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6.1 Introduction

Digital delay locked loops are highly prevalent in integrated systems. They are essen-
tially delay lines under feedback control that can generate derived clocks based on
an input reference. Applications include clock distribution, I/O interfaces, clock gen-
eration, and frequency multiplication. Digital delay locked loops also have time-to-
digital conversion properties and can be used in monitoring and sensing applications.

While DLLs can be designed with digital-only methods, their design involves di-
rect manipulation of clock signals. Therefore, additional techniques are involved as
opposed to standard custom digital datapath design. This chapter presents an identi-
fication of all essential digital delay locked loop components and addresses relevant
design aspects for each part. It concludes with global design issues and an overview
of advanced applications.

6.2 What Constitutes a Digital Delay Locked Loop?

The digital delay locked loop (DLL henceforth) is a simple closed loop system that is
capable of generating a clock signal that has a precise phase relationship with an in-
put reference clock. Because of feedback, this phase relationship tracks across input
frequencies, process, voltage, and temperature. The accuracy of the phase relation-
ship between input and output clocks depends on DLL design parameters, process
mismatch characteristics, and on deterministic noise sources such as independent
supply noise and forms of coupling.

Digital DLLs can easily be unconditionally stable and are analyzed in the time
domain. Because of their all digital nature, they can be ported across process nodes,
can be simulated using fast digital simulators, and can be easily monitored and char-
acterized in silicon.

Figure 6.1 shows a simplified DLL block diagram, which identifies the three
main system components: The phase detector, the control block, and the delay line.
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Fig. 6.1. Generalized DLL block diagram

The type of phase detector that will concern us in this chapter has a single bit
output that only changes on the positive edge of the reference clock. It is commonly
referred to as “bang–bang” in the literature. Such a phase detector can be thought of
as a system that has the transfer function depicted in Fig.6.2. It compares the phase
difference between two clocks and outputs a single logic value indicating which
clock is ahead in time. It can be thought of as a flip-flop that has the reference clock
(CLKIN) as its clock input and the controlled clock (CLKOUT) as the data input.
When the flop evaluates to a logic 1, it means the controlled clock is faster than the
reference. On the other hand, when the controlled clock is slower than the reference,
the flop will evaluate to logic 0. This behavior can be guaranteed as long as the data
input is faster than the clock input at least by the flop setup time (Ts in Fig.6.2) or
slower at least by the flop hold time (Th in Fig.6.2). If the timing between the two
clocks falls within the gray area of Fig.6.2, the phase detector behavior is not defined
and the output can be either a logic 0, a logic 1 or potentially a metastable value. The
width of the gray rectangle (Ts +Th) is the primary figure of merit of phase detectors
and one of the main DLL design parameters. It is called the phase detector sampling
window dsw or dead zone. It affects the phase locking accuracy of the entire system
in addition to other important specifications. Phase detectors will be discussed in
Sect. 6.4.

The most design intensive component of the DLL is the Digitally Controlled
Delay Line (DCDL). A sample transfer function is shown in Fig.6.3. A DCDL is
a combinational circuit that delays its input by an open loop value that typically
has a monotonic relationship with the digital setting input. Such delay value is not
precisely defined and is subject to process, voltage, and temperature conditions. A
DCDL is primarily characterized by three design parameters: its minimum delay
Dmin (delay value at setting 0), its maximum delay Dmax (delay value at the maximum
setting N − 1), and its resolution dr (incremental delay per setting). The dynamic
range is defined as Dmax −Dmin and is directly related to the capability of the overall
DLL to track significant PVT variations or work with an extended range of input
clock frequencies. The resolution dr affects the DLL accuracy along with dsw. DCDL
design will be discussed in Sect. 6.5.
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Fig. 6.2. Phase detector transfer function
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Fig. 6.3. Digitally controlled delay line transfer function

The final building block of Fig.6.1 is the control module. The control block in-
creases and decreases the DCDL settings based on the output of the phase detector.
In its simplest form, it is an up/down counter controlled by the phase detector. In its
most general form, it is a finite state machine (FSM) that controls the DCDL set-
tings based on the output of the phase detector and internal state. The inclusion of
additional state information can support more complex behavior and extend the DLL
capabilities. Control structures will be addressed in Sect. 6.6.

The combination of a phase detector, a delay line, and a control block produces
a simple and useful feedback system that can find multiple applications in modern
systems-on-a-chip. The DLL of Fig.6.1 will adjust its delay line until CLKIN and
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CLKOUT are matched in phase. At this point, the DLL has locked, and the delay
through its DCDL is one CLKIN period (or potentially an integral multiple of input
clock periods).

6.3 An Overview of DLL Applications

The average modern microprocessor contains multiple digital delay locked loops
embedded in various subsystems. Figure 6.4 demonstrates different uses of a basic
DLL structure.
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Fig. 6.4. DLL applications

The vast majority of DLL applications are related to clocking. Figure 6.4a
demonstrates zero-delay buffering. Such a topology is well suited for synchronous
I/O interfaces (e.g., PCI/PCI-X). A common clock (CLKIN) is being distributed to
multiple bus end points. Each end point is buffering and distributing it to a number
of flip-flops. A DLL in the loop ensures that the buffered clock version (CLKOUT)
is phase-locked to the master interface clock (CLKIN).
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Figure 6.4b shows an application where three separate clock domains are syn-
chronized. Each domain has a separate clock distribution (DISTA, DISTB, DISTC)
involving multiple buffer stages. Open loop matching is infeasible in the presence
of PVT and random variations. A DLL-controlled delay line at the root of each dis-
tribution can guarantee phase matching among all three clocks. The DLL controller
is more complex than the one shown in Fig.6.1, and it uses information from two
separate phase detectors. First, CLKOUTA and CLKOUTB are phase locked. As
soon as this happens, the controller locks CLKOUTC to CLKOUTA. This scheme is
extensible to multiple clocks.

Quadrature clock generation is another application suitable for a DLL. Such a
topology is shown in Fig.6.4c. When this DLL locks, the total delay through both
DCDLs and the feedback path inverter is one half period of CLKIN (180◦). There-
fore, the delay through one DCDL is virtually a quarter period (90◦) and CLKOUT
is a quadrature clock.

The previous technique can be extended and used for constant factor clock multi-
plication. In Fig.6.4d, the delay through all eight DCDLs is one CLKIN period. The
delay through a single DCDL is 45◦. The outputs of the eight DCDLs are equally
spaced phases spanning the entire CLKIN period. The toggle element can be thought
of as a toggle flop with eight independent clock ports. Every positive edge of each of
the eight phases can toggle the flop, thus, producing a CLKOUT that has a frequency
equal to four times that of the input.

The final example (Fig.6.4e) is a deviation from strictly clocking applications.
A DLL can be used for absolute measurements of unknown delays (time-to-digital
conversion). First, a 2-point calibration is necessary. The DLL is placed in calibration
mode (unknown delay is bypassed) and an input clock of a known period T0 is fed
into the CLKIN input. The DLL locks and the setting is recorded (s0). The input
clock period is changed to T1, the DLL is allowed to lock and the setting is recorded
again (s1). We now have a system of two equations with two unknowns:

Dmin + s0 ·dr = T0, (6.1)
Dmin + s1 ·dr = T1, (6.2)

where Dmin is the DCDL delay at the minimum delay setting and dr is the DCDL
resolution. We can solve the above system and obtain values for Dmin and dr. The
DLL now is placed out of calibration mode, and the unknown delay is multiplexed
into the system. The DLL locks and the setting (su) is recorded. The absolute delay
is, therefore, Dmin + su ·dr.

6.4 Phase Detectors

In a digital delay locked loop, the output of the phase detector is typically processed
by a digital circuit such as an up/down counter or in the most general case an FSM
controller. The most common phase detector for such an application is a specially-
designed flip-flop that has a single bit output indicating leading or lagging feedback
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clock as described in Sect. 6.2 and shown in Fig.6.2. Traditionally, such a structure
with a single-bit digital output is called a “bang–bang” phase detector. The main
design goals for a flip-flop used as a phase detector are:

1. It must be a fully static design containing cross-coupled nodes exhibiting expo-
nential voltage development with time (Sect. 6.4.1) to minimize time spent in a
potential metastable state and prevent system failure.

2. It must have a small sampling window dsw, which is the sum of the underlying
flop setup and hold times (Ts + Th) to guarantee good phase matching between
feedback clock and reference clock.

3. The setup and hold times must be well-balanced to avoid deterministic bias dur-
ing phase detection and result in a significant systematic phase error between
feedback clock and reference clock. A differential design can be desirable, but it
is not a requirement.

4. The open loop gain of the cross coupled gates must be high to guarantee quick
exit from a potential metastable condition (Sect. 6.4.1).

5. The capacitance of the cross-coupled nodes must be kept to a minimum given the
other constraints in order to guarantee quick exit from metastability (Sect. 6.4.1).
This will also help minimize setup requirements but may hurt hold time.

6. Unlike regular flop designs, a short clock-to-q delay is not a critical design re-
quirement, since there is typically a full reference clock cycle available until
the phase detector output needs to be setup and processed by the FSM con-
troller. This path is unlikely to be critical. Moreover, unlike a proportional phase
detector, balancing clock-to-q delays for a 0-to-1 vs. a 1-to-0 transition is not
necessary. There is no phase information encoded in this delay for bang–bang
operation.

The edge-triggered fully static flop designs of Chap. 3 such as the master-slave
latch (flop) of Fig.3.4 or the sense-amp flip-flop of Fig.3.13 can be used as a bang–
bang phase detector assuming that the design is tuned to meet the design goals out-
lined above. One design goal which won’t be met is the balancing of the setup and
hold times (and tracking across PVT) due to the assymetry in the clock and data path
in any regular flip-flop. One way around this problem is illustrated in Fig.6.5 [1].
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D Q
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Fig. 6.5. Symmetric phase detector out of asymmetric flops
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In a single-flop phase detector, the feedback clock leading decision depends on the
setup time and the feedback clock lagging decision depends on the hold time. Asym-
metry between these two properties can introduce a systematic phase error. In the
coupled flops of Fig.6.5, both decisions depend on the setup time of the flop and
assuming identical flops, the systematic phase error is removed. The coupled flops
of Fig.6.5 are also a virtual ternary phase detector where a 11 or 00 state can be
interpreted as a NOP (no operation) where no adjustment to the delay line takes
place.

A flip-flop design that addresses all design goals outlined above is certainly pos-
sible. Figure 6.6 shows a non-traditional flop design used as a phase detector in
[2]. CLKIN constitutes the clock input and CLKOUT is the data input. This edge-
triggered flop is composed of three separate RS latches. Latch (A1,A2) is the master
latch, latch (C1,C2) is the slave latch, and latch (B1,B2) is an auxiliary latch whose
additional state is necessary for correct operation. Setup and hold timing behavior
is entirely set by the master latch. The auxiliary latch is not in the signal path dur-
ing sampling and the slave latch only affects clock-Q delay which is not relevant
for bang–bang phase detector operation. Gates D1 and D2 are only present for load
balancing along the CLKIN and CLKOUT paths.
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Fig. 6.6. Bang–bang phase detector. Reproduced with permission in a form similar to that in
[2], c©1988 IEEE

Table 6.1 shows a truth table for the internal nodes t0–t3 of Fig.6.6. We observe
that when CLKIN = 0, the inputs t1 and t2 of the slave latch are at logic 1 which
means that the phase detector outputs are holding. On the positive edge of CLKIN,
the internal nodes will assume a value conditional on the state of CLKOUT around
the sampling edge, and the slave latch will be updated accordingly. The full operation
of this structure is illustrated in the state sequence Tables 6.2 and 6.3 which show
the sequence of internal node and output values for CLKOUT lagging and leading,
respectively.
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Table 6.1. Truth table for bang–bang phase detector internal nodes

CLKIN CLKOUT t0 t1 t2 t3

0 0 0 1 1 1
0 1 1 1 1 0
1 0 Hold Hold t1 1
1 1 t3 t3 Hold Hold

Table 6.2. State sequence for CLKOUT lagging CLKIN

CLKIN CLKOUT t0 t1 t2 t3 Leading Lagging

0 0 0 1 1 1 Hold Hold
1 0 0 1 0 1 0 1
1 1 0 1 0 1 0 1
0 1 1 1 1 0 0 (Hold) 1 (Hold)
0 0 0 1 1 1 0 (Hold) 1 (Hold)

Table 6.3. State sequence for CLKOUT leading CLKIN

CLKIN CLKOUT t0 t1 t2 t3 Leading Lagging

0 0 0 1 1 1 Hold Hold
0 1 1 1 1 0 Hold Hold
1 1 1 0 1 0 1 0
1 0 1 0 1 1 1 0
0 0 0 1 1 1 1 (Hold) 0 (Hold)

The sampling window of this phase detector is set entirely by the master latch
(A1,A2). The setup and hold times of interest occur when the CLKIN and CLKOUT
positive edges are virtually coincident. The setup time is set by the delay difference
of NAND gate A2 on a 1-0 transition on node t3 and the delay of NAND gate A1 on
a 1-0 transition on node t2:

Ts = td(A2) − td(A1). (6.3)

Similarly, the hold time is:

Th = td(A1) − td(A2). (6.4)

Even though the setup and hold time of this phase detector can be minimized by re-
moving all static bias from physical design, the true parameters should be determined
statistically through Monte Carlo simulations. A positive setup and hold time must
be determined that will guarantee correct decision with arbitrarily high probability
in the presence of random process variations.



