fig. 3b and c, respectively. It is
clear that the network connectivity is correctly identified in Fig. 3c. Interestingly,
the power in the driven column (column 2) is actually higher than that in the driving
column (column 1). This indicates that one cannot easily infer causal relationships
in a multinode network by using the magnitude of power as the sole indicator.
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Example 3. In this example we illustrate the importance of conditional causality
analysis in revealing the true connectivity pattern in a network of three coupled AR
models. Consider the following AR(2) processes:

x1.t/ D 0:55x1.t � 1/� 0:7x1.t � 2/C 0:4x3.t � 1/C �1.t/;

x2.t/ D 0:56x2.t � 1/� 0:8x2.t � 2/C �2.t/;

x3.t/ D 0:58x3.t � 1/� 0:9x3.t � 2/C 0:4x2.t � 1/C �3.t/;

(40)

where �1.t/, �2.t/, and �3.t/ are independent white noise processes with zero mean
and unit variance. From model construction, there are causal influences from x3 to
x1 and from x2 to x3, but there is no direct causal influence between x1 and x2. The
coupling scheme here corresponds to Fig. 1a.

Simulating this model, we created a data set of 100 trials where each trial con-
tained 1,024 time points. Assuming no knowledge of the model, a pairwise Ganger
causality analysis was performed using a model order of 3. The results are shown
in Fig. 4a. The causal influences from x3 to x1 and from x2 to x3 are both correctly
identified. However, this analysis also revealed a causal influence from x2 to x1.
This influence is not part of the model and is thus an artifact of the pairwise analy-
sis. After applying conditional causality analysis, this artifact disappeared, as shown
in Fig. 4b.

a

b

Fig. 4 (a) Pairwise analysis results for simulation example 3. (b) Conditional Granger causality
analysis result.
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Laminar Organization of the Cortical Alpha Rhythm

Oscillatory activity in the brain can appear in a number of frequency bands. Among
them, the alpha rhythm (8–12 Hz) is prominent in human EEG recordings over the
occipital and parietal areas during wakefulness. Nearly 80 years after its discovery,
its genesis, cellular mechanisms, and functions remain unclear [20]. Early work on
the genesis of the cortical alpha rhythm emphasized the pacemaking role of the tha-
lamus [1]. A series of in vivo studies in dogs suggested that the alpha rhythm could
be of a cortical origin with large layer 5 pyramidal neurons acting as pacemakers
[14]. This hypothesis has found support in in vitro studies on slices from sensory
cortices [21]. While in vitro preparations have proven an invaluable tool for un-
derstanding the physiology of cortical oscillations, recent writings have cautioned
about the applicability of the findings made in these preparations to the intact brain
[22]. Full anatomical connectivity brings the influence of various neuromodulatory
systems on cell groups, resulting in changes in membrane potential and firing prop-
erties [22], the impact of which on the laminar organization of cortical oscillations
remains unclear. Moreover, some of the powerful in vitro techniques such as tri-
section are not possible in behaving animals. Advanced computational methods in
conjunction with properly recorded neural data hold the key to future progress in
this area. Below we demonstrate the effectiveness of the method outlined earlier by
applying it to characterize the “spontaneous” alpha rhythm in the visual cortex in
the alert monkey. A more thorough study has been carried out in [2].

As part of an experiment involving switching attention between auditory to vi-
sual input streams, a macaque monkey was trained to perform an auditory oddball
discrimination task [16]. Pure tones of 100 ms duration were presented at approx-
imately 1.5 Hz. The stream of these standard stimuli was randomly interrupted by
tones that differed in frequency (deviants). The monkey was required to respond to
these deviant stimuli immediately following its onset. Local field potential (LFP)
and multiunit activity (MUA) were sampled (2 kHz) with a linear array electrode
with 14 contacts spanning all six cortical layers in visual area V4. The intercontact
spacing was 200 m. The reason for analyzing activity in visual cortices during au-
ditory discrimination was that the discrimination kept the monkey verifiably alert
without using visual stimuli, so that we could study spontaneous neural activity.

To characterize the laminar organization of the cortical alpha rhythm we fol-
lowed a three-step analysis protocol. First, laminar generators of LFP oscillations
at the alpha frequency are identified by calculating the transmembrane current flow
profile using the current source density (CSD) method. While the CSD analysis
has been performed extensively on local field potentials with respect to the onset
of a repetitive sensory stimulus [17, 19], its extension to ongoing neural activity is
more difficult to ascertain. Single-trial CSD estimates tend to be noisy, and as there
is no stimulus-related trigger, LFP averaging requires an alternate procedure for
the alignment of trials. Here we use the phase of the alpha oscillation in a short
epoch (described below) as a trigger for averaging LFPs. Second, alpha current
generators that have the potential of pacemaking are identified with CSD-MUA co-
herence. In the context of studying evoked potentials, a source or sink is considered
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active if simultaneously recorded MUA is depressed or enhanced, indexing net local
hyperpolarization or depolarization, respectively [17, 19]. For ongoing oscillatory
activity, the membrane undergoes rhythmic transition between hyperpolarization
and depolarization. In particular, during the depolarizing phase of the oscillation,
the pacemaker cells may fire bursts of action potentials, which, via synaptic trans-
mission, entrain neural activity in other laminae and cortical areas. For the present
work, significant phase coherence between CSD and MUA is taken to indicate that
a current generator is accompanied by rhythmic firing and thus has the potential of
pacemaking. Third, the primary pacemaking generator is identified with the Granger
causality analysis. For a cortical column with multiple alpha current generators dis-
tributed across different layers, the relationship among these generators needs to be
further delineated. This is particularly so if the second step reveals that more than
one generator has the potential of being the pacemaker. Granger causality analysis is
used to further disambiguate the roles of different current generators, as the primary
pacemaking generator is expected to exert unidirectional causal influence on other
neural ensembles.

Contiguous LFP data of 30 s in duration was high-pass filtered (3 Hz, zero phase-
shift), down-sampled to 200 Hz, and divided into 200 ms epochs. Each epoch, also
referred to as a trial, was treated as a realization of an underlying stochastic process.
The power spectrum of each of the 14 recording contacts was estimated and the con-
tact showing the highest power spectral density at the alpha frequency was chosen
as the “phase index” contact. Figure 5b shows the laminar distribution of the peak
(10 Hz) LFP power. It can be seen that infragranular (IG) layers (electrode contacts
10–14) have higher alpha power than the granular (G) (electrode contacts 8 and 9)
as well as the supragranular (SG) layers (electrode contacts 1–7). Contact 13 was
chosen as the “phase index” contact. A sinusoid of the same frequency (10 Hz) was
then fitted to the data from the phase index contact for each epoch to obtain the
phase at that frequency with respect to the beginning of the epoch. The LFP data
from all the contacts were shifted according to this estimated phase to realign all
the trials, and the realigned signals were then averaged across epochs (trials) to ob-
tain the averaged LFP for each contact. The current source density (CSD) profile
was derived by taking the second spatial derivative. From the CSD profile the cur-
rent sources (blue) and sinks (red) underlying the generation of the oscillatory alpha
field activity are readily identified in G, IG as well as SG layers (Fig. 5a).

To assess the pacemaking potential of each current generator, CSD–MUA coher-
ence was computed. The MUA data were epoched the same way as the LFP data
and down-sampled from 2 kHz by taking a temporal average in nonoverlapping win-
dows of 5 ms duration to achieve effectively the same sampling resolution of 200 Hz
as the down-sampled LFPs. The coherence between single trial CSDs around alpha
current generators and the corresponding mean-centered single-trial MUAs was cal-
culated and the coherence spectra have clear peaks at around 10 Hz in the IG and G
layers as shown in Fig. 5c. The peak coherence is 0.53 (p < 0:01) in IG layers, and
0.35 (p < 0:01) in G layer, suggesting that the neuronal firing at these generators
is phase-locked to the oscillatory current. In contrast, the CSD–MUA coherence
for the SG layer did not show an alpha peak (Fig. 5c) and the coherence value at
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Fig. 5 (a) Current source density displayed as a color coded plot. (b) Laminar distribution of
the LFP power at 10 Hz (normalized). (c) CSD–MUA coherence spectra at different recording
contacts.

10 Hz was not significant. Here the significance level is determined using a random
permutation procedure [2]. Note that the SG current generator is out of phase with
that in G and IG layers. A plausible explanation for the lack of significant CSD–
MUA coherence in the SG layers is dampening due to inhibition. Thus, the biasing
of the CSD–MUA coherence toward the G and the IG layers (Fig. 5c), together with
the laminar distribution of alpha power in Fig. 5b, strongly suggest that the neural
ensembles in the G and IG layers are potential alpha pacemakers.

The more precise relationship between these potential pacemakers is examined
by a Granger causality analysis using signals that represent local neural activity
around each current generator. Typically, LFPs are recorded against a distant refer-
ence, making them susceptible to volume conduction of potentials from other sites
This can affect interdependence analysis (see next section). The first derivative used
for generating the bipolar LFPs and the second derivative approximation used for
the current source density analysis help to eliminate this problem. For the data set
shown in Fig. 5 the three bipolar signals are: SG = LFP(contact 5) - LFP(contact 3),
G = LFP(contact 9) - LFP(contact 7), and IG = LFP(contact 13) - LFP(contact 11).

Bipolar LFPs representing local neural activity around each current generator
were subjected to parametric spectral and Granger causality analysis. The AR model
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Fig. 6 Autoregressive model estimation performance. Overlaid are 5 s of bipolar LFP data (red) in
the unit of microvolt from the infragranular layer, AR model based prediction (blue), and residual
(green).

Fig. 7 Fourier based power
spectra of the bipolar LFP
data, AR model based
prediction and residual
process in Fig. 6.
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order of m D 10 (50 ms) was chosen as a tradeoff between sufficient spectral
resolution and over-parameterization. Before proceeding with the result presenta-
tion, we consider the adequacy of using autoregressive models to represent neural
data. Figure 6 shows the performance of the AR model on 5 s of contiguous bipolar
LFP data from the IG layer. The model based one-step prediction data (blue curve
in Fig. 6) closely follows the bipolar LFP data (red curve). The difference between
the one-step prediction and the actual data, called the residual process, is overlaid
(green curve). Figure 7 shows the Fourier based power spectra of the data, AR model
prediction and the residual process in Fig. 6. An adequate parametric model fit of the
data means that the residual noise process must be temporally uncorrelated (white).
The power spectrum of the residual process (green curve in Fig. 7) does not have
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Fig. 8 Spectral analysis based on bipolar LFP data. (a) Power spectra of bipolar LFP signals
from granular (G) and infragranular (IG) layers. (b) Coherence spectrum between the two bipolar
signals in (a). (c) and (d) Granger causality spectra between G and IG layers. Here x ! y denotes
x driving y and .x ! y/=z denotes x driving y after conditioning out z. (e) Power spectra of the
bipolar LFP signals from supragranular (SG) and IG layers. (f) Coherence spectrum between the
two bipolar signals in (e). (g) and (h) Granger causality spectra between SG and IG.

any prominent features, suggesting that the process is white. In addition the Durbin–
Watson test was used to check the goodness of fit. The whiteness of the residuals
was confirmed at the p D 0:05 significance level.

After verifying the adequacy of the AR model representation of the bipolar LFP
data, power, coherence, and Granger causality analysis was carried out for the three
bipolar signals in V4. The results are contained in Fig. 8. For IG and G layers, the
bipolar LFP power spectra exhibit clear peaks around 10 Hz (Fig. 8a). The coher-
ence between the two layers has a pronounced peak at 9 Hz, where the peak value is
0.76 (p < 0:001), as shown in Fig. 8b. This suggests that the alpha currents in these
layers are highly synchronized. The Granger causality spectrum of IG ! G shows
(Fig. 8d) a strong peak at 10 Hz with a peak value 1.48 (p < 0:001), whereas the
causality in the opposite direction (G ! IG) is not significant (Fig. 8c), indicating
that neural activity in the G layer is strongly driven by that in the IG layers. To ex-
amine the influence of the SG layers on the interaction between the G and IG layers,
we included the bipolar signal from the SG layer and performed conditional Granger
causality analysis. The Granger causality from IG to G layer after conditioning out
SG layer activity is nearly identical to the bivariate case (Fig. 8d), suggesting that the
SG layers has no influence on the interaction between the IG and G layers. This is
an expected result as the CSD–MUA coherence analysis has already demonstrated
that the SG alpha current generator is not accompanied by rhythmic firing and thus
not capable of pacemaking.
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The interaction between the IG and SG layers was studied by first performing a
bivariate analysis. Figure 8e and f show the power and coherence spectra, respec-
tively. The power of the bipolar LFP signal for the SG layer has a clear peak at 10 Hz.
The coherence spectrum peaked at 10 Hz with a peak value of 0.67 (p < 0:001),
indicating a significant synchrony between the local alpha currents in these two lay-
ers. Granger causality again reveals IG as the driver of the SG current with the peak
value of 0.28 (p < 0:001) at 10 Hz (Fig. 8h). The causal influence in the opposite
direction (SG ! IG) is not significant (Fig. 8g). Finally, the role of the G layer
on the interaction between IG and SG alpha activities was studied by performing
conditional causality analysis. After conditioning out the influence of the G layer,
the peak (10 Hz) Granger causality of the IG driving the SG layer is significantly
reduced from 0.28 to 0.12 (p < 0:001) (Fig. 8h), suggesting that part of IG influ-
ence on SG layers could be mediated by the G layer. The significance testing here
was performed using the bootstrap resampled method [2]. These results, together
with laminar pattern of CSD (Fig. 5a) and CSD–MUA coherence analysis (Fig. 5c),
support the hypothesis that alpha rhythm is of cortical origin with layer 5 pyramidal
neurons acting as pacemakers [14,21]. Moreover, the laminar organization revealed
by Granger causality analysis is consistent with the anatomical connectivity within
the cortical column [15].

The Choice of Neural Signals for Neuronal Interaction Analysis

In the previous section, bipolar LFP signals were used for coherence and Granger
causality analysis. Three other choices of signals are possible for the present exper-
iment: original unipolar LFP data, single-trial CSDs, and MUAs. Here we consider
the appropriateness of these three types of signals for analyzing the interaction be-
tween different alpha current generators in V4.

Single-trial CSDs were derived at electrode contacts 5, 9, and 12 where strong
alpha current generators have been identified (Fig. 5a). As shown in Fig. 9, Granger
causality analysis results based on this type of signal are nearly identical to those
using bipolar LFP data. CSD power spectra at IG, G, and SG layer contacts have a
clear peak at 10 Hz (Fig. 9a, e). Coherence spectrum shows (Fig. 9b, f) that the trans-
membrane currents in G and SG layers are coherent with that at IG layer. Granger
causality analysis revealed that IG layer drives both G and SG layers (Fig. 9d, h),
whereas the Granger causality in the opposite directions (G ! IG, SG ! IG) are
not significant at p D 0:05 level (Fig. 9c, g). Conditional Granger causality analysis
further revealed that SG layer activity has no influence on the interaction between
IG and G layer generators (Fig. 9d), whereas IG ! SG is partly mediated by the
G layer. Thus, Granger causality analysis based on either single-trial bipolar LFPs
or single-trial CSDs yielded identical laminar organization for the alpha rhythm in
the cortical area V4.



Characterizing Oscillatory Cortical Networks with Granger Causality 187

0 10 20 30 40

0.2

0.4

0.6

0.8

co
he

re
nc

e
0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

G
ra

ng
er

 c
au

sa
lit

y

0 10 20 30 40
0

0.2

0.4

0.6

G
ra

ng
er

 c
au

sa
lit

y

0 10 20 30 40
0

0.5

1

1.5

frequency (Hz)

cs
d 

po
w

er

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

frequency (Hz)

co
he

re
nc

e

0 10 20 30 40
0

0.1

0.2

0.3

frequency (Hz)

G
ra

ng
er

 c
au

sa
lit

y
0 10 20 30 40

0

0.1

0.2

0.3

frequency (Hz)

G
ra

ng
er

 c
au

sa
lit

y

20 40
0

0.2

0.4

0.6

0.8

1
cs

d 
po

w
er

a b c d

e f g h

G 
IG (IG––>G)/SG 

IG––>G G––>IG 
(G––>IG)/SG 

SG 
IG (SG––>IG)/G 

SG––>IG IG––>SG 
(IG––>SG)/G 

Fig. 9 Spectral analysis based on single-trial CSD data. (a) Power spectra of CSD signals from
granular (G) and infragranular (IG) layers. (b) Coherence spectrum between the two CSD signals
in (a). (c) and (d) Granger causality spectra between G and IG layers. (e) Power spectra of the CSD
signals from supragranular (SG) and IG layers. (f) Coherence spectrum between the CSD signals
in (e). (g) and (h) Granger causality spectra between SG and IG.

Unipolar LFPs are vulnerable to volume-conducted far-field effects, and they also
contain the common reference, which is the electrode against which all differences
in electrical potentials are measured. It is thus expected that interdependence analy-
sis based on this type of signal will be adversely affected. The spectral analysis using
unipolar LFPs (at electrode contacts 5, 9, and 12; see Fig. 10a) shows very high
coherence over a broad frequency range (Fig. 10b). In addition, Granger causality
analysis shows bidirectional causal influence between IG and G layers (Fig. 10c, d).
This is not consistent with the unidirectional driving from IG to G layer revealed by
bipolar LFP and single-trial CSD based analysis.

The MUA signal contains action potentials fired by both neurons participating in
alpha activity and neurons not related to it. Figure 10e shows the power spectra of
the mean centered MUA activity at the current generators in G and IG layers. No
peak in the alpha frequency range is observed, indicating that much of MUA signals
is not related to alpha frequency firing. The same type of spectral form is also seen
for coherence (Fig. 10f) and Granger causality. In particular, the latter is found to be
bidirectional (Fig. 10g, h).

Contrasting Figs. 8 and 9 with Fig. 10, and taking into account of the appropriate
physiological interpretation, it is clear that bipolar LFPs or single-trial CSDs are
good indices of local synchronous neuronal activity. They are preferred variables
compared to unipolar LFPs or MUAs in the study of neuronal interactions between
different generators of alpha oscillation in the cortical column.
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Fig. 10 Spectral analysis based on unipolar LFP and MUA data. (a) Power spectra of unipolar
LFP signals from granular (G) and infragranular (IG) layers. (b) Coherence spectrum between the
two unipolar signals in (a). (c) and (d) Granger causality spectra between G and IG. (e) Power
spectra of the MUA signals at supragranular (SG) and IG layers. (f) Coherence spectrum between
the MUA signals in (e). (g) and (h) Granger causality spectra between SG and IG.

Summary

In this chapter a framework for the analysis of multivariate neuronal time series
centered on Granger causality is outlined. The mathematical essentials of Granger
causality analysis is given. Three simulation examples are used to illustrate the
method. The technique is then applied to study the laminar organization of the
cortical alpha rhythm. It is shown that, in area V4, alpha rhythm is of a cortical ori-
gin with layer 5 pyramidal neurons acting as pacemakers. Our results suggest that
Granger causality analysis, when combined with traditional techniques like current
source density analysis, can improve our ability to understand the dynamical orga-
nization of synchronous oscillatory cortical networks.
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Neurophysiology of Interceptive Behavior
in the Primate: Encoding and Decoding Target
Parameters in the Parietofrontal System

Hugo Merchant and Oswaldo Pérez

Abstract This chapter describes the encoding and decoding properties of target pa-
rameters in the primate parietofrontal system during an interception task of stimuli
in real and apparent motion. The stimulus moved along a circular path with one of
5 speeds (180–540 degrees/s), and was intercepted at 6 o’clock by exerting a force
pulse on a joystick that controlled a cursor on the screen. The real stimuli moved
smoothly along the circular path, whereas in the apparent motion situation five stim-
uli were flashed successively at the vertices of a regular pentagon. First, we include
a description of the neural responses associated with temporal and spatial aspects of
the targets with real and apparent motion. Then, using a selected population of cells
that encoded the target’s angular position or time-to-contact, we tested the decod-
ing power of the motor cortex and area 7a to reconstruct these variables in the real
and apparent motion conditions. On the basis of these results, we suggest a possible
neurophysiological mechanism involved in the integration of target information to
trigger an interception movement.

Introduction

People and animals usually interact with objects in relative motion, that is, organ-
isms are moving in the environment and/or objects are moving within the visual
field toward or away from organisms. Thus, there are two main types of interac-
tions between subjects and objects in relative motion: collision avoidance and the
opposite, an interception. Successful control of these interactions is essential for
survival. Fatal encounters can happen if the organism is not able to avoid collision
or a predator, and a predator will eventually die if unable to catch its prey. This huge
adaptative pressure suggests that the neural mechanisms underlying collision avoid-
ance and interception have been sculpted by evolution throughout millions of years
in different vertebrate and invertebrate species.
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Although numerous studies have characterized different aspects of the intercep-
tive behavior using an experimental psychology approach [26], few neurophysiolog-
ical studies have determined the neural underpinnings of such an important action.
However, recent findings from our group have provided the first clues regarding the
neural mechanism of target interception [21–23,30]. The present chapter focuses on
the neurophysiological properties of the parietofrontal system in monkeys trained
to intercept circularly moving targets in real or apparent motion. We describe the
neural encoding and decoding abilities of the motor cortex and area 7a to represent
different target attributes during this interception task.

Behavioral Aspects of an Interceptive Action

In manual hitting interceptions, the control of movement is done under explicit rep-
resentations of where to go (the interception location or zone IZ) and how long it will
take to get there (time-to-contact or TTC). Thus, in this type of behavior the time
and position information are clearly distinguishable. Predictive and reactive mod-
els have formalized the integration of the temporal and spatial variables involved in
the perceptual and motor components of manual hitting interceptions. In the pre-
dictive model, the interception movement is predetermined and is not influenced
by visual information after the motor command is triggered. This model accounts
for manual hitting interceptions with fast and ballistic movements and assumes that
the programmed movement time is triggered after a key target parameter reaches a
particular threshold. In some circumstances, it has been observed that the distance
remaining to reach the interception zone .DTCtar/ can be a key parameter. In many
others, the TTCtar is the key parameter of preference [14, 34]. In contrast, the re-
active strategy assumes that the interception movement starts at a target traveling
time or distance, and then is further modulated in an ongoing fashion [8,15]. Target
pursuit is a behavior well explained by this model.

Summarizing the psychophysics of manual interception, a set of requirements
must be satisfied to intercept a moving target. First, it is necessary to process the
visual motion information of the target, including its actual position, TTCtar, DTCtar,
and velocity. Second, the subject uses a predictive or reactive strategy to control the
initiation of the interception movement, so that at the end of the movement the
target is intercepted. Third, an interception movement should be implemented. This
can be a ballistic movement with a predetermined direction and kinetics, or it can be
a complex movement divided into submovements that can be regulated to optimize
the precision of the interception. Finally, it is necessary to evaluate the end result of
the interception, i.e., how precise it was. This information can be used to correct the
strategy and the interception movement properties.

The neurophysiology of several of these behavioral components has been stud-
ied separately. It is well known that different cortical and subcortical areas, such as
the middle temporal area (MT), process visual motion information. It has also been
demonstrated that the different premotor areas and the primary motor cortex are in-
volved in the preparation and execution of voluntary movements [13, 36]. Finally,
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it has been suggested that different areas of the parietal and frontal lobes are en-
gaged in visuomotor transformations [2]. Indeed, here we show how the visuomotor
information is integrated in two areas of the parietofrontal system during an inter-
ception task [25]. Initially, however, we describe the cortical network engaged in
visual motion processing.

Visual Motion Processing

Visual motion is a powerful stimulus for activating a large portion of the cerebral
cortex. Neurophysiological studies in monkeys [1,28] and functional neuroimaging
studies in human subjects [5, 38] have documented the involvement of several ar-
eas in stimulus motion processing, including the MT [37], medial superior temporal
area (MST) [35], superior temporal polysensory area [4], area 7a [18, 27, 33], and
the ventral intraparietal area [6]. More detailed analyses of the neural mechanisms
underlying visual motion processing have been performed in monkey experiments,
the results of which indicate that different areas relate to different aspects of this
processing. The direction of rectilinear motion is explicitly represented in the neu-
ral activity of the MT, a structure that projects to the MST, areas 7a and 7m, and VIP.
These target areas are part of the posterior parietal cortex (PPC). Cells in the MST
and area 7a not only respond to rectilinear motion, but also to optic flow stimuli,
including stimulus motion in depth [9, 18, 33]. Neurons in the MST are tuned to the
focus of expansion and can code for the direction of heading [3, 10]. The responses
of area 7a neurons to optic flow stimuli appear to be more complex than those in the
MST, since individual neurons respond similarly to opposed directions of motion,
like clockwise (CW) and counterclockwise (CCW) rotations, upward and downward
motions, or rightward and leftward translations [19]. Interestingly, optical expansion
is the most prominent stimulus driving the activity of neurons in this area. Thus, the
PPC can process optic flow information in a very complex fashion. It is reasonable
to expect, then, that the PPC is a good candidate for the neural representation of
TTC in primates. In fact, our group was the first to characterize the neural correlates
of TTCtar in area 7a and the motor cortex in the monkey [22]. Furthermore, in a
recent fMRI study, it was demonstrated that the parietofrontal system in humans is
specifically activated during perception of TTC judgments [12]. Besides the repre-
sentation of TTC and direction of motion, areas such as the MT, MST, and area 7a
also code for the speed of visual motion [11, 17, 29].

