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Abstract

Chromosomal translocations are found in many types oftumors, where they may be either
a cause or a result of malignant transformation. In lymphoid neoplasms, however, it
is clear that pathogenesis is initiated by any ofa number of recurrent DNA rearrange­

ments.These particular translocations typically place an oncogene under the regulatory control
ofan Ig or TCR gene promoter, dysregulating cell growth, differentiation, or apoptosis. Given
that physiological DNA rearrangements (V{D)J and class switch recombination) are integral
to lymphocyte development, it is critical to understand how genomic stability is maintained
during these processes. Recent advances in our understanding of DNA damage signaling and
repair have provided clues to the kinds ofmechanisms that lead to V{D)J-mediated transloca­
tions. In turn, investigations into the regulation ofV{D)J joining have illuminated a formerly
obscure pathway ofDNA repair known as alternative NHEJ, which is error-prone and frequently
involved in translocations. In this chapter we consider recent advances in our understanding
of the functions of the RAG proteins, RAG interactions with DNA repair pathways. damage
Signaling and chromosome biology, all ofwhich shed light on how mistakes at different stages
ofV{D)J recombination might lead to leukemias and lymphomas.

Introduction
Lymphoid neoplasms are among the most common malignancies in humans; mysteriously,

they have become increasingly common in both adults and children over the past two decades,
with the incidence ofnon-Hodgkin's lymphoma alone having doubled.' A number offactors are
implicated in the etiology of these disorders , including ionizing radiation, chemical exposures,
viral infection, autoimmune disease and acquired immunodeficiencies. Some ofthese conditions
might directly create genetic mutations that initiate tumorigenesis; others may simply promote
a favorable immune milieu by chronic antigenic stimulation or immunosuppression. It is fairly
certain, however, that many lymphoid neoplasms are born ofchromosomal translocarions involv­
ing antigen receptor 10ci.2J Up to 90% of cases of non-Hodgkins lymphoma, for instance, bear
such translocations.' These aberrant rearrangements most often exert their oncogenic effects by
placing an oncogene under the regulatory control ofa highly expressingIg or TCRgene promoter,
thereby dysregulating cell differentiation ,proliferation,or survival.t? Translocations also commonly
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fuse the codingsequences of two differentgenes,which then encodechimericoncoproteins that
activateoncogenictranscriptionalprograms," Both typesofeventsfrequentlybearsignsof having
originated through some error in V(D)J recombination, the process by which antigen receptor
genesare rearranged.2.3·7.8

V(D)] recombination canbe thought of asa special caseof targeted, stricdyregulatedgenomic
instability.Thereareseven antigenreceptorlocithatencodethe T-cellreceptor(TCR) a, p, yand [)
chainsandthe immunoglobulin (Ig)HandL (K andA) chains. GroupsofY,D and] codingsegments
arearrayed alongthe loci,flanked byrecombination signalsequences (RSS).Thelymphoid-specific
recornbinase, consistingof RAGland RAG2(the proteinproductsof the recombination activating
genes 1and 2), selects apairof signal sequences that maybe manykilobases apart, cleaves the DNA
at the signalsequence borders, and the resulting DNA double-strand breaks arejoinedbythe ubiq­
uitous nonhomologous end joining(NHE]) proteins.Sinceantigenreceptorgenerearrangement
entailsbreakingand rejoining the chromosome several timesbeforeacompleteIgor TCR molecule
canbe expressed on the cellsurface, the creationofa diverse repertoire ofantigenreceptors violates
genomicintegrityasa matterofcourse. It has beenestimatedthat,eachday, the humanbodycreates
1x 1011 Bvcells.? Granted,mostof thesenewly generated cells diebecause theyform nonfunctional
or self-reactive antigenreceptors. Even so,an estimated 9 x 109cells survive this process everyday.9
Thesenumbersarestaggeringly large. An errorrateoflessthan a thousandthofa percentwouldstill
yielda largenumberof cells bearingpotentiallyoncogenic translocations. How is it that leukemias
and lymphomas do not overcome us all? The mechanisms that preserve genomicintegrityduring
rearrangement mustbe unusually reliable, multiplyredundant,or both.