6 Digital Delay Lock Techniques 191

The phase detector of Fig.6.6 can satisfy all design requirements including be-
ing fully static and having nominally small and equal setup and hold times. More-
over, it is a true single phase design which requires no inversion on the clock or
data inputs, thus, minimizing setup and hold requirements. The author has been
hard pressed to find a better overall design with good portability across process
nodes.

6.4.1 Metastability

A bang–bang phase detector will produce the correct lead/lag decision if the con-
trolled clock input falls outside its sampling window (dsw). A DLL in the locked
state though will cause frequent controlled clock edges to fall within dsw. A naive
approach to this issue would be to assume that in this situation a wrong deci-
sion coupled with a small DCDL resolution dr will not cause a DLL failure but
rather a small increase in the DLL phase error which can be accommodated by the
application.

A fourteenth century French philosopher Jean Buridan postulated that a donkey
located at equal distances between two bales of hay should theoretically starve to
death because it will be equally attracted to both [3, 4]. A more precise articulation
of this principle in the words of Lamport [4] is as follows:

Buridan’s Principle: A discrete decision based upon an input having a con-
tinuous range of values cannot be made within a bounded length of time.

The continuous variable in the Buridan example is the position of the donkey
along the axis connecting the two bales as a function of time and initial position. The
discrete decision is which bale of hay to consume. In the case of the phase detector,
the continuous variable is the voltage at the cross-coupled nodes of the flip-flop state
element as a function of time and initial voltage. In this case, the initial voltage refers
to the voltage established at the cross-coupled nodes right after sampling the flop data
input. The discrete decision is whether a particular node will converge to logic 0 or
logic 1.

This is of course the well-known synchronization failure problem [3]. No one
can build a phase detector that can guarantee a valid logic output in bounded time
if the controlled clock falls within the dsw established by the sampling clock. In
this case, the output can be at an undefined logic level (metastable state) for an
arbitrarily long time, and eventually this undefined level may be interpreted by
two separate logic receivers as different logic values. This can cause catastrophic
DLL failure because it can drive the control automaton into a wrong or undefined
state. Metastability in static flops has been extensively studied and observed in
practice [5].

Although it is not possible to build a phase detector which will never experi-
ence metastability for unbounded time, it is possible to design a phase detector that
minimizes the probability of system failure. We will study this problem by deriving
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an expression for the voltage in the cross coupled gates inside the phase detector as
a function of time and initial conditions. Then, we will assign a probability mea-
sure to two events: Entering a metastable condition at time t = 0 and still being in
a metastable condition at time t = td . Finally, we will derive an expression for the
mean-time-between-failures (MTBF) which provides an indication of how often we
can expect catastrophic synchronization failures in a DLL.

We develop a first order metastability model based on the analysis of Veendrick
[6]. We begin by assuming a linear voltage transfer function for a CMOS inverter
(for normalized supply voltage):

Vo = −A(Vi −Vsw)+0.5, (6.5)

where Vi and Vo are the voltages at the input and output of the inverter, respectively,
Vsw is the switching threshold (defined as the value of Vi for which Vo = 0.5) and A is
a large positive number denoting the inverter gain. There is an underlying assumption
that Vo is further processed by a nonlinear limiter which clamps Vo to 1 for all Vo > 1
and also clamps Vo to 0 for all Vo < 0. All voltages are normalized (Vi,Vo,Vsw) and
assume values between 0 and 1. Figure 6.7 plots Eq. (6.5) for A = 10, Vsw = 0.5.
Figure 6.8 plots Eq. (6.5) for various A and Vsw parameter values.

Cross-coupling two inverters results in three equilibrium positions (Fig.6.9): Two
stable positions (a small voltage perturbation will result in the system canceling it out
and remaining in the same state) that signify the two memory states, and an unstable
equilibrium position (a small voltage perturbation will result in the system leaving
this state and assuming one of the two stable states) signifying the metastable state.
The metastable voltage Vm that the two system nodes converge is a function of the
inverter gain A and switching threshold Vsw and can be computed easily by setting
Vi = Vo = Vm in Eq. (6.5) (Fig.6.10):

Vm =
2AVsw +1
2(A+1)

. (6.6)

We introduce transient behavior in the cross-coupled inverter model by adding
an RC output stage to the ideal gain elements along the lines of [6] as shown in
Fig.6.11. We omit the limiters and make the assumption that this model is only valid
for inverter input voltages that fall in the linear region of the transfer function Vsw −
0.5/A ≤Vi ≤Vsw +0.5/A (Fig.6.7).

We assume that the sampling switch is ideal, and that clocking this latch consists
of establishing the following initial conditions at t = 0 (please note the change of
variable names V1(t) and V2(t) in Fig.6.11):

V2(0) = V0, (6.7)

V1(0) = −A(V0 −Vsw)+0.5, (6.8)
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Fig. 6.8. CMOS inverter voltage transfer function parametrization

We want to derive an analytical expression for V1(t). We begin by enforcing KCL
at V1(t) and V2(t), respectively:

dV1(t)
dt

+
1

RC
V1(t)+

A
RC

V2(t)−
AVsw +0.5

RC
= 0, (6.9)

dV2(t)
dt

+
1

RC
V2(t)+

A
RC

V1(t)−
AVsw +0.5

RC
= 0. (6.10)
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In order to simplify the analysis, we introduce two new functions:

Vd(t) = V1(t)−V2(t),
Vs(t) = V1(t)+V2(t).
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Fig. 6.11. Small signal model of cross-coupled inverters. Reproduced with permission in a
form similar to that in [6], c©1980 IEEE

Subtracting (6.10) from (6.9) yields:

dVd(t)
dt

− A−1
RC

Vd(t) = 0. (6.11)

Adding (6.10) to (6.9) yields:

dVs(t)
dt

+
A+1
RC

Vs(t)−
2AVsw +1

RC
= 0. (6.12)

Initial conditions for Vd(t) and Vs(t) have been established during sampling:

Vd(0) = V1(0)−V2(0),

Vs(0) = V1(0)+V2(0).

The solution of (6.11) is

Vd(t) = [V1(0)−V2(0)]e
A−1
RC t . (6.13)

The solution of (6.12) is

Vs(t) =
(

V1(0)+V2(0)− 2AVsw +1
A+1

)
e−

A+1
RC t +

2AVsw +1
A+1

. (6.14)
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Expression (6.14) can be simplified by substituting the expression for the metastable
voltage (6.6):

Vs(t) = [V1(0)+V2(0)−2Vm]e−
A+1
RC t +Vm. (6.15)

Reverting back to the original variable V1(t), we have

V1(t) =
(

V1(0)+V2(0)
2

−Vm

)
e−

A+1
RC t +

V1(0)−V2(0)
2

e
A−1
RC t +Vm. (6.16)

Equation (6.16) can be simplified and become more meaningful if we make the
following observation: The decaying exponential quickly vanishes with increasing t
and the expression is dominated by the increasing exponential. We can approximate
the expression above by only keeping the positive exponential with its coefficient
adjusted for the initial condition:

V1(t) = (V1(0)−Vm)e
A−1
RC t +Vm. (6.17)

Equation (6.17) is fundamental in the description of cross-coupled circuits and
states that a perturbation from the unstable equilibrium position Vm results in a time-
exponential path toward a stable state. We note that Eq. (6.17) has a consistent
solution for V1(t = 0) and also that for V1(0) = Vm, we have V1(t) = Vm for all t
which is another way of saying that a metastable state may persist indefinitely. We
also note that Eq. (6.17) is identical to Eq. (1-18) in [3] although the derivation is
very different. Mead and Conway derive the cross-coupled inverter node equation
starting from basic circuit relationships in a depletion-loaded NMOS cross-coupled
pair.

It is important to understand that Eq. (6.17) is only valid for node voltages in
close proximity to the metastable voltage Vm. Both initial conditions V1(0) and V2(0)
must lie in the shaded regions of Fig.6.12 and be related through the gain curve. Un-
less this is true, the assumptions made during the derivation of (6.17) (both inverters
are in their linear region) are no longer operative. We can still make the assertion that
Eq. (6.17) fully describes the metastable state because reaching the voltage limit of
the above equation signifies the exit from metastability: At that point, the node volt-
age has reached a value outside the linear gain limits and any receiver with a similar
gain curve will interpret it as a well-defined logic state. Figure 6.13 plots (6.17) for
various initial conditions of V1(0)−Vm and exhibits the exponential nature of the
trajectory leading the node voltage out of the metastable state.

Metastability is a stochastic phenomenon and must be studied with probabilistic
tools. Equation (6.17) states that there exists an initial condition V1(0) = Vm which
will cause the phase detector to lie in the metastable state indefinitely. At the same
time though, if V1(t) is modeled as a continuous random variable, then the probability
of V1(t) assuming a discrete value Vm vanishes. It is not possible to design a perfect
phase detector, one that is guaranteed not to lie in the metastable state indefinitely.
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Fig. 6.12. Valid node voltage region for Eq. (6.17)

It is possible though to design a phase detector that has an arbitrarily small condi-
tional probability of being in the metastable state at a given time td assuming it was
in the metastable state at time t = 0.

Before proceeding to define the problem in stochastic terms, let us simplify
Eq. (6.17) by referring all voltages to Vm instead of ground [6]:

V (t) = V1e
t

τm , (6.18)

V (t) = V1(t)−Vm, (6.19)

V1 = V1(0)−Vm, (6.20)

τm =
RC

A−1
. (6.21)

Furthermore, we need to state two assumptions:

• We consider a phase detector to be metastable when its output voltage V1(t) is
within ΔV of Vm:

|V (t)| < ΔV, (6.22)
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where ΔV is a phase detector/synchronizer parameter and is the maximum volt-
age deviation from Vm which will still guarantee that both cross-coupled nodes
are in the linear gain region of the two cross-coupled CMOS gates.

• The initial condition V1 is a random variable uniformly distributed between −ΔV
and ΔV . By definition then, the system is metastable at t = 0.