Overall, the current knowledge of visual motion processing indicates that the mo-
tor system has access to TTCtar, DTCtar, and target velocity to drive the interceptive
response. This visual information travels to premotor areas and then to the primary
motor cortex from different areas of the PPC. Therefore, the anatomic evidence
indicates that the neural substrate of interceptive actions may be a distributed net-
work engaging the parietofrontal system. In the following sections, we review some
neural correlates of target interception in two important nodes of the parietofrontal
system: area 7a and the motor cortex. We begin by describing the interception task
used in these studies.
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The Interception Task

The task required the interception of a moving target at 6 o’clock in its circular
trajectory by applying a downward force pulse on a pseudoisometric joystick that
controlled a cursor on the computer monitor (Fig. 1a) [20]. The target moved CCW
with one of five speeds, ranging from 180 to 540 degrees/s. In addition to the real
motion condition where the targets moved smoothly along a low contrast circu-
lar path, we also used an apparent motion situation where the target was flashed
successively at the vertices of a regular pentagon [32]. In the latter condition, an
illusion of a stimulus continuously moving along the circular path was obtained
at target speeds above �315 degrees/s in human subjects [24]. We included path-
guided apparent motion because we were interested in comparing the behavioral
strategy and the overall neural mechanisms during the interception of stimuli with
real and apparent motion. The hypothesis here was that the neural underpinnings of
target interception is different during real and apparent motion conditions.

In this task the monkeys used a predictive strategy for interception, producing
predetermined ballistic movements. We, therefore, could investigate the possible
key parameter used to control the initiation of the interception movement. For that
purpose, we calculated TTCtar and DTCtar at the beginning of the effector move-
ment. We found that DTCtar increased asymptotically as a function of the stimulus
speed in both motion conditions (Fig. 1b, top). In addition, the movement time
(which corresponded to TTCtar in these conditions) decreased slightly as a func-
tion of the stimulus speed, and it was larger in the real than in the apparent motion
condition (Fig. 1b, bottom). Despite these results it was difficult to unambiguously
identify the key parameter used for interception. Nevertheless, as we will show
later, the neurophysiological data collected in the parietofrontal system suggest that
TTCtar is used to trigger the interception movement in both the real and apparent
motion conditions [22].

Sensorimotor Processing During the Interception
of Circularly Moving Targets

In a previous study, we determined quantitatively the relation between the tempo-
ral pattern of neural activation and different aspects of the target and the motor
execution during the interception task [22]. We designed a general multiple lin-
ear regression model to test the effects of different parameters on the time-varying
neural activity. These parameters were the direction cosines of the stimulus angle,
TTCtar, the vertical hand force, and the vertical hand force velocity. This analysis re-
vealed that the time-varying neuronal activity in area 7a and in the motor cortex was
related to various aspects of stimulus motion and hand force in conditions of both
the real and apparent motion, with stimulus-related activity prevailing in area 7a
and hand-related activity prevailing in the motor cortex (Fig. 2). The most important
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Fig. 1 (a) Interception task of circularly moving targets. T represents the smoothly moving tar-
get in the real motion condition, or the flashing stimulus at the vertices of a regular pentagon in
the apparent motion condition; C cursor, IZ interception zone. (b) Behavioral performance during
the interception task. Top, target distance to contact .DTCtar/ at the beginning of the interception
movement; bottom, movement time is plotted as a function of the stimulus speed. Filled circles cor-
respond to the real motion and open circles to the apparent motion condition. Modified from [20]
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Fig. 2 Percentages of neurons in the real and apparent motion conditions, for which the noted
parameter was ranked first using the standardized coefficients obtained from the multiple regression
analysis. (a) Motor cortex. (b) Area 7a. Modified from [22]

finding was that the neural activity was selectively associated with the stimulus an-
gle during real motion, whereas it was tightly correlated with TTCtar in the apparent
motion condition, particularly in the motor cortex (Fig. 2).

Encoding of Angular Position and Time-to-Contact
During the Interception Task

As a following step, we compared how the time-varying neural activity was specif-
ically related to the stimulus angle or the TTCtar, in both motor cortex and area 7a.
Independent linear regression models were carried out to test which target parame-
ter was better explained by the temporal profile of activation for each target speed,
in both the real and apparent motion conditions. The first model was defined as:

ftC� D b0 C b1 cos �t C b2 sin �t C "t ; (1)

where ft is the mean spike density function at time t (20 ms window),	 was the
time lag between the neural activity and the independent variables and varied from
–160 to +160 ms, b0 is a constant, b1 and b2 are the regression coefficients for the
stimulus angle (also referred to as � or theta), and "t is the error. The second model
was defined as:

ftC� D b0 C b1�t C "t (2)
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with the same parameter definitions as (1), except that here b1 is the regression
coefficient for TTCtar (also referred to as �).

The adjusted R2 was used to compare the goodness of fit, and the model with
the highest value (1) vs. (2) was used for further analysis if the winning regression
ANOVA was significant .p < 0:05/. A total of 587 neurons in the motor cortex
and 458 neurons in area 7a were analyzed using the two models, since these cells
showed significant effects in the multiple linear regression model described earlier
[22]. These analyses revealed again that the time-varying neuronal activity in area
7a and the motor cortex was related to different aspects of the target motion in
both the real and apparent motion conditions. Neurons in area 7a showed that the
target angle was the best parameter to explain the time-varying neural activity in
both motion conditions (Table 1). In contrast, in the motor cortex the neural activity
was selectively associated with the TTCtar, in both the real and the apparent motion
(Table 2).

Table 1 Percent and total number of neurons in area 7a that showed significant
regression models from (1) or (2) and where the target angular position (� ) or the
time-to-contact .TTCtar/ was the best parameter to explain the temporal profile of
activation

Motion condition Target velocity % theta % TTCtar Total neurons

Real Motion 180 70.85 29.15 247
300 73.21 26.79 265
420 74.45 25.55 227
480 73.68 26.32 209
540 73.14 26.86 175

Apparent motion 180 83.33 16.67 396
300 79.40 20.60 369
420 69.00 31.00 400
480 69.04 30.96 394
540 75.34 24.66 373

Table 2 Percent and total number of motor cortical cells that showed significant
regression models from (1) or (2) and where the target angular position (� ) or the
time-to-contact .TTCtar/ was the best parameter to explain the temporal profile of
activation

Motion condition Target velocity % Theta % TTCtar Total neurons

Real motion 180 27.00 73.00 337
300 23.12 76.88 346
420 24.41 75.59 299
480 26.92 73.08 312
540 22.97 77.03 296

Apparent motion 180 16.37 83.63 452
300 21.70 78.30 447
420 24.46 75.54 462
480 27.20 72.80 478
540 18.92 81.08 465
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Fig. 3 The logarithm of the quotient between positive and negative lags plotted against the target
speed for significant regressions in (1) (Theta, top) or (2) (TTCtar, bottom) for the real (right) and
apparent (left) motion conditions in the motor cortex

A different question concerns the time shifts of the stimulus angle and TTC for
which the highest adjusted R2 values were obtained across cells, target speeds, and
motion conditions. Since the neural activity was shifted with respect to the inde-
pendent variables: a negative shift indicated that the neural activity was leading the
variable (predictive response), whereas a positive shift indicated that the variable
was leading the neural activity (sensory response). In the motor cortex, the neural
time shift distributions were skewed toward the predictive side. The overall median
of the distribution of lags for all target speeds was �20 ms for both real and ap-
parent motion conditions. To further analyze the time shifts for the best regression
models in (1) and (2), we plotted the logarithm of the quotient (log-ratio) between
all positive and all negative lags against the target speed (Fig. 3). In the apparent
motion condition, both the target angle (�) and TTCtar showed negative log-ratio
values, indicating that the best time shifts were predictive across the target speeds.
The same was observed for the TTCtar in the real motion condition; however, the
target angle showed positive log-ratio values at the highest target speeds in this mo-
tion condition. Nevertheless, no significant differences between the lag distributions
in the real and apparent motion conditions were observed for target angle or TTCtar

(Kolmogorov–Smirnov test, p>0:05). Therefore, these findings suggest that the
time-varying activity of the motor cortex can encode the TTCtar and the target angle
in a predictive fashion in both motion conditions.

In area 7a the neural time shift distributions for the highest adjusted R2 models
were skewed toward positive values (medians: 40 ms apparent, 20 ms real motion
condition), indicating that area 7a neurons were responding to the change in the
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Fig. 4 The logarithm of the quotient between positive and negative lags plotted against the target
speed for significant regressions in (1) (Theta, top) or (2) (TTCtar, bottom) for the conditions of
real (right) and apparent (left) motion in area 7a

target angle and TTCtar. Actually, the log-ratio values were positive for most motion
conditions and target speeds, with the exception of the target angle at the highest
target speed, which showed a negative value, and hence predictive responses, in the
real motion condition (Fig. 4). However, again, no significant differences were found
between the target angle or the TTCtar lag distributions in the real and apparent mo-
tion conditions in this parietal area (Kolmogorov–Smirnov test, p>0:05). Overall,
these results emphasize the sensory role of area 7a in visual motion processing, with
an initial reconstruction of the target TTC for real and apparent moving targets that
could be transferred to the frontal areas for further processing.

As a final point, it is important to mention that the results of regressions from (1)
and (2) were not totally consistent with the multiple regression analysis of the pre-
vious section. Specifically, during the real motion condition more neurons showed
better fittings for the target angle in the previous analysis, whereas for (1) and
(2), TTCtar was the best explanatory parameter in both areas. The most probable
cause for this discrepancy is the fact that in the previous multiple regression model,
we included the hand force and hand force velocity, which have some degree of
collinearity with the TTCtar. Therefore, the discrepancy probably reflects a compe-
tition between TTCtar and the arm movement parameters in the regression model
of (2), competition that is quite relevant in the motor cortical cell activity. Then,
to explore whether the activity of both areas carried enough information regarding
the target angle and the TTCtar, in the following section, we performed a detailed
decoding analysis on these parameters.
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Decoding of Angular Position and Tau During Interception
of Circularly Moving Targets

Once we had determined the dependence of the neural responses on the target an-
gle or TTCtar, we used a Bayesian analysis approach to directly address the inverse
problem: given the firing rates of these cells, how can we infer the spatial and tempo-
ral parameters of the target. The basic method assumes that we know the encoding
functions f1.x/; f2.x/; : : : ; fN .x/ associated with the time series for the target pa-
rameter (angle or TTCtar/ of a population of N cells from (1) or (2). Given the
number of spikes fired by the cells within a time interval from T �	=2 to T C	=2,
where 	 is the length of the time window (20 ms), the goal is to compute the prob-
ability distribution of the target angle or TTCtar at time T . Notice that what is to
be computed here is a distribution of the target parameter, not a single value. Thus,
we always can take the most probable value, which corresponds to the peak of the
probability distribution, as the most likely reconstructed target angle or TTCtar.

Let the vector x be the target parameter, and the vector nD .n1; n2; : : :; nN / be
the numbers of spikes fired by our recorded cells within the time window t , where
ni is the number of spikes of cell i . The reconstruction is based on the standard
Bayes formula of conditional probability:

P.xjn/ D P.njx/p.n/
P.r/

: (3)

The goal is to computeP.xjn/, that is the probability for the target parameter to be at
the value x, given the number of spikes n. P.x/ is the probability for the target to be
at a particular value x, which was fixed during the experiment. The probabilityP.n/
for the occurrence of the number of spikes n is equal to the mean of the conditional
probability P.nj x/ since x is deterministic in this experiment. Therefore, P.n/ is
fixed and does not have to be estimated directly. Consequently, given that P.n/ and
P.x/ are constant in this experiment then P.xjn/ is a constant multiple of P.njx/.

Thus, the key step is to evaluate P.njx/, which is the probability for the numbers
of spikes n to occur, given that we know the target parameter x. It is intuitively clear
that this probability is determined by the estimated firing rates from (1) or (2). More
precisely, if we assume that the spikes have a Poisson distribution and that different
cells are statistically independent of one another, then we can obtain the explicit
expression:

P.njx/ D
NY

iD1

.fi .x/T /
ni

ni Š
e�fi .x/T ; (4)

where fi .x/ is the average predicted firing rate of cell i of a population of N cells,
x is the target parameter, and T is the length of the time window.

The Bayesian reconstruction method uses (4) to compute the probability P.njx/
for the target parameter to be at the value x, given the numbers of spikes n of all the
cells within the time window. In this probability distribution, the peak value is taken
as the magnitude of the reconstructed target parameter. In other words:

OxBayes D arg max
x

P hnjxi :
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Fig. 5 Mean predicted angular position over time using ensembles of 50 neurons during the real
and apparent motion conditions and for the five different stimulus speeds. (a) Area 7a. (b) Motor
cortex. The real (line) and predicted (circles) positions are color coded in a gray scale, starting at
time zero (target onset) in light gray, and ending in black at the last time bin (interception time)

By sliding the time window forward, the entire trajectory of the target parameter can
be reconstructed from the time-varying activity in the neural population.

To systematically decode both target parameters, we used the cells with signif-
icant regressions from (1) or (2). However, since the number of significant cells
varied across motion conditions, target speeds, and cortical areas, we used a constant
population of 50 cells to decode both target parameters across all these conditions,
to avoid a population-size effect in the reconstructed angular position or TTCtar. In
fact, we carried out 100 decodifications for each condition using permuted popu-
lations of 50 cells (from the total number of neurons) and cross-validation (across
trials) with the purpose of sampling the reconstruction accuracy (variance and bias,
see eqs. 3.38 and 3.39 of [7]) within the overall cell population.



202 H. Merchant and O. Pérez
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Fig. 6 Mean (˙SEM) decodification variance (left) and bias (right) of the angular position as
a function of the target speed. (a) Area 7a. (b) Motor cortex. Filled circles and continuous line
correspond to real motion; open circles and dashed line correspond to apparent motion

The mean decoded angular position over time across target speeds and motion
conditions are depicted in Fig. 5 for area 7a and the motor cortex. It is evident that
the resulting reconstruction was quite accurate across target speeds and motion con-
ditions in area 7a (Fig. 5a), but deficient in the motor cortex (Fig. 5b). In fact, the
mean decoding variability and the mean bias for angular position in both motion
conditions were large in the motor cortex (Fig. 6b), but closer to zero in area 7a
(Fig. 6a). These results confirm that area 7a is an important node for visual-motion
processing [27, 33], and that the neurons in this area can properly represent the
change in angular position of the target over time, not only in the real but also in
the apparent motion condition [24]. In addition, the results suggest that the motor
cortex has limited access to the spatial position of the target during the interception
task in both motion conditions. Finally, in accord with the encoding results from the
previous section, the decoding from motor cortical activity suggests that the target
angle .DTCtar/ is probably not the variable used to trigger the interception move-
ment under these conditions.

Figure 7 show the reconstructed TTCtar across target speeds and motion condi-
tions for the motor cortex and area 7a. Again, area 7a (Fig. 7a) shows a decoded
TTC that is close to the actual TTCtar for every target speed of the real and apparent
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Fig. 7 Mean predicted TTCtar using ensembles of 50 neurons during the real and apparent motion
conditions and for the five different stimulus speeds. (a) Area 7a. (b) Motor cortex. Same notation
as in Fig. 5

motion. In addition, the motor cortex (Fig. 7b) shows also an accurate TTCtar de-
codification during both motion conditions. Actually, the mean decoding variability
and mean bias for the target TTC was close to zero in the real and apparent motion
conditions using populations of motor cortical (Fig. 8b) or area 7a (Fig. 8a) cells,
particularly for the highest speeds. These results indicate, first, that the motor cor-
tex had access to an accurate representation of TTCtar information. This temporal
information is probably coming from premotor and posterior parietal areas. Second,
these results strengthen the evidence for the hypothesis that TTCtar is the critical
target parameter used to trigger the interception movement in this particular task.
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Fig. 8 Mean (˙SEM) decodification variance (left) and bias (right) of the TTCtar as a function
of the target speed. (a) Area 7a. (b) Motor cortex. Filled circles and continuous line correspond to
real motion; open circles and dashed line correspond to apparent motion

Concluding Remarks

The neurophysiological experiments using our target interception task revealed that
the parietofrontal system of primates is engaged in the representation of spatial and
temporal parameters of the target motion. Area 7a processed the target angle and
TTC as a sensory area, with a clear preference for the spatial parameter. These
findings not only emphasize the role of area 7a in visual motion processing, but
also suggest that the representation of TTC begins in the parietal lobe. Actually,
imaging and neurophysiological studies have demonstrated that the PPC is involved
in temporal information processing [16, 31].

A larger population of motor cortical cells encoded TTCtar than target angle.
This information was represented in a predictive rather than a sensory fashion. In
addition, the estimated TTC using the activity of motor cortical cells was more ac-
curate than the angular trajectory of the target. Therefore, it is feasible that the motor
system uses this type of temporal information to trigger the interception movement
in both motion conditions. In fact, we suggest that the motor cortex has the ability
not only to represent in a predictive way the TTCtar, but also to detect when it reaches
a specific magnitude in order to trigger the interception movement.

Our initial observations using a multiple linear regression model suggested that
in the real motion condition the angular position of the target was the critical in-
terception variable, whereas in the apparent motion condition it was the TTC. The
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current encoding and decoding results indicate that the nervous system represents
spatial and temporal parameters of the moving target in the parietofrontal circuit.
However, the present findings also suggest that in both the real and apparent mo-
tion conditions, the motor system may use the TTC to control the initiation of the
interception movement. Since the present encoding models are more specific and
were supported by the decoding results, it is more likely that the key interception
parameter was temporal rather than spatial in both motion conditions.

Taken together, these results indicate that neurons in the motor cortex and area
7a are processing different target parameters during the interception task. However,
the predictive representation of the target TTC is the most probable variable used in
the motor cortex to trigger the interception movement.
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Noise Correlations and Information Encoding
and Decoding

Bruno B. Averbeck

Abstract Neuronal noise is correlated in the brain, and these correlations can af-
fect both information encoding and decoding. In this chapter we discuss the recent
progress that has been made, both theoretical and empirical, on how noise correla-
tions affect information encoding and decoding. Specifically, we discuss theoretical
results which show the conditions under which correlations either do or do not cause
the amount of encoded information to saturate in modestly large populations of neu-
rons. Correspondingly, we also describe the conditions under which information
decoding can be affected by the presence of correlations. Complementing the the-
ory, empirical studies have generally shown that the effects of correlations on both
encoding and decoding are small in pairs of neurons. However, theory shows that
small effects at the level of pairs of neurons can lead to large effects in populations.
Thus, it is difficult to draw conclusions about the effects of correlations at the pop-
ulation level by studying pairs of neurons. Therefore, we conclude the chapter by
briefly considering the issues around estimating information in larger populations.

Introduction

Information is coded in the brain by populations of neurons using distributed repre-
sentations [15, 17, 31]. Interestingly, this conceptual advance was brought about in
the late 1980s by studying one neuron at a time, although the theory was developed
by thinking about populations of neurons. This leads to the question of whether or
not we can learn anything about neural representations by studying more than one
neuron at a time. Is there any information in the population code that exists only
at the population level? This question has been considered from many perspectives
and for many years [26]. However, in the last 15 years considerable progress has
been made. Much of this progress has been brought about by theoretical work that
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has generated well-defined questions and analytical tools for considering the pos-
sibility of coding effects that exist only at the population level. The application of
these tools to experimental data has also generated a number of consistent findings.

In this chapter, we first review much of what has been learned about the role of
correlated neural activity in information coding from both empirical and theoretical
perspectives. Then we consider approaches to analyzing data using these tools and
examine the findings that have been put forth in empirical data and compare this to
the predictions of theoretical models. Finally, we consider the outstanding questions
and the potential experimental and theoretical problems associated with answering
these questions.

Defining Noise Correlations

When examining information that can only exist at the population level, one nor-
mally looks for patterns of activity across neurons. However, single neurons in the
brain are noisy. If the same stimulus is shown repeatedly to an animal, neurons in
visual cortex respond differently in different trials. Similarly in the motor system,
when the same movement is repeated, the response of single neurons differs across
trials. Thus, patterns of activity in the brain manifest as stochastic correlations be-
tween neurons. In this chapter, we focus on the role of noise correlations. Noise
correlations are trial-by-trial correlations in the variability of neural responses for
pairs of neurons (Fig. 1). When they are measured using large bins of neural activ-
ity (lets say >25ms/, they are called spike count correlations, and can be thought
of as correlations in rate coded information. However, one can always divide the
neural activity into smaller time bins and measure the correlation in responses at a
finer grain [4]. In this case, the noise correlations are formally equivalent to shift-
predictor corrected cross correlations [5], and as such, the effects of synchrony or
oscillations on information coding can be assessed. Thus, the tools that we use to
measure the impact of noise correlations on information coding can be used at any
time-scale, and whether one is looking at spike-count correlations or synchrony can
be more precisely understood as a question of the bin-size used for data analysis.

Throughout much of this chapter, we examine the simple case of the neural repre-
sentation and information coding of two stimuli or movements. This case, although
simplified, is often sufficiently complex to illustrate the necessary points. Given that
we have two targets, we will also make a distinction between signal independent
(Fig. 1c) and signal dependent (Fig. 1d) noise. Signal-independent noise describes
the case where the noise correlations are the same for both targets. Signal-dependent
noise, as the name suggests, describes the case where the noise is different for dif-
ferent targets.

The effect of noise correlations on information coding can be studied from
both the encoding and decoding perspectives, and one obtains different answers
depending upon the perspective. When the effect of noise correlation on infor-
mation encoding is studied, one is considering the total information encoded by
the population, without consideration of how downstream brain networks would
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Fig. 1 Definition of noise correlations: (a) Tuning curves for a pair of neurons. The tuning curves
represent the average response of the neurons to a particular target direction across trials. Vertical
lines indicate two stimuli used to drive neural responses. (b) Noise correlations. Correlation in
neuronal variability at a single stimulus value. (c) Example noise correlations for only signal-
independent noise. In this case, the covariance (measured by the covariance matrix Q) is the same
for both targets. (d) Example of noise correlation for signal-dependent noise. In this case, the
covariance differs between targets

actually extract that information. One normally assumes that all of the information
in the population can be extracted. When information decoding is studied, one is
focusing on the effect of noise correlations on strategies for extracting or decoding
information. Specifically, in this case one asks whether or not ignoring noise cor-
relations with a decoding algorithm, which is a simplifying assumption, leads to a
loss of information.

Some confusion can arise from the fact that one often studies encoding by de-
coding the neural responses. However, when one studies encoding by decoding, one
always uses a technique which should, at least in principle, extract all of the infor-
mation. Thus, one can decode the neural response and make statements about how
much information was encoded. Techniques exist, which are guaranteed to extract
all of the information that is encoded in neural responses, under particular assump-
tions. This issue also relates to two different ways of studying information coding
in neurons. In the first approach, one carries out information theory calculations
(not necessarily Shannon information). This is normally done in theoretical studies.
The other approach is to actually decode neural responses on a trial-by-trial basis.
This is normally done on empirical data. These two approaches are linked, however,
by the fact that information theoretic calculations make predictions about how well
one should be able to extract information from neural responses. Thus, one can of-
ten make an information theoretic calculation, use that to predict how well one can
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extract information from neural responses, and then try to extract that information.
In this way, theory and experiment can be brought together.

Theoretical Studies: Noise Correlations and Information
Encoding

There has been considerable theoretical work on the effect of noise correlations on
information encoding. This work often proceeds by using empirical data on how
noise correlations between neurons are related to the tuning curves of the neurons,
to constrain a model of a neuronal population. The model is then used to predict how
information coding scales with population size. In one of the early examples of this
approach, Zohary and colleagues noted that the large noise correlation (about 0.2
for neurons with a similar preferred direction) between pairs of MT neurons would
strongly constrain the relevant population size for representing movement direction
to about 100 neurons [40]. Specifically, if one looks at how accurately movement di-
rection could be estimated from population neural responses, their model suggested
that one could not improve accuracy estimation if the population size was increased
beyond about 100 neurons. This defined an important question that in some respects
it is still being considered: does the correlation structure in a population of neurons
cause the information to saturate as the size of the population is increased?

For at least four reasons, however, the coding estimates in their study were too
conservative. These four reasons relate to assumptions of their model. This is not
meant to be a criticism of their approach. Rather it allows us to illustrate how the
theoretical models have evolved since this early study. First, the stimuli used in the
experiments in which the noise correlations were measured were themselves noisy
[8]. Noise correlations, as we have defined them, are correlations in the variability
of neural responses across trials in which the stimuli or movements are identical. In
their experiments, monkeys were being shown random patterns of moving dots, and
on each trial a different random dot pattern was shown to the monkey. However, all
random dot patterns with a particular underlying average direction were treated as
equivalent. Thus, much of the variability in the neural response that was treated as
noise likely came from variability in the stimuli, because MT neurons are very sensi-
tive to small variations in stimuli [9] and therefore the neurons were likely respond-
ing to the stochastic variability in the stimuli in a deterministic way. Thus, some of
the noise was likely signal and this signal would tend to be correlated between neu-
rons with similar preferred directions, because such neurons would tend to either
increase or decrease their response in a similar manner, creating artificially large
noise correlations. For example, if we examine the tuning curves in Fig. 1, if the
stimulus is jittered around s1 from trial to trial, the two neurons will tend to increase
or decrease their firing rates similarly. If one assumed that the identical stimulus was
being shown, one would treat this variability as noise, and it would be correlated be-
tween these neurons. This is also a possible explanation for the fact that the mean
noise correlations are very near zero in our data (0.01 at 40ms; [4]), which is much
smaller than the average correlations seen in the data analyzed by Zohary et al.
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The second reason the estimates in Zohary et al. were likely too conservative
is that they used a simplified tuning curve model. Specifically, instead of assum-
ing tuning curves across a continuum of directions, they assumed that neurons only
coded 2 opposing directions of stimuli, as this is what was used in their experiments.
Although this assumption is not always a problem, and we make it in many places
in this chapter, it can be problematic if one assumes the pattern of noise correla-
tions used by Zohary et al. When Abbott and Dayan examined the effect of noise
correlations in population codes using neurons with full tuning curves, subsequent
to the Zohary et al. study, they found that in general information did not saturate,
although it still could in specific cases [1, 35]. The study of Abbott and Dayan was
also important in using Fisher Information to assess the effects of noise correlations
in population of neurons, an approach that has been used in most subsequent theo-
retical studies.