In fact, the obviousrisksattendant upon sequentialcutting and pastingof genefragments are
mitigatedbynumerousrestrictionson the process, manyofwhichhaveonlyjustbeenappreciated
(and many others of which, no doubt, remain to be discovered). Regulation of recombination
requiresdeft orchestrationof chromatin changes, trans-actingfactors, transcription, selectionof
substratesfor DNA cleavage and DNA double-strandbreak (DSB) repair machinery. Thereare
excellent reviews in this volumethat do greaterjusticeto the topic of accessibility than wecould
in this chapter (seealsorefs. 10-12). Our focuswill be on recent work elucidatingthe molecular
mechanisms for maintaining the fidelityofDSB repair. We will begin the chapter by oudining
the salientfeatures ofthe V(D)J reaction.Wewill then considerthosestages wheremistakes often
occur,with a focus on mechanisms that can lead, in theory at least,to translocations.

Overview ofthe V(D)J Recombination Reaction
Keysteps in the reactionare outlined below. For comprehensive and elegantdescriptionsof

the biochemistry, seereferences 7,13 and 14.
The recombination signal sequences (RSS) that flank the V, D and] segments consist of

conservedheptamer and nonamer elementsseparatedby an intervening spacerof either 12 or
23 nucleotides. Theserecognition sequences are referred to as 12-RSS or 23-RSS, and efficient
recombinationrequiresthat two complementaryRSS(a 12123 pair) be synapsed beforecleavage
can proceed.P'F'Ihe heptamer has the palindromic consensus sequenceCACAGTG, but varia­
tions are common and the extent of deviation from the consensus influences the efficiency with
which a site is cleaved. The AT-richnonamer sequenceis less conservedbut still important for
recomblnarion", and eventhe spacersequences influence the selectionof an RSS.19·22

The RSS are recognizedby the lymphoid-specific proteins RAG1 and RAG2 ("recombina­
tion activatinggenes1 and 2"23), which together form a complexwewill referto as the V(D)] or
RAG recombinase. HMGB1 (high mobilitygroup box I), a nonspecific DNA bendingprotein,
facilitates synapticcomplexformationand cleavage.24.2sThe RAG proteins nick one DNA strand
precisely between the RSSheptamer and the coding segment.This generates a free 3'OH that
is used to attack the opposite strand in a transesterification reaction, forming a double-strand
break (DSB).The result is that the synapsed pair of RSS/codingsegmentsyields four free DNA
ends: two covalendysealed(hairpin) coding ends and two signalends that terminate in a flush
double-strandbreak.26-30
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After coupled cleavage, the RAG proteins hold the DNA ends in a posecleavage complex,
aligningthem for proper joining by the nonhomologousend joining (NHEJ) machinery. The
blunt-ended RSS undergo direct ligation (generally with no base loss) to form a signaljoint,
whichisusually deletedasan extrachromosomal circularproduct that is lostduringcelldivision.
Less frequently, the orientation of the codingsegments necessitates inversional recombination,
in whichthe signal joint is retainedin the chromosome. Thereisno knownimmunological func­
tion for signal joints, but in cases of inversional recombinationtheir formation is necessary for
preservinggenomicintegrity.Ligationofthe twocodingendsproducesacodingjoint thatencodes
the variable portion of the antigenreceptorprotein. Coding jointsare typically imprecise, asthe
codingend hairpinsmust firstbe opened and often undergolossor addition of nueleotides dur­
ingprocessing.Thisjunctionalvariability contributesfurther to antigenreceptordiversity and is
considered characteristic of repairbynonhomologousend-joining.

Potential Mechanisms ofRAG-Mediated Translocations
Errorsin recombination canbebroadly elassifiedinto twocategories.Thoseoccurringduringthe

earlystageof the reaction(siteselectionand cleavage) can be conceptualized ascases of mistaken
identity: they involve either (1) mixingofauthenticbut inappropriateantigenreceptorloci (e.g.,
TCRj3andTCRysegments) in interlocus recombination,or (2) the misappropriation ofsequences
that fortuitouslyresemble RSS (crypticRSS). One mechanism forpreventingsucherrorsinvolves
regulationofsubstrateaccessibility; wewill discuss thisand relatedregulatorycontrolsrelevantto
eachtypeof substrateselection error in the following section. Errorsthat takeplacein laterstages
of the reaction (joining) can instead be conceived as involving renegade double-strandbreaks.
BrokenDNA ends createdin the context ofV(D)J recombinationmight escape normal DNA
repairthrough defects in the RAGposteleavage complex, useof an inappropriaterepairpathway,
or an impairedDNA damage signaling response. Mechanisms that act to curtail aberrant repair
will be considered in the contextof thesedeficits in subsequentsections.

