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Preface

... εἰωθότες οἱ ἄνθρωποι οὗ μὲν ἐπιθυμοῦσ�ιν ἐλπίδι ἀπερισ�κέπτῳ διδόναι, ὃ δὲ μὴ
προσ�ίενται λογισ�μῷ αὐτοκράτορι διωθεῖσ�θαι.

THUCYDIDIS HISTORIAE IV:108
C. Hude ed., Teubner, Lipsiae MCMXIII

῾Οι ἄνθρωποι, ἄλλωσ�τε, σ�υνειθίζουν νὰ ἐμπισ�τεύωνται εἰς τὴν ἀπερίσ�κεπτον
ἐλπίδα ἐκεῖνο ποὺ ἐπιθυμοῦν καὶ ν’ ἀποκρούουν δι’ αὐθαιρέτου σ�υλλογισ�μοῦ
ἐκεῖνο ποὺ ἀποσ�τέργουν.

ΘΟΥΚΥΔΙΔΟΥ ΙΣΤΟΡΙΑΙ Δ:108
Κατά Μετάφρασ�ιν ᾿Ελευθερίου Βενιζέλου

Δ. Κακλαμάνος Εκδ.
Σμυρνιωτάκης, Αθήνα

It being the fashion of men, what they wish to be true to admit even upon an
ungrounded hope, and what they wish not, with a magistral kind of arguing to reject.

Thucydides (the Peloponnesian War Part I), IV:108
Thomas Hobbes Trans., Sir W. Molesworth ed.

In The English Works of Thomas Hobbes of Malmesbury, Vol. VIII

I have been introduced to clock design very early in my professional career when
I was tapped right out of school to design and implement the clock generation and
distribution of the Alpha 21364 microprocessor. Traditionally, Alpha processors ex-
hibited highly innovative clocking systems, always worthy of ISSCC/JSSC publica-
tions and for a while Alpha processors were leading the industry in terms of clock
performance. I had huge shoes to fill. Obviously, I was overwhelmed, confused and
highly confident that I would drag the entire project down. When a few years later



VIII Preface

Carl Harris asked me to do a book on clocking for the Springer Integrated Circuits
and Systems Series, I readily agreed with the hope that I could save young and as-
piring clock designers substantial time and frustration by providing leads and maybe
answers to the questions that I had when I was embarking on the Alpha clock design
quest. As my choice of opening quotation would suggest, clock design can be a mine-
field of misconceptions based on little more than a reluctance to apply Kirchhoff’s
laws, basic constituent relationships, and a little bit of common sense.

In addition to my personal design experience, the choice of material for this book
has been heavily informed by my long tenure in the International Solid-State Circuits
Conference (ISSCC) program committee. The subjects covered reflect to a large ex-
tent the collective interests and foci of both industry and academia with respect to
clocking based on ISSCC submissions. The only exception is that there is no cover-
age of phase locked loop design since there are a number of recent texts available on
this subject matter.

It is my hope that this book will help engineers and students interested in clock
design obtain the appropriate mental models and design viewpoints, capture design
trends that have appeared over the last few years, and provide a comprehensive list
of references for further study. I am indebted to my co-authors for providing precise,
structured and complete coverage in their respective chapters in addition to main-
taining a viewpoint that is very up to date and highly reflective of current trends in
the industry. I hope that the reader will not find “ungrounded hopes” and “magistral
arguings” in this book.

Carl Harris and Katelyn Stanne of Springer deserve special thanks for helping
me throughout the preparation of the manuscript. I wish to acknowledge a number
of colleagues at Cavium Networks for their helpful and stimulating discussions and
excellent feedback: Scott Meninger, Ethan Crain, David Lin, and Suresh Balasubra-
manian. I would like to thank my bosses at Cavium Networks Anil Jain and Syed
Ali for building a great semiconductor company from the ground up and an excellent
working environment that fosters creativity and innovation in addition to maintaining
a sharp focus on product development and company value. I would especially like
to thank Anil Jain for entrusting me with the Alpha clocking project while being my
boss at Compaq Computer which helped me acquire the background and skills nec-
essary to produce this book. Above all, I would like to thank my wife Margarita not
only for putting up with my constant working on this book but also for typesetting
the entire manuscript in LATEX and retouching figures as needed. I could not have
done this without her.

Boston, Massachusetts T.X.
December 2008
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Introduction and Overview

Thucydides Xanthopoulos

Cavium Networks

Clock frequency is a major attribute of any microprocessor design. Early on, dur-
ing product definition, it constitutes a major business or marketing decision and it is
usually the result of a trade-off among customer needs, competitive landscape, and
time-to-market. As soon as the frequency target is handed down the food chain to
silicon implementation, it will affect all project design aspects from the day that the
project is kicked off until it tapes out (and in most cases well beyond this point too).
It is not surprising therefore that the job of generating, distributing, and analyzing
the clocks in complex chips is considered to be an important and visible assignment.
Clock design has traditionally been an area of innovation and has been in the spot-
light in technical conferences and journals.

Why is clock frequency such an important microprocessor aspect? For a number
of applications it is only loosely correlated with performance with other design as-
pects such as memory system, parallelism, and hardware acceleration being equally
or even more effective. Nevertheless, it is a single number that is widely understood
by both technical and nontechnical audiences and in certain situations has strong
correlation with single-thread performance.

Clock frequency, although very important, is only one aspect of clock design.
Other aspects include power dissipation, efficient clock signal distribution in large
and complex chips, coping with variation and uncertainty, managing multiple clock
domains in the context of highly integrated system-on-a-chip (SoC) designs, and
multicore integration, providing good voltage/frequency scalability to support a wide
product roadmap, tuning capabilities for yield enhancement and postsilicon opti-
mization, and sophisticated active power management features.

The purpose of this book is to introduce a designer to important aspects of state-
of-the-art clock design by exposing methodology steps and analytical modelling
techniques, providing design examples and case studies and enumerating a long list
of references for further study.

T. Xanthopoulos (ed.), Clocking in Modern VLSI Systems, Integrated Circuits and Systems, 1
DOI 10.1007/978-1-4419-0261-0 1, c© Springer Science+Business Media, LLC 2009



2 T. Xanthopoulos

1.1 The Clock Design Problem

The plots of Figs.1.1–1.3 provide good insight into the problem faced by clock de-
signers today. Moore’s plot (Fig.1.1) states that integration keeps on increasing at
historical rates. Transistor density is spearheaded by large multicore server proces-
sor chips with large caches, integrated memory controllers and multiple high-speed
I/O links. Although the datapoints in Fig.1.1 only extend to 2008, in ISSCC 2009 a
server processor [1] has been introduced that contains 2.3B transistors and exceeds
all previously reported chips in transistor count. For the clock designer, increasing
integration means more far reaching and complex clock distribution, more clock do-
mains, and more testability and yield enhancement features.
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Fig. 1.1. Microprocessor transistor number trend over time [Data compiled by the author from
ISSCC proceedings 1973–2008 and publicly available vendor information. Trendline is “vi-
sually” fitted and signifies a rate of doubling every 2 years]

On the other hand, frequency and power seem to be levelling off (Figs.1.2 and
1.3). Microprocessors in excess of 3–4GHz are rarely reported these days. Fre-
quency stopped scaling due to excessive power dissipation penalties. Instead, the
industry chose to keep on scaling performance through multicore integration. On the
power side, the industry seems to converge to a fixed power envelope for both server
(130W) and desktop (60–70W) processors. As far as clock design is concerned, this
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Fig. 1.2. Microprocessor frequency trend over time [Data compiled by the author from ISSCC
proceedings 1973–2008 and publicly available vendor information. Trendline is “visually”
fitted and signifies a rate of doubling every 3 years]
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Fig. 1.3. Microprocessor power trend over time [Data compiled by the author from ISSCC
proceedings 1973–2008 and publicly available vendor information. Trendline is “visually”
fitted and signifies a rate of doubling every 3.5 years]

translates to increased number of features and complexity to support fine-grain clock
and power gating, variable voltages, and frequencies in addition to other sophisti-
cated active power management related attributes.

In addition to the above evolving specifications, one must add increased vari-
ation in device and interconnect characteristics present in advanced process nodes
and increased voltage and temperature variation due to higher integration and more
complex interactions. We end up with a multidimensional design problem requiring
substantial resources for each product generation.
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1.2 Some Subjective Milestones in the History
of Microprocessor Clocking

In the last 15–20 years there have been major innovations in microprocessor clock-
ing that have resulted in large increases in frequency as well as substantial clock
design methodology changes. This section lists some of those important mile-
stones so that we can observe the industry trends and speculate on potential future
directions.

1.2.1 Integrating the PLL

An integrated PLL for a microprocessor application was first reported in 1992 [2].
The motivation for an integrated PLL at the time was the desire to keep the processor
and the external bus in phase so as to minimize timing constraints and reach the
maximum possible system frequency given the synchronous nature of the system.
Additional goals were to clock the processor at even higher frequencies (2x) than the
bus in addition to running the VCO at twice the processor frequency with a factor of
two postscaling for duty cycle fidelity.

Some of the original problems that the designers faced were the digital noise
which is highly prevalent on a microprocessor die, in addition to low quality passive
devices and overall sensitivity to process, voltage, and temperature variations. The
supply noise problem was addressed by the adoption of a differential CML-based
VCO with high supply noise rejection capability.

Integrating the PLL was a major step in general purpose microprocessor clock-
ing because it paved the way for the increased frequencies and complex clocking
schemes that were to follow.

1.2.2 Clock Distribution Moves to the Forefront: The Dawn of the GHz Race

The original DEC Alpha microprocessor [3] moved clock design to the forefront. It
was operating at 200MHz, approximately a factor of 2 faster than other processors
at the time (Fig.1.2). The DEC Alpha design introduced the low-skew and high-
power grid clock distribution coupled with detailed RC-based skew simulation and
construction of skew contour maps that are taken into account during timing closure:
The Alpha pipeline was based on level-sensitive latches. Race-through in this context
is a major functional concern. The radial profile of clock skew from the center of the
chip to the periphery was taken into account while floorplanning the pipelines in
order to guarantee that the skew would improve the functional race margins.

The design also featured important contributions from a process and physical
design perspective. The process technology featured a thick low resistance metal
3 layer used exclusively for power, clock, and a handful of critical signals. On-chip
decoupling capacitors built with thin oxide devices were also used in close proximity
to the clock drivers in order to address Ldi/dt concerns arising from driving a highly
capacitive final clock node with a very fast edge rate. A 10:1 ratio of decoupling
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capacitance to switching capacitance was maintained throughout the design. Many
of these contributions are still in use today in current processor designs.

Arguably, the DEC Alpha designs started the GHz race among microprocessor
vendors that culminated in the deep pipelines and multiGHz designs of present high
performance chips.

1.2.3 Delay Lock Techniques

Simple first-order mechanisms to achieve phase lock [4] have been used extensively
in processor designs in the last 10–15 years in order to simplify the clock distribution
problem: A large distribution throughout a big die is broken into pieces tailored for
each chip partition, and each partial distribution is phase locked using delay locked
loops. There are multiple such examples discussed in Chap.2. Such a partitioning
helps with design time, power dissipation, testability, and manufacturing yield. It is
definitely possible to achieve the same goal with higher order systems (i.e. distributed
PLLs) and this has been demonstrated in the literature [5, 6]. Yet, nothing beats the
simplicity of a digital delay line controlled by a basic finite state machine. More
details on DLL design will be presented in Chap.6.

1.2.4 Exploiting Inductance for Oscillation and Distribution

The notion of being able to return energy back to the clock generator has been rather
intriguing and holds a lot of promise. Resonant clock drivers have been originally in-
troduced as an off-chip solution in the context of powering adiabatic circuits [7, 8]. In
the past several years, there has been renewed interest in this technique due to the fact
that digital frequencies have become consistent with resonant frequencies of fully in-
tegrated passive devices. The strong motivation is the potential of saving substantial
clock power by using LC resonance for clock pulse generation. LC techniques have
been recently augmented with transmission-line-based techniques (traveling waves
[9], standing waves [10] and salphasic [11]) that address both clock generation and
low (or highly predictable) skew distribution. Commercial applications of these tech-
niques are already prevalent. Chapter 4 explores this subject in more detail.

1.2.5 Variable Frequency (and Voltage)

A server processor design [12] introduced the idea of a constant power envelope
and variable voltage/frequency. This active power management scheme uses an inte-
grated ammeter that monitors incoming current, a clocking scheme that can generate
variable frequencies with fast adjustment time and an on-chip micro-controller that
monitors power/ temperature and controls frequency and core supply voltage through
an external regulator. This technique is discussed in more detail in Chap.2.

Variable frequency clocking methods are rapidly becoming mainstream [13, 14]
as part of sophisticated power management methodologies designed to control ther-
mal design power in large multicore chips. All digital methods ensure repeatability
in a production environment.



6 T. Xanthopoulos

1.2.6 Frequency Increase (or Supply Lowering) Through Resiliency

Commercial designs have substantial frequency margins to address issues such as
lack of total coverage in production tests, unanticipated corner cases and noise pat-
terns, noncompliant system specifications and device aging. This margin can be sub-
stantially reduced or even eliminated if the underlying hardware has error detection
and correction capabilities. The margin can then be used as performance benefit by
increasing frequency, power benefit by dropping voltage below the specified VMIN, or
even yield enhancement by populating existing frequency bins with parts that under
different scenarios would not make it.

The Razor technique [15] addresses the frequency/voltage margin issue by in-
stituting the capability of timing error detection and correction in the processor
pipeline. Performance can be maximized (or power minimized) by increasing the
frequency (or lowering the supply) up to the point where the overhead of error cor-
rection will start exceeding the performance or power benefit. The Razor technique
is addressed in more detail in Chaps.3 and 7.

It is not easy to predict the future but given the current industry trends one can
conclude that the clocking system will be part of an increasingly sophisticated active
power management scheme: Highly sophisticated firmware threads implementing
complex control algorithms will be running in parallel with the application. They will
be receiving input such as on-chip and system temperature, current measurements,
error rates, moving averages of architectural events, and cues from the application
and they will control supply voltage, clock frequencies, and higher level architectural
events such as clock and power gating, instruction issue rate, and pipeline stalls. To
some extent, this is already happening.

1.3 Overview of this Book

Chapter 2 introduces the fundamental setup and hold constraints, and defines basic
clock attributes such as skew, jitter, latency, and duty cycle distortion. It introduces
basic clock distribution methods such as balanced tree, central spines, and grids and
examines them from a performance and power perspective. Numerous case studies
from commercial microprocessors are presented and a number of advanced topics
such as global and local skew compensation, on-die attribute measurements, various
techniques for locating critical paths and synchronization methods are discussed.

Chapter 3 constitutes a detailed discussion of clocked elements (level-sensitive
latches and flip-flops) from the viewpoint of latency, hold time requirements, power
dissipation, and testability. The focus is primarily on state-of-the-art designs with
advanced topics such as process variation and reliability addressed in detail.

As mentioned in Sect.1.2.4, exploiting inductance for clock generation and dis-
tribution makes perfect sense: Inductance can produce oscillations with lower en-
ergy since an LC-based system inherently recycles energy between the capacitive
and inductive elements. Moreover, oscillator phase noise is less because all active-
device-related noise sources do not exist. Chapter 4 presents detailed background
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information on integrated inductors and transmission lines. Furthermore, it discusses
examples of LC-based oscillators and transmission-line-based clock generation and
distribution schemes.

Jitter analysis is very important in clock system design. If not properly managed,
jitter can be the limiting factor in both core and I/O clocking. Chapter 5.1 defines
all jitter types relevant to clock design and establishes their relationship to phase
noise using Parceval’s theorem. Furthermore, it enumerates all noise sources inside
a clock generator and clearly shows with numerical examples how a PLL transfers
jitter from input to output. Based on this analysis, it establishes the importance of
reference clock phase noise and jitter regarding the quality of the multiplied output
clock. The domain seamlessly moves from frequency to time using mathematical
“filter” functions to transform phase jitter to period jitter which is more relevant for
core clock generation. Since jitter has a random component, which is theoretically
unbounded, the chapter establishes an MTBF-based statistical analysis for estimating
the effect of jitter on critical paths. A serial link discussion is also presented, which
shows how reference clock jitter can be removed from the total link budget under
certain conditions.

Chapter 6 is an attempt at textbook-like coverage of digital delay locked loops
that are used extensively in clocking systems. The chapter is design-oriented and
contains detailed discussions and analyses on all DLL components and presents a
number of relevant applications. It also contains a detailed analysis of metastability
in the context of phase detection and a simple analytical model for supply-induced
jitter on long delay lines and/or clock buffers.

Advanced process nodes exhibit large variation and uncertainty in device and
interconnect parameters. Chapter 7 presents methods of addressing this issue on the
design front, manufacturing, and postsilicon tuning front and also by using resilient
methods involving hardware timing error detection and correction.

Finally, Chap.8 addresses process, voltage, and temperature variation issues from
a physical design perspective. Clock skew components in the context of setup and
hold constraints are redefined with a statistical approach and all variation sources are
taken into account. Sources of transistor and interconnect variation are enumerated,
quantified, and explained. Methods of accounting for voltage and temperature varia-
tions are discussed. In the end, important physical design guidelines are presented to
minimize uncertainty and variation in clock-related circuits.
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Modern Clock Distribution Systems

Simon Tam
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2.1 Introduction

Modern clock distribution design continues to face challenges in spite of significant
advances in the last decade. We can distinguish three primary challenges. The first
is the need to support higher clock frequencies based on the strong correlation be-
tween frequency and chip performance. Figure 2.1 shows processor clock frequency
trend suggesting a continuous exponential increase in clock frequency with vari-
able rates. Second, process technology scaling allows higher level of integration and
larger die size leading to higher clock loading and larger distances the clock net-
work needs to traverse. The final challenge is that technology scaling leads to an
increase in on-die variations that may degrade clock performance if not properly
addressed.

In order to address these design challenges successfully, it is necessary to un-
derstand the fundamental clocking requirements, key design parameters that affect
clock performance, different clock distribution topologies and their trade-offs, and
design techniques needed to overcome certain limitations. In this chapter, the fol-
lowing topics are presented:

• Definitions and Design Requirements
• Clock Distribution Topologies
• Microprocessor Clock Distributions
• Clock Design for Test and Manufacturing
• Elements of Clock Distribution Circuits
• Clock DFX (Design-for-Test and Design-for-Manufacturing) Techniques
• Multiclock Domain Distributions
• Future Directions

T. Xanthopoulos (ed.), Clocking in Modern VLSI Systems, Integrated Circuits and Systems, 9
DOI 10.1007/978-1-4419-0261-0 2, c© Springer Science+Business Media, LLC 2009
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Fig. 2.1. Processor clock frequency trend [1–30]

2.2 Definitions and Design Requirements

Synchronous circuits may be simplified to have two timing limitations: setup (MAX
delay) and hold (MIN delay). Setup specifies whether the digital signal from one
stage of the sequential structure has sufficient time to travel to and “set-up” before
being captured by the next stage of the sequential structure. Hold specifies whether
the digital signal from the current state within a sequential structure is immune from
contamination by a signal from a future state due to a fast path. Figure 2.2 shows
a typical synchronous sequential structure bounded by two flip-flops with a logic
circuit that exhibits a circuit delay of value Td. The sequential elements are clocked
by a source clock Ck1 and a destination clock Ck2.

Flip-Flop

Logic

Ck1 Ck2

Td

A B

Q

QD SET

CLRQ

QSET

CLR

D

Flip-Flop

Fig. 2.2. Sequential structure bounded by flip-flops

Clocks Ck1 and Ck2 can be spatially far apart on die as shown in Fig.2.3. In this
illustration, clocks Ck1 and Ck2 have their root at a common point (Clock Gen.) and
are routed through the on-die clock distribution before arriving at their respective
destinations. Locations A and B constitute the source and destination of the sequen-
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tial path. The transit time (clock latency1) of CK1 and Ck2, their latency difference,
their variations, and the design structure to minimize the above are the main topics of
discussion in subsequent sections. As will be shown later, the timing uncertainty and
the timing differences of Ck1 and Ck2 will play a fundamental role in determining
whether the setup and the hold constraints can be robustly met.

Clock Gen.

Ck2

A

BCk1

Td

Fig. 2.3. Sequential path showing explicit clock distribution

2.2.1 Setup and Hold Timing Constraints

This section will present a brief outline of the formulation and the key parameters
affecting the setup and the hold constraints.

The setup constraint specifies how data from the source sequential stage at cycle
N can be captured reliably at the destination sequential stage at cycle N + 1. This
situation is illustrated in Fig.2.4 in which the source clock Ck1 is shown to lag behind
the receive clock Ck2 due to clock uncertainty. The constraint for the source data to
be received reliably by the receiver is defined in inequality 2.1, where Td−slow is the
slowest (maximum) data path delay, Tsu is the setup time for the receiver flip-flop,
Tper is the clock period, TCk1 and TCk2 are the arrival times for clocks Ck1 and Ck2
(at cycle N) respectively.

Tper ≥ Td−slow +Tsu + |TCk1 − TCk2| . (2.1)

In the setup constraint situation, the available time for data propagation is re-
duced by the clock uncertainty defined as the absolute difference of the clock arrival
times. This uncertainty |TCk1 − TCk2| can originate from various sources and their
classification will be discussed in subsequent sections. In order to accommodate the
clock uncertainty and meet the inequality in (2.1), either clock period must be ex-
tended or path delay must be reduced. In either case, power and operating frequency
may be affected.

The hold constraint is shown in Fig.2.5. This case specifies the situation where
the data propagation delay is fast, and clock uncertainty makes the problem even

1 The latency is referenced to the root of the distribution.
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Td-slow

TCk1

TCk2

Cycle N+1

Fig. 2.4. Timing diagram for the setup constraint

worse and the data intended to be captured at cycle N +1 is erroneously captured at
cycle N, corrupting the receiver state. In order to ensure that the hold constraint is
not violated, the design has to guarantee that the minimum data propagation delay is
sufficiently long to satisfy inequality (2.2):

Td−fast ≥ Thold + |TCk1 −TCk2| , (2.2)

where Thold is the hold time requirement for the receive flip-flop.

Ck1

Ck2

Cycle N

Hold time failure
Tper

TCk1

TCk2

Td-nominalTd-fast

Cycle N+1

Fig. 2.5. Timing diagram for the hold constraint

In the discussion above, the following relationship is expected to hold (inequal-
ity 2.3):

Td−fast < Td−nominal < Td−slow. (2.3)

Meeting the hold constraint in (2.2) with large clock uncertainty could result in setup
violation due to (2.3) since the slowest manifestation of the same path could violate
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the delay requirement in (2.1). Such two-sided constraints are not uncommon in
modern design if the clock uncertainty is high.

Central to the discussion above is the clock uncertainty defined by the absolute
difference of delays TCk1 and TCk2. A typical clock distribution structure (Fig.2.6)
relies on buffer2 stages to amplify the clock from the clock generator to the respec-
tive receivers (shown as the sequential elements FF in Fig.2.6). In general, when
measuring the clock arrival time at the end points of a clock distribution, the clock
latencies with respect to the distribution common point (TDELAY) will exhibit a sta-
tistical distribution as shown in Fig.2.6. This statistical distribution is attributed to
various static or dynamic sources. For example, design mismatches and on-die pro-
cess variations will result in static delay mismatches. Clock generator (e.g. PLL)
jitter or dynamic voltage variations can introduce dynamic clock uncertainties. Min-
imizing TDELAY will also minimize clock uncertainty and improve setup and hold
margins.

Nominal distribution delay (TDELAY)

Probability
of Arrival

Time

Clock
Generator FF

Delay variance increases
with TDELAY

Fig. 2.6. Statistical nature of clock arrival times

2.2.2 Clock Attributes

We use this term to denote clock characteristics that affect the timing constraints
described in Sect.2.2.1. The key attributes are:

1. Clock uncertainties (skew and jitter)
2. Clock distribution latency
3. Clock duty cycle

The first and the last play an explicit role in the timing constraints of a synchronous
design. The clock latency by itself does not affect the sequential timing constraints
but plays a critical role in determining the other two.

2 In this context, a buffer stage could be any gate that exhibits gain.
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Static and Dynamic Clock Uncertainties

Clock uncertainties can be classified as static or dynamic. Static uncertainty does not
vary or varies very slowly with time. Process variation induced clock uncertainty is
such an example. On the other hand, dynamic uncertainty varies with time. Dynamic
power supply induced delay variation is an example of a dynamic uncertainty.

In Fig.2.7, the clock attributes Tskew and Tjitter are defined on clock waves Ck1 and
Ck2. Taking the wave Ck1 as an example, when one of the clock edges is repeatedly
sampled with an ideal reference, a timing histogram will result. A timing histogram
exists for every clock edge and is characterized by a mean value and a peak-to-peak
range (Fig.2.7). The difference between the mean of two corresponding clock edges
(example: between edge A and edge B) is defined as skew (Tskew) and is treated as
a static uncertainty. The peak-to-peak range of a single edge is specified as the jitter
(Tjitter) and its character is dynamic.

Clock
Ck1

Clock
Ck2

Time

C
ou

nt

Tskew

Tjitter (pk-pk, absolute)

Tper

A

Timing Histogram

B

C

D

Fig. 2.7. Clock skew and jitter definitions

Table 2.1 highlights the sources of the static and dynamic clock uncertainties.
Sources of static clock uncertainties are:

1. Intentional or unintentional design mismatches
2. On-die process variations
3. Loading variations (mismatch) at the intermediate or final stage of the clock

distribution

Design mismatches arise because of a number of factors. For example, a nonbalanced
clock distribution may be necessary due to floorplan constraints. A poorly chosen
distribution topology could lead to structural design mismatches. In other situations,
the clock arrival times at certain receivers are intentionally skewed to facilitate time
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borrowing across sequential boundaries due to nonuniform data path lengths. On-die
device mismatch due to on-die process variations is a significant factor. Additionally,
nonuniform clock loading is common in highly integrated designs. All skew sources
mentioned above remain constant over time (except through the slow process of tran-
sistor aging) and are treated as static. Figure 2.8 shows an empirical breakdown of
skew contributors.

Table 2.1. Sources of static and dynamic clock uncertainties

Clock uncertainties Sources
Static (skew) Intentional or unintentional design mismatches

On-die process variations
Final or intermediate loading variations

Dynamic (jitter) Voltage droop and dynamic voltage variations
Temperature gradient due to activity variations
Clock generator jitter

0 20 40 60

Device Mismatch

Supply Mismatch

Load Mismatch

Temperature Mismatch

Percent

Fig. 2.8. Factors affecting clock skew. Among all the sources, device mismatch is the dominant
contributor. Reproduced with permission from [31], c©1998 IEEE

Inherently static clock uncertainties can be corrected either by careful pre-silicon
analysis and design or post-silicon adaptive compensation. Accurate pre-silicon anal-
ysis can be time consuming and iterative. On the other hand, post-silicon adaptive
compensation is flexible and significantly more suited to high volume manufacturing.

Figure 2.9 shows clock skew as a percentage of cycle time vs. processor fre-
quency for a number of recent designs. On average, the trend suggests that the skew
as a fraction of the clock cycle time stays at about 4.5–5%. The ability of the trend to
continue is attributed to the adoption of clock distribution topologies that are skew
tolerant, more robust design flow, and more importantly the incorporation of robust
post-silicon compensation techniques.

Clock uncertainties caused by voltage variation, temperature variation, and clock
generator jitter are dynamic in nature. We use the term jitter to encompass all
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Fig. 2.9. Clock skew as percentage of cycle time vs. processor frequency [8, 15–17, 19–21, 24–
26, 28–30, 32–46]

dynamic uncertainties. Voltage variation is the dominant source and it can be due to
local switching events affecting specific areas of the clock distribution in a nonuni-
form fashion. A mathematical model of supply-induced jitter based on additive si-
nusoidal supply noise is developed in Section 6.8. Global voltage droop and clock
generator jitter are common to the entire distribution and contribute to the setup
constraint by modulating the cycle time. Clock generator jitter is addressed in detail
in Chapter 5. Temperature variation has a long time constant and its impact is usually
minor as seen in Fig.2.8. Figure 2.10 shows the trend of peak-to-peak clock jitter as
a fraction of cycle time. The average reduction of effective clock cycle time due to
jitter is about 5.5% and minimizing this is critical for performance reasons.
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We now present a simple mathematical skew and jitter model based on clock
distribution latency (Fig.2.11). The figure shows a source clock path with M buffer
stages and a receiver clock path with N buffer stages resulting in delays of TCk1 and
TCk2 respectively. The point-of-divergence (POD) delay is defined as the sum of the
source clock delay and the receiver clock delay measured from a common origin. In
Fig.2.11, the POD delay equals the sum of TCk1 and TCk2. Assuming Ti is the actual
delay at buffer stage i and τ is the average delay per stage, the source clock and the
receiver clock delays are:

Clock
Generator Td

Source Clock Delay (TCk1) 

Receiver Clock Delay (TCk2)

Point of Divergence
(POD)

Q

D

1 2 M

1 2 N

τ

Fig. 2.11. Sample clock distribution for skew and jitter model

TCk1 =
M∑

1

Ti ∼= Mτ, (2.4)

TCk2 =
N∑

1

Ti ∼= Nτ. (2.5)

The average delay per stage is determined by the drive current of the driver stage
(Id), the output loading capacitance (Cl), and the output voltage swing (VCC):

τ =
ClVCC

Id
. (2.6)

Using a simple linearized model, the change in delay per stage (Δτ) can be formu-
lated as:

Δτ =
∂τ

∂VCC
ΔVCC +

∂τ
∂Cl

ΔCl +
∂τ
∂ Id

Δ Id. (2.7)

Evaluating the partial derivatives yields:

Δτ =
Cl

Id
ΔVCC +

Vcc

Id
ΔCl −

ClVcc

I2
d

Δ Id. (2.8)
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Finally, substituting the expression for τ (2.6) results in the following expression:

Δτ = τ
(

ΔVCC

VCC
+

ΔCl

Cl
− Δ Id

Id

)
. (2.9)

Equation 2.9 states that the delay variation at each stage can be approximated
to be proportional to the stage delay. Additionally, we make the assumption that the
delay per stage is a random variable, normally distributed with the following standard
deviation:

σ (τ) ∼= ατ, (2.10)

where α is the proportionality constant predicted by (2.9). We assume that α is on
the order of 5%. Under the assumption that each stage delay is independent and iden-
tically distributed, the standard deviations of TCk1, TCk2, and |TCk1 − TCk2| become:

σ (TCk1) ∼=
√

Mατ, (2.11)

σ (TCk2) ∼=
√

Nατ, (2.12)

σ (|TCk1 − TCk2|) ∼= (
√

M +N)ατ. (2.13)

The standard deviations of skew and jitter are therefore3:

σ [Tskew (Ck1,Ck2)] =
(√

M +N
)

αskewτ, (2.14)

σ
[
Tjitter (Ck1)

]
=
(√

M
)

αjitterτ, (2.15)

σ
[
Tjitter (Ck2)

]
=
(√

N
)

αjitterτ. (2.16)

where αskew and αjitter represent the variation coefficients for static and dynamic
clock uncertainties, respectively. Typical clock distribution will have M = N and the
formulation will be reduced to:

σ [Tskew (Ck1,Ck2)] =
(√

2M
)

αskewτ, (2.17)

σ
[
Tjitter (Ck1)

]
=
(√

M
)

αjitterτ, (2.18)

σ
[
Tjitter (Ck2)

]
=
(√

M
)

αjitterτ. (2.19)

Equations 2.17–2.19 show that the skew and jitter variations will grow as the
square-root of the number of distribution buffering stages and linearly with the nom-
inal delay per stage. This formulation can be generalized for any pair of clocks that
share a common point of clock divergence. The sum of the variation coefficients for
modern process technology and design is between 5 and 10%.

3 Tskew(Ck1, Ck2) means the skew between clocks Ck1 and Ck2 and Tjitter(Ck#) is the jitter
of Ck#.
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Distribution Delay

Equations 2.17–2.19 suggest that the clock distribution delay (latency) is a key com-
ponent in determining the overall clock uncertainties. In order to handle the final
clock loading and to traverse the distances needed to reach the loads, a clock net-
work has to rely on a series of clock buffers for gain and signal propagation. In a
typical processor, the number of clock buffer4 stages may exceed 20 resulting in
clock latency that can approach 1ns. Minimizing clock distribution latency is a pri-
mary design objective irrespective of the distribution topology.

Duty Cycle

Duty cycle (Fig.2.12) is the relative percentage of the clock high phase time vs.
low phase time. Except for special clocking applications such as pulse generators
and clocks for dynamic and memory circuits, a 50% clock duty cycle is considered
optimal. This is particularly important for a latch-based designs and memory circuits
where any offset between the high phase and low phase can lead to phase paths
that are more difficult to meet timing constraints. In a phase path, time lost due to
duty cycle distortion will subtract directly from the total available phase time. Cycle-
based sequential designs using edge-triggered flip-flops are more immune to clock
duty cycle distortion. In a clock distribution, duty cycle distortion is introduced when
there is asymmetry between rising and falling edge delays.

Thigh Tlow

Ck1

Tper

Fig. 2.12. Clock duty cycle

2.2.3 Clock Distribution Power

Power dissipation attributed to the clock distribution has emerged as a critical con-
straint in multi-GHz multicore processors with large on-die caches. In this section,
we will develop a model for clock distribution power. Typically, the total end-of-
distribution loading due to sequential elements strongly determines the overall clock
network power. Let us consider the switching power of an unconditional clock at the
final distribution stage M:

PdCK M = CL MV 2
CC f , (2.20)

4 In this context, a clock buffer stage represents one unit-inverter stage.
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where CL M is the stage load that encompasses both gates and interconnect, VCC is
the power supply voltage, and f is the clock frequency. Total power will include
components for short circuit and leakage, but the dynamic component dominates. If
the fan out per stage is k, the clock dynamic power consumed at stage M−1 is:

PdCk M−1 = CL M−1V 2
CC f =

CL M

k
V 2

CC f . (2.21)

Assuming that the fan out is constant across all M stages, the total clock distri-
bution dynamic power is:

PdCk Total =
M∑

i=1

PdCk i =
M∑

i=1

CL iV 2
CC f , (2.22)

PdCk Total = V 2
CC fCL M

[
1−
( 1

k

)M

1− 1
k

]
. (2.23)

Let us define the clock load multiplier as the ratio of the total clock distribution
load capacitance to the end-of-distribution load capacitance:

Clock load multiplier =

M∑
i=1

CL i

CL M
=

[
1− ( 1

k )M

1− 1
k

]
. (2.24)

Figure 2.13 shows the clock load multiplier vs. the number of distribution stages.
Decreasing the stage fan out will lead to higher total network capacitance that ap-
proaches 1.5 at a stage fan out of 3. Note that this parameter is not very sensitive to
the number of buffer stages in the clock distribution network. Figure 2.14 shows the

1.1

1.2

1.3

1.4

1.5

1.6

4 8 12 16 20 24

Number of Buffer Stages

C
lo

ck
 L

o
ad

 M
u

lt
ip

lie
r

k=3 k=4 k=5 k=6 k = stage fan-out

Fig. 2.13. Clock loading multiplier of a clock distribution
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Fig. 2.14. Normalized clock stage power vs. stage number

power dissipation at each of the stage normalized to the power dissipation at the last
stage. It can be seen that power dissipation of the clock distribution is dominated by
the final end-of-distribution loading and that the last couple of stages in the distri-
bution will account for more than 90% of the total clock power. An implication of
this analysis is that the manner in which clock is distributed at the final stages of the
distribution will ultimately determine the overall clock power and that the distribu-
tion topology upstream will not have a strong impact. In a typical processor, clock
distribution (excluding the last stage) should not exceed 10% of total chip power and
have a design goal of 5–8%.

2.3 Clock Distribution Topologies

In this section, various clock distribution topologies are described. Table 2.2 lists
distribution topologies encountered in modern processors. While discussing these
topologies, we will focus on the same attributes described in Sect.2.2.2. In addition,
ease of implementation will be considered. Ease of implementation is subjective and
depends heavily on historical design styles and prior art.

2.3.1 Unconstrained Tree

An unconstrained tree style clock distribution is illustrated in Fig.2.15. It is
commonly used in automatic synthesis flows and usually placed with little or no
restriction on the number of buffer stages and explicit matching between intercon-
nect delays and the buffer delays. The network design is accomplished with a cost
function that minimizes the delay differences across all clock branches. Figure 2.15
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Table 2.2. Clock distribution topologies

Style Description
Unconstrained tree Automated buffer placements with unconstrained trees
Balanced tree Multiple levels of balanced tree segments

H-tree is most common
Central spine Central clock driver
Spines with matched branches Multiple central structures with length (or delay)

matched branches
Grid Interconnected (shorted) clock structure
Hybrid distribution Combination of multiple techniques

Common theme is tree + grid or spine + grid

shows an unconstrained clock distribution tree with K branches. A cost function (ϑ )
that minimizes the delay differences can be used in the construction of the network:

ϑ =
K∑

i=1

(
TCki −TCk Average

)2
, (2.25)

TCk Average =
1
N

K∑

i=1

TCki. (2.26)

In the primitive form and specifically without explicit structural matching, a
clock network with dissimilar buffer and interconnect delay composition may re-
sult in radically different branches that will exhibit significant mis-tracking across
process, voltage, and temperature variations. More sophisticated optimizing algo-
rithms can be incorporated to improve PVT tracking. Due to this limitation, this
style of clock distribution is usually restricted to small functional blocks within a
larger design.

Clock1

Clock2

Clock3

ClockK

Fig. 2.15. Unconstrained tree clock network
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2.3.2 Balanced Tree

Figure 2.16 shows a balanced H-tree clock topology. Due to the structural symmetry,
a balanced tree exhibits identical nominal delay and identical buffer and interconnect
segments from the root of the distribution to all branches. If the matching is adhered
to, structural skew can be zero. With identical buffer and interconnect segments,
an idealized balanced tree clock distribution will exhibit good tracking across PVT
compared to the unconstrained network described earlier.

Clock1 Clock2 Clock3 Clock4

ClockK

ClockA

ClockB

Fig. 2.16. Balanced H-tree clock network

Figure 2.17 shows alternative balanced tree topologies: the X-tree and a tapered
H-tree. The X-tree incorporates nonrectilinear clock trunks in the physical imple-
mentation but exhibits the same properties as the H-tree. The trunk widths in a ta-
pered H-tree increase geometrically toward the root of the distribution to maintain
impedance matching at the T-junctions. One important characteristic of the afore-
mentioned tree structures is that by continuing to expand the buffer hierarchy, bal-
anced trees are capable of delivering the clock to all part of the silicon die. Typically,
the clocks at the end-of-distribution branches will serve a small local region. The
size and number of the local regions will determine the depth of the tree. A larger
number of regions requires a tree with more depth.

Full balanced tree topologies are designed to span the entire die in both the hori-
zontal and vertical dimensions. They are capable of delivering the clock to all regions
of the die. A binary tree on the other hand (Fig.2.18) is intended to deliver the clock
in a balanced manner in either the vertical or horizontal dimension.

All branches of a binary tree exhibit identical buffer-interconnect segments, zero
structural skew, and similar PVT tracking. In contrast to the H-tree, the buffers in
a binary tree can be designed to co-locate in close proximity along a centralized
stripe. The closer physical proximity of the buffers in a binary tree can result in
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X-Tree Tapered H-Tree

Fig. 2.17. Variations on the balanced tree topology

reduced sensitivity to on-die variation. Moreover, physical placement of the clock
buffers in close proximity will minimize floorplan disruptions. On the other hand,
the idealized buffer placements associated with an H-tree may be difficult to achieve.
Due to these reasons, binary trees are often the preferred structure over an idealized
H-tree. Figure 2.19 shows a binary tree distribution with intermediate shorting. The
benefits of shorting will be discussed in a later section.

Ck1 Ck2 CkK

Fig. 2.18. Binary tree clock distribution

A balanced tree will exhibit nonzero clock uncertainty among branches due to
nonzero POD delays (2.17–2.19). Let us consider branches Clock4 and ClockA in
Fig.2.16. The point-of-divergence is two buffer-interconnect segments apart. In con-
trast, branches ClockA and ClockB are six buffer-interconnect segments apart result-
ing in higher POD delay and higher skew uncertainty. Therefore, among pairs of
equivalent branches in a balanced tree, nonuniform skew uncertainty will result and
will depend on point-of-divergence delay. In summary, a balanced tree is capable
of delivering the clock from the root to all regions of the die with good structural
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Ck1 Ck2 CkK

Fig. 2.19. Binary tree clock distribution with intermediate shorting

matching, efficient clock power and low structural latency. On the other hand, it will
exhibit nonuniform POD-induced clock skew uncertainty.

Before proceeding it should be noted that a nonsymmetric tree can also be used
in this context. A nonsymmetric tree usually maintains the same number of buffer
stages but will not have delay matching on a per stage basis. Delay adjustment for
overall branch equalization is done in a fashion similar to the unconstrained tree.
Intense computational effort usually is needed for this design and its application is
less common.

2.3.3 Central Spine

A central spine clock distribution is a specific implementation of a binary tree.
Figure 2.20 shows an idealized central spine implementation with the final branches
serving all parts of the die. The binary tree is shown to have embedded shorting at all
distribution levels and unconstrained routing to the local loads at the final branches.
In this configuration, the clock can be transported in a balanced fashion across
one dimension of the die with low structural skew. The unconstrained branches
are simple to implement although there will be residual skew due to asymmetry
(Fig.2.20).

2.3.4 Spines with Matched Branches

An extension of the central spine structure can be realized by replacing the un-
constrained end-of-distribution branches with delay matched routes as shown in
Fig.2.21. In this implementation, the longest branch determines the delay from the
output of the central spine to the end loads. Serpentine routes are added to the shorter
branches for delay matching. Figure 2.21 shows a structure with three central spines.
Multiple central spines are needed when the routing distance of the local branches
is increased. Dividing the chip into several sectors served by multiple spines is a
practical topology to ensure small local branch delays.
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Fig. 2.20. Central clock spine distribution

Clk1

Clk2

Clk3

Clkk

TDELAY

Fig. 2.21. Multiple clock spines with matched branches

2.3.5 Grid

The tree style distributions described in previous sections rely on individual branches
to deliver the clock to the local (end-of-distribution) points of clock consumption
(e.g. local flip-flops). A processor will have a large number of these local points
and will require a large number of branches and therefore a deep distribution tree.
A deep distribution tree will exhibit large POD delays and degraded clock perfor-
mance. Subdividing the die into a smaller number of clock regions and applying a
grid to serve each region can be a superior solution.
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Figure 2.22 schematically shows a 2-dimensional grid serving one of these clock
regions. This clock grid resembles a mesh with fully connected clock tracks in both
dimensions and grid drivers located on all four sides. Local loads within a region
can be directly connected to the grid. The grid effectively shorts the output of all
drivers and helps minimize delay mismatches. Figure 2.22 shows an idealized delay
profile of a 2-dimensional grid assuming uniform loading. The shorted grid node
helps balance the load nonuniformities and results in a more gradual delay profile
across the region. Additionally, since the grid drivers are shorted, the POD delay to
all the loads within a region is limited to the interconnect delay of the grid which is
typically small and results in lower clock skew uncertainty across the region. Grid
drivers may also be placed on two sides leading to a structure and delay profile shown
in Fig.2.23. Critical design parameters for the grid are grid driver locations and pitch
in addition to the grid metal pitches and dimensions.

A’

Ck1 Ck2

Ck3

CkK

A

B’B Position

Delay

A’A

Position

Delay

B’B

Fig. 2.22. Clock grid with 2-dimensional clock drivers

The recombinant tile structure is an enhancement over the conventional grid
structure and incorporates the properties of a balanced tree [29]. Figure 2.24 shows
the evolution of the recombinant tile structure from a regular H-tree segment to a tile
template and to the final tile assembly. A typical implementation will have uniform
interconnect pitches in both the x and y dimensions.5 The pitches are determined
by the intrinsic interconnect segment delays and the edge rate requirements. The
uniformity of the segment pitches allows all intermediate buffers to be placed in
predetermined locations.

The following analysis highlights the benefits of shorting intermediate stages in
reducing clock uncertainties. Figure 2.25 shows two clock branches CkA and CkB
exhibiting input skew skewIN. Let us assume that the two branches are identical

5 Note that the x and y pitches do not need to be equal.
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Fig. 2.23. Clock grid with 1-dimensional drivers

Regular H-tree segment Tile template Tile assembly

Fig. 2.24. Recombinant tile clock structure. Reproduced with permission from [29], c©2003
IEEE

(A-X-Y and B-U-V) and that RSHORT in Fig.2.25 is an open circuit (RSHORT = ∞).
In this case, the skew between CkU and CkY will be the same as the skew between
CkA and CkB. With an ideal short circuit (RSHORT = 0Ω ), the skew between CkU
and CkY will be zero. Hence, with a non zero and finite RSHORT, the output skew
between CkU and CkY will be proportional to the incoming skew:

skew(CkU,CkY) = γskew(CkA,CkB), (2.27)

where γ is a skew averaging coefficient (γ ≥ 0). The averaging coefficient is depen-
dent upon the local POD induced delay mismatch and will scale with the spatial sep-
aration between the output nodes. For example, when the shorting resistor RSHORT
in Fig.2.25 exhibits near zero resistance, the skew between CkY and CkU will be
close to zero suggesting that γ is near 0. As RSHORT approaches an open, γ will be
equal to or larger than 1. For example, in a 90nm technology, a typical RSHORT will
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0

SkewIN = |TCkA – TCkB|

Fig. 2.25. Effect of shorting on clock skew [50]

result in γ in the range of 0.2–0.8 for a few hundred microns of spatial separation
[29]. When this structure is cascaded in a clock distribution consisting of S cascaded
stages (S > 20), the skew at the output of stage S will be (for small γ) [50]:

skewS ≈ γ2(skewIN)+ γ(skewIN). (2.28)

Equation 2.28 states that the skew at the output of the distribution will stay rel-
atively independent of the number of stages and therefore less sensitive to die size.
The recombinant tile structure can be easily scaled to accommodate new designs.
Comparing the recombinant tile of Fig.2.24 to the grid structures of Figs.2.22 and
2.23, reveals that they share similar skew benefits due to averaging. However, the grid
structures require a pregrid clock distribution network to drive the grid or collection
of grids. A hybrid clock distribution topology can meet this need.

2.3.6 Hybrid Distribution

A hybrid clock distribution incorporates a combination of earlier described topolo-
gies. Common configurations are spines-grid distribution or tree-grid distribution.
Figure 2.26 shows the topology of a tree-grid distribution. It employs a multi-
level H-tree driving a common grid. Specifically, the multilevel H-tree delivers the
clock from the clock generator (PLL in Fig.2.26) to various regions of the die. Re-
gional buffers (labeled as level 4 buffers in Fig.2.26) residing at the end of the
multilevel H-tree drive a common grid that includes all local loads. As an alter-
native, there can be multiple regional grids each served by a branch of the pre-
grid H-tree. Partitioning the design enables intentional skew rebalancing across the
regions.
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Fig. 2.26. Hybrid clock distribution consisting of balanced H-Tree and Grid

2.4 Microprocessor Clock Distributions

Due to the design complexity and the significant mis-tracking to process, voltage
and temperature, a fully unconstrained clock distribution network is rarely (if ever)
applied to a processor design.

The closest example is a hybrid combination of symmetric and asymmetric clock
trees. Figure 2.27 shows an example of a processor clock distribution with a first level
H-tree connected to multiple secondary trees that are asymmetric but delay balanced.

Fig. 2.27. Asymmetric clock tree distribution network based on delay matching. Reproduced
with permission from [51], c©1998 IEEE
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The construction of the trees was based on a custom methodology that matches the
wire delays by tuning the metal widths, spacings, and lengths. Specifically, the first
level symmetric H-tree (thick lines in Fig.2.27a) routes the global clock from the
center of the die to 9 sector buffers. The 9 sector buffers rely on multiple delay-
matched secondary trees (light lines in Fig.2.27a) to distribute the clock to 580 global
clock receivers. Figure 2.27b shows the measured skew.

Figure 2.28 shows another example of a hybrid multilevel clock tree design [52].
The cache area (un-core) of the processor is partitioned into 13 regional clock zones
served by the secondary clock trees. Postlayout extraction-based simulation models
were used to perform tree optimization and delay matching. Additional examples of
a hybrid multilevel clock tree for processors are found in [10, 12, 13, 43].
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Fig. 2.28. Asymmetric clock tree distribution with multiple regions. Reproduced with permis-
sion from [52], c©2005 IEEE

Hybrid clock distributions that consist of multilevel symmetric trees and grids
have been applied to a number of processors [17–20]. Figure 2.29 shows an example
[18]. In this implementation, the clock from the clock generator is distributed from
a central clock buffer through two levels of buffering and three levels of delay tuned
H-trees before reaching a main grid covering most of the chip, and two smaller grids
covering two units that require delayed clocks.

Figure 2.30 shows another example of a hybrid tree-grid design in [17]. A multi-
level tree structure delivers the clock to 64 sector buffers driving a common grid via
multiple second level tuned trees.

Figure 2.31 shows the floorplan and the clock skew profile of three generations
of Alpha R©6 processors. These designs followed a common strategy of having one
or more centralized clock spines to drive a common grid. The first generation design
relied on a single spine to support the entire die whereas the third generation design

6 Other names and brands may be claimed as property of others.
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Fig. 2.29. Multilevel symmetric H-Tree distribution. Reproduced with permission from [18],
c©2000 IEEE

Fig. 2.30. Delay characteristics of a multilevel tree-grid distribution. Reproduced with permis-
sion from [17], c©2002 IEEE

utilized 16 central spines organized in a 2-dimensional fashion to drive the common
grid. By partitioning the die into smaller regions. the third generation design reduced
the clock skew across the grid.

Figure 2.32 shows the application of recombinant tiles to a multi-GHz IA pro-
cessor fabricated in 90nm [29].7 The buffers needed for the recombinant tiles are
embedded in eight central clock stripes. The recombinant tile distribution consists of

7 Other names and brands may be claimed as property of others.
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Fig. 2.31. Centralized clock drivers with grids on three generations of the Alpha R© micropro-
cessor. Reproduced with permission from [53], c©1998 IEEE

Fig. 2.32. Recombinant clock tiles on a 90nm processor. Reproduced with permission from
[50], c©2003 IEEE

27 inversion stages and a total of 1,474 grid drivers (each driver is an inverter). An
automated grid driver sizing flow was used to minimize grid driver oversizing for
power efficiency. The simulated delay profile is shown in Fig.2.32. A global skew of
less than 10ps was achieved with this design.

An example of centralized spines with delay-matched branches is the clock distri-
bution of the 180nm Pentium R© 4 processor [8]8. Binary distribution trees embedded
in three central clock spines drive the local loads with delay-matched branches. The
binary trees embedded in middle spine buffer the clock from the central PLL and de-
liver it in a balanced fashion to the other spines. The final clock drivers use matched

8 Other names and brands may be claimed as property of others.
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Fig. 2.33. Pentium R© 4 processor clock distribution using centralized spines with delay
matched final branches. Reproduced with permission from [49], c©2001 IEEE

Fig. 2.34. Clock distribution of a low power IA processor consisting of binary trees embedded
in the centralized spines. Reproduced with permission from [55], c©2008 IEEE

branches to support the local loads. The final drivers incorporate delay tuning capa-
bility to further optimize the skew via post-silicon compensation. Without engaging
compensation, the measured skew is ±32ps.
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The low power IA processor in [54] is another example of the application of
the clock distribution topology consisting of centralized spines and delay-matched
branches. The global binary tree with limited clock recombination is embedded in
the spines. The spine output drivers are shorted with a high layer metal (M8) to
equalize the driver delays. The highly selective application of clock recombination
and other power saving schemes enables this design to achieve total clock power
dissipation that is less than 10% of the total processor power.

The 65nm dual-core Xeon R© processor employed a hybrid spine-grid clock
distribution topology to support the multicore and uncore clock domains [45].9

Figure 2.35 shows the multiple clock domains and the distribution design of this
processor. The processor has two cores operating at the high frequency MCLK. The
uncore is supported by the SCLK at half the MCLK frequency and the ZCLK dedi-
cated for the I/O circuits at 4 times the system clock frequency. Binary trees embed-
ded in the horizontal and vertical clock spines in the uncore distribute the clocks to
the SCLK and ZCLK grids. The core employs the recombinant tile clock distribution
similar to that described in [29]. Operational flexibility is achieved by keeping core
and uncore clock regions independent.

PLL (Clock Generator)

Core dense MCLK grid

Un-Core pre-global
MCLK spine

Un-Core sparse SCLK
grid

Un-Core ZCLK grid

Un-Core pre-global
ZCLK spine

Horizontal clock spines

Vertical clock spines

Fig. 2.35. Hybrid spine-grid clock distribution in a dual core processor. Reproduced with
permission from [45], c©2006 IEEE

Figure 2.36 shows the details of the uncore grid implementation and the local
clocking in [45]. The preglobal clock and the final grid clock driver are embedded
in the vertical clock spines. A common SCLK grid covers the entire uncore area
to serve the local logic units. Local clocking consists of two buffer stages featuring
clock gating and delay tuning. The local clock buffers are placed inside the local
logic unit with direct connection to the overlying global grid. Support for multiple
local clock flavors is achieved with a family of local clock buffer macros.

9 Other names and brands may be claimed as property of others.



36 S. Tam

MCLK

Stage-1 Local 
Clock (Tunable)

Local 
Sequential

Pre- Global
MCLK

Global SCLK
Grid 

PLL
SCLK Qualifier

Pre- Global
SCLK

Stage-1 Local 
Clock (Tunable)

Local 
Sequential

FF

Local Logic
Unit 

Stage-1 Local
Clock (Tunable) 

Local
Sequential

Stage-2 Local
Clock 

SCLK

SCLK
MACRO

Fig. 2.36. Local clock distribution of the hybrid spine-grid clock distribution. Reproduced
with permission from [45], c©2006 IEEE

2.5 Clock Design for Test and Manufacturing

2.5.1 Global and Local Clock Compensations

It should be obvious from the earlier discussions that the primary objective of the
aforementioned clock distribution topologies is to deliver the clock to all corners of
the die with low skew. For example, the application of averaging in the recombinant
tile clock distribution will result in a scalable network that exhibits very low skew.
However, implementation of the recombinant tile network will encounter floorplan
constraints leading to nonideal driver placements and loss of performance. Floorplan
constrains will also affect other topologies such as the H-tree distribution. Moreover,
in many situations, intentional clock skew between specific regions of the global
clock network is needed to rebalance the path timings. Therefore, a clock distri-
bution network with adaptive delay compensation10 is superior to the conventional
design that has fixed delays, even if the adaptive design may exhibit higher initial
skew. Additionally, adaptive delay compensation will adjust to skew caused by pro-
cess variations and will overcome difficulties related to the construction of a pre-
silicon design model and design flow that accurately and exhaustively accounts for
all process effects (i.e. SOI dynamic switching effects). As an example, the evolution
of the processor clock distribution designs in [17–19] eventually incorporated adap-
tive clock compensation in the latest implementation [20]. By allowing for slightly
high initial skew, the physical design resource needs (e.g. metal tracks, floorplan

10 The terms “adaptive delay compensation,” “active deskew,” and “skew rebalancing” are
used interchangeably in this discussion.
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restrictions, pre-silicon analysis, etc.) for a clock network with adaptive compensa-
tion are expected to be lower. In the following sections, we discuss adaptive global
and local clock compensation architectures.