We wish to quantify the probability that the phase detector is still metastable at
t = td given that it is metastable at t = 0:

Pr(|V (td)| < ΔV ) = Pr(
∣∣∣V1e

td
τm

∣∣∣< ΔV ). (6.23)

Multiplying both sides of the event inequality in (6.23) with e−
td
τm yields:

Pr(|V1| < ΔV e−
td
τm ) = e−

td
τm . (6.24)

The last equation stems from the fact that V1 is uniformly distributed between −ΔV
and ΔV . We can arrive at the same result using a different approach [3]: Let us
assume that the exit from the metastable state can be modeled as the first arrival
of a Poisson process with rate λ . Modeling it as a Poisson arrival implies that the
probability of leaving the metastable state within a very small time interval Δ t is
proportional to the duration of the interval and equal to λΔ t. This makes physical
sense since in general, Poisson processes are heavily used to model simple stochastic
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phenomena in continuous time. The probability density function of the time until the
first Poisson arrival (l1) is given by the following Eq. ([7]):

fl1(t) = λe−λ t . (6.25)

The probability that the phase detector is still metastable at time td is given by the
following expression:

Pr(l1 > td) =

∞∫

td

λe−λ tdt = e−λ td . (6.26)

For λ = 1/τm, expression (6.26) is in agreement with (6.24).
Equation (6.24) describes a conditional probability where the conditioning event

is |V1| < ΔV (phase detector is metastable at time t = 0). We will now quantify the
probability of the conditioning event and determine the overall unconditional proba-
bility of phase detector failure. Let us assume that in the DLL locked state, the feed-
back clock edges are uniformly distributed between −dr and dr with respect to the
sampling reference clock edge (where dr is the DCDL resolution). This is a reason-
able assumption to make assuming that the digital control module will be designed
with a small ±1 LSB limit cycle and various noise processes will add uncertainty to
the feedback clock edges. We further assume a feedback clock slew rate of L in V/s.
Figure 6.14 shows graphically that such a distribution of feedback edges will cause
a uniform distribution of sampled voltages with a range equal to 2Ldr. The probabil-
ity of the conditioning event is, therefore, ΔV/(Ldr), and the overall phase detector
unconditional failure probability at td is,

Pr(Metastable at td) =
ΔV
Ldr

e−
td
τm . (6.27)

So far, we have made enough assumptions and simplified our model sufficiently
to be able to derive a simple formula for ΔV , the sampled voltage deviation from
Vm which will place a cross-coupled structure in a metastable state. Without loss of
generality, we can simplify the analysis by assuming Vm = Vsw = 0.5 in Eq. (6.5)
(all voltages are normalized with respect to the nominal supply voltage). The range
of input voltages which will cause a cross-coupled structure to become metastable
should be determined by requiring that the result of applying the inverter transfer
function (6.5) to such input voltage should yield a voltage which is still in the linear
range of the same transfer function (shown in Fig.6.7). If this is not the case, then a
logic gate with similar gain will interpret the cross-coupled output as a discrete logic
value. Moreover, the second cross-coupled gate will also interpret such an output as
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Fig. 6.14. Determining the probability of entering metastability

a discrete logic value, and the latch will converge to a non-metastable state as soon as
the sample switch opens up. It is straightforward to calculate that the above condition
will be satisfied for:

ΔV =
1

2A2 . (6.28)

Let us now briefly focus on td , the allowed metastability resolution time. For a
digital DLL with a bang–bang phase detector, td is at least equal to the reference
clock period T . It is also common to add additional synchronization stages and ef-
fectively extend the resolution time to nT . Updating Eq. (6.27) with our latest obser-
vations and also expanding the expression for τm we have,

Pr(PD Failure) =
1

2nA2Ldr
e−

A−1
roC nT , (6.29)

where
dr DCDL resolution
L Feedback clock edge rate
ro Small signal output resistance of gate around Vm.

Should be small signal saturation resistance of pullup device
in parallel with pulldown device
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A Small signal gate gain. Should be gmro where gm is pullup transconductance
in saturation in parallel with pulldown transconductance.

C Cross-coupled node capacitance
T Reference clock period
n Number of synchronization stages including the phase detector

An additional scaling factor of 1/n has been included to account for the fact that a
digital controller typically implements a 1/n correction issue rate in order to min-
imize limit cycle amplitude and guarantee stability (Sect. 6.6). In such a case, the
controller only looks at the output of the phase detector once every n cycles and the
probability of entering a metastable state must be scaled accordingly. Equation (6.29)
quantifies the risk of DLL failure for T seconds of operation. An alternative way of
expressing this risk is the mean-time-between-failures (MTBF):

MTBF =T Pr(PD Failure). (6.30)

The MTBF figure of merit is typically expressed in years and signifies the average
duration of error-free operation. In digital system applications, an MTBF in excess
of 10–100 years is typically desired.

An Example of Phase Detector Failure Calculation

It is important to realize that Eq. (6.29) is based on a number of assumptions and ap-
proximations such as the inverter piecewise linear transfer function of Eq. (6.5). Nev-
ertheless, it captures the right dependencies on design parameters and can be used
as a phase detector design guideline. The MTBF value predicted by (6.30) should
have substantial margin of a few orders of magnitude to guarantee correct operation
even in the presence of modeling inaccuracies that can affect the final result in an
exponential nature.

Although it is certainly possible to assign circuit parameters to all contributing
factors of Eq. (6.29) [6], it is probably much easier to estimate MTBF using spice
small signal analysis around Vm. Figure 6.15 shows the setup of a spice AC analysis
for a 45 nm cross-coupled inverter using 45 nm bulk spice predictive models [8–10].
A self-biased inverter is used to compute the metastable voltage (Vbias in Fig.6.15)
which is then used as the bias point through an ideal buffer for a cross-coupled pair
of identical sizing. An AC source is cascaded in series with the bias point to calculate
gain, output resistance, and node capacitance.

For this example, Table 6.4 shows the MTBF calculation under certain assump-
tions for L, n, T , and dr. The MTBF calculation is very sensitive to the metastability
time constant (τm), and the parameters that affect it because of the exponential de-
pendence. As an example, if the node capacitance gets doubled from the value
in Table 6.4 due to the necessary addition of a receiving gate, MTBF becomes
4.7624× 109 years. If it triples due to poor phase detector design, MTBF will be-
come 24.58 years.
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Table 6.4. Example MTBF calculation for the circuit of Fig. 6.15

Parameter Value Units

Clock period (T ) 1×10−9 s
Slew rate (L) 1×1010 V/s
DLL subsampling factor (n) 1 –
DLL resolution (dr) 50×10−12 s

Gain (A) 4.5456 –
Output resistance (ro) 9.3079×103 Ω
Node capacitance (C) 3.3271×10−15 F

Probability of entering metastability: 1
2nA2Ldr

0.0484 –

Metastability time constant: τm = roC
A−1 8.7343×10−12 s

Conditional probability of being metastable at nT : e−
nT
τm 1.8928×10−50 –

Unconditional synchronization failure probability: 1
2nA2Ldr

e−
nT
τm 9.16×10−52 –

MTBF 3.4615×1034 years

All devices are minimum length (45nm)

AC

0.63µm

0.2µm

0.63µm

0.2µm

0.63µm

0.2µm

Vbias vi vo

Fig. 6.15. Determining MTBF with a spice simulation

6.5 DCDL Design

There is a very broad range of delay line design options limited only by designer
imagination. This section provides a structured overview of various DCDL design
approaches. The structure based on DCDL characteristics adopted for this section
does not follow a widely accepted classification in the field but is merely done for
ease of presentation. Moreover, this section is by no means an all-inclusive exposition
of all possible design options. It can be considered a stratified sampling of the design
space that presents various alternatives based on the main DCDL characteristics of
Sect. 6.2 (Dmin,Dmax,dr). Additional characteristics (such as input capacitance, lin-
earity, and potential for synchronous vs. asynchronous setting change) will also be
identified.
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For ease of presentation, we divide DCDLs into two main categories based on
dr: Gate-delay DCDLs (coarse) and Subgate-delay DCDLs (fine).

6.5.1 Gate-Delay DCDLs

Gate-delay DCDLs can be constructed by cascading standard CMOS logic gates
to form a delay chain with intermediate outputs routed to a high-fanin multiplex-
ing structure. Alternatively, the chain length can be modulated using low-fanin dis-
tributed multiplexing structures as part of the delay cell. They exhibit relatively small
Dmin, arbitrarily high Dmax but relatively coarse dr by design.

A very popular coarse delay line is shown in Fig.6.16 [11, 12]. This particular
implementation has four hierarchical delay stages between input A and output Y . It
is controlled by a bidirectional shift register with one-hot encoding (Q[3 : 0]). Res-
olution dr is 2TG, where TG is the average CMOS gate delay. NAND gates labeled
with the letter B form a distributed multiplexer that controls the entry point of the
clock (A input) in this cascaded structure. One important observation is that this de-
sign presents substantial load to the clock especially for a large number of delay
stages since all delay element inputs are shorted. Clock buffering may be necessary
which will increase Dmin to a value larger than 2TG. An arbitrarily high number of
stages can be cascaded to increase dynamic range provided that input A is sufficiently
buffered. Dmax is 2NTG, where N is the number of delay stages.

The folded design of Fig.6.17 eliminates the heavily loaded A input by modulat-
ing the delay line length in a telescopic fashion. This design is also controlled by a
bidirectional one-hot shift register. For Q[3 : 0] = 0001 the signal path is Cell 0.A+
Cell 0.B. For Q[3 : 0] = 0010 the path is Cell 0.C + Cell 1.A + Cell 1.B + Cell 0.B.
The length modulation of this structure can be compared to the sliding action of a
trombone. The wrap-around connection between IN1 and OUT 1 of Delay Cell 3 is
not part of the delayed signal path but is necessary to establish the propagating con-
dition for the B NAND gate associated with the delay cell that constitutes the final
telescope link (CTL = 1). If the delay cell had non inverting forward and reverse
paths, then input IN1 of Delay Cell 3 could have been hard-wired to ground. The
wrap-around connection makes it toggle between odd and even settings to ensure
that the signal will propagate for all setting values. The characteristics of the tele-
scopic line are identical to the previous one with the sole exception that Dmin can be
2TG since there is no need for input buffering.

A straightforward coarse DCDL implementation is shown in Fig.6.18. Two cas-
caded inverters constitute the delay element and a binary multiplexer selects the ap-
propriate output tap. Dmin is equal to 2TG + log2 N×TG and dr is still 2TG. This delay
line can be controlled by a binary counter (Q[1 : 0]) requiring log2 N storage elements
as opposed to the N storage elements of the previous two designs. The control struc-
ture of this DCDL scales better with N as opposed to the NAND-based ones. Dmin
also increases though with increasing N and for certain applications this may be a
concern.

DCDLs with a single TG resolution are also possible. Figure 6.19 illustrates one
based on a differential delay element. The relative sizing of the cross-coupled devices
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Fig. 6.16. NAND-based registered-controlled 4-stage delay line

vs. the forward devices can be used to fine tune dr as long as writing the cross-
coupled pair can be safely guaranteed across all PVT conditions. Figure 6.20 shows
a single-ended single TG DCDL with a conditionally inverting output stage. The
output XNOR gate must be designed with equal delays from both input polarities to
the output to ensure linearity.

Design options are certainly not limited to the five examples shown above. Not
only different organizations are possible but also different logic families (i.e., dy-
namic or low swing current model logic) can be used as the base for the delay
cell and the multiplexing structure. The characteristics of the examples presented
so far are summarized in Table 6.5. Further assumptions are that the single-ended-to-
differential converter of Fig.6.19 and the XNOR of Fig.6.20 can be implemented
with two gates and, therefore, add 2TG to Dmin and Dmax of the corresponding
DCDLs.

Physical design is very important in precisely controlling DCDL specifications.
All delay cells should be identical, and metal capacitance should be thoroughly char-
acterized since it will probably be responsible for a substantial percentage of the cell
delay. Post-layout simulation-based characterization across all PVT corners should
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Fig. 6.18. Inverter-based logarithmic 4-stage delay line

be done in order to establish the ranges for Dmin, Dmax, and dr and ensure that
the application requirements are met. In most cases, coarse DCDLs will be oper-
ating on clock signals, where duty cycle fidelity is important. If there are significant
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Table 6.5. Characteristics of coarse DCDLs

Dmin Dmax dr Dynamic range Linearity CTL flops

NAND (Fig. 6.16) > 2TG > 2NTG 2TG 2(N −1)TG Good N

Tel. (Fig. 6.17) 2TG 2NTG 2TG 2(N −1)TG Good N

Log. (Fig. 6.18) TG(2+ log2 N) TG(2N + log2 N) 2TG 2(N −1)TG Good log2 N

Diff. (Fig. 6.19) TG(3+ log2 N) TG(2+N + log2 N) TG (N −1)TG Good log2 N

Cond. (Fig. 6.20) TG(3+ log2 N) TG(2+N + log2 N) TG (N −1)TG Good log2 N
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imbalances between rise vs. fall delay in the delay cell and the multiplexing structure,
severe duty cycle distortion may occur at the output signal especially for large delay
settings. In extreme cases of high frequency clocks and long DCDLs, the square wave
may completely disappear and a DC value may be observed at the output. NMOS vs.
PMOS ratios for equal rise and fall times should be used and if possible inverting
logic gates should be instantiated in cascaded pairs with similar fanouts to ensure
equal treatment of positive vs. negative edges and good duty cycle PVT tracking.