Mistaken Identities: Substrate Selection Errors

Inter/oeus Recombination
NormalV(D)Jrecombination isrestricted bycelllineage (TCR locirearrange inT-cellsbut not

B-cells), developmental stage(e.g.,TCRj3 beforeTCRn) and, in manycells, to one allele (allelic
exclusion). Sincethe RAGproteins, the RSSand the DNA repairmachineryarethe samein each
case, this complexregulatoryschemedependsin largepart on the degreeofaccessibility allowed
the recombinase to the various lociovertime in differentcells. For this reason, the packaging of
TCR and 19 loci into chromatindiffers in B- and T-cells and varies accordingto the activityof
the loci,which is governed bydevelopmental stage.

Nevertheless, sometemporaloverlap in the sequence of rearrangements doesallowoccasional
interlocus(trans)recomblnaeion.t' :"These rearrangements, whichcreatea balanced translocation
resultingin two derivative chromosomes, can generatefunctional chimericreceptorchainsthat
appearin normaltissues.33.34 Aswith recurrentoncogenicrranslocarions, the system seems to favor
rearrangements ofparticularsites: forexample, it hasbeenestimatedthat 1 in 10,000normalhu­
man and mouserhymocyees carries the Db3-J~2.7 rearrangemene.P" Theserearrangements, JUSt
like those that occur in as, relyon RSS recognition, RAG-mediatedcleavage and NHEJ repair.
TheyarenormalV(D)J reactions simplycarriedout with the wrongpartner. Ineerlocus eventsdo,
however, exhibit recurrentbaselossfromsignaljoints31.36 anddifficulty formingcodingjoints.37-39

Thesefeatures suggest that trans rearrangements proceedthrough an abnormalpathway.
It is noteworthythat the incidence of interlocus recombination increases dramatically in cells

bearingcertainmutations (suchasATMdeficiency) thatpredispose to lymphoid turnors.32.40-42These
events havethe appearance ofsimple substrate selection errors, but at leastsomeof theserearrange­
mentsmight arisefromfailures in DNA damage sensing and repair(seediscussion ofATMdefects
below, in the section"Theroleof the DNA damage response in preventing translocations").
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CrypticRSS
ThevariabilityofRSSsequence entailsconsiderable flexibility on thepart of the RAGproteins.

Unfortunately, this plasticitymakes it possible for the RAG proteins to bind to fortuitous DNA
sequences known as "crypticRSS" that do not border antigen receptor gene segmentsbut are
sufficiently closeto the consensus sequenceto allowRAG recognition.43.44 Inone largereviewof
oncogenicrearrangements from both B-and T-cellmalignancies, most translocationbreakpoints
on the nonantigen receptorgenepartner contained RSS-like sequences at or near the breakpoint,
supporting "substrate selection error" as the responsible mechanism.' In addition, nontemplated
nucleotides arefrequently addedto the junctions, suggestingTdTactivity andthereforethe involve­
mentofV(D)J recombination? Thet(7:9) (q34;q32) translocations foundinT-celllymphoblastic
leukemiaprovide the clearest example. Chromosome 7 breakpointsare typicallylocated at the
RSSborderingD~ segments, whilebreakpointson chromosome9 are flankedby consensus RSS
heptamersequences separatedfrom AT-richnonamer-like sequences by 11or 12basepairs," The
salientfeatureofsubstrateselectionerrorsis that the V(D)J recombinationreactionproceedsas
normal exceptfor parmering an RSSwith an inauthentic sequence.

PreventingErrors by ControllingAccessibility
An RSS can deviate quite far from the consensusand still undergo recombination; Lewis

et al definedthe necessary features of cryptic RSSand suggested that evena weak signal, with a
recombinationfrequencyof2 x 10-5the canonicallevel, canhaveaphysiological impact." In light
of estimates that the genomecontains 10million potential crypticsites, approximately one every
1-2 Kb,46 it is clearthat RAG accessibility to target sitesmust be verytightlyregulated.