The third reason that the estimates were too conservative in Zohary et al. is
that they did not consider signal dependent noise in their model. Specifically, when
spikes are counted in a reasonably large bin, the variability in the neural response
scales with the spike rate [4, 37], and the covariability may scale as well. This vari-
ance scaling generates a situation in which additional information can be encoded
by the variability of the neural response in the population [33]. It is, however, very
difficult to extract this information, and it only becomes relevant in large popula-
tions making it difficult to demonstrate in empirical data. Nevertheless, it may be an
important component of the neural code.

The final reason for the underestimate is that the study of Zohary et al. and the
other studies we have discussed assumed that the tuning curves in all of the neurons
in the population were identical in shape, differing only in their preferred direction
or the stimulus to which they would respond maximally. When one relaxes this
assumption, information coding does not saturate [34, 38].

Thus, while the study by Zohary et al. was important for generating an interesting
question, subsequent studies have extended their model in several relevant direc-
tions and shown that the original results do not necessarily hold. In later sections,
we consider in more detail what these models do tell us, somewhat independent of
their details, and how subsequent modeling efforts might proceed. Finally, while
all of these studies are interesting, there is one theoretical point that has not been
addressed in detail (but see [32]). Specifically, there is a theorem from commu-
nications engineering known as the data processing inequality [11], which states
that information cannot be created, it can only be destroyed by processing [3].
The data processing inequality implies that one cannot increase information in-
definitely by increasing the size of the population, for any population of neurons
downstream from peripheral sensory receptors. For example, one cannot generate
more information in the lateral-geniculate nucleus (LGN), than that exists in the
retina, by increasing the population size in the LGN. If one continues to increase
the population size, information would eventually saturate to the quantity of infor-
mation in the retina. As an aside, this fact is intriguing given that there is often a
large increase in the size of the population representation as one moves from the
thalamus to the cortex in sensory systems. There are two possible reasons for this.
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First, the thalamus is not the only input to any given cortical area, and as such
the cortical area is likely processing information from more sources than the feed-
forward sensory input. Second, the representation generated in the cortex is likely
useful for subsequent computations, similar to the responses used for classification
in a support vector machine. At this point, however, this is just speculation, and little
is known about why sensory representations increase in dimensionality as one goes
from the thalamus to cortex.

Theoretical Studies: Noise Correlations and Information
Decoding

As mentioned earlier, when one studies the effects of noise correlations on infor-
mation decoding, one is considering whether or not ignoring correlations with a
decoding algorithm leads to a loss of information. This question also breaks down
into a question of whether or not one ignores signal-dependent noise correlations
[33] or signal-independent correlations [39]. Although it is difficult to make gen-
eral statements, the study of Shamir and Sompolinsky has shown that, when one is
dealing with a correlation structure that causes linear information to saturate, there
can be considerable information in signal-dependent correlations. Thus, on the one
hand, if one employs a decoding strategy, which ignores or cannot extract this in-
formation, one can lose a lot of the information contained in the population. On the
other hand, the study of Wu et al. has shown that information loss can be minimal,
when signal-dependent correlations are not present, if one ignores noise correla-
tions. As with many of the issues that have been raised by these theoretical studies,
we do not understand the noise structure in various neural systems in sufficient detail
to know whether or not either of these models is relevant. However, these models
define interesting questions, and provide us with tools for examining those questions
in empirical data, at least in principle.

Empirical Studies: Noise Correlations and Information
Encoding and Decoding

In parallel with the theoretical studies, there has been considerable empirical work
on the effect of noise correlations on information coding. In contrast to the the-
oretical work, which has focused on populations, the empirical work has focused
on whether or not noise correlations increase or decrease information encoding
or lead to a loss of information when ignored by decoding algorithms, in pairs
of neurons. This is largely due to the limitation of recording from more than a
few neurons simultaneously. The earliest work on this problem was by Richmond
and colleagues, and it introduced the concept of spike count correlations and stud-
ied their effect on information encoding in visual cortex [13, 14]. Following this,
Panzeri, Shultz, Treves and their colleagues developed and applied an expansion of
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Shannon information into separate terms, which allowed one to separately examine
the effects of signal-dependent and signal-independent noise on the total Shannon
information encoded [16,20,23–25,27–29]. This information breakdown motivated
much of our approach detailed later. Other groups examined whether correlations
could be ignored during decoding without a loss of information [2, 12, 19, 21, 22].
These studies have generally found that noise correlations have little impact (<10%)
on information coding, whether considered from the encoding or the decoding per-
spective [5]. However, they have only analyzed interactions at the level of pairs of
neurons in most cases but see [2, 6].

Theoretical Analysis of the Effects of Correlations
on Encoding and Decoding in Pairs

In our own work, we have tried to clarify the relationship between encoding and
decoding and also bring together as much as possible the empirical and theoreti-
cal work, by using both information metrics and decoding analyses [6]. To do this,
we have often used d 0, which is a measure of the signal to noise ratio in the sys-
tem, as our information measure. We have several motivations for using d 0. First,
most of the theory that has been done has used Fisher Information to analyze in-
formation in neural populations. Fisher Information applies to information coding
of continuous variables and the corresponding problem of estimating their contin-
uous value from neural activity, while d 0 applies analogously to discrete variables
and the corresponding problem of classifying which of a discrete set of stimuli or
movements occurred on a single trial. Thus, d 0 is the analog of Fisher information,
if one wants to work with classification. Second, d 0 under the Gaussian assumption
is relatively simple to compute and understand, and therefore it allows one to build
an intuition for how correlations are affecting information encoding and decoding,
and how these are related.

The main drawback to using d 0 is that one has to make several assumptions
about neural responses that are not strictly correct. First, we have to assume that
the variance and covariance is the same for all targets considered. That is to say,
d 0 only applies to signal-independent noise. As we discussed earlier, the variance
of neural responses scales with the mean response, so the assumption of no signal-
independent noise is violated in neural data. Second, we have to assume that the
neural responses follow a Gaussian distribution. Although this is not necessarily
a bad assumption, and it is often better than assuming that neural responses fol-
low a Poisson distribution [4], it also does not strictly hold, as we show later.
This is, however, also the assumption made by every theoretical study cited above,
mainly because the Gaussian distribution is one of the few analytically tractable
distributions, which allows one to model covariances. We ultimately validate the
use of d 0 by relaxing each of these assumptions and showing that we get the same
information estimates that we got when we made the assumptions, at least in pairs.
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The information measure d 0, or its square, d 2, is perhaps the simplest informa-
tion measure. It is given by the signal to noise ratio:

d 2 D .�2 � �1/
2

�2
D ��2

�2
; (1)

where �i indicates the mean spike count of a neuron to target i and �2 is the vari-
ance of the spike count around the mean response. As we are mostly interested in
the responses of multiple neurons recorded simultaneously, we will use the multi-
variate generalization given by [30]:

d 2 D ��TQ�1��; (2)

whereQ is the covariance matrix that describes the variance and covariance of the
neural responses. The off-diagonal elements of Q are the noise covariance (unnor-
malized correlations) between neurons and with d 2 we assume they are the same
for all targets, as mentioned earlier.

Our interest is in estimating the effects of noise correlations on encoding and
decoding. To estimate the effects of noise correlations on information encoding, we
can compare the information in the correlated neural responses, give by d 2 in (2),
to the information that would be in the same population if it were uncorrelated. This
is given by an analogous quantity:

d 2
shuffled D ��TQ�1

d ��; (3)

where, Qd is the matrix obtained by setting the off-diagonal terms of Q to zero,
which is the same as setting the noise correlations between neurons to zero. This is
called d 2

shuffled, because experimentalists often shuffle trials between simultaneously
recorded neurons to destroy noise correlations. We can then define a quantity which
measures the effect of noise correlations on information encoding:

�d 2
shuffled D d 2 � d 2

shuffled: (4)

This quantity can be positive or negative depending upon whether noise correla-
tions increase or decrease the information encoded with respect to an uncorrelated
population, which we will see in more detail later.

To determine the effect of noise correlations on information decoding, we need
a quantity analogous to (3), which describes the amount of information that would
be extracted by a decoding algorithm that ignored correlations. This is given by:

d 2
diag D

�
��TQ�1

d ��
	2

��TQ�1
d QQ

�1
d ��

: (5)

This measures the amount of information that would be extracted by using a de-
coding algorithm that ignored correlations on the original unshuffled or correlated
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dataset. We refer to this as d 2
diag since it is equivalent to assuming a diagonal covari-

ance matrix for the neural responses when deriving the decoding algorithm. In this
case, the decoding algorithm is suboptimal. This quantity was derived for Fisher in-
formation by [39] as a local linear approximation. In our case, the formula is exact,
since the difference in the mean responses is necessarily linear. We can then define
a quantity which estimates the amount of information lost by a decoding algorithm
that ignored correlations:

�d 2
diag D d 2 � d 2

diag: (6)

We can use these quantities to examine the theoretical effects of noise correlations
on information encoding and decoding in pairs of neurons (Fig. 2). The effects of

Fig. 2 Effects of noise correlations on information encoding and decoding. (a) Plot shows effects
of noise correlations as a function of ˛. (b–d) Examples of uncorrelated (shuffled) response distri-
butions at different values of ˛, which is defined in d. Magnitude of noise and signal are constant
across plots. Classification boundaries are shown as indicated. (e–g) Examples of response distri-
butions at different values of ˛. The variance of these response distributions are the same as those
in b–d, but these example neurons are uncorrelated
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noise correlations on both factors are controlled by the relationship between the sig-
nal and the noise. Specifically, if the signal is represented by��, and the covariance
matrix is represented by its eigenvectors,ei and eigenvalues, the effect of the noise
correlations can be characterized by the angle, ˛ between the eigenvector associ-
ated with the largest eigenvalue of the covariance matrix, e1 and ��. Of course,
the length of �� as well as the size of the eigenvalues associated with the noise
modifies the effects as well, but they only scale the effects.

We first focus on the effects of noise correlations on information encoding
measured by �d 2

shuffled. The information encoded is maximal when response dis-
tributions have minimal overlap or are far apart (compare Fig. 2b and d), and this
varies continuously as a function of ˛ (Fig. 2a,�d 2

shuffled/. In the case being depicted
here, the fictional uncorrelated responses are circles instead of ellipses (Fig. 2e–g).
Thus, if we compare the overlap in the response distributions between the correlated
and uncorrelated data, it can be seen that there is less overlap in the distributions for
uncorrelated data when ˛ is near zero (i.e., more information in the uncorrelated
population; compare Fig. 2b and e) and more overlap when ˛ is near �=2 (i.e., less
information in the uncorrelated population; compare Fig. 2d and g). From another
perspective, when the signal in the system, measured by 	� lies in the same di-
rection as the larger component of the noise (i.e., when 	� and e1 have a similar
direction) information is decreased, and when they lie in different directions infor-
mation is increased.

We next turn to the effects of noise correlations on information decoding, mea-
sured by �d 2

diag. This metric is large when very different classification boundaries
are derived under the correlated or the uncorrelated assumptions and it is small
when similar classification boundaries are derived. The boundaries derived under
the diagonal, uncorrelated model are the same as the boundaries derived under the
correlated model when ˛ is near zero or �/2 and different when ˛ is near �=4
(Fig. 2b–d compare dashed grey and solid black lines). Thus, if the boundary de-
rived under the diagonal assumption at �=4 is applied to the correlated data, it is
suboptimal, which is to say that less information is extracted from the responses.
This is because more of the response distributions lie on the wrong side of the sub-
optimal classification boundary and the response distributions are better separated
by the optimal classification boundary. In Figs. 2e–g, it can be seen that the diag-
onal boundary would indeed be optimal if it were being applied to uncorrelated
data. However, �d 2

diag measures the effect of applying this suboptimal boundary to
correlated data.

Empirical Validation

We have used d 2 to examine the effects of noise correlations on information en-
coding and decoding and to see how these quantities are related. We had to make
several assumptions, however, and these assumptions are not necessarily valid.
This raises the question of whether or not d 2 is giving us an accurate estimate
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Table 1 Relationship between assumptions, information measures, and classifiers

Assumptions Information Classifier
measure

Gaussian, equal covariances d2 Linear Gaussian
�
Qi D Qj

	

Gaussian, unequal
covariances

Battacharyya
distance

Quadratic Gaussian
�
Qi ¤ Qj

	

None Multinomial

of the information coded in the neural responses. To examine this, we proceeded
in several steps (Table 1). In all examples shown here, where classifiers are being
compared, analyses were done using twofold cross validation. First, we compared
the classification performance that was predicted by d 2 to the actual classification
performance that we were able to achieve and found that there was a close corre-
spondence between d 2 values and how well we were able to decode data. Thus,
the predictions of the information metric closely paralleled our actual performance.
Importantly, however, in the first analysis we used a linear classifier which is opti-
mal under the same assumptions as d 2, and therefore both d 2 and the classifier may
have missed important information, because neither assessed information in sig-
nal dependent correlations. Thus, in the second step we relaxed the assumption of
only signal-independent noise, and examined the amount of information in signal-
dependent noise in our neural data using an information measure that can capture
this information. We then used a quadratic classifier, which is able to extract all the
information when there is signal-dependent noise and compared its performance to
the linear classifier. Finally, we relaxed both the assumption that the covariances
were the same and that the data followed a Gaussian distribution. By using a clas-
sifier that relaxed both of these assumptions and comparing its performance to the
linear classifier, we could see if relaxing all of the assumptions made by d 2 led to
different information estimates.

We began by comparing the classification performance predicted by d 2 to the
actual classification performance achieved by a classifier that made the same as-
sumptions. (For details of the experimental task and other procedures see [4,6].) To
predict the classification accuracy, we measured d 2 for each pair of neurons, and
used it to predict the classification performance using the following equation [6]:

p
�Ot D 2jt D 1

	 D .2�/�1=2

1Z

d 0=2

exp

��x2

2

�

dx: (7)

The predicted target is Ot and the actual target is t . The metric d 0 enters as the lower
boundary of the integral. Therefore, this equation gives us the probability that we
misclassify each response for a particular value of d 0. We then fit a classifier to
the data to see if our actual decoding performance matched the performance pre-
dicted by (7). Under the assumptions of d 2, which are that neural responses follow a
Gaussian distribution and that the variance is the same for both targets to be decoded,
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one can show that a Gaussian linear classifier can extract all of the information [18].
Specifically, we assumed the following likelihood function:

p .r jt D i/ D j2�Q j� 1
2 exp

�

�1
2
.r � �i /

TQ�1 .r � �i /

�

: (8)

In this equation, r is the response on an individual trial, and�i andQ are the same as
those defined above for d 2. Individual neural responses can be entered into the equa-
tion for each target (i.e., t D 1 or t D 2, where only �i is different in each equation),
and the probability that the response comes from the corresponding distribution can
be calculated. The response is then classified to the target for which the probabil-
ity of the response is the highest. Because (8) is the likelihood, this means we are
carrying out maximum likelihood estimation. Because we have a flat prior, identical
decoding performance is obtained if one does maximum-a-posteriori classification.
By comparing the actual classification performance to the performance predicted
using (7), we were able to test whether or not d 2 was accurately representing the
information in the neural responses. We found that the correlation between mea-
sured and predicted classification performance was very strong under d 2, d 2

shuffled
and d 2

diag (Fig. 3, top row) for pairs of neurons. Similar analyses carried out on

Fig. 3 Comparison of measured and predicted classification accuracy for pairs and ensembles.
Top row is measured and predicted for correlated data .A/, shuffled (Ashuffled uncorrelated data)
and classifier that ignores correlations .Adiag/, applied to the correlated data. Bottom row is same
data for ensembles of 3–8 simultaneously recorded neurons



Noise Correlations and Information Encoding and Decoding 219

ensembles of 3–8 simultaneously recorded neurons also showed that d 2 predicted
actual classification performance accurately (Fig. 3, bottom row). Thus, classifica-
tion performance estimated using (7) closely matched the classification performance
obtained by actually carrying out the classification analysis trial-by-trial.

In our next step, we extended our analyses by relaxing the assumption of only
signal-independent noise. In practice, this is done by estimating a separate covari-
ance matrix for each target. First, we used an information measure to estimate
whether or not there was extra information to be obtained from the neural responses
if we allowed for differences in the covariance matrices. To measure this, we used
the Battacharyya distance (BD) [7] which, for Gaussian distributions is given by:

BDG D 1

4
��T .Q1 CQ2/

�1�� C 1

2
log

jQ1 CQ2j
2
pjQ1Q2j : (9)

The first term on the RHS is equal to 1=8d 2. The second term captures information
present in signal-dependent correlations. As such, if we plot d 2 vs. 8*BD all points
lying above the line are cases for which BD predicts that there should be additional
information in the signal-dependent noise. We found that there were many cases for
which this was true (Fig. 4a). In theory, signal-dependent noise can only add infor-
mation, it cannot decrease information. The points below the line in Fig. 4a are due
to numerical errors in estimating (9). BD suggested that there was additional infor-
mation in the signal-dependent noise. Unlike d 2, however, the BD cannot be used to
predict classification performance. It can be used to put bounds on the classification
performance [7], but the bounds are rather loose. However, under the assumption
that the response distributions are Gaussian and the covariances are not identical
across targets, we can derive a maximum likelihood estimator [18]. In this case, it
is a quadratic estimator, because the classification boundaries are quadratic and not
linear. Effectively, (8) is used, just as in the case of the linear classifier. However, for
linear classification, a single covariance matrix, Q, is estimated by pooling across
both targets. For quadratic classification, a separateQi is estimated for each target.

Thus, we can define an estimator that can, in principle, extract all of the in-
formation from the neural responses under the Gaussian assumption with unequal
covariance matrices. We did this, and compared its performance to the linear classi-
fier. If there was additional information in the signal-dependent noise, we should do
better using the quadratic classifier. In fact, we found that our classification perfor-
mance was essentially identical (Fig. 4b). This is an interesting disconnect between
the BD and classification performance. As mentioned earlier, a predicted increase
in the classification performance by BD will not necessarily translate into increased
information, as the BD can only be used to place bounds on the classification perfor-
mance. However, we also examined some specific examples, to see if we could gain
insight into why we were not extracting additional information with the quadratic
classifier. We examined examples in which the BD predicted a large improvement
in classification performance, but little improvement was actually realized by the
quadratic classifier. When we looked at specific examples, we found that it was
often the case that, despite the very different shapes of the classification boundaries
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Fig. 4 (a) Bhattacharyya distance (BD) vs. d2. We have plotted 8*BD, since the first term of the
BD is d2=8. (b) Comparison of linear and quadratic classifiers. These comparisons are for the
corresponding accuracy. (c) Linear decision boundary (grey line) for a case in which BD predicted
a large benefit of allowing unequal covariances, but the actual classification performance was the
same for linear and quadratic decoders. The covariance ellipses are indicated in black. The dots
indicate individual responses for two targets. In the linear case, the covariances are forced to be
identical. (d) Same plot for quadratic decision boundary (grey ellipse). In the quadratic case, the
black ellipse for target 1 is smaller than the response marker. It is not visible, but it is within the
grey decision boundary ellipse

generated by the linear and quadratic classifiers, they resulted in similar classifica-
tion rules. In the illustrated example (Fig. 4c–d), both classifiers operate according
to the rule: if neither neuron fires a spike, classify the response as target 1, if either
neuron fires 1 or more spikes, classify the response as target two. From the figures
it can be seen that there were two reasons for this. First, neural responses are dis-
crete, and second, neural responses are nonnegative. Thus, the Gaussian assumption
does not hold up well when we examine the performance of the quadratic Gaussian
classifier.

At this point, we wanted to extend our analyses further, by relaxing the Gaussian
assumption, and using a very general classifier. Although it is always worth using a
very general approach when estimating information, there are two drawbacks. The
first is that it often does not allow insight to be gained into why correlations affect
information coding, and the second more methodological reason is that these more
general models often require many more trials of data for effective parameter es-
timation. Thus, they may perform poorly on small datasets. We did, however, find
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Fig. 5 Comparison of
multinomial and linear
classifiers for pairs of neurons

that we had enough data to fit a multinomial model, often referred to as a direct
model when it is used to estimate Shannon information [36]. To fit the multinomial
model, we simply calculated the fraction of times that each different pattern of re-
sponses occured, where the patterns are the spike counts in the pair of neurons for
each target. Thus, we tabulated the fraction of times that we observe zero spikes in
both neurons .00/, one spike in neuron 1 and zero spikes in neuron 2 .01/, as well
as .02/, .03/, (11), etc. Formally, we estimate the frequencies as:

p .ri jt D j / D nij

Nj

; (10)

which is the number of times response pattern i occurs for target j . We can then
take any individual response, plug it into the table for each target, and see whether
or not the response occurred more often for target 1 or target 2. We then classify
the target using maximum likelihood, as the one which most likely gave rise to the
response.

We did this and compared the performance of the multinomial classifier to the
linear classifier. Again, we found that the multinomial classifier had essentially iden-
tical performance to the linear classifier, although it slightly outperformed it, as
would be expected (Fig. 5). Thus, even if we completely drop the Gaussian assump-
tion, we get the same classification performance as we do with the linear classifier,
which is directly related to d 2.

Effects of Noise Correlations on Information Encoding
and Decoding

Now that we have examined the performance of various classifiers under various
assumptions, we can move to examining the effect of noise correlations on informa-
tion encoding and decoding. The noise correlations we observed, in our experiment,
were on average near zero (Fig. 6). However, some of the correlations could be as
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Fig. 6 Distribution of noise
correlation values measured
in our data

large as 0.1 or 0.2. Thus, correlations were moderate compared with what has been
seen in other datasets. These values were dependent on the bin size [4]. The values
reported here are for a bin size of 66 ms, as we found that this bin size maximized
our decoding performance.

We examined the effect of these correlations on classification accuracy, by look-
ing at classification metrics that paralleled our information metrics. Specifically, we
looked at both:

�Ashuffled D A �Ashuffled

and
�Adiag D A� Adiag:

In general, there were three salient findings from these analyses. First, as with the in-
dividual classification performance, the predictions of the accuracy obtained by d 2

were similar to the actual classification performance, for these metrics (Fig. 7a, b).
Second, the effects of noise correlations are quite small in general, although slightly
larger in ensembles (Fig. 7b). Finally, as with classification performance, the ef-
fects of noise correlations on information encoding and decoding were similar,
whether we used the linear Gaussian model, or the multinomial model (Fig. 7c).
Thus, overall, we were able to accurately predict the effects of noise correlations
on information encoding and decoding using d 2, d 2

shuffled and d 2
diag, the effects were

quite small in pairs of neurons and only slightly larger in ensembles of 3–8 neurons
and this was true independent of whether we used a linear Gaussian or a multinomial
classifier.

Population Effects of Noise Correlations

The next question of relevance is whether or how we can extrapolate the effects we
have seen in pairs of neurons to the population level. In other words, do small effects
of correlations in pairs of neurons imply small effects of correlations in large pop-
ulations of neurons? This question has not been directly addressed in experimental
data. We can, however, examine population models, which were reviewed earlier,
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Fig. 7 Effects of noise correlations on information encoding and decoding. (a) Effects of noise
correlations on information encoding (left panel) and decoding (right panel) for pairs of neurons.
Comparison between effects predicted by d2 and effects measured in data for both. Histogram
shows distribution of measured effects, obtained by carrying out decoding analyses. (b) Same for
ensembles. (c) Same analysis, carried out using multinomial classifier on pairs
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and see what predictions they make. Specifically, do these models predict small ef-
fects in pairs that grow to larger effects in populations? If so, we cannot conclude
that small effects in pairs lead to small effects at the population level. They may, but
they may not.