2.5.2 Global Clock Compensation Architecture

Figure 2.37 shows a dual-zone adaptive deskew clock distribution architecture im-
plemented in a 450MHz microprocessor [32]. The global clock distribution of this
processor is partitioned into two planes supported by the “left” and the “right” clock
spines. Binary clock trees embedded in the spines deliver the global clock from the
clock generator to the spine drivers. Two digital delay lines with 17 delay adjustment
steps and approximately 12ps average delay step size reside near the root of their
respective clock spines. A phase detector (PD in Fig.2.37) strategically placed in the
microprocessor core compares the phase difference of the clocks between the left and
the right planes. A digital control logic unit (Control FSM and Delay SR) interprets
the phase detector output and makes adjustments to the delay lines. The construc-
tion of the delay line is shown in Fig.2.38. It consists of two cascaded inverters with
switchable load capacitors at each stage. The delay shift register (Delay SR) gener-
ates a thermometer-coded delay adjustment and sequentially enables the load capac-
itors between the two stages. A 60ps skew was reported with adaptive deskewing
disabled and 15ps with the mechanism engaged.
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Fig. 2.37. Dual-zone deskew architecture. Reproduced with permission from [32], c©1998
IEEE
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Fig. 2.38. Deskew delay line structure. Reproduced with permission from [32], c©1998 IEEE

The previous implementation [32] embodied only two independent deskew re-
gions. Figure 2.39 shows a deskew architecture in the Itanium R© processor11 that
supports 30 independent deskew regions [36, 56]. An H-tree distributes the global
clock from the central PLL to eight clusters of deskew buffers (DSK in Fig.2.39)
serving 30 independent deskew regions. Each DSK cluster may contain up to four
independent deskew buffers.
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a b

DSK

DSKDSK

DSKDSK

DSK DSK

DSK
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DSKDSK

DSKDSK

DSK

CDC

DSK = Cluster of 4 deskew buffers

CDC = Central Deskew Controller

Fig. 2.39. Deskew zones in the itanium R© processor. Reproduced with permission from [56],
c©2000 IEEE

11 Other names and brands may be claimed as property of others.



2 Modern Clock Distribution Systems 39

Figure 2.40 shows the detailed clock distribution architecture of [36] that en-
compasses the H-tree global distribution, the grid structure for the regional distribu-
tion, and the local buffers for the local distribution. In this design, the grid drivers
(RCD in Fig.2.40) are located at the top and bottom of grid. In addition to the global
clock (main clock in Fig.2.40), a dedicated and tightly matched reference clock is
routed from the central clock generator to the eight DSK clusters (reference clock in
Fig.2.40). The purpose of the reference clock is to act as the reference to deskew the
global clock.

Figure 2.41 shows the details of the deskew buffer architecture and the delay cir-
cuit design. The delay circuit design is similar to the previous design consisting of
two inverter stages with switchable capacitor loads using a 20b thermometer code
with a tri-state controllable output stage. In this implementation, the total skew is
28ps with deskew turned on. The skew increases by a factor of 4 with the deskew
mechanism disabled. Additional details of this active deskew architecture are dis-
cussed in Sect.7.3.2 in the context of addressing variations in the clock network.
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Fig. 2.40. Clocking architecture of the first itanium R© processor. Reproduced with permission
from [56], c©2000 IEEE

The 180nm Pentium R© 4 processor12 clock distribution described in Sect.2.4
employs a hierarchical deskew architecture consisting of 47 adjustable clock zones,
and 3 levels of deskew hierarchy with 46 phase detectors [49]. The left panel in
Fig.2.42 shows the deskew system architecture whereas the right panel shows the
details of the deskew hierarchy. Phase detectors are placed in between the deskew hi-
erarchies. For example, phase detectors between the single primary reference and the
secondary references will detect the delay differences between the reference clock
zone and the secondary zones. The clock latencies to the secondary zones are ad-
justed via corresponding deskew buffers (DB2–DB47). Application of hierarchical

12 Other names and brands may be claimed as property of others.
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Fig. 2.41. Deskew controller and deskew buffer design. Reproduced with permission from
[56], c©2000 IEEE

deskew eliminated the need for a tightly matched reference clock as in [56]. The
deskew hierarchy depth and the phase detector quantization error should be kept low
to ensure that there is no excessive accumulation of residual mismatches between
the primary reference and the final clock zones. In this implementation, the depth
of the deskew hierarchy is 3. Figure 2.43 shows the skew profile before and after

Fig. 2.42. Pentium R© 4 processor deskew architecture. Reproduced with permission from [49],
c©2001 IEEE
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deskew. With deskew enabled, the in-die skew was adjusted to ±8ps and limited
by the resolution of the adjustable delay elements. The preadjustment skew was at
about 64ps. A hierarchical deskew architecture with deeper hierarchy was used in
the 90nm dual-core Itanium R© processor [43]13 and is shown in Fig.2.44.

Fig. 2.43. Before and after skew profile of the Pentium R© 4 processor. Reproduced with per-
mission from [49], c©2001 IEEE

Fig. 2.44. Hierarchical deskew architecture of a dual-core processor. Reproduced with permis-
sion from [43], c©2005 IEEE

13 Other names and brands may be claimed as property of others.
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The hierarchical deskew scheme can be generalized to cover any neighboring
clock zones in an H-tree style implementation (Fig.2.45) or a mesh style implemen-
tation (Fig.2.46) [57]. In the H-tree topology shown in Fig.2.45, deskew is accom-
plished hierarchically. For example, the level-1 phase detector placed at the boundary
between zone D and zone H will determine which of these two clocks is early and
the control logic associated with this phase detector will adjust the clock delays to
reduce the skew to within some predetermined guard-band. Once the zones associ-
ated with the level-1 phase detectors are brought in phase, deskew will continue in
zones associated with the level-2 phase detectors. The procedure will continue until
it reaches the level-4 phase detector. There are drawbacks associated with the H-tree
deskew topology. First, a deskew buffer must be inserted in all the branches associ-
ated with a phase detector leading to longer clock distribution delay and higher jitter.
Second, there could be large accumulated guard-bands in zones that are physically
adjacent but hierarchically far apart (example: zone B and zone C).
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Fig. 2.45. H-tree deskew topology (PD=Phase detector) [57]

The mesh deskew topology addresses the drawbacks of the H-tree deskew topol-
ogy. In the mesh deskew topology, deskew will be performed on all adjacent zones
via averaging. For example, region C in Fig.2.46 is deskewed with respect to zones
B, D, & G simultaneously by averaging their respective phase detector outputs. To
ensure stability, a mesh deskew algorithm has been proposed that takes into account
potential conflicts and the impact due to guard-band accumulations [57].

Table 2.5.2 summarizes clock distribution characteristics of various commercial
processors. The prevalence of adaptive skew compensation techniques is evident.
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Table 2.3. Clock distribution characteristics of commercial processors

Name Ref. Frequency skew Technology Clock Dist. style Deskew
(MHz) (ps) (nm)

Merom [30] 3,000 18 65 Tree/Grid Yes
Power6 R© [20] 5,000 8 65 Sym. H-Tree/Grid Yes

Quad-Core Opteron
TM

[16] 2,800 12 65 Tree/Grid
Xeon R© processor [45] 3,400 11 65 Tree/Grid Yes
Itanium R© 2 processor [43] >2,000 10 90 Asymmetric tree Yes
Power5 R© [19] >1,500 27 130 Sym. H-Tree/Grid No
Pentium R© 4 processor [29] 3,600 7 90 Recombinant tile Yes
Itanium R© 2 processor [42] 1,500 24 130 Asymmetric tree Yes
Power4 R© [17] >1,000 25 180 Tree/Grid No
Itanium R© 2 processor [35] 1,000 52 180 Asymmetric tree No
Pentium R© 4 processor [8] >2,000 16 180 Spine/Grid Yes
Itanium R© processor [36] 800 28 180 H-Tree/Grid Yes

Note: Other names and brands may be claimed as property of others

2.5.3 Local Clock Compensation Architecture

The concept of global clock compensation outlined in the last section and aimed at
optimizing clock skews (intentional or unintentional) among global clock zones can
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be easily extended to the local level to address path specific clock timings. Specifi-
cally, locating critical paths (LCP) buffers with adjustable delays can replace regular
local buffers with fixed delays [7, 30, 45]. Figure 2.47 shows an implementation ex-
ample [30]. The local clock buffers are replaced by LCP buffers to create the LCP do-
mains. They are controlled by the LCP control chain and the chain setting is usually
determined post-silicon. Since each LCP buffer is targeted at a limited fan out, the
number of LCP domains could be too many to manage. To overcome this difficulty, a
processor implementation will cluster the LCP domains resulting in hundreds of LCP
zones. The LCP technique is highly effective in resolving clock timing marginalities
post-silicon. For example, a MAX timing path between “A” and “B” in Fig.2.47 can
be compensated by intentionally delaying the LCP buffer at the receiver (B). On the
contrary, a MIN path marginality between “A” and “B” can be resolved by delaying
the LCP buffer at domain A. The highly distributed nature of the LCP methodology
permits fine-grain post-silicon clock timing adjustments in contemporary processor
implementations.
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Fig. 2.47. Local Clock Compensation [30]

2.6 Elements of Clock Distribution Circuits

2.6.1 Clock Duty Cycle

Maintaining the clock duty cycle as close to 50% as possible is important and par-
ticularly critical for high performance processors. Specifically, high performance
processors will have many phase paths in which any duty cycle distortion will unnec-
essarily penalize the design. Let us assume a clock period of Tper with a duty cycle
error of Q%. The corresponding high and low phase times become:
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TphH = Tper ×
(50+Q)

100
, (2.29)

TphL = Tper ×
(50−Q)

100
. (2.30)

Let F50% be the maximum operating frequency achievable with a 50% duty cy-
cle. Then, the corresponding high and low phase paths will correspond to effective
frequencies FmaxH and FmaxL:

FmaxH = F50% × 100
(100+2Q)

, (2.31)

FmaxL = F50% × 100
(100−2Q)

. (2.32)

Figure 2.48 shows the effective Fmax increase necessary for a phase path to the
meet timing due to duty cycle distortion. The effective maximum frequency increase
is approximately twice that of the percentage duty cycle offset from 50%.
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Fig. 2.48. Fmax shift caused by duty cycle distortion in a phase-path dominated design

Clock distribution induced duty cycle error is mainly attributed to asymmetry in
the clock distribution repeaters. Figure 2.49 compares a buffer-based (two inverters)
clock distribution design vs. an inverter-based clock distribution. In a buffer-based
design, an incoming clock edge undergoes asymmetric rise and fall edges: Two fall
edges experience gate loading only whereas two rise edges experience interconnect
loading. In contrast, in the inverter-based implementation, both positive and negative
edges experience similar loads. By having loading symmetry between rise and fall
edges, an inverter-based clock distribution network is more robust in maintaining
duty cycle fidelity.
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Fig. 2.49. Duty cycle distortion due to asymmetric edge propagation between a buffer-based
clock distribution and an inverter-based clock distribution

In applications such as double data rate circuits where attaining a near perfect
50% duty cycle is critical, a differential clock distribution is the preferred solution.
Sending the clock differentially improves noise immunity and duty cycle fidelity.
Moreover, cross coupled stages can be added to further reduce duty cycle error by
introducing constraints between true and complement clock signals. Finally, active
duty cycle correction can be added to dynamically adjust the duty cycle across pro-
cess, voltage, and temperature variations. Figure 2.50 shows an active duty cycle
correction system with the corrector and detector circuits shown in Fig.2.51. In a
differential clocking environment, the duty cycle can be easily determined by sens-
ing the clock common mode and making the appropriate adjustments.
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Fig. 2.50. Duty cycle corrector. Reproduced with permission from [13], c©2008 IEEE
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Fig. 2.51. Duty cycle corrector circuits. Reproduced with permission from [13], c©2008 IEEE

2.6.2 Power Supply

In (2.9), it was noted that the clock distribution delay variation is proportional to the
distribution latency of which the delay sensitivity to power supply variation is a key
factor. Power supply droop due to di/dt and power supply noise due to switching are
two significant sources.

Power supply decoupling capacitors are used extensively to reduce the power
supply droop and noise effects. Wong et al. [58] studied improving the processor
timing margin by enhancing its immunity to power supply noise by compensating the
clock delay against the data delay. In addition to on-die decoupling capacitors, on-die
power supply filters can reduce the impact of power supply noise. Figure 2.52 shows
two possible implementations [16, 49]. The implementation in [49] demonstrated a
5× reduction in power supply noise with filtering (Fig.2.53). It should be noted that
the circuits shown in Fig.2.52, if not designed with care, can experience excessive
DC power supply drop leading to delay degradations.

VCC

Output

Input

Output

Input

VCC

Fig. 2.52. Clock buffer design with power-supply filters. Reproduced with permission in a
form similar to that in [49] and [16], c©2001, 2007 IEEE
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Fig. 2.53. On-die clock tree filter circuit. Reproduced with permission from [49], c©2001 IEEE

The reader is encouraged to review Sect.6.8 for an analytical model of supply
noise induced jitter as a function of noise frequency and amplitude and clock network
latency.

2.7 Clock DFX Techniques

Clock DFX refers to the design-for-test or design-for-manufacturing features. DFX
capabilities are critical for the design of the clock distribution network. For example,
methods to measure on-die clock skew and jitter are needed for post-silicon valida-
tion of the design. Additionally, the ability to manipulate the clock edges at some
specific clock cycle is a critical timing debug feature.

2.7.1 Optical Probing

Due to the increased number of metal layers and flip-chip packaging, optical probing
from the back-side of the die is a standard technique to probe die internal nodes [59].
This technique is quite suitable for on-die clock measurement due to the periodic
nature of the clock. The back-side optical probing technique monitors the infrared
photons that are emitted by switching transistors. Figures 2.54 and 2.55 illustrate
the emission mechanism and measurement methodology [60]. The photon emission
intensity is proportional to the transistor switching current and is at a maximum dur-
ing the switching transient. Therefore, the clock transition edge can be determined
by correlating the photon emission peak with a time base. By monitoring the clock
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Fig. 2.54. Back-side optical probing technique (a). Reproduced with permission from [60],
c©2004 IEEE
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Fig. 2.55. Back-side optical probing technique (b). Reproduced with permission from [60].
c©2004 IEEE

drivers in various die locations, this technique provides static clock skew measure-
ment capability. Limitations of this technique are instrumentation complexity, timing
resolution and its inability to measure dynamic clock uncertainties (jitter) due to the
intrinsic averaging effect of the measurement.

2.7.2 On-Die Measurement

On-die skew and jitter measurement schemes are more suitable for high volume data
collection when compared to the optical back-side probing technique outlined in the
last section. Figure 2.56 shows a circuit capable of measuring both skew and jitter
[61]. The circuit contains an inverter based delay line (inverters A1 to AK+1) and a
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chain of flip-flops configured to sample the taps along the delay line. The inverters
are designed to be nominally identical and with low fan out. The length of the delay
line and the sampling chain K is designed to be sufficiently long so that the total delay
will fully contain at least one clock period at the lowest frequency of interest. If τ
is the nominal unit delay for the inverter and Tper max is the maximum clock period,
then Kτ > Tper max. In [61], K is set to 128 and the inverter has a nominal delay of
8ps. When CkA is selected as the input to the delay line (via the MUX in “CkSample1”
in Fig.2.56), the resulting pattern from the sampling flip-flops is shown in Fig.2.57
with the clock transition edges denoted by two consecutive 0s or two consecutive 1s.
If the number of inverter stages between the clock transition edges is Nx, the phase
time Tph is bounded by:

Nxτ ≤ Tph ≤ (Nx +1)τ. (2.33)

If there is no jitter on the incoming clock, the stage count Nx and the pattern will
be the same in every cycle. With nonzero clock jitter, the sample pattern will not be
identical in every cycle and the sampled locations of the clock edges will vary.
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Fig. 2.56. Skew and jitter measurement circuit. Reproduced with permission from [61],
c©2004 IEEE
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To measure the clock skew between clock CkA and CkB, the coupled configura-
tion shown in Fig.2.56 is used. Clock CkB Sample is multiplexed to the delay chain
in circuit “CkSample1” and CkA Sample is multiplexed to the delay chain in circuit
“CkSample2.” If there is no skew between CkA and CkB, the captured patterns from
the two circuits will be identical. With finite skew, the difference in the position of
the sampled clock edges is the measured skew.

Shortcomings of the aforementioned technique are the limited measurement res-
olution due to the discrete unit delay of the inverter and the delay variation among the
inverters in the delay line [62, 63]. A vernier delay line (VDL) as shown in Fig.2.58
can be used to improve the measurement resolution. With τA 	= τB (Fig.2.58), the
timing resolution becomes δ = |τA − τB| . Although this scheme can in principle
achieve higher resolution, delay variation among the stages will impose a limitation
on the results.
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Figure 2.59 shows a timing diagram of the Vernier delay line with CkA and CkB
skewed by 3δ where δ is the delay difference between τA and τB. The sampled
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pattern QA1 to QAK will show three consecutive ones representing the skew between
the two clocks. In general, if the skew between the clock inputs to the VDL is Tskew
and the stage delays are τA and τB respectively, the number of ones (Ny) in the
observed pattern will be:

Ny =
⌊

Tskew

δ

⌋
, (2.34)

δ = |τA − τB| (2.35)

The limitation of the VDL technique is attributed to the stage-to-stage delay vari-
ations making measurement resolutions in the sub-picosecond range difficult to
achieve without incorporating additional mismatch compensation schemes.

2.7.3 Locating Critical Path

In addition to being an important post-silicon (local) clock compensation technique,
the locating critical path (LCP) scheme is also a valuable post-silicon timing and
clock debug tool [7, 30]. By intentionally skewing the clock arrival times between
local clock zones, physical locations of marginal timing paths can be identified for
further analysis. When coupled with the on-die clock shrink method (Sect.2.7.4),
the LCP technique has been shown to be a critical post-silicon clock and timing
debug tool.

2.7.4 On-Die-Clock Shrink

In conjunction with the LCP technique, the on-die clock shrink (ODCS) method [56]
is an effective clock edge manipulation technique that has been used extensively in
post-silicon timing debug. The main concept behind ODCS is the capability to ma-
nipulate specific clock edges for phase or cycle expansion or contraction. Figure 2.60
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Fig. 2.60. On-die-clock shrink architecture. Reproduced with permission from [56] c©2000
IEEE
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shows the clock generation architecture capable of supporting this feature. An ODCS
buffer is inserted in series with the core clock generation path. The ODCS buffer is
designed to be able to stretch or shrink the phase or cycle time.

Figure 2.61 shows an example of the ODCS operating principle. The input to the
ODCS buffer is assumed to have equal high and low phase times. The initial rise and
fall default setting are equal (10 arbitrary units in Fig.2.61). With this setting, the de-
fault ODCS buffer output will also have equal high and low phase times. The settings
in cycles N +1, N +2, and N +3 shown in Fig.2.61 will shrink the low phase at cycle
N +1 and then restore the clock waveform to the default.14 Figure 2.62 summarizes
the overall capabilities of the ODCS technique. Implementation of ODCS requires
the incorporation of ODCS rise and fall registers and a state machine to cycle through
these registers in a deterministic manner.

In an actual experiment to locate the source of the timing failure during timing
debug, the default operating frequency of the device under test is first relaxed and the
ODCS phase or period shrinkage is applied systematically across a specific range of
tester cycles to locate the actual cycle of failure and the failure timing margin. In this
manner, the failure pattern can be correlated to a specific test cycle to identify root
cause.
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Fig. 2.61. ODCS clock waveform. Reproduced with permission from [56] c©2000 IEEE

14 In this implementation, the N + 1 “Rise” setting actually affects the rising edge at cycle
N +2 since this setting is applied after the fall edge of cycle N +1. The N +1 “Fall” setting
affects the falling edge at cycle N +1 because it is also applied after the rising edge of cycle
N +1.
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Fig. 2.62. ODCS capabilities. Reproduced with permission from [56] c©2000 IEEE

2.8 Multiclock Domain Distributions

As digital designs move towards multicores and systems-on-chip (SOC) architec-
tures, multiple clock domains will become a prevalent design style and the clock
distribution schemes will need to be enhanced to fulfill this need. A multiclock do-
main design typically embodies multiple islands operating synchronously and served
by independent clocks within the domain and with dedicated interfaces to manage
the inter-domain communications. In a multicore processor, each of the cores can be
a separate clock domain. Similarly, different functional units in an SoC can be on
separate clock domains.

In multicore processors and SoC designs, it is advantageous to implement mul-
tiple clock domains because this scheme provides functional flexibility for each of
the domains to operate at the optimal frequency and to minimize the complexity and
power associated with distributing a low skew clock to the entire die. The multido-
main clock distribution architectures for multicore processors and SoCs belong to a
class of designs called globally asynchronous and locally synchronous (GALS) [64].
Table 2.4 summarizes synchronization categories within the GALS class.

Table 2.4. Clock synchronization categories

Type Characteristics of distribution
Synchronous Single distribution point-of-divergence (POD) with known static

delay offsets among all the branches and single operating fre-
quency.
Encompasses all of the clock distribution styles described in
Sects.2.3 and 2.4

Mesochronous Single distribution POD but with nonconstant delay offset among
the branches

Plesiochronous Multiple distribution PODs but with nominally identical frequency
among all the domains

Heterochronous Multiple distribution PODs with nominally different operating
frequencies among the domains
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Figure 2.63 is a generic illustration of the GALS design style. Multiple clock do-
mains are embedded in a single silicon die. The chip may receive multiple copies
of the system clock and multiple PLLs are used to generate the clocks for each
of the synchronous units. Clocks Ck1,Ck2, . . . ,Ck4 may have different phases or
frequencies. The clock distribution within Each synchronous unit will rely on any
of the topologies described in Sect.2.3 to achieve low skew and fully synchronous
operation.
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Fig. 2.63. Globally synchronous and locally synchronous architecture. Reproduced with per-
mission from [64], c©2007 IEEE

Since each of the synchronous units can operate at different frequency and phase
from the rest, the on-die global interfaces will be responsible for the data transfer
among the domains. Many modern multicore processors and SoCs only adopt the
loosely synchronous styles of Table 2.4 to avoid the significant complexity associated
with truly asynchronous design.

2.8.1 Multicore Processor Clock Distribution

A plesiochronous clock distribution involves multiple distribution PODs but with a
nominally identical operating frequency. The 65nm dual core processor described
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in [45] is an example. Figure 2.64 illustrates this scheme which consists of two do-
mains for the two cores and the uncore and I/O domain with the interface operating
at the same frequency. The system clock input to the three clock generators (PLLs)
is routed in the package. There are three independent distribution PODs for the cores
and the uncore. A recombinant style distribution for low skew is used in the core
whereas the uncore employs a hybrid spine-grid structure for lower power and sim-
pler implementation. Data communication between the cores and the uncore is ac-
complished via the pipelined deskew logic (PDSL) interfaces operating at the same
frequency. Introducing independent clock domains for the cores permitted a modular
design.

System
Clock

Legend:

Core PLL Uncore I/O

Fig. 2.64. Multidomain clocking in a dual-core processor. Reproduced with permission from
[45], c©2006 IEEE

A mesochronous clock distribution has a single distribution POD while exhibit-
ing nonconstant delays to the branches. The 80-tile processor design in [65, 66] is
one example of a mesochronous clock distribution. This processor has a single PLL
and therefore a single distribution POD (Fig.2.65). Distributing the global clock to
the respective tiles is achieved using chains of clock buffers embedded within each
tile. The daisy-chaining of the global clock buffers suggests nonequal clock laten-
cies to each processor tile. The systematic clock skews across the processor tiles
help spread the clock switching power over an entire cycle. Interprocessor-tile com-
munication is achieved with a skew insensitive FIFO interface [66]. Within each
processor tile, a balanced H-tree is responsible for the distribution and all circuits
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within each processor tile operate synchronously. Figure 2.65 (left) shows details of
the distribution scheme. Figure 2.65 (right) shows the relative arrival times of the
clocks at the processor tiles. In a processor design having a large number of proces-
sor cores operating at the same frequency, this clock distribution style has the poten-
tial of reducing the impact of simultaneous switching on the on-chip power delivery
network.

Fig. 2.65. Clock distribution of an 80-tile processor design. Reproduced with permission from
[66], c©2008 IEEE

A heterochronous clock distribution has multiple distribution PODs and can sup-
port nominally different operating frequencies across the domains [12, 13, 16, 67].
The 90nm 2-core Itanium R© processor [12] and the 65nm quad-core Itanium R© pro-
cessor [13] have adaptive core frequency switching implemented with multiple
PLLs. Low failure probability FIFOs are placed at the interface of the correspond-
ing clock domains. Similarly, [16] and [67] have independent PLLs for the cores,
uncore, and the I/O that are capable of operating at different frequencies. Clock do-
main crossing is accomplished with low-latency FIFO schemes.

Despite the potential design benefits of the loosely synchronous methods de-
scribed above, the requirement of a deterministic domain crossing will impose higher
design complexity at the interfaces. FIFO-like structures are used at the cost of ad-
ditional transfer latency in order to compensate for the higher crossdomain clock
uncertainties. The PDSL interface in [45] incurs two additional cycles of latency
when compared to a single-cycle transfer in a fully synchronous design. Similarly,
[66] incorporates a 4-deep FIFO to ensure robust crossdomain transfer. Better parti-
tioning that reduces the crossdomain traffic will reduce the performance penalty due
to the increased synchronization latency.
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2.9 Future Directions

Alternative clock distribution methods have been proposed in the literature. Among
them are optical clock distribution [68, 69], package level clock distribution [70],
clock network with distributed PLLs [71] and resonant clocking [72, 73].

The main advantage of an optical clock distribution scheme vs. a conventional
one is the potential for higher performance and short-term jitter reduction. This is
due to the ability of an optical distribution network to have fewer repeaters and be
first-order immune to on-chip power supply noise. A significant disadvantage is the
design complexity and performance limitations (e.g. power & electrical robustness)
of the signal conversion from optical to electrical and vice versa. Another limitation
is due to the process complexity involved in the formation of the on-die waveguides.

In a package level clock distribution, high speed package routes replace the on-
die clock network. The package interconnect will have comparatively much lower
RC delay. The main limitation is due to the interface between the package network
and the on-die receivers. Additional skew and jitter at the on-die receivers (due to
buffer design and ESD requirements) and testing complexities in prepackaged parts
are the most important implementation impediments.

Application of on-die resonant clocking is a very promising clock distribution al-
ternative due to lower power dissipation and jitter reduction. A significant hurdle of
on-die resonant clocking is in the physical limitation of the network and the naturally
narrow frequency operating window. Numerous enhancements to resonant clocking
have been proposed and some of these techniques can become practical. A resonant
clock distribution network was applied to a 90nm processor by adding a new top
layer metal for the LC tank inductors and capacitors [74]. This design demonstrated
basic functionality and power savings at frequencies above 3GHz. A detailed discus-
sion of resonant clocking techniques is presented in Chap.4.

All of the alternatives above try to address limitations of electrical clock inter-
connect such as power and noise. With the strong emergence of multidomain clock
distribution in multicore processors and SOCs, constraints due to the very large on-
die electrical interconnect are significantly alleviated. Since the industry is moving
away from a single large distribution network with long latency and large number of
clock buffers, on-die electrical clock distribution will continue to be the predominant
clocking technology in the near future.

2.10 Conclusion

In this chapter, the requirements for synchronous clock distributions have been de-
scribed. Numerous clock distribution topologies have been described with spine-grid
and tree-grid topologies emerging as the dominant ones. On-die deskew has became
common practice in order to contain skew without excessive design complexity and
use of interconnect resources. Various clock debug features have been summarized
that encompass circuits for skew and jitter measurement, design for test and critical
path location. Additionally, the chapter has also outlined the basics of multidomain
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clock distribution topologies that are becoming the industry norm. Finally, the chap-
ter concludes by mentioning three alternative clock distribution techniques that may
demonstrate practical design benefits in the future.
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3.1 Introduction

One of the most critical design considerations during the planning of any large
VLSI structure is the definition and implementation of the clocked storage elements
(CSEs) and the circuitry which drives the local clocks to these elements [1–4]. The
nature of the solutions adopted will affect almost every aspect of the design, in-
cluding its manufacturability, testability, reliability, power consumption, and oper-
ating frequency, while the complexity and style of latches and flip-flops employed
will affect almost every design automation tool, from high level logic simulation
methodology and logic synthesis engines, to circuit tools for detailed device tun-
ing, timing, and testability analyses. A modern microprocessor chip may contain
from 0.75 to 1.5M latches and flip-flops [5, 6], and clocked elements may account
for 30–40% of the total chip AC power dissipation [7, 8]. Furthermore, the delay
overhead or latency of these elements is typically in the range of 2–3 FO4 for mod-
ern high-speed designs [5, 9] which may account for 10–25% of the design cycle
time for designs spanning the range from 10 FO4 (performance-only optimization)
up to about 30 FO4, typically the upper end of the range for power performance
optimized designs [10]. Thus the CSE definition is of fundamental importance to
any VLSI project; the correct selection, optimization, and implementation will be
a basic part of the global design strategy. The goal of this chapter is first to pro-
vide a high level overview of the design space of these elements covering the ba-
sic design metrics, issues, and trade offs, and second to look at several families of
CSEs. This will be followed by a more detailed discussion on aspects of test and
testability, design robustness against variability, reliability and soft error rate (SER)
considerations.
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3.2 CSE Design Issues

In this section some of the basic CSE design issues are discussed, including latency,
hold time, power, and scan testing. This foundation will serve as a useful reference
when describing the design space covered by the various CSE families.

3.2.1 Latency

One of the primary considerations of any digital design element is its delay, ideally
characterized and compared at a constant, fixed power dissipation. For CSEs, the
definition of latency is a little more complicated, due to the interaction of the data
with the clock edge. If the data arrives at the CSE well before the activating clock
edge, the time delay between when the data arrives at the input (labeled for refer-
ence as “d”) to when it is propagated to the output (labeled for reference as “q”),
will be very long since the data has to wait for the arrival of the clock before it may
propagate to the output of the CSE. The total time from d to q will thus decrease lin-
early as d arrives later (as the wait time is reduced). However, a point will be reached
where, if the data arrives too late, the time from clock arrival to the output transition
(q) starts to increase, as the point is approached where the data arrives too late to
be captured or propagated to q. Therefore, it can be seen that, when measuring the
latency of the CSE there will generally be some optimum specification for the data
arrival time relative to the clock edge, which produces the minimum overall delay
[11], and this optimum point may be used for design comparisons. Since the clock
arrival time typically marks the cycle timing boundary, the total d −q delay is often
broken into two segments describing the behavior on either side of the boundary; the
setup time (amount of time that the data needs to arrive in advance of the clock), and
clock-to-q delay (time measured from arrival of the clock and the appearance of the
new data at “q”).

Having described the conditions under which CSE latencies may be compared,
it should be noted that the shape of the latency curves described above is also an
important design consideration. This effect is illustrated in Fig.3.1, for two hypothet-
ical CSEs, plotting the time from d to q vs. the d arrival time relative to the clock.
It can be seen from this example that “design A” has a lower latency than “design
B,” since it offers the minimum latency (d to q time). However, this design (A) ex-
hibits a “hard” cycle boundary behavior. Data cannot arrive much later than at the
optimal setup time point before the element will fail, and getting the data to the latch
early will provide no benefit to the timing of the downstream logic on the next cycle.
Design B exhibits a “soft” cycle boundary. The data arrival time can be targeted to
fall in the middle of the “window” where the latency is minimal. Provided that the
data arrives somewhere in the window, earlier arriving data will show up at q earlier
(since the d −q latency is about constant), to the benefit of the downstream logic on
the next cycle. Later arriving data will not cause a failure until the data falls outside
this “transparent” window, or until the timing impact on the downstream logic causes
a failure.
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Fig. 3.1. Latency (d −q time) vs. data arrival time for two hypothetical CSE designs

This concept of “soft” vs “hard” cycle boundaries is very important for CSE
design, and particularly as technology variability increases, a simple latency metric
is insufficient to characterize a particular CSE style. In many situations, with all
other things equal, a design like “B” may be preferred over “A,” and may actually
give better results in hardware, even though the absolute latency is worse.

3.2.2 Hold Time

Just as the data arriving at the CSE must arrive early enough to get properly written,
the data must also hold its value for some amount of time (relative to the clock), if
the proper value is to be written. Hold time errors may result, for example, from a
situation where new data arrives very quickly at the beginning of the cycle, overwrit-
ing the data that was supposed to be captured and latched at the end of the previous
cycle.

Hold time specifications are not typically considered when comparing power per-
formance characteristics of CSEs. However, long hold times may drive the addition
of a substantial number of delay-padding elements to eliminate any possible early
transition at the CSE input. Thus indirectly, long hold times may cost both area and
power. In addition, the amount of effort devoted to detection, analysis, and the fixing
of hold time misses reduces resources available for other forms of design optimiza-
tion. Finally, design solutions with longer hold times are inherently riskier, and will
be more prone to unexpected hardware issues. In many designs there is a natural trade
off between the hold time and the size of the transparent window at the cycle bound-
ary. As the window is widened (making the timing on cycle-limiting speed paths less
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sensitive to clock skew and process variation), the hold time also increases (making
the design more prone to clock-skew-induced or variation-induced functional failure
through hold time misses).

3.2.3 Power

Power is often considered in conjunction with latency, since the two metrics typi-
cally have an inverse dependency on each other. There have been many comparative
power performance studies of various latch and flip-flop families [3, 9, 11–14], but
the analysis is generally not as straight-forward as it may seem at first. In the same
way that the action of the clock signal complicates the latency considerations, it also
complicates power comparisons as well. In a given design, the total AC power dis-
sipation is the sum of the power dissipated by clock nets, and other nodes regularly
charged and discharged by the clock, and the nodes that switch whenever the input
(and output) data change. Thus, when considering a particular latch or flip-flop solu-
tion for a specific design application, it is important to characterize the design with
the correct weighting between clock switch events and data switch events.
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Fig. 3.2. Power vs. input data switching factor for two hypothetical CSE designs

This is illustrated in Fig.3.2, for two hypothetical CSE designs “C” and “D.”
Design “C” has a relatively high capacitance on clock nets and/or nodes which charge
and discharge every cycle independent of the input data, but uses this dynamic action
to limit the amount of capacitance switched by changing data inputs. This sort of
behavior is typical of many dynamic CSE designs. Design “D” has much less clock
capacitance, but has more capacitance switched when the data changes state. Power
comparisons at high data switching factors, for example at 50%, would tend to favor
the dynamic design “C,” while comparisons at lower switching factors, for example
10–20%, would tend to favor design “D.” Complicating the situation further is the
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fact that in modern microprocessors, the local clocks are gated off whenever it is
known enough ahead of time that a group of CSEs does not need to be updated on a
given cycle. Thus for power comparisons, it is necessary to understand the average
data switching factor on cycles when the clock is active. Depending on the type of
CSE, it may also be necessary to consider the power dissipated by data switching
activity when the clock is gated off as well.

At this point, it is worth mentioning that the ideal situation, with regard to power
consumption, would be to activate the clocks to a given CSE only when the new input
data is different from the old data, and there have been several schemes proposed
along these lines [12, 15]. However, the power, area, and delay overhead associated
with determining whether or not to fire the clocks may be significant, and these
techniques have never been widely deployed.

3.2.4 Scan Design for CSEs

Given the complexity of modern VLSI systems, the ability to directly observe the
contents of critical system storage elements during design test and debug, as well
as the ability to apply arbitrary initialization patterns to these elements, is another
important design consideration. Typically this is done by linking the CSEs together
in a serial fashion, using a secondary input port as shown schematically in Fig.3.3.
Level sensitive scan design (LSSD) [16] is one methodology which accomplishes
this goal, although there are other more general ways of providing scan capability in
a design.

scan_in 2

scan_out 2

scan_in 1

scan_out 1

scan_select

combinational
logic

clocked storage
element

scan
multiplexor

Fig. 3.3. Basic scan design. Scan data flow is indicated by the dotted lines
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The key features of a scannable design include the scan multiplexor, to allow
choosing between scan and normal functional data to load into the CSE, and the
scan chain itself which needs to be configured in the style of a shift register to al-
low movement of the data in and out of the CSEs in an orderly fashion. In practice,
the goal is usually to minimize the overhead of the extra logic needed for scan and
test functionality, without sacrificing the desired test features; for example the multi-
plexor in Fig.3.3 is often integrated directly into the CSE itself. Some of the detailed
requirements, and ideal test features are described later in this chapter. In the CSE
discussion that follows, for each design style, the implications and overhead associ-
ated with scan functionality will be described. In modern VLSI designs, it should be
assumed that a significant fraction of CSEs will need to be scannable, and therefore
this is a significant design consideration.

3.3 Static Latch Designs

In this section, examples of several basic styles and classes of static latches will be
presented and discussed, including a discussion of the local clock generation aspects,
comparative merits and general features of each of the families in light of some of
the design considerations described earlier.

3.3.1 Master–Slave Latches

For general logic design, the master–slave latch (MSL) is probably the most widely
used CSE, with many topological variants and clocking styles described over the
years. A typical transmission-gate master–slave latch [17] is shown in Fig.3.4, using
the style and naming conventions of reference [5]. The two clocks, “dclk” (or “data
capture clock”) and “lclk” (or “launch clock”) are roughly 180◦ out of phase. At
the beginning of a cycle (cycle boundary), dclk falls while lclk rises, simultaneously
blocking any writes to the master latch while writing the slave latch and propagating

q

dclk lclk

lclk

lclk

lclk

dclk

dclk

dclk

Local
input
gate

lclk

dclk

d

lclkdclk

Fig. 3.4. Master–slave latch. Reproduced with permission from [5], c©2006 IEEE
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new data to the latch output q. At the middle of the cycle, dclk rises while lclk falls,
allowing the master latch to accept new data until the end of the cycle, while blocking
any update of the data in the slave latch so that the data is held until the beginning of
the next cycle.

In high-speed designs, the dclk and lclk waveforms are designed to overlap (both
clocks high) by some amount at the cycle boundary in order to allow late-arriving
data to propagate through the MSL with minimal delay by avoiding interference from
the clock edges. This technique not only minimizes latency [5], but also provides for
soft cycle boundaries; if the data is timed to arrive in the middle of the window when
both clocks are high, then later-arriving data can still propagate through, stealing
time from the next cycle. Also, the MSL becomes tolerant to some amount of local
clock skew depending on the width of this window, and to the extent that the data ar-
rives in the middle of the window, away from the clock edges. The trade off though is
that as the falling dclk is delayed to improve latency and widen the window of trans-
parency, the hold time increases, creating race hazards, and requiring delay padding
on short latch-to-latch paths. This trade off is a fundamental consideration for MSL
operation, and is shown in Fig.3.5 [5]. Here the delay unit “FO4” refers to a tech-
nology independent delay metric, the delay of an inverter with a fan out of 4 [18]. It
should be noted here that since the latency of the MSL is highly dependent on the
relative timing of the master and slave clocks, any power performance comparisons
including MSL elements (often cited as a standard benchmark in comparisons), must
provide detailed information on the clocking assumptions made, since otherwise any
latency quoted is not very meaningful.

Delaying dclk with respect to lclk also improves the situation at the middle of
the cycle. Here, the desire is for the two clocks to be well un-overlapped, with dclk
rising well after lclk falls in order to avoid potential race-through of the wrong data
at mid-cycle.
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It should be noted here that there are many other MSL circuit topologies, some
of which are inherently more robust against race or min-path issues [19]. However,
these will generally be higher-latency solutions, and by their very nature will not
possess the soft cycle boundary properties which provide protection against delay
variability and clock skew. For designs with long cycle times (for example, cycle
times larger than 40–50 FO4), it may be more important to have a simple, robust
solution, than to get the ultimate latency, or optimal power performance. It is ex-
pected though, that modern high-speed microprocessors will continue to need the
more difficult design solutions, especially as technology variability (and the benefit
of soft cycle boundaries) continues to increase. Increasing sophistication of design
analysis tools and techniques will help designers to deal with these more complicated
solutions.
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Fig. 3.6. Scannable MSL. Reproduced with permission from [5], c©2006 IEEE

The MSL shown in Fig.3.4 has no provision for scan testing. One of the most
common ways of adding this functionality is to add another port to the master latch,
controlled by its own clock. This second port may be controlled by a symmetric
twin of the first dclk, as shown in Fig.3.6. In this case the MSL design can support
scan shifts and test sequences at frequencies up to the functional design frequency,
although other considerations (such as power, and noise) may often impose practical
limits on the scan shift frequency. A set of clock waveforms is shown in Fig.3.7,
illustrating the shifting of data through the scan chains, and functional operation.
This type of design solution supports a seamless transition from scan shifting to
functional operation, and vice versa.

Other scannable MSL topologies have also been used. One alternate version uses
a multiplexor on the slave latch feedback path [20] instead of directly at the input to
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lclk

d1clk

d2clk

scan mode functional mode

Fig. 3.7. Sample set of clock waveforms for scan shifting and for functional operation, for the
MSL of Fig.3.6

the latch node, as shown in Fig.3.8. In LSSD methodologies, the second port to the
slave latch is generally a low-speed scan clock with its own dedicated distribution
network. Even with a low-speed scan clock, it is still possible to do full-frequency
AC testing on the part. After scanning the desired data in to all scannable latches
and appropriately initializing any nonscan elements, the system can be started syn-
chronously in functional mode at speed, with the first at-speed lclk launching out
either the data from the last scan clock, or the functional data waiting at the data port
input, depending on the type of test desired. Such LSSD schemes may provide very
flexible and robust scan design solutions [21], even if the rate of data shifting through
the scan strings is limited by the speed of the secondary LSSD clock distributions.
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Many VLSI designs have been implemented with MSLs as the main “workhorse”
latch, often with sophisticated clock edge controls [22]. However, the variation-
tolerant soft cycle boundary concept can only be taken so far because of the hold
time increase associated with the transparent overlapped clocks at the cycle bound-
ary. In addition, designers have looked for lower power solutions, or higher speed
solutions for specific critical applications. These considerations have led to some of
the styles described in the following sections.

3.3.2 Two-Phase Level-Sensitive Latches

It has long been recognized that the use of level sensitive latches, as shown in Fig.3.9,
will improve the clock-skew and delay-variability tolerance of the design, while si-
multaneously offering more flexibility for balancing logic delays across multiple cy-
cles. This feature, or technique has been referred to as “cycle stealing” [23] since
it allows circuits on either side of the latch to “steal” time from the previous or
next cycle. In comparison with the MSL style described above, this technique can
be conceptualized as the result of splitting apart some, or all of the master and slave
latches, with logic interspersed between master and slave, as well as between the
slave and master. Any path through the logic will pass alternately through level sen-
sitive latches clocked with opposite phases. It can be shown that, with about one-half
of a cycle of logic between each latch, the data arrival can be timed such that data
arrives at each latch in the middle of its active clock window. Therefore, this scheme
can be made robust to clock skew and local delay variability. It can also be made very
robust against hold time issues, by shrinking the active phase of each clock, with no
latency penalty as long as the data is timed to propagate through the latches near the
middle of each active clock phase.
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This scheme would seem to offer the most tolerance to process variability and
clock skew, and in fact these techniques have been used in some large micropro-
cessor designs [20, 24]. From a power perspective, it would seem that the power
dissipated should be comparable to, or somewhat less than that of a design using
an MSL methodology, since the extra flexibility offered might help to cut down the
overall number of latches needed.

However, there are some negative aspects of this design style which must be
weighed in the balance. The timing analysis for split-latch designs can be very com-
plicated, with long multicycle (or multihalf-cycle) critical paths, timing loops, and
a general inability to define any clear cycle boundaries [25–27]. In fact, the more
optimal the design (in terms of lining up data arrival at the latch with the midpoint
of the appropriate clock phase), the more complicated the timing analysis becomes.
In addition, the split master and slave latches cannot generally share any of the over-
head for test control and clock gating in the generation of the local clocks, and will
usually need separate global clock taps. The split latches themselves may impose a
certain overhead on the design, especially if small devices are used in the latches in
order to save clock power. Each latch may become a “bottleneck,” requiring stages
of gain afterwards to drive the surrounding logic, or, to avoid this situation, clocked
devices may have to be increased in size relative to that of an MSL design.

Finally, there are some test issues that need to be considered. Each scannable
split-latch requires an additional scan-latch in order to build a robust scan chain, as
shown in the example in Fig.3.10 [20]. Also, AC test sequences need to consider the
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implications of having the scan data propagating into the downstream logic as soon
as the clock fires. This means that the initial timing of signals launched from the
level-sensitive latch during test is likely to be different from that during functional
operation, when transitions may flush through later in the cycle. Therefore AC test
sequences may become more complicated, with several functional clock cycles re-
quired.

The above design and test issues probably explain why this design style has never
gained widespread acceptance for large, high-speed microprocessor designs, even as
design for variability tolerance becomes an increasingly significant consideration.

3.3.3 Pulsed-Clock Static Level-Sensitive Latches

The use of static level-sensitive latches with single-phase pulsed-clocks appears to
be gaining favor for use in large microprocessor designs [5, 8, 22], even as device
variability and presumably the hazards associated with hold time issues have been
increasing. It is worthwhile to study this particular CSE implementation in order to
understand the benefits and hazards associated with it.

An example of a very simple static pulsed level-sensitive latch is shown in
Fig.3.11 [5]. This style has minimal overhead, whether measured in terms of latency,
power dissipation, or area. The latch itself is very simple, but the clock design is more
delicate. A locally-generated, self-timed clock pulse is generated from either a global
or local clock at the cycle boundary, and is used to write the latch (or, more generally,
a group of latches). The width of the pulse must be wide enough to reliably write the
latch across the full process/voltage/temperature (PVT) space, including all margins
for local variability, noise, and any modeling uncertainties. However, the wider the
pulse, the longer the hold time and the more difficult it becomes to protect against
min-path or hold time failures. Therefore, careful design of the pulse-generating cir-
cuitry is of utmost importance, and the pulse width is a critical design parameter.
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lclk

lclkInput
gate;
nand2
or
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lclk

Fig. 3.11. Simple nonscan pulsed-clock latch. Reproduced with permission from [5], c©2006
IEEE
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Despite the issues associated with pulsed-clock operation of these latches, there
are several significant advantages with this design style. Reduced power consump-
tion is one important benefit. In contrast to the conventional MSL solution, or the
2-phase level-sensitive scheme, only one active clock is needed, cutting clock power
by about a factor of 2. In fact, this may be the most important benefit of pulsed clock-
ing. One power-saving strategy along these lines is to use regular MSLs, but force
the master clock to stay high all the time, while pulsing the slave clock [5, 22, 28].
This approach delivers significant power savings while preserving a fall-back strat-
egy to conventional two-phase clocking in case problems are seen in the hardware.
However, this approach does not provide the benefits of reduced area and latency
offered by dedicated pulsed-clock latch solutions.

Another important feature of the pulsed latch is its ability to provide a soft cy-
cle boundary, similar to that of the MSLs with overlapped clocks. Unlike the MSL
situation though, the amount of cycle boundary transparency cannot be tuned below
a certain value (set by the minimum pulse width needed). Thus, even as the benefit
of such a pulsed-clock soft cycle boundary will increase as the technology variabil-
ity increases, this benefit will be offset by the difficulty of simultaneously ensuring
writeability and maintaining margin against data races. The design cycle time fig-
ures prominently in this trade off. The tolerable upper limit for pulse width would
be expected to scale with the overall logic depth, with a practical maximum pulse
width of probably about 1/4 to 1/3 of the design cycle time. With wider pulses, the
difficulty of padding all the potential short data paths, while avoiding any impact
to the cycle-limiting paths, is likely to become unmanageable. At a constant design
cycle time (as measured in FO4) increasing technology variability may push pulse-
widths up to their practical limit, necessitating larger devices (with faster write-speed
but more power dissipation) or other design restrictions for continued use of pulsed-
clock latches.
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There are some special test issues for pulsed-latch clocking. In general, it would
not be desirable to have to pad the scan path, so usually an additional scan latch is
needed. This makes the serial shift operation along the scan chain look like a series
of MSLs, whose clocks may be unoverlapped as desired to avoid any possibility of
race issues during scan. Thus most of the area advantage of the pulsed-clock solution
is likely to be lost in situations where a scannable design is needed. An example of
a scannable pulsed latch is shown in Fig.3.12 [28]. This particular design achieves a
low latency typical of dedicated pulsed-clock latches, but still maintains the ability to
revert back to an MSL mode of operation if problems develop, although at a reduced
performance level. In this sense, the extra scan latch added not only converts the scan
chain into a series of MSLs, but also can provide a similar function on the data path
as well, if conditions warrant.

3.4 Flip-Flop Designs

Flip-flops are inherently edge-triggered designs, as opposed to the latches described
in the previous section, which are inherently level-sensitive structures. There are a
large variety of flip-flop designs which have been employed over the years, and it
would be impossible to cover all of them here. This section will describe some of the
more common styles that have been used, comparing some of the design issues and
the merits of each.

3.4.1 Sense-Amp Style Flip-Flop

The proto typical sense-amp flip-flop (SAFF) is shown in Fig.3.13 [29–31]. This type
of design consists of a sense-amplifier coupled with a slave latch to hold the output
data when the sense-amp is being reset. This style is more naturally suited for use
with dynamic logic on the input side, where data values will hold until they are reset,
and where this data reset will occur at about the same time that the flip-flop itself is
being reset. Furthermore, with dual-rail dynamic logic, if both true and complement
inputs are precharged low, then the activating transition may arrive somewhat later
than the clock edge, effectively borrowing time from the next cycle. Since there are
internal nodes floating when both inputs are low, and the clock is high, the amount of
time borrowing may be limited, depending on the process, noise, and environmental
conditions. Also, with dual-rail logic the extra overhead for deriving the other data
phase may not be an issue.

Given the generally high power dissipation of dynamic circuit styles, especially
dual-rail, sensitivity to noise and process variations, and the general difficulties as-
sociated with using such circuits on a large scale in a modern microprocessor, it is
unlikely that the industry will see a widespread resurgence in the use of dynamic
circuits for general purpose processors. Therefore, this type of design should really
be considered in the context of the static circuits which would usually surround it.
In a static design, it can be seen that the critical path through the flip-flop traverses
4 stages of logic (the local inverter to generate the complement data, the pull down
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of one side and subsequent pull-up of the output, and then the pull down of the other
side), and so it would not be expected to have a very low latency. Also, power dissipa-
tion is likely to be an issue unless very small (and therefore slow, and more variable)
devices are used, since one side or the other will need to be charged and discharged
in each cycle that the clock is active, independent of the data input pattern. Further-
more, with static input signals, this design does not provide for soft cycle boundaries;
whatever data is present when the clock edge arrives is written into the latch. The
corollary though is that the hold time for this type of CSE is generally small.

Finally, it can be seen that if the input data were to change before the clock
were to fall, internal nodes would be left floating, potentially resulting in a failure
to retain the proper state at the output. This particular issue is relatively easy to
remedy, by the addition of a single additional small NMOS transistor between nodes
A and A′ in Fig.3.13, with gate tied to the supply [30]. This fix will, however, have
some impact on the power/performance characteristics. The additional transistor not
only adds device and interconnect capacitance to both sides of the sense amplifier
(one side of which must be charged and discharged every cycle), but also partially
discharges the nonactive side of the sense-amp on every cycle. In addition, there
will be a slight degradation of the differential resolution due to the weak coupling
between the opposite arms of the sense-amp structure, leading to a corresponding
increase in setup time.
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Fig. 3.13. Sense-Amp flip-flop. Reproduced with permission from [31], c©2006 IEEE

For improved testability, modifications have been described to make these de-
signs scannable [32], an example of which is shown in Fig.3.14. This technique can
be optimized for AC test, since the paths from input to output are similar for both
the functional data input and the scan input. The scan data input is implemented
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Fig. 3.14. Improved scannable sense-amp flip-flop, with asynchronous reset. Sense-amp
“pulse-generator” on the left drives the latchings stage on the right. Reproduced with per-
mission from [32], c©2000 IEEE

as a second port in the first “pulse-generator” stage of the flip-flop However, this
will add capacitance to nodes which need to be precharged every cycle, thereby
increasing power dissipation. Other methods [13] may avoid this power cost, but
may be less well suited for AC test. In addition, there have been many modifica-
tions proposed to this basic design including techniques for “conditional precharge”
to try to avoid charging and discharging of internal nodes when input data is not
changing from cycle to cycle [33, 34] as well as other variations aimed at improving
the power performance characteristics [32, 35, 36]. The resulting designs tend to be
more complicated, and may still suffer from one or several of the drawbacks men-
tioned above. Therefore it seems likely that these SAFF will remain confined to only
special-purpose applications in the future.

3.4.2 Hybrid Latch Flip-Flop

The goal of the hybrid latch flip-flop (HLFF) [37] was to try to combine some of the
best features of flip-flops, including edge-triggered sensing, low latency, and low in-
put clock load, with some of the best features of latches, including a soft cycle bound-
ary. The result, shown in Fig.3.15 is a flip-flop-style front end, activated by what is
effectively a locally generated clock pulse, with a static capture latch back-end.
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Fig. 3.15. Hybrid latch flip-flop. Reproduced with permission from [37], c© 1996 IEEE
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With only two gate delays from input to output, low latency can be achieved.
Also, the local delay chain sets up a transparent window at the cycle boundary, al-
lowing some amount of clock skew/delay variability tolerance. This particular design
suffers from the fact that the static capture latch must be small enough to be quickly
overwritten in either direction, meaning that the output will be very sensitive to any
noise when only the capture latch holds the state of the output. In realistic applica-
tions, an additional local output gate would probably be needed. Also, this type of
design will consume significant power, due to the precharge/discharge which occurs
every cycle whenever the input data is high, and also the switching in the local delay
chain inverters. Finally, the output is subject to glitching when the input data is high,
since the output stage will begin to discharge when the clock edge is received, pulling
back high only after the first stage output transitions low. Various improvements on
this design have been reported [38, 39], but in general microprocessor designers have
not found this type of flip-flop to offer any compelling benefits, at least in its origi-
nal form.