Under certain circumstances, the NAND-based DCDLs of Figs. 6.16 and 6.17
can have a power advantage. Their switching activity is setting dependent and will
exhibit reduced switching power at lower settings. A complete power comparison of
the DCDLs presented so far is process and application dependent and will provide
little if any additional insight.

Synchronous vs. Asynchronous Operation in Coarse DCDLs

DCDL outputs are typically clock signals and as such must always be well behaved
and not undergo spurious transitions (glitches) that may cause erroneous circuit op-
eration. In order to demonstrate an important differentiation among DCDLs, we will
adopt the ad hoc definition that a DCDL capable of asynchronous operation is a
DCDL that can undergo a valid setting change (±1) at any time without the possibil-
ity of a glitch at the output. On the other hand, a DCDL capable of synchronous only
operation is a DCDL that requires that valid setting changes be timed synchronously
with respect to the input clock in order to guarantee glitch-free output behavior.

DCDLs are essentially combinational (stateless) circuits with clock being simply
another input. As a result, spurious transitions at the output are certainly possible un-
less all inputs are guaranteed to transition at the same time and all inputs have equal
delay paths to the output. Neither is true in the DCDL case. Clock is not guaranteed
to transition at the same time as the control settings and clock has multiple paths
to the DCDL output through the delay element chain. Under certain circumstances
though, and using simple analysis, we can convince ourselves that a certain class of
DCDLs can have a glitch-free output. Before proceeding with the analysis, we make
two important assumptions: We are considering DCDLs where all the control setting
inputs have equal delay paths to the output, and we only consider setting changes
that increment or decrement the current setting by one position.

A simplified delay line that is consistent with these assumptions is shown in
Fig.6.21. It contains a single delay element of delay dr and a 2-input multiplexer.
For simplicity, we assume that the multiplexer input-to-output and select-to-output
delays are both equal to tm. The timing diagram on the right shows the conditions that
can generate a spurious output transition. The select line needs to transition while the
clock edge goes through the delay element. Furthermore, dr needs to be large with
respect to tm for such a glitch to be formed. In reality, if dr is reasonably close to tm
the glitch will never form because of low pass filtering. The right design approach is
to set up the conditions of Fig.6.21 and simulate across all PVT conditions to ensure
that the glitch won’t form.
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Interestingly enough, none of the DCDLs in Figs. 6.16 through 6.20 are glitch-
free. Their setting vectors do not have equal delays to the output, and therefore the
simple analysis of Fig.6.21 does not apply. They have a lot more exposure to spu-
rious transitions, and their analysis is rather ad-hoc and can be quite cumbersome.
It is safe to create a design restriction stating that only coarse DCDLs with equal
setting-to-output delays should be considered when glitch free operation is neces-
sary. Distributed and logarithmic multiplexer structures are not allowed.

The simple DCDL of Fig.6.18 can be a candidate for glitch-free operation if
the output logarithmic multiplexer is replaced by a one-hot NAND-based (sum-of-
products) multiplexing structure where each control line is at the same logic depth.
Another potential solution is to pad the most significant bit with additional delay and
the problem transforms to heterogeneous structure delay tracking across PVT and
can be rather process-specific.

The coarse DCDLs of Figs. 6.16 through 6.20 are typically used in applications
where the clock is not utilized while settings transition. Alternatively, they can be
used in a synchronous fashion. The control inputs must be timed in a way that guar-
antees that when they change, the entire delay chain is at a constant value. This can
be accomplished by latching the settings with an appropriate strobe which can either
be the input clock or a delayed version of it (perhaps a particular delay chain tap)
that meets this timing restriction. Extensive validation is required.

They can also be used asynchronously by adding significant hardware resources
and control complexity. Such an example is shown in Fig.6.22. We have a pair of
identical delay lines. Only one is on-line at any single time. When there is a settings
change, it is performed on the off-line DCDL. When the change has stabilized and
all spurious transitions are gone, the output multiplexer is flipped and the new set-
tings change shows up at the output. At this point, the analysis of Fig.6.21 applies.
In addition to consuming large hardware resources, this structure has a very subtle
issue. It is based on the assumption that if we have two instantiations of a delay line
on silicon and one has a setting equal to n and the other has a setting equal to n+1,
then the one with the n + 1 setting will have a longer delay. This may not be true
in deep submicron processes due to large random Vt variation. Monte Carlo analysis
can show a substantial probability of such a case. If this happens, then the composite
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delay line is non-monotonic. This will affect performance, and under certain cir-
cumstances, it may confuse the control automaton and cause catastrophic failure. A
better approach is shown in Fig.6.23 where a single dual output delay line is used. It
uses less hardware and does not have potential monotonicity issues. It has the same
control complexity though.

DELAY LINE 1

SETTING0

SETTING1

DELAY LINE 0

SEL

0

1
OUTCLK

Fig. 6.22. Duplicating DCDLs for glitch suppression

SEL

Y0

Q0[1]

Q0[0]

A

Q1[0]

Q1[1]

Y1

OUT

Fig. 6.23. Dual output DCDL for glitch suppression

6.5.2 Subgate-Delay DCDLs

Phase lock accuracy requirements can be tighter than a gate delay. In such applica-
tions, a subgate-delay (fine) DCDL must be employed.

A class of fine DCDLs relies on variable RC delays for delay generation. Two
examples of fine DCDL stages are shown in Fig.6.24. The delay stage on the
left is based on variable cell driving resistance. Turning on more device branches
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through control vector Q[2 : 0] reduces the overall RC delay through the stage.
Transistors in the variable branches are sized for linear control vector encodings.
Control bits Q[2 : 0] are thermometer encoded and have a fixed switching order (i.e.,
000 → 001 → 011 → 111). Logarithmic encoding is not possible due to the non-
linearity of parallel resistance addition. Table 6.6 shows a normalized example of
branch sizing for linearity. The example should be considered as a starting point only
and process specific fine tuning will be required. The number of variable branches
is limited by the extreme sizing that will be required to maintain linearity for an in-
creasing number of control bits. The dynamic range can be extended by cascading
multiple such stages at the expense of increasing Dmin.

Table 6.6. Variable resistance DCDL branch sizing (thermometer-encoded control)

Normalized width Equivalent resistance Capacitance RC delay
Always-on branch (AO) 1 1 4 4
Branch 0 + AO 1/3 + 1 3/4 4 3
Branch 1 + 0 + AO 2/3 + 1/3 + 1 1/2 4 2
Branch 2 + 1 + 0 + AO 2 + 2/3 + 1/3 + 1 1/4 4 1

The stage on the right is based on variable output capacitance. Turning on more
capacitive branches increases the RC delay through the cell. Both linear (thermome-
ter) and logarithmic (binary) control encoding are possible due to the linearity of
parallel capacitance addition. Output capacitors can be metal-based or device-based
depending on accuracy and linearity requirements. Per-stage dynamic range is lim-
ited by the maximum edge rate tolerated by the design. The dynamic range can be
extended by cascading multiple stages as in the previous case.

An alternative method of constructing fine delay lines is shown in Fig.6.25. It
is based on the delay difference between the top vs. the bottom delay path. Control
encoding is thermometer-based. This organization can achieve PVT-independent lin-
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Fig. 6.25. Fine DCDL based on delay differences

earity subject only to random process variation. The main drawback is that both lin-
earity and dynamic range are achieved through large Dmin increases which can be a
problem for certain applications.

An additional method of constructing subgate delays based on phase interpola-
tion will be discussed in Sect. 6.5.3.

The delay lines of Figs. 6.24 and 6.25 can have resolution on the order of a few
picoseconds but a very limited dynamic range. They can be operated asynchronously
without the possibility of a glitch forming at the output. The DCDLs of Fig.6.24 vary
resistance and capacitance. Settings changes are not considered combinational logic
switching events. On the other hand, the multiplexer-based DCDL of Fig.6.25 can
be analyzed using the method of Fig.6.21 with a much smaller dr.

6.5.3 Resolution vs. Dynamic Range in DCDLs

In typical applications, both fine resolution and large dynamic range are highly desir-
able. High resolution directly affects phase match accuracy. A large dynamic range
ensures that the DLL won’t be the limiting factor in selecting input clock frequencies
or VMIN for the overall design.

From the previous analysis on DCDLs, it would seem that designers must per-
form a tradeoff between resolution and range. This is rarely true in real applications
since both are essential. Instead of using a single delay line that compromises dr in



212 T. Xanthopoulos

favor of dynamic range for a given number of settings, multiple delay lines can be
employed with different properties so that the overall design target is met [13]. Typi-
cally, a coarse high dynamic range DCDL is cascaded with a fine low dynamic range
subgate DCDL to achieve both specifications. This design decision involves addi-
tional complexity in the control automaton which must first lock the coarse line to an
appropriate setting (which tracks input clock frequency and static process and volt-
age variations) and then engage the fine delay line which tracks dynamic voltage and
temperature variations. Depending on control implementation, the coarse DCDL can
readily be of the synchronous type (as described in Sect. 6.5.1) if it is locked only
once and settings never change while in mission mode. In this case, the designer
must ensure that the fine delay line has enough dynamic range on either side of the
lock point to guarantee phase lock maintenance in the presence of voltage and tem-
perature ramps spanning the entire product voltage-temperature range in the worst
possible scenario. If this is not possible, the control algorithm must ensure repeated
engagement of the coarse DCDL to compensate for large V-T ramps without the pos-
sibility of a large phase change affecting system functionality. Such an example is a
DDR memory incoming strobe phase lock system which engages the coarse DCDL
only when there is no memory transaction present on the bus and, therefore, no one
is looking at the data strobe. While memory reads or writes are in progress, only the
fine DCDL is engaged which should guarantee DLL-induced deterministic jitter on
the order of a few picoseconds and no spurious clock transitions. An additional con-
cern with cascaded DCDLs is increased Dmin which can be shown to be prohibitive
for certain applications since it directly affects the overall minimum supply voltage
allowed (VMIN).

There exists a powerful method of achieving both low dr (high resolution) and
arbitrarily high dynamic range with low Dmin and without cascading DCDLs. It is
based on the “ping-pong” DCDL arrangement of Figs. 6.22 and 6.23 with a phase
interpolator as the output stage instead of the 2-to-1 multiplexer. A phase interpola-
tor receives two input clocks with a phase difference on the order of 1-2 gate delays
and a digital setting value. For a setting equal to zero, the interpolator output simply
delays the early input phase by a fixed amount. For a setting equal to the maxi-
mum possible value, the interpolator output delays the late input phase by the same
amount. For any intermediate setting, the interpolator produces an output clock with
a phase proportional to the applied setting as measured using the output at setting 0
as a reference.

A sample schematic is shown in Fig.6.26. The two separate branches are imple-
mented with tri-state inverters controlled by complementary settings. Typically, the
output is restored with an output inverter (not shown) which also makes the overall
structure non-inverting. For a first order analysis, we will use the methodology and
terminology established in [14] for current-mode reduced-swing structures. The time
delay between the two interpolated phases is Δ t, and it will be used as a parameter
throughout the analysis. We make the following assumptions:

1. The overall output resistance of a branch when fully enabled is R and has no
voltage dependence.



6 Digital Delay Lock Techniques 213

2. The interpolation setting can be represented by a continuous variable w where
0 ≤ w ≤ 1. When w = 1, the early phase is fully enabled, and the late phase does
not affect the output. When w = 0, the early phase is disabled and only the late
phase controls the output. For any other value, both the early and the late phase
affect the output delay with weights equal to w and 1−w, respectively.