In the empirical data in pairs of neurons, we found that the effects of noise cor-
relations were small whether or not we considered signal-dependent correlations.
With theoretical models we can also address the question of whether or not corre-
lations have an effect, with or without signal-dependent correlations. Models have
been developed which either do or do not include the effects of signal-dependent
correlations. Indeed, when Fisher information is used to assess the effect of noise
correlations on information coding, the effect of signal-dependent noise is a separate
term, as it was with the Battacharyya distance used above, and as such, its inde-
pendent contribution can be assessed. Specifically, Fisher information for Gaussian
noise [10] is given by:

I .�/ D f 0 .�/TQ�1 .�/ f 0 .�/C tr
�
Q0.�/Q.�/�1Q0.�/Q.�/�1

	
; (11)

where the first term assesses the information in the neural responses that can be
extracted linearly and the second term assesses the information due to signal-
dependent correlations that would have to be extracted nonlinearly. It can be seen
that the first term is similar to d 2. We also note that Fisher information can vary
with the value of the encoded variable, in this case � , and therefore it is defined
as a function of � . Furthermore, like d 2, the Fisher information constrains the per-
formance of estimators applied to data. Specifically, the Fisher information puts a
lower bound on the inverse of the variance of any unbiased estimator of the encoded
variable as:

�2 � 1

I .�/
: (12)

Here we replicate models originally developed by Sompolinsky and colleagues
[33, 35]. Similar results would be obtained with other models which have been pro-
posed. If we begin by considering only the first term in the Fisher information
equation, we can examine how information scales with the number of neurons in
the population for different values of the correlation (Fig. 8a). We can see that, for
uncorrelated neurons (c D 0) the information scales linearly with the number of
neurons. However, for positive correlations, the information quickly saturates. This
is the effect discussed earlier, originally reported by Zohary et al. [40]. This suggests
that the effects of correlations will be more apparent in larger populations, because
the difference between the uncorrelated and correlated populations increases as the
size of the population increases. To look at that directly, we calculated both of our
information metrics, which assess the effects of correlations on encoding and de-
coding, using the data from the model. It can be seen that the effects of correlations
become much more pronounced in larger populations (Fig. 8b–c). Furthermore, the
effects are generally larger on information encoding than they are on information
decoding, but even for decoding one can lose 30% of the information if correlations
are ignored by a decoding algorithm for even a modestly large population. Thus,
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Fig. 8 Population effects of noise correlations. Panels (a–c) are from the original Sompolinsky
model [35] and panel (d) is from the model of Shamir and Sompolinsky [33], which adds signal
dependent noise. (a) Linear effects of noise correlations on information encoding. (b) Normalized
effects of noise correlations on information decoding. (c) Normalized effects of noise correlations
on information encoding. (d) Information in signal dependent noise. Line legend: Linear, infor-
mation in first term of (11), Quadratic, information in second term, Total, the sum of linear and
quadratic

extrapolating from pairs to populations is nontrivial. Small effects in pairs can
become large effects in populations. Results are similar if we consider the potential
role of signal-dependent noise, which is captured by the second, trace term in (11).
For the model which has been developed by Shamir and Sompolinsky, the lin-
ear information saturates. However, the information in the signal-dependent noise
(quadratic), which is small for a small number of neurons, begins to dominate as
the size of the population increases (Fig. 8d). Thus, as is the case with the effect of
noise correlations on linear information, the effect of signal-dependent noise also in-
creases as the size of the population increases, growing linearly with population size.

As discussed earlier, information cannot grow to infinity, because the amount
of information in the brain is constrained by the data processing inequality, and as
such, information about a sensory variable cannot exceed the information in the
peripheral receptor. This points to a new question: is population size in the brain
constrained by the amount of information available? In other words, do populations
of neurons operate in the saturated regime, where in effect correlations are having
a large effect, or do they operate in the nonsaturated regime, where correlations are
not constraining the information? Is this the same in all systems?
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Answering this question with accuracy in an awake, behaving monkey is going
to require technical advancements. There are two problems. First, it is difficult to
record from even moderately large populations of single neurons simultaneously.
However, methods are becoming available to record from 10s to maybe 100 or so
neurons simultaneously, so that part of the problem should be tractable. The next
question is: how much data will we have to collect to accurately measure infor-
mation in a large population? For some models, under certain assumptions, we
can estimate the amount of data that would be required. For example, for a linear
Gaussian estimator given as:

y D Xˇ C "
" � N �

0; �2
	
; (13)

one can show that the estimated variance using cross validation is related to the
actual variance as:

< O�2> D �2

�

1C M

N

�

: (14)

In this case O�2 is the estimate of the variance using cross validation, �2 is the true
variance,M is the number of neurons being used to estimate y (i.e., the number of
columns ofX ) andN is the number of trials available to estimate the model (i.e., the
number of rows ofX ). When cross validation is not used, the sign in the parentheses
is switched. The variable y would be the encoded parameter that we were trying to
estimate using the neural responses. A plot of this forM D 10 andM D 100 shows
that, whereas maybe 100 trials would be satisfactory for estimating information with
10 neurons, 1,000 trials might be necessary with 100 neurons, if we were extracting
linear information (Fig. 9). Thus, the data requirements for even simple linear esti-
mators become quite large. This is even more problematic if one begins to consider
quadratic estimators, which one would use to try to extract information in signal-
dependent noise, as discussed earlier. In this case, the number of parameters in the
model scales as the square of the number of neurons, and thus the data require-
ments grow also as the square of the number of neurons. For quadratic estimators,

Fig. 9 Estimated variance as
a function of the number of
trials available for a Gaussian
linear estimator. Results are
shown for 10 and 100
predictors, with (top two
lines) and without (bottom
two lines) cross validation
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one might require 100,000 trials to get accurate information estimates for 100 neu-
rons. There is some hope that regularization techniques may be useful to reduce
the amount of data necessary to estimate the models, but these will have to be used
with much care, as they make rather strong assumptions about the data and if these
assumptions are not met, comparisons between models can be problematic.

Conclusion

Considerable progress has been made on the question of whether or not correlated
neuronal activity carries information. Much of the progress has been in generat-
ing well-defined questions. Furthermore, many groups have carried out analyses of
the effects of correlations in pairs of neurons. Generally, they have shown that the
effects are quite small. Theory, however, suggests that this is necessarily the case,
and that the interesting effects of correlations will only manifest in large popula-
tions of neurons. The route for future progress will be in determining how we can
accurately and directly test models which look for these effects in real neural data.
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Stochastic Synchrony in the Olfactory Bulb

Bard Ermentrout�, Nathaniel Urban, and Roberto F. Galán

Abstract Oscillations in the 30–100 Hz range are common in the olfactory bulb
(OB) of mammals. The principle neurons (mitral cells) of the OB are believed to be
responsible for these rhythms. We suggest that the mitral cells, which prefer to fire
in a limited range could be synchronized by receiving correlated statistically random
inputs (stochastic synchrony). We explore the mechanisms of stochastic synchrony
using a combination of experimental, computational and theoretical methods.

Introduction

From the earliest recordings of brain electrical signals, synchronized oscillatory ac-
tivity of large populations of neurons has been seen as a prominent feature of brain
activity [8]. This synchronized activity occurs in a variety of brain areas and across
a wide range of frequencies. The oscillations are particularly prominent at certain
areas of the brain and in certain frequency bands [9]. The vertebrate olfactory bulb
[1] generates several different prominent oscillations including low-frequency oscil-
lations that are related to respiration, and also much higher-frequency oscillations
in the 30–100 Hz range. Oscillations in the range of 40–80 Hz are observed in many
brain areas and are known as gamma oscillations. These signals have attracted
considerable interest because of their potential role in cognitive function and/or
dysfunction. Here we describe some recent work that led us to propose a novel
mechanism in which synchronization in the gamma frequency band can be caused
by correlations of random, noise-like fluctuations and to apply this mechanism to

B. Ermentrout (�)
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260
e-mail: bard@pitt.edu

�Supported by NIMH, NSF, and NIH CRCNS
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the understanding of oscillatory synchrony in the mouse olfactory bulb. We also
discuss the possibility that similar mechanisms may account for gamma band syn-
chronization across other brain areas, particularly across areas that are not tightly
coupled, but which may receive correlated fluctuations.

Basic Circuitry of the Olfactory Bulb Mediates Recurrent
and Lateral Inhibition

The main features of main olfactory bulb circuitry are indicated in Fig. 2a, b and
have been recently reviewed [16,30,48]. The principal cells of the olfactory bulb, the
mitral cells, receive many excitatory inputs from olfactory receptor neurons in the
nose. These inputs are made onto the highly branched tuft of the primary dendrite
of the mitral cell. These cells in turn provide output to higher brain areas. Mitral
cell activity is modulated by several circuits intrinsic to the bulb, most notably by
dendrodendritic recurrent and lateral inhibition mediated by olfactory bulb granule
cells [3,10,25,49–51,60]. These circuits are believed to refine the spatial pattern of
activity across bulbar neurons [2, 59] and also are known to play an important role
in altering the timing of mitral cell activity [46].

Activity of granule cells triggers release of glutamate containing vesicles in
mitral cell dendrites [25, 26, 33, 43]. This glutamate binds to NMDA and AMPA
receptors on the dendritic spines of postsynaptic granule cells, depolarizing them.
In some cases this depolarization is localized to a particular spine, resulting in re-
lease of GABA from only that spine, back onto the mitral cell [14]. Such local
release mediates a form of recurrent inhibition. In other cases, stronger depolariza-
tion may cause the granule cell to fire an action potential [15, 33] which propagates
throughout the dendritic tree of the granule cell, and may cause widespread release
of GABA onto the dendrites of many mitral cells. Such global activation of granule
cells is believed to cause a form of lateral inhibition.

Slow Kinetics of Lateral Inhibition are Incompatible
with Synchronization of Fast Oscillations

Networks coupled by recurrent and lateral inhibition have been widely studied
as generators of gamma oscillations [61, 63]. However, recent physiological data,
mostly from in vitro preparations [40] indicate that olfactory bulb circuitry is more
complicated and more dynamic than previously believed [3,4,13,24,48,49,54,60].
Of particular relevance to discussions of high-frequency oscillatory synchrony is
the observation that recurrent [25, 33, 47] and lateral inhibition [61] in vitro and
in vivo [33] have decay times of approximately 350 ms. These long decay times
are not due to slow kinetics of individual synaptic currents, but rather because the
overall IPSC is made up of a prolonged barrage of small synaptic currents, and the
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rate of events in this barrage decays over several hundred milliseconds. These bar-
rages of synaptic events are probably caused by long latency and repeated firing
of olfactory bulb granule cells [27]. Each of these individual currents has a short
time constant (10-ms decay) and the entire current is blocked by application of
GABAA receptor antagonists. Thus, time course of granule cell-mediated inhibi-
tion spans more than 10 average gamma cycles, but is made up of many fast events.
This slow time constant of lateral inhibition is incompatible with the synchroniza-
tion of gamma oscillations [11, 61, 62]. However, we have described and propose
further study of a mechanism whereby the fast fluctuating divergent outputs from
single granule cells to multiple mitral cells provides a mechanism for synchronizing
fast oscillations in mitral cells. To understand the mechanisms that may lead to this
synchronization, we consider the known properties of olfactory bulb neurons and
circuits.

Gamma Oscillations are Intrinsic to Olfactory Bulb
and to Mitral Cells

Gamma oscillations have been observed in recordings from the olfactory bulb for
many years [1, 41]. These oscillations can be readily observed by field potential
recordings both in awake behaving and in anaesthetized animals [39, 53]. In vivo
recordings in anaesthetized animals in which connections from cortex to the ol-
factory bulb were severed have shown that olfactory bulb gamma oscillations are
generated intrinsically in the bulb, not requiring feedback connections from cor-
tex [39]. These oscillations do depend on inhibition as they are not seen during
pharmacological blockade of GABAA receptors and they are altered by genetic ma-
nipulation of GABAA receptors [41]. Recent work has further shown that gamma
frequency oscillation can even be induced in acute olfactory bulb slices [18, 29]
clearly indicating that they can be generated by the intrinsic bulbar circuitry [18,29].
This in vitro synchronization is prevented by blockade of GABAA receptors [29],
and also of gap junctions, sodium current, and glutamate receptors [18].

Mitral Cells are Oscillators with a Preferred Frequency of 40 Hz

The biophysical properties of mitral cells have been investigated in detail in recent
years. Mitral cells tend to have rather depolarized resting membrane potentials (�50
to �60mV) and fire rather narrow action potentials (1-ms half width). Subthreshold
current steps generate 25–50 Hz oscillations of subthreshold membrane potential in
mitral cells [12] indicating that these cells have subthreshold resonance in the low
gamma frequency range. Further depolarization by current steps of moderate ampli-
tude result in long slow depolarizations which eventually generate high-frequency
spiking [5]. These periods of spiking are interrupted by pauses that last hundreds of
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milliseconds, during which subthreshold oscillations in the membrane potential are
again observed [12]. Increasing the amplitude of the current step results in shorter
pauses in firing without a large effect on the frequency of firing during the spiking
period [5]. Thus, increasing the amplitude of DC current injection causes a change in
the average firing rate without much change in the most common interspike interval
[5]. A similar phenomenon has been observed during in vivo whole cells recordings.
In these recordings, many mitral cells show fluctuations in membrane potential that
track the respiration cycle, which occurs in the theta frequency range (2–5 Hz) [33].
When these cells fire action potentials, these spikes generally occur during the peak
of the theta cycle. A single theta cycle can be associated with multiple spikes and
these spikes occur with an instantaneous frequency of approximately 40 Hz, inde-
pendent of whether the cell fire as few as 2 or as many as 6 spikes in the single theta
cycle. Thus a tripling of the average firing rate can occur even when the spikes that
are generated have an interspike interval of 25 ms.

These observations show that individual mitral cells are strongly biased to fire
in the gamma frequency range and that firing in this frequency range occurs across
a wide range of steady state current values and/or a wide range of in vivo input
strengths. Given that cells with similar firing rates are more easily synchronized,
such dominance of gamma frequency spiking may be important for generating os-
cillatory synchrony across mitral cells. Our basic hypothesis is that odor inputs result
in depolarization of the mitral cells and induce them to fire. Their tendency (due to
intrinsic properties) to fire in a narrow frequency range (even if the inputs slowly
vary) means that they can be treated as mathematical oscillators whose phase (but
not frequency) is modulated by locally correlated inhibitory input from the granule
cells. Interestingly, the firing rate of mitral cells does not vary much over several
orders of magnitude of odor concentration when the granule cells are present [55].
Thus, we suggest that the long-lasting strong recurrent inhibition from the granule
cells serves as a brake to mitral cell activity and keeps the firing rate in a ret-
ricted range. The fast correlated noisy transients that ride on the inhibition will
serve to synchronize a local population of mitral cells as we will see in the next
section.

Noise-Induced Oscillatory Synchrony

In the olfactory system, gamma frequency oscillations (20–80 Hz) have been ob-
served since the earliest recordings [1] and are enhanced during certain states and
olfactory behaviors [28, 44]. The mechanisms by which olfactory bulb gamma os-
cillations are generated and synchronized are not, however, well understood. Some
fast oscillations are intrinsic to the bulb circuitry [39] even being observed in slice
preparations [18, 29], suggesting that the intrinsic connectivity can give rise to
synchronization. One long-standing hypothesis has been that recurrent and lateral
inhibition mediated by dendrodendritic mitral cell-granule cell synapses (reviewed
by [48]) are critical for the generation and synchronization, respectively, of high
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frequency oscillations in the olfactory bulb [6,34,52]. According to this hypothesis,
mitral cell activity leads to recurrent inhibition which in turn stops mitral cell firing
for some period. Synchronization is then achieved via lateral inhibition between mi-
tral cells. That is, when one mitral cell inhibits its own firing, it also inhibits other
mitral cells. Thus, the timing of the pauses in firing will be similar across mitral cells
[12, 29]. Decaying inhibition then allows resumption of firing which again evokes
recurrent and lateral inhibition. Several variants of this model have been proposed
to explain olfactory bulb fast field potential oscillations [28,29,35,39,42,52]. How-
ever, little direct evidence showing that this mechanism can account for synchronous
fast oscillations in the olfactory system has been provided. Alteration of inhibition
changes fast field potential oscillations in vivo and in vitro [18, 29, 41], but this is
consistent with other mechanisms (see below).

As described above, the kinetics of lateral inhibition in the olfactory bulb find it to
be inconsistent with this proposed mechanism of gamma oscillations. We then use
experimental and computational approaches to investigate the possibility that the
olfactory bulb is using a different mechanism to generate synchronous oscillations.
Specifically, we have shown that a mechanism that has been described theoretically
[38, 58] but not previously applied to real oscillating neurons accounts for synchro-
nization of fast olfactory bulb oscillations. According to this mechanism, mitral
cells firing in a roughly oscillatory pattern are synchronized by correlated, but ape-
riodic inputs received from common granule cells. Such a mechanism of generating
synchronous oscillations has not been observed experimentally in neural systems,
though it may explain some previously observed phenomena [23, 45].

Stochastic Synchrony

Based on the above considerations, we suppose that the mitral cells can be regarded
as noisy oscillators which receive some common (and thus correlated) input from
surrounding granule cells. We can now ask if this is sufficient to cause some degree
of synchronization and if so, what properties of the noise, correlation, and oscillators
are necessary for this synchrony. First consider N identical nonlinear oscillators
sharing a common signal:

dXj

dt
D F.Xj /C q�.t/C

p
1 � q2�j .t/ (1)

where �.t/ is a common noise term and �j .t/ are independent uncorrelated
noise terms. (The noise could be colored, white, Poisson, etc). We assume that
X 0 D F.X/ admits a stable limit cycle oscillator. If q D 0, then the intrinsic
uncorrelated noise will drive the oscillators apart, however, for non-zero q, there
is some shared signal which could lead to partial synchrony of the oscillators.
Figure 1 shows an example simulation of 50 Hodgkin–Huxley oscillators (stan-
dard HH model with 10�A=cm2 current injected so that they oscillate regularly)
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Fig. 1 Shared white noise between 50 HH oscillators. Upper left shows the averaged potentials
of all 50 neurons as a function of the degree of correlation in the inputs. Remaining plots show
potential as a function of time for these correlations.

with various values of q: The top left of the figure shows the average potential
of all 50 cells: as the degree of shared input increases, a strong periodic rhythm
emerges. Figure 2 shows that this behavior is not restricted to neural models. Fig. 2a,
b show the underlying anatomy and membrane dynamics underlying stochastic syn-
chrony in the olfactory bulb. In [19], we injected partially correlated input currents
into a mitral cell and recorded the resulting potential. Figure 2c1 shows two tri-
als of current injection (red and black curves) with 0% and 80% correlation. The
potential traces of the mitral cells to these currents are shown in Fig. 2c2. There
are clearly many more overlapping spikes when the correlation is high. To quan-
tify this, we computed the cross-spectral density for different levels of correlation.
As seen in figure 2c3,4, this grows with increased correlation and shows a peak
in the 15–40 Hz range commonly found in the OB. These two figures demonstrate
that common noise could play a large role in determining the synchrony between
neurons.
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Fig. 2 Stochastic synchrony in mitral cells. (a) Diagram showing two uncoupled mitral cells with
common granule cell; (b) Shared IPSPs between motral cells; (c1) Input currents 0% correlation
and 80% correlation shown; (c2) Mitral cell responses to these two stimuli; (c3) Cross spectral
density with different correlations; (c4) Power boost in the 15–40 Hz range due to correlation. (We
depict the area under the curves in figure c3 in the 15–40 Hz range divided by the total area under
each curve.).

Phase Reduction and Lyapunov Exponents

To mathematically quantify the mechanism underlying stochastic synchrony, we ap-
ply the theory of phase reduction to (1). Since the oscillators are uncoupled and
independent, we need only consider a pair of them to understand the phenomena.
To consider the most general scenario, we assume that the oscillators can be slightly
different and that the noise they receive is small. Furthermore, since we are in-
terested in the role of shared currents, we assume that the only component of the
oscillator which is perturbed is the somatic compartment and that the component
of the vectors, �;�j are �; �j , respectively. Then, (see [58]) a pair of oscillators
reduces to the pair

� 0
1 D !1 C�.�1/Œq�.t/C

p
1 � q2�1.t/� (2)

� 0
2 D !2 C�.�2/Œq�.t/C

p
1 � q2�2.t/�: (3)

In absence of stimuli, these oscillators fire at frequencies, !j and if the oscilla-
tors are identical, !1 D !2: The crucial function in this model is �.�/, the phase
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resetting curve of the oscillator. Mathematically,�.�/ is proportional to the voltage
component of the solution, Y.t/ to the linear adjoint equation:

Y 0.t/ D �DXF.U.t//
T Y.t/; Y T .t/U 0.t/ D 1

where U 0.t/ D F.U.t// is a stable limit cycle solution. Heuristically and experi-
mentally, �.�/ is computed as follows. Let us define the phase of the oscillator to
be the time since it has last produced an action potential. Thus, 0 � � < P where P
is the period of the oscillator. Suppose that we inject a brief current pulse at phase,
� of the oscillation. This will cause an action potential to occur at a time OP which
is not generally the same time as the time, P when it would normally occur. The
phase resetting curve (PRC) for the stimulus is:

PRC.�; a/ D P � OP

where, a parameterizes the magnitude of the perturbation (for example, the total
charge delivered to the neuron). The quantity,�.�/ WD lima!0 PRC.�; a/=a defines
the infinitesimal PRC or the voltage component of the adjoint.

Figure 3 shows PRCs from both model and real neurons. One point that we want
to make is that there are two qualitatively different types of PRCs: those which have
both a negative and positive component and those which are strictly nonnegative.
The PRCs on the left have a negative and positive component.

Given the PRC, �.�/, the noise, �j and the heterogeneity, !j we can now
quantify the degree of synchronization for the uncoupled pair, (2–3). Let us first
assume that they are identical and the noise is completely correlated. We can ask if
solutions which start near synchrony will converge to synchrony and if so, how fast
they will converge. (For simplicity, we will assume that� has period 1 without loss
of generality.) Subtract the two equations and let  D �2 � �1: Then for  small

0 D Œ�.�1 C /��.�1/��.t/ � �0.�1/�.t/:

We can study how  varies over time when �.t/ is white by applying Ito’s lemma.
Let y D log: Then

y0 D ��0.�1/
2 �

2

2
C�0.�/�.t/;

where �2 is the variance of the noise, �.t/: y undergoes Brownian motion with a
negative drift term. Since  D exp.y/, on average, .t/ will decay like exp.�t/
where � is the average drift:

� D lim
T !1

1

T

Z T

0

��0.�1.t//
2 �

2

2
dt D ��

2

2

Z 1

0

�0.�/2P.�/ d�; (4)
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Fig. 3 Phase resetting curves. (a1,2) The Hodgkin–Huxley model and the Traub model with a
calcium-dependent potassium current. (b1,2) PRCs from hippocampal neurons under different
dynamic clamp scenarios. (Data provided by Theoden Netoff.)

where we have used the ergodicity of the noisy process to derive the last equality
and where P.�/ is the invariant density of the phase

0 D �! dP

d�
C �2

2

d�.�/

d�

�
d�.�/P

d�

�

: (5)

If, instead of continuous noise processes, there are Poisson inputs, then the system
of equations reduces to a pair of discrete maps [36]:

�nC1 D �n C !�n C ��.�n/

nC1 � Œ1C ��0.�n/�n;
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where � is the magnitude of the pulse. For this model

� D
Z 1

0

log
�
1C ��0.�/

	
P.�/ d�; (6)

P.�/ D
Z 1

0

Q.� � x � ��.x//P.x/ dx (7)

where Q.x/ is the periodized density for an exponential distribution. Note that if
� is small, then we can expand (6) and we obtain the same equation as in (4)
for the parameter � which is called the Lyapunov exponent. In both cases, it is
clearly a negative quantity, so that common noise will always cause nearby oscil-
lators to converge to synchrony. The rate at which they converge is proportional to
�, so that more negative values of � correspond to greater stochastic synchrony. In
two papers, Tateno and Robinson [56,57] explored the Lyapunov exponent in model
neurons and in cortical slices.

In recent work, Abouzeid and Ermentrout (in preparation) consider the pair of
equations (4) and (5) along with a constraint

Z 1

0

a0Œ�.t/�
2 C a1Œ�

0.t/�2 C a2Œ�
00.t/�2 dt D 1

as an optimization problem in which one tries to minimize �: They find using the
Euler–Lagrange equations and perturbation methods that the optimal PRC is close to
a sine wave,�.t/ D C sin 2�t: One can also use specific parameterizations of�.t/
which are close to the shapes of biological PRCs and then treat the optimization as a
standard calculus problem. Indeed, consider�.t/ D Œsin.2�t C a/� sin.a/�=N.a/
where N.a/2 D 3=2� cos.a/2 is chosen so the L2 norm of�.t/ is 1. If we assume
weak noise, then P.�/ is roughly 1 and

� � ��2 2�2

3 � 2 cosa

which clearly has a maximum at a D 0: On the other hand, if we fix the square
of �0.t/ or �00.t/ then the parameter a can be arbitrary. Similar approaches can be
applied to the discrete Poisson case of equations (6) and (7). We remark that Tateno
and Robinson found a similar result, PRCs with both negative and positive lobes
have a more negative value for �:

Noise Color and Reliability

Related to stochastic synchrony is the question of reliability of spikes. That is, given
the same stimulus over and over again, how reliably times are the spikes of a neuron
(or alternatively, how well correlated are the voltage traces). In a groundbreaking
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Fig. 4 Reliability in the HH model. Left panel shows spike rasters for 100 trials in which a con-
stant current is applied and there is independent white noise. Right panel shows the same with an
additional frozen noise current applied

paper, Bryant and Segundo [7] showed that a frozen white noise stimulus could pro-
duce very reliable spikes in a molluscan neuron. This was later applied by Mainen
and Sejnowski [31] to cortical neurons. Figure 4 shows an example of this phenom-
ena in the HH model. 100 trials are shown in which a constant current is applied at
t D 0which lasts for 500 ms. Below the spike rasters, we have binned the number of
cells firing in a short time window. The initially reliable spikes degrade over time.
On the other hand, if a small frozen noise signal is added on top of the constant
current, then a large fraction of spikes can be reliably maintained over the duration
of the stimulus. The implications for this in coding are reviewed in Ermentrout et al
(2008).