3.4.3 Semi-Dynamic Flip-Flop

The term semi-dynamic flip-flop (SDFF) [40] was coined to refer to a design style
which includes a dynamic front end followed by a static latch [5, 28, 41, 42]. In some
ways, this is very similar to the HLFF approach discussed above, but now expanded
to provide a means of incorporating a stage of high-speed dynamic logic at each
cycle boundary. This technique still provides an easy interface to surrounding static
logic, accepting normal static inputs, and providing static outputs. A typical design
is shown in Fig.3.16. These designs rely on some form of a pulsed clock to limit
the hold time at the input dynamic stage. This may be accomplished by providing
an explicit pulsed clock [28, 40, 41], or by ANDing in a delayed complement clock
either in the dynamic pull down tree [40], or somewhere in the cone of logic for all
the data inputs [5]. The dynamic stage is followed by a static set–reset latch (SRL),
which holds the output while the dynamic stage is being precharged for the next
cycle. For situations when the dynamic stage pull down path is cut off while the
clock input is still high, a full keeper is usually used on the dynamic node in order to
ensure that the dynamic node is held solidly low after being discharged. This keeper
can be gated with the clock input to avoid drive fights during the precharge operation.

The advantage of this design is that it provides a way to incorporate a stage of
dynamic logic into an otherwise fully-static design. It can also be extended to add
additional dynamic logic stages after the first stage. In this case, only the first stage,
with static inputs, needs a footer device and a pulsed evaluation clock. The SRL is
moved downstream to the final dynamic stage, providing dynamic-to-static signal
conversion. This technique can be applied at both clock edges [43], so that in such a
two-phase system, pulsed clocks are no longer necessary.

The SDFF is a very useful construct for extremely critical paths in a design,
where a wide OR, or wide multiplexor is required at the cycle boundary. However,
there are some design costs associated with this solution. There is a relatively large
capacitance which may be charged and discharged every cycle, even when there is
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Fig. 3.16. Semi-dynamic flip-flop with embedded dynamic logic. Reproduced with permission
from [40], c©1999 IEEE

no switching activity present on the data inputs. Thus, power consumption tends to
be high for these designs, especially when used in contexts which do not see partic-
ularly high data switching factors, or when efficient clock gating is difficult. Power
consumption may also be increased by glitching at the output when holding a 1. This
glitch is similar in nature to that observed in the HLFF, occurring since the path to
pull the output down (via the reset action of the static latch) is usually faster than the
path to force the output high (via the dynamic pull down). The flip side of this glitch
though, is that the latch will generally write a 0 faster than a 1, and downstream static
logic can be skewed to take advantage of this fact (and also absorb the glitch).

The cycle boundary also is not easily softened to absorb timing variability, in
contrast to the HLFF, due to the dynamic input stage. In principle, late rising input
transitions may arrive at the dynamic gate after the clock rises, provided that they
still have enough time to discharge the dynamic node, but falling transitions must
meet a strict setup criterion. Similarly, the hold times for these designs tend to be
relatively long, and are also asymmetric due to the action of the dynamic gate. Inputs
only need stay high long enough to be able to discharge the dynamic node, but inputs
initially low must stay low until near the end of the clock pulse. Just as for the pulsed
level-sensitive latches, the clock pulse width must be wide enough to reliably write
the latch across the process and application space of interest, but not so wide that
the length of the hold time becomes an issue. For the SDFF, it is necessary to consider
the range of dynamic input gates used in order to determine the minimum pulse width
required.

For test, there are several strategies for making the design scannable [5, 28, 41].
One method involves adding a port into the static latch, and also adding in an ad-
ditional scan latch, as was required for the static pulsed designs [28, 41]. An ex-
ample of this approach is shown in Fig.3.17. With this scheme it should be noted
that for AC test, the launch of scan data from the static latch bypasses the input
dynamic stage, and so if the test sequence involves a launch from the scan clock,
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the timing characteristics may differ from that in functional operation. It is possi-
ble to more closely match the functional path with the scan path by using an addi-
tional input into the front-end dynamic stage [5]. In this case, all the pull down paths
through the functional data ports need to be disabled to avoid interference with the
scan path.
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Fig. 3.17. Scannable semi-dynamic flip-flop. “c2 chop” is a pulsed clock input. Reproduced
with permission from [28], c©2007 IBM

3.5 Test and Debug Considerations

As microprocessor frequency scaling has run up against severe thermal, physical and
electrical constraints, the industry has turned to multicore architectures in order to al-
low continued performance gains from generation to generation [44]. As a result, mi-
croprocessor chips are now being fabricated with over 2 billion transistors [45], and
with density scaling still expected to continue for at least several more generations in
the future [46], observability and testability, including both DC and AC test coverage,
have become of paramount importance. For this reason, large microprocessor design
projects have by and large adopted scan design methodologies [5, 28, 41, 47, 48] and
it is expected that scan design and test/debug methodologies will continue to need
careful consideration in future designs. It will be important to minimize the overhead
of these scan methodologies, but it will not be tolerable to make significant sacrifices
to the testability of the design.

For DC test coverage, it may not be important exactly how the scan data is
written into the latch, since the timing of the launch into the downstream logic
is unimportant. Also, in the downstream logic, it is unimportant how each node is
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switched; the activating transition is unimportant, as long as a pattern can be found
which tests the node in each state. However, for high-speed AC test, there are a num-
ber of key features which are desirable for a robust and flexible test methodology.
The highest test coverage is obtained if each CSE is designed with an extra scan-only
storage element, as shown in Fig.3.18a, used only for test purposes, which can store
an independent data value to be used to launch a transition into the downstream logic
[49]. In this way, each scannable latch can be independently configured to launch
an arbitrary transition into the downstream logic. Referring to the initial input vec-
tor as “V1” and the transition vector as “V2,” it can be seen in this case that “V1”
and “V2” are independent and unconstrained. This enhanced scan design provides
the maximum test coverage, but the overhead is generally quite high. Although this
technique can be confined to be used only on critical CSEs [50], and selective de-
ployment has been reported in critical areas of some microprocessors [41], the cost
is too high for techniques such as these to be used commonly in the industry.
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Fig. 3.18. Scan test configurations (a) enhanced scan, (b) skewed load, (c) broadside test

At the other extreme, the simplest AC test sequence relies on loading scan data
into all scannable latches, then switching to functional mode to launch and capture
data for test. In this case, V1 is unconstrained, but V2 is the next state determined
from combinational logic response to the V1 vector, i.e., the functional data at the
inputs of the CSEs given the V1 values at their outputs, as shown in Fig.3.18c. This
has been called a “broadside test” [51] sequence, and places minimal constraints on
the design of the scannable CSEs. The speed at which the scan data can be written
into the CSEs is unimportant, as are the details of the switch from scan mode to
functional mode. The downside of this method is that AC test coverage can be low,
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with few, or no options for improvement through DFT-related design changes. In
addition, analysis and debug are more complicated, since V2 depends on the response
of all the upstream combinational logic and the V1 state of all CSEs in the cone of
logic, increasing simulation time for test analysis and making it harder to change V2
in a systematic way.

A compromise between the two above approaches is the concept of a “skewed
load” sequence [52]. In this type of sequence, V1 is again scanned into the CSEs,
but now V2 comes from the upstream data in the scan string as shown in Fig.3.18b.
During the high-speed test sequence, data must be loaded into each CSE from the
scan port, and launched at speed into the downstream logic. On the next clock cycle,
data is captured in each CSE through the functional data port. Sample clock wave-
forms for such a sequence are shown in Fig.3.19a for the scannable MSL shown in
Fig.3.6, contrasting with those for the broadside load sequence (Fig.3.19b). To make
this sequence work properly, all CSEs must be designed such that the clock-Q de-
lay from the scan port is a close match to that from the data port, otherwise the AC
characteristics of the test will not match that of the functional operation. Also, the
CSE clock control system has to be capable of switching from “scan mode” to “func-
tional mode” within a single cycle, in order to launch scan data, and then to capture
data from the functional port. This will generally require an accurate pipelining and
distribution scheme for at least this one high-speed global test control signal.

One advantage of the skewed load test sequence is that it provides enhanced
AC test coverage compared to the broadside test, although there are still coverage
limitations which may arise from the adjacency of V1 and V2 in the scan string.
Furthermore, the test patterns applied are very flexible, easy to modify in a systematic
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Fig. 3.19. Sample clock waveforms for AC test using the MSL from Fig.3.6. (a) skewed load
test. Note that data from scan port (d2clk) is launched. (b) Broadside test. Note that data from
the functional port (d1clk) is launched
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fashion, and failure analysis needs only to consider a single cycle’s worth of logic
instead of two as in the broadside case.

Finally, even though much of the discussion above has focused on single-cycle
test sequences, which offer an appealing simplicity from a test point of view, vari-
ous other CSE design factors may result in the requirement for longer at speed test
sequences. Inclusion of nonscan elements (which may help to reduce chip area, la-
tency, and power dissipation) will force the use of longer sequences to test all paths
in and out of these components. Also, the use of soft cycle boundaries may also af-
fect AC test operation, since certain critical paths may effectively become more than
one cycle long.

3.6 CSE Design for Variability

Design for variability has become an increasingly important consideration as the rel-
ative level of parameter and device variability has been increasing recently and is
expected to continue to increase rapidly with future technology scaling [53]. The
importance of this fact is magnified by the expected continuation of device density
scaling; this increased variability is manifested in ever larger collections of devices
on a single chip. There are many ways in which variability may degrade the quality of
a design, and this topic is addressed in greater detail in Chap.7 of this book. The dis-
cussion here will focus on two particular aspects of variability-induced degradation
which are relevant to CSE design, namely operating frequency degradation, which
involves the cycle limiting paths in the design, and functional failures, which may
result from racing paths with insufficient margin, or other design vulnerabilities.

3.6.1 Variability-Induced Frequency Degradation

The key aspect of cycle limiting paths in any given design is that there is usually a
relatively large number of logic gates involved, including not only the logic between
the launching and capturing CSEs, but also the CSEs themselves, and the circuitry
driving the local clock signals to these CSEs. Thus local, uncorrelated, random fluc-
tuations in device parameters are less likely to have a large impact on the timings
of these paths, since these will average over the large numbers of devices involved.
Problems are more likely to arise from more global, systematic variations which ap-
ply to all the circuits in a given region of the design. Some examples here might
include PFET to NFET strength ratios, wire speed to device speed ratios, design
pattern-factor-induced effects, chip mean device threshold voltage variability, etc.
In principle, given an accurate knowledge of all the parameter distributions, and a
complete statistical timing methodology [54], it would be possible to predict more
accurately which speed paths are most likely to limit the design, and in fact it is ex-
pected that this sort of analysis will become more prevalent in the future. However,
the underlying variabilities and uncertainties will not go away, even as the ability to
accommodate them improves, and so it is important to understand how specific CSE
design techniques might improve the situation.
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The concept of soft cycle boundaries has already been discussed at some length,
and this is an important method of providing some protection against variability or
unknown factors. The 2-phase level-sensitive latch methodology probably provides
the most benefit in this regard, but in light of the issues described earlier, it is un-
likely that the usage of this style will become widespread as a solution for improved
variability tolerance. Rather, it is expected that efforts to soften the cycle bound-
aries are more likely to be concentrated on MSFF and pulsed level-sensitive designs.
Furthermore, given that an MSFF with overlapped clocks and pulsed level-sensitive
latches have similar hold time issues for a given transparent window size, but un-
equal power and latency characteristics [5], it seems that pulsed clocking techniques
would be the preferred method of providing a soft cycle boundary to protect against
variability-induced frequency degradation. However, the local clock edges for the
MSFF solution can be tuned to optimize the trade off between hold time and trans-
parent window size without the minimum pulse-width constraints of pulsed-clock
designs, and widespread use of pulsed-clock latches will make the design more prone
to variability-induced functional failure, as described in the next section.

In addition to the use of soft cycle boundaries, many chips are being designed
with programmable clock edges which can also be used to mitigate the effects of vari-
ability and uncertainty [28]. Delaying specific clock edges can mitigate the longest
timing paths found in the hardware. It is expected that techniques such as this will
become more prevalent in the future, as variability continues to increase, and as the
improvement in technology decreases from generation to generation. One might ex-
pect to see more automated techniques used to optimize clock control settings on a
chip-specific basis, or the use of adaptive or autonomous techniques, moving from
the more global adaptive deskew techniques in use today [55] (also described in
Chaps.2 and 7), to more fine-grained adjustments in the future.

3.6.2 Variability-Induced Functional Failures

In contrast to variability-induced frequency degradation, a race path or other func-
tional hazard may involve only a small number of devices, so that local random
variations may play a big role in determining the margins required to protect against
such failures. For specific circuit configurations within certain CSE topologies, it
will be necessary to carry out a complete statistical analysis at the desired conditions
for use, and at various process corners, to make sure that the design is robust enough
against any probable statistical variation [6]. However, in the general case, it will
be impossible to analyze all race conditions between all CSEs to that level of detail
without a global statistical timing methodology. Also, since the amount of variability
will depend on the detailed circuit parameters (for example channel widths involved,
device types, the types and amounts of parasitic resistance and capacitances, etc.)
it will become extremely difficult to guardband every potential race path against the
worst-case combination of statistical fluctuations. Thus it is likely that advanced CSE
designs and the need to protect against statistical-variability-induced failures will
drive the need for an increasingly sophisticated true statistical timing methodology.
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In fact, the need for such a methodology is arguably even greater here than for the
operating frequency analysis discussed in the preceding section.

Although there are many sources of variability, any one of which may lead to
failure, it is expected that future designs will continue to push towards lower sup-
ply voltages, while device dimensions continue to shrink. This means that factors
leading to threshold voltage variability are likely to play an increasingly significant
role [56]. For this reason, statistical analyses of race conditions will be needed at
the minimum operating voltage, and this low-voltage corner will often impose more
stringent restrictions on the design than will the high-voltage corner, especially if the
write of the latch must overcome a “weak” keeper device. Recent effort has been
reported on measurement of hold time variability, using structures designed to look
at race conditions under realistic design conditions, showing directly, in a hardware-
based measurement, the increase in margins needed as the technology is scaled to
finer dimensions [57], and/or as the operating voltage is lowered [58].

Pulsed static, or pulsed semi-dynamic designs may be particularly susceptible to
fluctuation-induced writeability failures. For this reason, designers have added lo-
cal pulse-width controls to the pulse generators used for these latches [6, 28], for
test purposes and also as an emergency option in case of unexpected hardware prob-
lems. Such an example is shown in Fig.3.20. Another technique mentioned earlier
in the context of power-reduction features is to configure the clock drivers for MSFF
latches such that they can provide either regular clocks, or a pulsed clock to the slave
with the master clock held at a constant high value [5, 22, 28]. This scheme main-
tains a fail-safe option in case of either writeability issues or data races. In principle,
with techniques like this it should be possible to cut down on the margins normally
needed for guaranteeing race-free operation; registers containing latches which are
seen to fail in the hardware with pulsed-mode clocking could be configured to run in
MSFF mode.
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Fig. 3.20. Programmable delay line defining the trailing edge of a local clock pulse. Transmis-
sion gate structure is designed to match that in the latch. Reproduced with permission from
[6], c©2008 IEEE

Techniques like these may be used not only to guard against unexpected prob-
lems, but may also help with test and debug, and one may imagine that in the future,
designs may be automatically configured with the optimal pulse-width settings for
simultaneously maximizing cycle stealing across soft cycle boundaries while main-
taining a safe margin against race failures.
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3.7 Reliability Issues

While issues related to process variability or random parameter fluctuations can,
in principle, be screened or protected against by proper testing of the part, relia-
bility issues can be much more difficult to protect against. It will be no surprise
to the reader that adequate reliability of CSEs is becoming increasingly difficult to
guarantee, as the number of CSEs on a single chip continues to increase and as the
technology feature size continues to shrink. This section will examine two types of
reliability issues, soft error upsets which can disturb the data in the CSEs, and wear
out mechanisms which may cause failure after a prolonged period of use.

3.7.1 Soft Error Rate Considerations

Several factors combine to make SER robustness an increasingly important design
concern in future systems. Although many designers may consider SER to be im-
portant only for situations where extremely high reliability is required, or a problem
only for large, high-density SRAMs, recent work has shown that this assumption is
no longer true, and as a result, soft errors in CSEs have been getting an increasing
amount of attention in recent years.

As CMOS technology has continued to scale well into the sub-100nm dimen-
sions, the combination of feature size reduction, and especially power supply voltage
reduction has resulted in a steadily increasing susceptibility of individual latches and
flip-flops to soft error upset [59–61], and by some accounts the SER rate in a typical
latch or flip-flop has already eclipsed the SRAM SER rate in unprotected rate-per-bit
comparisons [62]. Furthermore, error correction codes may be used to help improve
the SER in SRAMs, with a relatively low overhead, but no such low-overhead solu-
tion is currently available for the collection of CSEs in a typical microprocessor. The
voltage factor is especially important, and as systems become ever more adept at
lowering chip voltage whenever possible to cut back on power dissipation, there will
be a price to be paid in terms of SER. At the same time, the microprocessor industry
has seen a shift away from steady clock frequency increases for system performance
improvements, towards increased parallelism, increased functionality, and increased
integration levels. Therefore, it is expected that the number of CSEs per chip will
continue to grow rapidly. At the same time, the SER per element is also growing,
leading to a looming “SER crisis” if no action is taken.

To improve the SER situation, in addition to specific CSE design techniques,
there are various system, error checking/detection, and technology options which
have been discussed in the literature [41, 60, 63–66]. Improvements in processes and
materials may also help to reduce contaminants and/or provide increased immunity.
However, this section will focus on local CSE design options, and methods therein
to improve SER robustness. Perhaps the first approach to try might be to target im-
provements in SER by careful layout optimization. However, studies of the SER as a
function of the CSE layout details have not shown any significant dependencies [62],
and there appears to be little success reported in this regard. Another possibility is
to improve the SER robustness of individual latches or flip-flops by simply adding
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additional capacitance to sensitive nodes [67], or by selectively increasing the size of
devices holding sensitive nodes [68]. These techniques have been shown to help, and
overall area cost may not be too excessive in some situations [69]. However, these
techniques are more useful for specific design areas where high reliability is needed,
and operating frequency/power is not a big issue. These hardening techniques are
not very suitable for general use in microprocessor design. Moreover, these SER
mitigation strategies will not scale very well to future technologies.

Future strategies for improving the soft error characteristics of CSEs are more
likely to involve topological modifications to the circuits themselves. It is expected
that the industry is likely to make more use of circuit related hardening techniques
such as the Dual Interlocked storage Cell (DICE) latch [70]. The DICE latch uses
redundant and interconnected storage nodes such that the cell cannot be flipped by
the upset of a single device. An example [71] is shown in Fig.3.21. This design is
resistant to single device upsets, although it can be seen that certain nodes may be left
floating for a short period of time after a strike occurs. Depending on the operating
voltage, experimental data on this cell showed a factor of 30× to 100× improvement
in SER robustness with the observed errors likely caused by multiple upsets. Since
the failure mechanism for this type of CSE involves charge collection on multiple
nodes, care should be taken during layout to separate critical devices in order to
reduce the probability of an error caused in this fashion [71].

DICE latches have been employed in a recent high-end microprocessor design
[6], illustrating the combination of pulsed-clock techniques for power reduction and
soft cycle boundaries, scan capability for test and debug, and special design tech-
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niques for SER robustness. This scannable, pulsed-clock DICE latch is shown in
Fig.3.22. The DICE method is expensive; an overall latch area increase of about
35% and power increase of about 25% has been reported [6]. However, there will be
many situations where error checking may not be practical, or the overhead may be
too high (much higher than that of switching to DICE elements), and it is expected
that techniques such as these will become more widespread in the future as designers
are forced to turn their attention to this problem.

3.7.2 End of Life Considerations for CSE Design

There are a number of wear out mechanisms which affect the operation of silicon
CMOS circuits, some of which may result in relatively sudden catastrophic fail-
ures, while others result in a more gradual parametric device degradation over time,
leading eventually to failure. The former type of problem is difficult to deal with at
the single element level; usually higher level checking or redundancy schemes are
needed, which are beyond the scope of this chapter. However, the second type of
problem is more amenable to local circuit solutions, and some of these solutions will
be described in this section.

Two major phenomena which may lead to gradual circuit degradation are hot
carrier injection (HCI) and negative bias temperature instability (NBTI) [72]. HCI
has long been recognized as a potential problem for CMOS circuits [73, 74], but
as modern CMOS technology has moved to lower voltages, degradation due to HCI
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has tended to diminish in terms of its importance. This is especially true for digital
CMOS circuits where the current flow through the devices is very transient in nature,
and devices are not biased in a way that would subject them to hot carrier stress for
long periods of time. Thus for CSE designs with reasonable signal slews, HCI is
unlikely to cause significant degradation, although with the advent of new materials
this an area that will bear watching for the future [75]. Both HCI and NBTI are
addressed in more detail in Sect.8.3.5

For CSE designs in today’s technologies, NBTI is a more important concern.
NBTI is specific to PFETs, increasing the magnitude of the threshold voltage, and de-
creasing carrier mobility over time, depending on the stress conditions. The custom-
ary manner of treating this issue is to design test sequences such that all parts which
pass are guaranteed to have adequate margin under all operating conditions against
the impact of any future degradation. Random collections of parts may be stressed
over periods of time to assess their reliability, given a particular set of screening tests
at time zero. However, given the intrinsic statistical nature of the phenomenon in-
volved, the shrinking of the device geometries with the resultant growing variability,
and the increasing numbers of devices integrated on a single chip, it may be nec-
essary to ask whether the margins needed during test will remain within reasonable
bounds in the future, and, given the power/performance cost of maintaining such
margins, whether there are CSE design techniques which could be used to reduce
this overhead.

Most of the work on this subject is focused on the issue of frequency degra-
dation, or the slow down of components which occurs over time. One method that
has been studied is the so called Razor technique, originally proposed [76] to allow
aggressive dynamic voltage scaling, but also applicable to wearout-induced circuit
degradation as well. A Razor MSL is shown in Fig.3.23. The clock to the shadow
latch is delayed enough to guarantee that the incoming data is successfully latched,
even when the main latch fails to capture the correct data. In the event that the two
latches contain different data, an error signal is registered, and it is possible for the
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Fig. 3.23. Razor master–slave latch. Reproduced with permission from [76], c©2003 IEEE
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system to recover by later swapping in the correct data from the shadow latch (at
the cost of a few cycles, depending on the exact recovery scheme used). An error
monitor could take appropriate action to maintain a reasonably low error rate, for
example by adjusting the processor voltage or frequency, thereby avoiding excessive
performance loss. The optimal error rate could then represent a trade off between the
performance degradation caused by the overhead of error correction and the benefits
of a higher frequency or lower operating voltage. The Razor technique applies con-
siderable overhead to a typical MSL (not to mention the recovery logic overhead) but
would not be needed on all CSEs. The Razor MSFF is itself vulnerable to hold time
issues, and in fact the delayed clock to the shadow latch significantly increases the
overall hold time for the CSE. Another issue of such a scheme would be that either
the power or performance of the system could change over time, as adjustments were
made for NBTI degradation (or simply in response to environmental changes), per-
haps requiring re-instatement of some of the guardbands that were to be avoided in
the first place. Sections 7.4.1–7.4.3 describe the Razor methodology in more detail
from the viewpoint of addressing process variation through resiliency.

Other research has focused on trying to predict impending errors, and take ac-
tion before the error actually occurs [78]. In this case, a transition detector watches
for transitions which are arriving very late at the capturing CSE, and triggers if
these transitions fall within the defined danger window. Chip monitoring hardware
or software may then take action before any errors occur. This eliminates the logic
complexity and overhead associated with the error recovery mechanisms. Such tran-
sition detectors may also be integrated into pulsed latches and used as error detectors
[77, 79] in a similar fashion to the original Razor design, but with less overhead in-
side the CSE. An example of such a scheme is shown in Fig.3.24. A more detailed
description of these techniques appears in Sect.7.4. One drawback of these transi-
tion detector schemes is that, in order to reliably signal the presence of an error (or
an impending error), such circuits will need enough built-in margin to work reliably;
it has to be guaranteed that the transition is always detected before an error actually
occurs. This built-in margin will tend to lower the achievable operating frequency.

ERROR
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clk

clk

Fig. 3.24. Transition detection scheme. Reproduced with permission from [77], c©2008 IEEE
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As a “last resort,” redundant logic techniques have also been studied, where the
CSE has the ability to automatically swap out a whole block of logic on sensing
an impending fail [80], replacing it with an equivalent set of logic gates. Of course,
the overhead here is extremely high. Regardless of whether or not techniques like
these ever become adopted in a widespread fashion by the industry, it is likely that
future microprocessors will require more advanced techniques to guard against wear
out-induced reliability failures, either locally at the CSE-level, as described above,
or by using more global monitoring and checking algorithms.

Finally, throughout all of the above, it has been assumed that race conditions,
pulse-width and/or latch writeability margins can be ensured through a combination
of design margin and test conditions, without too much overhead. While this latter
assumption may still hold true for some time in the future, usage of large numbers
of pulsed-clock components in future technologies are likely to drive the need for
more advanced testing techniques, including both race path and pulse-width stress-
ing using some of the special clock pulse width/and/or clock edge control features
described earlier. In addition, that fact that race path or hold time failures generally
involve a small number of logic gates means that they will tend to be more sensi-
tive to variabilities inherent in the various device degradation mechanisms. As this
variability increases, it may no longer be possible to ensure adequate margin through
specific test voltage and temperature conditions alone.

3.8 Conclusion

In light of the ongoing power crisis in modern microprocessors, tomorrow’s high-
performance processors are likely to continue the push towards aggressive use of
pulsed-static latches, which require only a single clock and provide for a soft cy-
cle boundary. Improved analysis tools will be needed to guarantee robust operation
of a large collection of such circuits across the full PVT space, and especially to
be able to handle the ever-increasing impact of random local fluctuations. To en-
sure the highest quality, reliability, and system performance, future designs will use
an increasingly sophisticated collection of special features for test, debug, and chip
optimization. Finally, SER-related reliability will become a key issue for CSE design
in the future. Tomorrow’s latch and flip-flop designers will need to consider not only
the usual power/performance aspects of their solutions, but will also need to design
for enhanced testability, robustness against statistical variations, and high levels of
reliability, and SER immunity.
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In this chapter, the benefits of using inductance for generating and distributing clocks
are explored. Starting with the implementation and modeling of spiral inductors and
transmission lines the focus, subsequently, shifts into LC and transmission-line os-
cillators for generating two or more phases with low phase noise. Finally, resonant
clock distribution methods including rotary traveling-wave oscillator arrays, standing
wave oscillators and grids, and inductor-based clock grids are presented.

4.1 Introduction

Although inductive components have been used as off-chip components for several
decades, their first practical implementation on silicon was reported in early nineties
in silicon bipolar and BiCMOS processes [1, 2]. There are two reasons for this delay.
First, the low Q obtained for inductors in early silicon processes with only two or
three metal layers compared to off-chip inductors was prohibitive for their use in any
practical system. Second, the low-frequency requirements for the inductors made
system-level integration in a single die very difficult. Since inductor size is inversely
proportional to the square of the frequency, the inductors required at the system level
were too large to accommodate for on-chip implementations.

Following the evolution of CMOS processes, new applications and new
challenges emerged. CMOS has been the technology of choice for large scale
applications such as microprocessors in which large integration is the primary goal.
However, the rapid increase of CMOS transition (cut-off) frequency ( fT) coupled
with its high energy efficiency and high integration scale compared to competing
technologies (e.g., SiGe, GaAs) makes CMOS the primary choice for high frequency
wireless, wireline, and optical communication applications. Utilizing on-chip induc-
tors to build oscillators became attractive for communication applications as their
operating frequency increased to GHz range. Furthermore, one of the drawbacks
of CMOS technology is its large process variation which translates into uneven
phase generation for ring oscillators and clock skew for clock distribution networks.
Oscillator phase deviation can be improved by using LC-based oscillators instead
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of ring oscillators. Also, LC-based oscillators have lower phase noise compared
to ring oscillators since they exhibit better supply noise rejection. The clock skew
issue gets worse for increasing clock load since it is proportional to the number of
buffer stages required to drive the load [3]. To make things even worse, clock skew
takes a larger fraction of the clock cycle as frequency increases, even if the clock
distribution network and load remain the same. Clock skew can be addressed by
replacing conventional buffer-based clock networks with transmission-line-based
and LC-based clock distribution.

Spiral inductors and transmission lines are the two dominant structures for
forming on-chip inductive components. In this chapter, both spiral inductors and
transmission lines are described including implementation and modeling methods.
Subsequently, LC-based Voltage-Controlled Oscillators (VCO) for generating two
or more phases as well as transmission-line based distributed VCOs are described.
In Sect.4.4, clock distribution methods based on resonance are presented. Finally,
Sect.4.5 summarizes the chapter.

4.2 Monolithic Inductance

4.2.1 Spiral Inductors

The implementation of spiral inductors depends mostly on the target application and
the process parameters. For instance, the inductor quality (Q) factor is a key param-
eter for spiral inductors designed for LC VCOs. Maximizing the Q of the inductor
around the VCO operating frequency results in decreasing the VCO phase noise.
Furthermore, to meet the VCO frequency range, it is necessary to accurately predict
the inductance L of the spiral inductor. For other applications (e.g., shunt and series
peaking [4], etc.), inductor area is more important than its Q or inductance accu-
racy. Finally, for practical verification purposes, an inductor model should be readily
available. Inductor models vary depending on the application. Narrowband models
are necessary for LC VCOs since they operate around a well-determined frequency
whereas broadband models are required for other applications. In this chapter, we
focus on inductor implementation and modeling for LC VCOs.

Spiral inductors can be implemented in various shapes. Figure 4.1 shows exam-
ples of 2-turn square, octagonal, and symmetrical octagonal spiral inductors. Other
common shapes include hexagonal and circular spiral inductors. Typically, high-Q
spiral inductors are implemented using low sheet resistance, high-level metal lay-
ers. It is also possible to strap together multiple metal layers in order to reduce the
inductor resistance. Using high-level metals results in low inductor capacitance and
substrate losses as we see next.

The inductance L of spiral inductors can be estimated using Greenhouse’s method
[5]. However, simpler analytical models are also available [4, 6, 7] based on the
inductor geometry (shape, number of turns, radius, metal width, metal spacing, and
metal thickness). The inductance model presented in [6] is based on inductor segment
decomposition. The length, l, of square spiral inductors is given by:

l = (4n+1)din +(4Ni +1)Ni (w+ s) , (4.1)
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Fig. 4.1. Common 2-turn spiral inductor shapes

where n is the number of turns, Ni is the integer part of n, din is the inner diameter of
the inductor, w is the metal width, and s is the metal spacing.

The inductance L is estimated taking into consideration the self inductance of
the spiral inductor, the negative mutual inductance between segments, and the posi-
tive mutual inductance between segments. The total inductance of the square spiral
inductance is given by [6]:

L =
μ0

2π
l
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⎤

⎥⎦ ,

(4.2)

where μ0 is the permeability of vacuum, l and n are the inductor length and number
of turns, w and t are the metal width and thickness, and dav is the average segment
distance for the positive mutual inductance given by (4.3).

dav = (w+ s)
(3n−2Ni −1)(Ni +1)

3(2n−Ni −1)
. (4.3)
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Inductance analytical models can be derived for different shapes similar to square
inductors. In [6], (4.2) is modified for octagonal spiral inductors.

RsL

Cp

Cox/2 Cox/2

Rsub RsubCsub Csub

substrate

p1 p2

Fig. 4.2. Spiral inductor narrowband lumped model

Deriving lumped element models for spiral inductors is of utmost importance.
First, they facilitate circuit simulations (especially in time domain). Second, they
provide a well-defined description of spiral inductors that can be used to improve
their design. Figure 4.2 shows a widely used lumped element model for spiral induc-
tors [4, 8, 9], which is more appropriate for narrowband applications. A broadband
inductor model has also been proposed [10], but such models are beyond the scope of
this chapter. The narrowband model has two signal ports p1 and p2 and the substrate
port which typically connects to ground. It includes the inductance L connected to a
series resistance Rs, a shunt capacitance Cp and the inductor to substrate capacitance
Cox. Finally, Rsub and Csub model substrate resistance and capacitance respectively.

The series resistance Rs models losses due to the metal resistivity and the skin
effect. The latter term is used to describe that at high frequency, the current tends to
flow at the surface of a conductor causing its resistance to increase. Therefore, Rs is
frequency dependent and is given by [4, 9]:

Rs =
ρl

wδ
(
1− e−t/δ

) , (4.4)
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where ρ is the metal resistivity at DC, l is the inductor length, w is the metal width,
t is the metal thickness and δ is the metal skin depth obtained by (4.5):

δ =

√
2ρ

ωμ0
. (4.5)

Other losses not modeled with (4.4) and (4.5) include proximity effect losses
and eddy currents losses to the substrate. The proximity effect term describes the
phenomenon of the currents of two parallel conductors runing along the side of their
surface that is close to each other [4]. This effect is caused by the magnetic field
between the two conductors. Substrate losses due to eddy currents depend on the
substrate doping and can be neglected for lightly doped substrates.

Capacitance Cp models the overlap between the metal layer used for the inductor
and the underpass metal to connect to the other port:

Cp = nw2 εoxM

toxM
, (4.6)

where n is the number of turns, w is the metal width, εoxM and toxM are the oxide
permittivity and the oxide thickness between the two metal layers respectively.

Cox is the capacitance between the inductor metal layers and the substrate mod-
eled with:

Cox = wl
εox

tox
, (4.7)

where εox and tox are the oxide permittivity and the oxide thickness between the
inductor and the substrate, respectively.

Resistance Rsub and capacitance Csub model losses to the substrate and are fitting
parameters based on measurements. Rsub models loss due to current capacitively
coupled to substrate and is given by [4, 9]:

Rsub =
2

lwGsub
, (4.8)

where Gsub is the substrate conductance per unit area. Csub is given by [4, 9]:

Csub =
lwCsubu

2
, (4.9)

where Csubu is the substrate capacitance per unit area.
The analytical expressions presented in this section can be used as first-order ap-

proximations to develop inductor models. There are effects that cannot be accounted
for by using the analytical equations. For instance dummy metal fills are inserted in
modern chemical mechanical polishing (CMP) processes which impact at least the
inductor to substrate capacitance. More accurate inductor models are based on hard-
ware characterization and parameter fitting for the components shown in Fig.4.2.
Generally, this task should be performed for each inductor used in a circuit. How-
ever, it is possible to develop scalable inductor models for varying inductor radius
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if the other parameters such as shape, number of turns, width, and space are kept
constant. Although this restriction imposes limitations to the designers, it can speed
up the inductor modeling process. Only a few inductors with different radius must be
characterized whereas a full scalable model can be developed through extrapolation
from the measured data. In addition, several EM analysis tools [11, 12] are available
as an option between simple analytical models and hardware characterization. There
is a trade-off between their accuracy and the inductor analysis time and they are more
effective when their process settings are calibrated based on hardware measurements
to produce accurate models for fast or modest analysis time.

Besides the inductance, the Q factor is the other key parameter for inductors
used for clock generation. Analytical models for inductor Q factor based on the in-
ductor lumped model have been developed [9, 13, 14]. However, the Q factor which
is a function of frequency can be extracted through hardware measurements for bet-
ter accuracy. In general the Q of an inductor can be improved by reducing losses.
Certain processes provide options to boost the Q of inductors. For example, low-
resistivity thick high-level metal layers can be available for inductor implementa-
tion. If such option is not available, multiple metal layers can be strapped together
to form the inductor. Another practical issue that can impact the inductor Q factor
is the necessity of dummy metal fills in modern processes which increase induc-
tor coupling to the substrate. If it is not possible to exclude the dummy metal fills
below the inductor, they can be added manually. This serves two purposes. First,
only the minimum amount of dummy metal fills is inserted to satisfy process re-
quirements. Second, it resolves the issue of random dummy metal fills which depend
on the location of the inductor in the die. Another technique to improve inductor
Q is the insertion of patterned ground shields [14] using a low metal layer. Shield-
ing the inductor from the substrate reduces inductor coupling to the substrate as
well as noise that reaches the inductor from the substrate. The drawback is the in-
crease of the inductor capacitance since the shield is closer to the inductor than the
substrate.

4.2.2 Transmission Lines

As the integrated circuit operating frequency increases, long interconnects behave as
distributed instead of lumped elements. This happens when the length of the inter-
connect approaches the wavelength of the signal highest frequency. In this mode of
operation, long interconnects behave as transmission lines and they cannot be mod-
eled using simple RC-based models. Figure 4.3 shows a lumped model for such inter-
connect. Components L, R, C, and G represent inductance, resistance, capacitance,
and conductance per unit length respectively. The inductance L and capacitance C
model the magnetic and electric energy-stored components, respectively. The resis-
tance and conductance model energy losses in the transmission line. Specifically, R
models losses due to the series resistance of the transmission line including the skin
effect, whereas G models losses due to the dielectric conductance.
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Fig. 4.3. Transmission line lumped model

The characteristic impedance Z0 of a transmission line determines the voltage to
current ratio of a signal propagating along its length and is given by:

Z0 =

√
R+ jωL
G+ jωC

. (4.10)

If the losses (i.e., R and G) are negligible or if RC=GL, then (4.10) simplifies to:

Z0 =

√
L
C

. (4.11)

Another important parameter of a transmission line is its propagation constant,
γ , that determines the signal attenuation through the line. The voltage V at any point
in the transmission line that is in distance z from its beginning, is given by:

V (z) = V0e−γz, (4.12)

where V0 is the voltage at z = 0.
The propagation constant, γ , is given by:

γ =
√

(R+ jωL)(G+ jωC), (4.13)

According to (4.13), γ can be generalized into the following complex form [4]:

γ = α + jβ , (4.14)

where α determines the attenuation in the line due to the distance increase and β has
only phase contribution.

If the losses are negligible, (4.13) reduces to:

γ = jω
√

LC. (4.15)

As expected, there is no attenuation to signal amplitude, only its phase changes
proportionally to its frequency. As shown in [4], the delay of a lossless line is a
constant independent from frequency, but proportional to

√
LC. At the same time,

the bandwidth in the lossless transmission line is infinite because there is no signal
attenuation. As long as R and G can be neglected, increasing L and C causes the
transmission line delay to increase, but has no effect on its bandwidth.
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If RC=GL, then (4.13) simplifies to:

γ =
√

RG+ jω
√

LC. (4.16)

In this case, the transmission line has losses proportional to
√

RG, and therefore
limited bandwidth. However, its delay is still independent from the frequency and its
characteristic impedance is still given by (4.11) similar to the lossless line. Therefore,
the transmission line is distortionless which improves the transmission of broadband
signals. This property of the transmission line was first recognized by Heaviside [15]
and Pupin [16] and led to the improvement of the telephony industry through the
periodic insertion of coils so that the RC and GL products match. The same approach
was also used recently [17, 18] to implement distortionless differential transmission
lines by adding periodic resistances to increase their shunt conductance G in order for
RC and GL products to match. Using distortionless transmission lines is beneficial
for transmitting broadband signals because it reduces their intersymbol interference
(ISI) since their loss and group delay are frequency independent. However, such an
improvement is not necessary for transmitting clock signals because their frequency
is constant. Although not directly related to the potential distortionless nature of
transmission lines, [19] has demonstrated that on-chip interconnect transmission-
line effects can be used to correct duty cycle deviations as well as sensitivity to PVT
variations.

Z0

ZL

Fig. 4.4. Finite-length transmission line with termination

The transmission line characteristics presented above apply to transmission lines
with infinite length. In practice, transmission lines have a finite length and are used to
transmit a signal between two points. In order to ensure that transmission-line charac-
teristics resemble those of an infinite line, a termination impedance must be inserted
at the receiving end with impedance ZL, equal to the characteristic impedance Z0
of the line (Fig.4.4). If the termination impedance does not match the line charac-
teristic impedance, there is a reflection propagating in the opposite direction of the
transmitted signal. Let ΓL denote the reflection coefficient defined as the ratio of re-
flected to incident voltage and current at the receiving end of the line. Then ΓL is
given by:

ΓL =
ZL −Z0

ZL +Z0
. (4.17)
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The reflection coefficient absolute value can vary between 0, when ZL perfectly
matches Z0, and ±1, when termination is an open or short. As discussed in Sects.4.3
and 4.4, certain circuit topologies for clock generation and distribution are based on
circular transmission lines eliminating the need for impedance termination.

Similar to spiral inductors, transmission lines are implemented in silicon us-
ing low-resistive, thick, high-level metals. In general there are two major forms
of transmission lines: microstrips and coplanar waveguides. Microstrips are im-
plemented as metal lines on the top of substrate or a ground shield using a low-
level metal layer (Fig.4.5). Coplanar waveguides include side ground shields for
ground current returns and can also run either on top of the substrate or a ground
shield (Fig.4.6). Coplanar waveguides are better shielded from surrounding cir-
cuits and other interconnects at the expense of area overhead for the side ground
shields. Since different width and spacing settings can give the same characteris-
tic impedance Z0, there are several different parameters that need to be considered
for their implementation:

• Low-resistivity substrate with epi layer have higher losses compared to high-
resistivity substrate. Therefore, bottom ground metal shield may be used to re-
duce losses in the former case.

• Using ground metal shield reduces losses to the substrate as well as substrate
noise, but at the same time it increases the transmission-line capacitance since

substrate

S

w

substrate

S

w

tox

tox

Microstrip transmission line

Microstrip transmission line with metal shield

G

a

b

Fig. 4.5. Microstrip transmission line with and without ground shield
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Fig. 4.6. Coplanar transmission line with and without ground shield

tox is reduced. Another issue with bottom ground shield is that transmission
line current will tend to run along its bottom side due to the proximity and skin
effects.

• Increasing the width of the transmission line reduces resistive losses but it in-
creases the capacitance. In case there is no bottom ground shield, depending on
the distance between the transmission line and the substrate, more electric field
lines penetrate the substrate as the transmission line width increases.

• In case of coplanar waveguides, the space between the transmission line and the
side ground lines affects both the inductance and capacitance.

• Dummy metal insertion required by certain processes can change both the char-
acteristic impedance and the losses of a transmission line. The dummy metal
effect can be reduced if these metals are placed manually.

Trade-offs of these parameters are studied in [20] through hardware measure-
ments. Transmission lines can be also analyzed through EM software [11, 12].
Figure 4.7 shows a 60Ω U-shaped coplanar waveguide used for a distributed VCO
in 90nm CMOS [21]. The bottom ground shield is in metal 2, leaving metal 1 avail-
able for feed-throughs under the transmission line. Dummy metal is manually placed
to meet the process minimum requirements. Figure 4.8 shows a coplanar differential
waveguide. The space between the two differential signals is twice the space between
each line and the side ground line.
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4.3 Inductor-Based Clock Generation

4.3.1 Differential LC VCO

As was noted before, LC VCO implementation was one of the first applications of
on-chip spiral inductors [2]. In general, LC oscillators consist of two main compo-
nents: the LC tank and the negative resistance. The latter is an active circuit necessary
to start and maintain the oscillation [22]. Figure 4.9 shows commonly used differ-
ential LC VCO circuit topologies in CMOS. The first two circuits are similar with
the main difference being the bias configuration (top biased vs. bottom biased). They
both rely on cross-coupled NFETs MN0 and MN1 to form the negative resistance.
The third circuit uses cross-coupled NFETs and PFETs for negative resistance with
the advantage of requiring a single inductor for both LC tanks. The other two topolo-
gies require two inductors or one center-tapped inductor. In any case, the physical
placement and wiring is greatly simplified when the VCO topology requires a sin-
gle inductor. Another advantage for the third VCO topology is that the clock phases
do not exceed the supply voltage. In contrast, it is possible especially for the clock
phases of the first topology to surpass the supply voltage, which can cause process
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Fig. 4.9. Differential LC VCO circuit topologies

break down assuming the VCO supply voltage is the same as the process maximum
allowed voltage. On the other hand, the common-mode voltage of the first VCO is
equal to the supply voltage allowing for more voltage headroom.

In LC VCOs, the frequency is controlled by varying the voltage across the varac-
tors. There are two types of varactors: PN junctions and MOSFET [23, 24]. MV0 and
MV1 represent MOSFET varactors in Fig.4.9 while Vctl denotes an analog control
voltage. The frequency of the VCO is given by:

f =
1

2π
√

LC
, (4.18)

where L and C denote the VCO inductance and capacitance respectively. The capac-
itance consists of a fixed part (transistor gate, drain, and parasitics) and a varying
part (varactors) with the latter determining the frequency range. Another method to
adjust the VCO frequency is to use magnetic tuning through transformers [25] which
effectively changes the inductance factor in (4.18).

Besides the VCO frequency and range, its phase noise is the most impor-
tant characteristic, especially for communication applications in which low clock
jitter is necessary in order to meet system jitter specifications for transmitting
and receiving data. Starting with the generic Leeson model for oscillator phase
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noise [26], several theories have been developed recently specifically for LC
oscillators [27–30]. Leeson’s equation for oscillator phase noise due to thermal
noise is:

L(ωm) = F
1

V 2
kT
C

ω0

Q
1

ω2
m

, (4.19)

where ω0 and ωm are the center and offset frequency respectively, kT/C is the ther-
mal noise density, V is the voltage amplitude, Q is the resonator quality factor, and
F is a circuit-dependent noise factor. Extending Leeson’s linear equation in order
to more accurately model the inherently nonlinear behavior of the LC oscillators, it
has been shown that for the VCO topology of Fig.4.9a the noise factor F is given
by [30, 31]:

F = 1+
4γIR
πV

+ γ
4
9

gmtailR, (4.20)

where γ is the FET channel noise coefficient, I is the tail current, V is the voltage
amplitude, R is the tank resistance, and gmtail is the transconductance of the current-
source FET. Based on the phase noise equations above, it appears that increasing
the VCO voltage amplitude reduces phase noise since it improves signal to noise
ratio. However, in practice there is a limit on how large the voltage amplitude can be
before in fact the phase noise starts increasing. As the voltage amplitude increases,
the differential pair FETs start operating in the linear region for part of the cycle
time. Depending on the circuit topology and process parameters, it is possible for the
differential pair FETs to completely turn off. Furthermore, the current-source FET
may also go out of saturation into the linear region of operation. In fact, there are two
modes of operation for LC VCOs [31–33]: current-limited and voltage-limited mode.
In current-limited mode operation, the clock voltage amplitude is determined by the
tail current and the equivalent tank resistance. In voltage-limited mode operation, the
amplitude approaches or exceeds the supply voltage for the VCOs shown in Fig.4.9c
and Fig.4.9a, respectively.

One of the main contributors to phase noise is the tail current source noise.
This noise is both high frequency and low frequency. The former is mainly due
to the second harmonic of the VCO frequency since even harmonics flow into the
common-mode path. This noise can be filtered by placing a large capacitor paral-
lel to the current source to short the noise frequencies around the second harmonic
and an inductor between the current source and the tail sized properly to provide
high impedance at the second harmonic [31]. Low-frequency noise in the tail current
source can also be suppressed using inductive degeneration and capacitive filtering
which require off chip inductor and capacitor, respectively [34].

To ensure that the VCO frequency range has enough margin to meet its spec-
ification despite process, voltage, and temperature variations, extra varactor banks
are typically included. The problem is exacerbated in applications that require op-
eration in multiple frequencies [35]. The VCO gain is proportional to the varactor
size. Furthermore, the control voltage usually varies around half of the supply volt-
age where the VCO gain is close to its maximum. Any VCO noise (control voltage
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as well as supply and substrate noise) gets converted into phase noise in proportion
with its gain [36]. Since the gain of the VCO is minimized when the control voltage
is set to ground or to the supply voltage, phase noise can be reduced by operating
the VCO at a lower gain. This can be accomplished by splitting the varactor banks
into digitally-controlled and analog-controlled [36] with the majority of them being
controlled digitally. VCOs with hybrid analog/digital control complicate the design
at the system-level (e.g., PLL, CDR, etc.) since they require both coarse and fine
tuning. There is also the extreme case of completely digitally-controlled oscillators
(DCO) [37].

4.3.2 Quadrature LC VCO

VCO1 VCO2

clk90

clk270

clk0

clk180

Fig. 4.10. Quadrature LC VCO block diagram

Several communication applications require four clock phases with 90◦ phase
difference between consecutive phases. Such applications include half-rate CDR ar-
chitectures [38, 39] and wireless transceivers [40]. To meet strict phase deviation and
phase noise requirements imposed by these applications at multigigahertz frequency
range, using LC VCOs is the primary choice especially in CMOS. A quadrature
LC VCO can be formed by coupling two differential LC VCOs (Fig.4.10). Start-
ing with a typical differential LC VCO (Fig.4.9a), coupling can be introduced either
in parallel or in series with the cross-coupled pair transistors. Figure 4.11a shows
a parallel-coupled quadrature LC VCO [41]. Varactors are omitted for clarity. MN4,
MN5, MN6, and MN7 are the coupling transistors connected in parallel with the stage
internal cross-coupled switch transistors MN0, MN1, MN2, and MN3 respectively.
Assuming that coupling and switch transistors have the same length, the coupling
strength, α , is defined as the ratio between the width of the coupling transistors to
the width of the switch transistors [42]. Coupling strength α has a value between 0
and 1. It has been shown [42] that in case of parallel coupling both the phase noise
and phase deviation depend on α in an inverse fashion. As α increases, phase de-
viation decreases whereas phase noise increases. Figure 4.11b shows an alternative
parallel-coupled quadrature VCO in which the coupling parallel path is biased using
a different tail-current transistor. In this case, α is determined by the bias current
ratio between the coupling path and the switch path.

Figure 4.12 shows two series-coupled quadrature LC VCOs [42, 43]. In both
cases, the coupling transistors in each stage are connected in series with the cross-
coupled transistors. In Fig.4.12a, the coupling transistors MN4–MN7 are on the
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Fig. 4.11. Parallel-coupled quadrature LC VCOs

top whereas in Fig.4.12b they are on the bottom. As has been reported [42, 43],
the phase deviation in series-coupled quadrature LC VCOs is independent of the
coupling strength for all reasonable values (e.g., between 1/3 and 1/2). Therefore,
the coupling strength can be optimized for phase noise without affecting phase de-
viation between the four clock phases. In studies comparing parallel- and series-
coupled quadrature VCOs, it has been shown [42, 43] that series-coupled VCOs
exhibit better phase noise characteristics compared to equivalent parallel-coupled
VCOs. Phase noise and oscillation stability of parallel-coupled quadrature VCOs
can be improved by shifting the coupling phases by 90◦ (Fig.4.13) [44–46]. The
outputs of the phase shifters that are used to couple the VCO stages are in phase
with their respective cross-coupled phases that drive the other branch of the par-
allel structure. Phase shifter circuits can be based on a differentiator or an inte-
grator [45] or a passive RC-CR filter [46]. As shown in [46], the accuracy of the
phase shift is not essential since same results can be obtained with smaller than 90◦

phase shift.
Other quadrature LC VCO architectures have been proposed that require two

inductors instead of four [47, 48]. In the first design, the coupling is introduced using
PFETs. The second design introduces both pull-down and pull-up parallel coupling
networks using NFETs and PFETs, respectively.
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4.3.3 Distributed VCO

Distributed amplifiers are used in applications with high bandwidth requirements.
Despite the physical challenges associated with distributed amplifier implementa-
tion, they can achieve high bandwidth because parasitic capacitance (including tran-
sistor gate and drain) is absorbed in the transmission lines. Distributed oscillators can
be implemented based on distributed amplifiers by feeding the output of the amplifier
back to its input [49, 50]. A 3-stage distributed oscillator is shown in Fig.4.14. Com-



4 Exploiting Inductance 121

Vdd

RL1

Vdd

RL2

Drain T-line

Gate T-line

Fig. 4.14. Distributed oscillator

pared to lumped LC oscillators, distributed oscillators can be operated at frequencies
close to the fT of the process. As reported in [50], using conventional varactors for
frequency tuning can result in loading the transmission line excessively which would
cause the oscillator operating frequency to be reduced. An alternative frequency tun-
ing method is proposed in [50]. Specifically, the oscillator frequency is tuned by
effectively changing the length of the transmission line. This can be achieved by
shortening or lengthening the path of the current either in the drain or the gate trans-
mission line. A variation of the distributed oscillator shown in Fig.4.14 has also been
implemented using discrete components [51–53]. In this design, the drain line con-
nects to the gate line at the drain line load.

There are several issues associated with the implementation of conventional dis-
tributed oscillators. First, the voltage amplitude across both the drain and gate lines
varies depending on the distance to the respective load resistors. Furthermore, the ter-
mination resistors are sources of thermal noise that affect the oscillator phase noise.
Finally, it is difficult to implement differential distributed oscillators since they re-
quire two gate and two drain lines.

4.3.4 Poly-Phase Circularly Distributed VCO

Communication applications such as quarter-rate and/or oversampled CDRs require
eight [54] or more [18] clock phases equally-spaced in time. Distributed oscillators
offer the ability to generate multiple clock phases. However, as was discussed be-
fore conventional distributed oscillators have several drawbacks that make their use
difficult. Another type of distributed oscillators can be formed using circular trans-
mission line [21, 54] as shown in Fig.4.15 which are based on rotary traveling waves
[55, 56]. The distributed oscillator shown in Fig.4.15 produces eight clock phases
with 45◦ phase difference between any two consecutive phases. The transmission
line is folded so that clock phases are delivered as four differential pairs (clki and
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Fig. 4.15. Circular distributed oscillator. Reproduced with permission from [21], c©2006 IEEE

clki, i =1,..., 3). Four negative-gm circuits connected to the differential pairs start and
sustain the oscillation. The negative-gm circuits can be cross-coupled NFET/PFET
pairs. Varactors are included so that the oscillator frequency can be adjusted through
a control voltage, Vctl. The circular distributed oscillator overcomes all issues related
to the amplifier-based distributed oscillator. All clock phases have the same ampli-
tude regardless of their position. The circular transmission line has virtually infinite
length, and therefore eliminates the need for termination resistors. Finally, the clock
phases are inherently delivered as differential pairs.