In aprescient1985paper,Yancopoulos andAlenoted that rearrangingsegments aretranscribed
before(or coincidentwith) their activationfor rearrangement and proposedthat generatingthese
germlinetranscriptsalteredchromatinstructuresoasto allowthe recombinase access to asubsetof
appropriatesubstrates." Therearealsoother potential mechanisms for regulatinglocusaccessibil­
ity that do not relyon rranscriprion.f One approachto controllingaccess is through nucleosome
packaging, which can block cleavage of specific RSS.49 Proteins that enhance RAG interaction
with RSSS48.50.51 could conceivably recruit nucleosome remodelingcomplexes such as Swi/Snf
that alter DNA-histone contactswithin a nucleosome or alter the nucleosomeslocation.52.53The
secondapproachis through covalentmodifications of the taildomainsof the histone proteins by
acetylationoflysines,methylationoflysinesand arginines, polyribosylation, serinephosphoryla­
tion and ublqulryladon." Suchposttranslationalmodifications can"open"chromatinbyaltering
DNA-histone contactswithin a nucleosome, histone-histone contactsbetween nucleosornes, or
interactions betweenhistonesandotherproteins.Accumulatingevidence suggests that theserevers­
ible,epigeneticmodifications comprisea "histone code" and that they associate with regulatory
proteins known as code readers. Evolutionarily conserveddomains within code-reader proteins
bind to certain histone modifications with such specificity that they can distinguish the same
modificationat differentresidues (for example, trimethylationat K4vs. K9).54

Several recentstudieshaveshownthat the plant homeodomain (PHD) finger, a methyl-lysine
binding domain, serves as a code-reader: it can both promote and repress gene expression by
interactingwith trimethylatedlysine 4 on histone 3 {H3K4).55'58 Evenmore recently, the RAG2
PHD fingerhasbeen shownto recognize H3K4 trimethylation.P'" In thesestudies, the binding
ofRAG2 to H3K4 enhancedthe selectionand recombinationofchromatinizedgenesegments in
developing lymphocytes. The RAG complex, then, is not merelysubject to chromatinstructures
determined byother factors, but must takean activerole in recognizing substrates.

Other studieshaveshownthat transcriptionalcis-regulatorysequences, suchasenhancersand
promotersspecific to eachlocus,arenecessaryforV{D)Jrecombinarion.PP Furthermore, the RAG
genesareregulateddifferently in B-and T-cells(for example, Foxpl isrequiredfor Bvcell-speclfic
RAG expression"). Some DNA-binding transcription factors interact with RAGl/RAG2 and
guide them to subsetsofRSS: Bvcell-spedfic VH locuscontraction,for instance,requiresPax5to
interact with both the V coding segments and the RAG complex/v" The mechanisms oflocus
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contractionand loopingremains poorlyunderstood,but theyareessential forpromotingsynapse
formationbetweendistalV and proximalD segments, which can beseparatedbydistances of up
to 3 megabases.66 (In this regard, it is interestingto note that coreRAG2knock-inmicehavedif­
ficultywithVto DJ rearrangements at the IgHandTC~ 10ci.67.68)Whether nonantigenreceptor
lociare typically constrainedbysuchcomplex regulatoryschemes isnot clear.

Signs 1hata Translocation DidNotArise through Substrate Selection Error
Even grantingtheoccasional chromatinloophole, threeobservations suggest that substrate selec­

tionerrorsdo not accountforthe majorityofRAG-mediated oncogenic translocations.First,many
ofthe RSS-like sequences found at translocationbreakpointson the nonantigenreceptorpartner
chromsome contain heptamersthat area poor matchfor the consensus, and a largefraction lack
recognizable nonamerelernenrs.P Previous workhasshown that DNA cleavage in vivorequites
both heptamerand nonamer;scrambling the nonameror mutatinga singlecriticalnucleotidein
the heptamer decreases cleavage by at leasttwo ordersofmagnitude.15•18.22.69Therefore, the pres­
enceof sequences that deviateso much from the consensus on the partner (nonantigenreceptor
locus) chromosome might be merely coincidental.2.3·7The second argument against the use of
somecrypticRSSin translocations is that the breakpointsare often not at the heptamer-coding
flankborder. This is incompatible with normal RAG-mediatedcleavage, which is a veryprecise
reaction. Finally, sometranslocations display short direct repeats,8.70 suggesting that the cleavage
eventcreateda shorr single-stranded overhang. This, too, isinconsistentwith normalcleavage by
the V(D)J recombinase.

Thisis not to saythat suchevents did not originate with a mistake in V(D)J recombination. If
substrate selection errorappears unlikely, thereisanalternative modelthatbetterexplainscasessuchas
these. lrisknownasenddonationandpositsthattherecombinasecreatesadouble-strand break(DSB)
at an authenticRSS that is then somehow joinedto a random DSBthat hasbeen created through
someunrelated process? Until the past fewyears it hasbeendifficult to conceive of a mechanism
that wouldexplain enddonation.but recentworksuggests that brokenDNA endscreatedbyRAG
cleavage mightescape theirnormalfatethroughdefects in the RAGpostcleavage complex, useofan
inappropriate repairpathway, or an impaired DNA damage signaling response.