We can quantify reliability as

R 	 lim
T !1

.1=T /
R T

0
s1.t/s2.t/ dt

.1=T /
R T

0
s1.t/2 dt

;

where sj.t/ is a measure of the spike times, for example, a narrow Gaussian centered
at the spike times of two signals. Note that this is like the normalized correlation. In
an unpublished calculation, we show that when a stimulus is presented repeatedly
in the presence of independent white noise, the reliability is related to the Lyapunov
exponent:

R D
p�2�b

q
�2b�C �2

E

; (8)

where b is a parameter related to the Gaussian smoothing of the spike times and �E

is the extrinsic (independent) noise. Note that as �E ! 0, R ! 1: Since reliability
is a monotonic function of ��, this means that the maximal reliability occurs when
�� is largest.
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Conventional wisdom is that white noise is the best stimulus for reproducible
spikes. However, if the frozen noise is small and the neurons are (noisy) oscillators,
then it turns out that colored noise can produce greater reliability. Galán et al. [22]
demonstrate this for both real and model neurons. Equation (8) shows that the relia-
bility is related to the Lyapunov exponent, so that we will try to calculate this in the
presence of colored noise generated by the Ornstein-Uhlenbeck process:

d� D �ˇ�dt Cp
ˇdW;

where ˇ determines the autocorrelation of the noise, C.t/ WD h�.0/�.t/i D
exp.�ˇjt j/ and W.t/ is delta-correlated noise with variance, �2=2: Recall that the
Lyapunov exponent satisfies

� D lim
T !1

1

T

Z T

0

�0.�.t//�.t/ dt; (9)

where �.t/ satisfies
� 0.t/ D 1C ı.�.t//�.t/: (10)

For small noise � � 1, we can approximate the phase,

�.t/ D t C
Z t

0

�.s/�.s/ ds

and thus (9) is

� � lim
T !1

1

T

Z T

0

�00.t/
Z t

0

�.s/C.t � s/ ds:

For example, if �.�/ D a sin 2�� and C.t/ D exp.�ˇjt j/, then

� � �K ˇ

ˇ2 C 4�2

where K is a positive constant dependent on the magnitude of the noise, but not ˇ:
In this case, clearly the most negative � occurs when ˇ D 2�:

Figure 5a shows that there is a clear peak in the value of reliability as a function
of � WD 1=ˇ for model and real neurons driven to fire at about 40 Hz. Figure 5b
shows the approximate value of the Lyapunov exponent from the calculations for
a sinusoidal PRC along with the values obtained from a Monte Carlo simulation.
For PRCs dominated by the first Fourier mode, the rule of thumb is that the opti-
mal time constant for colored noise is �opt � P=2� where P is the period of the
oscillator.
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Fig. 5 Reliability as a function of the noise color. (a) Experiments and simulations show the peak
of reliability for a 40-Hz oscillator at about 4 ms time constant. (b) Montecarlo and theory for a
sinusoidal PRC.

Input/Output Correlations

To study the output vs. input correlations, we consider (2) and (3) where !1 D !2

but q < 1: Nakao et al. [37] studied this problem for white noise and Marella and
Ermentrout [32] for Poisson inputs. In both cases, one is interested in the stationary
density for the phase-differences between the two oscillators, that is, the random
variable,  WD �2 � �1: It turns out that through a series of perturbation expansions,
one obtains the same result no matter whether the noise is white or Poisson:

P.; c/ D K

1 � c h.�/
h.0/

; (11)

where

h./ D
Z 1

0

�.s/�.s C /;

c D 2q=.1C q/ is the correlation, and K is a normalization so that the integral is
1. Note that as q ! 1, this distribution approaches a delta function corresponding
to perfect synchrony. One way to characterize the degree of synchrony is the “order
parameter”

z.c/ WD
Z 1

0

cos 2�sP.s; c/ ds
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which is zero for a uniformP and 1 for a delta function. Another way to characterize
the degree of synchrony is to look at the deviation of the peak from the uniform
distribution P.0; c/ � 1. Marella and Ermentrout [32] explore the dependence of
z and other order parameters on the shape of the PRC. In particular, they examine
z.q/ with different PRC shapes and find that if the L2 norm of the PRC is kept
constant, PRCs which have the smallest DC component maximize this function. As
a final example, for small correlation, c, Marella and Ermentrout obtain a simple
expression for the deviation of the peak

P.0; c/ � 1 � c

"

1 � h�i2

h�2i

#

where hxi D R 1

0
x.s/ ds: If we keep the L2 norm of the PRC constant, say 1, then

the denominator is 1 and the peak deviation is maximal when � has zero mean –
that is, no DC component.

Summary

Oscillations are ubiquitous in the nervous system and in the olfactory bulb in partic-
ular. In order for there to be large macroscopic local field potentials, there must be
a good deal of synchrony in the rhythmic behavior of the principle cells, here, the
mitral cells. Inhibition persists for too long and there is no direct coupling between
these neurons. Thus, we have posited that a primary mechanism for synchronization
is shared “noisy” inhibitory postsynaptic currents (inhibitory miniature events) from
the interneurons, granule cells. We have characterized the degree of this so-called
stochastic synchronization by reducing complex neuronal networks to dynamics of
the phases of each neural oscillator. This has allowed us to derive some expression
for the degree of synchrony as a function of properties of the noise and properties of
the underlying oscillations. Furthermore, our simple theories have been put to ex-
perimental tests both in complicated membrane models and in real central nervous
system neurons.
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Stochastic Neural Dynamics as a Principle
of Perception

Gustavo Deco and Ranulfo Romo

Abstract Typically, the neuronal firing activity underlying brain functions exhibits
a high degree of variability both within and between trials. The key question is: are
these fluctuations just a concomitant effect of the neuronal substrate without playing
any computational role or do they have a functional relevance? In this chapter, we
first review the theoretical framework of stochastic neurodynamics that allows us to
investigate the roles of noise and neurodynamics in the computation of probabilistic
behavior. The relevance of this framework for neuroscience will be demonstrated
by focusing on the simplest type of perceptual task, namely sensory detection. We
focus on the following remarkable observation in a somatosensory task: when a
near-threshold vibrotactile stimulus is presented, a sensory percept may or may not
be produced. These perceptual judgments are believed to be determined by the fluc-
tuation in activity of early sensory cortices. We show, however, that the behavioral
outcomes associated with near-threshold stimuli depend of the neuronal fluctua-
tions of more central areas to early somatosensory cortices. The theoretical analysis
of the behavioral and neuronal correlates of sensation will show how variability at
the neuronal level in those central areas can give rise to probabilistic behavior at the
network level and how these fluctuations influence network dynamics.

Introduction

In this chapter, we consider how the noise contributed by the probabilistic spiking
times of neurons (spiking noise) plays an important and advantageous role in brain
function. We go beyond the deterministic noiseless description of the dynamics of
cortical networks, and show how the properties of the system are influenced by
the spiking noise. We show that the spiking noise has a significant contribution to
the outcome that is reached, in that this noise is a factor in a network with a finite
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(i.e., limited) number of neurons. This spiking noise can be described by introducing
statistical fluctuations into the finite-size system. It is important that the outcome
that is reached, and not just its time course, is influenced on each trial by these
statistical fluctuations.

In particular, we will use integrate-and-fire models with spiking neurons to model
the actual neuronal data that are obtained from neurophysiological experiments.
The integrate-and-fire simulations capture the stochastic nature of the computations.
However, we show that to understand analytically (mathematically) the stable points
of the network, for example what decisions may be reached, it is helpful to incorpo-
rate a mean field approach that is consistent with the integrate-and-fire model. The
mean field approach allows one to determine, for example, the synaptic strengths
of the interconnected neurons that will lead to stable states of the network, each of
which might correspond to a different decision, or no decision at all. The spiking
simulations then examine which fixed points (or decisions) are reached on individual
trials, and how the probabilistic spiking of the neurons influences these outcomes.

More specifically, we will show that both neurodynamics and stochastic fluc-
tuations matter, in the sense that both have an essential computational role for a
complete explanation of perception. To this purpose, we will take as a prototyp-
ical example the most elemental and historical task of perceptual detection. By
constructing and analyzing computational models, we will establish the link that
accounts for measurements both at the cellular and behavioral level. In particular,
we show that the behavioral correlate of perceptual detection is essentially given
by a noise driven transition in a multistable neurodynamical system. Thus, neuronal
fluctuations can be an advantage for brain processing, as they lead to probabilistic
behavior in decision-making in this and other sensory tasks. For example, decisions
may be difficult without noise. In the choice dilemma described in the medieval
Duns Scotus paradox, a donkey who could not decide between two equidistant food
rewards might suffer the consequences of the indecision. The problem raised is that
with a deterministic system, there is nothing to break the symmetry, and the sys-
tem can become deadlocked. In this situation, the addition of noise can produce
probabilistic choice, which is advantageous, as will be described in this paper.

Brain Dynamics: From Spiking Neurons to Reduced
Rate-Models

The computation underlying brain functions emerges from the collective dynamics
of spiking neuronal networks. A spiking neuron transforms a large set of incoming
input spike trains, coming from different neurons, into an output spike train. Thus,
at the microscopic level, neuronal circuits of the brain encode and process informa-
tion by spatiotemporal spike patterns. We assume that the transient (nonstationary)
dynamics of spiking neurons is properly captured by one-compartment, point-like
models of neurons, such as the leaky integrate-and-fire (LIF) model [38]. In the LIF
model, each neuron i can be fully described in terms of a single internal variable,
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namely the depolarization Vi .t/ of the neural membrane. The basic circuit of a LIF
model consists of a capacitor C in parallel with a resistor R driven by a synaptic
current (excitatory or inhibitory postsynaptic potential, EPSP or IPSP, respectively).
When the voltage across the capacitor reaches a threshold � , the circuit is shunted
to a reset potential Vreset, and a ı-pulse (spike) is generated and transmitted to other
neurons. The subthreshold membrane potential of each neuron evolves as a simple
RC -circuit, with a time constant � D RC given by the following equation:

�
dVi .t/

dt
D �ŒVi .t/ � VL�C �

NX

j D1

Jij

X

k

ı.t � t .k/
j /; (1)

where VL is the leak potential of the cell in the absence of external afferent inputs
and the total synaptic current flow into cell i is given by the sum of the contributions
of ı-spikes produced at presynaptic neurons, with Jij the efficacy of synapse j and

t
.k/
j the emission time of the kth spike from the j th presynaptic neuron.

In the brain, local neuronal networks comprise a large number of neurons which
are massively interconnected. The set of coupled differential equations (1) above
describe the underlying dynamics of such networks. Direct simulations of these
equations yield a complex spatiotemporal pattern, covering the individual trajectory
of the internal state of each neuron in the network. This type of direct simulation is
computationally expensive, making it very difficult to analyze how the underlying
connectivity relates to various dynamics. One way to overcome these difficulties
is by adopting the population density approach, using the Fokker–Planck formal-
ism [21, 22, 28]. We will follow here a derivation done by Stefano Fusi (private
communication). In this approach, individual integrate-and-fire neurons are grouped
together into populations of statistically similar neurons. A statistical description of
each population is given by a probability density function that expresses the distri-
bution of neuronal states (i.e., membrane potential) over the population. In general,
neurons with the same state V.t/ at a given time t have a different history because
of random fluctuations in the input current I.t/. The main source of randomness is
from fluctuations in the currents. The key assumption in the population density ap-
proach is that the afferent input currents impinging on neurons in one population are
uncorrelated. Thus, neurons sharing the same state V.t/ in a population are indistin-
guishable. The population density p.�; t/ expresses the fraction of neurons at time
t that have a membrane potential V.t/ in the interval Œ�; � C d��. The evolution of
the population density is given by the Chapman–Kolmogorov equation

p.�; t C dt/ D
Z C1

�1
p.� � "; t/�."j� � "/d"; (2)

where �."j�/ D ProbfV.t C dt/ D � C "jV.t/ D �g is the conditional probability
that generates an infinitesimal change " D V.tCdt/�V.t/ in the infinitesimal inter-
val dt . The temporal evolution of the population density can be reduced to a simpler
differential equation by the mean-field approximation. In this approximation, the
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currents impinging on each neuron in a population have the same statistics, because,
as mentioned above, the history of these currents is uncorrelated. The mean-field
approximation entails replacing the time-averaged discharge rate of individual cells
with a common time-dependent population activity (ensemble average). This as-
sumes ergodicity for all neurons in the population. The mean-field technique allows
us to discard the index denoting the identity of any single neuron. The resulting
differential equation describing the temporal evolution of the population density is
called the Fokker–Planck equation, and reads

@p.�; t/

@t
D 1

2�
�2.t/

@2p.�; t/

@�2
C @

@�

��
� � VL � �.t/

�

�

p.�; t/

�

: (3)

In the particular case that the drift is linear and the diffusion coefficient �2.t/ is
given by a constant, the Fokker–Planck equation describes a well-known stochas-
tic process called the Ornstein–Uhlenbeck process [31]. The Ornstein–Uhlenbeck
process describes the temporal evolution of the membrane potential V.t/ when the
input afferent current is �.t/C�p

�w.t/, with w.t/ a white noise process. This can
be interpreted, by means of the Central Limit Theorem, as the case in which the sum
of many Poisson processes becomes a normal random variable with mean �.t/ and
variance �2.

The nonstationary solutions of the Fokker–Planck equation (3) describe the
dynamical behavior of the network. However, these simulations, as the direct
simulation of the original network of spiking neurons (1), are computationally ex-
pensive and their results probabilistic, which makes them unsuitable for systematic
explorations of parameter space. On the other hand, the stationary solutions of
the Fokker–Planck equation (3) represent the stationary solutions of the original
integrate-and-fire neuronal system. The stationary solution of the Fokker–Planck
equation satisfying specific boundary conditions (see [3, 23, 30]) yields the popula-
tion transfer function of Ricciardi ():
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#�1
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where erf.x/ D 2=
p
�
R x

0
ey2

dy. In last equation tref is the refractory time.
The population transfer function gives the average population firing rate as a

function of the average input current. For more than one population, the network is
partitioned into populations of neurons whose input currents share the same statis-
tical properties and fire spikes independently at the same rate. The set of stationary,
self-reproducing rates �i for different populations i in the network can be found by
solving a set of coupled self-consistency equations, given by:

�i D .�i ; �i /; (5)
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This reduced system of equations allows a thorough investigation of the pa-
rameters. In particular, one can construct bifurcation diagrams to understand the
nonlinear mechanisms underlying equilibrium dynamics and in this way solve the
“inverse problem,” i.e., the selection of the parameters that generate the attractors
(steady states) that are consistent with the experimental evidence. This is the crucial
role of the mean-field approximation: to simplify analyses through the stationary
solutions of the Fokker–Planck equation for a population density under the diffu-
sion approximation (Ornstein–Uhlenbeck process) in a self-consistent form. After
that, one can perform full nonstationary simulations using these parameters in the
integrate-and-fire scheme to generate true dynamics. The mean field approach en-
sures that these dynamics will converge to a stationary attractor that is consistent
with the steady-state dynamics we require [3, 16]. The stochastic (random) firing
times of neurons introduces noise into neuronal networks, and it is the consequences
of this randomness expressed in a finite (limited) sized network of such neurons with
which we are concerned in this review. We show that the noise in such systems not
only helps us to understand many aspects of decision-making as implemented in the
brain, but is in fact beneficial to the operation of decision-making processes.

The mean-field approach has been applied to model single neuronal responses,
fMRI activation patterns, psychophysical measurements, and the effects of pharma-
cological agents and of local cortical lesions [4, 5, 8, 10–15, 32, 37].

Perceptual Detection and Stochastic Dynamics

Neurophysiology

The detection of sensory stimuli is among the simplest perceptual experiences and
is a prerequisite for any further sensory processing. A fundamental problem posed
by the sensory detection tasks is that repeated presentation of a near-threshold stim-
ulus might unpredictably fail or succeed in producing a sensory percept. Where in
the brain are the neuronal correlates of these varying perceptual judgments? Pio-
neering studies on the neuronal correlates of sensory detection showed that, in the
case of vibrotactile stimuli, the responses of S1 neurons account for the measured
psychophysical accuracy [27]. However direct comparisons between S1 responses
and detection performance were not directly addressed and, therefore, it is not clear
whether the activity of S1 accounts for the variability of the behavioral responses.
Psychophysical performance was measured in human observers and S1 recordings
were made in anesthetized monkeys.

This problem has been recently addressed [6, 7]. These authors trained monkeys
to perform a detection task. In each trial, the animal had to report whether the tip
of a mechanical stimulator vibrated or not. Stimuli were sinusoidal, had a fixed
frequency of 20 Hz and were delivered to the glabrous skin of one fingertip. Cru-
cially, they varied in amplitude across trials. Stimulus-present trials were interleaved
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with an equal number of stimulus-absent trials in which no mechanical vibrations
were delivered. Depending on the monkeys’ responses, trials could be classified into
four types of responses: hits and misses in the stimulus-present condition, and cor-
rect rejections and false alarms in the stimulus-absent condition. Stimulus detection
thresholds were calculated from the behavioral responses. Thus an important issue
in this and similar tasks is to determine the neuronal correlates that account for these
behavioral reports.

De Lafuente and Romo [6] simultaneously characterized the activity of S1 neu-
rons (areas 3b and 1) and the monkey’s psychophysical performance by recording
the extracellular spike potentials of single S1 neurons while the monkeys performed
the detection task. Figure 1 shows the experimental design and main results. To test
whether the responses of S1 neurons accounted for the monkey’s psychophysical
performance, [6] calculated neurometric detection curves and compared them with
the psychometric curves. The proportion of “yes” responses for neurometric curves
was defined, for a given amplitude, as the proportion of trials in which the neuron’s
firing rate reached or exceeded a criterion value [6, 18]. For each neuron, this crite-
rion was chosen to maximize the number of correct responses. Pairwise comparisons
of detection thresholds obtained from logistic fits to the simultaneously obtained
neurometric and psychometric data showed that the detection thresholds of individ-
ual S1 neurons were not significantly different from the animals’ psychophysical
thresholds, and the two thresholds measures highly covaried. In addition, the shape

�������������������������������������������������������������������!
Fig. 1 The detection task. (a) Drawing of monkey working in the detection task. (b) The se-
quence of events during the detection trials. Trials began when the stimulation probe indented the
skin of one fingertip of the left, retrained hand (probe down, PD). The monkey then placed its right,
free hand on an immovable key (key down, KD). On half of the randomly selected trials, after a
variable prestimulus period (Prestim, 1.5–3.5 s), a vibratory stimulus (Stim, 20 Hz, 0.5 s) was pre-
sented. Then, after a fixed delay period (Delay, 3 s), the stimulator probe moved up (probe up, UP),
indicating to the monkey that it could make the response movement (MT) to one of the two buttons.
The button pressed indicated whether or not the monkey felt the stimulus. Henceforth referred to
as yes and no responses, respectively. (c) Depending on whether the stimulus was present or absent
and on the behavioral response, trial outcome was classified as a hit, miss, false alarm (FA), or cor-
rect reject (CR). Trials were pseudo-randomly chosen: 90 trials were stimulus absent (amplitude
0), and 90 trials were stimulus present with varying amplitudes (9 amplitudes with 10 repetitions
each). (d) Classical psychometric detection curve obtained by plotting the proportion of yes re-
sponses as a function of the stimulus amplitude. (e) Mean firing rate of hit trials for S1 (n D 59)
and MPC (n D 50) neurons. (f) Comparison of normalized neuronal population activity of S1
neurons during hits and misses for near-threshold stimuli, and during correct rejections and false
alarms in stimulus-absent trials. Normalized activity was calculated as a function of time, using a
200 ms window displaced every 50 ms. This was calculated by substractng the mean activity and
dividing by the standard deviation of the activity from a 200 ms window of the prestimulus period.
Lower panels show the choice probability index as a function of time. This quantity measures the
overlap between two response distributions: in this case, between hits and misses and between cor-
rect rejection and false alarm trials. Dotted lines mark significance levels. (g) The same as in f, but
for a neuronal population activity of MPC neurons. Adapted with permission from De LaFuente
and Romo, 2006
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of the mean neurometric curve resulting from the activity of the S1 neurons showed
close correspondence with the shape of the mean psychometric curve.

An important question addressed in this study is whether the activity of S1 neu-
rons covaries with the perceptual “yes”–“no” judgments that the monkeys made on a
trial-by-trial basis [6]. To test this, these authors compared the activity during hit and
miss trials for the near-threshold stimulus, as well as for the corresponding activity
in correct reject and false alarm trials in the stimulus-absent condition. They found
no significant differences in the activity of S1 neurons between hits and misses, nor
between correct rejections and false alarms. This indicated that activity of individ-
ual S1 neurons did not predict the monkey’s behavior. To further quantify this, [6]
calculated a choice probability index, which estimates the probability with which
the behavioral outcome can be predicted from the neuronal responses [2,20]. Again
they found no significant differences between hits and misses, or between correct
rejections and false alarm trials.

The low choice probability values are consistent with a detection model in which
the activity of S1 serves as input to an additional processing stage(s) that determines
whether a stimulus has occurred or not. Under this hypothesis, the correlation be-
tween S1 activity and the final decision about the stimulus presence or absence is
highly dependent on the amount of correlated-noise among sensory neurons [39].
Indeed, [6] found that the mean noise correlation coefficient across pairs of S1 neu-
rons was 0:16˙ 0:02. This amount of correlated-noise is similar to that reported in
previous studies [1,35,39], and is also consistent with the near chance choice prob-
ability values reported in the study of [6]. These results further support a detection
model in which a central area(s) must be observing the activity of S1 neurons to
judge about the stimulus presence or absence. Therefore, the functional role of S1
in this and other perceptual tasks may be mainly to generate a neural representa-
tion of the sensory stimulus for further processing in areas central to it [19, 33–36].
However, a previous study found that fMRI signals in primary visual cortex (V1)
reflected the percepts of human subjects, rather than the encoded stimulus features
[29]. This result suggests that, in V1, top-down signals (nonsensory inputs deliv-
ered to visual cortex via feedback projections) can be combined with bottom-up
(sensory) information and contribute to sensory percepts [29]. S1 data did not show
evidence for this type of neural interaction; rather, it indicated that S1 represents
the physical properties of stimuli and contributes little to near-threshold percepts
[6]. The discrepancy could be due to fundamentally different organizations across
sensory cortices, or to differences between species. Another possibility to consider
is that the modulation revealed through fMRI may have an effect that is invisible
from the point of view of single neurons. This would happen if, for instance, such
modulation acted only to synchronize the spikes of multiple target neurons [17].

To test whether the neuronal correlates of the perceptual decisions associated
with detection might reside outside S1, [6] recorded neurons from the medial pre-
motor cortex (MPC), a frontal cortical area known to be involved in the evaluation
of sensory information and in decision-making processes [20, 24]. They found that,
in contrast to the graded dependence on stimulus amplitude observed in S1, MPC
neurons responded in an all-or-none manner that was only weakly modulated by
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the stimulus amplitude, but that closely correlated with “yes” and “no” behav-
ioral responses. The mean normalized activity across the MPC neurons was strong
and sustained, and with near-threshold stimuli it was clearly different for hit and
miss trials. Moreover, almost 70% of the false alarm trials were predicted from in-
creases in neuronal activity in stimulus-absent trials. de Lafuente and Romo [6] also
found that the MPC activity preceding stimulus onset was higher during hits than
during misses. These early increases in activity predicted detection success signif-
icantly above chance levels, as is shown by the choice probability plots. Although
de Lafuente and Romo (2005, 2006) do not know the role of this increased pres-
timulus activity, they speculate that it might be associated with trial history during
a run. To support this conjecture, [6] wondered about the behavioral responses on
trials previous to false alarm responses. They found that the probability of an “yes”
response was increased in those trials preceding a false alarm, supporting the no-
tion that monkeys were biased toward “yes” responses. de Lafuente and Romo [6]
speculated that given that “yes” responses to the three subthreshold amplitudes were
rewarded, this could have encouraged the monkeys to respond “yes” in the next trial,
producing a false alarm response. The results indicate that the responses of all MPC
neurons studied were associated with stimulus presence or with false alarms; that is,
with “yes” responses. They did not find neurons whose increases in their activities
were associated with “no” responses. [6] do not know the reason for this but they
speculate that “no” is the default response that is installed from trial beginning and
that the stimulus presentation overrides this default response.

The close association between neuronal responses and behavioral responses, and
the weak relationship between neuronal activity and stimulus amplitude, supported
the interpretation that MPC neurons do not code the physical attributes of stimuli,
but rather represent perceptual judgments about their presence of absence. As the
monkeys reported their decisions by a motor act, a key question needed to be an-
swered: was the MPC activity truly related to stimulus perception, or was it simply
reflecting the different motor actions associated with the two response buttons? To
test this, [6] designed a control task in which the correct response button was il-
luminated at the beginning of every trial. In this variant of the detection task, the
monkeys simply had to wait until the end of the trial to push the illuminated button,
without the need to attend to the presence or absence of the mechanical vibration.
It is important to note that in this test condition all-or-none activity was still ob-
served in response to the near-threshold stimulus, and the probability of activation
depended on the stimulus amplitude, similar to that observed in the standard de-
tection task. Given that in the control test the monkeys did not have to choose a
response button based on the vibratory stimulus, the results are consistent with the
interpretation that the activity of MPC neurons is related to the subjective perception
of sensory stimuli, rather than to the selection of the motor plan. These results there-
fore favor the hypothesis that this MPC population reflects the failure or success of
the near-threshold stimulus in triggering a sensory percept.
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A Computational Model of Probabilistic Detection

An aim of this chapter is to show how stochastic dynamics helps to understand
the computational mechanisms involved in perceptual detection. The computa-
tional analysis of detection focuses on the paradigm and experimental results of
[6] described above. In summary, they used a behavioral task where trained awake
monkeys report the presence or absence of a mechanical vibration applied to their
fingertips by pressing one of two pushbuttons. They found that the activity of MPC
neurons was only weakly modulated by the stimulus amplitude, and covaried with
the monkeys’ trial-by-trial reports. On the contrary, S1 neurons did not covary with
the animals’ perceptual reports, but their firing rate did show a monotonically in-
creasing graded dependence on the stimulus amplitude (see Fig. 1d and e). The fact
that MPC neurons correlate with the behavioral performance, with a high firing rate
for an “yes” report and a low firing rate for a “no” report, suggests an underlying
bistable dynamic in an attractor framework.