A distributed oscillator is useful only if the direction of the clock phases is con-
trollable. Circular distributed oscillators are symmetric resulting in uncertainty for
the clock direction. The clock phases can propagate either clockwise or counter-
clockwise. After power up clki can either lead or trail clki−1 depending on several
physical design factors such as the location of the pads, the supply distribution net-
work, and the physical arrangement of the transmission lines. In [21], a method to
control the direction of the clock phases has been demonstrated on a 24-phase closed-
loop distributed VCO. The method is outlined in Fig.4.16. In each stage two NFETs
are added that conditionally pull down clki and clki. When on, these NFETs add
positive resistance that cancels out the negative-gm circuits. Their gates are con-
trolled by signal ccw/cw starting with clk0 and ending with clk3 or the other way
around, following the VCO loop. Pulling up the control signal stops the VCO from
oscillating and resets the clock phases to a DC voltage determined by the strength
of the FETs in the negative-gm circuit and the positive-resistance NFETs. After all
phases are reset, the control signal is pulled down either from the ccw side (clk0
leads) or from the cw side (clk3 leads), releasing the clock phases in a predetermined
order.
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4.4 Clock Distribution Using Inductance

4.4.1 Rotary Traveling-Wave Oscillator Arrays

Rotary traveling-wave oscillator arrays are formed using multiple rotary traveling-
wave oscillators [55, 56] as shown in Fig.4.17. Assuming all loops are symmetri-
cally matched, each loop has a traveling wave. The cross-coupled inverters are used
to start and sustain the operation due to losses in the transmission-line loops. They
also serve as latches that amplify the differential signal and generate square wave-
form clocks instead of sinusoidal. The individual loops are synchronized at their
junctions through a phase-locking phenomenon. In any four port junction there are
two pulses that are arriving simultaneously and are propagated to the output ports if
the impedances are matched. The clock frequency is determined by the characteris-
tics of a single loop and is given by [56]:

f =
1

2
√

LlpClp
, (4.21)

where Llp and Clp are the total loop inductance and capacitance, respectively. The
factor of 2 is inserted because the phase wave has to go around the loop twice per
clock cycle. As is the case with other oscillators, the frequency can be tuned by
placing varactor banks along the transmission line.
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Fig. 4.17. Rotary traveling-wave arrays. Reproduced with permission from [55], c©2001 IEEE

As shown in [56], rotary traveling-wave oscillator arrays have low skew even in
the presence of mismatches between the various loops. Furthermore, they operate
adiabatically [57] when the losses in the transmission line and the gate resistance
of the cross-coupled inverters are small. Finally, as suggested by Fig.4.17, rotary
traveling-wave oscillator arrays are expandable since more loops can be connected
together to form larger arrays. Rotary traveling-wave clocks operate well with digital
logic that requires two phases. In addition to conventional logic, a new two-phase adi-
abatic logic style operating with such a clock has been demonstrated [58]. However,
careful consideration must be given at the system level since the phase of the clocks
depends on their location within each loop. For instance, moving data globally may
require retiming to a different clock domain. Another issue is coupling between the
clock transmission lines and signal interconnects that need to be routed underneath
the transmission lines.

4.4.2 Standing Wave Oscillator and Grid

Another type of oscillators based on transmission line signal propagation is standing
wave oscillators [59]. The oscillating signals are formed in the transmission line by
the incident and the reflected waves that travel in opposite directions. A standing
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wave oscillator (Fig.4.18) consists of a differential transmission line and several
negative-gm cells distributed along the line. The transmission lines are shorted to
ground at both ends creating a half-wave (λ/2) resonator, where λ is the wavelength.
The negative-gm cells used in [59, 60] contain cross-coupled NFETs to compensate
for gain losses in the transmission lines and diode-connected PFETs for loads to set
the common mode voltage. Unlike other LC-based oscillators, standing-wave oscil-
lators may require clock injection in order to oscillate. Using diode connected loads
simplifies clock injection as shown in [60]. Compared to rotary traveling-wave os-
cillators, standing wave oscillator clocks have the same phase irrespective of their
position along the line. However, clock amplitude is position-dependent and varies
sinusoidally along the transmission line. Specifically, clock amplitude is high in the
middle of the transmission line and low at the two ends. Therefore, clock phases
close to the transmission line ends require amplification to be usable. As shown in
[60], a clock buffer consisting of a limiting amplifier and a sine-to-square converter
is required especially for digital applications. The standing wave oscillator oscillates
at a frequency f if the following equations are satisfied [59]:

g <
1
n

RtlCtl

Ltl
(4.22)

and
l =

1
2 f

√
LtlCtl

, (4.23)

where Rtl, Ctl, and Ltl are the resistance, capacitance, and inductance of the dis-
tributed transmission line, l is the length of the transmission line, n is the number of
negative-gm cells along the transmission line, and g is the transconductance of each
one of the negative-gm cells. A more generic analytical model for the operation of
standing wave oscillators is derived in [60].

Multiple standing wave oscillators can be coupled into clock grids as shown in
Fig.4.19 [59, 60]. A single standing wave oscillator is diagrammed in the top right
corner of the grid. The ends of standing wave oscillators are folded outside the grid
since the low clock amplitude in these segments makes the clocks unusable. Each
oscillator has five negative-gm cells. Although not shown in Fig.4.19, each oscillator
can contain varactors in order to adjust its resonance frequency so that it matches
the injected clock frequency. The clock injection point is also indicated in Fig.4.19.
Similar to rotary traveling-wave oscillators, standing wave oscillators exhibit a phase
averaging effect when connected in grids resulting in overall low-jitter and low-skew
clock distribution.
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One of the drawbacks of the standing wave oscillator shown in Fig.4.18 is
the low voltage amplitude for a rather large portion of the transmission line
length. To overcome this issue, spiral inductors can be placed at the two ends
of the differential transmission line (Fig.4.20a) [61, 62]. The resulting oscilla-
tor can have the same frequency while exhibiting a small voltage variation along
its transmission line. Furthermore, its resonance frequency does not depend on
the transmission line length as is the case for the half-wave oscillator. For in-
stance, the transmission line length is 3.6mm for a 20GHz oscillator when fixed
to λ/2 [61]. Since the transmission line is relatively short, only two negative-gm
cells are placed at both ends of the line. In [61], the negative-gm cell consists of
cross-coupled NFETs and PFETs and a single inductor is placed between the dif-
ferential signals at each end of the line (i.e., a total of two inductors). In [62], the
negative-gm cell consists of cross-coupled NFETs and two inductors are placed
at each end connected to the supply voltage. The oscillator frequency is given
by [62]:

f =
1

2π
Z0

Lld
tan(π −β l) , (4.24)

where Z0 is the transmission line characteristic impedance, Lld is the inductance of
the load, β is the transmission line phase constant, and l is the transmission line
length.

In [62], multiple standing wave oscillators with inductive loads are coupled form-
ing a clock distribution grid (Fig.4.20b). After power up, all the oscillators are syn-
chronized due to the inductive coupling between adjacent oscillators. The clock
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frequency is also given by (4.24). However, in this case mutual inductance must
be taken into account, and thus Lld equals (1 + 2k)L where L is the oscillator load
inductance and k = M/L with M being the mutual inductance.

Another standing wave oscillator topology is presented in [63]. In this oscillator,
the differential transmission line is only terminated in one end, whereas a negative-
gm cell is placed in the other end resulting in a λ/4 standing wave oscillator. The
voltage amplitude is position-dependent having a maximum value at the end where
the negative-gm cell is located and being reduced sinusoidally along the transmission
line until it becomes 0 at the other end where the short is located. To remedy the
voltage amplitude reduction along the transmission line, a tapered line is used instead
of a uniform line resulting in lower phase noise.

In [64], a circular standing wave oscillator is introduced (Fig.4.21). In this stand-
ing wave oscillator the lines are not shorted, but they are circularly connected. Two
negative-gm cells are placed in two opposite sides. The circular standing wave oscil-
lator requires that voltage V (φ ) for any angle φ be equal to V (φ + 2π). Therefore,
the length l of the circumference is an integer multiple n of the wavelength λ of the
mode. To suppress the even mode, the differential nodes from the two negative-gm



128 N. Tzartzanis

−gm

−gm

Fig. 4.21. Circular standing wave oscillator. Reproduced with permission from [64], c©2004
IEEE

cells are connected as shown in Fig.4.21. To be able to make these connections,
the circular differential transmission line is formed so that the two negative-gm cells
are physically placed close to each other. The voltage amplitude is also position-
dependent with the negative-gm cell nodes having the highest amplitude.

4.4.3 Inductor-Based Resonant Global Clock Distribution

Resonant global clock distribution was primarily used as a means to significantly
reduce power dissipation through adiabatic charging and energy recovery [57].
The resonantly generated clocks power both the clock network as well as circuit
nodes. A differential LC clock generator and driver [65] is used to produce two
non-overlapping clock phases. The active components of the clock generator are
integrated in the same chip with the rest of the circuit. Furthermore, in [66] the active
components are distributed along the clock grid forming a distributed clock network.
However, the two inductors are placed off chip [66–68]: First, the Q of on-chip in-
ductors was too small for these CMOS processes. Second, the inductors would be too
large to integrate since their size is inversely proportional to the operating frequency.
As CMOS processes advanced, both the inductor Q increased and clock frequency
reached the GHz-range, allowing for on-chip inductor integration. In [69], an adia-
batic logic family is demonstrated to operate from a fully-integrated resonant clock
driver.

Other LC-based clocking methods target power reduction only for the clock net-
work (not data nodes) as well as low clock jitter and skew. Figure 4.22 illustrates
one of those methods [70] which is based on conventional clock distribution. Specif-
ically, the clock network is divided into sectors with a clock buffer chain driving each
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sector. One such sector is shown in Fig.4.22. The clock sector consists of a global
H-tree with the ends of the tree driving a global grid. Local clock buffers connect to
the clock grid and deliver the clock to local blocks. To enhance clock distribution,
spiral inductors are attached to certain nodes in the H-tree. Decoupling capacitors are
placed in series to the inductors so that one port of the inductors connects to the clock
tree whereas the other port connects to the decoupling capacitors. Figure 4.23 shows
a simplified lumped circuit for a clock sector [70]. Capacitors Cclk and Cdec indicate
the clock and decoupling capacitances respectively, L indicates the spiral inductance,
and Rclk and Rind represent loads in the clock network and the inductor parasitic re-
sistance respectively. The decoupling capacitance must be an order of magnitude
larger than the clock capacitance so that the corresponding pole introduced does not

Clock sector
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Inductor

Decoupling
capacitor

Clock
tree

Clock
grid

Fig. 4.22. Global clock distribution with resonant load. Reproduced with permission from
[70], c©2005 IEEE

RindL
clock sector buffer

Rclk

Cclk

Cdec

Fig. 4.23. Lumped circuit model of the clock sector. Reproduced with permission from [70],
c©2005 IEEE
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interfere with the resonant frequency of this circuit. When the clock frequency is
approximately equal to the resonant frequency (i.e., 1/

(
2π

√
LCclk
)
), the inductive

reactance of the spiral inductor cancels the capacitive reactance of the clock load
resulting in significantly lower power dissipation compared to an equivalent con-
ventional clock network [70]. In addition to the energy being recovered and re-used
through the LC tank, the sector clock buffers do not need to be as strong as in the con-
ventional case. The reduction of clock latency in the distribution network combined
with the resonance causes both clock skew and jitter to be reduced as well. To fur-
ther demonstrate the viability of this method, the conventional clock distribution of
a commercial microprocessor was modified to implement this clocking method [71].
Specifically, a thick top metal layer was added to accommodate the spiral inductors
without affecting the existing microprocessor design.

Another LC-based clock distribution (Fig.4.24) uses differential clocks [72]. The
clock network consists of H-trees that drive a global clock grid similar to the previous
method. The clock network is divided into tiles. Each tile contains an H-tree driven
by a differential LC-oscillator formed by a negative-gm cell and a spiral inductor.
Each tile contains varactors to adjust its resonance frequency. A single buffer is used
for clock injection from an external clock. Local clock buffers tap into the clock grid.
These buffers convert the differential sinusoidal clocks into a single-ended square
clock that drives local blocks. As shown in [72], both clock power and jitter are
reduced by an order of magnitude compared to an equivalent conventional clock
distribution network.

In [73], a central LC-based clock generator [65] delivers differential clocks that
are distributed through a clock grid. The active devices of the clock generator are

–gm –gm

–gm –gm

global clock gridH-tree

Injection locking

Fig. 4.24. Distributed differential global clock network. Reproduced with permission from
[72], c©2006 IEEE
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distributed in the clock grid similar to [66]. Latches that can operate from sinu-
soidal clocks are used as clocked storage elements similar to [68]. In [74], a hybrid
injection-locked oscillator and LC-based buffer is used to drive the clock load. This
technique can perform an interesting trade-off between input clock and clock buffer
jitter.

4.5 Conclusion

In this chapter both the implementation and use of monolithic inductance were dis-
cussed. Most common monolithic inductors are spiral inductors and transmission
lines. In addition to the implementation of spiral inductors and transmission lines,
their accurate modeling is of utmost importance to circuit designers. A narrowband
model for spiral inductors was presented. Modeling of transmission lines is simpler
than spiral inductors. Their characteristics (i.e., inductance, capacitance, resistance,
and conductance) are proportional to their length and can be modeled with simpler
extraction methods.

The second part of the chapter focused on clock generation. LC VCOs are com-
monly used for high-speed wireless, wireline, and optical communications due to
their low phase noise, small phase deviation, and low-power dissipation compared
to ring oscillators. LC VCOs can efficiently generate up to four phases. Although
in theory, more LC tanks can be coupled to generate more than four phases, this is
not practically possible due to the physical arrangement of the LC tanks, coupling
connections between the LC tanks, and potentially asymmetric clock phase routing
to their destination. For all these reasons, distributed oscillators become the primary
choice for generating more than four phases.

The third part of the chapter covered resonant-based methods to improve global
clock distribution. Chapter 2 has demonstrated that conventional global clock dis-
tribution methods are more and more challenged to meet clock skew and jitter re-
quirements for increasing clock load and clock frequency. Moreover, a large portion
of total power dissipation is typically attributed to clock networks. Resonant-based
methods can remedy these problems. Transmission-line-based methods such as ro-
tary traveling-wave oscillator arrays and standing wave grids were presented. Fur-
thermore, transmission lines can be efficient for transmitting high-frequency clocks
without buffering as shown in [75]. The section concludes with LC-based global
clock grids which are extensions of conventional global grids with the addition of
spiral inductors.
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Phase Noise and Jitter

Scott Meninger

Cavium Networks

5.1 Introduction

In this chapter we examine variations that occur in the edge locations of the clock
signal in a synchronous system. These edge variations are referred to in the time
domain as jitter and in the frequency domain as phase noise. We also describe the
various mechanisms that can cause these non-idealities and present techniques to
analyze their individual contributions to total jitter. We begin by defining precisely
what we mean by jitter and relate the various types of jitter to one another. Next, we
explore the relationship between the time domain representation of timing error as
jitter and the frequency domain representation of timing error as phase noise. The
fundamental relationship between phase jitter (also denoted as absolute jitter) and
phase noise will provide a useful basis for analysis of all types of jitter via simple
frequency domain filter functions.

Building on this frequency domain foundation, we explore the jitter behavior
of the phase locked loop (PLL) system that is most often used to generate on-chip
clock signals. We utilize a control system block diagram model [1] that allows for
simple analysis to determine how the PLL dynamics filter the noise sources internal
to the PLL (intrinsic noise) as well as how the PLL reacts to noise sources external
to the PLL (extrinsic noise).

We then use this model to examine jitter performance and reference clock speci-
fication for the PLLs used by two different types of systems. The first is a micropro-
cessor core clock PLL, where the key requirement is that the minimum clock period
produced by the PLL does not violate a minimum cycle time requirement. The sec-
ond system we examine is a serial link that has the clock embedded within the data
stream and uses PLLs on both ends of the link to recover the clock local to their
respective systems.

The overall goal for this chapter is to give the reader an understanding of the
relationship between phase noise and jitter in PLL based systems and to see that by
using phase noise as a basis for calculation, system jitter analysis can be performed
using simple frequency domain filtering techniques.

T. Xanthopoulos (ed.), Clocking in Modern VLSI Systems, Integrated Circuits and Systems, 139
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5.2 Timing Error in the Time Domain: Jitter

The first task we face is to define what we mean by jitter. To do so, we use terms
consistent with industry standards [2] and notation proposed by a high speed serial
data (PCI Express) jitter subcommittee [3, 4].

Jitter can be caused by many different processes. Duty cycle distortion of a wave-
form can be thought of as a source of jitter, if both edges of the clock are used in the
system. Power supply noise may induce jitter in a PLL either directly, by moving
the edge crossing of the PLL’s output signal by changing the delay through a buffer,
or indirectly, by changing the oscillator control voltage inside the PLL and thereby
changing the PLL output frequency. We will focus our discussion in this chapter
on jitter mechanisms that are caused by noise processes within circuit elements that
make up the PLL.

Ideal Reference

T

Phase Jitter

Signal

T0 T1 T2

T

n=0,1,2, ....

Phase jitter=Φ[n]=tn–nT

t0 t1 t2

Period jitter=Φ¢ [n]=(tn–tn–1)–T=Tn–T=Φ[n]–Φ[n–1]

Cycle to cycle jitter=Φ² [n]=(tn–tn–1)–(tn–1–tn–2)=Tn–Tn–1=Φ¢ [n]–Φ¢ [n–1]

0

Fig. 5.1. Jitter definitions

Figure 5.1 visually presents the definitions that we will use for the three different
types of jitter commonly discussed in the literature [4]. These are phase jitter, period
jitter, and cycle-to-cycle (c2c) jitter. In all cases, we use n in the standard way, namely
as an index to indicate the edge sample (tn) or period sample (Tn) under discussion.
In general, jitter is described by statistical properties (rms or peak-to-peak values),
which indicate that a large number of samples have been aggregated in the analysis.
We will discuss the nature of jitter distributions in Sect. 5.6.
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5.2.1 Phase Jitter

Phase jitter, or absolute jitter (sometimes also referred to as time interval error (TIE))
is defined as the difference between the edges of the clock signal being measured and
the ideal locations where the edges would occur in the absence of jitter. In Fig.5.1,
we set up an ideal reference that allows us to determine the absolute jitter as the dif-
ference in edge locations between our signal and the ideal reference. We can express
this phase jitter as:

Φ [n] = tn −nT (5.1)

where tn is the nth signal edge and nT is the nth period of the ideal reference. It is
apparent that nT corresponds to the ideal nth edge location, so Eq. (5.1) is consistent
with our definition.

Phase jitter is the jitter type of interest in systems where absolute time differ-
ence between clock and signal matters. For example, in a serial data link, where
the clock is recovered from the data, it is important to know the difference between
the data edge and the recovered clock edge since data is being captured by the re-
covered clock. Phase jitter is, therefore, the jitter metric appropriate for serial data
applications.

5.2.2 Period Jitter

Period jitter is defined as the difference between a given period of the signal, and the
average period of the signal. In a synchronous system with no frequency offset, such
as a PLL, the average period will be the same as the ideal period, T . The expression
for period jitter is shown in Fig.5.1 to be:

Φ ′[n] = (tn − tn−1)−T = Tn −T (5.2)

which can also be expressed as:

Φ ′[n] = Φ [n]−Φ [n−1] (5.3)

Equation (5.3) explains why the calculus “tick” notation is used to denote period jit-
ter; namely, period jitter is simply the first difference of phase jitter. The importance
of this relationship will become apparent in the analysis portion of this chapter, where
the difference function will be utilized in the frequency domain as a filter function.

Period jitter is defined as the first difference of phase jitter, so we can say that
phase jitter is a more fundamental jitter type. We also note that because period jitter
can be derived from phase jitter through a difference operation, period jitter is a more
high frequency phenomenon than phase jitter.1

1 Finally, note that we lose some information in going from phase jitter to period jitter. That
is to say that while we can construct a period jitter sequence from a phase jitter sequence,
we cannot do the opposite because the starting phase is unknown. This is equivalent to
saying that while we can differentiate a function without loss of information, we cannot
integrate absolutely without knowing the initial condition (or offset).
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Period jitter is the type of jitter of concern within a digital system where the min-
imum (or maximum) time period is of importance. For example, a microprocessor
has a minimum cycle time that is allowed before its critical path undergoes a timing
violation. In this case, knowledge of period jitter is critical since it will determine
how much of the overall system timing budget will be occupied by the clock source.

5.2.3 Cycle-to-Cycle Jitter

Cycle-to-cycle (c2c) jitter is defined as the difference between successive periods of
a signal. It is expressed as:

Φ ′′[n] = Tn −Tn−1 (5.4)

which can also be written as:

Φ ′′[n] = Φ ′[n]−Φ ′[n−1] (5.5)

Just as period jitter is the first difference of phase jitter, so c2c jitter is the first
difference of period jitter, or the second difference of phase jitter. Cycle-to-cycle
jitter is, therefore, a very high frequency phenomenon. Once again, some information
is lost in going from period jitter to c2c jitter, as the difference function removes any
offset information.

5.3 Timing Error in the Frequency Domain: Phase Noise

The physical mechanisms that cause random jitter are noise processes, and these
are best described and analyzed in the frequency domain. The frequency domain
equivalent of jitter is phase noise.

1
T

f
0 1

T

f
0

Ideal Reference

phase noise

|Sref(f)|
2 |Ssig(f )|

2

Signal

Fig. 5.2. Phase noise

Figure 5.2 depicts the spectra associated with the waveforms of Fig.5.1. |Sref( f )|2
is the spectrum of the ideal reference, while |Ssig( f )|2 is the spectrum of the signal2.

2 Sref( f ) and Ssig( f ) are the power spectral densities of the time-domain signals sref(t) and
ssig(t), respectively. [26]
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The ideal reference appears as an impulse at its frequency, 1/T .3 The signal spec-
trum, by contrast, has some degree of spreading over frequency. Phase noise is the
term used to represent this spectral spreading. On average, the signal frequency is
equal to 1/T .4 However, the instantaneous deviations from ideal behavior that ap-
pear as jitter in the time domain translate to phase noise in the frequency domain.
The units of phase noise are dBc/Hz, and it represents the amount of noise power
present in a 1 Hz bandwidth of spectrum.

1
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f
0

phase noise

f
01

T

f
0

*=frequency
domain

phase noisecarrier
carrier

L(f)

Fig. 5.3. Phase noise decomposition into carrier and L(f)

Since the system operates around a fundamental frequency 1/T , it is possible
to separate the noise spectrum from the carrier, as depicted in Fig.5.3. The phase
noise spectrum is denoted as L( f ), which is centered around DC. Because L( f ) is
symmetric, it is general practice to use a single-sided version of L( f ), wherein L( f )
is plotted only for positive frequencies.

5.3.1 Relationship Between Phase Noise and Jitter

In [5], arguments are made using Parceval’s theorem to show the equivalence be-
tween the energy in the time domain jitter and frequency domain phase noise repre-
sentations. We will simply present the result as:

σ2
Φ =
(

T
2π

)2∫ ∞

−∞
L( f )d f (5.6)

Equation (5.6) is a powerful relationship. It states that the variance of the phase
jitter of a signal is the integral over frequency of its phase noise spectrum, scaled
by a factor that simply relates how much time corresponds to 2π radians of phase.
Under the assumption that the signal jitter statistics can be described by a normal
distribution, which is a good assumption under most PLL analysis cases5, we can

3 We have not plotted the impulses appearing at odd harmonics of the fundamental frequency
caused by the square-wave nature of the ideal reference for simplicity.

4 In the case of a PLL, which is the focus of our discussion, it is a fundamental property that
the average output frequency is equal to the ideal output frequency.

5 It is a property of systems with large numbers of independent noise processes that the
overall noise distribution of the system will appear normal as described by the Central
Limit Theorem [6].
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directly calculate the rms and peak-to-peak values of phase jitter if we know the
phase noise spectrum, L( f ). The rms value of the phase noise is just the square root
of the variance given by Eq. (5.6). The peak-to-peak value is determined by how
many standard deviations are required for a particular application. As we will show
in Sect. 5.4.11, period jitter and cycle-to-cycle jitter may also be determined from
L( f ) by applying the appropriate filter functions.

5.4 Frequency Domain Modeling of PLLs

Now that we have established the relationship between phase noise and phase jitter,
we look at the phase noise properties of PLLs.

5.4.1 PLL Phase Noise

Charge-pump Loop Filter VCO

Divider

Ref Clock

f

incp2 Φnvco2

ff

Φnref 2

L(f)

f
fo

f

Φndiv2

Phase Detector

–

+

Fig. 5.4. PLL block diagram with noise sources included

Figure 5.4 presents a block diagram of a typical charge-pump type PLL along
with the noise sources associated with each of the circuit elements that comprise
the PLL. These noise sources are all contributors to the overall phase noise output of
the PLL. Φn2

ref represents reference clock phase noise, in2
cp is a combination of phase

detector, charge-pump and loop filter noise current, Φn2
vco is the output referred VCO

phase noise, and Φn2
div is the feedback divider phase noise. The PLL closed loop

response appears as a low-pass filter to charge-pump, loop filter, feedback divider,
phase detector, and reference clock phase noise, and as a high-pass filter to VCO
phase noise [1]. The overall PLL phase noise, L( f ), is the sum of all of the individual
filtered components and has a low-pass nature, as depicted in Fig.5.4.

We divide the noise sources into two categories, intrinsic noise and extrinsic
noise [7]. Intrinsic noise is associated with the components necessary to build the
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PLL, namely the charge-pump, loop filter, VCO, feedback divider, and phase detec-
tor. Extrinsic noise is the noise that is processed by the PLL and is present either
at the PLL input (i.e., the reference clock) or is due to undesired non-ideal system
characteristics (such as poor supply noise rejection or duty cycle distortion). We will
deal solely with reference clock noise as an extrinsic noise source in the analyses
presented in this chapter. It is useful to go through the different noise sources in turn
to develop a feel for how they impact the PLL output phase noise.

5.4.2 PLL Intrinsic Noise: VCO

VCO phase noise analysis is a rich field of research, with many different papers
written on how to analyze the contributions of individual transistors to VCO output
phase noise. Several interesting methods for VCO phase noise analysis are presented
in [8–10], and [11] and [12] are journal paper collections with more references.

VCO

f

s
Kv

Output ReferredInput Referred

Φnvco2 Φnvco2

f

–20dB/dec

Fig. 5.5. VCO noise modeling

VCO noise behavior can be summarized by a few key characteristics. First, the
VCO takes as its input a voltage6 and outputs a specific frequency. The gain through
the VCO will be denoted by Kv and has units of Hz/V or (Radians/s)/V. From the
perspective of a PLL, which locks based on phase, the VCO transfer function from
input to output looks like an ideal integrator, since phase is the integration of fre-
quency. Second, while the VCO phase noise profile changes slope across frequency,
it is generally a good assumption that in the PLL region of interest, namely around
the PLL closed loop bandwidth, the VCO phase noise rolls off at −20 dB/dec.

6 There are also current controlled oscillators (CCOs) and digitally controlled oscillators
(DCOs), which have similar relationships between the control node or bus and VCO output
phase. We will use VCOs in our analysis as they are still the most common oscillator type
in use.
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Since the VCO is modeled as an integrator, and in the frequency range of interest
its phase noise rolls off at −20 dB/dec, its phase noise can be input referred as a
white noise source that is then integrated, as depicted in Fig.5.5. This is a useful
point to keep in mind when analyzing noise on the VCO control voltage input due to
other sources, such as, for example, the loop filter. If the additional noise is white in
the frequency range of interest, it is indistinguishable from the input referred VCO
noise.

5.4.3 PLL Intrinsic Noise: Feedback Divider

As Fig.5.4 shows, the feedback divider is not easily distinguishable from the refer-
ence clock input in the block diagram. Fortunately, divider phase noise is generally
very low, well below other system components that contribute phase noise in the
same frequency band [12]. The nature of the divider phase noise will depend on its
design. For example, a synchronous counter will typically exhibit less phase noise
than an asynchronous cascade of divide-by stages because the synchronous design
will have its output edge set directly by the VCO, whereas the asynchronous design
will have its output edge set by a cascade of edges, each of which may contribute
some jitter.

The challenge in modern PLLs, which operate in the multi-GHz range, is that it
is difficult to create high speed synchronous dividers that do not consume significant
power while operating. Therefore, lower power asynchronous dividers are very pop-
ular in high speed PLLs [12]. As phase noise requirements become more stringent,
designers are developing techniques to re-synchronize the divider output to the VCO,
effectively resetting its phase noise/jitter, and thereby minimizing its impact [13, 14].

In our analysis, we will assume that divider phase noise has a white profile and is
below the reference clock phase noise magnitude. In such a case, we can approximate
the divider phase noise as being zero.

5.4.4 PLL Intrinsic Noise: Phase Detector

Phase detectors (PD) are difficult to analyze for several reasons. First, they can be
very non-linear in nature7[14]. The non-linearity is present, for example, in tri-state
phase/frequency detectors (PFDs)8 like the one depicted in Fig.5.6. Tri-state PFDs
are of popular use in the charge-pump PLL, which is among the most popular PLL
architectures in use. The PFD in Fig.5.6 compares the reference clock (REF) phase to
the feedback divider (DIV) phase and creates output pulses UP or DOWN that are
used to steer positive (UP) or negative (DOWN) current onto a capacitor. The more
phase difference between the REF and DIV signals, the longer the current sources
are on, and the more resultant positive charge Qu or negative charge Qd is integrated
onto the capacitor.

7 Which, of course, makes their inclusion in a linear model difficult.
8 Tri-state PFDs offer the benefit that, in addition to phase detection, frequency detection

is obtained “for free” meaning that harmonic false locking problems associated with pure
phase detectors are eliminated [12].
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Fig. 5.6. Tri-state phase-frequency detector (PFD)

Under locked conditions, this PFD operates with very small phase differences
between REF and DIV and, therefore, must produce either very short duration output
pulses, or no pulses at all. Any time digital circuitry is asked to operate with narrow
pulse inputs and produce narrow pulse outputs, there will be a nonlinearity present
in the transfer from input pulse width to output pulse width. The simplest way to
think of this is that finite edge rates in any real system will impact the pulse dura-
tion, and matching input and output edge rates perfectly is not practical. In Fig.5.6,
we show one possible steady-state locked condition, where both flip-flops fire for
a short duration and produce charge packets that cancel. It is apparent that this is a
situation ripe with non-linear possibilities, since either REF or DIV may occur first,
and any edge-rate differences or delay differences in the reset path will allow the
ordering and length of pulses to swap as the PLL feedback action seeks to correct
any instantaneous errors.

There are linearization techniques to improve performance that mainly center
around making the tri-state PFD operate with forced finite output pulse durations
[15]. One possible configuration of this linearization technique is shown in Fig.5.7
and results in the input phases being skewed apart enough so that the PFD operates
linearly with respect to the input phase error. In this case, the cell that delays the reset
signal to the REF flip-flop causes the Qu charge packet to occur later in time than the
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Fig. 5.7. Modified tri-state phase-frequency detector (PFD)

Qd packet. This creates a constant (within noise limitations) positive charge packet
Qu that acts as a reference charge. REF is constrained to always occur after DIV, and
no short pulses are generated. The system, therefore, behaves much more linearly
under locked conditions than the PFD of Fig.5.6. The tradeoff is that, by having
the PFD on longer, any noise associated with charge packet generation has a larger
impact on overall PLL noise. In the case of the tri-state PFD, it is the charge-pump,
which the PFD controls, that is the noise source of interest. This will be made clear
in the next section.9

Generally speaking, the PFD itself is not considered as a noise source in phase
noise analysis. This is because the phase comparison circuitry is synchronous with
respect to the reference clock and feedback divider output. Any nonlinear behavior
is best explored with behavioral simulators such as MATLAB or Cppsim [16]. It is
mainly the way in which the PFD controls the charge-pump outputs that PLL noise is
affected. Therefore, it is not uncommon to lump the charge-pump and PFD together
for analysis.

5.4.5 PLL Intrinsic Noise: Charge Pump

The charge pump is used as a transducer that takes the phase difference informa-
tion encoded in the PFD output pulse width and translates it into a correction signal

9 It is also interesting to note that the tri-state PFD really has more than three states since
there are two bits controlling the output. The “tri-state” name really comes into play when
the charge-pump is considered. When we do this, we see that it is possible to have either a
net negative charge, a net positive charge, or no charge integrated onto the loop filter (hence
three states).
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Fig. 5.9. Charge-pump operation

by integrating charge onto the loop filter capacitance. Figure 5.8 depicts a typical
charge-pump used by a PLL. The UP and DOWN signals produced by the PFD
close switches that cause either a positive or negative current to be routed to a loop
filter, which in this case is represented by a simple capacitor.

Figure 5.9 shows the charge-pump of Fig.5.8 in operation when controlled by
a tri-state PFD under conditions where the PLL is not yet locked, and the charge-
pump is on. The phase detector output turns on either a positive or negative current
source that is integrated onto a loop filter capacitor. The corresponding correction
charge, Qu or Qd , moves the VCO control voltage either down or up, depending on
whether the divider phase leads or lags the reference clock. Thermal noise generated
within the current sources supplying the charge appear in Qu or Qd and are depicted
in Fig.5.9 as the variations in the magnitude of +Icp and −Icp. The noise current
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results in a noise voltage, which then produces output phase noise by modulating the
VCO. It is apparent from the figure that the longer the charge-pump currents are on
in steady-state, the more noise they contribute.

An offset tri-state PFD and charge-pump combination, such as the one shown
in Fig.5.7, produces a steady-state ripple on the control voltage due to the Qd and
Qu charge packets continuously lowering and then raising the VCO control voltage
back to its starting point when the PLL is locked. This periodic modulation of the
VCO control voltage occurs at the reference frequency, and appears in the VCO
output spectrum as a spur. This spur contains noise energy and, therefore, adds to
PLL output jitter.

Sample-and-hold type loop filters can be used to dramatically reduce the spur by
adding a sampling network to a tri-state PFD and charge-pump based PLL [14, 17].
The idea is to construct a circuit that samples the loop filter voltage after the up
and down pulses have completed. Under a locked condition, the net excursion of the
voltage due to up and down currents will be zero except for any charge-pump noise.
The sampled voltage is, therefore, theoretically spur-free when presented to the VCO
control input. Practical limitations in implementing the sample and hold circuitry will
most likely result in reference spur suppression on the order of 20–40 dB, which is
still a significant improvement.

Charge-pump noise itself is a device current noise. In MOS designs, it will, there-
fore, have a 1/ f component and a thermal noise component.

5.4.6 PLL Intrinsic Noise: Loop Filter

Loop filters may be implemented in many different ways. Active or passive loop
filters have different tradeoffs, as do split loop filters employed for faster acquisition
of lock. The reader is referred to [11] and [12] for details on various loop filter
structures.

The simplest loop filter is a totally passive RC network. The resistor elements
will generate thermal noise that is filtered by the capacitor(s). Figure 5.10 depicts
such a filter for use in a charge-pump PLL. The VCO is included in the figure for
context.

C2

C1

R1

Current
From Charge-pump

+/–Icp

VCO

Vcontrol
PLL Output

Fig. 5.10. Typical charge-pump PLL passive RC filter
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Capacitor C1 is large and acts as an integrator for the charge-pump current.
R1 adds a zero to the closed loop PLL response for stability reasons, and C2 is a
small capacitor that acts to add another pole to filter the control voltage ripple in-
troduced by adding R1. R1 noise will appear directly at the VCO input and, there-
fore, should be considered when designing the PLL. Recall from the discussion of
VCO noise modeling that the input referred phase noise profile of the VCO in the
frequency range of interest appears white. The loop filter thermal noise power spec-
tral density (PSD) will also be a white voltage source of magnitude 4kT R2 and is
filtered by a single pole low-pass filter due to R1 and the series combination of
C1 and C2. It is, therefore, necessary to do a quick check of the resistor thermal
noise and compare it to the VCO input referred noise and make sure that the over-
all phase noise is acceptable. Note that as the VCO is tuned to different voltages,
its control voltage must change accordingly. Therefore, if the current sources in-
ternal to the charge-pump have finite output resistance, any change in control volt-
age could modulate the value of +Icp or −Icp and, thereby, change PLL behavior.
In cases where exact control of Icp is important, an active loop filter may be em-
ployed. In an active loop filter implementation, a feedback op-amp is used to keep
the charge-pump output node at some desired voltage while the loop filter output
changes to the value that is required by the VCO. A downside to such an architecture
is that the op-amp becomes another noise generator appearing at the VCO input in
the frequency range where the VCO input referred noise should be dominant. See
[14] for an example of an active loop filter implementation along with the relevant
analysis.

In the analyses presented in this chapter, we will combine the loop filter noise
with the charge-pump noise for simplicity, since they can be both approximated by
white noise sources over a large frequency range, and they add in that range.

5.4.7 PLL Extrinsic Noise: Reference Clock

We finally come to the first extrinsic noise source of interest, namely reference clock
phase noise. Reference clock phase noise is a key design parameter in PLL based
systems, yet is often not known a-priori by the PLL designer, since the reference
clock is picked by the system designer (the PLL end user). As we will show in
Sect. 5.4.10, the PLL filters the reference clock phase noise as it proceeds to the
PLL output. Therefore, the PLL filters the reference clock jitter, potentially reducing
it significantly.10

The key concept to keep in mind is that filter analysis is much more easily per-
formed in the frequency domain, so it is necessary that we know the frequency re-
sponse of the PLL as well as the phase noise profile of the reference clock to perform
this kind of analysis. Simply specifying an rms or peak-to-peak jitter number is not
enough, since it does not tell us anything about the shape of the noise content of the
reference clock, and, therefore, we can not predict precisely how the PLL will filter
the noise.
10 One PLL application is to be a so-called “clean-up” or “jitter filter” PLL, where a jittery

system clock is passed through a PLL solely for the purpose of jitter reduction.
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Reference clock phase noise can have different properties, depending on what the
clock source is. For example, a crystal oscillator has a complex low frequency (sub
kHz) response that levels out at higher frequencies to a white noise floor profile over
the frequency range of interest to the PLL designer. The reference clock phase noise
of a crystal can, therefore, often be approximated as white for analysis purposes.

Alternatively, the reference clock may be supplied by a PLL instead of a crys-
tal oscillator. In this case, the PLL generating the reference clock will have its own
intrinsic noise and filter response11. Knowledge of the frequency response and in-
trinsic phase noise of the clock generator PLL is, therefore, necessary for such a
configuration.

5.4.8 PLL Extrinsic Noise: Supply Noise

We mention here that supply noise also impacts overall PLL performance. In particu-
lar, supply noise coupling to the VCO control voltage node will directly modulate the
VCO output phase. Because this noise appears inside the PLL loop, it has the same
impact as an intrinsic noise source and, therefore, must be minimized. The transfer
of supply noise to the VCO input is highly dependent on VCO and loop filter archi-
tecture, so we will ignore supply noise in our analysis, assuming that the design has
been constructed to minimize its impact.

5.4.9 PLL Extrinsic Noise: Buffer Delay and Noise

Supply noise outside the loop also impacts overall PLL noise performance. For
example, the PLL output may be buffered before it is distributed throughout the chip
to its various loads. Supply noise will impact the switching point of these buffers and
modulate the buffer delay, adding to jitter. One can argue that this noise is outside
the context of the PLL and, therefore, a different problem, but for the system clock
designer, it is a phenomenon that has to be considered. In general, this type of added
noise scales with the total delay through the buffers. Simply put, the more delay
you create in initially buffering the clock, the more buffer jitter you will have. This
statement has been quantified to first order in Eq. (2.9).

In our analysis, we focus on the PLL itself and, therefore, don’t account for
buffer phase noise/jitter. In a well designed system, buffer induced jitter will be very
small compared to PLL jitter, especially in the context of phase jitter12. Section 6.8,
presents an analytical model for clock buffer supply noise-induced jitter. The model-
ing focuses on period jitter (Φ ′[n]) validating the claim that the effect on phase jitter
is limited.

11 The clock generator PLL will also require its own reference, meaning there is probably a
crystal oscillator somewhere in the system.

12 This is because buffer jitter only impacts the clock edge on which the noise event occurs,
whereas intrinsic noise sources in a PLL affect not only the current edge, but all edges
afterward, since the VCO integrates noise at its input.
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Fig. 5.11. PLL noise analysis model proposed in [1]

5.4.10 PLL Phase Noise Filtering

We now explore how the PLL filters noise. We use as our basis a simplified version
of the noise model proposed in [1], which is depicted in Fig.5.11. The individual
circuit blocks are replaced by their frequency domain models. The feedback divider
is represented by its phase gain, which is 1/N, where N is the PLL multiplier. The
charge-pump and PFD are combined into a single block and comprise a gain term
(αIcp)/(2π), where α is the charge-pump phase gain (α = 1 for a tri-state PFD [1]),
and Icp is the charge-pump current magnitude. The loop filter is represented by its
Laplace transform, H(s), and its noise has been lumped together with the charge-
pump noise. The VCO is depicted as an integrator with gain Kv, and its phase noise
is output referred.

In [1], a closed loop function G(s) is constructed from the loop gain, A(s), where:

A(s) =
αIcpKvH(s)

2πNs
(5.7)

and

G(s) =
A(s)

1+A(s)
(5.8)

G(s) has a low-pass nature with a bandwidth of fo Hz and represents the closed
loop dynamics of the PLL. Also, in [1], the block diagram is manipulated such that
the transfer functions from each noise source to the PLL output are calculated in
terms of G(s) and the individual gain terms comprising A(s). This is depicted in
Fig.5.1213. We use the notation that the overall phase noise profile L( f ) is composed
of the sum of the intrinsic phase noise Lint( f ) and the extrinsic phase noise Lext( f ).

13 As is noted in Fig.5.12, the transfer functions must be squared when processing the noise
PSDs.
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There are two key observations that we make from Fig.5.12. First, all intrinsic
phase noise sources are low-pass filtered by the PLL with the exception of VCO
phase noise, which is high-pass filtered. Second, the extrinsic reference clock phase
noise is low-pass filtered by the PLL with a noise gain of N2. The phase noise transfer
for the reference clock noise power is

Lext( f ) = Φn2
ref( f )

(
N2|G( f )|2

)
(5.9)

where we have substituted s = j2π f in G(s). We can also calculate the intrinsic phase
noise as

Lint( f ) = N2|G( f )|2Φn2
div( f )+

(
2πN
αIcp

)2

|G( f )|2in2
cp( f )+ |1−G( f )|2Φn2

vco( f )

(5.10)
The total phase noise is just the linear sum of the noise powers14 and is expressed as

L( f ) = Lint( f )+Lext( f ) (5.11)

14 The linear sum assumes that there is no correlation between the various noise sources,
which is reasonable.
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Once we have phase noise, we can convert to rms jitter using Eqs. (5.6) and (5.11):

σ2
Φ =
(

T
2π

)2 ∞∫

−∞

(Lint( f )+Lext( f ))d f (5.12)

where, to be consistent with earlier discussions, T is the PLL output period. Since
integration is a linear operation, we can separate the components in Eq. (5.12) and
express the total jitter variance as

σ2
Φ = σ2

Φ ,int +σ2
Φ ,ext (5.13)

The rms PLL phase jitter is just the square root of the variance15:

σΦ =
√

σ2
Φ ,int +σ2

Φ ,ext (5.14)

Using Eq. (5.14), the designer can calculate the rms phase jitter resulting from
his or her particular PLL design from the intrinsic and extrinsic phase noise sources.
While intrinsic noise is within the control of the PLL designer, extrinsic reference
clock induced phase noise is determined by the system designer’s choice of refer-
ence clock. It is, therefore, necessary to properly specify the limitations on the ref-
erence clock so that total PLL output jitter is within the requirements of the desired
application.

Some Intuition on Reference Clock Phase Noise (or Jitter) Filtering

As mentioned above, it is often necessary for the PLL designer to specify how much
extrinsic noise is allowed at the PLL input for the PLL output to meet a required
specification. Historically, this has been done by specifying a jitter requirement for
the reference clock. The preceding analysis in this chapter has shown that specifying
a jitter number alone does not really address the problem. The reason is that jitter,
which is the result of noise processes, is filtered by the PLL according to the PLL
closed loop response and reference clock phase noise profile. Jitter is the integra-
tion of this noise over frequency. So, specifying a scalar jitter quantity as an input
specification does not allow us to determine how the PLL will filter the reference
clock phase noise. For example, if the reference clock jitter has a phase noise profile
that is entirely within the PLL bandwidth, the PLL does not filter it at all and merely
passes the reference clock jitter through. If, on the other hand, the reference clock jit-
ter has a phase noise profile with frequency components outside the PLL bandwidth,
then the high frequency components are filtered by the PLL, and the reference clock
contribution to total PLL jitter is reduced. Finally, there is the case where the refer-
ence clock is generated by a PLL with a bandwidth very similar to the PLL under

15 Note that the intrinsic noise itself may be expanded and that σΦ ,int =
√

σ2
vco +σ2

div +σ2
cp.
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analysis. If both PLLs have peaking in their respective G( f )’s, then reference clock
jitter (the output from the first PLL) may actually be amplified by the second PLL!16

The PLL output jitter variance component due to the reference clock phase noise
can be found using Eqs. (5.6) and (5.9) and is expressed as:

σ2
Φ ,ext =

(
T
2π

)2∫ ∞

−∞
N2Φn2

ref( f )|G( f )|2d f (5.15)

Equation (5.15) states that the reference clock phase noise is multiplied by N2

and filtered as it passes through the PLL. The reason for the N2 factor has to do
with the fact that the reference clock phase noise is referred to the reference clock
period, Tref. The PLL output phase, however, is referred to the PLL output period,
T , which is N times smaller than Tref. Any noise variations in the reference clock
edge at the PLL input that get through the PLL and pass to the PLL output occupy
the same amount of time duration, but N times more phase at the output than at the
input. Noise calculations are done in noise power, so the multiplicative factor for
noise analysis becomes N2.

We can substitute T = Tref/N in Eq. (5.15) to get

σ2
Φ ,ext =

(
Tref

2π

)2∫ ∞

−∞
Φn2

ref( f )|G( f )|2d f (5.16)

What Eq. (5.16) shows is that it is possible to perform analysis on the extrinsic
reference clock phase noise contribution to jitter at the PLL output using the refer-
ence clock phase noise profile present at the PLL input without explicitly taking into
account the N2 factor, as long as we remember to scale the phase noise at the PLL
output by Tre f rather than T . From this viewpoint, the PLL is truly just a phase noise
filter, G( f ), from input to output. Figure 5.13 depicts the simplification in the model,
where the N2 factor has been be factored out.

5.4.11 Phase Noise to Period Jitter and Phase Noise to C2C Jitter

In Sect. 5.2, we described phase jitter as being the most fundamental jitter type, with
period and c2c jitter defined to be the first and second difference of phase jitter,
respectively. Using this information, we can derive a frequency domain expression
for period and c2c jitter based on phase jitter.

A discrete time difference function y[n] = x[n]− x[n−1] is described in the fre-
quency domain by its z transform:

Y (z) = X(z)(1− z−1) (5.17)

16 This is why it is a good practice to make sure that, when cascading PLLs, the bandwidths
of the PLLs in question are “sufficiently different”, where “sufficiently different” means
that the two PLL bandwidths are far enough apart that any peaking does not get amplified
when their closed loop responses are multiplied.
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Fig. 5.13. Reference clock phase noise to jitter modeling

The transfer function from x to y, which we will call D(z), is:

D(z) =
Y (z)
X(z)

= 1− z−1 (5.18)

Making the substitution z = e j2π f T , where T is the discrete time sample period, we
arrive at:

D( f ) = 1− e− j2π f T (5.19)

The log magnitude of Eq. (5.19) is plotted in Fig.5.14 assuming T = 1ns to be
consistent with examples that will be presented later on. D( f ) is periodic in fre-
quency with nulls appearing at multiples of 1/T . It is the “filter function” we ap-
ply to the PLL phase noise output, L( f ), in order to determine period jitter from
phase noise. For c2c jitter, we apply D( f )2 as the filter function since we know it is
the second difference of phase jitter. Note that the nature of D( f ) is high-pass, as we
expected from discussions in Sect. 5.2. We only show one “period” of D( f ) (up to
the first null) for a reason that is fundamental to PLLs. D( f ) is periodic at multiples
of the PLL output frequency, 1/T . For reasons of stability [15], PLLs are designed
with bandwidths significantly lower than their output frequency. A common rule of
thumb is that the PLL bandwidth be set to at least 10× lower than the reference clock
frequency, which is N times lower than the output frequency. This implies that the
PLL bandwidth is at least 10N times lower than 1/T . Since the PLL is low-pass in
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Fig. 5.14. Phase to period and C2C jitter difference functions

nature, it greatly attenuates the impact of D( f ) and/or D( f )2 at high frequencies
where they have significant magnitude.17

To determine period jitter from phase noise, we use Eq. (5.20):

σ2
Φ ′ =

(
T
2π

)2∫ ∞

−∞
L( f )|D( f )|2d f (5.20)

To determine c2c jitter from phase noise, we use Eq. (5.21):

σ2
Φ ′′ =

(
T
2π

)2∫ ∞

−∞
L( f )|D( f )|4d f (5.21)

To determine the rms jitter contribution of any individual phase noise source to
either period or c2c jitter, we simply substitute the appropriate transfer function for
G( f ) (as depicted in Fig.5.11) and the individual phase noise profile for L( f ) in
Eqs. (5.20) and (5.21), respectively. We will give examples in Sects. 5.5 and 5.7
regarding calculating the reference clock contribution to PLL output jitter.

17 Here, we make the assumption that the PLL is of sufficiently high order that it rolls off fast
enough to attenuate D( f ) or D( f )2 significantly at high frequencies, which is reasonable
because PLLs are typically designed to be 2nd order closed loop systems, which will roll
off at the same rate that the D( f )2 function rises. Unavoidable high frequency parasitic
poles that are well outside the PLL closed loop bandwidth (typically 4× higher or more in
frequency) will further attenuate any impact of the D( f ) and D( f )2 filter functions.
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5.4.12 Phase, Period, and C2C Jitter Examples

Before moving on to practical examples of jitter analysis, we will first use the in-
formation obtained thus far to calculate the various jitter types from a phase noise
profile for an example PLL. In order to verify the frequency domain calculations, we
will also explicitly measure phase, period, and c2c jitter from the time domain edge
crossings of the PLL output and use the jitter definitions presented in Sect. 5.2.

To carry out the PLL simulations presented in this chapter, the CppSim behav-
ioral modeling tool was used [1, 16]. CppSim is a constant time step C++ based
simulator that is particularly useful for PLL analysis. CppSim’s constant time step
approach makes performing frequency domain analysis on the time domain wave-
forms simple via the use of FFTs.
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Fig. 5.15. Reference clock to phase jitter model

Figure 5.15 presents the PLL simulation results. The left plot is the PLL output
L( f ), which includes contributions from all of the intrinsic and extrinsic phase noise
sources in the system. Also shown on the plot is the calculated value of rms phase
jitter using Eq. (5.6) and the simulated profile for L( f ). The PLL output frequency
was set to 1 GHz, therefore T = 1 ns. The right plot shows a histogram of time
domain phase jitter calculated according to the definition in Eq. (5.1). To perform this
calculation, an ideal non-jittery timing reference at 1 GHz was synchronized to a PLL
output edge once the PLL locked, and then the difference in edge locations between
the ideal reference and the PLL output were computed over one million cycles. This
large sample was taken so that the rms value calculated from the distribution would
be based on a significant number of samples. Also, to a first order, we can think of
this process as capturing noise frequency information down to about 1 KHz, since
we have one million periods of 1 ns average length, which corresponds to 1 ms of
time information, or down to 1 KHz of frequency information. The FFT in the plot
does not go down to the KHz range in frequency purely for computational reasons in
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generating such a large FFT. This is acceptable because the phase noise components
in the very low frequency range do not contribute significantly to total PLL noise
power.

The frequency domain, phase noise based, rms jitter calculation is 3.9 ps. The di-
rect measurement from the time domain simulation using the time domain definition
for phase jitter is also 3.9 ps, showing excellent agreement between the two methods.
This result validates our earlier discussions and Eq. (5.6). Note also that the shape
of the time domain jitter measurement looks Gaussian, in agreement with our earlier
assertion.
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Fig. 5.16. Reference clock to period jitter model

Figure 5.16 shows the result of applying D( f ) from Fig.5.14 to the PLL output
L( f ) of Fig.5.15. The unfiltered L( f ) is also shown in the plot as a reference for
comparison. We see that the high-pass nature of D( f ) removes a significant amount
of low frequency noise in the period jitter calculation. The low-pass nature of G( f )
attenuates the high frequency component of D( f )18. The right plot shows a direct
measurement of period jitter as the difference between each period and the average
period (1 ns).

We once again have excellent agreement between the rms jitter value based on
the frequency domain analysis and the time domain measurement. This experiment
validates Eqs. (5.19) and (5.20).

C2C Jitter

Finally, for completeness, we show the results in Fig.5.17 for the c2c jitter calcu-
lation based on both frequency and time domain analysis. They both agree very
18 Also, as mentioned previously, in a real PLL, there will be additional high frequency poles

in G( f ) in the many MHz to GHz range that will further attenuate D( f ). These poles were
left out in the simulation for simplicity.
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Fig. 5.17. Reference clock to C2C jitter model

well, which is to be expected since the phase and period jitter calculations were
in agreement.

Having verified through simulation that our analysis methodology and jitter def-
initions are in agreement, we proceed with two examples of reference clock phase
noise impact on system design.

5.5 Reference Clock Jitter Transfer Example: Microprocessor

In this section, we analyze the contribution of a reference clock to the output period
jitter of a microprocessor core clock generator PLL. Since the microprocessor oper-
ates in its own time domain, we are primarily concerned with period jitter because
it impacts the maximum operating frequency. Typically, the clock has been routed
throughout the chip in a well controlled fashion (see Chap. 2) with minimum skew.
The primary constraint for this exercise is to ensure that the clock period generated
at the PLL output does not shrink substantially from the nominal value so that there
will be a critical path violation and a catastrophic failure.

5.5.1 A Proposed Core Clock Methodology Using Mean Time
Between Failures (MTBF)

Using all of the information presented thus far, we employ the model shown in
Fig.5.18 to calculate the impact of reference clock phase noise on the PLL output
jitter. The reference clock phase noise, Φn2

ref, passes through the PLL filter function,
G( f ), and then is processed by the period jitter difference function, D( f ), before it
is integrated and scaled to calculate the output rms extrinsic jitter component19.

19 Note that while the scale factor in the integral is Tref, due to the simplification proposed in
Sect. 5.4.10, D( f ) is still periodic at the PLL output frequency, 1/T .
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Fig. 5.18. Reference clock jitter to period jitter model

The output rms jitter due to reference clock, σΦ ,ext, is summed with the PLL
intrinsic rms jitter according to Eq. (5.14) to determine total system jitter. The ques-
tion then becomes: “Given an rms period jitter value, how many standard deviations
should be used to determine a peak-to-peak value?” We propose that the metric to
be employed to specify the number of standard deviations used to calculate peak-
to-peak reference clock jitter for a microprocessor should be Mean Time Between
Failures (MTBF).