Vo

C

CTL [n−1 : 0]

CTL [n−1 : 0]

CTL [n−1 : 0]

CTL [n−1 : 0]

[n − 1 : 0]

[n − 1 : 0]

[n − 1 : 0]

[n − 1 : 0]

[n − 1 : 0]

[n − 1 : 0]

[n − 1 : 0]

[n − 1 : 0]

f0

f1

Fig. 6.26. Full swing phase interpolator (log2 n-bit control)

The interpolator time constant RC (where R is the on-resistance of a fully enabled
branch and C is the output capacitance in Fig.6.26) is a fundamental property which
will affect transfer function linearity as will be shown. Without loss of generality,
we assume that the interpolator is mixing two falling edges (φ0 and φ1) so that the
output waveform is rising. Phase φ0 occurs at time 0 and φ1 occurs at time Δ t. For
0 ≤ t < Δ t, the equivalent circuit is shown in Fig.6.27a. Writing KCL at Vo yields
equation:

dVo(t)
dt

+
1

RC
Vo(t)−

wVDD

RC
= 0, (6.31)

which has the following solution assuming Vo(0) = 0 :

Vo(t) = wVDD(1− e−
t

RC ). (6.32)
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For t ≥ Δ t, both branches pull high and resistors R/w and R/(1−w) are con-
nected in parallel. The equivalent circuit is shown in Fig.6.27b. The governing equa-
tion is:

dVo(t)
dt

+
1

RC
Vo(t)−

VDD

RC
= 0, (6.33)

with the following well-known solution (assuming zero initial conditions):

Vo(t) = VDD(1− e−
t

RC ). (6.34)

a b

Δt ≤ t

C

R

Vo 

0 ≤ t < Δt

R/(1−w) C

Vo 

R/w

Fig. 6.27. Phase interpolator equivalent circuits

The overall solution is a composite waveform that consists of Eq. (6.32) for
0 ≤ t < Δ t and Eq. (6.34) for t ≥ Δ t time-shifted by Δ t and adjusted by the ini-
tial condition established by Eq. (6.32) at t = Δ t:

Vo(t) = wVDD(1− e−
t

RC )u(t)u(Δ t − t)+VDD[1− (1−w+we−
Δ t
RC )e−

t−Δ t
RC ]u(t−Δ t),

(6.35)

where u(t) is the unit step function.
Figure 6.28 plots Eq. (6.35) for various Δ t using the interpolator weight w as

a parameter. It is obvious from the VDD/2 crossing point that linearity with respect
to w is a strong function of Δ t. The larger Δ t is with respect to the interpolator
time constant RC, the larger the deviation from linearity with respect to interpola-
tion weight w. This is more clearly shown in Fig.6.29 that shows interpolator delay
transfer function with respect to interpolation weight w using Δ t (delay between two
input phases) as a parameter. The top graph shows absolute inteprolator delay as a
function of w adjusted so that the delay for w = 1 (early phase only affecting the out-
put) is zero. The bottom graph shows the same data but normalized to the same 0−1
range. Linearity is quite good for Δ t � RC but deteriorates quickly for increased
spacing between input phases φ0 and φ1. The interpolator time constant RC is a fun-
damental property that has a strong effect on its linearity. Larger time constants are
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Fig. 6.28. Phase interpolator normalized voltage output for Δ t = 0.5,1,2 (w is decreasing from
1 to 0 in steps of 0.1 from left to right in all three plots)

desired if linearity is important. An effect similar to an increased interpolator RC can
be achieved by slowing the edge rates of input phases φ0 and φ1.

An interpolator based DCDL can achieve both high resolution and high dynamic
range at the expense of increased control complexity. Such a DCDL can easily be
designed to be free from spurious output transitions. When a coarse setting changes
that affects one input of the interpolator, the interpolator weight should be such that
only the other non-changing input affects the output.
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Fig. 6.29. Phase interpolator transfer function for varying Δ t. Top graph reproduced in a form
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6.6 Control

There is one major classification that needs to be made regarding digital DLL control:
first order and higher order. A first order digital DLL contains a single DCDL state
element (counter or shift register) that maintains the delay line setting and gets up-
dated through some mechanism based on the phase difference between reference and
controlled clock. In contrast, a second order DLL will have a second counter which
maintains some representation of the frequency or rate of phase change between the
two clocks. The DCDL is then adjusted by combining both such state variables. All
DLL examples in this chapter assume that the reference clock at the phase detector
and the source clock of the DCDL are the same. Therefore, there is no possibility of
a frequency difference between the two inputs of the phase detector. An application
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where a second order control loop would make sense is clock-data recovery, which
is briefly described in Sect. 6.9.4. The rest of this section is only concerned with first
order control and identical frequencies of reference and feedback clocks.

A typical DLL control block contains a state structure that holds the DCDL set-
tings and a mechanism to update the settings based on input from the phase detector.
The state element can be a binary up/down counter if the DCDL has binary encoding.
Different DCDL setting encodings can be easily handled with the addition of com-
binational decoding logic past the main counter. The designer should always keep in
mind that post-flop combinational logic can generate spurious transitions and create
more conditions for glitches at the output of the DCDL. For one-hot DCDL config-
urations, it is more common to use a bidirectional shift register which requires no
decoding and will produce glitch free control outputs.

The simplest control arrangement is shown in Fig.6.30a. It involves a single
up/down counter (or bidirectional shift register) under the direct control of the phase
detector. When the phase detector evaluates to a 1 (controlled clock faster with
respect to the reference), the counter is incremented and the DCDL has a larger
(slower) setting. When the PD evaluates to a 0, the counter is decremented and the
DCDL speeds up. A more general control arrangement is shown in Fig.6.30b. In this
case, a Finite State Machine (FSM) is inserted between the phase detector output
and the counter increment/decrement. The FSM will make setting change decisions
based not only on the phase detector output but also based on internal state. In this
fashion, more complex control algorithms can be implemented which can have a
strong impact on DLL capabilities such as sensitivity to initial conditions, dynamic
range, and stability.

a b

CTL

CLKOUTCNIKL

PD CNT

DCDL

CNT

CTL

CLKIN CLKOUT

PD FSM

DCDL

Fig. 6.30. DLL control options

6.6.1 Sensitivity to Initial Phase

Even though a DLL may contain a DCDL with a large dynamic range, a simplistic
control design may result in an inability to achieve phase lock. An example is shown
in Fig.6.31. Let us assume that the DLL configuration is the one in Fig.6.30a with
Dmin < 0.5T where T is the CLKIN period. The waveforms right after system reset
(zero DCDL setting) are shown on the top part of Fig.6.31. The stateless control de-
sign of Fig.6.30a will attempt to push the DCDL toward the left and match edge 1 of
CLKIN with edge 1 of CLKOUT. If the settings counter wraps around, a very large
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delay will be added to the DCDL and the DLL will either lock to an undesirable
setting (not the minimum delay setting that will achieve phase lock) or will degen-
erate to an oscillation between Dmin and Dmax without ever achieving lock. If the
settings counter is designed not to wrap-around but saturate at the minimum setting,
the DCDL will stay fixed at Dmin and again phase lock will never be achieved.

If on the other hand the FSM of Fig.6.31 (bottom) is inserted between the phase
detector and the settings counter, lock can be easily achieved. The FSM will keep
on incrementing the DCDL settings until a 1-to-0 transition is observed at the phase
detector independent of the initial state of the phase detector output. Such a transition
indicates a lock condition and the state machine will be bouncing back and forth
between states INC and DEC. Edge 1 of CLKOUT will be aligned to edge 2 of
CLKIN.

A word of caution is absolutely essential when a state machine similar to the one
depicted in Fig.6.31 (bottom) is used. This particular FSM is designed to disregard
a 0-to-1 transition from the phase detector and essentially lock the system when a
1-to-0 transition is observed. In reality, a 1-to-0 transition can easily be observed
right after a 0-to-1 when the controlled clock (CLKOUT) phase traverses a negative
edge of the reference clock (CLKIN). When the positive edge of CLKIN is aligned
to the negative edge of CLKOUT the phase detector can undergo multiple transitions
due to internal factors such as a large dead zone where its output is undefined or
external factors such as supply noise and reference clock jitter. If state DEC is entered
(Fig.6.31) while we have positive to negative edge alignment, the system will never

DEC: Decrement DCDL Settings Counter (Active High)

0 1 2 3 4

0 1 2 3 4

PD

PD PD

LF1
INC=1
DEC=0

INC
INC=1
DEC=0RESET

PD

PD

PD

IDLE
DEC=0
INC=0

CLKIN

CLKOUT

Intended TrajectoryDmin

RESET: State Machine Reset
PD: Phase Detector Output (1 = CLKOUT leads, 0 = CLKOUT lags)
INC: Increment DCDL Settings Counter (Active High)

DEC
INC=0
DEC=1

Fig. 6.31. DLL FSM example for initial condition flexibility
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achieve lock but will likely be pushed back to its reset state. State DEC must only
be entered when a positive CLKOUT edge has just started to lag a positive CLKIN
edge. Otherwise, the phase detector decisions won’t be interpreted correctly and the
DCDL will be moved to the wrong direction.

There are multiple ways that this issue can be addressed. Digital low pass filtering
of the phase detector output can be employed to remove spurious transitions. This
method can reduce the probability of a false lock, but it is hard to show that it can
totally eliminate it. A more robust method is to insert an intermediate state between
LF1 and INC in which the controller will reside for n clock cycles. In this state, the
DCDL setting is incremented n times independent of the phase detector output. In
this way, we can guarantee that when we have negative edge traversal, the DCDL
will be incremented enough to push CLKOUT out of the phase detector sampling
window or dead zone (dsw) given worst case supply noise and jitter conditions. The
number n should be large enough to guarantee n · dr  dsw and at the same time
small enough to guarantee n · dr � 0.5T (where T is the reference clock period) so
that the next positive CLKIN edge is not traversed and the phase detector output
does not change interpretation. This should be a rather loose constraint for most
applications.

6.6.2 Dynamic Range Increase

It is possible to increase the dynamic range of a DLL with the addition of little extra
hardware and incremental complexity in the control automaton. This method as-
sumes that the DCDL output can be conditionally inverted (i.e., XOR output stage)
and that the settings counter or bidirectional shift register can provide a carry out
(CO) output to the FSM indicating that its maximum value has been reached. The
concept is very simple. If the DLL reaches the maximum value of the settings counter
without achieving lock (the phase detector output has not undergone a 1-to-0 transi-
tion), then the DCDL output is inverted, the counter is cleared and the state machine
goes back to the initial state and attempts to lock the inverted DCDL. The inversion
has the effect of adding 180◦ of phase and virtually doubles the DLL dynamic range.
This is shown conceptually in Fig.6.32 (top). An example FSM for this configuration
is shown at the bottom of the figure.

6.6.3 Stability and Bandwidth

At the beginning of this chapter, a claim was made that a digital DLL can be un-
conditionally stable. In this section, we qualify this claim. The stability of feedback
systems is typically analyzed in the frequency domain. A frequency domain model
of a digital DLL is non-trivial and not particularly insightful due to the nonlinear-
ity of a bang–bang phase detector and the sampled nature of the system. Instead, we
choose to revisit the analysis of a linear (analog) delay locked loop, establish stability
conditions and apply the intuition developed to the non-linear digital counterpart. We
follow the methodology and notation of Maneatis in [15]. A very similar approach is
also presented by Yang in [16].
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Fig. 6.32. Doubling DLL dynamic range using conditional inversion

Figure 6.33a shows a simple charge-pump based analog DLL. The phase detec-
tor is linear rather than bang–bang (Sect. 6.4). Its output is a pulse whose width is
proportional to the difference between the CLKIN and CLKOUT phases. The propor-
tional pulse controls a charge pump which integrates a constant current on capacitor
C. The amount and sign of the integrated current (charge) depend on the amount and
sign of the phase difference between the clocks. The capacitor voltage controls an
analog delay line which in turn will adjust until CLKOUT matches CLKIN. There
are many similarities between this analog DLL and the digital counterpart of Fig.6.1.
The settings counter/accumulator inside the control block performs the same ac-
tion as the capacitor and essentially integrates the phase detector output. The main
difference is that the digital DLL is a non-linear system because the correction in
response to the phase error is not proportional but instead has a constant slew rate.
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Fig. 6.33. Analog DLL frequency domain model

An additional important difference is that a digital DLL may have more delay around
the loop due to inherent clock delays in the FSM controller and settings counter. This
can be very important for stability and will be addressed in more detail later on.