A minimal network model is now described that captures the computation in-
volved in perceptual detection and is consistent with the neurophysiological and
behavioral evidence described [9]. The main idea of the model is to establish a
neurodynamics that shows two possible bistable decision states associated with
the two possible behavioral responses: “stimulus detection” and “no stimulus de-
tection.” The computation underlying perceptual detection is then understood as a
fluctuation-driven, probabilistic transition to one of the two possible bistable deci-
sion states.

A patch of MPC neurons in the frontal lobe is modeled by a network of inter-
acting neurons organized into a discrete set of populations. Populations are defined
as groups of excitatory or inhibitory neurons sharing the same inputs and connec-
tivities. Some of the excitatory population of neurons have a selective response,
which reflects the sensitivity to an external applied vibrotactile stimulus (note that
for simplicity in 1A only one selective population is shown for the single specific
vibrotactile frequency utilized in the experiment). All other excitatory neurons are
grouped in a “Non-selective” population. There is also one inhibitory population
of local inhibitory neurons that regulates the overall activity by implementing com-
petition in the network. Neurons in the networks are connected via three types of
receptors that mediate the synaptic currents flowing into them: AMPA and NMDA
glutamate receptors, and GABA receptors. Neurons within a specific excitatory
population are mutually coupled with a strong weight !C. Neurons between two
different selective populations have anticorrelated activity, which results in weaker
connections !�.

In this model, activity in a selective excitatory population corresponds to the
detection of a percept associated with an external applied vibrotactile stimulus. The
strength of the input (�) impinging on that excitatory population is proportional
to the strength of the presented vibrotactile stimulus (as for example encoded in
S1, i.e., the input to MPC is transmitted from S1). When a stimulus is presented,
there is just one population sensitive to it. To model this characteristic, we use a
network composed of two selective populations, but only one will be selective to
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the stimuli applied. The relevant bistability is therefore given by the state where the
excitatory populations have low activity (corresponding to no detection of a percept,
i.e., a “no” response), and the state where the excitatory population sensitive to the
presented vibrotactile stimulus is highly activated (corresponding to the detection of
the percept, i.e., an “yes” response). We refer to this model as “Non-Competing Yes-
Neurons” (NCYN) (Fig. 2a). Just the selective population sensitive to the applied
vibrotactile stimulation used in the experiment is represented by a specific excitatory
population. (A full specification of the whole connectivity is provided in [9].)

The characteristics of the network in the stationary conditions were studied with
the mean-field approach reviewed above. Using this approximation, the relevant
parameter space given by the population cohesion !C vs. the external input � was
scanned. The mean-field results for the NCYN-model are illustrated in a phase di-
agram (Fig. 2b) that shows different regimes of the network. For small values of �
and for a weak population cohesion, the network has one stable state where all popu-
lations are firing at a weak level (spontaneous state). This spontaneous state encodes
the “no” response in the NYCN model. For higher population cohesion and higher
values of �, a state corresponding to strong activation of the selective population
sensitive to the applied vibrotactile stimulation emerges. We call this excited state
encoding the “yes” response, the “yes” state. Between these two regions, there is
a bistable region where the state corresponding to weak (“no” response) or strong
(“yes” response) activation states of the selective population sensitive to the applied
vibrotactile stimulation are both stable.

To study the probabilistic behavior of the neuronal dynamics of the network, the
spiking simulations of the configurations corresponding to the region of bistability
were analyzed with methods similar to those used for the neurophysiological data
by [6].

The results are presented of the nonstationary probabilistic analysis calculated by
means of the full spiking simulations averaged over several trials. In all cases, the
aim was to model the behavior of the MPC neurons which are shown in Fig. 1d and e,
which reflect detection of the percept [6]. It is proposed that the perceptual response
results from a neurodynamical bistability [9]. In this framework, each of the sta-
ble states corresponds to one possible perceptual response: “stimulus detected” or
“stimulus not detected.” The probability of detecting the stimulus is given by the
transitions between these two states. In fact, the probabilistic character of the system
results from the stochastic nature of the networks. The source of this stochasticity
is the approximately random spiking of the neurons in the finite-size network. We
note that there are two sources of noise in such spiking networks: the randomly ar-
riving external Poissonian spike trains and the fluctuations due to the finite size of
the network. Here we refer to finite-size effects due to the fact that the populations
are described by a finite number N of neurons. In the mean-field framework, (see
[25,26]) “incoherent” fluctuations due to quenched randomness in the neurons’ con-
nectivity and/or to external input are already taken into account in the variance, and
“coherent” fluctuations give rise to new phenomena. In fact, the number of spikes
emitted by the network in a time interval Œt; t C dt/ is a Poisson variable with mean
and varianceN�.t/dt . The estimate of �.t/, is then a stochastic process �N .t/, well
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described in the limit of large N� by �N .t/ ' �.t/ C p
�.t/=N�.t/, where �.t/

is Gaussian white noise with zero mean and unit variance, and �.t/ is the proba-
bility of emitting a spike per unit time in the infinite-size network. Such finite-N
fluctuations, which affect the global activity �N , are coherently felt by all neurons
in the network and lead to an additive Gaussian noise corrections in the mean-field
equations.

To compare the theoretical results with the experimental results, the character-
istics of the bistable neurodynamical model NCYN were studied. The behavior of
the relevant populations encoding the different bistable states corresponding to the
two alternative choices is shown in Fig. 3. Figure 3a plots the proportion of “yes”
responses as a function of the intensity of the applied vibrotactile stimulation, i.e.,
as a function of the strength � of the stimulus presented. The figure shows that the
proportion of “yes” responses (hits) increases as the intensity of the stimulus ap-
plied grows. The model is consistent with the experimental results of Lafuente and
Romo shown in Fig. 1. Hence, the model shows a probabilistic behavior that emu-
lates the real behavior of subjects detecting a vibrotactile stimulus [6]. Let us now
concentrate on the level of firing activity observed in MPC neurons that covary with
the behavioral responses. Figure 3b shows the activity of the neurons encoding the
“yes” response (selective excitatory population sensitive to the applied vibrotactile
stimulus) averaged over trials that reported a percept (hits). In the model, the mean
firing activity is almost constant and is not linearly related to the stimulus ampli-
tude, as reflected in the experimental results. The fact that neurons encoding the
“yes” response present a relatively constant level of activation on trials that report
a detected percept, whereas on trials that fail to detect a percept these neurons have
low activity (spontaneous level), is consistent with an attractor network. Therefore
the transitions driven by the spiking-related statistical fluctuations are consistent
with the behavioral data.

Deco et al. [9] studied also a second different bistable network model called
“Competing Yes-No-Neurons” (CYNN). Both models (NCYN and CYNN) are con-
sistent with the existing single cell recordings, but they involve different types of
bistable decision states, and consequently different types of computation and neuro-
dynamics. By analyzing the temporal evolution of the firing rate activity of neurons
on trials associated with the two different behavioral responses, they were able to
produce evidence in favor of the CYNN model. Specifically, the CYNN model pre-
dicts the existence of some neurons that encode the “no” response, and other neurons
that encode the “yes” response. The first set of neurons slightly decrease their activ-
ity at the end of the trial, whereas the second group of neurons increase their firing
activity when a stimulus is presented. Thus in this case, the simulations indicate that
the CYNN model fits the experimental data better than the NCYN model.

In conclusion, computational stochastic neurodynamical models provide a deeper
understanding of the fundamental mechanisms underlying perceptual detection and
how these are related to experimental neuroscience data. We argue that address-
ing such a task is a prerequisite for grounding empirical neuroscience in a cogent
theoretical framework.
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Fig. 3 Simulated results plotting the detection curves resulting from 200 trials (overall perfor-
mance) and the mean rate activity of hit trials at a function of the input strength � for the MPC
neurons for the experimental design of de Lafuente and Romo (2005). (a) Probability of an “yes”
response (hit). (b) Mean firing rate activity of neurons in the “yes” population on “yes” trials. The
simulations of the nonstationary and probabilistic behavior of the neurodynamical activity were
performed by a full spiking and synaptic simulation of the network
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Large-Scale Computational Modeling
of the Primary Visual Cortex

Aaditya V. Rangan, Louis Tao, Gregor Kovačič, and David Cai

Abstract This chapter reviews our approach to large-scale computational modeling
of the primary visual cortex (V1). The main objectives of our modeling are to (1)
capture groups of experimentally observed phenomena in a single theoretical model
of cortical circuitry, and (2) identify the physiological mechanisms underlying the
model dynamics. We have achieved these objectives by building parsimonious
models based on minimal, yet sufficient, sets of anatomical and physiological as-
sumptions. We have also verified the structural robustness of the proposed network
mechanisms. During the modeling process, we have identified a particular operating
state of our model cortex from which we believe that V1 responds to changes in vi-
sual stimulation. This state is characterized by (1) high total conductance, (2) strong
inhibition, (3) large synaptic fluctuations, (4) an important role of NMDA conduc-
tance in the orientation-specific, long-range interactions, and (5) a high degree of
correlation between the neuronal membrane potentials, NMDA-type conductances,
and firing rates. Tuning our model to this operating state in the absence of stimuli,
we have used it to identify and investigate model neuronal network mechanisms un-
derlying cortical phenomena including (1) spatiotemporal patterns of spontaneous
cortical activity, (2) cortical activity patterns induced by the Hikosaka line-motion
illusion stimulus paradigm, (3) membrane potential synchronization in nonspiking
neurons several millimeters apart, and (4) neuronal orientation tuning in V1.

Introduction

The primary visual cortex (V1) is one area of the brain where computational
modeling has been successfully used to investigate the link between physiological
mechanisms and cortical function. Our approach to large-scale computational mod-
eling of V1 [1–3] is reviewed in this chapter. Clearly, to gain a deeper theoretical
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understanding of even the simplest brain functions, modeling must strike a care-
ful balance between mathematical abstraction and physiological detail. Moreover,
to achieve a good understanding of network dynamics through computational mod-
eling, fast and efficient computational methods for simulating large-scale neuronal
networks have become a necessity.

Modeling Objectives In our view, the main objectives of computational neuronal
network modeling are to (1) capture groups of experimentally observed cortical
phenomena in a single theoretical model of cortical circuitry, and (2) identify the
physiological mechanisms underlying the resulting model dynamics. In this way,
computational modeling with sufficient realism may help to pick from among a
number of theoretical scenarios those that could be truly realized in nature. This
objective makes it necessary to build “parsimonious” models based on a minimal,
yet sufficient, set of anatomical and physiological assumptions that allow such mod-
els to qualitatively and quantitatively reproduce a given set of distinct physiological
effects within a unified dynamical regime and with a single realistic cortical ar-
chitecture. The spatial and temporal scales resolved by the model must be chosen
judiciously for the model to faithfully reflect the described phenomena. A clear ad-
vantage of a large-scale computational model over more idealized models is that it
is broad enough to explore a large number of possible dynamical regimes, all within
a single framework, and thus identify those regimes that are physiologically rele-
vant. For example, a computational model can explore the cortical operation of both
correlated and uncorrelated firing activity, whereas an idealized firing-rate model
can usually describe the latter only. Finally, one of the ultimate goals of large-scale
computational neuronal network modeling is to use the network mechanisms iden-
tified in computational modeling for guiding the design of new experiments, as well
as to contrast these mechanisms with experimental results, so that we can reach a
better understanding of the underlying physiological phenomena.

In contrast to statistical physics that provides general principles governing large-
scale equilibrium systems, no unifying law has so far been found that would govern
large-scale network systems in neuroscience. We must therefore strive to extract the
general governing features of the investigated neuronal assemblies in a robust way
that is insensitive to the insignificant details of both the computational model used
and the parameter regime it operates in. However, unlike in analytical considerations
where this simply means discussing a sufficiently general model family, computa-
tional models are very concrete in terms of their specifications, such as the values
of parameters used in the model. Therefore, special attention must be paid to the
“structural robustness” of the discovered network mechanisms. This again means
that the models must be able to capture multiple phenomena in a single dynamical
regime, within broad parameter ranges, and also that the models should capture
bifurcations wherever they exist and reproduce their correct dynamical behavior
as observed experimentally. These requirements constrain the models structurally.
Additionally, in a stronger sense, one can only be reasonably convinced that the net-
work mechanisms discovered via this modeling process are robust structurally when
physiologically reasonable variations of the network architecture all reproduce the
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studied phenomena and confirm the discovered mechanisms in similar parameter
regimes and with comparable accuracy. Moreover, when we study phenomena that
are hypothesized to be network induced instead of being controlled by the cel-
lular dynamics of particular neurons, we can demonstrate the robustness of the
hypothesized network mechanism by replacing the underlying Hodgkin–Huxley-
type equations with, for example, a simpler integrate-and-fire (I&F) neuron model.
If the presumed network-induced mechanism is indeed at work, the particular choice
of the neuronal equations (Hodgkin–Huxley; or linear, quadratic, or exponential
I&F) should make no essential difference. In fact, a study by comparing a number
of such related models can be systematically employed for examining the robustness
of the hypothesized mechanisms.

Due to the large scales of the modeled cortical areas, and the correspondingly
large numbers of neurons involved, our computational models are large in terms
of the numbers of neurons included and physical areas covered. Modeling of large
cortical areas allows us to theoretically explain results of large-scale modern neu-
rophysiological experiments, such as imaging with voltage-sensitive dyes [4,5] and
multielectrode array measurements [6]. It is important to emphasize that the num-
bers of model neurons must have approximately the same orders of magnitude as
the numbers of the neurons in vivo or in vitro, since some of the most important
dynamical properties of neuronal networks, such as the level of fluctuations, are of-
ten controlled by the numbers of neurons and connectivity (sparse or dense) of their
synaptic couplings. Inappropriate choice of the number of neurons and synaptic
connectivity in the model may result in dynamical behavior inconsistent with phys-
iological effects. For example, too many weak pre-synaptic connections per neuron
tend to lead to mean-driven dynamics and prevent spiking that is induced by sub-
threshold fluctuations as often observed in experiments [7]. The large numbers of
neurons in our network model, dictated by the cortical phenomena we study, re-
quire us to devise fast algorithms that take advantage of the cortical architecture
properties. This need is particularly acute because, in order to capture the sought-
for phenomena and confirm their robustness, many simulations (up to 103–104) are
necessary to sufficiently explore considerable portions of the parameter space.

Overview of Results We have been implementing a parsimonious modeling strat-
egy in the modeling of the primary visual cortex (V1). Using this strategy, we
have investigated network mechanisms underlying cortical phenomena including
spatiotemporal patterns of spontaneous cortical activity [1], cortical activity pat-
terns induced by the Hikosaka line-motion illusion stimulus paradigm [2], and
neuronal orientation tuning [3]. Our large-scale computational model contains �106

conductance-based, I&F, point neurons, and the simulations involve a range of spa-
tiotemporal scales pertaining to cortical processing in V1. The time scales involved
span from the fastest network time scale (�2ms) [8, 9] to the slow scale of the
NMDA receptor (�50�200ms) [10]. The spatial scales involve both local, isotropic
(<0:5mm) and long-range, orientation-specific (�1–8 mm) lateral cortico-cortical
connections in V1, distributed according to a realistic cortical architecture [11, 12].
We assume these cortico-cortical connections to be sparse.
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We first addressed V1 dynamics in the absence of any stimuli [1], to isolate cor-
tical phenomena that are independent of the LGN input dynamics. At this modeling
stage, we reproduced spatiotemporal cortical patterns of spontaneous cortical activ-
ity [13, 14], a striking example of cortical processing in V1 observed by real-time
optical imaging based on voltage sensitive dyes [15]. Far from being the expected
featureless noise [16], these patterns are highly correlated on millimeter scales, ap-
pear to become activated in multiple areas of iso-orientation preference, and tend to
migrate to nearby such areas after about �80ms. We identified a specific cortical
operating state (see IDS state below) that we believe to underlie this and many other
cortical response properties in V1.

To study stimulus-driven phenomena, we incorporated an LGN model. We have
successfully modeled the spatiotemporal V1 neuronal activity that is associated with
the Hikosaka line-motion illusion [2]. This illusion is induced by showing a small
stationary square followed by a long stationary bar to create the illusory motion
perception of the square “growing” to become the bar [17]. In V1, it was observed
that actual subthreshold cortical activity in response to the Hikosaka stimulus is
very similar to that induced by real moving stimuli [18]. Finally, we have also suc-
cessfully modeled the orientation tuning dynamics of V1 neurons within the same
computational model [3].

The parsimony of our models manifests itself in how we restrict our assumptions
underlying the cortical phenomena we investigate. For example, for the study of
neuronal orientation tuning, we choose to consider only small-sized stimuli, so that
only the local network with its short-range cortico-cortical connections is activated.
Thus, we were able to restrict our model to a local version with all the long-range
effects lumped in an effective uniform inhibition. Both our large-scale model and
this local model can successfully model the orientation tuning dynamics. Yet more
markedly so, parsimony is reflected in the modeling of the line-motion illusion.
In particular, from the experiments, it is not clear whether the spatiotemporal V1
activity associated with this illusion emerges in V1 or from cooperative effects with
strong feedback from higher cortical areas. In the model neuronal network, we have
only considered the dynamics in V1 and explicitly excluded any structured feedback
from the higher cortical areas, yet this model was sufficient to capture the cortical
activity corresponding to the line-motion illusion. This allows us to hypothesize that
the cortical activity observed in voltage-sensitive-dye imaging is mainly produced
by the V1 circuitry.

We have found a single dynamical regime of our model cortex that captures a
number of experimental phenomena at once. In addition to the three mentioned
above, these include membrane potential synchronization in nonspiking neurons
several millimeters apart [19], and the “similarity index” dynamics caused by drift-
ing grating stimuli turned on and off periodically [13], both described in section
“Patterns of Spontaneous Cortical Activity.” In all these cases, the theoretical advan-
tage of our parsimonious model is clear: It highlights the most sharply delineated
proposed mechanisms, while simultaneously demonstrating their realizability in a
single cortical state in our model.
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We refer to the dynamical regime in our model that can capture all the phenomena
mentioned above as the “intermittent de-suppressed” (IDS) operating state [1, 2].
This IDS state is characterized by (1) high total conductance (cf. [9, 20–23]), (2)
strong inhibition, (3) large synaptic fluctuations (cf. [24–26]), (4) an important role
of NMDA conductance in the orientation-specific, long-range interactions (cf. [27]),
and (5) a high degree of correlation between the neuronal membrane potentials,
NMDA-type conductances, and firing rates. It is from this type of operating state
that we believe V1 responds to changes in visual stimulation. The IDS state appears
to be highly stochastic and sensitive to external stimuli. It is not an attractor in the
sense of, say, the marginal state, which is very stable, strongly locked-in, and largely
insensitive to external stimuli [28, 29].

Computational Approach The dynamical properties of the IDS operating state,
together with the cortical architecture of (1) strong isotropic, nonspecific local
connections and (2) weak, orientation-specific, long-range cortico-cortical connec-
tions, guide us in the design of our computational scheme. In addition, as in the
corresponding experiments, the nature of observables is statistical, so the appropri-
ate computational aim is to achieve statistical rather than trajectory-wise accuracy
of our simulations. In particular, to obtain efficiency using large time-steps we
had to address the following computational issues: (1) stiffness due to the high-
conductance state of the network in the IDS state, (2) correctly accounting for the
influence of each cortical spike, computed within a large numerical time-step, on
the dynamical variables and other cortical spikes within the same time-step, and
(3) efficiently accounting for the influence of strong, spatially local interactions
and relatively weak, modulational, long-range interactions arising in the V1 cortical
architecture.

To address these issues, we have developed a novel, highly effective and efficient
computational method for evolving V1 dynamics [30], which allows us to minimize
the computational overhead associated with each spike, and evolve the I&F network
model of V1 with N neurons so that each neuron fires approximately once in O.N /
operations. Our method not only evolves the system with trajectory-wise accuracy
when the time steps used are sufficiently small, but also evolves the system with
statistical accuracy when the time steps in the simulation are quite large, 1–2 ms,
approaching the smallest physiologically relevant time scale in the model. More
precisely, such simulations still render accurate network firing rates; distributions of
interspike intervals, conductances, and voltages; and spatiotemporal patterns formed
by conductances and voltages. Finally, we stress that our computational strategy
should be applicable to neuronal assemblies other than V1. In fact, the issues ad-
dressed by this strategy are fairly general, and our scheme may easily be adapted to
simulate other areas of the brain.

The remainder of this chapter is organized as follows. In section “Physiologi-
cal Background,” we discuss some of the anatomical and physiological background
that we use in our computational model. In section “The Large-Scale Computational
Model,” we describe the model and its mathematical and physiological components.
The model V1 dynamics are presented in section “Dynamics of the Primary Visual
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Cortex.” In particular, spontaneous cortical activity patterns are discussed in sec-
tion “Patterns of Spontaneous Cortical Activity,” line-motion illusion in section
“Line-Motion Illusion,” and orientation tuning of V1 neurons in section “Orientaton
Tuning.” Structural robustness of the model is discussed in section “Discussion.”

Physiological Background

The primary visual cortex (V1) is a thin sheath of densely packed and highly in-
terconnected neuronal cells (neurons), located at the back of the skull. Along the
“visual pathway,” Retina ! LGN ! V1 ! And Beyond, it is in V1 where
neuronal responses are first simultaneously selective to elementary features of vi-
sual scenes, including a pattern’s orientation. For example, orientation tuning is the
selective response of a single neuron to some orientations of a simple visual pattern
(say a bar or grating), but not to other orientations [31].

The primary visual cortex is several cm2 in lateral area and 1–2 mm in depth. It
has a complex, layered substructure (layers 1, 2/3, 4B , 4C˛, 4Cˇ, 5, and 6, labeled
from the cortical surface inwards). Each layer is anatomically distinct, containing
excitatory and inhibitory neurons with dense lateral connectivity, augmented by spe-
cific feed-forward and feed-back projections between different layers. Visual input
first arrives at V1 through (excitatory) axons from the Lateral Geniculate Nucleus
(LGN) primarily into the layers 4C˛ (“magno pathway”) and ˇ (“parvo pathway”).

Neurons in V1 are roughly divided into “simple” and “complex” cells. This di-
vision dates back to [31]. The responses of simple cells to visual stimuli tend to
be approximately linear, while those of complex cells tend to be nonlinear. For in-
stance, if the stimulus is a drifting grating, the spiking rate of a simple cell will be
modulated at the frequency with which the grating’s peaks and troughs pass through
the cell’s receptive field; the spiking rate of a complex cell will increase with the
onset of the stimulus, but then stay approximately constant in time for its duration.
For a standing, contrast-reversing stimulus, simple-cell firing rates are sensitive to
its spatial phase and modulate at the stimulus frequency, while complex-cells are
spatial-phase insensitive and modulate at double the stimulus frequency [32, 33].
The theoretical model of [31] proposes that simple cells receive LGN input and
pool their output to drive complex cells, with evidence for excitatory connections
from simple to complex cells found in [34]. Phase sensitivity is lost in this pooling.
However, most V1 neurons are neither completely simple nor completely com-
plex [35]. Complex cell also receives strong input from other complex cells [34] and
the LGN [36–38], not just from simple cells, and can be excited without strongly ex-
citing simple cells [39–43]. Therefore, an alternative hypothesis is that the amount
of excitatory LGN input varies from one V1 neuron to the next (indirect evidence
for this is given in [44–46]), and is compensated by the amount of cortical excita-
tion, so that each V1 neuron receives roughly the same amount of excitation [47],
as suggested by cortical development theories [48,49] and experiments [50,51]. We
adopt this hypothesis in our model, as described below. We note that simple cell
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properties were recovered in a model of V1 neurons that all received equal amount
of LGN drive [52]. In this model network, strong cortical inhibition cancels the
nonlinearity in the LGN drive to produce linear response properties of the simple
cells.

Optical imaging experiments [53–55] reveal orientation preference as organized
into millimeter-scale “orientation hypercolumns” that tessellate the cortical surface,
with orientation preference laid out in spokes emanating from “pinwheel centers,”
with ocular dominance arranged in left-eye/right-eye stripes. Orientation preference
selectivity appears to be well correlated even between single pairs of nearby corti-
cal neurons, whereas preferred spatial phase does not, indicating the possibility that
spatial phase preference may be mapped across V1 in a disordered fashion [56]. The
exact nature of the spatial frequency preference distribution across V1 is still some-
what in dispute: Interpretations of experiments have ranged from domains with only
high or low spatial frequency preference [57] to continuous pinwheel patterns [58],
but appear to have converged on disordered distributions [59–61].

Anatomical, optical imaging, and electrophysiological studies suggest that lateral
connectivity shows different types of organization on different spatial and temporal
scales. At hypercolumn scales (<500�m), the pattern of connectivity appears
isotropic, with monosynaptic inhibition at or below the range of excitation [62–65].
The excitatory short-range connections appear to be mostly mediated by the fast,
AMPA, neurotransmitter [27] (with persistence time-scale �3ms [66]), while
the inhibitory connections are mediated by GABAA (with persistence time-scale
�7ms [66]). We use these facts in our model.

At longer scales, �1� 5mm, the largely intralaminar and reciprocal lateral con-
nections [67–72] (also referred to as horizontal connections) in V1 are much less
isotropic. These horizontal connections arise purely from excitatory neurons, and
terminate on both excitatory (�75%) and inhibitory (�25%) neurons [73–75]. They
are only strong enough to elicit subthreshold responses in their postsynaptic neu-
rons [76, 77], and are believed to only modulate their firing rates.

Long-range connections have patchy terminals in the superficial layers 1–3
[67–71]. They have been observed in the input layers 4B and upper 4C˛ in primates,
where they have bar-like terminals [69,71,72], and in layers 5 and 6 in primates and
carnivores, where they tend to be more diffuse [69, 70, 78]. (They do not, however,
seem to exist in the layer 4 of the tree shrew [79]). A clear tendency has been re-
vealed for the patchy long-range projections of neurons in layer 2/3 to align with
the bar-like projections of neurons in layer 4B that lie directly below them [72].