MTBF in our case means how long the microprocessor can run continuously
without exhibiting any timing failures, which is to say that the microprocessor does
not experience any periods smaller than a critical value. If the MTBF for a 1 GHz
processor is 1 year, we calculate the number of clock periods in 1 year as:

num per = (1year)
(

365.25
days
year

)(
86400

s
day

)(
1 period
1E −9 s

)
= 3.16E+16 periods

(5.22)
We can think of 1/num per = 3.2E−17 as equivalent to a bit error rate (BER),

which we will use in Sect. 5.7 as the key component in determining how many σ
to use for calculating peak-to-peak PLL jitter for a serial link. Simply stated, we are
allowing 1 period out of 3.16E + 16 periods to be too small. This corresponds to an
error rate of 3.2E−17, which is also equivalent to a probability measure.

We utilize the fact that the jitter distribution is Gaussian (Normal) to determine
how many σ are required to achieve a probability of error of 1/num per using an
approximation to the error function, Q(σ). For σ > 3, the error function can be
approximated by [5]:

Q(σ) =
1

σ
√

2π
e
−σ2

2 (5.23)

and the number of σ for a given peak-to-peak error of 1/num per can be read from
the plot of Q(σ) vs. σ .

Figure 5.19 shows the result of sweeping σ in Q(σ). We can find the point on
the chart that corresponds to the desired BER and determine how many σ should be
used to determine the peak-to-peak value. In our example, we require a peak-to-peak
value of 16.7σ , which corresponds to ±8.35σ about the mean of zero.
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Fig. 5.19. Number of σ in peak-to-peak calculation for normal distribution

Jitter statistics reported on data sheets and in the literature typically provide rms
and peak-to-peak values, where the peak-to-peak value is only seven to ten times
the rms value. Part of the reason peak-to-peak values reported in data sheets vary in
the number of standard deviations, σ , for which they are calculated, may be due to
limits in the number of samples taken. This is an area that is often not well defined
or explained in the average data sheet. We will proceed using the rms jitter value and
MTBF calculation with the understanding that it may be on the conservative side.

In our example, we require ±8.4σ to calculate peak-to-peak jitter. The problem
is reduced to calculating rms period jitter at the PLL output. Figure 5.20 presents the
filter functions that we will use in this example. The PLL closed loop transfer func-
tion, G( f ), is plotted along with the period jitter difference function, D( f ), and the
cascaded transfer function, G( f )D( f ), which filters the reference clock phase noise.
The PLL is modeled as a type II20, second order system with a 10 MHz bandwidth
and approximately 1.8 dB of peaking. D( f ) is the same as depicted in Fig.5.14 for a
1 GHz PLL output clock.

Figure 5.20 shows that the shape of the filter cascade, G( f )D( f ), follows D( f )
at low frequencies and then flattens out when the falling slope of G( f ) equalizes the
rising slope of D( f ). The cascade function then decreases at very high frequencies
where D( f ) rolls off again.

To calculate the reference clock induced output jitter, we process the reference
clock phase noise, Φn2

re f , with the G( f )D( f ) cascade, as depicted in the top plot of
Fig.5.21. Φn2

re f has been set to have 1/ f and 1/ f 2 regions at low frequencies, and
a white thermal noise floor of −120 dBc/Hz at higher frequencies. This is consistent

20 This means that there are two integrators inside the PLL loop. For example, the VCO is an
ideal integrator, and the charge-pump approximates an ideal integrator very well.
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Fig. 5.20. Example transfer functions for period jitter calculation

with a crystal oscillator phase noise profile. Real crystals also have 1/ f 3 and 1/ f 4

regions at lower and lower frequencies, which we have left out for simplicity. Real
crystals also typically do not report phase noise at frequencies above a few hundred
MHz because of limitations in measurement equipment. We have extended the ther-
mal noise floor up to 1 GHz for this analysis to demonstrate the impact of D( f ).

The filtered21 Φn2
re f is then integrated and scaled in accordance with the model

shown in Fig.5.18. The bottom plot presents the result of the integration. The period
jitter value increases as the noise components are added up over frequency. We ob-
serve that the noise increases most at high frequencies where Φn2

re f flattens out. This
is intuitive because Fig.5.21 has a logarithmic x-axis, so the flat region at very high
frequencies contains more noise energy than the low frequency range.

Integration of the phase noise profile results in an rms period jitter value of
σΦ ′,ext =240 fs. Earlier,we calculated that we required approximately 17σ to deter-
mine the peak-to-peak value for a 1-year MTBF. The total result is σΦ ′,pp,ext =4 ps,
where σΦ ′,pp,ext is the peak-to-peak period jitter at the PLL output due to the ref-
erence clock. This number is RSS (root sum of squares) summed with the PLL
intrinsic period jitter to determine overall period jitter:

21 We are being a little loose with the term “filter” in our discussions. G( f ) truly does filter the
reference clock phase noise in the traditional sense. D( f ), by contrast, is a mathematical
by-product of the definition of period jitter. So it is not a true, physical filter. It does have
a frequency response that has an impact equivalent to a filter, so we use the term “filter” to
describe the cascade of G( f ) and D( f ).
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√
σ2

Φ ′,pp,ext +σ2
Φ ′,pp,int ≤ tbudget (5.24)

The total peak-to-peak period jitter number is then divided by two, and compared
with the critical path budget, to ensure that timing margins are not violated. The
reason for the division by two is that, under the assumption that the jitter is Gaussian
with zero mean, half of the period jitter results in longer periods, which will not
violate a critical path, while the other half of the period jitter is associated with
shorter periods that will potentially violate the critical path specification.

For situations where the designer is attempting to define a reference clock phase
noise profile, the analysis can be performed with a family of different phase noise
responses. By taking the profile that results in the maximum PLL output period jit-
ter, the designer can define the reference clock phase noise mask. Such a group of
simulations is not trivial, so some assumptions need to be made. One reasonable
assumption is that a crystal oscillator supplying the reference clock will generally
have a broadband phase noise profile that is lower than the low frequency noise limit
if the reference clock is supplied by a PLL.22 Additionally, if a PLL is used to supply
the reference clock, worst case output jitter will result if the bandwidth of the two

22 A PLL that will generally have a crystal reference supplied to its reference clock input.
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PLLs align, an effect that is amplified if both PLLs have peaking in their respective
G( f )’s.23

As a final demonstration, we examine the impact of a high frequency pole in the
PLL closed loop transfer function on total period jitter.
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Fig. 5.22. Example transfer functions for period jitter calculation with added pole

Figures 5.22 and 5.23 present the results of the period jitter analysis with a
50 MHz pole added to the PLL closed loop transfer function. A high frequency pole
is often added by the PLL designer to suppress high frequency noise caused by the
phase comparison process occurring at the PFD. In some cases, several poles at high
frequency are added to obtain additional suppression. As the figures show, the added
pole helps greatly to reduce the high frequency phase noise present in the period jit-
ter profile. The rms jitter value is reduced from 240 fs to 77 fs, and the peak-to-peak
value from 4 ps to 1.3 ps. Clearly, high frequency poles in G( f ), whether explicit or
parasitic, help reduce total period jitter.

5.6 Non-Random Jitter Distributions

Thus far the assumption of zero mean, Gaussian, random jitter distributions has been
utilized when performing analysis. In practical systems, there will be non-random

23 This is a phenomenon known as jitter peaking, which is of particular concern in long haul
data links [5].
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(deterministic) jitter sources that impact overall PLL jitter. Deterministic jitter is
sometimes referred to as static jitter because unlike random jitter, which is defined by
an rms value and whose peak-to-peak value depends on the application requirements,
deterministic jitter can be defined by a single peak-to-peak value and manifests itself
as a non-random modulation of clock phase. In this section, we present some sources
of deterministic jitter and methods to include them in analysis.

5.6.1 Reference Spurs in PLLs

The feedback action inside a PLL compares the divider output to the reference input
via a PFD. The output of the PFD is then filtered and used to control the VCO.
Ideally, the only error components present in the signal at the VCO input relate to the
phase error of the PLL or the noise sources inherent to the circuitry that comprises
the PLL. In most practical PLLs, however, there is an additional error component
due either to non-idealities in the PFD, or caused by design techniques aimed at
improving the linearity of the PFD.

In Sect. 5.4.5, we discussed how an explicit offset is sometimes added in the reset
path of a tri-state PFD to improve the PFD/charge-pump combination’s linearity. We
also discussed how the periodic modulation of the VCO control voltage introduced
by the offset tri-state PFD appears in the PLL output spectrum as a spur. In the time
domain, the reference spur appears as a deterministic jitter component.
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Fig. 5.24. PLL phase noise spectrum showing reference spurs

Figure 5.24 shows the phase noise profile of a PLL that exhibits reference spurs.
For the PLL simulated, the reference clock frequency was set to 50 MHz and an
offset tri-state PFD was used. For this PLL, the reference clock spur is significant,
and we observe spurs at odd harmonics of the reference clock. The spurs are the
result of the explicit offset introduced between the reference and divider flip-flop
resets to improve PFD linearity. For a mathematical method to calculate the spur
contribution to output jitter, see [18].

In the time domain, these spurs are observed as a deterministic component in the
PLL output jitter, as shown in Fig.5.25. We observe that the Gaussian jitter profile
we expect from random noise sources is still present, but now there are two Gaus-
sian profiles that overlap and whose peaks are separated by approximately 40 ps.
The total jitter profile can, therefore, be thought of as a Gaussian jitter distribution
convolved with two deterministic jitter impulses appearing 40 ps apart. For this ex-
ample, the deterministic jitter component is expressed as a peak-to-peak value of
approximately 40 ps.

Several techniques exist to reduce the reference spur. The simplest, and most
commonly used technique, is to add high frequency poles to the PLL filter func-
tion, G( f ). Since the reference spur and its harmonics occur outside the PLL band-
width, high order poles will suppress their impact while not significantly changing
the PLL closed loop response. A second technique is to use a sample-and-hold loop
filter [14, 17]. A sample-and-hold loop filter works by waiting until the PFD has
completed its UP and DOWN pulses, and then sampling the loop filter cap. In this
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way, any periodic modulation of the VCO control voltage due to PFD operation is
minimized.24 Finally, the PFD itself can be architected to minimize the reference
spur. In a tri-state PFD, this can be accomplished by minimizing the on-time of the
UP and DOWN pulses when the PLL is in lock. The tradeoff with this approach is
that any non-linearities present in the PFD and charge-pump combination will be
exposed, as discussed in Sect. 5.4.4.

5.6.2 Duty Cycle Distortion (DCD)

In double data rate (DDR) systems, both edges of the clock are used as timing ref-
erences. The clock frequency is, therefore, half the data rate, which eases bandwidth
requirements for the clock distribution network, and, potentially, for a number of
sub-systems that run at the clock rate.

The effective clock rate in a DDR system, which corresponds to the data rate, is,
therefore, twice the clock frequency. However, if the clock signal exhibits any error
in its duty cycle, the instantaneous data rate of the system varies from the nominal
value according to the amount of duty cycle distortion present in the clock. Figure
5.26 depicts the impact of DCD in a DDR system.

CLK0 represents an ideal DDR clock. In this case, the time from rising edge to
falling edge, tp0, equals the time from falling edge to rising edge, tn0, and the data
rate, 1/Td , is equal to twice the clock frequency, 1/T . To summarize:

tn0 = tp0 = Td =
1
2

T (5.25)

24 Ideally, the periodic modulation of the VCO control voltage would be eliminated, but prac-
tical sample-and-hold loop filters will have some reference clock feed-through, and so a
residual reference spur will remain.
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CLK1, by contrast, exhibits DCD. While the frequency of CLK1 is equal to 1/T
and is, therefore, the same as that of CLK0, the time from rising edge to falling edge,
tp1, does not equal the time from falling edge to rising edge, tn1, and the data rate
changes from bit to bit. For tp1, the bit period is

tp1 = Td −Δ t (5.26)

while for tn1 the bit period is
tn1 = Td +Δ t (5.27)

The average bit period can be expressed as

< bit period >=
tp1 + tn1

2
= Td (5.28)

The average bit period for the DCD case is, therefore, the same as that for the
ideal case, but the instantaneous bit periods exhibit a deterministic jitter component
with a peak-to-peak value 2Δ t.

5.6.3 Power Supply Noise

Power supply noise is another potential source of deterministic jitter. As mentioned
in Sect. 5.4.8, power supply noise can couple directly into the VCO control voltage
node and modulate the PLL output frequency. In this case, the impact of the supply
noise lingers in the system because of the integration of phase that takes place in
the VCO. Additionally, supply noise can modulate the delay through a buffer chain
used to distribute the clock across chip (Sect. 6.8). In both the cases, if the supply
noise is caused by a periodic signal (such as the clock itself, or sub-harmonics of
the clock introduced by clock dividers or a piece of software running a loop on a
microprocessor), the noise will be exhibited as a periodic modulation in the clock
output phase, which appears as a deterministic jitter component.
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5.6.4 Inter-Symbol Interference (ISI)

Yet another source of deterministic jitter in a communication system is inter-symbol
interference (ISI). ISI is a phenomenon of particular concern in a serial data link,
where the finite bandwidth of the channel filters the data being sent through it. To
illustrate the impact of ISI, a CppSim behavioral simulation of a 2.5 Gb/s random
data signal passing through a channel modeled as a simple low-pass filter with a
−3 dB bandwidth of 1 GHz was performed. The results are presented in Figs. 5.27
and 5.28.
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Fig. 5.27. Random data signal filtering by a channel

In Fig.5.27, the filtered data signal is plotted. Note that sequences of multiple bits
of the same polarity (sequences of multiple ones or multiple zeroes) have a larger
final magnitude than one-zero-one or zero-one-zero sequences. This is because the
finite bandwidth of the channel filters the high frequency data patterns more than the
low frequency patterns.

An eye diagram of the filtered data signal is plotted in Fig.5.28. An eye diagram
is created by chopping the data signal in fixed increments of time, and then overlay-
ing the sections. In Fig.5.28, we plot the eye for two data periods. We observe that the
finite bandwidth of the simple RC filter model for the channel results in incomplete
settling for some bits and complete settling for others. Incomplete settling corre-
sponds to the high frequency data sequences, while complete settling corresponds to
the lower frequency data sequences.
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Incomplete bit settling appears as a fixed component to the data jitter at the end
of the channel, as observed in the two zero crossings of the data in the eye diagram.
ISI can, therefore, be modeled as a deterministic jitter component.25

5.6.5 Including Deterministic Jitter in Analysis

The examples of non-random jitter mentioned above all have different origins and
may introduce subtly different deterministic jitter components in the clock signal,
but they can all be analyzed in a similar fashion.

As mentioned in Sect. 5.6.1, deterministic jitter can be modeled as impulses that
occur at a finite peak-to-peak distance apart [19, 20]. These impulses are convolved
with the random jitter distribution to calculate the overall jitter profile. For example,
if the ISI induced deterministic jitter depicted in Fig.5.28 has a peak-to-peak value
of 10 ps and system random jitter has a calculated peak-to-peak value of 50 ps, we
calculate that the total peak-to-peak system jitter is 60 ps. If there are additional
uncorrelated deterministic jitter sources, we add them linearly; that is, we add their
peak-to-peak values. If there are additional random jitter sources, we add them in an
RSS sense, under the assumption that they are statistically independent.

25 In addition to ISI, cross-talk can introduce jitter components in a serial link. Cross-talk
describes coupling between lanes within a link, or across links, in a serial data system.
Coupling of an aggressor signal to the data signal can move the data signal’s edge. Cross-
talk is very specific to the exact board layout of a system and is, therefore, beyond the scope
of this text and assumed to be minimal in our analyses.
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5.7 Reference Clock Jitter Transfer Example: Serial Link

In this section, we present an analysis of the reference clock contribution to the out-
put phase jitter of a PLL used in a serial link. The jitter analysis for a common ref-
erence clock architecture follows the example set forth in [4] and illustrates an im-
portant point about serial links, which is that if the reference clock is common to
both ends of the link, the reference clock phase noise requirements may be greatly
relaxed.

5.7.1 Serial Link Budgeting

Fig. 5.29. Eye diagram

Serial link budgets are expressed in terms of an eye diagram. Figure 5.29 depicts
the measured eye diagram of a 2.5 Gb/s transmitter (TX) with the PCI Express trans-
mitter mask superimposed [21]. The eye mask has both amplitude requirements (the
transmitter output must fall within the eye limits) and jitter requirements (the trans-
mitter total output jitter must be less than the mask limits). We will focus on the jitter
mask limit. In the case of the PCI Express specification, the transmitter applies some
pre-filtering to overcome the finite bandwidth of the data channel. This technique,
known as de-emphasis, results in two separate eye specifications. The first eye is for
“transition” bits, which are bits that correspond to the data transitioning from zero
to one to “don’t care” or from one to zero to “don’t care”. The second eye is for
“non-transition” bits, which are patterns of successive ones or zeros (one-one-“don’t
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care”, zero-zero-“don’t care”). De-emphasis as a technique transmits larger ampli-
tudes for transition bits and lower amplitudes for non-transition bits. One can think
of this as placing emphasis on edge transitions in the data, which corresponds to a
high-pass filter action. This high-pass filter action counters the low-pass filter nature
of the channel.

The eye limits for jitter are expressed in UI, which represent a percentage of a
“unit interval”. A unit interval is simply the bit time. For a 2.5 Gb/s serial data link,
1 UI = 400 ps. The PCI Express mask depicted in Fig.5.29 requires that the total
transmitter output signal not touch a mask that is 750 mUI wide. This means that
total transmitter output jitter must be less than 1 UI–750 mUI = 250 mUI, which
corresponds to 100 ps.

5.7.2 Bit Error Rate

In Sect. 5.2, we noted that phase jitter is the jitter type appropriate for serial links. In
Sect. 5.3.1, we expressed the relationship between phase noise and phase jitter us-
ing Eq. (5.6). We also discussed, in Sect. 5.5.1, how bit error rate can be cal-
culated using the Q function, and demonstrated an example in Fig.5.19. We can
use the same approach for calculating transmitter output jitter in an example serial
link. In the case of the PCI Express serial standard, the link bit error rate limit is
1E− 12, which corresponds to taking 14σ when calculating the peak-to-peak jitter
value.26

5.7.3 Serial Link Block Diagram

For our example, we will make the assumption that the PLLs that control the trans-
mitter and receiver output edges exhibit purely random jitter profiles. Figure 5.30 de-
picts a serial link where the two ends of the link have independent reference clocks.
The TX clock is produced by a PLL internal to the TX IC. The TX PLL intrinsic
jitter, σ2

Φ ,int1 is summed with the extrinsic jitter introduced by the TX PLL reference
clock, ref1. Ref1 phase noise is filtered by the TX PLL closed loop filter function,
G1( f ). Given a phase noise profile for ref1, and given G1( f ), the total phase jitter at
the output of the TX PLL can be calculated using the filter analysis techniques pre-
viously described in this chapter. The rms extrinsic jitter is then RSS summed with
the intrinsic jitter as:

σΦ ,T X =
√

σ2
Φ ,int1 +σ2

Φ ,ext1 (5.29)

where σ2
Φ ,ext1 is the extrinsic jitter variance and the peak-to-peak output jitter for a

BER = 1E−12 is 14σΦ ,T X .
While our goal is to calculate the total TX output jitter, and we have just enumer-

ated a method to do so, it is worth considering the receiver (RX) jitter as well. We see

26 Actually, 14.07σ , but who’s counting...
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Fig. 5.30. Serial link with separate TX and RX reference clocks

that the receiver consists of a PLL and a clock and data recovery (CDR) block. This
is a typical serial link design, where a single PLL is used to create a timing reference
for the RX lane and then a CDR in the form of a DLL is used to recover the clock
[5, 22]. This architecture allows a single RX PLL to be shared among several serial
links, reducing overall power and area compared to an approach that uses one PLL
per RX lane.

The RX jitter can be calculated in exactly the same manner as was the TX jitter.
G2( f ), along with the phase noise profile of ref2 and σΦ ,int2, are used to calcu-
late a total jitter for the RX link. If the sum of total TX and RX jitter components,
along with any timing margin requirements in the RX circuitry and any distortion
contributed by the channel (ISI, cross-talk, etc.) is less than 1 UI, the link operates
successfully. For an accurate calculation, and under the assumption that the PLL jit-
ters are totally random, we add the rms RX jitter and rms TX jitter in an RSS sense
to get a total rms value for the link, multiply this value by 14 to get a peak-to-peak
value, and then add this total to any deterministic components present elsewhere in
the system.

In the architecture of Fig.5.30, the fact that the reference clocks at either end of
the link are independent means that their jitter is uncorrelated and so each reference
clock phase noise adds in an RSS sense to total link jitter. A different approach, that
can relax reference clock phase noise requirements, is depicted in Fig.5.31.

In Fig.5.31, the reference clock is common to both the TX and RX PLLs, and so
this link structure is called a “common clock” architecture [4]. On the basis of early
discussions in this chapter, we know that any reference clock phase noise appearing
at frequencies inside the PLL bandwidth are not filtered by the PLL. This means
that the jitter transfer from reference clock to PLL output for in-band noise is unity,
which has an interesting consequence in the link architecture presented in Fig.5.31.
Since both PLL’s are provided with the same reference clock, they both see the same
in-band phase noise. To the extent that the PLL filter functions G1( f ) and G2( f )
match, both PLLs will track the in-band reference clock noise in the same way, and
the net effect will be that the in-band portion of the reference clock phase noise will
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Fig. 5.31. Serial link with common reference clock

largely cancel and not contribute to the overall jitter budget! This behavior would,
therefore, result in a relaxed specification for the reference clock phase noise.27

f
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Fig. 5.32. Serial link model with common reference clock and skew

Figure 5.32 presents a modified noise model for the common clock serial link.
The intrinsic jitter of each PLL has been removed, since we are now primarily in-
terested in seeing how much reference clock phase noise impacts the jitter budget of
the common reference clock link.28 Additionally, we have introduced a delay term,

27 This also explains why serial links that use spread spectrum clocking (SSC) to reduce elec-
tromagnetic interference (EMI) by modulating the reference clock frequency with a slow
signal often require a “common clock” architecture. Since the reference clock spreading is
in-band, if a common reference clock is used, both PLLs track the modulation identically,
and there is minimal impact to system jitter performance.

28 The intrinsic TX and RX jitter would, of course, be included in a total link jitter calculation.
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e−stdel , into the path for the RX PLL, where tdel represents any skew between the dis-
tribution of the reference clock to PLL1 (TX) and PLL2 (RX). A skew amounts to a
phase difference, which impacts the degree to which the in-band reference clock in-
duced jitter tracked by PLL1 matches that of PLL2, and therefore impacts the degree
to which the in-band reference clock jitter cancels across the link.
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Fig. 5.33. Cancelation of reference clock noise in common clock architecture 1

Figure 5.33 shows results of jitter filter calculation for the model presented in
Fig.5.32. G1( f ) has been set up as a second order PLL with a bandwidth of 22 MHz,
while G2( f ) has been set up as a second order PLL with a bandwidth of 1.5 MHz.
These values represent the extremes of the PLL bandwidth limits specified in the PCI
Express 1.1 specification [21]. The PLL filter functions G1( f ) and G2( f ) are plot-
ted, along with the difference between them, |G1( f )−G2( f )|. The skew between
the two reference clock paths has been set to zero in the left plot. The right plot
is a zoom-in of the difference function for two different values of skew. There are
three points to note. First, low frequency noise will be tracked identically by both
PLLs, and, therefore, cancels. Second, at higher frequencies, the difference function
increases until it follows the shape of the higher of the two individual filter func-
tions where the PLLs do not track one another. The net result is a band-pass filter
function. Third, there is more suppression at low frequencies for a low value of skew
than for a large value of skew. However, the impact of skew is relatively small, be-
cause, for in-band frequencies where the two individual PLL filter functions track
one another, the skew value is a relatively small portion of the period of the frequen-
cies in question. For example, the in-band cancelation has a low frequency −3 dB
bandwidth of approximately 500 KHz, which corresponds to a noise period of 2μs.
A 20 ns skew, therefore, represents 1% of the noise period at this frequency, which
is not enough to result in significant cancelation error.

To calculate the reference clock impact on the jitter budget, we follow the same
procedure as for an individual PLL, with the difference that we process the reference
clock phase noise profile with the difference function, G1( f )−G2( f ), rather than a
single PLL filter function, G( f ).
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The questions arises, “What happens if the individual PLL filter functions are
closer together?” We examine the impact of such a situation in Fig.5.34. PLL1 band-
width is kept at 22 MHz, while PLL2 bandwidth is changed to 10 MHz. In this case,
there is more low frequency reference clock phase noise cancellation, since PLL2
bandwidth has been increased. We also see that the peak value of the difference func-
tion is higher (6 dB) for the 20 ns skew case than for the previous example (4 dB),
but this is counteracted by the fact that the bandwidth of the band-pass difference
function has decreased. Whether this is an overall advantage or not depends on the
shape of the reference clock phase noise profile, and whether or not it has any peaking
(if it is provided by a PLL), and where that peaking occurs relative to the difference
function peaking. We also see that since, with more closely matched bandwidths,
while the difference filter function suppresses noise up to a much higher frequency,
it varies more with changes in the reference clock distribution skew. The difference
function −3 dB bandwidth is now between 3 MHz and 5 MHz, and so a 20 ns skew
results in a 6% to 10% error in cancelation, an amount which is significant.

For the zero skew case, there appears to be a clear advantage of having the PLL
bandwidths more closely matched, as there is a narrower band-pass bandwidth in
addition to a lower overall difference filter function peak. The skew case performing
worse makes sense, since any skew will produce phase differences between the two
paths that grow worse with increasing noise frequency.

Overall, use of a common clock architecture can potentially reduce the contri-
bution of reference clock phase noise in a serial link. The exact extent to which the
common clock architecture is advantageous depends on the difference filter function,
G1( f )−G2( f ), the total skew in the reference clock distribution, and the shape of
the reference clock phase noise profile.

5.8 Delay Locked Loops (DLLs) and Jitter

In this chapter, we make note of the fact that there are other systems in VLSI circuits
that process timing signals and generate, and/or filter, jitter. One such system is the
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delay locked loop (DLL). Since DLLs are discussed in detail in Chap. 6, we will only
mention one point about the jitter behavior of DLLs in this section.

There is no VCO in a DLL, but rather a delay line is used to align the phase of a
reference with the output signal. As discussed earlier in this chapter, a delay element
will exhibit jitter caused by supply noise only during the edges when the noise event
occurs. Another way of stating this is that there is no memory in a delay element.
This behavior is in contrast to a VCO, where noise introduced to the VCO control
voltage node will remain in the system up to the point at which the closed loop can
respond [9].29 DLLs, therefore, have inherent noise advantages over PLLs [22]. The
tradeoff, of course, is that frequency multiplication with DLLs is more difficult. Mul-
tiplying DLLs (MDLLs) attempt a compromise by having the equivalent of a gated
ring VCO, where the phase of the oscillator is “resynchronized” to a reference every
M cycles, where M is the multiplication factor [23, 24]. In this way, the memory
impact associated with a VCO is reduced by the phase reset action. The most signifi-
cant challenge with an MDLL is that the oscillator synchronization operation results
in a potentially significant deterministic jitter component at the reference frequency,
which must then be addressed by additional design techniques [25].

5.9 Conclusion

In this chapter, we have defined three primary types of jitter and related these jitter
types to one another through simple discrete time filter functions. We have presented
the relationship between phase noise and jitter to establish a frequency domain based
approach for PLL jitter filtering analysis. Through the use of the behavioral model
proposed in [1] and frequency domain filter analysis techniques, we have examined
how the various intrinsic and extrinsic noise sources present in a PLL are filtered by
the PLL closed loop transfer function, G( f ). In cases where it is desired to calcu-
late period jitter or cycle-to-cycle jitter, simple discrete time filter functions may be
included in the analysis. Examples for a core clock microprocessor period jitter cal-
culation and a serial-link PLL phase jitter calculation were used to demonstrate the
effectiveness of frequency domain filter based analysis in determining overall system
jitter budgeting.
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Digital Delay Lock Techniques

Thucydides Xanthopoulos

Cavium Networks

6.1 Introduction

Digital delay locked loops are highly prevalent in integrated systems. They are essen-
tially delay lines under feedback control that can generate derived clocks based on
an input reference. Applications include clock distribution, I/O interfaces, clock gen-
eration, and frequency multiplication. Digital delay locked loops also have time-to-
digital conversion properties and can be used in monitoring and sensing applications.

While DLLs can be designed with digital-only methods, their design involves di-
rect manipulation of clock signals. Therefore, additional techniques are involved as
opposed to standard custom digital datapath design. This chapter presents an identi-
fication of all essential digital delay locked loop components and addresses relevant
design aspects for each part. It concludes with global design issues and an overview
of advanced applications.

6.2 What Constitutes a Digital Delay Locked Loop?

The digital delay locked loop (DLL henceforth) is a simple closed loop system that is
capable of generating a clock signal that has a precise phase relationship with an in-
put reference clock. Because of feedback, this phase relationship tracks across input
frequencies, process, voltage, and temperature. The accuracy of the phase relation-
ship between input and output clocks depends on DLL design parameters, process
mismatch characteristics, and on deterministic noise sources such as independent
supply noise and forms of coupling.

Digital DLLs can easily be unconditionally stable and are analyzed in the time
domain. Because of their all digital nature, they can be ported across process nodes,
can be simulated using fast digital simulators, and can be easily monitored and char-
acterized in silicon.

Figure 6.1 shows a simplified DLL block diagram, which identifies the three
main system components: The phase detector, the control block, and the delay line.

T. Xanthopoulos (ed.), Clocking in Modern VLSI Systems, Integrated Circuits and Systems, 183
DOI 10.1007/978-1-4419-0261-0 6, c© Springer Science+Business Media, LLC 2009



184 T. Xanthopoulos
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Fig. 6.1. Generalized DLL block diagram

The type of phase detector that will concern us in this chapter has a single bit
output that only changes on the positive edge of the reference clock. It is commonly
referred to as “bang–bang” in the literature. Such a phase detector can be thought of
as a system that has the transfer function depicted in Fig.6.2. It compares the phase
difference between two clocks and outputs a single logic value indicating which
clock is ahead in time. It can be thought of as a flip-flop that has the reference clock
(CLKIN) as its clock input and the controlled clock (CLKOUT) as the data input.
When the flop evaluates to a logic 1, it means the controlled clock is faster than the
reference. On the other hand, when the controlled clock is slower than the reference,
the flop will evaluate to logic 0. This behavior can be guaranteed as long as the data
input is faster than the clock input at least by the flop setup time (Ts in Fig.6.2) or
slower at least by the flop hold time (Th in Fig.6.2). If the timing between the two
clocks falls within the gray area of Fig.6.2, the phase detector behavior is not defined
and the output can be either a logic 0, a logic 1 or potentially a metastable value. The
width of the gray rectangle (Ts +Th) is the primary figure of merit of phase detectors
and one of the main DLL design parameters. It is called the phase detector sampling
window dsw or dead zone. It affects the phase locking accuracy of the entire system
in addition to other important specifications. Phase detectors will be discussed in
Sect. 6.4.

The most design intensive component of the DLL is the Digitally Controlled
Delay Line (DCDL). A sample transfer function is shown in Fig.6.3. A DCDL is
a combinational circuit that delays its input by an open loop value that typically
has a monotonic relationship with the digital setting input. Such delay value is not
precisely defined and is subject to process, voltage, and temperature conditions. A
DCDL is primarily characterized by three design parameters: its minimum delay
Dmin (delay value at setting 0), its maximum delay Dmax (delay value at the maximum
setting N − 1), and its resolution dr (incremental delay per setting). The dynamic
range is defined as Dmax −Dmin and is directly related to the capability of the overall
DLL to track significant PVT variations or work with an extended range of input
clock frequencies. The resolution dr affects the DLL accuracy along with dsw. DCDL
design will be discussed in Sect. 6.5.
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Fig. 6.3. Digitally controlled delay line transfer function

The final building block of Fig.6.1 is the control module. The control block in-
creases and decreases the DCDL settings based on the output of the phase detector.
In its simplest form, it is an up/down counter controlled by the phase detector. In its
most general form, it is a finite state machine (FSM) that controls the DCDL set-
tings based on the output of the phase detector and internal state. The inclusion of
additional state information can support more complex behavior and extend the DLL
capabilities. Control structures will be addressed in Sect. 6.6.

The combination of a phase detector, a delay line, and a control block produces
a simple and useful feedback system that can find multiple applications in modern
systems-on-a-chip. The DLL of Fig.6.1 will adjust its delay line until CLKIN and
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CLKOUT are matched in phase. At this point, the DLL has locked, and the delay
through its DCDL is one CLKIN period (or potentially an integral multiple of input
clock periods).

6.3 An Overview of DLL Applications

The average modern microprocessor contains multiple digital delay locked loops
embedded in various subsystems. Figure 6.4 demonstrates different uses of a basic
DLL structure.
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Fig. 6.4. DLL applications

The vast majority of DLL applications are related to clocking. Figure 6.4a
demonstrates zero-delay buffering. Such a topology is well suited for synchronous
I/O interfaces (e.g., PCI/PCI-X). A common clock (CLKIN) is being distributed to
multiple bus end points. Each end point is buffering and distributing it to a number
of flip-flops. A DLL in the loop ensures that the buffered clock version (CLKOUT)
is phase-locked to the master interface clock (CLKIN).
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Figure 6.4b shows an application where three separate clock domains are syn-
chronized. Each domain has a separate clock distribution (DISTA, DISTB, DISTC)
involving multiple buffer stages. Open loop matching is infeasible in the presence
of PVT and random variations. A DLL-controlled delay line at the root of each dis-
tribution can guarantee phase matching among all three clocks. The DLL controller
is more complex than the one shown in Fig.6.1, and it uses information from two
separate phase detectors. First, CLKOUTA and CLKOUTB are phase locked. As
soon as this happens, the controller locks CLKOUTC to CLKOUTA. This scheme is
extensible to multiple clocks.

Quadrature clock generation is another application suitable for a DLL. Such a
topology is shown in Fig.6.4c. When this DLL locks, the total delay through both
DCDLs and the feedback path inverter is one half period of CLKIN (180◦). There-
fore, the delay through one DCDL is virtually a quarter period (90◦) and CLKOUT
is a quadrature clock.

The previous technique can be extended and used for constant factor clock multi-
plication. In Fig.6.4d, the delay through all eight DCDLs is one CLKIN period. The
delay through a single DCDL is 45◦. The outputs of the eight DCDLs are equally
spaced phases spanning the entire CLKIN period. The toggle element can be thought
of as a toggle flop with eight independent clock ports. Every positive edge of each of
the eight phases can toggle the flop, thus, producing a CLKOUT that has a frequency
equal to four times that of the input.

The final example (Fig.6.4e) is a deviation from strictly clocking applications.
A DLL can be used for absolute measurements of unknown delays (time-to-digital
conversion). First, a 2-point calibration is necessary. The DLL is placed in calibration
mode (unknown delay is bypassed) and an input clock of a known period T0 is fed
into the CLKIN input. The DLL locks and the setting is recorded (s0). The input
clock period is changed to T1, the DLL is allowed to lock and the setting is recorded
again (s1). We now have a system of two equations with two unknowns:

Dmin + s0 ·dr = T0, (6.1)
Dmin + s1 ·dr = T1, (6.2)

where Dmin is the DCDL delay at the minimum delay setting and dr is the DCDL
resolution. We can solve the above system and obtain values for Dmin and dr. The
DLL now is placed out of calibration mode, and the unknown delay is multiplexed
into the system. The DLL locks and the setting (su) is recorded. The absolute delay
is, therefore, Dmin + su ·dr.

6.4 Phase Detectors

In a digital delay locked loop, the output of the phase detector is typically processed
by a digital circuit such as an up/down counter or in the most general case an FSM
controller. The most common phase detector for such an application is a specially-
designed flip-flop that has a single bit output indicating leading or lagging feedback
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clock as described in Sect. 6.2 and shown in Fig.6.2. Traditionally, such a structure
with a single-bit digital output is called a “bang–bang” phase detector. The main
design goals for a flip-flop used as a phase detector are:

1. It must be a fully static design containing cross-coupled nodes exhibiting expo-
nential voltage development with time (Sect. 6.4.1) to minimize time spent in a
potential metastable state and prevent system failure.

2. It must have a small sampling window dsw, which is the sum of the underlying
flop setup and hold times (Ts + Th) to guarantee good phase matching between
feedback clock and reference clock.

3. The setup and hold times must be well-balanced to avoid deterministic bias dur-
ing phase detection and result in a significant systematic phase error between
feedback clock and reference clock. A differential design can be desirable, but it
is not a requirement.

4. The open loop gain of the cross coupled gates must be high to guarantee quick
exit from a potential metastable condition (Sect. 6.4.1).

5. The capacitance of the cross-coupled nodes must be kept to a minimum given the
other constraints in order to guarantee quick exit from metastability (Sect. 6.4.1).
This will also help minimize setup requirements but may hurt hold time.

6. Unlike regular flop designs, a short clock-to-q delay is not a critical design re-
quirement, since there is typically a full reference clock cycle available until
the phase detector output needs to be setup and processed by the FSM con-
troller. This path is unlikely to be critical. Moreover, unlike a proportional phase
detector, balancing clock-to-q delays for a 0-to-1 vs. a 1-to-0 transition is not
necessary. There is no phase information encoded in this delay for bang–bang
operation.

The edge-triggered fully static flop designs of Chap. 3 such as the master-slave
latch (flop) of Fig.3.4 or the sense-amp flip-flop of Fig.3.13 can be used as a bang–
bang phase detector assuming that the design is tuned to meet the design goals out-
lined above. One design goal which won’t be met is the balancing of the setup and
hold times (and tracking across PVT) due to the assymetry in the clock and data path
in any regular flip-flop. One way around this problem is illustrated in Fig.6.5 [1].

CLKOUT LAGGING

D Q

D Q

CLKOUT

CLKIN

CLKOUT LEADING

Fig. 6.5. Symmetric phase detector out of asymmetric flops
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In a single-flop phase detector, the feedback clock leading decision depends on the
setup time and the feedback clock lagging decision depends on the hold time. Asym-
metry between these two properties can introduce a systematic phase error. In the
coupled flops of Fig.6.5, both decisions depend on the setup time of the flop and
assuming identical flops, the systematic phase error is removed. The coupled flops
of Fig.6.5 are also a virtual ternary phase detector where a 11 or 00 state can be
interpreted as a NOP (no operation) where no adjustment to the delay line takes
place.

A flip-flop design that addresses all design goals outlined above is certainly pos-
sible. Figure 6.6 shows a non-traditional flop design used as a phase detector in
[2]. CLKIN constitutes the clock input and CLKOUT is the data input. This edge-
triggered flop is composed of three separate RS latches. Latch (A1,A2) is the master
latch, latch (C1,C2) is the slave latch, and latch (B1,B2) is an auxiliary latch whose
additional state is necessary for correct operation. Setup and hold timing behavior
is entirely set by the master latch. The auxiliary latch is not in the signal path dur-
ing sampling and the slave latch only affects clock-Q delay which is not relevant
for bang–bang phase detector operation. Gates D1 and D2 are only present for load
balancing along the CLKIN and CLKOUT paths.

t2
CLKIN

CLKOUT

LEADING

LAGGING
A1

A2

B1

B2 C1

C2

D1

D2

t0

t1

t3

Fig. 6.6. Bang–bang phase detector. Reproduced with permission in a form similar to that in
[2], c©1988 IEEE

Table 6.1 shows a truth table for the internal nodes t0–t3 of Fig.6.6. We observe
that when CLKIN = 0, the inputs t1 and t2 of the slave latch are at logic 1 which
means that the phase detector outputs are holding. On the positive edge of CLKIN,
the internal nodes will assume a value conditional on the state of CLKOUT around
the sampling edge, and the slave latch will be updated accordingly. The full operation
of this structure is illustrated in the state sequence Tables 6.2 and 6.3 which show
the sequence of internal node and output values for CLKOUT lagging and leading,
respectively.
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Table 6.1. Truth table for bang–bang phase detector internal nodes

CLKIN CLKOUT t0 t1 t2 t3

0 0 0 1 1 1
0 1 1 1 1 0
1 0 Hold Hold t1 1
1 1 t3 t3 Hold Hold

Table 6.2. State sequence for CLKOUT lagging CLKIN

CLKIN CLKOUT t0 t1 t2 t3 Leading Lagging

0 0 0 1 1 1 Hold Hold
1 0 0 1 0 1 0 1
1 1 0 1 0 1 0 1
0 1 1 1 1 0 0 (Hold) 1 (Hold)
0 0 0 1 1 1 0 (Hold) 1 (Hold)

Table 6.3. State sequence for CLKOUT leading CLKIN

CLKIN CLKOUT t0 t1 t2 t3 Leading Lagging

0 0 0 1 1 1 Hold Hold
0 1 1 1 1 0 Hold Hold
1 1 1 0 1 0 1 0
1 0 1 0 1 1 1 0
0 0 0 1 1 1 1 (Hold) 0 (Hold)

The sampling window of this phase detector is set entirely by the master latch
(A1,A2). The setup and hold times of interest occur when the CLKIN and CLKOUT
positive edges are virtually coincident. The setup time is set by the delay difference
of NAND gate A2 on a 1-0 transition on node t3 and the delay of NAND gate A1 on
a 1-0 transition on node t2:

Ts = td(A2) − td(A1). (6.3)

Similarly, the hold time is:

Th = td(A1) − td(A2). (6.4)

Even though the setup and hold time of this phase detector can be minimized by re-
moving all static bias from physical design, the true parameters should be determined
statistically through Monte Carlo simulations. A positive setup and hold time must
be determined that will guarantee correct decision with arbitrarily high probability
in the presence of random process variations.
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The phase detector of Fig.6.6 can satisfy all design requirements including be-
ing fully static and having nominally small and equal setup and hold times. More-
over, it is a true single phase design which requires no inversion on the clock or
data inputs, thus, minimizing setup and hold requirements. The author has been
hard pressed to find a better overall design with good portability across process
nodes.

6.4.1 Metastability

A bang–bang phase detector will produce the correct lead/lag decision if the con-
trolled clock input falls outside its sampling window (dsw). A DLL in the locked
state though will cause frequent controlled clock edges to fall within dsw. A naive
approach to this issue would be to assume that in this situation a wrong deci-
sion coupled with a small DCDL resolution dr will not cause a DLL failure but
rather a small increase in the DLL phase error which can be accommodated by the
application.

A fourteenth century French philosopher Jean Buridan postulated that a donkey
located at equal distances between two bales of hay should theoretically starve to
death because it will be equally attracted to both [3, 4]. A more precise articulation
of this principle in the words of Lamport [4] is as follows:

Buridan’s Principle: A discrete decision based upon an input having a con-
tinuous range of values cannot be made within a bounded length of time.

The continuous variable in the Buridan example is the position of the donkey
along the axis connecting the two bales as a function of time and initial position. The
discrete decision is which bale of hay to consume. In the case of the phase detector,
the continuous variable is the voltage at the cross-coupled nodes of the flip-flop state
element as a function of time and initial voltage. In this case, the initial voltage refers
to the voltage established at the cross-coupled nodes right after sampling the flop data
input. The discrete decision is whether a particular node will converge to logic 0 or
logic 1.

This is of course the well-known synchronization failure problem [3]. No one
can build a phase detector that can guarantee a valid logic output in bounded time
if the controlled clock falls within the dsw established by the sampling clock. In
this case, the output can be at an undefined logic level (metastable state) for an
arbitrarily long time, and eventually this undefined level may be interpreted by
two separate logic receivers as different logic values. This can cause catastrophic
DLL failure because it can drive the control automaton into a wrong or undefined
state. Metastability in static flops has been extensively studied and observed in
practice [5].

Although it is not possible to build a phase detector which will never experi-
ence metastability for unbounded time, it is possible to design a phase detector that
minimizes the probability of system failure. We will study this problem by deriving
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an expression for the voltage in the cross coupled gates inside the phase detector as
a function of time and initial conditions. Then, we will assign a probability mea-
sure to two events: Entering a metastable condition at time t = 0 and still being in
a metastable condition at time t = td . Finally, we will derive an expression for the
mean-time-between-failures (MTBF) which provides an indication of how often we
can expect catastrophic synchronization failures in a DLL.

We develop a first order metastability model based on the analysis of Veendrick
[6]. We begin by assuming a linear voltage transfer function for a CMOS inverter
(for normalized supply voltage):

Vo = −A(Vi −Vsw)+0.5, (6.5)

where Vi and Vo are the voltages at the input and output of the inverter, respectively,
Vsw is the switching threshold (defined as the value of Vi for which Vo = 0.5) and A is
a large positive number denoting the inverter gain. There is an underlying assumption
that Vo is further processed by a nonlinear limiter which clamps Vo to 1 for all Vo > 1
and also clamps Vo to 0 for all Vo < 0. All voltages are normalized (Vi,Vo,Vsw) and
assume values between 0 and 1. Figure 6.7 plots Eq. (6.5) for A = 10, Vsw = 0.5.
Figure 6.8 plots Eq. (6.5) for various A and Vsw parameter values.

Cross-coupling two inverters results in three equilibrium positions (Fig.6.9): Two
stable positions (a small voltage perturbation will result in the system canceling it out
and remaining in the same state) that signify the two memory states, and an unstable
equilibrium position (a small voltage perturbation will result in the system leaving
this state and assuming one of the two stable states) signifying the metastable state.
The metastable voltage Vm that the two system nodes converge is a function of the
inverter gain A and switching threshold Vsw and can be computed easily by setting
Vi = Vo = Vm in Eq. (6.5) (Fig.6.10):

Vm =
2AVsw +1
2(A+1)

. (6.6)

We introduce transient behavior in the cross-coupled inverter model by adding
an RC output stage to the ideal gain elements along the lines of [6] as shown in
Fig.6.11. We omit the limiters and make the assumption that this model is only valid
for inverter input voltages that fall in the linear region of the transfer function Vsw −
0.5/A ≤Vi ≤Vsw +0.5/A (Fig.6.7).

We assume that the sampling switch is ideal, and that clocking this latch consists
of establishing the following initial conditions at t = 0 (please note the change of
variable names V1(t) and V2(t) in Fig.6.11):

V2(0) = V0, (6.7)

V1(0) = −A(V0 −Vsw)+0.5, (6.8)
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We want to derive an analytical expression for V1(t). We begin by enforcing KCL
at V1(t) and V2(t), respectively:

dV1(t)
dt

+
1

RC
V1(t)+

A
RC

V2(t)−
AVsw +0.5

RC
= 0, (6.9)

dV2(t)
dt

+
1

RC
V2(t)+

A
RC

V1(t)−
AVsw +0.5

RC
= 0. (6.10)
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In order to simplify the analysis, we introduce two new functions:

Vd(t) = V1(t)−V2(t),
Vs(t) = V1(t)+V2(t).
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Fig. 6.11. Small signal model of cross-coupled inverters. Reproduced with permission in a
form similar to that in [6], c©1980 IEEE

Subtracting (6.10) from (6.9) yields:

dVd(t)
dt

− A−1
RC

Vd(t) = 0. (6.11)

Adding (6.10) to (6.9) yields:

dVs(t)
dt

+
A+1
RC

Vs(t)−
2AVsw +1

RC
= 0. (6.12)

Initial conditions for Vd(t) and Vs(t) have been established during sampling:

Vd(0) = V1(0)−V2(0),

Vs(0) = V1(0)+V2(0).

The solution of (6.11) is

Vd(t) = [V1(0)−V2(0)]e
A−1
RC t . (6.13)

The solution of (6.12) is

Vs(t) =
(

V1(0)+V2(0)− 2AVsw +1
A+1

)
e−

A+1
RC t +

2AVsw +1
A+1

. (6.14)
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Expression (6.14) can be simplified by substituting the expression for the metastable
voltage (6.6):

Vs(t) = [V1(0)+V2(0)−2Vm]e−
A+1
RC t +Vm. (6.15)

Reverting back to the original variable V1(t), we have

V1(t) =
(

V1(0)+V2(0)
2

−Vm

)
e−

A+1
RC t +

V1(0)−V2(0)
2

e
A−1
RC t +Vm. (6.16)

Equation (6.16) can be simplified and become more meaningful if we make the
following observation: The decaying exponential quickly vanishes with increasing t
and the expression is dominated by the increasing exponential. We can approximate
the expression above by only keeping the positive exponential with its coefficient
adjusted for the initial condition:

V1(t) = (V1(0)−Vm)e
A−1
RC t +Vm. (6.17)

Equation (6.17) is fundamental in the description of cross-coupled circuits and
states that a perturbation from the unstable equilibrium position Vm results in a time-
exponential path toward a stable state. We note that Eq. (6.17) has a consistent
solution for V1(t = 0) and also that for V1(0) = Vm, we have V1(t) = Vm for all t
which is another way of saying that a metastable state may persist indefinitely. We
also note that Eq. (6.17) is identical to Eq. (1-18) in [3] although the derivation is
very different. Mead and Conway derive the cross-coupled inverter node equation
starting from basic circuit relationships in a depletion-loaded NMOS cross-coupled
pair.

It is important to understand that Eq. (6.17) is only valid for node voltages in
close proximity to the metastable voltage Vm. Both initial conditions V1(0) and V2(0)
must lie in the shaded regions of Fig.6.12 and be related through the gain curve. Un-
less this is true, the assumptions made during the derivation of (6.17) (both inverters
are in their linear region) are no longer operative. We can still make the assertion that
Eq. (6.17) fully describes the metastable state because reaching the voltage limit of
the above equation signifies the exit from metastability: At that point, the node volt-
age has reached a value outside the linear gain limits and any receiver with a similar
gain curve will interpret it as a well-defined logic state. Figure 6.13 plots (6.17) for
various initial conditions of V1(0)−Vm and exhibits the exponential nature of the
trajectory leading the node voltage out of the metastable state.

Metastability is a stochastic phenomenon and must be studied with probabilistic
tools. Equation (6.17) states that there exists an initial condition V1(0) = Vm which
will cause the phase detector to lie in the metastable state indefinitely. At the same
time though, if V1(t) is modeled as a continuous random variable, then the probability
of V1(t) assuming a discrete value Vm vanishes. It is not possible to design a perfect
phase detector, one that is guaranteed not to lie in the metastable state indefinitely.
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Fig. 6.12. Valid node voltage region for Eq. (6.17)

It is possible though to design a phase detector that has an arbitrarily small condi-
tional probability of being in the metastable state at a given time td assuming it was
in the metastable state at time t = 0.

Before proceeding to define the problem in stochastic terms, let us simplify
Eq. (6.17) by referring all voltages to Vm instead of ground [6]:

V (t) = V1e
t

τm , (6.18)

V (t) = V1(t)−Vm, (6.19)

V1 = V1(0)−Vm, (6.20)

τm =
RC

A−1
. (6.21)

Furthermore, we need to state two assumptions:

• We consider a phase detector to be metastable when its output voltage V1(t) is
within ΔV of Vm:

|V (t)| < ΔV, (6.22)
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where ΔV is a phase detector/synchronizer parameter and is the maximum volt-
age deviation from Vm which will still guarantee that both cross-coupled nodes
are in the linear gain region of the two cross-coupled CMOS gates.

• The initial condition V1 is a random variable uniformly distributed between −ΔV
and ΔV . By definition then, the system is metastable at t = 0.

We wish to quantify the probability that the phase detector is still metastable at
t = td given that it is metastable at t = 0:

Pr(|V (td)| < ΔV ) = Pr(
∣∣∣V1e

td
τm

∣∣∣< ΔV ). (6.23)

Multiplying both sides of the event inequality in (6.23) with e−
td
τm yields:

Pr(|V1| < ΔV e−
td
τm ) = e−

td
τm . (6.24)

The last equation stems from the fact that V1 is uniformly distributed between −ΔV
and ΔV . We can arrive at the same result using a different approach [3]: Let us
assume that the exit from the metastable state can be modeled as the first arrival
of a Poisson process with rate λ . Modeling it as a Poisson arrival implies that the
probability of leaving the metastable state within a very small time interval Δ t is
proportional to the duration of the interval and equal to λΔ t. This makes physical
sense since in general, Poisson processes are heavily used to model simple stochastic
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phenomena in continuous time. The probability density function of the time until the
first Poisson arrival (l1) is given by the following Eq. ([7]):

fl1(t) = λe−λ t . (6.25)

The probability that the phase detector is still metastable at time td is given by the
following expression:

Pr(l1 > td) =

∞∫

td

λe−λ tdt = e−λ td . (6.26)

For λ = 1/τm, expression (6.26) is in agreement with (6.24).
Equation (6.24) describes a conditional probability where the conditioning event

is |V1| < ΔV (phase detector is metastable at time t = 0). We will now quantify the
probability of the conditioning event and determine the overall unconditional proba-
bility of phase detector failure. Let us assume that in the DLL locked state, the feed-
back clock edges are uniformly distributed between −dr and dr with respect to the
sampling reference clock edge (where dr is the DCDL resolution). This is a reason-
able assumption to make assuming that the digital control module will be designed
with a small ±1 LSB limit cycle and various noise processes will add uncertainty to
the feedback clock edges. We further assume a feedback clock slew rate of L in V/s.
Figure 6.14 shows graphically that such a distribution of feedback edges will cause
a uniform distribution of sampled voltages with a range equal to 2Ldr. The probabil-
ity of the conditioning event is, therefore, ΔV/(Ldr), and the overall phase detector
unconditional failure probability at td is,

Pr(Metastable at td) =
ΔV
Ldr

e−
td
τm . (6.27)

So far, we have made enough assumptions and simplified our model sufficiently
to be able to derive a simple formula for ΔV , the sampled voltage deviation from
Vm which will place a cross-coupled structure in a metastable state. Without loss of
generality, we can simplify the analysis by assuming Vm = Vsw = 0.5 in Eq. (6.5)
(all voltages are normalized with respect to the nominal supply voltage). The range
of input voltages which will cause a cross-coupled structure to become metastable
should be determined by requiring that the result of applying the inverter transfer
function (6.5) to such input voltage should yield a voltage which is still in the linear
range of the same transfer function (shown in Fig.6.7). If this is not the case, then a
logic gate with similar gain will interpret the cross-coupled output as a discrete logic
value. Moreover, the second cross-coupled gate will also interpret such an output as
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Fig. 6.14. Determining the probability of entering metastability

a discrete logic value, and the latch will converge to a non-metastable state as soon as
the sample switch opens up. It is straightforward to calculate that the above condition
will be satisfied for:

ΔV =
1

2A2 . (6.28)

Let us now briefly focus on td , the allowed metastability resolution time. For a
digital DLL with a bang–bang phase detector, td is at least equal to the reference
clock period T . It is also common to add additional synchronization stages and ef-
fectively extend the resolution time to nT . Updating Eq. (6.27) with our latest obser-
vations and also expanding the expression for τm we have,

Pr(PD Failure) =
1

2nA2Ldr
e−

A−1
roC nT , (6.29)

where
dr DCDL resolution
L Feedback clock edge rate
ro Small signal output resistance of gate around Vm.