The Ends That Got Away: Errors inJoining
DSBsarepotentiallysodamaging that cells have evolved complex networksofproteinsto sense

the presence and precise locationof DNA damage, regulatethe cellcycle and repairthe breaks.
Mountingevidence suggests that V(D)Jrecombination enjoys at leasttwolayers ofprotectionthat
evenits DNA-rearranging cousin, class switchrecombination,doesnot." an end joiningpathway
that discourages translocations (classical NHEJ) and the RAG posccleavage complex, which is
thought to ensurejoiningthrough thispathwayand exclude other,error-pronerepair. Yetanother
layerofprotectionisprovidedbyATM,part of the DNA damagesignalingmachinery, whichmay
havea role in stabllizingthe postcleavage complex but alsocan leadcells with unrepairedbreaks
to undertakeapoptosis.

Genome Guardians: 1he Classical NHE]Factors
The basicoutline of NHEJ seems simpleenough: a set of enzymes captures the two ends of

the broken DNA molecule, a molecularbridgeis formed to juxtapose the ends.and the break is
religared," Inrealitythe process israthercomplex andmanyaspects remainpoorlyunderstood(see
refs. 72 and 73). A keycomponent ofNHEJ is the DNA-dependent protein kinase(DNA-PK)
complex,which comprises the DNA-PKcatalytic subunit (DNA-PKcs) and the Ku70 and Ku80
nuclearantigens." Nonhomologousrepairis initiatedwhen the Ku70/80 heterodimerencircles
a brokenend,75.76creatinga scaffold for the recruitment ofother factors. Ku attractsDNA-PKcs
to the break,whereit mightserve multipleroles. includingthe formationofasynaptic complex to
bring the ends together," ActivatedDNA-PKcsrecruitsXRCC4, DNA Ligase IV and Artemis.
DNA-PKcsphosphorylation ofArtemisconverts thelatterfromanexonuclease toanendonuclease
and allows it to open the hairpinnedcodingends.77,78 SinceArtemiscannot process everytype of
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nonligatableend, other typesof end-processing enzymes are alsorecruited. Polymerase activity.
for example, is likelysuppliedby the DNA polymerase Mu, which associates with XRCC4, and
terminaldeoxynucleotidyl transferase (TdT) addsnonrernplared nucleotides to increase junctional
diversity.79.80 Finally, XRCC4 andDNA Ligase IVligatethe ends.81-83Themost recentlydiscovered
NHEJ factor,known asCernunnos or XLF (forXRCC4-like factor), isalso recruitedbyKu and
interactswith both XRCC4 and Ligase IV to ligatemismatchedand noncohesive ends.84-88The
order in which all these factorsare recruited might be flexible, accordingto the specific nature
of the break."

GeneticablationofKu,DNA-PKcs,DNA Ligase IV,XRCC4, Artemis,or Cernunnosin mice
preventsthe completionofV(D)J recombination,arrestingB-and T-celldevelopmentat an early
stageand leadingto aSCID (severe combinedimmunodeficiency) phenotype.Theoveralldefect
in DNA repairalsoproducessensitivity to ionizingradiation,amarkedtendencyto translocarions
and developmentoflymphoma (though in somecases, onlyon a pS3-deficient background).90-97
(Bycontrast,NHEJ-proficientmammaliancellsreconstitute their chromosomes with remarkable
accuracy afterbeingexposedto dosesofionizing radiationlargeenoughto inducemassive chromo­
somefragmentation.98.99) SomeNHE]-deficientlinesdevelopnonlymphoidtumorsaswell.90.loo.lo1
Thediscovery that a deficiency ofNHEJ factorspromotes oncogenesis revealed a crucialrolefor
theseproteins asgenomeguardians.94.9S

Error-Prone EnJ]oining: AlternativeNHE]
Despite their obviousdefectsin DNA repair. NHE]-deficient mice (and humans97.I02.103) can

survive long enough to develop malignancy. The mouse tumors frequently show gene fusions
betweenthe IgH locusand c-Myc but candisplay manyother nonreciprocaltranslocations. There
must, then, be alternativemechanisms capable of repairingDSBwithout Ku,DNA-PKcs,Ligase
IV,or XRCC4. And, in fact, there is, although it wasnot recognizedas an alternativepathway
when it wasoriginally describedin mammalian cells in the 1980s.I04-I06