We here remark that, as described in section “Dynamics of Primary Visual Cor-
tex,” our model is used both as a model of the input layer 4C˛, and as an “effective”
or “lumped” model which does not include the detailed laminar structure of V1. In
the second case, we believe that it still renders an adequate description of the sig-
nal observed in the voltage-sensitive-dye-based imaging experiments whose results
we address. This is because the signal in these experiments reflects bulk membrane
potential variations in the imaged area, which, in turn, largely reflect subthreshold
synaptic potentials and action potentials in all the dendrites that reach the superficial
V1 layers, regardless of the layer in which their respective soma lies [80]. Therefore,
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in the model, we also use anatomical details of the horizontal connections that are
more in line with those in the superficial layers.

Long-range projections have been found to connect sites of like preferences,
such as orientation preference [81, 82], ocular dominance and cytochrome oxydase
blobs [83], and direction preference [84]. The shapes of the cortical regions covered
by horizontal projections of a given neuron differ from species to species, ranging
from just barely elongated along the retinotopic axis in macaque [83] and new world
monkeys [68] (anisotropy ratio �1.5–1.8) to highly elongated in the tree shrew [67]
(anisotropy ratio �4).

In contrast to short-range connections, long-range connections in V1 appear to
be mediated by both AMPA and NMDA. In particular, in vitro stimulation of white
matter leads to the conclusion that firing by layer 3 pyramidal neurons may be
driven and synchronized by long-range, horizontal connections, mediated in part
by NMDA [27]. Additionally, long-range horizontal inputs to cells in layers 2
and 3 can sum nonlinearly [77], which is indicative of NMDA receptor involve-
ment in long-range connections due to the voltage-dependent conductance of the
NMDA channel [85]. Moreover, visual response in the superficial V1 layers 1–3
was observed to be in part mediated by NMDA receptors, both in cats [86] and the
macaque [87]. This evidence should give credence to the claim that both AMPA and
NMDA mediate synaptic transmission through long-range horizontal connections
in V1.

The precise role of the long-range horizontal connections in V1 is as yet un-
known, however, it appears that they contribute to spatial summation of stimuli and
contextual effects from outside of a given neuron’s classical receptive field [69,88].
They may also contribute to synchronous firing of cells with similar orientation
preferences, especially when those cells are separated by more than 0.4 mm [89,90]
(see also section “Patterns of Spontaneous Cortical Activity,” especially Fig. 5),
and the synchronization of fast, � -band (25–90 Hz), oscillations present in the
collective firing rates of neuronal populations over distances of �5mm [91, 92].
Simulations using our model [1, 2] suggest that particularly striking examples of
the long-range connection contributions may be in millimeter-scale spatiotempo-
ral patterns of spontaneous cortical activity [13, 14] and activity induced by the
Hikosaka-motion-illusion stimulus [18], which have been observed in experiments
using voltage-sensitive dyes (see sections “Patterns of Spontaneous Cortical Activ-
ity” and “Line-Motion Illusions”).

In addition to the diverse spatial scales, the neuronal network in V1 also operates
within a large range of temporal scales. The manifestations of selectivities such
as orientation tuning are actually strongly dynamical, as revealed by reverse-time
correlation experiments [93, 94], which reveal some of the time-scales operative
in V1 cortical processing. These are: the LGN response time �lgn D O.102/ms,
reflecting the composition of retinal and genicular processing of visual stimulation;
the various time-scales of synaptically mediated currents �syn D O.3 � 200ms/, as
described in the introduction; and �G D C=ŒG�, where C is cellular capacitance
and ŒG� a characteristic size of total synaptic conductances. Recall that �G is the
time-scale of response of a neuron, and is a property of network activity. The higher
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the activity, the shorter is �G , usually about O.2�5ms/. Intracellular measurements
have shown that under visual stimulation, cellular conductances can become large,
increasing by factors of two or three, and tend to be dominated by (cortico-cortical)
inhibition [9, 20–23].

Some prior theoretical studies of cortical effects induced by short- and long-
range horizontal connections in V1 include (but are by no means limited to) the
following: An I&F computational model with an idealized architecture was stud-
ied in [95]. The largely analytical studies of [96–98] address the role of long-range
connections, studying stationary cortical pattern formation and stability. The role
of recurrent excitation in a network model was studied in [99]. A large-scale com-
putational model of neuronal orientation tuning in V1 was presented in [100]. A
detailed large-scale, highly realistic, local computational model of neurons in four
orientation hypercolumns in the input layer 4C˛ of macaque V1 [8,52,101], which
included only short-range connections. Orientation selectivity of cells in this model
was shown to be greatly enhanced by recurrent interactions [101]. In [47], the model
was extended to include heterogeneity in LGN input.

The Large-Scale Computational Model

We model a patch (�25mm2) of primary visual cortex by a large network of N
� 5�105 coupled, excitatory and inhibitory, simple and complex, integrate-and-fire
(I&F) point neurons distributed uniformly over a two-dimensional lattice. Of these
neurons, �75% are excitatory and �25% inhibitory. They are labeled by the index
i D .i1; i2/, corresponding to their positions in the lattice xi . Their type Li 2 fE; I g
(excitatory, inhibitory) is assigned randomly with the probability corresponding to
its respective percentage in the population.

The intracellular membrane potentials of the neurons, Vi .t/, are driven by the
changes in the conductances, GQ

i .t/. Together, these variables evolve according to
the set of equations
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except at the kth spike time, Ti;k, of the the i th neuron, which occurs when the
membrane potential Vi .t/ reaches the firing threshold Vi D "T. The spike time Ti;k

is recorded and the potential Vi reset to "R, where it is held for an absolute refractory
period of �ref ms.

In (1a), GL and "L are the leakage conductance and potential, respectively. The
index Q in (1a) runs over the types of conductances used, which are characterized
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by their different decay time scales �Q and reversal potentials "Q. In our model, we
consider three conductance types Q 2 fAMPA;NMDA;GABAAg, the first two of
which are excitatory and the last inhibitory. Each spike from the j th neuron gives
rise to a jump of magnitude SQ

i;j in the Q-type conductance of the i th neuron. By
setting the coupling strengths SAMPA

i;j and SNMDA
i;j to zero whenever Lj D I , and

similarly setting SGABAA

i;j to zero whenever Lj D E , we achieve that the excitatory
conductancesGAMPA and GNMDA of any model neuron only jump when that neuron
receives a spike from an excitatory neuron within the network, while its inhibitory
conductanceGGABAA only jumps when it receives a spike from an inhibitory neuron.
Note that, the coupling strengths SQ

i;j can be chosen so as to encode many different
types of network architecture. The system is also driven by external input from the
LGN. Each external input spike makes that neuron’sQ-type conductance jump by
magnitude FQ

i . We will further discuss the external input below.
In our model, we use reduced-dimensional units [101], in which only time retains

dimension, with units of conductance being [ms�1]. Typically, in these units, we set
the conductance time-scales �AMPA D 2ms; �NMDA D 80ms; �GABAA D 7ms, the
reversal potentials values "L D 0, "AMPA D "NMDA D 14=3, "GABAA D �2=3, the
threshold and reset voltages "T D 1 and "R D 0, the refractory period �refD2ms, and
the leakage conductanceGL D 0:05. The voltage constants correspond to the physi-
ological values "L D �70mV; "AMPA D "NMDA D 0mV; "GABAA D �80mV; "T D
�55mV. The physiological leakage conductance is GL D 50 � 10�6˝�1 cm�2.

According to (1b), the rise of each conductance GQ
i upon receiving a spike is

instantaneous, while its decay takes place on the time-scale �Q. However, our treat-
ment can be readily extended to conductances in the form of an ˛-function with both
rise and decay time-scales. In this case, we typically use the rise time-scale 0.05 ms
for the AMPA and GABAA conductances, and 0.5 ms for the NMDA conductance.

Short-Range Connections Each model neuron is isotropically, randomly con-
nected to other nearby neurons, with interaction strengthsSSR;Q

i;j D fQ;Lj
	i;j

NSSR;Q
Li

KSR;Q.jxi � xj j/. The normalized spatial kernel KSR;Q.r/ is chosen to be the
Gaussian

KSR;Q.r/ D 1

�.DQ/2
exp

�

� jrj2
.DQ/2

�

; (2)

which decays on the spatial scaleDQ � 0:3mm. In addition to being isotropic, this
choice of the coupling kernel also makes the modeled short-range connections non-
specific in neurons’ phase preference. The coefficients fQ;Lj

are chosen to reflect
the fact that a spiking excitatory neuron can only increase excitatory conductances,
and a spiking inhibitory neuron can only increase inhibitory conductances. The ran-
dom connectivity matrix 	i;j indicates whether neuron j is connected to neuron
i . The maximum strength NSSR;Q

Li
only depends on the type of conductance and the

type of the postsynaptic neuron.

Long-Range Connections Orientation specific, long-range (LR) connections are
anisotropic, excitatory, and project onto both excitatory and inhibitory cells. Their
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coupling coefficients are given by SLR;Q
i;j D 	i;j

NSLR;Q
Li

KLR;Q.xi ; �i ; xj ; �j /, with

maximum coupling strengths NSLR;Q
Li

and long-range coupling kernels KLR;Q. We

require that NSLR;GABAA

Li
D 0, reflecting the purely excitatory nature of the con-

nections. The long-range kernelKLR;Q.xi ; �i ; xj ; �j / connects neurons in different
pinwheels if the difference in their preferred orientations �i � �j � 	� � �=16.
It has a two-dimensional Gaussian shape on the spatial scale DLR � 1:5mm,
with eccentricity 1�2 [11]. In addition, we take the coupling strengths of the form
NSLR;AMPA
Li

D  NSLR
Li

and NSLR;NMDA
Li

D .1 � / NSLR
Li

, where  denotes the percentage
of NMDA receptor contribution to the total LR conductance [87, 102, 103].

Altogether, the coupling coefficients in (1a, 1b) are the sum of the short- and
long-range coupling coefficients, SQ

i;j D S
SR;Q
i;j C SLR;Q

i;j .

Modeling the LGN Input and Background Noise The drive to our model cortex
is provided by model background noise and a model LGN (mLGN). The background
and mLGN spike trains arriving at a V1 neuron are modeled as independent Poisson
trains, with the corresponding spike times denoted by T B

i;k
and T LGN

i;k
, respectively.

We assume the background to be homogeneous, firing with the uniform rateRB. We
choose RB so that the spontaneous firing rate of the model V1 neurons due to both
the model background and the mLGN spontaneous firing is .5 spikes per second.

We assume that our rectangular model cortical patch corresponds to a rectangu-
lar patch ˝ of the visual space. (In our largest model so far, ˝ D 9ı � 6ı.) To the
i th neuron, located at the lattice point xi in the cortical patch, we assign a corre-
sponding lattice point yi in ˝ . We take the correspondence xi $ yi to be linear,
which ignores detailed retinotopic effects. This is reasonable provided the solid an-
gle subtended by ˝ is sufficiently small. The i th neuron’s receptive field center ri

is chosen at a point scattered randomly within the solid angle ˛ . 1ı from yi .
In cat and macaque V1, both orientation preference and spatial phase preference

are conferred on cortical cells from the convergence of output from many LGN cells
[104]. In the simplest model, the details of these LGN cells are ignored, and for each
V1 neuron only the center and size of its receptive field, and its feature preferences,
are considered. Such a model describes the mLGN input rate to the i th neuron in
the linear spatiotemporal convolution form

RLGN
i .t/ D NRLGN C

Z 1

0

d�
Z

˝

d� I.ri � �; t � �/K�i ;�i ;!i .�/KT.�/; (3)

where I.r; t/ is the visual stimulus in ˝ , and �i , i , and !i are this neuron’s pre-
ferred orientation, spatial phase, and spatial frequency, respectively. We choose the
spontaneous rate NRLGN D 170 spikes/s. The Gabor spatial kernel K�;�;!.�/ D
Krf .�/ cos



!.�x cos � C �y sin �/C � � NK�;�;!.�/ has a Gaussian spatial en-

velope Krf with receptive field size �rf � 1ı, as given by (2). The time kernel

is given by KT.�/ D NKTt
�
��2

r e�t=�r � ��2
f

e�t=�f

�
, with rise and decay times

�r D 10 � 16ms; �f D 40 � 64ms [105]. The radial kernel NK�;�;!.�/ and
the constant NKT are chosen so that K�;�;! has 0 mean and KT has a maximum
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of 340 spikes/s. The LGN input model (3) is valid provided the stimulus contrast
max.I / � min.I / is sufficiently small in our simulation that the firing rate RLGN

i

never drops below zero. A more detailed LGN model, valid for larger contrast val-
ues, is described in [47].

From neuron to neuron, the preferred orientation is laid out in pinwheel patterns
[53–55,106–108], the preferred phase is randomly chosen with uniform distribution
in Œ��; �� [56], and the preferred frequency is randomly chosen with the average
! � 1 cycle per degree [59–61].

As only the AMPA conductances receive feedforward input from the LGN, we
put the strengths F NMDA

i;LGN D F
GABAA

i;LGN D 0. The strengths FQ
i;B and F AMPA

i;LGN of the
background and LGN spikes are chosen to reflect the fact that, in addition to cortico-
cortical couplings, simple cells are driven by the mLGN and complex neurons are
driven by stimulus-independent background, with a continuum of “mixed type” cells
in-between [47, 49–51].

Computational Method As mentioned in the introduction, we have developed
a new, highly effective and efficient computational method for solving (1a and
1b). This method has the following properties: (1) We employ an integrating fac-
tor exploiting the near-slaving of the neuronal membrane potential to the effective
reversal potential in a high-conductance state, and write the solution in the form
of a numerically tractable integral equation. In this way, we can take large time-
steps even in the high-conductance state in which the I&F equations are stiff. (2)
Within each time-step, we sort the approximated spike-times and apply an iterated
correction procedure to account for the effects of each spike on all future spikes
within this time-step. We can thus account for the spike–spike interactions within a
large time-step of duration 1–2 ms. (This is very different from spike-time interpola-
tion of [109,110].) (3) We divide the network up into local clusters of approximately
the same size as the spatial scale of the local interactions, and treat these clusters in
such a way as to minimize the computational work associated with computing the
cortico-cortical interactions. The details of our computational method are described
in [30].

Dynamics of the Primary Visual Cortex

In our large-scale model, by adjusting the strengths of the local and long-range
cortico-cortical connections, we identify an “intermittent de-suppressed” (IDS) cor-
tical operating state, characterized by (1) high conductance, (2) strong inhibition, (3)
large fluctuations, and (4) strong correlations among the neuronal membrane poten-
tials, NMDA conductances, and firing rates. Fluctuations in the IDS state arise from
intermittent firing events which are strongly correlated in time and in orientation
domains, and whose correlation time is controlled by the decay time-scale of the
NMDA conductance. In addition, this state is just below a “fluctuation controlled
criticality,” i.e., a bifurcation point above which there is hysteresis and bistability in
the firing dynamics of complex cells.
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We emphasize that the significance of this single IDS state manifests itself in
the fact that the IDS state captures the dynamics of (1) large-scale, coarse-grained
spatiotemporal activity patterns occurring in the spontaneous as well as periodically
stimulated states in V1, as observed in the voltage-sensitive-dye imaging experi-
ments [13, 14], (2) the spatiotemporal activity in V1 associated with the Hikosaka
line-motion illusion [18], and (3) orientation tuning of V1 neurons.

Patterns of Spontaneous Cortical Activity

The cortical operating state in the absence of external stimuli still undergoes reorga-
nization of information and so is expected to undergo rich spontaneous dynamics.
This is indeed the case in V1, where experiments of [13, 14] on anaesthetized cats
show that such activity forms highly structured and correlated coherent patterns on
the scales of several millimeters, which appear in regions of like orientation prefer-
ence over many orientation hypercolumns and persist over time scales of �80ms.
In our working hypothesis, this persistence time scale and the spatial-correlation
structures implicate the combined effect of the orientation-specific, long-range
cortico-cortical connections and the NMDA conductance time scale. In our view,
these spontaneous activity patterns reflect the rich dynamics of cortical operating
states and any theoretical V1 model must be constrained to successfully reproduce
this spatiotemporal activity. To study this spontaneous cortical activity without the
modeling complications of the LGN, and to examine our working hypothesis, we
employ a network comprised of �5�105 model neurons within a �16mm2 patch
of 64 orientation hypercolumns, in which the long-range connections are orienta-
tion specific and the time-scale associated with these connections is of the NMDA
type [1].

Figure 1a shows the orientation preference map of V1 neurons, conferred on
them in our model by their afferent inputs from the LGN. Figure 1b, c shows
two instantaneous patterns of the neuronal membrane potentials V .x; t/, which are
strongly correlated over like-orientation domains. Following [13,14], we define two
space-dependent measures of the model cortical state. The first is the “preferred
cortical state” of a neuron, which is defined to be the spatial pattern of the aver-
age voltage VP .xI �d / D P

i V
�
x; t i I �d

	
=N , evoked by a strong stimulus at this

neuron’s optimal orientation �d . Here, t i is this neuron’s i th spiking time and N is
its total number of spikes. The second measure, for the same neuron, is the “spike-
triggered spontaneous activity pattern,” Vst .x/ D P

j V
�
x; tj

	
=M of the network

without stimulus, again triggered by and averaged over this neuron’s spike times.
At our IDS operating state, achieved with moderate strengths of long-range lateral
connections, VP .xI �d / and Vst .x/ computed in our model are strongly correlated
with one another, as clearly shown in Fig. 2a, d. In addition, from Fig. 1a, it can be
seen that they also strongly resemble iso-orientation domains within the neuronal
orientation preference map.
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Fig. 1 (a) Model V1 cortical area with orientation hypercolumns. Preferred orientation is
coded by color. Pinwheel centers are marked by small white dots. The lengthscale of local in-
hibitory/excitatory couplings is indicated by the inner/outer radius of the black/white annulus in
the upper right corner. The extent of long-range connections is indicated by the large ellipse. Ori-
entation domains that are coupled by the long-range connections to the neurons in the orientation
domain in the middle of the ellipse are indicated by rhombuses. (b) Spontaneous activity pattern
covering orientation domains of near-horizontal angles. The two ovals cover regions where volt-
ages can be highly correlated in time. (c) Spontaneous activity pattern covering orientation domains
of two orthogonal angles. [Reproduced with permission from [1], http://www.pnas.org (Copyright
2005, National Academy of Sciences, USA).].

The “similarity index” �.�d I t/ is the spatial correlation coefficient between the
preferred cortical state VP .xI �d / and the membrane potential V.x; t/ of the neurons
in the network. In particular,

�.�d I t/ D
R

x

h
VP .xI �d /� R

y VP .yI �d / dy
i h
V.x; t/ � R

y V.y; t/dy
i

dx
r
R

x

h
VP .xI �d / � R

y VP .yI �d / dy
i2
dx

r
R

x

h
V.x; t/ � R

y V.y; t/dy
i2

dx

;

computed over an area of 4 � 4 pinwheels, which was roughly the area used in
experiments. We use �.�d I t/ to detect the evolution and persistence time scale of
the cortical activity patterns in the IDS state. The time evolution of �.�d I t/ in the
three computed regimes (two of which are discussed below) is presented in Fig. 2g,
i, k, and its time trace at �d D �60ı in Fig. 2h, j, l. In the IDS regime, the evolution
presented in Fig. 2g, h indicates the typical pattern duration, before it switches to
other orientations, to be � 80ms. This scale can also be gleaned from the voltage
and the similarity index temporal auto-correlation functions, as shown in Fig. 2b, c.

To further quantify our data in comparison with experiment, we compute the all-
time similarity-index histogram by binning the similarity index �.�d I t/, for all �d ,
sampled at the rate �S D 1 frame=ms for a total duration T D 256 s. We also com-
pute the spike-triggered similarity-index histogram by binning �.�d I t i /, sampled
only on the spike times t i of neurons that have the same orientation preference �op D
�d , for the same duration T D 256 s, and average over all �d . The all-time and
spike-triggered similarity index histograms for the IDS state are shown in Fig. 3d, e.
The IDS firing rate as a function of the similarity index, computed as the ratio



Large-Scale Computational Modeling of the Primary Visual Cortex 277

a

Time (msec)

d

e

f

g

h

i

j

k

l

  90

   0  

−90 0

0

0

  90

   0

−900

0

0

  90

   0

−900

0

0

0 50 100 150 200
0

0.5

1.0

0 50 100 150 200
0 

0.5

1.0

Time (msec)

Time (msec)

b

c

C

C

v

SI

 0.              1. −1.                   0.                 1.
V: ρ:

θd

θd

θd

ρ

ρ

ρ

Fig. 2 (a) Preferred cortical state VP .xI �d / of the neuron in the center of the square. (b, c) Tem-
poral autocorrelations of the membrane potential trace V and similarity index � in the IDS state,
averaged over the cortical location and �d . (d–l) Spike-triggered activity pattern Vst .x/ for the
neuron in (A) and time-evolution of the similarity index over all preferred orientations and for ori-
entation preference �60ı: (d, g, h) IDS, (e, i, j) uniform, and (f, k, l) locked state. [Reproduced
with permission from [1], http://www.pnas.org (Copyright 2005, National Academy of Sciences,
USA).].

between the distributions in panels E and D of Fig. 3, multiplied by the rate �S ,
is shown in Fig. 3f. Clearly, there is very good agreement with the corresponding
experimental results of [13], as reproduced in Fig. 3a–c.

Computationally, we analyzed two more possible operating states of our model
cortex. If the long-range connections are sufficiently weak, a neuron’s spike-
triggered spontaneous activity pattern, Vst .x/, becomes spatially homogeneous, as
shown in Fig. 2e, i, j and Fig. 3g, h, i. This state closely resembles the “homoge-
neous phase” state investigated in an idealized mean-field model in [29]. If the
long-range connections are very strong, Vst .x/ becomes locked to a specific pattern
of orientations that tends not to correlate with the neuron’s preferred cortical state
VP .xI �d / for most of the simulation time, as shown in Fig. 2f, k, l and Fig. 3j, k.
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Fig. 3 Top row: all-time similarity-index histogram. Middle row: spike-triggered similarity-index
histogram. Bottom row: firing rate as a function of the similarity index. (a–c) Experimental data.
(d–f) IDS regime. (g–i) Homogeneous regime. (j, k) Locked regime. [Reproduced with permis-
sion from [13] (Copyright 1999, by the American Association for the Advancement of Science).]
[Reproduced with permission from [1], http://www.pnas.org (Copyright 2005, National Academy
of Sciences, USA).]

This state is similar to the “marginal phase” state in [29]. In neither of these last
two cases is the spike-triggered spontaneous activity pattern correlated with the
preferred cortical state of the neuron in question, which is at variance with [14], nor
does the similarity index behavior capture experimental observations in [13].

All three of the analyzed model cortical operating states, in particular IDS,
are structurally robust. The robustness of IDS is further discussed in section
“Discussion.”

Fixing the strengths of the long-range connections so that the model network
without any stimulus is in the IDS state, we now drive the model with a drifting
grating stimulus of given orientation �d , which is periodically turned on for 1 s and
then off for 2 s. The activity patterns triggered on the spikes of a neuron with the
preferred orientation �d are again similar to this neuron’s preferred cortical state,
VP.xI �d /. The time evolution of the similarity index �.�d I t/ corresponding to the
orientation �d is shown in the right panel of Fig. 4. When the stimulus is turned on,
�.�d I t/ tends to rapidly swing into positive values. This reflects the activity pat-
tern strongly correlating with VP.xI �d / for the evoked duration. When the stimulus
is turned off, �.�d I t/ tends to rapidly swing into negative values, and then slowly
return closer to zero. These features, including the “negative-swing” phenomenon,
are in good qualitative agreement with those observed experimentally in [13], re-
produced in the left panel of Fig. 4.

Our analysis of the IDS state in our model V1 reveals that there is a chain of
strong correlations among the voltages, conductances, and firing rates in the system.
We find that the network operates in a state of high total conductance, GT  GL,
which implies that the membrane potential V.x; t/ is slaved to the effective reversal
potential V S .x; t/ over the leakage-conductance time scale .GL/�1 � 10ms. (The
total conductance is defined as GT D P

QG
Q, and the effective reversal potential
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Fig. 4 Temporal dynamics of the similarity index �.�d I t /. Left: Experiment. Right: IDS state sim-
ulation. [Reproduced with permission from [13] (Copyright 1999, by the American Association for
the Advancement of Science).] [Reproduced with permission from Ref. [1], http://www.pnas.org
(Copyright 2005, National Academy of Sciences, USA).]

as V S D P
QG

Q"Q=GT, with Q D L, I , and E .) Our computations show that
both these potentials stay well below the firing threshold on average, making the
model operation “fluctuation-driven.” The inhibitory conductances are much higher
than the excitatory conductances,GI  GE, and the NMDA conductances are much
higher than the AMPA conductances. Using the above conductance relations and
definition of the effective reversal potential, it is easy to show that there is a chain
of statistical correlations V.x; t/ � V S .x; t/ � GNMDA=GI. Furthermore, our IDS
state exhibits a correlation between GNMDA and GI in a sublinear fashion, i.e, a
smaller increase in GI is correlated with a larger increase in GNMDA. Therefore,
we have GNMDA correlated with V.x; t/ and V S .x; t/. In addition, a strong corre-
lation of the firing rate m.t/ with the membrane potential V.x; t/ and the NMDA
conductance GNMDA is observed in the IDS state. The fact that these physiologi-
cally reasonable correlations are observed only in the IDS state strongly constrains
the model’s cortico-cortical coupling strengths. Finally, we mention that only in
the IDS state is the subthreshold activity consistent with physiologically realistic
2–10 spikes/s spontaneous and 10–60 spikes/s evoked firing rates.