Should be small signal saturation resistance of pullup device
in parallel with pulldown device
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A Small signal gate gain. Should be gmro where gm is pullup transconductance
in saturation in parallel with pulldown transconductance.

C Cross-coupled node capacitance
T Reference clock period
n Number of synchronization stages including the phase detector

An additional scaling factor of 1/n has been included to account for the fact that a
digital controller typically implements a 1/n correction issue rate in order to min-
imize limit cycle amplitude and guarantee stability (Sect. 6.6). In such a case, the
controller only looks at the output of the phase detector once every n cycles and the
probability of entering a metastable state must be scaled accordingly. Equation (6.29)
quantifies the risk of DLL failure for T seconds of operation. An alternative way of
expressing this risk is the mean-time-between-failures (MTBF):

MTBF =T Pr(PD Failure). (6.30)

The MTBF figure of merit is typically expressed in years and signifies the average
duration of error-free operation. In digital system applications, an MTBF in excess
of 10–100 years is typically desired.

An Example of Phase Detector Failure Calculation

It is important to realize that Eq. (6.29) is based on a number of assumptions and ap-
proximations such as the inverter piecewise linear transfer function of Eq. (6.5). Nev-
ertheless, it captures the right dependencies on design parameters and can be used
as a phase detector design guideline. The MTBF value predicted by (6.30) should
have substantial margin of a few orders of magnitude to guarantee correct operation
even in the presence of modeling inaccuracies that can affect the final result in an
exponential nature.

Although it is certainly possible to assign circuit parameters to all contributing
factors of Eq. (6.29) [6], it is probably much easier to estimate MTBF using spice
small signal analysis around Vm. Figure 6.15 shows the setup of a spice AC analysis
for a 45 nm cross-coupled inverter using 45 nm bulk spice predictive models [8–10].
A self-biased inverter is used to compute the metastable voltage (Vbias in Fig.6.15)
which is then used as the bias point through an ideal buffer for a cross-coupled pair
of identical sizing. An AC source is cascaded in series with the bias point to calculate
gain, output resistance, and node capacitance.

For this example, Table 6.4 shows the MTBF calculation under certain assump-
tions for L, n, T , and dr. The MTBF calculation is very sensitive to the metastability
time constant (τm), and the parameters that affect it because of the exponential de-
pendence. As an example, if the node capacitance gets doubled from the value
in Table 6.4 due to the necessary addition of a receiving gate, MTBF becomes
4.7624× 109 years. If it triples due to poor phase detector design, MTBF will be-
come 24.58 years.
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Table 6.4. Example MTBF calculation for the circuit of Fig. 6.15

Parameter Value Units

Clock period (T ) 1×10−9 s
Slew rate (L) 1×1010 V/s
DLL subsampling factor (n) 1 –
DLL resolution (dr) 50×10−12 s

Gain (A) 4.5456 –
Output resistance (ro) 9.3079×103 Ω
Node capacitance (C) 3.3271×10−15 F

Probability of entering metastability: 1
2nA2Ldr

0.0484 –

Metastability time constant: τm = roC
A−1 8.7343×10−12 s

Conditional probability of being metastable at nT : e−
nT
τm 1.8928×10−50 –

Unconditional synchronization failure probability: 1
2nA2Ldr

e−
nT
τm 9.16×10−52 –

MTBF 3.4615×1034 years

All devices are minimum length (45nm)

AC
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0.2µm

0.63µm

0.2µm

0.63µm

0.2µm

Vbias vi vo

Fig. 6.15. Determining MTBF with a spice simulation

6.5 DCDL Design

There is a very broad range of delay line design options limited only by designer
imagination. This section provides a structured overview of various DCDL design
approaches. The structure based on DCDL characteristics adopted for this section
does not follow a widely accepted classification in the field but is merely done for
ease of presentation. Moreover, this section is by no means an all-inclusive exposition
of all possible design options. It can be considered a stratified sampling of the design
space that presents various alternatives based on the main DCDL characteristics of
Sect. 6.2 (Dmin,Dmax,dr). Additional characteristics (such as input capacitance, lin-
earity, and potential for synchronous vs. asynchronous setting change) will also be
identified.
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For ease of presentation, we divide DCDLs into two main categories based on
dr: Gate-delay DCDLs (coarse) and Subgate-delay DCDLs (fine).

6.5.1 Gate-Delay DCDLs

Gate-delay DCDLs can be constructed by cascading standard CMOS logic gates
to form a delay chain with intermediate outputs routed to a high-fanin multiplex-
ing structure. Alternatively, the chain length can be modulated using low-fanin dis-
tributed multiplexing structures as part of the delay cell. They exhibit relatively small
Dmin, arbitrarily high Dmax but relatively coarse dr by design.

A very popular coarse delay line is shown in Fig.6.16 [11, 12]. This particular
implementation has four hierarchical delay stages between input A and output Y . It
is controlled by a bidirectional shift register with one-hot encoding (Q[3 : 0]). Res-
olution dr is 2TG, where TG is the average CMOS gate delay. NAND gates labeled
with the letter B form a distributed multiplexer that controls the entry point of the
clock (A input) in this cascaded structure. One important observation is that this de-
sign presents substantial load to the clock especially for a large number of delay
stages since all delay element inputs are shorted. Clock buffering may be necessary
which will increase Dmin to a value larger than 2TG. An arbitrarily high number of
stages can be cascaded to increase dynamic range provided that input A is sufficiently
buffered. Dmax is 2NTG, where N is the number of delay stages.

The folded design of Fig.6.17 eliminates the heavily loaded A input by modulat-
ing the delay line length in a telescopic fashion. This design is also controlled by a
bidirectional one-hot shift register. For Q[3 : 0] = 0001 the signal path is Cell 0.A+
Cell 0.B. For Q[3 : 0] = 0010 the path is Cell 0.C + Cell 1.A + Cell 1.B + Cell 0.B.
The length modulation of this structure can be compared to the sliding action of a
trombone. The wrap-around connection between IN1 and OUT 1 of Delay Cell 3 is
not part of the delayed signal path but is necessary to establish the propagating con-
dition for the B NAND gate associated with the delay cell that constitutes the final
telescope link (CTL = 1). If the delay cell had non inverting forward and reverse
paths, then input IN1 of Delay Cell 3 could have been hard-wired to ground. The
wrap-around connection makes it toggle between odd and even settings to ensure
that the signal will propagate for all setting values. The characteristics of the tele-
scopic line are identical to the previous one with the sole exception that Dmin can be
2TG since there is no need for input buffering.

A straightforward coarse DCDL implementation is shown in Fig.6.18. Two cas-
caded inverters constitute the delay element and a binary multiplexer selects the ap-
propriate output tap. Dmin is equal to 2TG + log2 N×TG and dr is still 2TG. This delay
line can be controlled by a binary counter (Q[1 : 0]) requiring log2 N storage elements
as opposed to the N storage elements of the previous two designs. The control struc-
ture of this DCDL scales better with N as opposed to the NAND-based ones. Dmin
also increases though with increasing N and for certain applications this may be a
concern.

DCDLs with a single TG resolution are also possible. Figure 6.19 illustrates one
based on a differential delay element. The relative sizing of the cross-coupled devices
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Fig. 6.16. NAND-based registered-controlled 4-stage delay line

vs. the forward devices can be used to fine tune dr as long as writing the cross-
coupled pair can be safely guaranteed across all PVT conditions. Figure 6.20 shows
a single-ended single TG DCDL with a conditionally inverting output stage. The
output XNOR gate must be designed with equal delays from both input polarities to
the output to ensure linearity.

Design options are certainly not limited to the five examples shown above. Not
only different organizations are possible but also different logic families (i.e., dy-
namic or low swing current model logic) can be used as the base for the delay
cell and the multiplexing structure. The characteristics of the examples presented
so far are summarized in Table 6.5. Further assumptions are that the single-ended-to-
differential converter of Fig.6.19 and the XNOR of Fig.6.20 can be implemented
with two gates and, therefore, add 2TG to Dmin and Dmax of the corresponding
DCDLs.

Physical design is very important in precisely controlling DCDL specifications.
All delay cells should be identical, and metal capacitance should be thoroughly char-
acterized since it will probably be responsible for a substantial percentage of the cell
delay. Post-layout simulation-based characterization across all PVT corners should
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Fig. 6.18. Inverter-based logarithmic 4-stage delay line

be done in order to establish the ranges for Dmin, Dmax, and dr and ensure that
the application requirements are met. In most cases, coarse DCDLs will be oper-
ating on clock signals, where duty cycle fidelity is important. If there are significant
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Fig. 6.20. Inverter-based conditional-output 4-stage delay line

Table 6.5. Characteristics of coarse DCDLs

Dmin Dmax dr Dynamic range Linearity CTL flops

NAND (Fig. 6.16) > 2TG > 2NTG 2TG 2(N −1)TG Good N

Tel. (Fig. 6.17) 2TG 2NTG 2TG 2(N −1)TG Good N

Log. (Fig. 6.18) TG(2+ log2 N) TG(2N + log2 N) 2TG 2(N −1)TG Good log2 N

Diff. (Fig. 6.19) TG(3+ log2 N) TG(2+N + log2 N) TG (N −1)TG Good log2 N

Cond. (Fig. 6.20) TG(3+ log2 N) TG(2+N + log2 N) TG (N −1)TG Good log2 N
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imbalances between rise vs. fall delay in the delay cell and the multiplexing structure,
severe duty cycle distortion may occur at the output signal especially for large delay
settings. In extreme cases of high frequency clocks and long DCDLs, the square wave
may completely disappear and a DC value may be observed at the output. NMOS vs.
PMOS ratios for equal rise and fall times should be used and if possible inverting
logic gates should be instantiated in cascaded pairs with similar fanouts to ensure
equal treatment of positive vs. negative edges and good duty cycle PVT tracking.

Under certain circumstances, the NAND-based DCDLs of Figs. 6.16 and 6.17
can have a power advantage. Their switching activity is setting dependent and will
exhibit reduced switching power at lower settings. A complete power comparison of
the DCDLs presented so far is process and application dependent and will provide
little if any additional insight.

Synchronous vs. Asynchronous Operation in Coarse DCDLs

DCDL outputs are typically clock signals and as such must always be well behaved
and not undergo spurious transitions (glitches) that may cause erroneous circuit op-
eration. In order to demonstrate an important differentiation among DCDLs, we will
adopt the ad hoc definition that a DCDL capable of asynchronous operation is a
DCDL that can undergo a valid setting change (±1) at any time without the possibil-
ity of a glitch at the output. On the other hand, a DCDL capable of synchronous only
operation is a DCDL that requires that valid setting changes be timed synchronously
with respect to the input clock in order to guarantee glitch-free output behavior.

DCDLs are essentially combinational (stateless) circuits with clock being simply
another input. As a result, spurious transitions at the output are certainly possible un-
less all inputs are guaranteed to transition at the same time and all inputs have equal
delay paths to the output. Neither is true in the DCDL case. Clock is not guaranteed
to transition at the same time as the control settings and clock has multiple paths
to the DCDL output through the delay element chain. Under certain circumstances
though, and using simple analysis, we can convince ourselves that a certain class of
DCDLs can have a glitch-free output. Before proceeding with the analysis, we make
two important assumptions: We are considering DCDLs where all the control setting
inputs have equal delay paths to the output, and we only consider setting changes
that increment or decrement the current setting by one position.

A simplified delay line that is consistent with these assumptions is shown in
Fig.6.21. It contains a single delay element of delay dr and a 2-input multiplexer.
For simplicity, we assume that the multiplexer input-to-output and select-to-output
delays are both equal to tm. The timing diagram on the right shows the conditions that
can generate a spurious output transition. The select line needs to transition while the
clock edge goes through the delay element. Furthermore, dr needs to be large with
respect to tm for such a glitch to be formed. In reality, if dr is reasonably close to tm
the glitch will never form because of low pass filtering. The right design approach is
to set up the conditions of Fig.6.21 and simulate across all PVT conditions to ensure
that the glitch won’t form.
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Fig. 6.21. DCDL spurious output transition

Interestingly enough, none of the DCDLs in Figs. 6.16 through 6.20 are glitch-
free. Their setting vectors do not have equal delays to the output, and therefore the
simple analysis of Fig.6.21 does not apply. They have a lot more exposure to spu-
rious transitions, and their analysis is rather ad-hoc and can be quite cumbersome.
It is safe to create a design restriction stating that only coarse DCDLs with equal
setting-to-output delays should be considered when glitch free operation is neces-
sary. Distributed and logarithmic multiplexer structures are not allowed.

The simple DCDL of Fig.6.18 can be a candidate for glitch-free operation if
the output logarithmic multiplexer is replaced by a one-hot NAND-based (sum-of-
products) multiplexing structure where each control line is at the same logic depth.
Another potential solution is to pad the most significant bit with additional delay and
the problem transforms to heterogeneous structure delay tracking across PVT and
can be rather process-specific.

The coarse DCDLs of Figs. 6.16 through 6.20 are typically used in applications
where the clock is not utilized while settings transition. Alternatively, they can be
used in a synchronous fashion. The control inputs must be timed in a way that guar-
antees that when they change, the entire delay chain is at a constant value. This can
be accomplished by latching the settings with an appropriate strobe which can either
be the input clock or a delayed version of it (perhaps a particular delay chain tap)
that meets this timing restriction. Extensive validation is required.

They can also be used asynchronously by adding significant hardware resources
and control complexity. Such an example is shown in Fig.6.22. We have a pair of
identical delay lines. Only one is on-line at any single time. When there is a settings
change, it is performed on the off-line DCDL. When the change has stabilized and
all spurious transitions are gone, the output multiplexer is flipped and the new set-
tings change shows up at the output. At this point, the analysis of Fig.6.21 applies.
In addition to consuming large hardware resources, this structure has a very subtle
issue. It is based on the assumption that if we have two instantiations of a delay line
on silicon and one has a setting equal to n and the other has a setting equal to n+1,
then the one with the n + 1 setting will have a longer delay. This may not be true
in deep submicron processes due to large random Vt variation. Monte Carlo analysis
can show a substantial probability of such a case. If this happens, then the composite
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delay line is non-monotonic. This will affect performance, and under certain cir-
cumstances, it may confuse the control automaton and cause catastrophic failure. A
better approach is shown in Fig.6.23 where a single dual output delay line is used. It
uses less hardware and does not have potential monotonicity issues. It has the same
control complexity though.

DELAY LINE 1

SETTING0

SETTING1

DELAY LINE 0

SEL

0

1
OUTCLK

Fig. 6.22. Duplicating DCDLs for glitch suppression
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Y0

Q0[1]

Q0[0]
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Q1[0]

Q1[1]

Y1

OUT

Fig. 6.23. Dual output DCDL for glitch suppression

6.5.2 Subgate-Delay DCDLs

Phase lock accuracy requirements can be tighter than a gate delay. In such applica-
tions, a subgate-delay (fine) DCDL must be employed.

A class of fine DCDLs relies on variable RC delays for delay generation. Two
examples of fine DCDL stages are shown in Fig.6.24. The delay stage on the
left is based on variable cell driving resistance. Turning on more device branches
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Fig. 6.24. RC-Based fine DCDL stages

through control vector Q[2 : 0] reduces the overall RC delay through the stage.
Transistors in the variable branches are sized for linear control vector encodings.
Control bits Q[2 : 0] are thermometer encoded and have a fixed switching order (i.e.,
000 → 001 → 011 → 111). Logarithmic encoding is not possible due to the non-
linearity of parallel resistance addition. Table 6.6 shows a normalized example of
branch sizing for linearity. The example should be considered as a starting point only
and process specific fine tuning will be required. The number of variable branches
is limited by the extreme sizing that will be required to maintain linearity for an in-
creasing number of control bits. The dynamic range can be extended by cascading
multiple such stages at the expense of increasing Dmin.

Table 6.6. Variable resistance DCDL branch sizing (thermometer-encoded control)

Normalized width Equivalent resistance Capacitance RC delay
Always-on branch (AO) 1 1 4 4
Branch 0 + AO 1/3 + 1 3/4 4 3
Branch 1 + 0 + AO 2/3 + 1/3 + 1 1/2 4 2
Branch 2 + 1 + 0 + AO 2 + 2/3 + 1/3 + 1 1/4 4 1

The stage on the right is based on variable output capacitance. Turning on more
capacitive branches increases the RC delay through the cell. Both linear (thermome-
ter) and logarithmic (binary) control encoding are possible due to the linearity of
parallel capacitance addition. Output capacitors can be metal-based or device-based
depending on accuracy and linearity requirements. Per-stage dynamic range is lim-
ited by the maximum edge rate tolerated by the design. The dynamic range can be
extended by cascading multiple stages as in the previous case.

An alternative method of constructing fine delay lines is shown in Fig.6.25. It
is based on the delay difference between the top vs. the bottom delay path. Control
encoding is thermometer-based. This organization can achieve PVT-independent lin-
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Fig. 6.25. Fine DCDL based on delay differences

earity subject only to random process variation. The main drawback is that both lin-
earity and dynamic range are achieved through large Dmin increases which can be a
problem for certain applications.

An additional method of constructing subgate delays based on phase interpola-
tion will be discussed in Sect. 6.5.3.

The delay lines of Figs. 6.24 and 6.25 can have resolution on the order of a few
picoseconds but a very limited dynamic range. They can be operated asynchronously
without the possibility of a glitch forming at the output. The DCDLs of Fig.6.24 vary
resistance and capacitance. Settings changes are not considered combinational logic
switching events. On the other hand, the multiplexer-based DCDL of Fig.6.25 can
be analyzed using the method of Fig.6.21 with a much smaller dr.

6.5.3 Resolution vs. Dynamic Range in DCDLs

In typical applications, both fine resolution and large dynamic range are highly desir-
able. High resolution directly affects phase match accuracy. A large dynamic range
ensures that the DLL won’t be the limiting factor in selecting input clock frequencies
or VMIN for the overall design.

From the previous analysis on DCDLs, it would seem that designers must per-
form a tradeoff between resolution and range. This is rarely true in real applications
since both are essential. Instead of using a single delay line that compromises dr in
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favor of dynamic range for a given number of settings, multiple delay lines can be
employed with different properties so that the overall design target is met [13]. Typi-
cally, a coarse high dynamic range DCDL is cascaded with a fine low dynamic range
subgate DCDL to achieve both specifications. This design decision involves addi-
tional complexity in the control automaton which must first lock the coarse line to an
appropriate setting (which tracks input clock frequency and static process and volt-
age variations) and then engage the fine delay line which tracks dynamic voltage and
temperature variations. Depending on control implementation, the coarse DCDL can
readily be of the synchronous type (as described in Sect. 6.5.1) if it is locked only
once and settings never change while in mission mode. In this case, the designer
must ensure that the fine delay line has enough dynamic range on either side of the
lock point to guarantee phase lock maintenance in the presence of voltage and tem-
perature ramps spanning the entire product voltage-temperature range in the worst
possible scenario. If this is not possible, the control algorithm must ensure repeated
engagement of the coarse DCDL to compensate for large V-T ramps without the pos-
sibility of a large phase change affecting system functionality. Such an example is a
DDR memory incoming strobe phase lock system which engages the coarse DCDL
only when there is no memory transaction present on the bus and, therefore, no one
is looking at the data strobe. While memory reads or writes are in progress, only the
fine DCDL is engaged which should guarantee DLL-induced deterministic jitter on
the order of a few picoseconds and no spurious clock transitions. An additional con-
cern with cascaded DCDLs is increased Dmin which can be shown to be prohibitive
for certain applications since it directly affects the overall minimum supply voltage
allowed (VMIN).

There exists a powerful method of achieving both low dr (high resolution) and
arbitrarily high dynamic range with low Dmin and without cascading DCDLs. It is
based on the “ping-pong” DCDL arrangement of Figs. 6.22 and 6.23 with a phase
interpolator as the output stage instead of the 2-to-1 multiplexer. A phase interpola-
tor receives two input clocks with a phase difference on the order of 1-2 gate delays
and a digital setting value. For a setting equal to zero, the interpolator output simply
delays the early input phase by a fixed amount. For a setting equal to the maxi-
mum possible value, the interpolator output delays the late input phase by the same
amount. For any intermediate setting, the interpolator produces an output clock with
a phase proportional to the applied setting as measured using the output at setting 0
as a reference.

A sample schematic is shown in Fig.6.26. The two separate branches are imple-
mented with tri-state inverters controlled by complementary settings. Typically, the
output is restored with an output inverter (not shown) which also makes the overall
structure non-inverting. For a first order analysis, we will use the methodology and
terminology established in [14] for current-mode reduced-swing structures. The time
delay between the two interpolated phases is Δ t, and it will be used as a parameter
throughout the analysis. We make the following assumptions:

1. The overall output resistance of a branch when fully enabled is R and has no
voltage dependence.
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2. The interpolation setting can be represented by a continuous variable w where
0 ≤ w ≤ 1. When w = 1, the early phase is fully enabled, and the late phase does
not affect the output. When w = 0, the early phase is disabled and only the late
phase controls the output. For any other value, both the early and the late phase
affect the output delay with weights equal to w and 1−w, respectively.
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[n − 1 : 0]
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Fig. 6.26. Full swing phase interpolator (log2 n-bit control)

The interpolator time constant RC (where R is the on-resistance of a fully enabled
branch and C is the output capacitance in Fig.6.26) is a fundamental property which
will affect transfer function linearity as will be shown. Without loss of generality,
we assume that the interpolator is mixing two falling edges (φ0 and φ1) so that the
output waveform is rising. Phase φ0 occurs at time 0 and φ1 occurs at time Δ t. For
0 ≤ t < Δ t, the equivalent circuit is shown in Fig.6.27a. Writing KCL at Vo yields
equation:

dVo(t)
dt

+
1

RC
Vo(t)−

wVDD

RC
= 0, (6.31)

which has the following solution assuming Vo(0) = 0 :

Vo(t) = wVDD(1− e−
t

RC ). (6.32)
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For t ≥ Δ t, both branches pull high and resistors R/w and R/(1−w) are con-
nected in parallel. The equivalent circuit is shown in Fig.6.27b. The governing equa-
tion is:

dVo(t)
dt

+
1

RC
Vo(t)−

VDD

RC
= 0, (6.33)

with the following well-known solution (assuming zero initial conditions):

Vo(t) = VDD(1− e−
t

RC ). (6.34)

a b

Δt ≤ t

C
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Vo 

0 ≤ t < Δt

R/(1−w) C

Vo 

R/w

Fig. 6.27. Phase interpolator equivalent circuits

The overall solution is a composite waveform that consists of Eq. (6.32) for
0 ≤ t < Δ t and Eq. (6.34) for t ≥ Δ t time-shifted by Δ t and adjusted by the ini-
tial condition established by Eq. (6.32) at t = Δ t:

Vo(t) = wVDD(1− e−
t

RC )u(t)u(Δ t − t)+VDD[1− (1−w+we−
Δ t
RC )e−

t−Δ t
RC ]u(t−Δ t),

(6.35)

where u(t) is the unit step function.
Figure 6.28 plots Eq. (6.35) for various Δ t using the interpolator weight w as

a parameter. It is obvious from the VDD/2 crossing point that linearity with respect
to w is a strong function of Δ t. The larger Δ t is with respect to the interpolator
time constant RC, the larger the deviation from linearity with respect to interpola-
tion weight w. This is more clearly shown in Fig.6.29 that shows interpolator delay
transfer function with respect to interpolation weight w using Δ t (delay between two
input phases) as a parameter. The top graph shows absolute inteprolator delay as a
function of w adjusted so that the delay for w = 1 (early phase only affecting the out-
put) is zero. The bottom graph shows the same data but normalized to the same 0−1
range. Linearity is quite good for Δ t � RC but deteriorates quickly for increased
spacing between input phases φ0 and φ1. The interpolator time constant RC is a fun-
damental property that has a strong effect on its linearity. Larger time constants are
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Fig. 6.28. Phase interpolator normalized voltage output for Δ t = 0.5,1,2 (w is decreasing from
1 to 0 in steps of 0.1 from left to right in all three plots)

desired if linearity is important. An effect similar to an increased interpolator RC can
be achieved by slowing the edge rates of input phases φ0 and φ1.

An interpolator based DCDL can achieve both high resolution and high dynamic
range at the expense of increased control complexity. Such a DCDL can easily be
designed to be free from spurious output transitions. When a coarse setting changes
that affects one input of the interpolator, the interpolator weight should be such that
only the other non-changing input affects the output.
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Fig. 6.29. Phase interpolator transfer function for varying Δ t. Top graph reproduced in a form
similar to that in [14], c©1998 Stefanos Sidiropoulos

6.6 Control

There is one major classification that needs to be made regarding digital DLL control:
first order and higher order. A first order digital DLL contains a single DCDL state
element (counter or shift register) that maintains the delay line setting and gets up-
dated through some mechanism based on the phase difference between reference and
controlled clock. In contrast, a second order DLL will have a second counter which
maintains some representation of the frequency or rate of phase change between the
two clocks. The DCDL is then adjusted by combining both such state variables. All
DLL examples in this chapter assume that the reference clock at the phase detector
and the source clock of the DCDL are the same. Therefore, there is no possibility of
a frequency difference between the two inputs of the phase detector. An application
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where a second order control loop would make sense is clock-data recovery, which
is briefly described in Sect. 6.9.4. The rest of this section is only concerned with first
order control and identical frequencies of reference and feedback clocks.

A typical DLL control block contains a state structure that holds the DCDL set-
tings and a mechanism to update the settings based on input from the phase detector.
The state element can be a binary up/down counter if the DCDL has binary encoding.
Different DCDL setting encodings can be easily handled with the addition of com-
binational decoding logic past the main counter. The designer should always keep in
mind that post-flop combinational logic can generate spurious transitions and create
more conditions for glitches at the output of the DCDL. For one-hot DCDL config-
urations, it is more common to use a bidirectional shift register which requires no
decoding and will produce glitch free control outputs.

The simplest control arrangement is shown in Fig.6.30a. It involves a single
up/down counter (or bidirectional shift register) under the direct control of the phase
detector. When the phase detector evaluates to a 1 (controlled clock faster with
respect to the reference), the counter is incremented and the DCDL has a larger
(slower) setting. When the PD evaluates to a 0, the counter is decremented and the
DCDL speeds up. A more general control arrangement is shown in Fig.6.30b. In this
case, a Finite State Machine (FSM) is inserted between the phase detector output
and the counter increment/decrement. The FSM will make setting change decisions
based not only on the phase detector output but also based on internal state. In this
fashion, more complex control algorithms can be implemented which can have a
strong impact on DLL capabilities such as sensitivity to initial conditions, dynamic
range, and stability.

a b

CTL

CLKOUTCNIKL

PD CNT

DCDL

CNT

CTL

CLKIN CLKOUT

PD FSM

DCDL

Fig. 6.30. DLL control options

6.6.1 Sensitivity to Initial Phase

Even though a DLL may contain a DCDL with a large dynamic range, a simplistic
control design may result in an inability to achieve phase lock. An example is shown
in Fig.6.31. Let us assume that the DLL configuration is the one in Fig.6.30a with
Dmin < 0.5T where T is the CLKIN period. The waveforms right after system reset
(zero DCDL setting) are shown on the top part of Fig.6.31. The stateless control de-
sign of Fig.6.30a will attempt to push the DCDL toward the left and match edge 1 of
CLKIN with edge 1 of CLKOUT. If the settings counter wraps around, a very large
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delay will be added to the DCDL and the DLL will either lock to an undesirable
setting (not the minimum delay setting that will achieve phase lock) or will degen-
erate to an oscillation between Dmin and Dmax without ever achieving lock. If the
settings counter is designed not to wrap-around but saturate at the minimum setting,
the DCDL will stay fixed at Dmin and again phase lock will never be achieved.

If on the other hand the FSM of Fig.6.31 (bottom) is inserted between the phase
detector and the settings counter, lock can be easily achieved. The FSM will keep
on incrementing the DCDL settings until a 1-to-0 transition is observed at the phase
detector independent of the initial state of the phase detector output. Such a transition
indicates a lock condition and the state machine will be bouncing back and forth
between states INC and DEC. Edge 1 of CLKOUT will be aligned to edge 2 of
CLKIN.

A word of caution is absolutely essential when a state machine similar to the one
depicted in Fig.6.31 (bottom) is used. This particular FSM is designed to disregard
a 0-to-1 transition from the phase detector and essentially lock the system when a
1-to-0 transition is observed. In reality, a 1-to-0 transition can easily be observed
right after a 0-to-1 when the controlled clock (CLKOUT) phase traverses a negative
edge of the reference clock (CLKIN). When the positive edge of CLKIN is aligned
to the negative edge of CLKOUT the phase detector can undergo multiple transitions
due to internal factors such as a large dead zone where its output is undefined or
external factors such as supply noise and reference clock jitter. If state DEC is entered
(Fig.6.31) while we have positive to negative edge alignment, the system will never

DEC: Decrement DCDL Settings Counter (Active High)

0 1 2 3 4

0 1 2 3 4

PD

PD PD
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INC=1
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DEC=0RESET
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Intended TrajectoryDmin

RESET: State Machine Reset
PD: Phase Detector Output (1 = CLKOUT leads, 0 = CLKOUT lags)
INC: Increment DCDL Settings Counter (Active High)

DEC
INC=0
DEC=1

Fig. 6.31. DLL FSM example for initial condition flexibility
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achieve lock but will likely be pushed back to its reset state. State DEC must only
be entered when a positive CLKOUT edge has just started to lag a positive CLKIN
edge. Otherwise, the phase detector decisions won’t be interpreted correctly and the
DCDL will be moved to the wrong direction.

There are multiple ways that this issue can be addressed. Digital low pass filtering
of the phase detector output can be employed to remove spurious transitions. This
method can reduce the probability of a false lock, but it is hard to show that it can
totally eliminate it. A more robust method is to insert an intermediate state between
LF1 and INC in which the controller will reside for n clock cycles. In this state, the
DCDL setting is incremented n times independent of the phase detector output. In
this way, we can guarantee that when we have negative edge traversal, the DCDL
will be incremented enough to push CLKOUT out of the phase detector sampling
window or dead zone (dsw) given worst case supply noise and jitter conditions. The
number n should be large enough to guarantee n · dr  dsw and at the same time
small enough to guarantee n · dr � 0.5T (where T is the reference clock period) so
that the next positive CLKIN edge is not traversed and the phase detector output
does not change interpretation. This should be a rather loose constraint for most
applications.

6.6.2 Dynamic Range Increase

It is possible to increase the dynamic range of a DLL with the addition of little extra
hardware and incremental complexity in the control automaton. This method as-
sumes that the DCDL output can be conditionally inverted (i.e., XOR output stage)
and that the settings counter or bidirectional shift register can provide a carry out
(CO) output to the FSM indicating that its maximum value has been reached. The
concept is very simple. If the DLL reaches the maximum value of the settings counter
without achieving lock (the phase detector output has not undergone a 1-to-0 transi-
tion), then the DCDL output is inverted, the counter is cleared and the state machine
goes back to the initial state and attempts to lock the inverted DCDL. The inversion
has the effect of adding 180◦ of phase and virtually doubles the DLL dynamic range.
This is shown conceptually in Fig.6.32 (top). An example FSM for this configuration
is shown at the bottom of the figure.

6.6.3 Stability and Bandwidth

At the beginning of this chapter, a claim was made that a digital DLL can be un-
conditionally stable. In this section, we qualify this claim. The stability of feedback
systems is typically analyzed in the frequency domain. A frequency domain model
of a digital DLL is non-trivial and not particularly insightful due to the nonlinear-
ity of a bang–bang phase detector and the sampled nature of the system. Instead, we
choose to revisit the analysis of a linear (analog) delay locked loop, establish stability
conditions and apply the intuition developed to the non-linear digital counterpart. We
follow the methodology and notation of Maneatis in [15]. A very similar approach is
also presented by Yang in [16].
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Fig. 6.32. Doubling DLL dynamic range using conditional inversion

Figure 6.33a shows a simple charge-pump based analog DLL. The phase detec-
tor is linear rather than bang–bang (Sect. 6.4). Its output is a pulse whose width is
proportional to the difference between the CLKIN and CLKOUT phases. The propor-
tional pulse controls a charge pump which integrates a constant current on capacitor
C. The amount and sign of the integrated current (charge) depend on the amount and
sign of the phase difference between the clocks. The capacitor voltage controls an
analog delay line which in turn will adjust until CLKOUT matches CLKIN. There
are many similarities between this analog DLL and the digital counterpart of Fig.6.1.
The settings counter/accumulator inside the control block performs the same ac-
tion as the capacitor and essentially integrates the phase detector output. The main
difference is that the digital DLL is a non-linear system because the correction in
response to the phase error is not proportional but instead has a constant slew rate.



6 Digital Delay Lock Techniques 221

Charge−Pump Based Analog DLL

C

FAST

SLOW

VCDL

CLKIN
CLKOUTPD

ICP

ICP

Frequency Domain Model

+

–
ICP · f CLKIN

DI (s) DO (s)KPD=1 KV CDL(sC )–1

a

b

Fig. 6.33. Analog DLL frequency domain model

An additional important difference is that a digital DLL may have more delay around
the loop due to inherent clock delays in the FSM controller and settings counter. This
can be very important for stability and will be addressed in more detail later on.

A frequency domain model of the analog DLL is shown in Fig.6.33b. The model
terminal variables are dI(t) (input delay), which is defined as the delay of input
CLKIN with respect to an arbitrary point. The output delay of CLKOUT dO(t) is
also defined with respect to the same arbitrary point. The corresponding Laplace
transforms are DI(s) and DO(s). The frequency domain representation of the phase
detector is a simple subtractor with a constant gain of 1 since it generates a pulse
with a width equal to the delay difference between CLKIN and CLKOUT. The units
at the output of the phase detector are seconds (delay). The charge pump model is
also a constant gain since it multiplies the proportional error pulse with a constant
current after normalizing it to the CLKIN period (ICP · fCLKIN, where fCLKIN is the
CLKIN frequency). The units at the output of the charge pump are Amperes (cur-
rent). The charge pump capacitor C acts as an integrator with a transfer function
(sC)−1. The units at the integrator output are Volts. Finally, the Voltage-Controlled
Delay Line (VCDL) is also modeled with a constant gain (KVCDL s/V). The output
variable DO(s) has units of seconds (delay). Writing the loop equation yields:

DO(s) = [DI(s)−DO(s)] · ICP · fCLKIN · KVCDL

sC
. (6.36)

Further manipulation yields the following transfer function [15]:

DO(s)
DI(s)

=
1

1+ s
ωN

, (6.37)
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where

ωN =
ICP ·KVCDL · fCLKIN

C
. (6.38)

The transfer function of Eq. (6.37) is of first order with a single pole at ωN (loop
bandwidth) and is unconditionally stable with a phase margin of 90◦. This is true as
long as the delay around the loop is virtually instantaneous and the phase margin is
not reduced considerably. Even an analog DLL though is a sampled system and there
is loop delay due to the sampled nature of the phase detector: A phase detector mea-
surement won’t be taken until the next positive clock edge, thus, reducing the phase
margin at unity gain. Such margin reduction though is negligible if ωN � 2π fCLKIN.
For all practical purposes, the loop delay can be considered virtually instantaneous
if such delay is much lower than the DLL response time. Maneatis [15] sets the
unconditional stability criterion at ωN = 2π fCLKIN/10.

Multiple authors [17, 18] have pointed out that the simple frequency domain
model of Fig.6.33 does not apply for the class of delay locked loops where the same
reference clock is driving both the phase detector and the DCDL. Figure 6.33 models
the delay line as a 2-terminal block (control input and clock output) and does not
include a feed-forward path from the input reference clock to the output through the
delay line. As a result, such a model cannot accurately model jitter transfer from
input to output clock. The stability analysis changes due to the introduction of a zero
in the first order model. However, unconditional or conditional stability can still be
shown with root locus methods depending on model choice [18].

The main difficulty in applying a similar analysis to the digital DLL lies in the
nonlinear transfer function of the phase detector (Fig.6.2). The linear frequency do-
main analysis is not applicable and the steady state response of such a DLL will be
oscillatory (limit cycle). Prior art [19, 20] has linearized the phase detector response
around the dead zone, which is a valid approach for high CLKIN frequencies, high
DCDL resolutions, and multiple averaged measurements since the expected phase
error will be rather small and comparable to dsw. For lower frequency applications
though, the phase detector will mostly operate in its nonlinear regime.

Before proceeding, let us first define what we mean by stating that a non-linear
DLL is stable. We know for a fact that a DLL with a non-linear (bang–bang) phase
detector will exhibit limit cycle behavior due to the binary nature of the phase detec-
tor and its inability to encode a zero phase error. For the purposes of this discussion,
let us define DLL stability to mean that the expected limit cycle should have by de-
sign the minimum possible amplitude of ±dr. Frequency domain transformation is
not really necessary to assess the stability of such a simple system. The time-domain
behavior of the digital DLL (Fig.6.1) in the locked state can be summarized by the
following difference equations:

e[n] = sgn(dO[n]−dI[n]), (6.39)

dO[n+1] = dO[n]+ e[n]dr, (6.40)
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where e[n] is the error computed by the phase detector (e[n] ∈ {−1,1}), dI[n] is the
input delay at discrete time n (nth CLKIN positive edge), dO[n] is the output delay at
discrete time n and dr is the DCDL resolution. We establish a time-domain stability
criterion as follows: The correction step in Eq. (6.40) at discrete time n should not
produce an error (dO[n + 1]− dI[n + 1]) at n + 1 of the same sign and greater mag-
nitude than (dO[n]−dI[n]) at time n. This criterion is easily satisfied if the correction
term e[n]dr in (6.40) does not result in crossing over two phase boundaries which
will produce a phase error of the same sign (modTCLKIN) and potentially larger mag-
nitude. If dr < 0.5TCLKIN, this should never happen and this constitutes a constraint
that is always met for all practical purposes. A DLL with such a large dr would be
highly impractical.

We now focus on the loop delay argument. Eqs. (6.39) and (6.40) do not capture
the effect of excessive loop delay and the possibility of reduced “phase margin”.
A digital DLL has the potential of introducing substantial loop delay through its
control mechanism and may turn negative feedback into positive. The reasons for
the increased delay can be multiple:

• Additional flip-flop synchronization stages past the phase detector to ensure low
probability of metastability.

• Low pass filtering of the phase detector output to remove spurious transitions and
potentially emulate “ternary” error detection (fast, slow, NOP).

• Deserialization latency in a CDR (clock-data recovery) loop where phase detec-
tion occurs in the divided clock domain on the multiple deserialized bits.

• Pipeline stages in the FSM controller and settings counter.

Let us introduce two more general descriptive DLL design parameters (in addi-
tion to dr, dsw, Dmin and Dmax) to help with the analysis of this issue:

Nd indicates the number of CLKIN delay cycles from the input of the phase detector
to the setting input of the DCDL. This number is an integer with a minimum
value of 1 (delay introduced by the bang–bang phase detector).

Nbw is the inverse of the rate at which the FSM controller issues corrections to the
DCDL (once every Nbwth cycle). One can think as 1/Nbw as the “bandwidth” of
this nonlinear system. The minimum value for Nbw is 1 (controller issues cor-
rections on every cycle) and the maximum value can be arbitrarily high. 1/Nbw
is also referred to as the DLL sampling rate because it signifies the normalized
frequency of looking at the phase detector output.

We introduce a second stability criterion which states that a digital DLL is stable
if Nd < Nbw. This is the equivalent of stating that a a digital delay locked loop is stable
if it won’t issue a DCDL correction before the outcome of the previous correction is
fully evaluated by its control mechanism.

We demonstrate this criterion with a cycle-accurate behavioral model of a DLL
with the characteristics of Table 6.7 running at 250 MHz.

The controller is equivalent to the FSM of Fig.6.31 with the addition of wait
states between the states that update the counter to implement Nbw 	= 1. The modeled
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Table 6.7. DLL behavioral model design parameters

Dmin 1.525 ns Dmax 14.275 ns
dr 0.050 ns dsw 0.0 ns
Nd parameter Nbw 4

DLL has a built-in Nd of 3 (phase detector plus 2 stages in the FSM/counter). We,
therefore, make Nbw equal to 4 to guarantee stability when Nd is minimum. Fig.6.34
shows simulation results (DLL phase error over time) for various Nd values. Case
Nd = 3 satisfies our stability criterion since the phase error changes sign every Nbw
cycles. All other cases fail the criterion and the phase error is amplified. Loop delay
causes the DLL to issue correction steps in the wrong direction. The number of
wrong correction steps is �Nd/Nbw� and the resulting phase error is bounded by
±(�Nd/Nbw�+1)dr as opposed to ±dr in the stable case.

A digital DLL can be stabilized given a value for Nd by making Nbw > Nd. Such
an example is shown in Fig.6.35 where a DLL with Nd = 15 is stabilized by increas-
ing Nbw from 4 to 16. An expected increase in lock acquisition time is observed due
to the reduced rate of issued DCDL corrections. Lock acquisition will be discussed
in more detail in Sect. 6.6.4.

Increasing Nbw is analogous to reducing loop bandwidth ωN in the analog do-
main. Higher Nbw increases loop response time and makes it more difficult to track a
changing input. Spread spectrum clocking is one important application where track-
ing a changing input is necessary. In such a case, Nbw should be treated as an impor-
tant design parameter and the designer must ensure that a changing frequency input
won’t generate a noticeable increase in phase error. A convenient way of describ-
ing the tracking ability of a nonlinear digital DLL is its delay slew rate r defined as
follows:

r =
dr

Nbw ·TCLKIN
. (6.41)

The slew rate is a unitless quantity that indicates the amount of delay correction that
the DLL can produce per unit time. A simple way to determine whether a DLL can
track a given spread spectrum (SS) clock is to calculate an equivalent slew rate rs for
the spread clock and compare it with the DLL rate r. SS clocks are typically defined
with a spread factor As as a percentage which indicates modulation amplitude and
the modulation frequency fs on top of the clock period TCLKIN. The equivalent slew
rate of a spread clock indicates the period change per unit time and is given by the
following formula:

rs = 4AsTCLKIN fs. (6.42)

As an example, a 250 MHz SS clock with a 10% spread factor and a 500 KHz
spread frequency will have an rs of 0.8×10−3. A DLL with dr equal to 0.050 ns and
a Nbw equal to 4 will have an r of 3.125×10−3. Since r > rs, we determine that the
DLL can track the SS clock without change to its theoretical minimum phase error
of ±dr. Phase error tracking is demonstrated in Fig.6.36 using the same behavioral
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Fig. 6.34. DLL limit cycles as a function of Nd in the locked state

DLL model as past examples in this section. Clock is running at 250 MHz with
10%, 500 KHz spread, Nd is fixed at 3 and Nbw is parameterized to demonstrate
the slew rate tracking criterion. For Nbw = 4, r > rs and phase error is close to the
±dr structural value and spread spectrum modulation is tracked. For Nbw = 16, r is
slightly less than rs and phase error starts to get amplified. Finally, at Nbw = 32, the
DLL has very small bandwidth and is incapable of tracking the SS input. Phase error
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Fig. 6.35. DLL loop stabilization using Nbw (DLL is running at TCLKIN = 4 ns)

is very similar to the SS period variation, and there is little difference between this
DLL and an open loop delay line matched to the unmodulated input clock period.

It is worth mentioning that this tracking analysis is only relevant if the DCDL is
matched to some function of TCLKIN. If the application involves delay-only matching
(Fig.6.4b) then the phase error should not be affected by input clock spreading. All
DLL outputs will vary in the same fashion and delay variation will be the same
among all outputs resulting in zero additional phase errors.

This section has established two stability criteria and a tracking criterion for digi-
tal DLLs. It must be stressed that this analysis applies only to first order digital DLLs
as defined in Sect. 6.6.

6.6.4 Lock Acquisition

The lock acquisition procedure is the most open-ended controller aspect from a
design perspective. Multiple approaches are possible. A simple controller like the
one depicted in Fig.6.31 will produce lock acquisition profiles similar to the ones
shown in Fig.6.35, where lock is achieved with a constant slew rate equal to
dr/(TCLKINNbw). Lock acquisition duration is, therefore, a strong function of Nbw
selection.

Faster lock acquisition methods are possible such as variable slew rate (higher
r during acquisition for lock time reduction and lower r during lock maintenance
for stability), binary search [21] and open loop synchronous mirror delay locking
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Fig. 6.36. DLL phase error tracking of SS clock as a function of Nbw

[22, 23]. The binary search method computes every bit of a logarithmic delay setting
from MSB to LSB in a successive approximation fashion in logN steps where N is
the total number of DCDL settings. The synchronous mirror delay method measures
the difference between the unknown delay and a full clock period in a single step.
This difference is then installed in the DCDL and the system can either revert to
regular feedback DLL mode with standard control or remain open loop until the next
time a measurement is made. This method is by far the fastest and can achieve delay
lock within a few cycles independent of delay size. All of the above lock acquisition
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methods are illustrated in Fig.6.37 using our standard DLL behavioral model (Nbw =
16) for TCLKIN = 250 MHz. The reduction in lock time is rather obvious going from
top to bottom.

Fast lock acquisition can be essential for applications that involve clock gating
and suspension modes such as memories and low-power/portable systems. Ability
to relock quickly as opposed to saving the previous setting before entering the low
power state and reinstating it is much more desirable due to voltage/temperature
tracking and is mandatory for dynamic voltage/frequency applications.
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6.7 Putting it All Together

Sections 6.4 through 6.6 have described in considerable detail all DLL system com-
ponents. In this section, we briefly review important design parameters and outline a
basic design flow.

A digital DLL can be generally described by the following design parameters:

dsw Phase detector sampling window
dr Delay resolution
Dmin Minimum DCDL delay
Dmax Maximum DCDL delay
Nd Control mechanism delay
Nbw Inverse of DCDL correction issue rate

Phase detector design/selection should always minimize dsw. There is really no
tradeoff here. Typically, a designer develops a good phase detector with a small sam-
pling window, and then this can be reused for the vast majority of DLL instances
on the chip. Next, an appropriate dr should be selected based on application re-
quirements and desired DCDL complexity, area and power. Dmin and Dmax will be
set by the entire range of input clock frequencies that need to be tracked and also
by the entire process, voltage, and temperature operating space. Under no circum-
stances should a DLL prove to be the limiting factor in a chip design in terms of
(FMAX,VMAX) or (FMIN,VMIN). Substantial margin should always be provided to
allow for small changes in production specifications. The controller should be de-
signed to perform successful lock acquisition for each PVT and for each input clock
frequency. Nd should be minimized to the extent possible. In the lock state, the con-
troller should maintain lock with the minimum theoretical phase error of ±dr (wher-
ever possible). Nbw should be greater than Nd but small enough to allow for input
frequency variation tracking if the application demands it.

Other design aspects such as DCDL output glitching, controller robustness
around non-locking edge traversal, etc., should be thoroughly investigated and an-
alyzed because they can prove catastrophic.

6.8 Noise Considerations

Phase noise and jitter transfer have been traditionally analyzed in the frequency do-
main (Chap. 5.1). In this section, we focus on the time domain because of the difficul-
ties introduced by the non-linear nature of the system. For a comprehensive analog
DLL noise analysis in the frequency domain, the reader is referred to [17, 18]. Unlike
a PLL which can filter reference clock jitter as described in Chap. 5.1, a digital DLL
will add jitter to the reference clock through three primary mechanisms:

The first mechanism is the structural limit cycle which in a well designed DLL
will add ±dr of phase jitter to the output clock. From a frequency domain perspective,
this noise will appear around the fCLKIN/Nbw frequency band. The second mecha-
nism is the equivalent of jitter peaking in the analog domain: The digital DLL can
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amplify PLL jitter because of delayed response. This stems from the fact that the
DLL is not capable of determining whether a disturbance in the reference vs. out-
put clock must be tracked (i.e., spread spectrum or DCDL environmental change)
or not tracked and potentially canceled out (reference clock jitter). Since all DLLs
are designed to correct phase error, a jitter disturbance in the reference clock can be
tracked before it shows up at the output of the delay line in a cycle later, and this can
cause jitter amplification in the next cycle. In general though, this jitter amplification
will be limited and on the order of ±dr. Furthermore, it does not accumulate as in the
PLL case (Chap. 5.1) and it will add a small cycle time penalty. It is very simple to
alleviate both the structural and the jitter amplification components either by using
a ternary phase detector with a NOP state [24] or by opening the loop and tracking
the phase error with an auxiliary mechanism [25]. The final and most potent mecha-
nism is supply noise induced jitter. Supply noise is particularly dangerous for DLLs
because we have clock propagation through a long delay line which typically has
significant delay sensitivity to power supply changes. The remainder of this section
frames the problem and presents a simple analytical model.

For the analysis in this section, we will adopt the terminology of Sect. 5.2. We
are trying to compute the maximum period jitter generated by a fixed delay D subject
to known sinusoidal supply noise, as a function of noise amplitude, noise frequency,
delay amount D, and clock period T . Before proceeding, we define the following
symbols:

V (t) Power supply voltage as a function of time
VDD Nominal power supply voltage value
An Supply voltage noise amplitude (normalized to VDD)
fn Supply voltage noise frequency
φ Supply voltage noise phase at t = 0
D DLL delay (also referred to as insertion delay)
T Clock period
ti Time of ith clock positive edge at the input of insertion

delay D with respect to an arbitrary reference

We define the kth order period jitter introduced by a DLL with a constant inser-
tion delay D as:

Φ ′
k = max

i
|ti+k − ti − kT | . (6.43)

Equation (6.43) is interpreted as the maximum amount that the sum of k con-
secutive cycles of a given clock of period T can differ from the nominal value. We
have introduced an additional subscript k (order) with respect to the jitter definitions
of Sect. 5.2 to allow one more parameter in this analysis and have the capability to
address multi-cycle paths and long term jitter requirements imposed by certain appli-
cations. The subscript k is only relevant for the relative jitter definitions of Sect. 5.2
such as period jitter (Φ ′[n]) and cycle-to-cycle jitter (Φ ′′[n]). The relationship be-
tween Eq. (6.43) and the period jitter definition of Sect. 5.2 is

Φ ′
1 = max

n

∣∣Φ ′[n]
∣∣ . (6.44)
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In order to derive an analytical expression for Φ ′
k which will help us gain some

insight regarding supply noise induced jitter, we start by assuming sinusoidal supply
noise:

V (t) = VDD[1+An sin(2π fnt +φ)]. (6.45)

Period jitter is generated by modulating the insertion delay D through supply
noise. We make a second assumption, that the actual value Dm(t) of the insertion
delay D at time t (where t is the time that an ideal positive edge arrives at the input
of the delay D) is given by the following formula:

Dm(t) = D×
(

2− V (t,D)
VDD

)
, (6.46)

where V (t,D) is simply the forward moving average of V (t) over a period of time
equal to insertion delay D:

V (t,D) =
1
D
×

t+D∫

t

V (τ)dτ. (6.47)

Equation (6.46) simply states that the DLL insertion delay is linearly dependent
on its supply voltage averaged over its flight time (i.e., an x% increase in average
supply voltage results in an x% decrease in delay). This is an acceptable approxima-
tion for values of V (t,D) reasonably close to nominal VDD. Obviously, this is not true
for much larger or smaller values of V (t,D) and the axes crossing points implied by
Eq. (6.46) are meaningless. There is an additional approximation in Eq. (6.47) since
the moving average is computed over a constant time interval D whereas in reality
the time interval should vary due to supply noise modulation. This approximation
should introduce little error yet make an analytical approach tractable.

Now that we have explicitly defined Dm(t), we can write an expression for ti
(time of ith positive edge at the output of delay D):

ti = iT +Dm(iT ). (6.48)

Substituting (6.48) in (6.43) yields

Φ ′
k = max

i
|Dm((i+ k)T )−Dm(iT )| . (6.49)

After substituting (6.46) in (6.49) and with minimal manipulation we have

Φ ′
k =

D
VDD

×max
i

∣∣V (iT,D)−V ((i+ k)T,D)
∣∣ . (6.50)

Since we have an expression for supply voltage, we can obtain a closed form expres-
sion for the moving average by substituting Eq. (6.45) in (6.47).

V (t,D) = VDD +
AnVDD

D

t+D∫

t

sin(2π fnτ +φ)dτ. (6.51)
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Performing the simple integration yields

V (t,D) = VDD +
AnVDD

2π fnD
[cos(2π fnt +φ)− cos(2π fn(t +D)+φ)]. (6.52)

Substituting (6.52) in (6.50) yields

Φ ′
k =

An

2π fn
max

i

∣∣∣∣
cos(2π fniT +φ)− cos(2π fn(iT +D)+φ)−
cos(2π fn(i+ k)T +φ)+ cos(2π fn((i+ k)T +D)+φ)

∣∣∣∣ . (6.53)

We now recall the following well-known trigonometric identity:

cosu+ cosv = 2cos
(

u+ v
2

)
cos
(

u− v
2

)
. (6.54)

Applying (6.54) on (6.53) yields

Φ ′
k =

An

π fn
max

i
|cos(π fn(2i+ k)T +φ)[cos(π fn(kT +D))− cos(π fn(kT −D))]| .