A frequency domain model of the analog DLL is shown in Fig.6.33b. The model
terminal variables are dI(t) (input delay), which is defined as the delay of input
CLKIN with respect to an arbitrary point. The output delay of CLKOUT dO(t) is
also defined with respect to the same arbitrary point. The corresponding Laplace
transforms are DI(s) and DO(s). The frequency domain representation of the phase
detector is a simple subtractor with a constant gain of 1 since it generates a pulse
with a width equal to the delay difference between CLKIN and CLKOUT. The units
at the output of the phase detector are seconds (delay). The charge pump model is
also a constant gain since it multiplies the proportional error pulse with a constant
current after normalizing it to the CLKIN period (ICP · fCLKIN, where fCLKIN is the
CLKIN frequency). The units at the output of the charge pump are Amperes (cur-
rent). The charge pump capacitor C acts as an integrator with a transfer function
(sC)−1. The units at the integrator output are Volts. Finally, the Voltage-Controlled
Delay Line (VCDL) is also modeled with a constant gain (KVCDL s/V). The output
variable DO(s) has units of seconds (delay). Writing the loop equation yields:

DO(s) = [DI(s)−DO(s)] · ICP · fCLKIN · KVCDL

sC
. (6.36)

Further manipulation yields the following transfer function [15]:

DO(s)
DI(s)

=
1

1+ s
ωN

, (6.37)
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where

ωN =
ICP ·KVCDL · fCLKIN

C
. (6.38)

The transfer function of Eq. (6.37) is of first order with a single pole at ωN (loop
bandwidth) and is unconditionally stable with a phase margin of 90◦. This is true as
long as the delay around the loop is virtually instantaneous and the phase margin is
not reduced considerably. Even an analog DLL though is a sampled system and there
is loop delay due to the sampled nature of the phase detector: A phase detector mea-
surement won’t be taken until the next positive clock edge, thus, reducing the phase
margin at unity gain. Such margin reduction though is negligible if ωN � 2π fCLKIN.
For all practical purposes, the loop delay can be considered virtually instantaneous
if such delay is much lower than the DLL response time. Maneatis [15] sets the
unconditional stability criterion at ωN = 2π fCLKIN/10.

Multiple authors [17, 18] have pointed out that the simple frequency domain
model of Fig.6.33 does not apply for the class of delay locked loops where the same
reference clock is driving both the phase detector and the DCDL. Figure 6.33 models
the delay line as a 2-terminal block (control input and clock output) and does not
include a feed-forward path from the input reference clock to the output through the
delay line. As a result, such a model cannot accurately model jitter transfer from
input to output clock. The stability analysis changes due to the introduction of a zero
in the first order model. However, unconditional or conditional stability can still be
shown with root locus methods depending on model choice [18].

The main difficulty in applying a similar analysis to the digital DLL lies in the
nonlinear transfer function of the phase detector (Fig.6.2). The linear frequency do-
main analysis is not applicable and the steady state response of such a DLL will be
oscillatory (limit cycle). Prior art [19, 20] has linearized the phase detector response
around the dead zone, which is a valid approach for high CLKIN frequencies, high
DCDL resolutions, and multiple averaged measurements since the expected phase
error will be rather small and comparable to dsw. For lower frequency applications
though, the phase detector will mostly operate in its nonlinear regime.

Before proceeding, let us first define what we mean by stating that a non-linear
DLL is stable. We know for a fact that a DLL with a non-linear (bang–bang) phase
detector will exhibit limit cycle behavior due to the binary nature of the phase detec-
tor and its inability to encode a zero phase error. For the purposes of this discussion,
let us define DLL stability to mean that the expected limit cycle should have by de-
sign the minimum possible amplitude of ±dr. Frequency domain transformation is
not really necessary to assess the stability of such a simple system. The time-domain
behavior of the digital DLL (Fig.6.1) in the locked state can be summarized by the
following difference equations:

e[n] = sgn(dO[n]−dI[n]), (6.39)

dO[n+1] = dO[n]+ e[n]dr, (6.40)
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where e[n] is the error computed by the phase detector (e[n] ∈ {−1,1}), dI[n] is the
input delay at discrete time n (nth CLKIN positive edge), dO[n] is the output delay at
discrete time n and dr is the DCDL resolution. We establish a time-domain stability
criterion as follows: The correction step in Eq. (6.40) at discrete time n should not
produce an error (dO[n + 1]− dI[n + 1]) at n + 1 of the same sign and greater mag-
nitude than (dO[n]−dI[n]) at time n. This criterion is easily satisfied if the correction
term e[n]dr in (6.40) does not result in crossing over two phase boundaries which
will produce a phase error of the same sign (modTCLKIN) and potentially larger mag-
nitude. If dr < 0.5TCLKIN, this should never happen and this constitutes a constraint
that is always met for all practical purposes. A DLL with such a large dr would be
highly impractical.

We now focus on the loop delay argument. Eqs. (6.39) and (6.40) do not capture
the effect of excessive loop delay and the possibility of reduced “phase margin”.
A digital DLL has the potential of introducing substantial loop delay through its
control mechanism and may turn negative feedback into positive. The reasons for
the increased delay can be multiple:

• Additional flip-flop synchronization stages past the phase detector to ensure low
probability of metastability.

• Low pass filtering of the phase detector output to remove spurious transitions and
potentially emulate “ternary” error detection (fast, slow, NOP).

• Deserialization latency in a CDR (clock-data recovery) loop where phase detec-
tion occurs in the divided clock domain on the multiple deserialized bits.

• Pipeline stages in the FSM controller and settings counter.

Let us introduce two more general descriptive DLL design parameters (in addi-
tion to dr, dsw, Dmin and Dmax) to help with the analysis of this issue:

Nd indicates the number of CLKIN delay cycles from the input of the phase detector
to the setting input of the DCDL. This number is an integer with a minimum
value of 1 (delay introduced by the bang–bang phase detector).

Nbw is the inverse of the rate at which the FSM controller issues corrections to the
DCDL (once every Nbwth cycle). One can think as 1/Nbw as the “bandwidth” of
this nonlinear system. The minimum value for Nbw is 1 (controller issues cor-
rections on every cycle) and the maximum value can be arbitrarily high. 1/Nbw
is also referred to as the DLL sampling rate because it signifies the normalized
frequency of looking at the phase detector output.

We introduce a second stability criterion which states that a digital DLL is stable
if Nd < Nbw. This is the equivalent of stating that a a digital delay locked loop is stable
if it won’t issue a DCDL correction before the outcome of the previous correction is
fully evaluated by its control mechanism.

We demonstrate this criterion with a cycle-accurate behavioral model of a DLL
with the characteristics of Table 6.7 running at 250 MHz.

The controller is equivalent to the FSM of Fig.6.31 with the addition of wait
states between the states that update the counter to implement Nbw 	= 1. The modeled
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Table 6.7. DLL behavioral model design parameters

Dmin 1.525 ns Dmax 14.275 ns
dr 0.050 ns dsw 0.0 ns
Nd parameter Nbw 4

DLL has a built-in Nd of 3 (phase detector plus 2 stages in the FSM/counter). We,
therefore, make Nbw equal to 4 to guarantee stability when Nd is minimum. Fig.6.34
shows simulation results (DLL phase error over time) for various Nd values. Case
Nd = 3 satisfies our stability criterion since the phase error changes sign every Nbw
cycles. All other cases fail the criterion and the phase error is amplified. Loop delay
causes the DLL to issue correction steps in the wrong direction. The number of
wrong correction steps is �Nd/Nbw� and the resulting phase error is bounded by
±(�Nd/Nbw�+1)dr as opposed to ±dr in the stable case.

A digital DLL can be stabilized given a value for Nd by making Nbw > Nd. Such
an example is shown in Fig.6.35 where a DLL with Nd = 15 is stabilized by increas-
ing Nbw from 4 to 16. An expected increase in lock acquisition time is observed due
to the reduced rate of issued DCDL corrections. Lock acquisition will be discussed
in more detail in Sect. 6.6.4.

Increasing Nbw is analogous to reducing loop bandwidth ωN in the analog do-
main. Higher Nbw increases loop response time and makes it more difficult to track a
changing input. Spread spectrum clocking is one important application where track-
ing a changing input is necessary. In such a case, Nbw should be treated as an impor-
tant design parameter and the designer must ensure that a changing frequency input
won’t generate a noticeable increase in phase error. A convenient way of describ-
ing the tracking ability of a nonlinear digital DLL is its delay slew rate r defined as
follows:

r =
dr

Nbw ·TCLKIN
. (6.41)

The slew rate is a unitless quantity that indicates the amount of delay correction that
the DLL can produce per unit time. A simple way to determine whether a DLL can
track a given spread spectrum (SS) clock is to calculate an equivalent slew rate rs for
the spread clock and compare it with the DLL rate r. SS clocks are typically defined
with a spread factor As as a percentage which indicates modulation amplitude and
the modulation frequency fs on top of the clock period TCLKIN. The equivalent slew
rate of a spread clock indicates the period change per unit time and is given by the
following formula:

rs = 4AsTCLKIN fs. (6.42)

As an example, a 250 MHz SS clock with a 10% spread factor and a 500 KHz
spread frequency will have an rs of 0.8×10−3. A DLL with dr equal to 0.050 ns and
a Nbw equal to 4 will have an r of 3.125×10−3. Since r > rs, we determine that the
DLL can track the SS clock without change to its theoretical minimum phase error
of ±dr. Phase error tracking is demonstrated in Fig.6.36 using the same behavioral
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Fig. 6.34. DLL limit cycles as a function of Nd in the locked state

DLL model as past examples in this section. Clock is running at 250 MHz with
10%, 500 KHz spread, Nd is fixed at 3 and Nbw is parameterized to demonstrate
the slew rate tracking criterion. For Nbw = 4, r > rs and phase error is close to the
±dr structural value and spread spectrum modulation is tracked. For Nbw = 16, r is
slightly less than rs and phase error starts to get amplified. Finally, at Nbw = 32, the
DLL has very small bandwidth and is incapable of tracking the SS input. Phase error
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Fig. 6.35. DLL loop stabilization using Nbw (DLL is running at TCLKIN = 4 ns)

is very similar to the SS period variation, and there is little difference between this
DLL and an open loop delay line matched to the unmodulated input clock period.

It is worth mentioning that this tracking analysis is only relevant if the DCDL is
matched to some function of TCLKIN. If the application involves delay-only matching
(Fig.6.4b) then the phase error should not be affected by input clock spreading. All
DLL outputs will vary in the same fashion and delay variation will be the same
among all outputs resulting in zero additional phase errors.

This section has established two stability criteria and a tracking criterion for digi-
tal DLLs. It must be stressed that this analysis applies only to first order digital DLLs
as defined in Sect. 6.6.

6.6.4 Lock Acquisition

The lock acquisition procedure is the most open-ended controller aspect from a
design perspective. Multiple approaches are possible. A simple controller like the
one depicted in Fig.6.31 will produce lock acquisition profiles similar to the ones
shown in Fig.6.35, where lock is achieved with a constant slew rate equal to
dr/(TCLKINNbw). Lock acquisition duration is, therefore, a strong function of Nbw
selection.

Faster lock acquisition methods are possible such as variable slew rate (higher
r during acquisition for lock time reduction and lower r during lock maintenance
for stability), binary search [21] and open loop synchronous mirror delay locking
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Fig. 6.36. DLL phase error tracking of SS clock as a function of Nbw

[22, 23]. The binary search method computes every bit of a logarithmic delay setting
from MSB to LSB in a successive approximation fashion in logN steps where N is
the total number of DCDL settings. The synchronous mirror delay method measures
the difference between the unknown delay and a full clock period in a single step.
This difference is then installed in the DCDL and the system can either revert to
regular feedback DLL mode with standard control or remain open loop until the next
time a measurement is made. This method is by far the fastest and can achieve delay
lock within a few cycles independent of delay size. All of the above lock acquisition
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methods are illustrated in Fig.6.37 using our standard DLL behavioral model (Nbw =
16) for TCLKIN = 250 MHz. The reduction in lock time is rather obvious going from
top to bottom.

Fast lock acquisition can be essential for applications that involve clock gating
and suspension modes such as memories and low-power/portable systems. Ability
to relock quickly as opposed to saving the previous setting before entering the low
power state and reinstating it is much more desirable due to voltage/temperature
tracking and is mandatory for dynamic voltage/frequency applications.
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6 Digital Delay Lock Techniques 229

6.7 Putting it All Together

Sections 6.4 through 6.6 have described in considerable detail all DLL system com-
ponents. In this section, we briefly review important design parameters and outline a
basic design flow.