Dynamically, the IDS operating state is an intermittent cycle: A small number of
spontaneous firings of excitatory neurons increases (typically over a timecourse of
�5ms) the NMDA conductances and so also the membrane potentials of neurons in
domains with like orientation preference within �1mm via the long-range connec-
tions. These conductances and potentials become nearly statistically synchronized.
When the inhibition in a region undergoes a transient drop, (i.e., the network be-
comes de-suppressed), a spontaneous firing of a single excitatory neuron will recruit
many other neurons to fire. These correlated firing events occur within �10ms.
These patterns are then spread to other iso-orientation domains of like preference
via a cascade of successive firing events. As a result, the induced spatial patterns
of the voltage closely resemble the iso-orientation domains in the orientation pref-
erence map and the “preferred cortical state.” Shortly thereafter, these excitatory
recruitment events trigger strong inhibition mediated by local connections, which
suppresses any further recruitment. The pattern then slowly drifts or decays on the
NMDA conductance decay scale �NMDA � 80ms, and the inhibition decays with
it. Thus, a key mechanism underlying the spontaneous cortical activity patterns in
the IDS operating state is this rapid correlated recruitment of excitatory neurons in
iso-orientation domains.
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To illustrate these features of the IDS, we return to Fig. 1b, c, which show two
instantaneous patterns of spontaneous cortical activity at our IDS operating state. In
both figures, instantaneous neuronal membrane potentials V.x; t/ are plotted, with
low activity regions masked off by black color. The regions of high activity shown
in Fig. 1b cover iso-orientation domains corresponding to near-horizontal angles.
As discussed in the previous paragraph, even relatively distant parts of such high-
activity regions become activated almost simultaneously, with the entire pattern then
drifting slowly over the cortical surface, persisting for �80ms. Multiangle patterns,
such as the one shown in Fig. 1c, which corresponds to two orthogonal angles, can
also occur. In this case, the activation regions corresponding to the two angles are
mostly well separated, but parts of them may be present in the same orientation
pinwheels. This pattern also persists over �80ms, and is thus not a short transient.
These drifting, multiangle patterns do not occur in the locked state described above
and are not consistent with the theory of marginal phase [29].

Another manifestation of the above-described scenario and the role of the long-
range connections in the IDS state is the near-synchronization of neuronal mem-
brane potentials in pairs of neurons located within �0:5mm from one-another in
our model V1, as shown in the right panel of Fig. 5, which occurs even when the
neurons in the pair are not spiking. This synchronization can be explained by the
common synaptic inputs from long-range connections. These near-synchronized
voltage traces capture well the corresponding experimental result [19], as shown
in the left panel of Fig. 5.

The NMDA component present in the long-range cortico-cortical connections
is crucial for capturing the spatiotemporal dynamics and persistence scale of the
spontaneous cortical activity patterns. If there were no NMDA conductance, i.e.,
 D 0, the model cortex still can manifest an IDS-like state, but it exhibits a wrong
persistence time scale for the patterns, that of only �20ms. We note that the involve-
ment of the NMDA conductances in the evolution of spontaneous activity patterns
in the model cortex is consistent with the experimentally observed reduction of such
activity in cats in vivo after blocking the NMDA receptors [86, 111].

V1
   S

V2
S

10 mV 

1 sec

10 mV

1 sec

Fig. 5 Synchronized trace pairs of neuronal voltages. (The neurons in the pair are not firing.)
Left: Experimental measurements in cat V1. Right: Simulation in the IDS state in our model V1.
[Reprinted from [19], Copyright 1999, with permission from Elsevier.] [Reproduced with permis-
sion from [1], http://www.pnas.org (Copyright 2005, National Academy of Sciences, USA).]
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Line-Motion Illusion

The stimulus paradigm that induces the Hikosaka line-motion illusion is the follow-
ing: a cue of a small stationary square is flashed on a display for �50ms, which
is then followed by an adjacent stationary bar �10ms after the removal of the
square [17]. This stimulus creates the perception that the bar continuously grows
out of the square, which is termed as the line-motion illusion. As revealed by op-
tical imaging experiments using voltage-sensitive dye, this stimulus in fact creates
in V1 a cortical activity pattern very similar to that created by a small, fast-moving
square [18]. It was suggested that this similarity is the neurophysiological correlate
associated with the pre-attentive perception of illusiory motion.

To investigate the mechanisms underlying the V1 activity patterns associated
with the Hikosaka line-motion illusion, we examine the spatiotemporal cortical dy-
namics under the Hikosaka stimulus using our model cortex consisting of �106

neurons, covering 96 orientation hypercolumns spanning an �6mm � 4mm area
of V1.

In this modeling, we aim to examine the response properties of the IDS state, so,
in the absence of external stimuli, we tune the model cortex to the IDS state [2]. We
first discuss the cortical input sculpted by our model LGN, which is a spatiotemporal
convolution of the external image. For the moving square and the Hikosaka stimulus,
it is apparent that these cortical inputs from the model LGN bear little resemblance
to one-another, as shown in Fig. 6.

We calibrate the strength of our model LGN using a flashed square as the stimu-
lus. The input strength of the model LGN is the only additional parameter to the IDS

77 968768584839 116106 1250ms 135291910

Firing Rate: 30 110 spikes/sec

Fig. 6 Cortical input from the model LGN, which is a spatiotemporal convolution of the exter-
nal stimulus. Top: the moving square. Bottom: the Hikosaka stimulus. White rectangles: stimulus.
Gray rectangles: LGN input to V1. [Reproduced with permission from [2] http://www.pnas.org
(Copyright 2005, National Academy of Sciences, USA).]
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Fig. 7 Spatiotemporal pattern of the cortical activity corresponding to the (a) flashed and (g) mov-
ing square, (d) bar, and (k) Hikosaka stimulus. (b, e, h, l) Voltage-sensitive-dye signal measured in
the experiments. (c, f, i, m) Effective reversal potentials in model V1. (j, n) NMDA conductances
in model V1. [Adapted by permission from Macmillan Publishers Ltd. from [18], copyright 2004.]
[Reproduced with permission from [2], http://www.pnas.org (Copyright 2005, National Academy
of Sciences, USA).].

state and is chosen so as to ensure reasonable agreement between the spatiotemporal
activity of our model V1 and the experimental signal in [18], as displayed in
Fig. 7a–c. The square is flashed for 48 ms. The delayed surge of cortical activity
evoked by the square appears at �50ms after the square is first presented, and even-
tually decays. After fixing the LGN strength, we next examine the cortical activity
patterns evoked by a stationary bar. The delayed surge of activity due to the bar
again appears �50ms after the presentation of the stimulus. The spatiotemporal dy-
namics exhibits good agreement between the real and model cortices, as shown in
Fig. 7d–f.

In Fig. 7g–n, we display the activity due to the moving square and the Hikosaka
stimuli. We find good agreement between the effective reversal potential V S and
NMDA conductanceGNMDA profiles in our model V1 and the experimental voltage-
sensitive-dye measurement. In particular, the moving square produces an area of
activity growing rightward out of the initial cortical response to the square, with an
onset delay of about �50ms. This activity area fills out the cortical image of the
square’s path, and eventually decays. The Hikosaka stimulus – a square flashed for
48 ms followed 10 ms later by a bar – also produces an area of activity growing
rightward out of the initial cortical response to the square. For both stimuli, there
is a remarkable degree of correlation between the effective reversal potential V S

and NMDA conductance GNMDA profiles. It should be stressed that such close cor-
relation only occurs in the IDS operating state. Most importantly, both in the real
and model cortex, the activity patterns corresponding to both stimuli are remarkably
similar. As mentioned above, this similarity was suggested to be the neurophysio-
logical correlate associated with the illusory motion perception [18].



Large-Scale Computational Modeling of the Primary Visual Cortex 283

What is the network mechanism underlying the cortical activity associated with
the motion illusion? Our model V1 dynamics provides an intriguing scenario: In our
V1 network, as soon as the square is flashed, it temporarily increases the model LGN
input to the left side of the model cortex. Enough excitatory conductance builds up
under this input during the 48 ms of the square’s presentation that within �50ms
the neurons in the impacted cortical area are recruited to begin spiking. Through
the long-range connections, these spikes raise the NMDA conductances in a larger
cortical region, reaching the middle and right of the model cortex. Due to the spatial
decay of the long-range coupling strength, GNMDA elevation is more pronounced
closer to the trace of the square in the cortex. The elevated GNMDA persists for
about �80ms, and because of theGNMDA �V S correlation, the neuronal membrane
potentials also rise in the same cortical area during the same time period. As the bar
is shown on the screen and the model LGN input increases in the cortical footprint
of the bar, the neurons more to the left have on average higher voltages and thus
have higher probability to fire than those more to the right. (See [2] for details.)

Crucial in the scenario about the network mechanism underlying the spatiotem-
poral activity associated with the line-motion illusion is the abovementioned “prim-
ing” effect of the NMDA conductances raised through the long-range cortical
connections of the model network in the IDS state. It is well known [76,77] (see also
section “Physiological Background”) that long-range connections are not strong
enough to directly cause firing of their target neurons, but do increase activity
through subthreshold modulation. This observation places a strong constraint on
the long-range connection strength in our model cortex, since long-range connec-
tions that are too weak would not be able to properly “prime” the rest of the model
cortex at all (see also below), and long-range connections that are too strong would
cause direct neuronal spiking in large parts of the model cortex instead of prim-
ing the cortex via subthreshold modulation. In neither case would we be able to
reproduce experimentally observed spatiotemporal activity associated with the line-
motion illusion.

We note that this priming mechanism provides an explanation for yet more ex-
perimentally observed phenomena [18]: (1) The propagation speed of the cortical
activity is independent of the contrast of the flashed square cue for a constant con-
trast of the bar. (2) The onset time of the growing spatiotemporal pattern does
depend on the contrast. In particular, for a cue with less contrast, the activity emerges
later. Figure 8 clearly demonstrates the agreement on these points between our
modeling results and experimental observation [18]. The simple reason for this phe-
nomenon is that the neurons in the middle of the model cortex are “primed” more
by a higher-contrast stimulus, and thus can fire earlier when the bar is shown.

As emphasized above, our computational modeling approach affords us great
flexibility to investigate cortical mechanisms. Here, to better understand the role of
the NMDA-induced priming in the cortical dynamics under the Hikosaka stimulus,
we perform numerical experiments on a number of hypothetical alternative cortices
and/or cortical setups. First, we consider a model cortex with very weak long-range
connections, i.e., in the homogeneous operating state, shown in Fig. 9a, b. In this
state, the correlation between the effective reversal potential V S and the NMDA
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Fig. 8 Contrast dependence
of the velocity and onset of
the activity associated with
the line-motion illusion. (a)
Experiment [18]. (b)
Simulation. [Adapted by
permission from Macmillan
Publishers Ltd. from [18],
copyright 2004.] [Reproduced
with permission from [2],
http://www.pnas.org
(Copyright 2005, National
Academy of Sciences, USA).]
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conductance GNMDA is lost, and so is the priming effect of the square cue which
the long-range connections are too weak to transmit. This cortex essentially repro-
duces the LGN input. A model cortex with the long-range connections dominated
by the AMPA conductances (i.e.,  � 0) exhibits similar, LGN-dominated behav-
ior, shown in Fig. 9c, d. In this case, GAMPA decays too fast for the priming effect of
the long-range connections to last sufficiently long. In both these cases, the neuronal
membrane potentials in the middle of the model cortex are not elevated when the
LGN stimulus caused by the bar arrives, and, therefore, the neurons in the middle
fire no sooner than the neurons on the right of the cortex.

Figure 9e, f shows a thought-experiment with the model cortex in the IDS state
and driven by the Hikosaka stimulus, but with the GNMDA values flipped at 68 ms
from left to right. Thus, the right of the model cortex is more primed than the middle,
and consequently the activity corresponding to the illusion now grows from right to
left instead of from left to right. Figure 9g, h shows what happens if we instead
block the NMDA release on the left side of the model cortex. As the square cue can
no longer prime the middle of the model cortex, the V S �GNMDA activity profile on
its right side appears similar to the profile in the case when only the bar is flashed,
shown in Fig. 7f. If the model cortex is very strongly locally inhibited, its right area
recruits before its middle area, which is under suppression induced by the square
cue, as shown in Fig. 9i, j.

If we stimulate the model cortex by a bar growing from left to right, the resulting
cortical activity is illustrated in Fig. 9k, l. The spatial patterns of voltage and NMDA
in this case strongly resemble those of the Hikosaka stimulus, shown in Fig. 7m, n
and again in Fig. 9m, n.

In our priming mechanisms discussed above, the spatiotemporal activity asso-
ciated with the line-motion illusion does not depend critically on the exact shape
of the cue or the subsequent bar. In particular, any small object that gives rise to
an NMDA profile with a spatial gradient can serve as a cue. Any other, longer ob-
ject, whose position on the screen is close enough to that of the cue, can serve
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Fig. 9 Voltage and NMDA conductance activity patterns in alternative cortical operating states
and parameter regimes: (a and b) Homogeneous state. (c and d) AMPA-dominated long-range
connections. (e and f) GNMDA values flipped from left to right at 68 ms. (g and h) NMDA release
blocked on the left side of the model cortex. (i and j) Strongly locally inhibited model cortex. (k and
l) Bar growing from left to right. (m and n) Activity due to the Hikosaka stimulus. [Reproduced
with permission from [2] http://www.pnas.org (Copyright 2005, National Academy of Sciences,
USA).].

instead of the bar by taking advantage of the NMDA gradient to induce recruitment
near the cortical image of the cue faster than farther away from this image. If we
interpret the spatiotemporal activity in V1 induced by the Hikosaka stimulus as the
neurophysiological correlate associated with the line-motion illusion, then any stim-
uli satisfying the just-described attributes should produce illusory percept according
to our priming mechanism. This is indeed the case: In Fig. 10, we show several
Hikosaka-like stimuli that all induce the illusory motion sensation: These stimuli
all have diffuse and/or curved edges, some are not connected in space (Fig. 10b, c),
have a cue that is not a part of the “bar” (Fig. 10a, b), or have low or varying contrast
(Fig. 10c, d), yet they all give a motion illusion sensation. (See the movie in the sup-
plementary material of [2].) Since we are dealing with the preattentive line-motion
illusion, the cue must be shown for �40ms, and then the “bar” almost immediately
afterwards, to avoid the attention-induced line-motion illusion.

The main ingredients in our network mechanism that give rise to the spatiotempo-
ral activity associated with the line-motion illusion are (1) the spatiotemporal input
structure sculpted by the model LGN, (2) the cue-induced priming effect of the
long-range NMDA cortico-cortical conductances, and (3) the strong V S � GNMDA

correlation in the IDS operating state. We should stress that, in our model, the
spatiotemporal activity associated with the line-motion illusion arises within V1
as a result of local and long-range cortico-cortical interactions without any feed-
back from other cortical levels (except spatiotemporally uniform Poisson noise to
model the simple baseline activity of V1). The success of this parsimonious model
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a b c d

Fig. 10 Alternative Hikosaka stimuli. Top row: cues. Bottom row: “bars.” [Reproduced with per-
mission from [2], http://www.pnas.org (Copyright 2005, National Academy of Sciences, USA).]

in modeling the spatiotemporal activity associated with the line-motion illusion and
its similarity to that induced by a moving square therefore makes the V1 cortical
circuitry a likely candidate for the similarity observed in cat V1 between the spa-
tiotemporal activity induced by a moving square and that induced by the Hikosaka
stimulus in a preattentive line-motion illusion [18].

Orientation Tuning

To investigate the dynamics of orientation tuning in V1, we use both a large-scale
model as in the previous section and a model incorporating only short-range cortico-
cortical connections and representing a 1mm2 local patch, covering four orientation
hypercolumns that contain O.104/ model neurons [3]. After being constrained to
operate in an IDS-like state, the model network reproduces a number of experimen-
tally observed properties related to orientation tuning dynamics in V1, and reveals
possible mechanisms responsible for orientation selectivity in V1.

The model network gives rise to a continuum of simple and complex cells, as
characterized by the modulation ratio F1/F0 of the firing rate averaged over the
cycle of the drifting-grating used as the stimulus. This is the ratio between its first
Fourier component and its mean at preferred stimulus orientation, and is >1=2 for
simple and <1=2 for complex cells. We found the distribution of the firing-rate
F1/F0 across model cortex to be bimodal and broad, as in [35, 112]. We also found
the distribution of modulation ratio for the effective reversal potential V S , which
represents the intracellular voltage, to be unimodal, as in [113].

For individual model neurons, we obtain their steady-state tuning curves by aver-
aging their responses under drifting-grating stimuli presented at different orientation
angles. We study these curves for the firing rates, membrane potentials, and conduc-
tances, which include that arising from the geniculate excitation, as well as those
resulting from excitatory and inhibitory cortico-cortical connections. Sample neu-
rons, presented in Fig. 11, show well-tuned firing rates for both simple and complex
cells, regardless of their positions in the orientation columns, as in [12, 107, 114].
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Fig. 11 Tuning curves for neurons near the pinwheel center (a–d) and in iso-orientation domains
(e, and f); (a, b, e) are simple and (c, d, f) complex cells. Firing rate, membrane potential,
geniculate excitation, excitatory and inhibitory cortico-cortical conductances are plotted. Solid
lines represent the mean values at medium contrast. Dash-dotted lines represent the mean val-
ues at low contrast. Dashed lines represent the mean plus/minus one standard deviation. There
is little or no LGN input to complex cells in (c, d, f). [Reproduced with permission from [3],
http://www.pnas.org (Copyright 2006, National Academy of Sciences, USA).]

On the other hand, the membrane potential and total conductance are tuned more
broadly in cells near the pinwheel centers (Fig. 11a–d) than in iso-orientation do-
mains (Fig. 11e, f) [12, 114]. Moreover, in iso-orientation domains, the firing-rate,
membrane-potential, and conductance tuning curves for a given neuron are well
aligned in orientation angle with one-another (their peaks are at the same angle
locations), while near the pinwheel centers the relationship between the conduc-
tance and firing-rate tuning curves is in general more varied and complicated (for
example, their peak locations can differ) [12].

One quantitative measure of orientation selectivity for drifting grating stimuli is
the circular variance (CV), defined as CV Œm� D 1�ˇˇR �

0
m.�/ e2i� d�

ˇ
ˇ=
R �

0
m.�/ d� ,

where m.�/ is the time-averaged firing rate. CV is near 0 for well-tuned neurons,
near 1 for poorly tuned neurons, and in-between otherwise. We display the statis-
tical distribution of the CV for the excitatory neurons in our network in Fig. 12. In
particular, Fig. 12a reveals the approximate contrast invariance of orientation selec-
tivity [7], and Fig. 12b shows that orientation selectivity for the firing rates is almost
independent of the neuron’s location within the orientation column [12, 107, 114].

The mechanism for orientation tuning in iso-orientation domains is relatively
simple: all neurons receive spikes only from neighbors with like orientation pref-
erence, so all the cortical conductances, membrane potentials, and firing rates are
simply sharpened versions of the LGN drive. Near pinwheel singularities, how-
ever, sparsity of connections in our model network is needed for conductances and
membrane potentials of complex cells to be tuned. Namely, in a densely connected
network, they would be untuned as they would be composed of roughly equal con-
tributions from a number of LGN-drive-dominated simple cells with all possible
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Fig. 12 (a) Circular variance at medium vs. low contrasts. (b) Dependence of circular variance
on the distance from a pinwheel center: EC and ES are excitatory complex and simple cells, re-
spectively. [Reproduced with permission from [3], http://www.pnas.org (Copyright 2006, National
Academy of Sciences, USA).]

orientation preferences. Sparsity is thus also needed to achieve tuned firing rates for
complex cells near pinwheel centers, since untuned conductances could not confer
any tuning upon them. (See [3] for details.) In addition, strong cortical amplification
is needed to sharpen the complex cell tuning, and strong gain for contrast invariance.
Synaptic fluctuations in the network, again induced by its sparsity, give it stabil-
ity. Our modeling work further reveals that there is a bifurcation mechanism, the
“fluctuation-controlled criticality” [3], underlying the orientation tuning dynamics
of simple and complex cells.

We arrived at the bifurcation structure associated with the “fluctuation-controlled
criticality” through studying the effects of synaptic fluctuations on the behavior of
the model network. By varying the connectivity sparsity, we control the effective
network connectivity Neff, which is the average number of pre-synaptic neurons
coupled to a given neuron. If Neff is too large, i.e., fluctuations are small, many
complex cells become bistable when there is sufficient excitation for them to be-
come tuned. As usual, there is a hysteresis related to this bistability. To bring this
hysteretic behavior to the fore, for fixed values of Neff, we slowly ramped up and
then down the stimulus contrast. We then recorded the distributions of 	Nspikes for
both simple and complex cells, where 	Nspikes is the difference in the number of
spikes during the contrast decrease and increase, respectively. The results for two
such effective connectivities are shown in Fig. 13. For a relatively small Neff D 96,
i.e., a sparse network with strong fluctuations, both distributions are roughly even
in 	Nspikes. On the other hand, for a relatively large Neff D 768, i.e., a mean-
driven network, the distribution of 	Nspikes is centered at 	Nspikes > 0, indicative
of hysteresis.
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Fig. 13 Spike-rate hysteresis in the V1 model as characterized by 	Nspikes. 	Nspikes > 0 if the
cell spiked more during the contrast decrease than increase. Simple cells are depicted by broken
line and complex by solid line. (a) Neff D 96. (b) Neff D 768. [Reproduced with permission from
[3], http://www.pnas.org (Copyright 2006, National Academy of Sciences, USA).]

This “fluctuation-controlled criticality” can be further illustrated using a highly
idealized, minimal network model. In this model, we let one half of the neurons
receive feedforward drive in the form of Poisson spike trains with identical rates
�0 and spike strengths f (simple cells), and the other half only strong intracortical
excitation (complex cells). Both receive strong intracortical inhibition. We ignore
any spatial structure of the cortico-cortical coupling, but we do include sparsity in
the network connections. We include both fast AMPA and slow NMDA components
in the excitatory conductances. In the absence of any NMDA component in the ex-
citatory conductances, our numerical analysis reveals a two-parameter bifurcation
diagram of the firing rate per neuron vs. the driving strength f �0 of the simple
cells and the effective network connectivity Neff, which controls the synaptic fluc-
tuations, as shown in Fig. 14. Bistability and hysteresis arise for sufficiently large
Neff. We find a similar bifurcation structure when we add an NMDA component to
the cortico-cortical excitation, with less NMDA component increasing the amount
of fluctuations, thus smoothing the gain curves and taking the network out of the
bistable range.

In the model network, the IDS state operates just below this “fluctuation-driven
criticality” in order to have strong cortical amplification and gain, yet not be in the
bistable regime, so that our complex cells exhibit experimentally observed tuning
properties.
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[Reproduced with permission from [3], http://www.pnas.org (Copyright 2006, National Academy
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Discussion

In our modeling, we have not only successfully reproduced experimentally observed
phenomena quantitatively and qualitatively, but also investigated the network mech-
anisms underlying these phenomena. In addition, we have carefully verified the
structural robustness of dynamical regimes that exhibit the desired physiological be-
havior types. We have described some of these verifications in the previous sections.
They include the studies of the bistability and hysteresis responsible for neuronal
orientation tuning in V1, as well as the investigations of how the corresponding bi-
furcation point depends on both the driving strength and the percentage  of the
NMDA conductances, described in section “Orientation Tuning.” Our structural ro-
bustness verifications further include the studies of the alternative cortical operating
states in sections “Patterns of Spontaneous Cortical Activity” and “Line-Motion
Illusion,” various scenarios depicted in Fig. 9c–l that may be potentially related
to pharmacological manipulation in the real experimental setting, and the variety
of stimuli that induce similar spatiotemporal V1 activity associated with the line-
motion illusion shown in Fig. 10.

Furthermore, we have incorporated the consequences of additional physiological
properties including synaptic failure, spike frequency adaptation, synaptic depres-
sion, and axonal delays, and have verified that they do not significantly alter the
mechanisms underlying the cortical activities in our model V1.
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Structural robustness also manifests itself with respect to certain parameter
changes and small changes in cortical architecture. In particular, by readjusting
the cortical coupling strengths, we can sustain the neuronal dynamics in the IDS
regime over broad network parameter and architectural ranges, which allows for
the same network mechanisms to underlie the physiological phenomena we have
modeled. We have observed that the IDS state can remain the cortical operating
state for (1) the percentage  of GNMDA in the total conductance of the long-range
connections ranging from �5% to 100%; (2) the ratio of major to the minor axis,
i.e., the eccentricity, of the long-range elliptical coupling kernel [11] ranging from
�1 to 2, as well as arbitrary orientations of the ellipse; (3) the orientation spread
projected by the long-range couplings, ˙	�LR ranging from ˙5ı to ˙11ı; (4) the
extent of the local excitatory or inhibitory interaction length-scales ranging from
100�m to 300�m, and their ratio from �0.5 to �2; (5) the background firing rate
RB ranging from 2 to �20 spikes/s; and (6) the NMDA decay time ranging from
�NMDA D 40ms to 80 ms.

Finally, we should emphasize that our results are robust even to the individual
neuronal model we used. In particular, by retuning the cortical parameters, we can
reproduce our results with the same underlying cortical mechanisms regardless of
whether we use linear or exponential [115] I&F point neurons.
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