(6.55)
Equation (6.55) is expressed in a very convenient form which will enable us to dis-
pense with the maximization operation by inspection: Only the first cosine term
(cos(π fn(2i + k)T + φ)) is a function of i, and its maximum value for every pos-
sible i is 1. Therefore, Eq. (6.55) becomes

Φ ′
k =

An

π fn
|cos(π fn(kT +D))− cos(π fn(kT −D))| . (6.56)

Application of one more trigonometric identity results in the following expres-
sion which is more desirable since it separates the effects of variables T and D:

Φ ′
k =

2An

π fn
|sin(π fnkT )sin(π fnD)| . (6.57)

Equation (6.57) constitutes a closed form analytical expression of worst case
period jitter as a function of supply noise frequency and amplitude ( fn,An), clock
period (T ), and DLL insertion delay (D). Parameter k denotes whether we are in-
terested in single period jitter (k = 1) or longer term (multi-cycle) jitter (k > 1). In
order to gain some insight into this expression and determine whether it makes phys-
ical sense, let us focus on the two plots of Fig.6.38. Both diagrams plot Eq. (6.57)
under certain conditions. The top graph shows Φ ′

1 as a function of noise frequency
fn for 2 different insertion delays. We make the following observations: First, we
note that for all insertion delay values we have zero jitter at fn = 0 (trivial) and at
noise frequencies that are integral multiples of the clock frequency (500 MHz and
1 GHz). This is entirely expected because when this occurs, consecutive clock edges
will be delay-modulated identically going through any insertion delay D resulting in
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zero jitter. Consecutive clock edges will experience the same noise. A second ob-
servation is that we have zero jitter at noise frequencies that are integral multiples
of the inverse insertion delay (333 MHz and 667 MHz in the top graph for the case
where D = 3 ns). This is also expected because if the integration interval in the mov-
ing average Eq. (6.51) is an integral multiple of the period of the sinusoid that is
being integrated, then the integration result is zero. Integrating a sinusoid over an
integral multiple of periods always results in zero. This is also clearly observed on
the bottom graph of Fig.6.38 where Φ ′

1 is plotted as a function of insertion delay for
3 different noise frequencies. All zeroes on the graph are at insertion delays equal to
an integral multiple of the noise period. A final observation is that with increasing
noise frequency, period jitter tends to decrease due to the 1/ fn term in Eq. (6.57).
This happens because as fn increases, the amount of noise averaging in delay line D
also increases and the supply moving average will approach the nominal value.

Figure 6.39 shows the jitter dependence on noise frequency and insertion de-
lay simultaneously in 2 dimensions for 1 GHz and 500 MHz clocks respectively.
Such contour plots for each relevant clock frequency are very easy to construct using
Eq. (6.57) and can provide a broad perspective early in the design phase in order to
help determine important implementation aspects such as:

1. Identification of worst case period jitter and particularly undesired noise fre-
quencies.

2. Derivation of detailed specifications of supply voltage frequency and amplitude
if external to the IC.

3. Identification of need for internal voltage regulation to minimize An if external
supply specifications turn out to be too stringent.

Application of Eq. (6.57) is not restricted to delay locked loops but can be ap-
plied to any open-loop clock buffer in order to determine supply induced period jitter.
DLLs are very convenient because insertion delay D is well defined and tracked with
feedback. In an open-loop buffer, D will vary with PVT and can only be estimated to
a limited degree of accuracy. Yet, the analysis above reveals an interesting aspect of
supply induced jitter: In an ideal world, it can be canceled out by selecting an appro-
priate clock buffer delay D as Figs. 6.38 and 6.39 indicate. This is not really possible
because the supply noise frequency is never known a priori and typically does not
consist of a single sinusoid. A supply voltage waveform will typically contain mul-
tiple natural frequencies introduced by the package, board, and external decoupling
capacitance network. In addition, it will contain particular solutions related to the
system clock frequency. Natural frequencies are unknown at IC design time, since
they are system dependent. Particular solutions are also hard to estimate especially
in programmable ICs. One could imagine the possibility of constructing a feedback
system which measures supply noise frequency and then adjusts clock buffer delay
accordingly to minimize jitter. Feedback must be close to instantaneous in order to
avoid the worst case, and this makes a digital controller very hard to implement. As-
suming that supply noise frequency can actually be measured, such a system could
potentially track an undesired natural frequency that should not have been there in
the first place. Controlling noise amplitude, undesired natural frequencies and clock
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buffer delays are the only effective methods for reducing supply induced jitter that
the author is aware of.

6.9 Advanced Applications

In this section, we review a number of non-standard DLL applications and demon-
strate the versatility of delay lock techniques.

6.9.1 Duty Cycle Correction

DLLs are heavily used in I/O applications such as DRAM interfaces. In such applica-
tions, 50% duty cycle is very important because the interfaces are typically double-
data-rate (DDR) and both clock phases are used for signaling. Duty cycle distortion
is a source of deterministic jitter and must be reduced.

It is fairly common for DLLs to include a separate stage of duty cycle correction
as an output stage [26] or even distributed duty cycle control at various points along
the signal path [27]. These are typically analog methods that involve current-steering
based structures. An alternative method of duty cycle correction implemented in
DRAMs [28, 29] is shown in Fig.6.40. It uses two independent DLLs. The first one
(PD1, DCDL1, CTL1) is the main loop and is responsible for locking the output to
the desired CLKIN phase. The second one (PD2, DCDL2, CTL2) has an inverting
delay line and locks the positive edge of CLK2 (which has been generated by a neg-
ative edge of CLKIN) to the positive edge of CLK1 (which has been generated by a
positive edge of CLKIN).

When the second loop locks, CLK1 and CLK2 will have the phase relationship
shown in Fig.6.40. A phase interpolator with equal weights (similar to the one in
Fig.6.26) is used as the final clock output stage. The positive edge of output clock
CLKOUT will be generated by the positive edge of CLK1 since both CLK1 and
CLK2 have phase locked positive edges. The negative edge of CLKOUT will be
generated by the average of the CLK1 and CLK2 negative edges, resulting in duty
cycle correction. Figure 6.40 assumes for simplicity that the phase interpolator is a
zero-delay, thus non-causal circuit. In reality, there will be delay involved but it has
no effect in the overall correction capability of this method. The amount of duty cycle
correction possible depends on the RC of the interpolator as described in Sect. 6.5.3.

6.9.2 Clock Multiplication

In Sect. 6.3, the basic idea of DLL-based clock multiplication has been presented
(Fig.6.4d). This method of phase-locking a multi-tap DCDL to a reference clock pe-
riod and then using the intermediate phases to generate a frequency multiple through
a clock-multiplying structure such as a multi-port toggle flop has an obvious fre-
quency limitation: it is limited by the minimum delay Dmin through each DCDL
segment. As an example, the highest output frequency that can be generated by the
structure of Fig.6.4d is subject to the following constraint:
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Fig. 6.40. Duty cycle correction in a DLL environment

fout ≤
1

2Dmin
, (6.58)

where Dmin is the minimum possible delay through each of the 8 DCDL segments.
Reference [30] proposes an interesting way to remove this upper bound. The

key observation is that the sum of the N DCDLs (where N/2 is the intended clock
multipler) can be phase-locked to multiple reference clock periods (M) instead of
1 and the resulting phases can be re-sorted before driving the final clock multipler
stage. For this method to work, M must not divide N exactly but have a non-zero
modulus. Figure 6.41 illustrates this concept. We wish to perform clock multiplica-
tion by 4 (N = 8), but we want to generate an output clock frequency that is faster
than the constraint in (6.58) would allow for. Instead of phase-locking all 8 DCDL
segments to one reference clock period Tref, we choose to phase-lock them to 3Tref
(M = 3) which evidently allows for a much larger Dmin per DCDL segment. Phases
are sorted modulus Tref before being routed to the final clock multiplication stage.
The constraint in (6.58) now becomes

fout ≤
3

2Dmin
, (6.59)

and the upper bound for the final output frequency has become more loose by a factor
of 3. In [30], a 40 GHz output clock is generated by a 4.4445 GHz reference (M = 2,
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N = 9) by employing an LC-based clock multiplier which can produce a full 360◦

oscillation per stimulating phase.

CLKIN

3×Tref

3/ 8Tref3/ 8Tref3/ 8Tref3/ 8Tref3/ 8Tref3/ 8Tref3/ 8Tref

3/ 8Tref

1/ 8Tref 2/ 8Tref 3/ 8Tref 4/ 8Tref 5/ 8Tref 6/ 8Tref 7/ 8Tref 8/ 8Tref

6/ 8Tref 9/ 8Tref 12/ 8Tref 15/ 8Tref 18/ 8Tref 21/ 8Tref 24/ 8Tref

3/ 8Tref

Fig. 6.41. Multiperiod DCDL locking for high output frequency clock multiplication

Clock multiplying DLLs with alternative organizations have been proposed in
the past years [31, 32] and are actively pursued as a credible alternative to PLLs for
clock generation due to superior jitter performance.

6.9.3 Infinite Dynamic Range

Lock acquisition and phase capture can be limited in standard DLLs with a reduced
DCDL dynamic range as explained in Sects. 6.5 and 6.6. One way to address this
issue is to extend the delay line dynamic range through additional DCDL stages or
conditional inversion (Sect. 6.6.2) coupled with increased complexity in the FSM
controller. An alternative method is to employ a dual DLL architecture where the
core loop generates phases that span the input clock period range, and the periph-
eral loop blends a selected pair of consecutive phases to match the reference clock
[1, 33]. This architecture is shown in Fig.6.42. The core DLL phase-locks at 180◦

and generates 6 phases that are 30◦ apart. The block labeled “Phase Selection” con-
tains two 3× 1 multiplexers that select a pair of phases φ and ψ to be interpolated.
Before reaching the interpolator, these phases are conditionally inverted inside the
“Selective Phase Inversion” block so that the cascade of these three structures can
generate all phases at 30◦ increments that span the entire 0–360◦ phase interval. Fi-
nally, conditionally inverted phases φ ′ and ψ ′ are interpolated. Although the phase
interpolator structure in [33] is CML-based, the analysis is very similar to the full
swing interpolator of Sect. 6.5.3. The output of the interpolator Θ is phase-locked
to the reference clock (“ref CLK” in Fig.6.42). The feedback of the peripheral DLL
closes with a bang–bang phase detector and an FSM that controls the multiplex-
ers, conditional inversion block and phase interpolator. The infinite dynamic range
stems from the fact that the FSM controller can keep on selecting phase pairs to be
interpolated around the entire 360◦ phase interval and eventually the selected pair
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will encompass the phase of the reference clock. Interpolation will then guarantee
phase lock within the accuracy of the interpolator. In this architecture, the input core
DLL clock (“in CLK”) and the reference clock (“ref CLK”) can be the same clock
at 0-phase or identical frequency clocks at any phase relationship. They can even
be plesiochronous clocks (of similar but not equal frequency), and this case will be
addressed in Sect. 6.9.4.

CORE DLL

0×θ 1×θ 2×θ 3×θ 4×θ 5×θ (θ=π/6)

φ = i×θ ψ = j×θ(i=0,2,4) (j =1,3,5)

Phase Selection

Selective Phase Inversion

{ φ

φ+π { ψ

ψ+π

Phase Interpolation

FSM

Θ ∼ φ�+ (1−α/16)×(ψ�− φ�)
(α = 0..16)

Phase
Detector

φ�= ψ�=

PERIPHERAL
DLL

ref
CLK

in
CLK

Fig. 6.42. Dual DLL architecture for virtually infinite phase capture range. Reproduced with
permission from [33], c©1997 IEEE

DLLs with quadrature phase mixing had been proposed before [26] and they also
exhibit infinite dynamic range. The main difference between the dual DLL architec-
ture and quadrature mixing is that the phase interpolation is not limited to 90◦ clocks.
Interpolation can blend phases at smaller intervals (30◦ in this case) which will have
fewer slew rate limitations and better noise performance [33].

6.9.4 Clock-Data Recovery

The full power of the method of Fig.6.42 cannot be fully appreciated unless we con-
sider the case where “in CLK” and “ref CLK” are plesiochronous and vary slightly
in frequency. This architecture can achieve lock in the plesiochronous case because
the FSM controller can change the weight of the phase mixing in each cycle in such
a way so as to generate a clock that is effectively faster or slower than “in CLK”.
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When the interpolator reaches the end of its dynamic range, then the phase selection
multiplexer chooses a different pair of phases for mixing that are either leading or
lagging the previous pair depending on whether “ref CLK” is faster or slower than
“in CLK”, respectively. This property makes this method ideally suited for clock-
data recovery (CDR) applications where a sampling clock must be generated at the
receiver and used to sample the incoming data. The generated clock must match
the frequency of the received data using multiple free-running locally-generated
phases.

This concept is illustrated in Fig.6.43. This structure forms the basis of a large
class of clock-data recovery architectures implemented as part of various high-speed
signaling standards such as PCI Express, XAUI, and FBD (Fully-Buffered-DIMM)
[34]. The core DLL of Fig.6.42 has been replaced with a multi-phase PLL that gener-
ates a local high frequency clock which can be plesiochronous to the incoming data.
In order to collect enough information for clock recovery, a CDR needs some form of
data oversampling. In this case, oversampling is accomplished by generating both an
in-phase clock (CLKI) and a quadrature clock (CLKQ). High-speed incoming data
are sampled with both clocks using two separate slicers (I-SLICER, Q-SLICER).
The data are then deserialized typically by a factor of 10 and retimed in a divided
clock domain which is usually a divided-down version of CLKQ. The block labeled
“EDGE DETECTION/PHASE DETECTION” examines both I and Q deserialized
data and determines whether the current sampling clocks CLKI and CLKQ are fast
or slow with respect to the incoming data. This decision can be made deterministi-
cally due to oversampling. This decision is then forwarded to the CDR FSM which
implements a control algorithm and can change the settings of the phase selectors
and interpolators to advance or delay the sampling clocks CLKI and CLKQ. The
FSM algorithm will determine important capabilities such as phase capture profile,
frequency difference between local PLL and incoming data that can be safely ab-
sorbed and limit cycle behavior which will cause deterministic jitter in the system.
The output of the Q-DESERIALIZER represents parallel data sampled safely with
maximum margin in the middle of the eye diagram and is forwarded to the rest of
the system for higher layer processing.

All blocks of Fig.6.43 with the sole exception of the multi-phase PLL consti-
tute essentially a DLL. The role of the delay line is fulfilled by the combination
of phase selectors and interpolators that can effectively delay or advance an input
clock and the phase detection is carried out by the slicers, deserializers, and decision
block. In a typical SERDES application [34], this DLL structure is present on all
receiver bits (lanes in SERDES terminology) whereas the multi-phase PLL is amor-
tized over a number of receive and transmit lanes. In this application, it is desirable
to implement a second order control structure in order to track more effectively the
frequency differences between the incoming data and the locally generated clock.
Second order control design has not been addressed in this chapter and is beyond our
scope.
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6.9.5 On-Chip Temperature Sensing

An appropriately calibrated and accurately measured delay line can be used as a tem-
perature sensor since temperature affects digital gate delay. It has been shown [35]
that when a delay line is trimmed to a fixed delay at a certain temperature in a produc-
tion environment across multiple chips, it can act as an accurate temperature sensor.
Trimming to a fixed delay at production has the effect of suppressing sensitivity to
process and voltage. A trimmed delay line will vary only due to temperature across
all fused chips and can have an accuracy of ±2◦C across the 0–100◦C temperature
range [35].

Two DLLs constitute this system: A reference DLL is phase locked to a known
reference clock which is distributed to the sensor. Tapping at intermediate delay line
elements can generate fixed reference delays that are fractions of the original refer-
ence clock period. A secondary DLL phase locks the sensing delay line to a fixed
delay generated by tapping an intermediate delay output of the reference DLL. This
step must be performed at a controlled junction temperature on all chips during man-
ufacturing. The setting in the locked state is then fused and this step performs the
trimming (normalization) of the sensing delay line.

During measurement, the temperature can vary and the trimmed sensing line will
deviate from its fixed delay value. The secondary DLL then treats it as an unknown
delay and measures it using intermediate delay outputs of the reference DLL as the
measuring delay line. The digital setting output at the locked state will be an accurate
representation of temperature. This dual DLL scheme can provide good accuracy and
a high measurement bandwidth (5 ksamples/s) and is appropriate for microprocessor
thermal monitoring.
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6.10 Conclusion

This chapter has presented an overview of the basic digital DLL structure and its
components in addition to a survey of a range of applications. DLLs are an essential
component of modern VLSI systems. Increased clocking system complexity, process
variation, and wider supply voltage ranges will make their use even more prevalent
than it is today. Furthermore, their time-to-digital conversion capabilities make them
an attractive candidate for measuring analog on-chip quantities (i.e., voltage drop,
temperature, process variation) either for valuable data collection or system normal-
ization to dynamically remove variation.
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Clocking and Variation

James Tschanz

Intel Corporation

7.1 Introduction

As process technology continues to scale, increasing numbers of transistors are
integrated onto a single processor die, providing higher levels of performance and
additional features (Fig.1.1). However, the unwanted side-effect of this increased in-
tegration is the worsening of variations of all types: static process variations resulting
from reduced device dimensions and dynamic voltage and temperature variations. At
the same time, transistor degradation and early-life failure are always concerns, but
becoming more critical as the number of devices increases.

The clock network on a microprocessor plays a special role in how the processor
tolerates variations of all types. On one hand, the clock is very sensitive to variations,
and any fluctuations in the clock due to variations can directly impact the frequency
of the processor. Thus, it is absolutely critical to design the clock network in such
a way that the impact of variations is reduced. On the other hand, variations also
present an opportunity in clock network design. Because of the global nature of the
clock, it can be used as a “knob” for tolerating variations or reducing their impacts. In
this chapter, we will discuss both challenges and opportunities that variations present
to clock network design.

7.2 Variation Reduction Through Design

The first step in reducing the impacts of variations on the clock network is to de-
sign the clocking system in such a way that it is tolerant of variations. This entails
properly selecting the clock network topology, driving the clock with a high-quality
clock source, and designing and sizing the clock wires and buffers to reduce skew
and jitter. These techniques and tradeoffs have already been discussed in Chaps. 2
and 5 and will also be addressed from a physical design perspective in Chap. 8.
However, variation-tolerant techniques can also be employed in the datapath to re-
duce the impacts of variations in both the clock network and the datapath. In this
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chapter, we describe two techniques which employ latches and time-borrowing flip-
flops as a method of hiding some of the impact of clock uncertainty and random
device variation.

7.2.1 Skew and Jitter-Tolerant Design

One method for reducing the impact of clock skew and jitter on the maximum fre-
quency (FMAX) of a microprocessor is to employ two-phase latches rather than flip-
flops in the critical path [1–3]. This technique has also been discussed in Sect. 3.3.2.
Alternately, for speed-critical dynamic circuits, skew-tolerant domino gates can be
used with overlapping clocks such that the clock edge never gates the latest-arriving
data input [4]. Using latches and dynamic gates in this way provides several impor-
tant benefits which translate to higher achievable clock frequency. First, this scheme
allows time-borrowing: additional slack in one pipeline stage can be taken advantage
of in the next pipeline stage so that ideally all stages become equally critical. This is
an important feature for designs in which it is not naturally easy to divide the logic
into equal-delay stages: rather than one stage becoming the limiter, the logic can
be averaged over multiple stages. Secondly, when the data arrive during the trans-
parency window of a latch or dynamic gate, fluctuations in clock edge timing due to
clock skew or jitter do not affect the path delay. Therefore, if the transparency win-
dow is sufficient, clock skew and jitter do not impact the cycle time of the processor.
Of course, proper selection of the transparency window is necessary in order to bal-
ance the amount of time-borrowing desired, the variation-tolerance needed, and the
power and min-delay overhead for this technique.

Because many designs are flip-flop based and it is sometimes difficult to break
up circuits into two phases for a latch-based design, time-borrowing flip-flops are
also used [1, 3]. Time-borrowing flip-flops (Fig.7.1) include a transparency win-
dow after the rising clock edge such that data arriving in this window are able to
propagate through the flip-flop, similar to a latch. Time-borrowing flip-flops require
additional clock buffers inside the sequential in order to generate the transparency
window; therefore, they have increased power consumption in comparison to a stan-
dard non-time-borrowing design; however, this transparency window allows the us-
age of time-borrowing and tolerance to clock skew and jitter. Additional detailed
discussion on time-borrowing flops has been presented in Sect. 3.3.1. Two-phase
latches, skew-tolerant domino, and time-borrowing flip-flops are all used commonly
in microprocessor circuits to reduce the impacts of clock skew and jitter.

7.2.2 Time Borrowing for Datapath Variation Reduction

The previous section described the usage of transparent latches and time-borrowing
flip-flops in reducing the effects of clock skew and jitter, providing tolerance to vari-
ations in the clocking network of a microprocessor. In this section, we describe how
time-borrowing flip-flops may also be used to provide tolerance to datapath varia-
tions. While this technique may be applied for any type of datapath block, we fo-
cus in this section on long-distance on-chip interconnects, since the differences in
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max-delay and min-delay for these interconnects are typically much smaller than
those in logic blocks, allowing a larger transparency window in the flip-flop with-
out causing min-delay failures. In microprocessor designs, many signals are routed
over long repeater-based interconnects, requiring that these signals are propagated
across multiple clock cycles. By replacing the flip-flops in these interconnects with
time-borrowing flip-flops, delay variations across multiple segments can be aver-
aged, mitigating the impact of systematic and random within-die (WID) variations
on mean FMAX. Moreover, the absorption of clock skew and jitter by the transparency
windows provides additional slack in the nominal cycle time in comparison with a
multi-cycle interconnect with conventional master-slave flip-flops.

Figure 7.2 shows a schematic for a multi-cycle, buffered interconnect using
standard non-time-borrowing (NTB) and time-borrowing (TB) flip-flops [5]. The
N-cycle interconnect consists of N repeater-based interconnect segments separated
by flip-flops, where tDATA(i) denotes the delay of the ith interconnect segment, and
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and jitter, and tCK(i) is additional long-term jitter component for ith cycle (i > 1). Reproduced
with permission from [5], c©2006 IEEE

tCK(1) represents the single-cycle clock skew and jitter. As shown in Fig.7.2, an NTB
flip-flop enforces a hard clock edge between the interconnect segments, where data
are allowed to pass through the flip-flop only when the data arrive before the setup
time. For an NTB interconnect segment, tDATA(i) equals the sum of the flip-flop clock-
to-output delay, the delay through the repeater segments and the protection inverter,
and the setup time for the receiving flip-flop. The cycle time of one NTB interconnect
segment is the sum of tDATA(i) and tCK(1). For an N-cycle interconnect, the slowest
interconnect segment limits the cycle time, resulting in more severe degradation in
mean FMAX as N increases.

The TB multi-cycle interconnect is constructed by replacing the flip-flops of the
intermediate repeater segments with time-borrowing flip-flops. If the bus segments
can be optimized such that the data nominally arrive within the time-borrowing win-
dow of the flip-flops, variations in datapath delay arising from process, voltage, or
temperature variations along the interconnect can be averaged across multiple seg-
ments, and their impact on FMAX will be reduced. As shown in Fig.7.2, the cycle
time for a TB multi-cycle interconnect, assuming all signals arrive within the time-
borrowing window, is based on the average of the segment delays, while total clock
skew and jitter (consisting of single-cycle skew and jitter tCK(1) plus the additional
long-term jitter component tCK(i) in each additional cycle) can be amortized over
multiple cycles. Figure 7.3a shows an example nominal timing diagram for a TB
2-cycle interconnect with zero clock skew and jitter. Ideal data delay averaging oc-
curs in a multi-cycle interconnect where tCYCLE equals the average of the intercon-
nect segment delays, which is the best-case scenario for delay variation tolerance.
The amount of delay variation averaging which occurs, then, depends on the delay
of the two interconnect segments as well as the size of the time-borrowing win-
dow chosen. If δDATA(i) denotes the delay deviation from nominal conditions for the
ith interconnect segment, the “delay variation mismatch” between the first and sec-
ond interconnect segment is δDATA(1) −δDATA(2). For ideal data delay averaging, the
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time-borrowing window must be at least as large as the difference in segment delay
variation mismatches, δDATA(1)−δDATA(2). As shown in Fig.7.3b, the time-borrowing
window size (TW (1)) can be expressed in terms of the standard deviation of the differ-
ence between the two segment delays: σDATA(1)−DATA(2). Choosing the TB window
as 1σ ensures that 68% of the time, ideal delay averaging occurs. Choosing a larger
TB window provides increased variation tolerance for the TB interconnect, at the
cost of increased flip-flop clocking energy.

Simulation results for this technique are described in Fig.7.4. The design of
an NTB interconnect segment in M4 is optimized to provide the minimum energy
for a nominal cycle time of 250 ps in a 65 nm CMOS technology [6] with a VDD
of 1.2V and a temperature of 110C, resulting in 6 repeaters, a protection inverter,
and a flop-to-flop interconnect segment length of 1,500 μm. Starting with the opti-
mal NTB interconnect segment, NTB flip-flops are replaced with TB flip-flops for
the intermediate segments of a multi-cycle TB interconnect. Since clock skew and
jitter are absorbed by the transparency window, additional slack is available, and
TB flip-flop and repeater transistors are downsized until the nominal segment delay



250 J. Tschanz

0

5

0 1 2 3 4 5 6 7 8 9 10

65nm  Variations
Activity Factor (AF) = 0.1

Clock Gating Factor (CGF) = 0.9

N=3

N=6 N=9 N=12

Higher Energy

Lower Energy

0

5

0 1 2 3 4 5 6 7 8 9 10

Mean FMAX Change from NTB to TB (%)

65nm  Variations
Activity Factor (AF) = 0.1

Clock Gating Factor (CGF) = 0.9

N=3

N=6 N=9 N=12

Higher Energy

Lower Energy

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

65nm Variations
Activity Factor (AF) = 0.1

N=3

N=6
N=9 N=12

Higher Energy

Lower Energy
–5

–5

–10

–15

–20

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10
Mean FMAX Change from NTB to TB (%)

65nm Variations
Activity Factor (AF) = 0.1

N=3

N=6
N=9 N=12

Higher Energy

Lower Energy

a

b

E
ne

rg
y 

C
ha

ng
e 

fr
om

 N
T

B
 t

o 
T

B
 (

%
)

E
ne

rg
y 

C
ha

ng
e 

fr
om

 N
T

B
 t

o 
T

B
 (

%
)

Fig. 7.4. Active (a) and average (b) energies per cycle vs. mean FMAX change from NTB to
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equals 250ps. Monte-Carlo simulations are performed to determine the FMAX dis-
tribution for these interconnect designs, including WID transistor, interconnect, and
voltage variations, and the effects of transparency windows, clock skew, and jitter.
In Fig.7.4, mean FMAX, active energy, and average energy of multi-cycle NTB and
TB interconnects are compared for a range of cycles, representing present (N=3&6)
and future (N=9&12) interconnect designs. The mean FMAX of TB interconnects is
3.5% higher than NTB interconnects at equal active energy. Additional mean FMAX
gains can be obtained by expanding the transparency window at the expense of higher
clocking energy until averaging of delay variations approaches the ideal case. Since
the impact of additional clocking energy in TB flip-flops is mitigated by clock gating,
TB interconnects enable 4–6% mean FMAX gain with a corresponding 10% average
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energy savings as shown in Fig.7.4b. As process technology scales, WID variations
become worse, especially for larger dice and longer interconnects. Figure 7.5 shows
that if WID delay variance increases by 2X, the maximum mean FMAX gain rises to
5–10%. Thus, the usage of time-borrowing flip-flops can absorb this increased WID
variation in the datapath, and at the same time reduce the impact of clock skew and
jitter.

7.3 Variation Reduction Through Tuning

The previous section described techniques that can be employed in the design phase
for reducing the impacts of clock uncertainty and process variations on the perfor-
mance of a microprocessor. While these techniques ideally can hide some of the
effects of clock uncertainty, they do not eliminate clock skew and jitter, and cannot
adjust to changing dynamic conditions such as supply voltage and temperature fluc-
tuations. To further improve processor performance and energy-efficiency, tuning can
be applied post-fabrication, on a per-die or per-lot basis, to compensate variations.
This tuning may be performed only on the clock network, to reduce clock skew and
jitter, or may be applied to the entire processor to dynamically adapt to voltage and
temperature variations.

In this chapter, we describe three types of post-silicon tuning. The first – manu-
facturing techniques – encompasses all static techniques which can be applied after
fabrication to compensate the effects of process variations. These techniques are ap-
plied once, and settings do not change over the lifetime of the part. In contrast to
this, the other two techniques described in this chapter are dynamic in nature. Active
clock deskew is used to dynamically adjust the timing of the clock network to reduce
clock skew as the environmental conditions change, and dynamic frequency adjusts
the frequency of the entire clock network as a method of responding to dynamic
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voltage and temperature changes. Both of these techniques allow the processor to re-
spond to operational conditions rather than assuming a worst-case environment and,
therefore, improve performance at lower power consumption.

7.3.1 Manufacturing Techniques

Variations that are static in nature can be compensated through a one-time tuning
process which is done after fabrication, during the die testing phase. This is typically
done for critical analog circuits which are often more sensitive to process variations
than the digital circuits in the microprocessor core. Examples of this type of post-
silicon tuning include calibration of thermal sensors and I/O receivers, and setting
of ideal PLL VCO frequency to minimize PLL random jitter. Once the ideal settings
have been determined, they must be permanently programmed into the chip such that
they become the default settings each time the microprocessor is powered up. This is
typically accomplished through the use of on-chip nonvolatile storage elements such
as fuses.

Another way in which post-silicon tuning is used to compensate variations is in
the specification of the supply voltage of each processor. Many modern micropro-
cessors include a “voltage identification” (VID) code which allows the processor to
specify its supply voltage to the voltage regulator in the system [7]. This VID bus is
used, for example, to allow the processor to reduce its supply voltage and frequency
during low-power states and then transition back to maximum supply voltage during
periods of active computation. However, this feature can also be used to compen-
sate variations by assigning a maximum supply voltage to each processor at test
time [8, 9]. Because of process and manufacturing variations, fabricated dice ex-
hibit a range of maximum operating frequencies and standby leakage powers. Those
dice that are slow but low-leakage can operate at a higher voltage without violat-
ing the maximum power specification, while dice that are fast but high-leakage must
operate at a lower voltage. Each die, therefore, has an optimum maximum supply
voltage assigned to it that maximizes the processor frequency while ensuring that
the power limit is met. This optimum VID setting is fused at test time and becomes
the default supply voltage for the part. Modern voltage regulators allow very pre-
cise setting of processor supply voltage at a resolution of several millivolts, enabling
improvement in microprocessor speed binning and maximizing the number of dice
which meet both minimum frequency and maximum power requirements.

7.3.2 Active Clock Deskew

High-performance microprocessors often include clock-skew adjustment circuits
that can be tuned at test time to reduce skew or improve processor FMAX by opti-
mizing clock timing. However, adjusting such clock skew buffers on a part-by-part
basis is extremely expensive, and such a scheme does not account for dynamic varia-
tions such as temperature which can cause clock skew to change. To further improve
clock timing, active clock deskewing can be used. Figure 7.6 shows the clocking
topology for the IA64 microprocessor in a 0.18 μm CMOS technology, employing
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clock deskew buffers (DSKs) to dynamically reduce skew between different regional
clock grids [10]. The DSK, shown in Fig.7.7a, contains a local controller to con-
tinuously compare the timing of the regional grid clock to the incoming reference
clock, and a variable delay circuit [11] (Fig.7.7b) to adjust clock delay until skew is
minimized. Timing comparison is accomplished through the use of a phase detector
in the local controller. This scheme compensates any load variations or WID varia-
tions in the core clock distribution. Although the skew of the reference clock, which
is distributed to all clock regions on the die, is still included in the final clock skew,
the reduced span of the reference clock and the matched load results in significantly
less overall skew. Figure 7.8 shows the measured skew. The total skew is 28ps with
deskewing and is four times larger with the deskew mechanism disabled. The active
deskew technique of the 0.18 μm IA64 processor (in addition to other processors)
has also been discussed in Sect. 2.5.2.

The 90nm Itanium R© design [12] also includes active deskew circuitry to deliver
a low-skew clock without requiring the use of a high-power, dense clock grid. The
clocking architecture for the “Montecito” processor (Fig.7.9) includes regional ac-
tive deskew (RAD) circuits to actively manage the clock skew between adjacent
clock domains [13]. This system adjusts the delay of tunable second-level clock
buffers (SLCBs) as shown in Fig.7.10. Phase comparators are used to compare the
clock outputs of two SLCBs, and the delay lines in the tuning buffers are either
incremented or decremented until the two clocks are lined up. The complete RAD
system is comprised of 30 phase comparators and 26 second-level clock buffers in
each core connected to a tree-like structure. In this structure, all of the clock zones
in the core are deskewed to a central anchor zone. The hierarchical nature of the sys-
tem introduces a finite amount of skew but the RAD system manages this skew, to
approximately 10ps across each core. Additional details of this hierarchical deskew
algorithm are presented in Sect. 2.5.2.
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7.3.3 Dynamic Frequency

Dynamic variations such as voltage and temperature fluctuations are typically han-
dled by adding a margin to the clock frequency such that when these variations occur,
the computation in the datapath is guaranteed to be correct. This “worst-case” design
ensures correct results but requires an overhead in terms of power consumption, or a
performance reduction. Because most of the time the nominal operating conditions
of a microprocessor are not the worst-case conditions that have been designed for,
performance or power are left on the table. To reduce this overhead of worst-case
design, it is possible to sense and respond to these dynamic variations by changing
clock frequency.

The Intel 90nm Itanium processor design [12–14] contains distributed digital
frequency dividers (DFDs) for dynamic clock frequency change coupled with clock
vernier devices (CVDs) for local delay fine-tuning (Fig.7.9). The structure of the
DFD is shown in Fig.7.11: the DFD produces an output clock frequency based on
the incoming PLL clock frequency and the current divisor value held in the phase
compensator state machine (PCSM). For a divisor value of 0, the DFD clock runs at
the frequency of the PLL. For all other divisors, the phase mux synthesizes a clock
frequency by selecting the appropriate edges from the 64 phases.
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Variable frequency mode (VFM) allows the clock of the processor to track local
supply voltage changes, reducing the guardband required for supply voltage noise.
This is accomplished through the use of voltage-to-frequency converters (VFCs)
which allow single-cycle response to droop transients and provide frequency steps
of 1.5%. The VFC consists of voltage-locked loops in which a regional voltage de-
tector (RVD) is used to sense voltage and set DFD output frequency. Design of the
RVD is shown in Fig.7.12: four delay lines are configured on a part-by-part basis to
match microprocessor critical paths in delay and voltage sensitivity. The RVD out-
puts are generated by two multiplexing phase detector latches and two configurable
delay elements. These outputs denote whether timing margin is available (DOWN),
ideal timing margins are present (HOLD), or greater margins are needed (UP). To
track regional voltage changes around the die, 12 RVDs are distributed around each
core, and three DFD zones are used in each core to reduce frequency adjustment
latency in the presence of fast voltage droops.

Measured results of the dynamic frequency system response to a 150 mV first-
droop in voltage is shown in Fig.7.13 [13]. The average pre-droop frequency over 32
cycles is 2,272 MHz, and the frequency averaged over the 16 cycles during the event
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is measured at 2,087 MHz. The result is that code can execute at a higher average
frequency using VFM than could be achieved at fixed frequency mode where this
voltage droop needs to be margined. Comparison of VFM and FFM for different test
cases is shown in Fig.7.14: the DTB and FPU cases are focused on critical path tests,
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Fig. 7.13. Oscilloscope trace of clock system VFM response to 150 mV droop at 2.27 GHz,
1.2 V. Reproduced with permission from [13], c©2006 IEEE
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while the supply droop case is the maximum dv/dt test. Here, maximum frequency
improvement of 4.1% to 6.3% is shown by enabling the variable frequency mode.

The 90nm TCP/IP processor test chip in [15] uses dynamic frequency in a simi-
lar fashion in order to reduce the guardbands applied for voltage droop, temperature,
and aging. In this case, however, rather than using dynamic voltage-to-frequency
converters, analog sensors are used to continuously sense voltage and frequency,
and this information is sent to a dynamic adaptive bias (DAB) controller which ad-
justs frequency, voltage, and body bias (Fig.7.15). Details of the DAB control algo-
rithm are shown in Fig.7.16: multiple temperature and voltage sensors are used to
accurately measure the range of voltage and temperature as code is executed on the
TCP/IP processor core. These voltage and temperature values are used as an index
into a lookup table of die characterization information which is pre-loaded at test
time. This lookup table specifies the optimum voltage, body bias, and frequency to
be applied for each combination of temperature and voltage measurements. If the
DAB control determines that a frequency change is needed, the dynamic clocking
block (Fig.7.17) changes the core frequency within a single core-clock cycle, al-
lowing fast response to first-droop changes in voltage. This fast frequency change is
accomplished through the use of multiple PLLs, each locked to a different frequency.
When the frequency needs to be lowered due to a voltage droop event or temperature
change, the slower PLL is selected by the clock select mux, ensuring a transition to
the slower clock frequency without any short cycles or glitches. Once the slow PLL is
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selected, the faster PLL can then be re-locked to a new frequency, ensuring frequency
change is possible across a wide frequency range with fine (<3%) resolution.

Results from this test chip for supply voltage droop are shown in Fig.7.18. In this
case, a large 20% voltage droop is detected by the voltage sensor, and the DAB con-
trol reduces the clock frequency. As the voltage rises at the end of the droop event,
this change is again detected and the clock frequency is raised to a new value which
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accounts for the IR drop based on the increased current load. Without these dynamic
frequency features, the clock frequency would have to be set to the frequency sup-
ported at the minimum voltage level, representing a large guardband in frequency
for these infrequent voltage droops. By dynamically sensing voltage droop and re-
sponding, the average frequency can be increased. Both of these design examples
demonstrate the large improvement in performance and energy-efficiency that can
be obtained by using the clock as part of dynamic variation response system, rather
than simply designing for the worst-case conditions.

7.4 Variation Reduction Through Resiliency

The previous sections have focused on techniques for tolerating or reducing the im-
pact of variations such that the variations do not produce an error in computation. A
combination of variation-tolerant design techniques, coupled with dynamic variation
detection and response can be used to reduce the guardbands that must be applied to
the clock frequency of microprocessors. However, guardbands must still be applied
for variations that cannot be predicted, sensed, or which are too fast to respond to.
Examples of these types of variations include very fast 1st-order voltage droop, delay
variation from crosstalk and noise, and within-die differences in transistor degrada-
tion. Reducing these guardbands is the focus of this section.

In contrast to variation tolerance which guarantees that errors in the circuit never
occur, resilient designs operate correctly even in the presence of errors. Resiliency
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implies that any errors which result from variations are sensed and corrected so that
the final result is error-free, although there may be errors at intermediate stages in the
computation. As variations increase while performance targets and power require-
ments become even more restrictive, resiliency will become much more important in
designs.

Resilient design itself is an extremely broad topic – resiliency can be imple-
mented at the circuit level, in the microarchitecture, in the system, or even in soft-
ware. In this chapter, we focus on circuit-level resiliency as this is most relevant to
clock network design. A complete implementation of a resilient microprocessor will
combine these resiliency techniques at the circuit level with error correction at the
microarchitectural level and dynamic response at the system level.

7.4.1 Timing Error Detection – Error Detection Sequentials

Dynamic in situ detection and correction of speed path failures were first proposed
as part of the Razor project [16, 17]. In the Razor technique, each delay-critical
flip-flop in the datapath is replaced by a Razor flip-flop (Fig.7.19), which includes
a shadow latch controlled by a delayed clock. This technique works on the premise
that dynamic variations such as voltage, temperature, noise, or data-dependent delay
variation will cause the delay of a critical path to increase. If the frequency of the
processor is set by the typical condition, this delay increase will cause the data at
the receiving flip-flop to arrive after the sampling clock edge, causing an error in
the datapath. However, the data are sampled correctly by the delayed clock of the
shadow latch, and by comparing these late-sampled data with the data captured by
the datapath flip-flop, the error can be detected. Under nominal conditions, data are
sampled correctly by both the datapath flip-flop and the shadow latch, and no error is
signaled. When a dynamic variation causes the critical path delay to exceed the clock
period, the error signal is asserted and the error in the pipeline must be corrected
before program execution can continue. In the original Razor design, the correct
data always exist in the shadow latch, even if the datapath flip-flop fails. Thus, the
correct data can be injected back into the datapath through the multiplexer shown
in Fig.7.19. The Razor technique along with other similar resiliency techniques has
also been discussed in Sect. 3.7.2 from the viewpoint of wearout-induced circuit
degradation.

One concern for the Razor-style error-detection sequential (EDS) is in the han-
dling of the metastability condition. Because the processor frequency can now be set
by the nominal operating conditions and not by the worst-case conditions, no addi-
tional setup time margin is necessary in the clock frequency to allow for dynamic
variations. Because of this, the data input to the flip-flop may arrive at the same time
as the clock edge, leading to a metastable output. The probability of this occurring is
very small; however, it is many times larger than the probability of metastability in
the original design with guardbands. If the flip-flop datapath output or error output
becomes metastable, there is the possibility of an undetected error: the datapath value
is sampled incorrectly, but the error signal is not asserted. Obviously an undetected
error cannot be allowed, and the Razor flip-flop includes a metastability detector to
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signal this condition and initiate error recovery. This metastability detector, while ef-
fective, contributes in large part to the area overhead in the error-detection flip-flop,
and to the overall power overhead for the error detection system, and thus detracts
from the energy-efficiency gains possible through resiliency.

Recently, several techniques were independently developed to address the over-
head of the original Razor (Razor-I) approach. The versions shown in [18–20] at-
tempt to reduce the clock power overhead and eliminate the metastability concerns
by replacing the pipeline flip-flop with a latch. This approach is motivated by the
observation that because the critical paths must be designed such that the data never
arrive in the nominal condition in the high phase of the clock, the master stage of the
datapath flip-flop is unnecessary. Thus this flip-flop can be replaced by a latch which
operates essentially as a pulsed latch, where the length of the high phase of the clock
determines the transparency window of the latch as well as specifying the min-delay
requirement which must be met by each logic path. Because late-arriving data are
not gated by the closing of the master stage of the flip-flop, there is no metastability
concern around the rising edge of clock. Late-arriving data are still sampled correctly
in the current pipeline stage; however, this may cause a critical path and error in the
subsequent pipeline stage and, therefore, this late-arriving data must be signaled as
an error.

The transition detection with time-borrowing (TDTB) sequential [18] (Fig.7.20a)
uses a pulse generator to generate a pulse each time data transitions. As shown in the
example timing diagram (Fig.7.21), if this data transition occurs during the high
clock phase (which defines the error-checking window), an error signal is gener-
ated. Because the datapath flip-flop has been replaced by a latch, performance and
power consumption are improved over the Razor design. A similar idea is used
in the double-sampling with time-borrowing (DSTB) technique [18] (Fig.7.20b),
which is similar to TDTB except that a shadow flip-flop replaces the transition
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detector. The clock energy overhead for this EDS is slightly lower than for the Razor
design because the larger datapath flip-flop has been replaced by a latch, while the
minimum-sized shadow latch has been replaced by a flip-flop. The Razor flip-flop
(RFF), TDTB, and DSTB error-detection sequentials are compared in terms of key
circuit metrics in Fig.7.20c.

A later version of the Razor design, denoted Razor-II [19], also replaces the data-
path flip-flop with a latch to eliminate metastability concerns. This design (Fig.7.22)
also utilizes a datapath latch for improved performance and handling of metastabil-
ity. A transition detector generates a pulse whenever the output of the latch switches,
and this pulse is qualified with a detection clock to determine whether the output has
transitioned because of data which arrived after the clock edge. This timing is demon-
strated in Fig.7.23. Data which arrive late cause a transition detector pulse after the
detection clock, and an error signal is generated and propagated down the pipeline.
Note that in this version of the Razor flip-flop, the correct data are no longer present
in the sequential. Therefore, it cannot be injected into the pipeline as in Razor-I, and
the offending instruction must be replayed by the microarchitecture.
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Fig. 7.23. Timing diagram for the Razor-II design. Transitions on latch output node “N” which
occur after the allowed region (specified by the detection clock DC) are signaled as errors.
Reproduced with permission from [19], c©2008 IEEE

7.4.2 Timing Error Correction and Recovery

Once timing errors have been detected in a circuit, there must be a method for re-
sponding to these errors, negating the offending instructions, and re-executing to get
the correct result. As in timing error detection itself, this can be done at different
points in the design hierarchy – at the circuit level itself, in the microarchitecture, or
with software-level checkpointing. In responding to and correcting errors, there is a
trade-off between complexity and performance overhead: correcting errors at the cir-
cuit level requires complex hardware, but incurs very small performance overhead,
while correcting errors at the software level requires minimal hardware support, but
may incur a large performance penalty. Thus, the optimal error rate, where energy-
efficiency is maximized, is different depending on the error-recovery method which
is chosen.

In the original Razor design [16], timing errors are corrected in the pipeline itself,
allowing execution to continue with a one-cycle penalty. This technique relies on the
fact that the shadow latch has always captured the correct output, even when the
datapath flip-flop is in error. When an error occurs, the offending instruction must be
nullified as it passes down the pipeline. This ensures that the state of the machine is
not corrupted with incorrect data. Next, the pipeline must be stalled for one cycle as
the correct value is forwarded from the shadow latch into the main pipeline. Because
the execution continues with the stage and following the stage that caused the error,
forward progress of the instruction is guaranteed.

In the design in [18], the error signal initiates the error recovery process in the
microarchitecture. The error is treated in a similar way to a branch misprediction. As
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shown in Fig.7.24, all of the error signals in a particular pipeline stage are combined
using an OR tree to generate a single error signal for that stage. That error signal is
then sent down the pipeline, along with the data, to the output buffer to invalidate
the data. This is necessary to prevent the failing instruction from corrupting the state
of the machine. At the same time, the error signal propagates to the instruction issue
stage (input buffer) to initiate the instruction replay sequence. Similar to a branch
mispredict, the program counter is loaded with the address of the failing instruc-
tion, and the instruction is repeated. If the error was due to a transient environmental
condition, the instruction may execute error-free when it is re-executed, and the pro-
cessor execution continues as usual until the point of the next error. If, however, the
error is due to a condition which is set up by the instruction (or group of instructions)
itself, it will fail again on re-execution. For this reason, the chip also contains a clock
divider circuit (Fig.7.25) which reduces the clock frequency by half when replaying
the instruction. Re-executing the instruction at half frequency guarantees that the in-
struction will pass the failing pipeline stage and guarantees forward progress for the
workload.

The Razor-II design, which was incorporated in a 64-bit, 7-stage Alpha processor
design in 0.13 μm CMOS [19], recovers from errors in a similar way. The last stage
of the pipeline is designed to be non-timing critical so that it is known before instruc-
tion commit whether an error occurred for that instruction or not (Fig.7.26). In case
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Fig. 7.25. Details of the test chip clock generation. (a) Clock generator schematic, includ-
ing the clock divider which reduces clock frequency by half during error replay, and duty
cycle control which is necessary for tuning the error-detection window. (b) Timing diagram,
showing clock frequency reduction during error replay, while high phase of clock is fixed.
Reproduced with permission from [18], c©2008 IEEE

of an error, the pipeline is flushed and the offending instruction is re-executed. The
error controller can also reduce the clock frequency by half for 8 cycles to ensure
that repeatedly-failing instructions are able to execute correctly.

7.4.3 Results: Guardband Reduction Through Resiliency

To get the maximum benefit from resiliency, error detection and correction tech-
niques must be combined with adaptive voltage and/or frequency at the system level
to respond to slow-changing variations. For example, a temperature increase may
persist for milliseconds or longer; hence, the performance of the system would suf-
fer if this results in a large increase in errors that must be corrected. Instead, the error
rate is continuously monitored by an error control unit which dynamically changes
the frequency or voltage of the processor such that the error rate is regulated at a
sufficiently low value. As described before, the ideal error rate for energy-efficiency
depends on the type of circuit that is implemented and the energy and performance
overhead in doing recovery.
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Fig. 7.26. Overview of 0.13 μm, 64-bit, 7-stage alpha processor design incorporating Razor-
II error-detection sequentials and instruction replay. Reproduced with permission from [19],
c©2008 IEEE

Fig. 7.27. Measured Razor-II energy consumption and distribution of energy savings. Repro-
duced with permission from [19], c©2008 IEEE

Measured energy dissipation results for three Razor-II chips, operating at 0.04%
error rate, are shown in Fig.7.27 [19]. Compared to the energy consumption when
voltage is set such that all 31 fabricated dice operate correctly at 85C with 10% mar-
gin for wearout, supply fluctuation, and safety, energy dissipation gains are 33.1% to
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Fig. 7.28. Measured energy per instruction and error rate for the Razor-II processor. PoFF
(point of first failure) represents the voltage at which the first error in the circuit occurs. Re-
produced with permission from [19], c©2008 IEEE

37.5%. The process of setting the optimum core voltage and error rate is shown in
Fig.7.28. As the core voltage is reduced, the error rate, which is initially zero at high
voltage, begins to increase. At the same time, the energy per instruction decreases
as well as a result of the lower voltage. The impact on instructions per cycle (IPC)
is initially negligible because the error rate is small. However, as the voltage contin-
ues to decrease and the error rate increases, the performance penalty for replaying
instructions begins to have an impact on the IPC. Further reduction in the voltage ac-
tually causes the energy per instruction to reach a minimum and then increase – this
occurs because the energy overhead of replaying failed instructions becomes larger
than the energy saved by reducing voltage. This minimum in the energy per instruc-
tion represents the most energy-efficient point of operation for this system – in this
case, this occurs at a 0.04% error rate.

Measurements on the resilient circuits test chip [18] also show the performance
and energy benefits from reducing guardbands and operating at the optimal error rate.
In Fig.7.29, throughput (TP) and error rate are measured for the TDTB EDS circuit
versus FCLK, and a range of VCC droop magnitudes and durations are inserted based
on data from a recent microprocessor along with assumptions on VCC droop-inducing
events. The worst-case VCC droop magnitude is 10% and the worst-case temperature
is 110C. Nominal VCC is 1.2V and the nominal operating temperature is assumed to
be 60C. In Fig.7.29a, throughput increases linearly as FCLK increases with no errors.
Once errors occur, instructions per cycle (IPC) are reduced as a function of error rate
and recovery time. Since VCC droop events are assumed to be infrequent, throughput
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Fig. 7.29. Measured throughput and error rate versus clock frequency for resilient design
with TDTB EDS circuits for two different path activation examples. (a) Critical paths less-
frequently activated than non-critical paths. (b) All paths have equal probability of activation.
Reproduced with permission from [18], c©2008 IEEE

gains continue as FCLK increases into the VCC and temperature guardband region.
When FCLK reaches 3,020 MHz, the first path failure occurs under nominal condi-
tions, resulting in a sharp error rate increase. If the most-critical paths on the die
are infrequently activated, further throughput gains are achieved at higher FCLK, as
the frequency is increased past the point of the first critical path failure. The max-
imum throughput of 3.17 billion instructions per second (BIPS) corresponds to a
3,200 MHz FCLK. Increasing FCLK further leads to a larger error rate, where IPC
reduction outweighs FCLK gains.
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One interesting aspect of built-in error detection sequentials is that the gains
achievable depend on the path activation statistics for the critical paths. The pre-
vious example in Fig.7.29a assumed that critical paths are activated less-frequently
than non-critical paths, allowing gains beyond the point of first failure. In another
scenario, it is assumed that all paths, both critical and non-critical, are activated
with equal probability. In this case (Fig.7.29b), the resilient design cannot exploit
the path-activation probabilities, limiting the maximum throughput to 3.01 BIPS. In
Fig.7.29a,b, the maximum throughput for the conventional design with MSFFs is
2.4 BIPS corresponding to an FMAX of 2,400 MHz to guarantee correct functional-
ity within the presence of worst-case dynamic VCC and temperature variations. On
the other hand, a resilient design enables 25% throughput gain over a conventional
design by eliminating the FCLK guardband from dynamic VCC and temperature vari-
ations and an additional 7% throughput increase from exploiting the path-activation
probabilities.

These examples demonstrate that by employing error-detection sequentials
within the datapath, the processor can reduce or eliminate guardbands that are ap-
plied for dynamic variations, critical path activations, and aging. They also point
to the necessity of optimizing circuits differently when error detection and cor-
rection are used. For example, with error detection, it is no longer necessary that
every critical path meets the cycle time requirement. If a critical path is very in-
frequently activated, it may be desirable to let that path cause an error and execute
instead in several clock cycles. Optimization of circuits with error detection and
correction needs to consider path activation probabilities to balance the perfor-
mance and energy-efficiency of the processor as a whole. As demonstrated by
these designs, the gains for this investment can be quite large and will become
more important as power and performance requirements continue to become more
stringent.

7.5 Conclusion

As noted in the introduction to this chapter, the clocking network is both a challenge
and an opportunity as part of a variation-tolerant processor design. Variation-tolerant
design techniques must first be used on both the clock and the datapath to limit the
effects of clock uncertainty such as clock skew and jitter and data uncertainty caused
by both static and dynamic variations. On top of these design techniques, dynamic
tuning techniques can be used after fabrication to allow the clock to dynamically
adjust to the current environmental conditions. By employing detectors or sensors
for voltage droop, temperature, and/or transistor degradation, the clock frequency
can be continually adjusted, allowing the processor to adapt to the actual operat-
ing conditions rather than being limited by the constraints imposed by a worst-case
design.

Finally, further guardband reduction and energy-efficiency is made possible by
dynamically detecting and responding to timing errors in critical paths of the pro-
cessor pipeline. A combination of error detection techniques at the circuit level and
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error-recovery methods at the microarchitectural level ensures error-free computa-
tion while allowing errors to be generated and corrected in individual pipeline stages.
When combined with dynamic frequency and/or voltage capability, this allows a pro-
cessor to adapt to changing environmental conditions, data workloads, and device
degradation without requiring sensors or safety guardbands. In the future, such error
detection capability can also be used to improve reliability of the system and aid in
test and debug.
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Physical Design Considerations

Georgios Konstadinidis
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8.1 Introduction

Optimization of the structural skew alone, through balanced H or grid clock design
and load balancing, is not adequate. Process, voltage, and temperature (PVT) varia-
tions dominate in most cases the total clock skew. While active deskew circuits [1–8]
(also thoroughly described in Chaps.2 and 7, and the use of asynchronous FIFOs
in clock domain crossings [9] can reduce the effect of skew, we still need to reduce
the variation in the clock network to minimize the overall complexity and design ef-
fort. Higher skew would require larger number and extended range in the deskewing
circuits. Increased clock skew would mean larger hold time violations that would
require additional delay elements inserted in the critical path. This will increase area
and power. This chapter focuses on physical design considerations to help minimize
overall skew and to avoid overdesign. At first, we provide an overview of various
skew components and explain their dependency on the process, voltage, and tem-
perature variations. We describe the main sources of transistor variation including
lithographic, layout, proximity, and strain related effects. Similarly, interconnects
suffer from lithographic, process, and pattern density effects that add to the variabil-
ity. We provide recommendations on how to optimize the layout to minimize both
the transistor and interconnect variations, and provide answers to fundamental clock
designer questions:

• How should I calculate the total process variation along a chain of clock buffers?
Should I just add the variations of the individual stages or should I use a Root
Mean Square approach? (It turns out none of the above approaches is correct if
used in isolation.)

• What is the best approach in dealing with the voltage variation? Do all clock
buffers see the same voltage variation?