A digital DLL can be generally described by the following design parameters:

dsw Phase detector sampling window
dr Delay resolution
Dmin Minimum DCDL delay
Dmax Maximum DCDL delay
Nd Control mechanism delay
Nbw Inverse of DCDL correction issue rate

Phase detector design/selection should always minimize dsw. There is really no
tradeoff here. Typically, a designer develops a good phase detector with a small sam-
pling window, and then this can be reused for the vast majority of DLL instances
on the chip. Next, an appropriate dr should be selected based on application re-
quirements and desired DCDL complexity, area and power. Dmin and Dmax will be
set by the entire range of input clock frequencies that need to be tracked and also
by the entire process, voltage, and temperature operating space. Under no circum-
stances should a DLL prove to be the limiting factor in a chip design in terms of
(FMAX,VMAX) or (FMIN,VMIN). Substantial margin should always be provided to
allow for small changes in production specifications. The controller should be de-
signed to perform successful lock acquisition for each PVT and for each input clock
frequency. Nd should be minimized to the extent possible. In the lock state, the con-
troller should maintain lock with the minimum theoretical phase error of ±dr (wher-
ever possible). Nbw should be greater than Nd but small enough to allow for input
frequency variation tracking if the application demands it.

Other design aspects such as DCDL output glitching, controller robustness
around non-locking edge traversal, etc., should be thoroughly investigated and an-
alyzed because they can prove catastrophic.

6.8 Noise Considerations

Phase noise and jitter transfer have been traditionally analyzed in the frequency do-
main (Chap. 5.1). In this section, we focus on the time domain because of the difficul-
ties introduced by the non-linear nature of the system. For a comprehensive analog
DLL noise analysis in the frequency domain, the reader is referred to [17, 18]. Unlike
a PLL which can filter reference clock jitter as described in Chap. 5.1, a digital DLL
will add jitter to the reference clock through three primary mechanisms:

The first mechanism is the structural limit cycle which in a well designed DLL
will add ±dr of phase jitter to the output clock. From a frequency domain perspective,
this noise will appear around the fCLKIN/Nbw frequency band. The second mecha-
nism is the equivalent of jitter peaking in the analog domain: The digital DLL can
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amplify PLL jitter because of delayed response. This stems from the fact that the
DLL is not capable of determining whether a disturbance in the reference vs. out-
put clock must be tracked (i.e., spread spectrum or DCDL environmental change)
or not tracked and potentially canceled out (reference clock jitter). Since all DLLs
are designed to correct phase error, a jitter disturbance in the reference clock can be
tracked before it shows up at the output of the delay line in a cycle later, and this can
cause jitter amplification in the next cycle. In general though, this jitter amplification
will be limited and on the order of ±dr. Furthermore, it does not accumulate as in the
PLL case (Chap. 5.1) and it will add a small cycle time penalty. It is very simple to
alleviate both the structural and the jitter amplification components either by using
a ternary phase detector with a NOP state [24] or by opening the loop and tracking
the phase error with an auxiliary mechanism [25]. The final and most potent mecha-
nism is supply noise induced jitter. Supply noise is particularly dangerous for DLLs
because we have clock propagation through a long delay line which typically has
significant delay sensitivity to power supply changes. The remainder of this section
frames the problem and presents a simple analytical model.

For the analysis in this section, we will adopt the terminology of Sect. 5.2. We
are trying to compute the maximum period jitter generated by a fixed delay D subject
to known sinusoidal supply noise, as a function of noise amplitude, noise frequency,
delay amount D, and clock period T . Before proceeding, we define the following
symbols:

V (t) Power supply voltage as a function of time
VDD Nominal power supply voltage value
An Supply voltage noise amplitude (normalized to VDD)
fn Supply voltage noise frequency
φ Supply voltage noise phase at t = 0
D DLL delay (also referred to as insertion delay)
T Clock period
ti Time of ith clock positive edge at the input of insertion

delay D with respect to an arbitrary reference

We define the kth order period jitter introduced by a DLL with a constant inser-
tion delay D as:

Φ ′
k = max

i
|ti+k − ti − kT | . (6.43)

Equation (6.43) is interpreted as the maximum amount that the sum of k con-
secutive cycles of a given clock of period T can differ from the nominal value. We
have introduced an additional subscript k (order) with respect to the jitter definitions
of Sect. 5.2 to allow one more parameter in this analysis and have the capability to
address multi-cycle paths and long term jitter requirements imposed by certain appli-
cations. The subscript k is only relevant for the relative jitter definitions of Sect. 5.2
such as period jitter (Φ ′[n]) and cycle-to-cycle jitter (Φ ′′[n]). The relationship be-
tween Eq. (6.43) and the period jitter definition of Sect. 5.2 is

Φ ′
1 = max

n

∣∣Φ ′[n]
∣∣ . (6.44)
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In order to derive an analytical expression for Φ ′
k which will help us gain some

insight regarding supply noise induced jitter, we start by assuming sinusoidal supply
noise:

V (t) = VDD[1+An sin(2π fnt +φ)]. (6.45)

Period jitter is generated by modulating the insertion delay D through supply
noise. We make a second assumption, that the actual value Dm(t) of the insertion
delay D at time t (where t is the time that an ideal positive edge arrives at the input
of the delay D) is given by the following formula:

Dm(t) = D×
(

2− V (t,D)
VDD

)
, (6.46)

where V (t,D) is simply the forward moving average of V (t) over a period of time
equal to insertion delay D:

V (t,D) =
1
D
×

t+D∫

t

V (τ)dτ. (6.47)

Equation (6.46) simply states that the DLL insertion delay is linearly dependent
on its supply voltage averaged over its flight time (i.e., an x% increase in average
supply voltage results in an x% decrease in delay). This is an acceptable approxima-
tion for values of V (t,D) reasonably close to nominal VDD. Obviously, this is not true
for much larger or smaller values of V (t,D) and the axes crossing points implied by
Eq. (6.46) are meaningless. There is an additional approximation in Eq. (6.47) since
the moving average is computed over a constant time interval D whereas in reality
the time interval should vary due to supply noise modulation. This approximation
should introduce little error yet make an analytical approach tractable.

Now that we have explicitly defined Dm(t), we can write an expression for ti
(time of ith positive edge at the output of delay D):

ti = iT +Dm(iT ). (6.48)

Substituting (6.48) in (6.43) yields

Φ ′
k = max

i
|Dm((i+ k)T )−Dm(iT )| . (6.49)

After substituting (6.46) in (6.49) and with minimal manipulation we have

Φ ′
k =

D
VDD

×max
i

∣∣V (iT,D)−V ((i+ k)T,D)
∣∣ . (6.50)

Since we have an expression for supply voltage, we can obtain a closed form expres-
sion for the moving average by substituting Eq. (6.45) in (6.47).

V (t,D) = VDD +
AnVDD

D

t+D∫

t

sin(2π fnτ +φ)dτ. (6.51)



232 T. Xanthopoulos

Performing the simple integration yields

V (t,D) = VDD +
AnVDD

2π fnD
[cos(2π fnt +φ)− cos(2π fn(t +D)+φ)]. (6.52)

Substituting (6.52) in (6.50) yields

Φ ′
k =

An

2π fn
max

i

∣∣∣∣
cos(2π fniT +φ)− cos(2π fn(iT +D)+φ)−
cos(2π fn(i+ k)T +φ)+ cos(2π fn((i+ k)T +D)+φ)

∣∣∣∣ . (6.53)

We now recall the following well-known trigonometric identity:

cosu+ cosv = 2cos
(

u+ v
2

)
cos
(

u− v
2

)
. (6.54)

Applying (6.54) on (6.53) yields

Φ ′
k =

An

π fn
max

i
|cos(π fn(2i+ k)T +φ)[cos(π fn(kT +D))− cos(π fn(kT −D))]| .

(6.55)
Equation (6.55) is expressed in a very convenient form which will enable us to dis-
pense with the maximization operation by inspection: Only the first cosine term
(cos(π fn(2i + k)T + φ)) is a function of i, and its maximum value for every pos-
sible i is 1. Therefore, Eq. (6.55) becomes

Φ ′
k =

An

π fn
|cos(π fn(kT +D))− cos(π fn(kT −D))| . (6.56)

Application of one more trigonometric identity results in the following expres-
sion which is more desirable since it separates the effects of variables T and D:

Φ ′
k =

2An

π fn
|sin(π fnkT )sin(π fnD)| . (6.57)

Equation (6.57) constitutes a closed form analytical expression of worst case
period jitter as a function of supply noise frequency and amplitude ( fn,An), clock
period (T ), and DLL insertion delay (D). Parameter k denotes whether we are in-
terested in single period jitter (k = 1) or longer term (multi-cycle) jitter (k > 1). In
order to gain some insight into this expression and determine whether it makes phys-
ical sense, let us focus on the two plots of Fig.6.38. Both diagrams plot Eq. (6.57)
under certain conditions. The top graph shows Φ ′

1 as a function of noise frequency
fn for 2 different insertion delays. We make the following observations: First, we
note that for all insertion delay values we have zero jitter at fn = 0 (trivial) and at
noise frequencies that are integral multiples of the clock frequency (500 MHz and
1 GHz). This is entirely expected because when this occurs, consecutive clock edges
will be delay-modulated identically going through any insertion delay D resulting in
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zero jitter. Consecutive clock edges will experience the same noise. A second ob-
servation is that we have zero jitter at noise frequencies that are integral multiples
of the inverse insertion delay (333 MHz and 667 MHz in the top graph for the case
where D = 3 ns). This is also expected because if the integration interval in the mov-
ing average Eq. (6.51) is an integral multiple of the period of the sinusoid that is
being integrated, then the integration result is zero. Integrating a sinusoid over an
integral multiple of periods always results in zero. This is also clearly observed on
the bottom graph of Fig.6.38 where Φ ′

1 is plotted as a function of insertion delay for
3 different noise frequencies. All zeroes on the graph are at insertion delays equal to
an integral multiple of the noise period. A final observation is that with increasing
noise frequency, period jitter tends to decrease due to the 1/ fn term in Eq. (6.57).
This happens because as fn increases, the amount of noise averaging in delay line D
also increases and the supply moving average will approach the nominal value.

Figure 6.39 shows the jitter dependence on noise frequency and insertion de-
lay simultaneously in 2 dimensions for 1 GHz and 500 MHz clocks respectively.
Such contour plots for each relevant clock frequency are very easy to construct using
Eq. (6.57) and can provide a broad perspective early in the design phase in order to
help determine important implementation aspects such as:

1. Identification of worst case period jitter and particularly undesired noise fre-
quencies.

2. Derivation of detailed specifications of supply voltage frequency and amplitude
if external to the IC.

3. Identification of need for internal voltage regulation to minimize An if external
supply specifications turn out to be too stringent.

Application of Eq. (6.57) is not restricted to delay locked loops but can be ap-
plied to any open-loop clock buffer in order to determine supply induced period jitter.
DLLs are very convenient because insertion delay D is well defined and tracked with
feedback. In an open-loop buffer, D will vary with PVT and can only be estimated to
a limited degree of accuracy. Yet, the analysis above reveals an interesting aspect of
supply induced jitter: In an ideal world, it can be canceled out by selecting an appro-
priate clock buffer delay D as Figs. 6.38 and 6.39 indicate. This is not really possible
because the supply noise frequency is never known a priori and typically does not
consist of a single sinusoid. A supply voltage waveform will typically contain mul-
tiple natural frequencies introduced by the package, board, and external decoupling
capacitance network. In addition, it will contain particular solutions related to the
system clock frequency. Natural frequencies are unknown at IC design time, since
they are system dependent. Particular solutions are also hard to estimate especially
in programmable ICs. One could imagine the possibility of constructing a feedback
system which measures supply noise frequency and then adjusts clock buffer delay
accordingly to minimize jitter. Feedback must be close to instantaneous in order to
avoid the worst case, and this makes a digital controller very hard to implement. As-
suming that supply noise frequency can actually be measured, such a system could
potentially track an undesired natural frequency that should not have been there in
the first place. Controlling noise amplitude, undesired natural frequencies and clock
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buffer delays are the only effective methods for reducing supply induced jitter that
the author is aware of.

6.9 Advanced Applications

In this section, we review a number of non-standard DLL applications and demon-
strate the versatility of delay lock techniques.

6.9.1 Duty Cycle Correction

DLLs are heavily used in I/O applications such as DRAM interfaces. In such applica-
tions, 50% duty cycle is very important because the interfaces are typically double-
data-rate (DDR) and both clock phases are used for signaling. Duty cycle distortion
is a source of deterministic jitter and must be reduced.