At the time,it wasknownthat eukaryoticcells areableto repairDNA endsbyboth homologous
and nonhomologousmeans.Inthe caseofV(D)J recombinationintermediates,homology-based
mechanisms seemedunlikely, aslittle or no homologyispresentbetweencodingends; moreover,
rearranged coding segments underwent a curious addition and lossof nucleotides at the june­
rion."" The mechanismfor nonhomologous repair,however, had not yet been discovered and
the fieldstruggledto understand how "unrelatedDNA ends are joined together willy-nilly with
high efficiency~104 Thesimilarityof thesejunctions to codingjoints hinted that the DNA breaks
generatedbythe V(D)J recombinase might be repairedbythe samemechanism .l'" Within several
years, studiesofV(D)J recombinationin various radiosensitive celllinesmadeit possible to iden­
tify componentsofthe NHEJ pathway.108-112 Our understandingofNHEJ thus grewout ofour
understandingofV(D)J recombination-and because the wild-typeRAG complexguidesDNA
ends to the classical pathway, not the alternative pathway(seebelow),the latter settled into quiet
obscurity. Only recently, in fact,has it been realizedthat the two pathways aredistinct.I13-1IS

The hallmarksof junctions formed by alternativeNHEJ are excessive deletions and a reli­
ance on short sequencehomologies (microhomologies).106.1l 3.11S Evenblunt-ended plasmids in
Ku80-deficient cells undergoresectionand annealingofmicrohomologous sequences rather than
simplybeingjoinedat the blunt ends.I ISIt isworth noting that thesemicrohomologies arepresent
at oncogenictranslocations from NHE]-deficient cells." Therefore, although alternative NHEJ
providesenough repairactivityto allowcellsurvival, it appearsto be error-proneand predisposes
the cellto genomicinstability.

But if alternative NHEJ is relatively efficient, whydoes NHEJ deficiency virtuallyobliterate
V(D)J recombination?

The RAG Postcleavage Complex Governs Choice olRepair Pathway
The observation that both nucleotide addition and deletion could occur prior to joiningof

codingendsindicatedthat the DNA endsmust remainin one placelongenoughto allowprocess­
ingbypolymerases and endonucleases,' 16 Thus,evenbeforethe discovery of RAG1and RAG2,it
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seemedthat a stableprotein-DNA complexmust exist to allowthe ends to be accessible to such
modifyingenzymesaftercleavage.!" When studiesshowedthat celIs deficientin Ku or DNA-PK
could not resolve V(D)J intermediates. it seemedreasonableto thinkthat. by analogywith the
Mu transposase, a very stable postcleavage complexwould make DNA ends Inaccessible.!'?As
the field's understandingofNHEJ repair grew. so did curiosityabout how a RAG postcleavage
complexmight participate in joining.

Lackingaviablein vitro system to studyjoining,weturned to genetics.Separation-of-function
mutants in RAG-! and RAG-2 that are capableof cleavage but exhibit severe joining defects
provided compellingevidencethat the postcleavage complexservesa crucialfunction in joining
both coding and signalends.l18•

120 Thesedata lent support to the notion that the RAG proteins
form a scaffoldthat holds the ends together to facilitate joining. Joining mutants could alter
the architecture of the complex, facilitatingpremature releaseof ends or, conversely, creatinga
too-stablecomplexor hindering the recruitment ofNHEJ factors.118.121Intriguingly. two RAG-!
mutants phenocopied NHEJ mutants: the rare joints they did manage to form exhibited the
excessive deletions and short sequence homologiescharacteristicofalternative NHEJ.118These
mutants led us to propose that the RAG proteins might function as genome guardians within
the context ofV(D)J recombination.

Wepursued thishypothesis further byexarniningwhetherRAG-generatedendscouldbemade
available to repairpathways other than NHEJ. (Althoughhomologousrecombinationand NHEJ
predominate at differentphasesof the cellcycle, accumulatingevidencesuggests that theycan act
at the same time and even cooperate to repair a DSB.73.122) Usingan in vivosystemto assay for
repair ofsignalends byhomologous recombination,Leeet al showed that two joining-impaired
RAG! mutants destabilizethe RAG postcleavage complex, allowingthe DNA ends to be avail­
ablefor repair byhomologous recombinadon .F' Wild-type postcleavage complexes, by contrast,
stimulatedno homologousrecombination. This led us to propose a model in which the normally
quite stable RAG postcleavage complexactively directs DNA ends to the NHEJ machinery for
repair.123 Thequestion remained: howdo the rarecodingjoints produced in NHE]-deficient celIs
manageto be formed by the alternativeNHEJ pathway?