It is fairly common for DLLs to include a separate stage of duty cycle correction
as an output stage [26] or even distributed duty cycle control at various points along
the signal path [27]. These are typically analog methods that involve current-steering
based structures. An alternative method of duty cycle correction implemented in
DRAMs [28, 29] is shown in Fig.6.40. It uses two independent DLLs. The first one
(PD1, DCDL1, CTL1) is the main loop and is responsible for locking the output to
the desired CLKIN phase. The second one (PD2, DCDL2, CTL2) has an inverting
delay line and locks the positive edge of CLK2 (which has been generated by a neg-
ative edge of CLKIN) to the positive edge of CLK1 (which has been generated by a
positive edge of CLKIN).

When the second loop locks, CLK1 and CLK2 will have the phase relationship
shown in Fig.6.40. A phase interpolator with equal weights (similar to the one in
Fig.6.26) is used as the final clock output stage. The positive edge of output clock
CLKOUT will be generated by the positive edge of CLK1 since both CLK1 and
CLK2 have phase locked positive edges. The negative edge of CLKOUT will be
generated by the average of the CLK1 and CLK2 negative edges, resulting in duty
cycle correction. Figure 6.40 assumes for simplicity that the phase interpolator is a
zero-delay, thus non-causal circuit. In reality, there will be delay involved but it has
no effect in the overall correction capability of this method. The amount of duty cycle
correction possible depends on the RC of the interpolator as described in Sect. 6.5.3.

6.9.2 Clock Multiplication

In Sect. 6.3, the basic idea of DLL-based clock multiplication has been presented
(Fig.6.4d). This method of phase-locking a multi-tap DCDL to a reference clock pe-
riod and then using the intermediate phases to generate a frequency multiple through
a clock-multiplying structure such as a multi-port toggle flop has an obvious fre-
quency limitation: it is limited by the minimum delay Dmin through each DCDL
segment. As an example, the highest output frequency that can be generated by the
structure of Fig.6.4d is subject to the following constraint:
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Fig. 6.40. Duty cycle correction in a DLL environment

fout ≤
1

2Dmin
, (6.58)

where Dmin is the minimum possible delay through each of the 8 DCDL segments.
Reference [30] proposes an interesting way to remove this upper bound. The

key observation is that the sum of the N DCDLs (where N/2 is the intended clock
multipler) can be phase-locked to multiple reference clock periods (M) instead of
1 and the resulting phases can be re-sorted before driving the final clock multipler
stage. For this method to work, M must not divide N exactly but have a non-zero
modulus. Figure 6.41 illustrates this concept. We wish to perform clock multiplica-
tion by 4 (N = 8), but we want to generate an output clock frequency that is faster
than the constraint in (6.58) would allow for. Instead of phase-locking all 8 DCDL
segments to one reference clock period Tref, we choose to phase-lock them to 3Tref
(M = 3) which evidently allows for a much larger Dmin per DCDL segment. Phases
are sorted modulus Tref before being routed to the final clock multiplication stage.
The constraint in (6.58) now becomes

fout ≤
3

2Dmin
, (6.59)

and the upper bound for the final output frequency has become more loose by a factor
of 3. In [30], a 40 GHz output clock is generated by a 4.4445 GHz reference (M = 2,
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N = 9) by employing an LC-based clock multiplier which can produce a full 360◦

oscillation per stimulating phase.
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3/ 8Tref3/ 8Tref3/ 8Tref3/ 8Tref3/ 8Tref3/ 8Tref3/ 8Tref

3/ 8Tref

1/ 8Tref 2/ 8Tref 3/ 8Tref 4/ 8Tref 5/ 8Tref 6/ 8Tref 7/ 8Tref 8/ 8Tref

6/ 8Tref 9/ 8Tref 12/ 8Tref 15/ 8Tref 18/ 8Tref 21/ 8Tref 24/ 8Tref
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Fig. 6.41. Multiperiod DCDL locking for high output frequency clock multiplication

Clock multiplying DLLs with alternative organizations have been proposed in
the past years [31, 32] and are actively pursued as a credible alternative to PLLs for
clock generation due to superior jitter performance.

6.9.3 Infinite Dynamic Range

Lock acquisition and phase capture can be limited in standard DLLs with a reduced
DCDL dynamic range as explained in Sects. 6.5 and 6.6. One way to address this
issue is to extend the delay line dynamic range through additional DCDL stages or
conditional inversion (Sect. 6.6.2) coupled with increased complexity in the FSM
controller. An alternative method is to employ a dual DLL architecture where the
core loop generates phases that span the input clock period range, and the periph-
eral loop blends a selected pair of consecutive phases to match the reference clock
[1, 33]. This architecture is shown in Fig.6.42. The core DLL phase-locks at 180◦

and generates 6 phases that are 30◦ apart. The block labeled “Phase Selection” con-
tains two 3× 1 multiplexers that select a pair of phases φ and ψ to be interpolated.
Before reaching the interpolator, these phases are conditionally inverted inside the
“Selective Phase Inversion” block so that the cascade of these three structures can
generate all phases at 30◦ increments that span the entire 0–360◦ phase interval. Fi-
nally, conditionally inverted phases φ ′ and ψ ′ are interpolated. Although the phase
interpolator structure in [33] is CML-based, the analysis is very similar to the full
swing interpolator of Sect. 6.5.3. The output of the interpolator Θ is phase-locked
to the reference clock (“ref CLK” in Fig.6.42). The feedback of the peripheral DLL
closes with a bang–bang phase detector and an FSM that controls the multiplex-
ers, conditional inversion block and phase interpolator. The infinite dynamic range
stems from the fact that the FSM controller can keep on selecting phase pairs to be
interpolated around the entire 360◦ phase interval and eventually the selected pair
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will encompass the phase of the reference clock. Interpolation will then guarantee
phase lock within the accuracy of the interpolator. In this architecture, the input core
DLL clock (“in CLK”) and the reference clock (“ref CLK”) can be the same clock
at 0-phase or identical frequency clocks at any phase relationship. They can even
be plesiochronous clocks (of similar but not equal frequency), and this case will be
addressed in Sect. 6.9.4.

CORE DLL

0×θ 1×θ 2×θ 3×θ 4×θ 5×θ (θ=π/6)

φ = i×θ ψ = j×θ(i=0,2,4) (j =1,3,5)

Phase Selection

Selective Phase Inversion

{ φ

φ+π { ψ

ψ+π

Phase Interpolation

FSM

Θ ∼ φ�+ (1−α/16)×(ψ�− φ�)
(α = 0..16)

Phase
Detector

φ�= ψ�=

PERIPHERAL
DLL

ref
CLK

in
CLK

Fig. 6.42. Dual DLL architecture for virtually infinite phase capture range. Reproduced with
permission from [33], c©1997 IEEE

DLLs with quadrature phase mixing had been proposed before [26] and they also
exhibit infinite dynamic range. The main difference between the dual DLL architec-
ture and quadrature mixing is that the phase interpolation is not limited to 90◦ clocks.
Interpolation can blend phases at smaller intervals (30◦ in this case) which will have
fewer slew rate limitations and better noise performance [33].

6.9.4 Clock-Data Recovery

The full power of the method of Fig.6.42 cannot be fully appreciated unless we con-
sider the case where “in CLK” and “ref CLK” are plesiochronous and vary slightly
in frequency. This architecture can achieve lock in the plesiochronous case because
the FSM controller can change the weight of the phase mixing in each cycle in such
a way so as to generate a clock that is effectively faster or slower than “in CLK”.
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When the interpolator reaches the end of its dynamic range, then the phase selection
multiplexer chooses a different pair of phases for mixing that are either leading or
lagging the previous pair depending on whether “ref CLK” is faster or slower than
“in CLK”, respectively. This property makes this method ideally suited for clock-
data recovery (CDR) applications where a sampling clock must be generated at the
receiver and used to sample the incoming data. The generated clock must match
the frequency of the received data using multiple free-running locally-generated
phases.

This concept is illustrated in Fig.6.43. This structure forms the basis of a large
class of clock-data recovery architectures implemented as part of various high-speed
signaling standards such as PCI Express, XAUI, and FBD (Fully-Buffered-DIMM)
[34]. The core DLL of Fig.6.42 has been replaced with a multi-phase PLL that gener-
ates a local high frequency clock which can be plesiochronous to the incoming data.
In order to collect enough information for clock recovery, a CDR needs some form of
data oversampling. In this case, oversampling is accomplished by generating both an
in-phase clock (CLKI) and a quadrature clock (CLKQ). High-speed incoming data
are sampled with both clocks using two separate slicers (I-SLICER, Q-SLICER).
The data are then deserialized typically by a factor of 10 and retimed in a divided
clock domain which is usually a divided-down version of CLKQ. The block labeled
“EDGE DETECTION/PHASE DETECTION” examines both I and Q deserialized
data and determines whether the current sampling clocks CLKI and CLKQ are fast
or slow with respect to the incoming data. This decision can be made deterministi-
cally due to oversampling. This decision is then forwarded to the CDR FSM which
implements a control algorithm and can change the settings of the phase selectors
and interpolators to advance or delay the sampling clocks CLKI and CLKQ. The
FSM algorithm will determine important capabilities such as phase capture profile,
frequency difference between local PLL and incoming data that can be safely ab-
sorbed and limit cycle behavior which will cause deterministic jitter in the system.
The output of the Q-DESERIALIZER represents parallel data sampled safely with
maximum margin in the middle of the eye diagram and is forwarded to the rest of
the system for higher layer processing.

All blocks of Fig.6.43 with the sole exception of the multi-phase PLL consti-
tute essentially a DLL. The role of the delay line is fulfilled by the combination
of phase selectors and interpolators that can effectively delay or advance an input
clock and the phase detection is carried out by the slicers, deserializers, and decision
block. In a typical SERDES application [34], this DLL structure is present on all
receiver bits (lanes in SERDES terminology) whereas the multi-phase PLL is amor-
tized over a number of receive and transmit lanes. In this application, it is desirable
to implement a second order control structure in order to track more effectively the
frequency differences between the incoming data and the locally generated clock.
Second order control design has not been addressed in this chapter and is beyond our
scope.



6 Digital Delay Lock Techniques 241

31
5

DATA[9:0]

MULTI−PHASE PLL

CONDITIONAL INVERSION
PHASE SELECTION /

22

Q−INTERPOLATOR

Q
Q−DESERIALIZER

10

10 EDGE
DETECTION

PHASE
DETECTION

CDR
FSM

RX DATA

CLKI

CLKQ

SLICER

SLICER
I

I−INTERPOLATOR

I−DESERIALIZER

0 45 90 13
5

18
0

22
5

27
0

Fig. 6.43. DLL-based clock-data recovery loop

6.9.5 On-Chip Temperature Sensing

An appropriately calibrated and accurately measured delay line can be used as a tem-
perature sensor since temperature affects digital gate delay. It has been shown [35]
that when a delay line is trimmed to a fixed delay at a certain temperature in a produc-
tion environment across multiple chips, it can act as an accurate temperature sensor.
Trimming to a fixed delay at production has the effect of suppressing sensitivity to
process and voltage. A trimmed delay line will vary only due to temperature across
all fused chips and can have an accuracy of ±2◦C across the 0–100◦C temperature
range [35].

Two DLLs constitute this system: A reference DLL is phase locked to a known
reference clock which is distributed to the sensor. Tapping at intermediate delay line
elements can generate fixed reference delays that are fractions of the original refer-
ence clock period. A secondary DLL phase locks the sensing delay line to a fixed
delay generated by tapping an intermediate delay output of the reference DLL. This
step must be performed at a controlled junction temperature on all chips during man-
ufacturing. The setting in the locked state is then fused and this step performs the
trimming (normalization) of the sensing delay line.

During measurement, the temperature can vary and the trimmed sensing line will
deviate from its fixed delay value. The secondary DLL then treats it as an unknown
delay and measures it using intermediate delay outputs of the reference DLL as the
measuring delay line. The digital setting output at the locked state will be an accurate
representation of temperature. This dual DLL scheme can provide good accuracy and
a high measurement bandwidth (5 ksamples/s) and is appropriate for microprocessor
thermal monitoring.
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6.10 Conclusion

This chapter has presented an overview of the basic digital DLL structure and its
components in addition to a survey of a range of applications. DLLs are an essential
component of modern VLSI systems. Increased clocking system complexity, process
variation, and wider supply voltage ranges will make their use even more prevalent
than it is today. Furthermore, their time-to-digital conversion capabilities make them
an attractive candidate for measuring analog on-chip quantities (i.e., voltage drop,
temperature, process variation) either for valuable data collection or system normal-
ization to dynamically remove variation.
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