Since the homologous recombination assaywas unable to map the fate of coding ends and
we had identified mutations in RAG2 that affectedjoining without destabilizingthe postcleav­
age complex. we again took a genetic approach. We identified a truncated RAG2 allele that
allowssubstantial coding and signal joint formation to occur in cellsdeficient for DNA-PKcs
or XRCC4.124Junction sequencesrevealeda tendency toward largedeletions and microhomol­
ogy use. Surprisingly, this RAG2 mutant also revealed alternative NHEJ to be active even in
wild-type cells.124Thesestudies, alongwith work from the Alt and de Villartaylabsstudying the
useof alternativeNHEJ in class switch recombination,125.126 makeit clearthat alternativeNHEJ
isquite robust, albeit error-prone.Thus, wehavecome full circle:V(D)J recombination allowed
the discoveryof classical NHEJ and now has brought attention back to alternative NHEJ.

Why is classical NHEJ less prone to translocations than the alternative pathway? Perhaps
components of the classical NHEJ pathway interact with chromatin (or chromosome) compo­
nents to maintain the chromosomalidentity of broken ends (seebelow). In addition. studies of
NHEJ haverevealedthat repair is biphasic:most repair occursquite rapidlyupon induction of
a DSB, but there is a slowcomponent that might correspond to alternativepathwaysand which
continues at the samelevelwhen the classical pathwayis disabled.J27 Thus, it seemsthe rapidity
ofclassical NHEJ repairensuresthat most DSBsarehealed within a fewhours; those lesionsthat
cannot be repaired in this time will be subject to alternativeend joining. It is conceivable that
difficult-to-repairDSBslingeringin the nucleusmight, over time, separateor drift to a different
chromosome territory in the courseof other cellularprocesses (but seebelow).

How Do Chromosome Ends Meet?
Mammalianchromosomes occupydiscretethree-dimensional regions in the nucleus known as

chromosometerritories. Theseterritoriesare not fixed. but arespecific to differentcell rypesy8 In
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order for a translocationto occur,there must be DSBsin (at least)two chromosomes at the same
time; the DSBsmust haveescapedthe normal repairmechanisms; the broken chromosomeends
must physically meet and theymustbe illegitimately repaired.An obviousquestion arises: do the
DSBsroam the nucleus. lookingfor a partner, or do they stayput?

Two hypotheses havebeen put forth. The breakage-first model posits that breaksare able to
traverse the nuclearspace, searching for potential partners. and cometogether to produce trans­
locations. The contact-firstmodel,on the other hand, proposes that sincechromosomes occupy
territories in the nucleus, breakson distinct chromosomes willmeet only if they occupynearby
or interminglingdomains.!" To test these possibilities, Soutoglou et al developeda cell system
in which they could induceone DSBat a definedsite and followthe fate of eachof the damaged
DNA ends in real time by observingspecific fluorescent tagson either sideof the break.129The

authors demonstratedthat a single DSBin mammaliancellsispositionally stable,with onlyslight
motion of the DNA break.129This stability required the end-bindingKu80/Ku70 heterodimer
but, surprisingly, wasindependentofother DNA repairfactors, the structuralproteins H2AX and
SMC 1,the cohesincomplexand eventhe Mrel l complex, whichhasbeen stronglyimplicatedin
anchoringends.Whether other factorswill turn out to be necessary for this immobilizationof a
break-or whether the causeof the breakage, or the number of breaksinduced at the sametime,
influence this positionalstability-remains to be seen.

Theseresults havestrikingimplications forunderstandinghowtranslocations forminvivo.First,
they demonstrate that chromosomalpositional stability is related to genomicstability. (At least
in mammals; yeastdo not havechromosometerritories.DSBsin yeastmigrate to any of several
smallnuclearsites that act as damagerepair centers.P') Second, the data support a contact-first
model in mammalian cells and areconsistentwith the emergingmotion that nonrandom, higher
order spatial organization of chromosomes accounts in largepart for the recurrenceof specific
translocations.Tenyears ago,experiments showedthat y-irradiation ofnormalhumanlymphocytes
induces translocations in chromosomepairs that have been observed in leukemias, suggesting
that thesechromosomes are near neighborsin lymphocytes.131•m Several frequent translocation
partners, includingMyc-Igh and BCR-ABL,havebeenfound to existin closespatialproximityto
eachother in normalcellsbeforethe formationof translocarions.Pl Themisjoiningof proximally
positioned chromosomeregionssupports the observedcorrelationbetween the degreeof chro­
mosome intermingling and the likelihoodof translocations.P" The frequencyof translocations
involving antigen receptor loci likely reflects the fact that more gene-rich chromosomes undergo
less compactionand more lnrermingling.l"

The Role ofthe DNA Damage Response in Preventing Translocations
TheDNA damagesensingpathwaywasnot initiallythought to beinvolved in V(D)) recombi­

nation,asdamagecheckpointsarenot activatedduringthe process; in fact,it wasassumedthat the
RAGpostcleavage complex sequestered the DSBfromthe DNA damagesensingmachinery.It thus
cameasasurpriseto findthat ATM,y-H2AXand the Mrel l complexlocalize to RAG-mediated
DNA breaks.I34.135The mystery wasdeepenedbythe firststudiesto investigate whether thesefac­
tors had any role in V(D)) recombination: the answer, apparently, wasno.136.137 Further probing
unearthed a greatertendency to TCR alb interlocusrecombinationin micedeficientfor ATM,
MrelI ,Nbs1,or S3BP1.42,138.141 Micedeficient in ATM,RadSO.or H2AXdevelopthymiclympho­
mas,asdo H2AX-andMrel l-deficientmiceon apS3nullbackground,136-139Manyofthesetumors
harbor translocations thought to derivefromerrorsin V(D)J recombination,and tumorigenesis is
reducedor delayed in micewhenATMdeficiency iscoupledwith RAG1or RAG2deficiency.142,143
Mutationsin ATM,Nbs1and Mrel l causeAtaxia-Telangiectasia, NijmegenBreakage syndrome
and Ataxia-Telangiectasia-Likedisorder,respectively; like the mice, patients with these diseases
havea predispositionto lymphoidmalignancies and harbor frequent translocations between the
TCR and Igloci.

Recentstudiesprovideinsight into the roleplayedbyATM (and perhaps,byextension,other
damage sensors) in V(D)) recombination and why this role is virtually invisible under normal
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circumstances. In additionto its newly discovered rolein stabilizing DSBcomplexes duringV(D)J
recombinarlon.lf ATM has a checkpoint function to prevent the propagation ofDSBs caused
either by RAG or low-dose gammairradiation to daughter cells.l" Callen and colleagues posit
that ATM-I- lymphocytes that fail primaryV(D)J assembly, leaving a DSBon one allele, canstill
achieve productiverearrangement through independent recombinationof the secondallele. The
presence of the DSBin ATM-deficient cells would not preventpre-B-cells from undergoingthe
maturationalprocess. Therefore,DSBsproducedinprecursorcellswouldpersistin matureB-cells
in peripherallymphoidtissues, wheretheywould then undergoclass switchingand be subjectto
further (AID-mediated) DNA breakage.!"The initial RAG-mediatedbreak could persist for
manydays, ultimately to be joined to another chromosome in a progenycell.

Thismodelputs an interestingtwist on extant modelsof how chromosome ends meet in the
nucleus and undergomisrepair, forminga translocation. Theworkof Callenand colleagues sup­
ports acontact-firstmodelbut suggests that a DSBcouldmigratefromits originalpositionin the
chromosome territoriesand participatein a repaireventwith another chromosome broken in a
progenycell.14s One might think ofthisasdiachronicend donation.With regardto physiological
relevance, it is strikingthat up to 50%of mantle celllymphomas havemutationsor deletionsin
ATM.l46 Callenet al suggest that ATM mutation is likely to be an earlyevent in the malignant
transformation.l"

The foregoing studiesemphasize that creating (or preventing) a translocation is a complex
process. One has to considernot only the natureofrepair factorsand the orderedassembly and
disassemblyofDNA-proteincomplexes, but the factthat theseprocesses take placein threedimen­
sionsand over time. Understandingthe spatiotemporal regulationof these repairprocesses and
their coordination with chromosome dynamics, changes in chromatin structure, DNA damage
signaling, the cellcycle and other physiological processes represents one of the majorchallenges
to unraveling the puzzleof aberrant V(D)J recombinationevents. Indeed, the recent discovery
that over700 proteins interact with ATM and ATR in the DNA damage response!" indicates
that this story is likely to get much more complicated.
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