• How does the temperature variation affect clock skew, and are there ways to
compensate for this?

• What is the impact of inductance?

T. Xanthopoulos (ed.), Clocking in Modern VLSI Systems, Integrated Circuits and Systems, 275
DOI 10.1007/978-1-4419-0261-0 8, c© Springer Science+Business Media, LLC 2009
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Good understanding of the behavior of correlated vs. noncorrelated parameters
will help us define the correct methodology for the delay variation estimation using
well-established statistical techniques.

8.2 Clock Skew Components

Clock skew is the difference in the clock arrival time at any source-destination pair of
clocked elements. The setup time skew refers to the clock arrival difference (modulo
the nominal clock period) at two subsequent clock cycles, while hold time skew
applies to the same clock edge [10, 11]. Clock frequency reduction can fix setup
related failures. However, failures due to hold time skew are independent of the clock
frequency and lead to functional failure and yield loss.

Fig. 8.1. Setup and hold time skew definitions considering variation

Figure 8.1 provides the definition of the setup time and hold time skew. The data
need to arrive a certain “setup” time earlier than the clock edge. Process, voltage,
and temperature variations may cause the late clock arrival at the source flop and
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perhaps early arrival at the destination flop. This reduces the usable time for logic
operations within a clock cycle. In addition to that, the transistor variation from die
to die and within the same die can create extra variation in the datapath. The setup
check calculation needs to account for the late arrival of the data and potential early
arrival of the clock at the receiver flop as shown in Fig.8.1. The setup margin is
defined as:

Tsetup margin = Tcycle −TPath delay max −TClk skew setup −Tsetup, (8.1)

where Tcycle is operation cycle time, TPath delay max is the maximum path delay under
worst case input conditions in the combinational logic and source flop that result
in the largest path delay, TClk skew max is setup time clock skew, and Tsetup is the
setup time of the receiver clocked element. As we will see in the following para-
graphs, there is a difference in the clock skews for setup and hold time analysis.
Correct functionality is guaranteed for Tsetup margin ≥ 0. Silicon setup failures are fix-
able by increasing Tcycle, i.e., by reducing the operational frequency.

Achieving zero skew is not always the target. In many cases, that involve un-
balanced timing paths, the designers add intentional skew in the path in order to
“steal” time from the previous or the next cycle that has more margin. However, any
deviation of the skew from their intended targets in a nonzero skew clock tree will
degrade the performance of the design in the same manner as it does for a zero-skew
clock tree. This means that in all cases we need to minimize variation. In the subse-
quent sections, we assume that the load is balanced through appropriate buffer sizing
and interconnect clock network optimization and that we need to deal only with the
process, voltage, and temperature variations.

In the hold time case, the data need to be stable for a certain time after the clock
edge to guarantee correct capture. The clock at the source flop may arrive early while
it can be late for the receiving flop. The datapath delay will also have a delay distri-
bution due to PVT variations. The hold time analysis needs to account for the fast
datapath delays. The hold time margin defined as:

THold margin = TPath delay min −TClk skew hold −Thold, (8.2)

where TPath delay min is the minimum possible path delay considering the worst case
inputs for the combinational logic and the source flops, TClk skew hold is the clock
skew for the hold time analysis, and Thold the receiving flop hold time. THold margin
should be greater or equal to zero for correct functionality. Since the hold time check
refers to the same clock edge, hold time failures cannot be corrected by reducing
the frequency of operation. Due to the larger risk for yield loss, it is typical that
the designers add extra margin in the hold time analysis. In order to maximize yield
especially in ASIC designs, the timing closure methodology calls for simulations
covering the worst case process and environmental variations. While this approach
increases yield, it frequently leads to overdesign, and it restricts chip performance
due to the use of worst case margins.
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Statistical clock skew analysis including both device and interconnect variation
is essential in order to calculate more accurately the impact of the numerous varia-
tion components and to reduce necessary margins. The chip-mean distribution shown
in Fig.8.2 [12] represents the die-to-die and wafer-to-wafer distribution or so called
interdie distribution. For a given point on the chip mean distribution, e.g., corre-
sponding to a fast part, there will be a distribution of transistor and interconnect
parameters across the chip as well. These intradie or across-chip variations (ACV)
have both systematic and random components.

Fig. 8.2. Die-to-die and within-die random and systematic variation distributions (courtesy of
N. Rohrer and P. Habitz). Reproduced with permission from [12], c©2006 IEEE

The systematic component is influenced by layout topology [13–15] and global
scale process steps like chemical mechanical polishing (CMP). The use of local-
ized SiGe in the PMOS devices and dual stress liners [16–28] to improve mo-
bility add a strong systematic layout dependent component. The transistor perfor-
mance will vary depending on the gate-to-gate spacing, the gate to diffusion edge
distance and proximity to other devices. Scattering of moderate-energy well ion
implant species at the edge of the photoresist layer used for well formation has
been shown to cause a systematic elevation of threshold voltage [29–32]. Random
dopant fluctuations become a substantial part of the threshold voltage variation due
to the small gate area as result of aggressive process scaling. Line-edge rough-
ness [33–35], gate oxide variation, interface charge nonuniformities [29, 30, 33–
43], pocket implant variations [43] and rapid thermal annealing process steps [42]
affect the transistor performance. Some of the effects are spatially correlated. De-
vices in close proximity and of similar layout style behave similarly to each other,
while the behavior becomes less and less correlated as the distance between the
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devices increases. Figure 8.3 gives an overview, basic classification, and exam-
ples of the correlated vs. noncorrelated parameters and their spatial dependencies
[44]. The predominant components will be analyzed in more detail in the next
sections.

Systematic Random

Random dopant
fluctuations

Distance-dependent
(correlation length)

Neighbor effects
(e.g. lithography)

Regional effects:
Pattern density

Cross-die trends
(wafer-level non -
uniformity)

Highly correlated Uncorrelated

Fig. 8.3. Correlated vs. noncorrelated parameters and their spatial dependencies. Reproduced
with permission from [44], c©2008 IEEE

In addition to process induced variations, the transistor drive current variation
has a dynamic component that depends on supply voltage variations. The impact on
the clock buffer behavior will be described in more detail in Sect.8.4. The wire delay
depends not only on systematic layout related and CMP effects, but it also has an
additional component that depends on noise due to the activity of the adjacent nets.
This component depends on the workload and is technically deterministic, but due
to the computational intractability, it is usually modeled as random. Clock jitter is
another substantial component of clock skew. This variation is not correlated to the
rest of the skew components and can be treated as random. Chapter 5.1 provides a
very detailed PLL jitter analysis.

The best way to cope with the various sources of variations and their effect on
clock skew is to use well established statistical methodology techniques and not fol-
low a worst case analysis that would lead to overdesign. A statistical model for clock
skew based on Monte Carlo analysis is described in [45]. It describes a skew budget-
ing methodology incorporating both clock and datapath delay variations. It is shown
that considering the variations in the datapath, as well as in the skew calculation, is
essential to avoid over budgeting for global skew. The analysis in [45] shows that the
jitter induced by power supply noise on the clock buffers is the dominant source of
clock skew in H-tree networks. It is also shown that the number of paths between
clocked elements has an important influence on the most appropriate clock skew
budget used in the design phase.

The approach proposed [46] uses joint probability density functions (JPDFs)
that preserve the correlation between minimum and maximum delays. The proposed
method computes the skew distribution for the entire clock tree as well as the
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skew distribution of all subtrees simultaneously and, therefore, allows the de-
signer to identify which portions of the clock tree are most prone to process
variations.

An analysis of the impact of die-to-die and within-die parameter fluctuations
on the maximum clock frequency is provided in [47]. The maximum operation fre-
quency depends on both the clock skew and the datapath variation. It is shown that
the within-die fluctuations primarily affect the mean frequency of operation, while
die-to-die fluctuations determine the major component of the maximum frequency
variance.

Since the Monte Carlo analysis is very time consuming, especially if applied
to the whole clock network, the method proposed in [48] includes a three-phase
approach to minimize the overall clock analysis effort. The first phase consists of a
pruning of noncritical clock network portions, followed by a standard skew analysis
with full extraction. Statistical analysis is applied as a third step only to the most
critical portions of the clock network.

Despite the fact that general purpose or clock specific statistical timing simulators
[49–51] can be used to analyze the clock network and datapath delay sensitivity un-
der process variations, it is important that the designer acquires very good insight on
what to anticipate. This basic understanding of the various interactions and process
variation sources will be very useful in making the appropriate tradeoffs to achieve
a robust design. In the following, we will describe how the correlated and noncorre-
lated parameters should be treated in the clock skew and datapath analysis. Further-
more, in subsequent sections we will provide more details on the various sources of
variations that can affect a digital network delay and identify ways to minimize their
impact.

PLL G1

RC1

G2

G3

RC2

RC3

FFA

FFB

A

B

d1

d2

d3

Fig. 8.4. Simplified clock network

Figure 8.4 illustrates a subset of a clock network to help define the various skew
components and show the impact of systematic and correlated variations as opposed
to the random ones.
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8.2.1 Setup Time Skew

Using the sample clock network shown in Fig.8.4 as an example, the skew between
points A and B for the setup time case can be expressed as

TClk skew setup = tA − tB, (8.3)

where tA and tB are the arrival times at points A and B, respectively:

tA = d1 +d2, (8.4)

tB = d1 +d3, (8.5)

where di represents the combined gate G and RC delay of stage i:

di = Gi +RCi, i = 1,2,3. (8.6)

These stage delays have a systematic and random component and the stage delay can
be expressed in the simplified form:

di = di sys +di random, i = 1,2,3. (8.7)

The systematic component will depend on the layout and load conditions and will
remain constant over time for a given chip. The random components may vary over
time even for the same chip. Such random variations include voltage, noise, and
temperature variations. These effects will be examined in more detail in the next
sections. There will also be random variations that are constant over time but still not
predictable. One such example is random dopant fluctuations. These variations may
not be Gaussian. Proper analysis of the composite variation will require Monte Carlo
analysis. Using basic statistical analysis, the skew can be expressed as:

TClk skew setup = tA − tB = E[tA]−E[tB]

±M
√

σ2
tA +σ2

tB −2ρσtAσtB +σ2
jitter

, (8.8)

where E[tA] and E[tB] are the mean values of the path delays, σtA and σtb are the
corresponding standard deviations, and ρ is the relevant correlation coefficient. M
is the standard deviation multiplication factor selecting the degree of confidence.
While (8.8) is valid for even non-Gaussian distributions, the interpretation of the
factor M will be different, depending on the actual distribution. For Gaussian distri-
bution, M = 3 will correspond to 99.8% confidence level. The exact M number will
depend on the number of critical timing paths only (not all paths). Increased number
of critical paths will require larger values of M to guarantee a certain final yield. The
correlation coefficient ρ is 0 for statistically independent variables and 1 for com-
pletely dependent ones. In general, partially dependent variables will have values of
ρ between 0 and 1. The delays are partially dependent on each other, since the gate
delay will depend on the input slew rate that depends on the delay of the previous
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stage. On the other hand, the delay of the previous stage depends on the load that
varies when the input capacitance for the following stage is varying due to gate ox-
ide or channel length variations. By substituting (8.4)–(8.7) in (8.8), the skew can be
expressed as:

TClk skew setup = (E[d1]+E[d2])− (E[d1]+E[d3])

±M

√
3∑

i=1
σ2

di random
+

3∑
i=2

σ2
di sys

−2
3∑

i, j=2:i< j
ρi, jσdi sysσd j sys +σ2

jitter
. (8.9)

As seen in (8.9), the mean value of the common path E[d1] does not contribute to the
clock skew, and this is a very important property we need to take into account. By
removing the common E[d1] delay, (8.9) is simplified to:

TClk skew setup = (E[d2]−E[d3])

±M

√
3∑

i=1
σ2

di random
+

3∑
i=2

σ2
di sys

−2
3∑

i, j=2:i< j
ρi, jσdi sys σd j sys +σ2

jitter.
(8.10)

In the case of gates in close proximity, the systematic variation that mainly depends
on the layout style will be in the same direction, indicating a correlation coefficient
value closer to 1. In the special case of gates in close proximity with same layout
and load conditions (ρ2,3 = 1 and σd2 sys = σd3 sys ), the systematic variation terms in
(8.10) will null each other out resulting in reduced local clock skew:

TClk skew setup(local) = (E[d2]−E[d3])±M

√√√√
3∑

i=1

σ2
di random

+σ2
jitter. (8.11)

Equation 8.11 can be applied for skew estimation for gates up to a couple of hundred
microns apart. In the other extreme case for gates across the chip, the covariance
term will be zero since the gate delays will be completely independent from each
other. The skew across chip will be:

TClk skew setup(AC) = (E[d2]−E[d3])±M

√√√√
3∑

i=1

σ2
di random

+
3∑

i=2

σ2
di sys

+σ2
jitter.

(8.12)
This will be obviously the worst case skew. For intermediate distances where 0 <
ρ2,3 < 1, the systematic variation will be partially reduced providing skew values
that are within the range defined by (8.11) and (8.12). The root mean square (RMS)
term in the (8.10)–(8.12) indicates an averaging effect of the variation components.
In the simplified case where all delay components and variations are equal, the skew
will be proportional to the stage delay variation times the square root of the number
of stages N, rather than N itself. Consequently, simply adding the variation per stage
would have resulted in very pessimistic skew estimation.

While the above skew estimation procedure has been applied to a very small
network for simplicity, it can easily be extended to large clock tree networks. The
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total skew will be proportional to the total number of stages in a clock path, and
hence proportional to the latency from the PLL output along the clock distribution
and grid down to the final clock buffer. This latency is on the order of 700ps to 1ns
and the skew is typically on the order of 10% of the cycle time. Typical clock skews
values are in the range of 50–70ps when including PVT variations [45].

The final product frequency distribution is affected by skew, setup times, and
path delays. Path delays needs to be analyzed in a fashion similar to clock branch
delays. The fact that the systematic uncorrelated components are added directly to
the cumulative delay causes larger datapath delays overall and will adversely affect
frequency distribution. Random variations provide an averaging effect that can re-
duce total path delay. Statistical timing analysis of both skew and datapath delays is
essential to minimize pessimism and prevent overdesign.

8.2.2 Hold Time Skew

The big difference between the setup and hold time case is that the hold time skew
refers to the same clock edge. In this case, the PLL jitter and the common path
delays will be removed from the skew calculation. This is valid for both random
and systematic components since they will have just one value at a given time, and
can be removed from the skew as common path delay components. In the case of
setup time skew, these components may vary from cycle-to-cycle and, therefore,
cannot be removed as common path delays. In the hold time case and for the ex-
ample of Fig.8.4, components d1 random, d1 sys, and σ2

jitter are common and, therefore,
removed:

TClk skew hold = (E[d2]−E[d3])

±M

√
3∑

i=2
σ2

di random
+

3∑
i=2

σ2
di sys

−2
3∑

i, j=2:i< j
ρi, jσdi sys σd j sys

. (8.13)

8.2.3 Half-Cycle Setup Skew

In this case, the source uses the rising clock edge and the receiver uses the falling
edge. The skew in a half-cycle path will be the same as for the single-cycle skew
with the addition of the PLL duty cycle variation in the RSS component.

8.2.4 Multiple-Cycle Setup Skew

In the multiple-cycle paths case, the skew will be similar to the single-cycle one.
The main difference is the potential extra voltage and temperature variation that may
occur during the longer multiple-cycle path.

8.2.5 Grid or H-Tree?

Additional averaging effect will result by using a grid rather than a clock network
as long the resistance of the wires connecting the clock buffer stages is smaller than
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the output impedance of the drivers. In the opposite case, the resistive shielding will
keep the buffers in isolation and there will be no skew averaging effect. In such a
case, the grid will just increase the total power due to the added capacitive load,
without offering any skew reduction benefit. The other issue with the use of a grid
is that timing tools have a difficult time analyzing this type of networks. The use of
H-tree is also necessary in the case of clock gating, since the clock buffers need to
be turned off individually.

8.3 Transistor Variation

This section provides a description of the various sources of variation in the transistor
that have an impact on the clock skew. The transistor channel length variation due
to lithographic and several layout dependent effects is a major contributor to the
clock delay variation and will be described in Sect.8.3.1. Random dopant fluctuations
affect smaller transistors and they will be discussed in Sect.8.3.2. Layout dependent
effects gained significant importance after the 65nm node and have major impact on
transistor performance. Advanced technology nodes use strain in the channel region
to improve mobility and the layout style has a major impact on the modulation of
this effect. Section 8.3.3 provides a brief overview of these effects and potential
remedies.

8.3.1 Channel Length Variation

The delay of a clock driver in a first order approximation can be expressed as:

gate delay =
Cload ×VDD

Idrain
, (8.14)

where CLOAD is the capacitive load, and VDD is the supply voltage. The drive current
is inversely proportional to the channel length and since the gate capacitance is pro-
portional to the transistor width W and channel length L, the delay is proportional
to L2:

Cload ∝ W ×L, (8.15)

Idrain ∝
W
L

, (8.16)

gate delay ∝ L2 ×VDD. (8.17)

This means that small variations in the channel length will have a quadratic impact on
the gate delay. Short channel effects amplify further this effect by changing the be-
havior of threshold voltage vs. channel length. Figure 8.5 shows the threshold voltage
variation vs. channel length in the linear and saturation regime [26]. At longer chan-
nel lengths, the transistor threshold voltage and consequently the drive current vari-
ation is less sensitive to channel length variations than in the case of shorter channel
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Fig. 8.5. Threshold voltage variation vs. channel length at VDS=0.05V, 1.0V. Reproduced
with permission from [26], c©2007 IEEE

lengths. Although it is tempting to use longer channel lengths across the board to
reduce variation, this would increase path delay, hold time requirements, and power.
Ideally, both the datapath and the clock network should use similar channel length
devices so that the minimum delay and the hold time requirement track each other in
the presence of variations. This is also important when designing a chip that needs
to be portable across process nodes. The datapaths that use long channel devices will
not speed up in the new node as much as the paths with short channel devices. While
using long channel length in short datapaths will not be a problem, substantial re-
design will probably be required if the datapath uses short channel devices while the
circuitry that affects hold time uses longer channels. In this case, the hold time will
not decrease as much as the short datapath will speed up and hold time violations
may be created.

The channel length variation has a systematic and a random component with
different values for the die-to-die and within-die cases that depend on the layout
style. Local variations are usually small and more systematic and correlated (lo-
cal photolithographic effects), while the across-chip variations are larger and more
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random in nature. At the local level, variatons result in limited clock skew, and this is
especially important in the case of hold time violations that typically happen locally
(back-to-back flops). This type of clock skew relaxation can eliminate thousands
of false hold time violations and reduce overdesign. On the other hand, systematic
variation across chip may be of different sign, depending on location. Systematic
variations at point A may be correlated in one direction, e.g., resulting in increased
clock branch delay around point A, while around point B on the other side of chip,
the delays may be correlated in the opposite direction, resulting in delay reduction in
another clock branch. The consequence will be larger across chip skew due to chan-
nel length variations. The following sections provide some background regarding
root causes.

Photolithography Challenges

Since the printing features are smaller than the wavelength being used, special opti-
cal proximity corrections (OPC) are employed to help print transistor gates [13, 14].
Critical layers in 90nm and 65nm process are exposed with ArF excimer laser light
(193nm wavelength). Figure 8.6 [13] shows the minimum device size trend and the
exposure wavelength used over time. Starting with the 45nm process node, we need
to use immersion technology where the gap between the projection lens and the wafer
is filled with water that has a higher refractive index than air [14]. In addition, dual
patterning techniques and sacrificial print assist patterns are employed to improve
printability at the cost of added process complexity. The 22nm process node will
more likely need to use Extreme Ultraviolet Lithography (EUVL). Nanoimprint or
Electron Beam Direct Write are the future candidates, but they need further develop-
ment prior to full deployment in production [13, 14].

Fig. 8.6. Minimum device size trend and the exposure wavelength used over time. Reproduced
with permission from [13], c©2006 IEEE
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Apart from the global channel length variation that is more random in nature,
there are two very important local components: poly flaring and line edge roughness
(LER). Poly flaring is a systematic component that depends on the layout style
and can lead to channel nonuniformity and increased leakage. LER is the result of
polysilicon grain boundary nonuniformity and is more random in nature. Both of
these components are examined in more detail in the following sections.

Poly Flaring and Poly Pullback

The actual structure on silicon is very different from what is drawn in the layout
database. Poly flaring as shown in Fig.8.7 [38] affects the actual channel length at
the transistor boundary. The channel width locally is larger causing reduction in drive
current. Increase of the distance of the poly jog to active will reduce this effect but
it comes at a layout area increase penalty. In addition, the poly extension over active
needs to be large enough otherwise the poly pull back during processing will result
in a locally very short channel that will cause higher leakage current. This effect will
be even worse, if inadequate poly extension is in close proximity to active jogs. The
active jog will not be printed as a 90◦ sharp angle but as a curved edge reducing the
poly extension margin and causing higher channel leakage.

Fig. 8.7. “What you draw is not necessarily what you get on silicon” (courtesy of J. Rosal).
Reproduced with permission from [38], c©2006 IEEE
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Line Edge Roughness

The poly edge is not a straight line any more exhibiting small curvatures at the
edge that are caused by the nonuniformity of the polysilicon grain boundary and
photolithographic effects. The end effect is that the channel length is not uniform
across the transistor width as shown in Fig.8.8a, b [35]. This effect is called line edge
roughness (LER) and is substantially random in nature. LER impacts the threshold
voltage along the transistor width as shown in Fig.8.8c. The impact is larger for
smaller devices and of course it gets worse with larger LER. Figure 8.9 [33] shows
actual data from various advanced lithography processes reported by different lab-
oratories indicating that LER does not scale with line-width according to the ITRS
roadmap requirements. Circuit simulators that intend to capture the layout depen-
dent effects typically split the transistors in many smaller ones with individual chan-
nel lengths per segment. The large number of segments will increase the simulation
time. In order to address this issue, instead of multiple segments one can use a single
device with the average channel length that is representative of the overall transistor
behavior [35].

Channel Length Variation Control

The channel length has a profound impact on speed, leakage, and overall yield. Good
control of this variation is essential. This control cannot be achieved by photolithog-
raphy alone and requires further assistance by design. In the 90 and 65nm process
nodes, some of the design for manufacturability (DFM) rules used to minimize these
effects were just guidelines. In 45nm and beyond, these rules became required design
rules. This affects layout density. Some of the rules require a constant poly pitch and
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Fig. 8.9. (a) Line-edge roughness reported by various labs and ITRS (b) Threshold voltage
variation vs. channel length, random dopant fluctuation and LER. Reproduced with permission
from [33], c©2003 IEEE

same poly orientation (horizontal or vertical) across the chip, adding dummy poly
gates [52] next to active gates, and strict poly extension requirements. Jogs of active
regions in shared transistors are not recommended since they can cause active flaring
and poly pullback. For the same reason, the distance between active edge and poly
jog also needs to be increased.

Similar layout style (matching layout) can reduce the systematic variation. Poly
shields [52] will help maintain uniformity in the channel length of the external tran-
sistor “fingers”. Using multi-finger devices for clock drivers is better than single-
finger devices, since the intermediate fingers act as a poly shield for the neighbors.
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In addition, the random variation within a multi-finger transistor provides an aver-
aging effect on the drive current that minimizes the delay variation in a multi-finger
device compared with the delay variation of a single-finger transistor with the same
total equivalent width.

8.3.2 Dopant Fluctuation

Narrow width transistors have literally a few atoms in the channel and their fluc-
tuation affects the transistor threshold voltage and consequently the drive strength.
This threshold variation is one of the main components of variation in transistors that
have the same layout and are close to each other, and otherwise are expected to have
similar behavior. The threshold variation is proportional to the inverse of the square
root of the gate area W ×L as shown in Fig.8.10 [39]:

Vthreshold shift ∝
1√

W ×L
. (8.18)

This means that devices with larger gate area will be less impacted by the dopant
fluctuations. Therefore, it is preferable to use larger devices in the clock buffers rather
than smaller ones. It is a trade-off between power consumption and skew reduction.
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The dopant fluctuation issue becomes more significant at thinner gate oxides. The
increase in the threshold voltage fluctuations amounts to more than 50% in MOSFET
with oxide thickness less than 1.5nm. The poly-Si depletion and the discrete random
dopants in the poly-Si gate add an extra 50% in devices with ultrathin oxides [41].
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A semianalytical method is proposed in [40] to predict the mean, standard deviation,
and probability distribution function of delay in logic circuits considering the random
threshold voltage variations, and it was applied to statistical characterization of flip-
flops and logic gates.

While this variation is already large and very undesirable, effects like higher lo-
cal annealing temperature, non uniformities in the gate oxide thickness, and surface
states make the problem even worse and require process changes to reduce this vari-
ation. Higher local annealing temperature expands junction diffusion both laterally
and vertically, resulting in lower VT due to a combination of short-channel effects
and compensation of halo channel doping (for halo/pocket-implanted FETs) [42, 43].
Gate oxide scaling required for better control in the channel area reaches the limits.
The gate oxide contains only 4–5 atomic layers. Nonuniformities in the gate oxide
thickness and surface states create extra dopant fluctuations [34] and introduce high
gate leakage and reliability risks associated with gate oxide integrity. High-K dielec-
tric gates [24, 26] offer a good solution to this problem. This type of gates can achieve
the same electrical thickness and control as the traditional gate oxide, but with higher
physical gate oxide thickness that reduces gate leakage exponentially [26].

While in the past most of the variability and yield loss came from random de-
fects, in modern technologies yield and performance are substantially impacted by
physical layout style and device interaction. Apart from the channel length variation
due to lithographic effects as described in previous sections, there are additional ef-
fects related to the well proximity effect (WPE), [29–32], and strain effects used to
improve the transistor mobility [16–28].

8.3.3 Well Proximity Effect
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Fig. 8.11. (a) Ion scattering at the photoresist edge is the cause of the well proximity effect
(WPE) (b) Drive current degradation due to WPE vs. gate to well edge distance (SC). Repro-
duced with permission from [29], c©2006 IEEE
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Lateral scattering of the ion implants at the photoresist edge when forming the
MOSFET wells as shown in Fig.8.11 can land into the channel area, increasing the
threshold voltage of the transistor and, therefore, degrading the transistor perfor-
mance [29]. The amount of dopants collected in the channel area depends on the
distance SC of the poly over active to the well edge as shown in Fig.8.12. From the
physical design perspective, what can be done is to increase the spacing of the well to
the active poly. This can usually be done for critical devices but not across the whole
chip. Possible process improvement steps are described in [30]. Narrow distances
on the order of 100nm can cause a 10% degradation in the transistor drive current
as shown in Fig.8.11 [29]. Similar magnitude of degradation is observed in current
mirror devices [31] and in circuit delay [32]. The WPE effects are included in the
BSIM 4.6.2 spice model [53]. State-of-the-art layout extractors identify the SC gate
distances to the well edge, and these are interpreted as layout input parameters to the
spice model.

8.3.4 Strain

Channel length and gate oxide scaling started running out of steam in the 130nm
node. Short channel effects cause high source–drain leakage current and gate tunnel-
ing effects resulting in exponential gate leakage increase. This prevents further scal-
ing of the channel length beyond ≈30nm and gate oxide thickness beyond 1.2nm
[16]. New techniques based on strain are employed to increase the mobility while
high-K gate dielectrics and new gate materials are now used to reduce gate leakage
while maintaining very good drain current control. The methods used to improve
the mobility incorporate highly tensile capping layers for NMOS, compressive cap-
ping layers for PMOS, stress memorization techniques, SiGe induced strain in the
PMOS devices, and shallow trench mechanical stress (STI) [16–28]. All these tech-
niques introduce systematic layout dependent variations affecting both the clock and
the datapath delays. The drive strength of a transistor is affected by the poly pitch,
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the distance of poly gate to STI, and the surrounding devices. Good understanding of
these layout and circuit performance interactions is an essential tool to help minimize
clock skew and datapath delay variations.

Stress Memorization and Tensile Stress Liner

Fig. 8.13. Stress induced mobility enhancement techniques: stress memorization and tensile
liner for NMOS, SiGe, and compressive stress liner for PMOS. Reproduced with permission
from [22], c©2007 IEEE

The stress memorization technique is applied to the NMOS devices during the
source–drain spike anneal [19–22]. This thermal treatment creates stress in the
NMOS channel area due to the difference in the thermal coefficients of the Si and the
nitride sacrificial capping layer used over the poly gate. This stress is tensile in the
direction of the current flow and compressive in the vertical direction [21]. Both of
these types of stress enhance the NMOS mobility. Further enhancement is achieved
by adding a SiN tensile layer on top of the gate (Fig.8.13). The stress depends on
the intrinsic stress of the material used and its thickness, the poly spacing, the gate
height, and the contact to gate spacing. Increased poly spacing will allow for more
volume of capping layer to create even more stress [16].

SiGe and Compressive Stress Liner

The PMOS transistor prefers compressive stress parallel to the current flow and ten-
sile stress in the direction perpendicular to the current flow [20]. The compressive
cap layer is not as effective as the SiGe [16–19] that is epitaxially grown in the
source/drain areas of the PMOS devices as shown in Figs.8.13 and 8.14. The SiGe
has larger lattice constant than Si and introduces compressive stress in the chan-
nel. The improvement in whole mobility can be as high as 50% with a 17% Ge
composition [17].

The poly pitch optimal distance is not only defined based on the lithographic
requirements, but it is also based on the stress inducing capability. Higher gate-to-
gate distance will help create more stress due to the higher area of the stress liner
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Fig. 8.14. TEM photograph of PMOS with SiGe compressive stress, and NMOS with tensile
liner stress in a 45nm Node. Reproduced with permission from [18], c©2004 IEEE
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and the SiGe volume. Similar arguments apply to the compressive stress liner case.
Increased stress liner size in the current flow direction Enx as defined in Fig.8.15
will help increase the compressive stress in the PMOS device. On the other hand the
Eny size does not have a predominant effect on PMOS performance [20].
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Fig. 8.16. Impact of STI stress effect on transistor drive current vs. active size. Reproduced
with permission from [23], c©2003 IEEE

Shallow Trench Isolation

Shallow trench isolation (STI) used to isolate the diffusion areas induces stress be-
tween the neighboring devices. This stress is transferred along the device channel
and enhances the PMOS mobility, but unfortunately degrades the NMOS mobility.
The STI stress depends on the location of the channel within the diffusion region and
the STI width defined as STI in Fig.8.15. The STI stress can affect the cell delay
by 10–20% depending on the STI-to-poly gate distance [23]. Figure 8.16 shows the
NMOS and PMOS current change vs. active area size for various width and channel
length combinations. Smaller active size reduces the compressive stress and deterio-
rates the PMOS device, but it helps the NMOS device that does not fare well under
compressive stress. The NMOS is less sensitive to transistor width reduction, but the
opposite is true for PMOS. Smaller PMOS width will have more compressive stress
and higher drive current. Longer channel devices are relatively insensitive to STI
stress. NMOS degrades for intermediate channel lengths and becomes insensitive for
small channel lengths. On the contrary, PMOS devices see substantial drive current
boost due to STI stress as the channel length becomes shorter. All these layout de-
pendent effects will impact the systematic delay component in the skew calculation
as expressed in (8.10).
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New Materials

Further enhancement in the transistor performance is achieved by using high dielec-
tric constant gate interface material and metal gates instead of polysilicon. High-K
gate dielectrics are used to reduce gate leakage but at the same time offer very good
control of the channel field due to the higher gate dielectric material that forms a
better capacitor under the gate without requiring further reduction of the gate physi-
cal thickness. This improvement combined with metal gates that prevent polysilicon
depletion and the strain techniques described above are the predominant perfor-
mance boosters for the 45, 32, and 22nm nodes [25, 26]. New, high mobility, nar-
row bandgap materials like InxGa1-xAs are strong contenders to replace strained-Si
channels in technologies beyond the 22nm node [28].

Guidelines

As explained earlier, the performance improvements based on strain depend strongly
on the layout style being used. Matching device layout style will help reduce the
mismatch in the clock buffers and minimize skew. Optimized layout to maximize
the drive strength will help reduce the buffer size and reduce power. This optimized
layout comes typically at the cost of extra cell area and larger parasitics that increase
the cell delay and power. Obviously there is an optimal trade-off point beyond which
there is substantial area and power penalty without a corresponding speed improve-
ment. State-of-the-art layout extractors take into account all these effects, and spice
models like BSIM 4.6.2 [53] incorporate these interactions and model the effect on
device performance.

While the layout for the clock headers can be matched and minimize the impact
of these systematic layout effects, it is obvious that the generic logic gates can be
affected substantially and can introduce systematic delay variations in the datapath
delays. Since the next generation technologies are running out of steam in terms of
electrical performance improvement, a new layout methodology is needed to achieve
the best performance and minimum possible variation. The library cell parasitic ex-
traction and electrical characterization need to take into account the fact that the cell
will not be in isolation. The impact of the neighboring devices that can create ex-
tra stress and affect the performance of the device being analyzed must be included.
Dummy devices need to be placed around the actual cell to be characterized, and the
analysis must be performed on a netlist extracted from the complete layout including
the dummy devices.

8.3.5 Long Term Effects on Variation

NBTI

The negative bias temperature instability effect (NBTI) [54, 55], impacts the PMOS
devices and reduces their current driving capability over time. This is due to thresh-
old voltage increase caused by trapped carriers in the gate oxide especially in the
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presence of hydrogen. Worst-case bias condition is when the gate of the PMOS tran-
sistor is turned on and the supply voltage and temperature are high. There is partial
recovery under AC conditions [56–58]. The NBTI shift in the early phases of the
stress has an exponential behavior, but after a couple of minutes of stress it follows a
power law behavior expressed as

VThreshold NBTI shift ∝ Time
1
6 . (8.19)

Short testing times may indicate very strong dependency on NBTI due to the
initial exponential increase. This early stress recovers over time, but the long term
effect will not. NBTI stress will be worse under DC conditions. Lower gate-source
voltage will induce less stress and increased switching activity will lead to lower
overall stress due to averaging effect of the bias conditions. Lower temperature of
operation reduces the NBTI effect in an exponential fashion.

This long-term effect can have major impact on the circuit behavior [59], and
proper analysis and margining are required to guarantee correct functionality until
the end of the product lifetime [60]. It is typical to add an extra 5% frequency margin
to cover for NBTI degradation. While the NBTI impact on the threshold voltage is in
the order of 50mV in 65nm for normal SiON oxides as shown in Fig.8.17, it reduces
substantially in the case of high-K dielectric gates [26].

The NBTI degradation will lead to increased latency of the clock network and
will increase the rise time at the final clock buffer stage. The amount of skew is
proportional to the overall clock network latency and, therefore, NBTI will have an
impact on the final skew. However, under symmetrical stress in the clock network
the impact on delay will be similar on all clock network branches and, therefore, the
impact on skew (difference in clock arrival times) will be minimal. This may not

Fig. 8.17. NBTI shift dependency on gate material. High K dielectric reduces NBTI shift
substantially at equivalent SiON electric field across the gate. Reproduced with permission
from [26], c©2007 IEEE
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be the case when extensive clock gating is used. Long term clock gating will affect
clock buffers differently, depending on their bias conditions. Every other inverter
stage will see a different NBTI stress and this can cause duty cycle shift that reduces
margin, and it can lead to timing failures in half-cycle paths.

The NBTI effect represents a systematic delay component and will also have
major impact on datapath delay. While the pattern in the clock network is highly
predictable if no clock gating is involved, in the case of combinational logic the bias
condition patterns will depend on the workload and different workloads will create
different degrees of NBTI degradation.

Hot Carrier Injection

At high electric fields in the channel, the carriers may gain sufficient energy and
momentum to enter into the gate oxide layer. This effect called hot carrier injection
(HCI) or channel hot carrier (CHC) effect [61, 62] is predominant on NMOS tran-
sistors. Electrons are accelerated much more than holes that have higher effective
mass. Moreover, the Si–SiO2 interface barrier is higher for holes. The stored carri-
ers in the oxide increase over time the transistor threshold voltage and reduce the
drive current. The degradation will be proportional to the time there is current flow
through the channel of the transistor and, therefore, crowbar current, and slow rise
times can increase this effect. In the case of clock buffers and repeaters stages in gen-
eral, one should restrict the output slew rate to minimize HCI. It is also best to use
buffer stages built by two inverters rather than single inverter stages since high slew
rate at the inverter input will cause higher crowbar current. In the case of two stages
that typically use a fanout of 4, the first stage will experience crowbar current but 4
times smaller than in the original single inverter design due to the smaller size of the
first stage. The gain from the first stage will help recover the slew rate at the input
of the second stage and, therefore, reduce the crowbar current of the output stage.
This will also help minimize the electromigration effects at the output of the large
driver.

8.4 Voltage Variation

The transistor current drive strength depends strongly on voltage. Typically, we
see a 10% speed change for 100mV of voltage variation. In 45nm and beyond,
this sensitivity is even larger approaching the 15–30% range at lower supply
voltages.

The clock and gate switching during normal operation create voltage transients
that affect the actual voltage at the transistor level and consequently affect speed.
A dynamic IR analysis will be required to identify the exact voltage variation at
the various points of the power grid. The voltage variation in the buffers along the
main clock tree depends on the chip switching activity. The largest voltage droop
will occur when the final clock headers switch, since the power consumed in this
case is a substantial part of the total chip power (typically on the order of 30% as
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mentioned in Sect.2.2.3). There will be an instantaneous current and voltage surge
at the time the final clock buffers switch as shown in Fig.8.18. After a certain time,
the flops will switch creating a second current surge. Subsequent activity will depend
on the logic propagation and will gradually reduce as we reach the next clock edge.
The voltage spikes at the main clock buffers can be minimized by appropriate use
of decoupling capacitors in close proximity. These decoupling capacitors need to be
placed close by so that the RC time constant including the power grid connection
resistance is at least 5 times smaller than the rise or falling transition time of the
voltage spike. Otherwise, the decoupling capacitors will not be able to reduce these
fast voltage transients. Differential structures may also be used for the main clock
trunk to minimize voltage variation, but this comes at the expense of increased total
power since the bias current source used will consume constant power [63].

In the ideal case where the clock skew is zero, the voltage difference at the final
buffer stages would be zero as well. However if the skew is larger than the clock
fall/rise time, then the two buffers may see a different voltage variation as shown in
Fig.8.18. The voltage variation to be considered for the final stages is much larger
than the variation observed at the main clock tree buffers, since the power surge
at the time of final buffer switching is very large. In order to minimize the impact
of the voltage variation on the PLL jitter, typically the PLL uses a separate supply
than the main supply of the chip. Detailed analysis of the PLL jitter is provided
in Chap.5.1 and an analytical model of supply-induced period jitter for long buffer
chains is described in Sect.6.8.

Apart from the high-speed voltage variation, there is a longer-term voltage vari-
ation due to package inductance. Typically, the resonance frequency of the package
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inductance and chip capacitance (large CPU) is on the order of 50–100MHz. The
noise period spans several CPU cycles for a GHz clock design. Package decou-
pling capacitors are used to reduce the noise amplitude, but they cannot filter out the
high frequency spikes on the chip. Even in the case of long term Ldi/dt variations,
one should calculate the corresponding voltage variation within one cycle and in-
clude it in the setup skew calculation. This is not necessary for the hold time skew
since it refers to the same clock edge and the Ldi/dt variation for this short time will
be negligible. Special attention should also be paid to multi-core designs with power
switches used to power down parts of the design. While this separation reduces over-
all power, it also reduces the total amount of available decoupling connected to the
power supply grid leading to larger Ldi/dt noise [64].

8.5 Temperature Variation

Both transistor and interconnect performance are affected by temperature. Chip tem-
perature depends on workload conditions. The thermal time constant is on the order
of a minute, so it does not track rapid workload variations. However, there is typi-
cally a spatial temperature gradient across the chip. Floating point units for example
will be much hotter than the L2 cache. Figure 8.19 shows a typical thermal map of a
multi-core chip under worst case load conditions [65]. The thermal gradient is 40◦C
across the chip.

In worst case hold time analysis, one should assume that the source flops are at
the lower temperature (i.e., fast clock-to-q delay) and the receiving flops are at the
higher temperature and lower voltage (i.e., higher hold time). Low temperature will
also reduce the wire resistance which helps achieve higher frequency of operation
but may cause hold time violations if this effect is not accounted properly in the hold
time analysis.

The transistor drive current is proportional to the carrier mobility and (to first
order) to the difference of VDD−Vthreshold. The threshold voltage on the other hand is
reduced with temperature, so there should be a voltage point for each process where
the rate of mobility decrease vs. temperature is compensated by the drive current due
to the threshold voltage reduction. At this particular supply voltage, the device delay
becomes independent of temperature. This particular aspect of transistor drive cur-
rent vs. temperature was used in [66] to develop a self-adjusting clock architecture
that minimizes the clock skew dependency on temperature variations.

It is important to note that apart from the impact on delay variation there is a
positive aspect of the temperature spatial variation. Various failure mechanisms such
as gate oxide integrity, electromigration, and NBTI have a strong dependency on
temperature. Taking advantage of a spatial thermal map under worst case load con-
ditions as shown in Fig.8.19 can help reduce overdesign since the reliability risk for
the areas with lower temperature will be smaller.
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Fig. 8.19. Thermal map of a multi-core microprocessor under worst case workload conditions.
the crosses represent the thermal sensor locations. Reproduced with permission from [65],
c©2008 IEEE

8.6 Interconnect Variation

Aggressive scaling and continuously higher demand for more dense routing require
substantial improvements in the interconnect stack material and physical construc-
tion. However, this comes also with the cost of more challenging reliability require-
ments, and substantial variations in the wire characteristics affecting the wire delay,
the clock skew, and consequently the product performance. In this section, we will
focus on the nature of these variations and interconnect design requirements for a
robust and predictable clock network.

Similarly to the transistor variation, the interconnect variations have systematic
and random components. However, in the interconnect case the systematic variations
dominate at least for wider interconnects. Appropriate extraction and modeling are
required to allow for a predictable clock skew analysis. Critical systematic varia-
tions include nonlinear resistance (NLR) effect, selective process bias (SPB) effect,
and thickness variations due to etch and chemical mechanical polishing (CMP). As
shown in Fig.8.20 [15], the sheet resistance varies as a nonlinear function of line
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Fig. 8.20. Sheet resistance nonlinear behavior vs. interconnect width. Reproduced with per-
mission from [15], c©2004 IEEE

width. Two phenomena cause significant and systematic changes in sheet resistance
as a function of line width for copper technologies. The first one is due to scattering
of electrons along the sidewall of the conductor and along the grain boundaries. The
second includes systematic changes in copper cross-sectional area as a function of
line width that are induced by the damascene process flow. An example of such an
effect is CMP-induced copper dishing that would increase resistance. For a given
pitch, the width and spacing on silicon will be different from the drawn features.
Figure 8.21 shows the difference in the width on silicon vs. the normalized drawn
width and spacing [15]. Depending on the width and spacing, the CMP will impact
the thickness of the wire. In the end, we have a dependency of Rsheet on wire width
and spacing as shown in Fig.8.22 and not only on width as would have been the
expectation in the past. Similarly, the coupling capacitance will depend on both the
width and spacing and not spacing alone, since the sidewall capacitance depends on
the wire thickness that now depends on both wire width and spacing. In addition,
Rsheet will have a nonlinear dependency on width and thickness, due to the high re-
sistance sidewalls that reduce the effective wire width and thickness. These sidewalls
are required to contain the copper and prevent its diffusion to the surrounding materi-
als. The use of ultra low dielectric constant materials (K = 2.4) to reduce the overall
capacitance has a strong side effect on the mechanical stability [67]. These materials
are “porous”, not extremely stable and a challenge for packaging. Special thin Ni-
tride layers used as intermediate layers between the metals increase the mechanical
stability but also increase the effective dielectric constant and, therefore, increase the
final wire capacitance value. Figure 8.23 shows the combined effect of SPB on wire
RC vs. width and spacing [68].

Increase of the aspect ratio (metal thickness over width) to reduce the sheet re-
sistance has the side effect of increased sidewall capacitance and sidewall contours
as shown in Fig.8.24 [67] and creates additional variation in the interconnect per-
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Fig. 8.21. Impact of SPB on interconnect width on silicon vs. normalized drawn width and
spacing. Reproduced with permission from [15], c©2004 IEEE

Fig. 8.22. Interconnect sheet resistance dependency on width and spacing – not only width –
due to SPB, CMP effects. Reproduced with permission from [15], c©2004 IEEE
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Fig. 8.23. SPB impact on RC delay vs. interconnect width and spacing (courtesy of C.
Bittlestone and U. Narasimha). Reproduced with permission from [68], c©2005 IEEE

Fig. 8.24. Cross section of interconnect stack of a 45nm process indicating the contours that
affect in a nonuniform manner the sidewall capacitance and sheet resistance. Reproduced with
permission from [67], c©2006 IEEE
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formance. The aspect ratio is typically kept between 1.5 and 2: Lower for the lower
level metals where capacitance is more important, and higher for longer upper level
interconnects that need to have both low resistance and low capacitance. Due to
the higher aspect ratio, the thickness and the sidewall capacitance will be larger,
and therefore upper level interconnects will require higher spacing and pitch. This
hierarchical stack provides high routing density and low capacitance for local inter-
connects, and lower routing density but higher performance for upper level inter-
connects. Typically, the pitch increase in the transition from one routing layer to the
next should be accompanied by a similar speed improvement to make the transition
worthwhile.

Some examples of the impact of selective process biasing (SPB) on the circuit
performance are provided in [69, 70]. Ring oscillator measurements for different
interconnect layout patterns show that the stage delay can vary up to 10% [69].
The analysis in [71] shows that the interconnect variations can affect the clock skew
by 25%.

The impact of size effects and copper interconnect process variations on the max-
imum critical path delay of single and multiple core microprocessors is described in
[70]. It includes the CMP and edge line roughness effects that will become more im-
portant for very narrow interconnects in the future. It looks like that the trend of using
multicores instead of monolithic single cores helps contain the issue of variation and
speed restrictions posed by long interconnects, since multiple core implementations
require typically shorter interconnects. The problem of creating a robust clock au-
tomatic routing in the presence of interconnect variations is addressed in [72]. The
algorithm calculates the delays and the variations at the various sink points, but in-
stead of using worst case corner approach, it uses a principal component analysis
and statistical centering approach to define the optimal clock network implementa-
tion considering all sinks simultaneously.

State-of-the-art parasitic extractors account for all these effects, but it is highly
desirable for the designer to know in advance what to expect from each interconnect
configuration and how to address these issues ahead of time in order to minimize
variation. Since these interconnect variations are more systematic, use of similar
routing patterns will help minimize variation. Otherwise, one needs to wait for the
full extraction and full post layout timing and clock analysis to see the exact result.
Isolated lines are impacted more by the CMP and dishing effects and several design
rules impose a certain density range per metal layer to minimize this variability and
improve yield. In order to achieve this specific metal density, we may need to add
metal fill that can be floating or grounded to reduce noise. In order to reduce the
coupling capacitance and help speed and power, it is preferable to maximize the
spacing of the metal fill to the signal lines. The floating capacitance is typically
extracted as grounded and this can affect the final capacitance by a large amount as
shown in [15] if the spacing is not adequate.

Additional variation is introduced by capacitive coupling, and this depends on
the workload and the resulting signal activity. In setup time analysis in most cases,
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designers use a worst-case Miller factor of 2 while in hold time analysis, a Miller
factor of 0. This can be quite pessimistic and lead to overdesign. Special timing
analysis based on timing windows [73] can help reduce this pessimism by calcu-
lating the effective Miller factor based on the actual switching activity of the gates
in the critical path. Shielding of the clock lines is an effective way to provide a
controlled environment for the clock network for both the inductance and noise
immunity at minimal expense in routing resources and power for the main clock
trunk.

The workload will introduce temperature variations as shown in Fig.8.19. The
wire resistance may vary by 30% going from room temperature to the typical op-
erating condition of 105◦C. The temperature gradient will cause additional delay
differences that affect both the clock and the datapaths. However, there is a positive
aspect in all this. Reduced temperature will help reduce the electromigration risk.
A worst case thermal map can be combined with knowledge of the nodal switching
activity to develop a more realistic estimate of electromigration risk and help avoid
overdesign. In the clock case, we may only need the temperature gradient and not
the activity, since in most cases the clock is active most of the time. Still, if we know
how much time the clock is gated or is in a low frequency mode (idle mode), we can
help prevent overdesign.

In high-speed designs, one should consider the inductive effects as well. There
are clock distribution schemes that take advantage of inductive effects to reduce clock
power and minimize skew [8, 74–77]. These are described in more detail in Chap.4.
Shielding of the clock lines with VDD and VSS provides both good return paths to con-
trol inductance but also shields the clock network from the noise and delay variation
due to capacitive coupling from neighboring switching nets. Reducing the variation
will improve overall skew and is a strongly recommended practice for high-speed
clock networks. The shielding costs a bit of extra power due to the increased ca-
pacitive loading. This additional power consumption is not large for the main clock
trunk and the shielding is required to minimize noise induced clock skew. In the fi-
nal stages, the power consumption is higher due to the large fanout, and one could
argue that shielding may not be needed since all signals should be stable before the
next clock edge. This may be true when there is no cycle stealing involved and neg-
ative edge timing is not used architecturally. Yet, there is another reason to maintain
shielding across all stages. As has been demonstrated before, the interconnect resis-
tance and capacitance variation can be reduced when using similar dense layout for
all wires, and therefore having a well controlled environment helps minimize skew
induced by the interconnect performance variation.

In a nutshell, the clock lines need to be designed wide enough to minimize RC
variations have good shielding to minimize variation due to noise and inductance,
and use a similar routing patterns to minimize the SPB variations. In all cases, full
extraction considering all these effects and post layout timing analysis is absolutely
required to sign-off the clock design.
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8.7 Conclusion: Clock Design and Analysis Guidelines: Putting
All Together

As a conclusion, in this section, we collect a summary of all analysis and design
guidelines presented earlier on.

8.7.1 Clock Analysis

• Need to use statistical analysis and not rely on worst case process corners that
are very pessimistic and lead to overdesign.

• Need to separate the systematic and correlated variation components.
• Systematic/ correlated components include strain and WPE-induced layout de-

pendent effects, portion of the channel length variation, and CMP, SPB effects
for the interconnects. All systematic effects should be modeled with accurate
post layout extraction.

• Random components include random dopant fluctuation, line edge roughness
(LER) effects, voltage and temperature variation, and PLL jitter.

• Use thermal maps to identify worst case temperature variations.
• Use dynamic IR simulations to identify the local and global IR drop for the clock

buffers.

8.7.2 Minimizing Variation

• Maximize W ×L to minimize random dopant fluctuations. However, short L is
need for speed and power reduction. Therefore, larger W devices at minimum
L are appropriate for clock buffers to minimize dopant fluctuations and power
dissipation.

• Use same poly orientation and poly shields to minimize poly CD variation.
• Use the maximum allowed poly pitch in technologies using strain to maximize

the drive strength through strain.
• Use the same layout style to guarantee the same effect on all transistors.
• Enlarge the spacing of well to active to reduce the well proximity effect that

increases transistor VT and reduces drive strength.
• Use multi-finger devices to create an averaging effect and improve overall

strength in processes using strain due to the larger strain in the internal devices.
• Avoid active jogs and increase poly to active spacing to minimize poly flaring

and leakage.
• Reduce total clock network latency. Skew will be one way or another propor-

tional to the total number of buffers.
• Reduce voltage variation by using large numbers of decoupling capacitors be-

tween supply and ground in close proximity to the clock buffers. The RC time
constant of the grid resistance and the decoupling capacitance needs to be at least
5 times smaller than the clock rise/fall times.

• Use clock line shielding for improved noise immunity and good inductive return
path to reduce overall delay variation due to noise.
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• Minimize the total number of clock buffers used and use large devices of similar
total equivalent strength. Variation is proportional to the number of stages and
the number of critical paths and clock sink pairs.

• Higher supply voltage will help minimize the impact of VT variation and partially
compensate the impact of NBTI.

• Use H-trees for distribution. Make sure to drive back-to-back flops with the same
clock branch. The delay of common branches does not affect the hold time skew.

• For interconnects, use similar layout style with shielding to minimize SPB im-
pact. If possible, use width and spacing combinations that minimize the SPB
impact. Use extraction tools that account for CMP and SPB effects.

• Use metal fill to meet density requirements and extract it correctly. Extract
grounded metal fill as grounded, floating as floating. If possible, use larger spac-
ing to active signals and clocks to just meet density requirements but minimize
the impact on delay due to noise and reduce power consumption by reducing the
overall capacitive load.

• Shorting clock buffer outputs can provide some averaging effect, but it increases
power and complicates timing analysis. Most timing tools have issues with par-
allel clock drivers. In order to facilitate clock gating, a tree configuration must
be used instead of a shorted-output topology to be able to gate individual clock
buffers.

• In the case of clock gating, add enough margin to account for the extra asymmet-
ric NBTI shift. This impacts more the half-cycle paths that depend on both the
rise and fall clock transitions.

• Use the same minimum channel length in all clock drivers. Different channel
lengths have different sensitivity to CD variations and can impact product speed.

• Use wider metals for clock lines to minimize the RC impact, minimize the non-
linear sheet resistance effect, and reduce the electromigration risk.

• In physical composition, use the same footprint (abstract) for all clock buffers. It
will be easier to do post layout buffer fine-tuning in place, without affecting the
floorplan.
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cost function, 22
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clock distribution topology
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clock duty cycle, 19, 44–46
correction, 46, 236

clock frequency trend, 10
clock latency, see clock distribution delay
clock load multiplier, 20
clock multiplication, 187
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on-die measurement, 49
clock uncertainty, 13–18
clock vernier device (CVD), 51, 255
clock-data recovery, 141, 175, 239
clock-to-q-delay, 68
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critical path location, 43, 52
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clock-to-q delay, 68
frequency degradation due to variability,
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functional failure due to variability, 89–90
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time-borrowing, 246
transparency window, 68, 69, 73
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DCDL

asynchronous operation, 207
coarse, 203–209
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transfer function, 184
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digital frequency divider (DFD), 255
digitally controlled delay line, see DCDL
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applications, 186
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block diagram, 183
clock multiplication, 236
control, 216–228
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design parameters, 229
duty cycle correction, 236
dynamic range, 238
dynamic range increase, 219
initial phase sensitivity, 217
jitter mechanisms, 229
lock acquisition, 226
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spread spectrum tracking, 224–226
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stability criteria, 223
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tracking criterion, 224

dopant fluctuation, 290–291
duty cycle distortion, see DCD
dynamic adaptive bias (DAB), 259
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error function Q(σ), 162
eye diagram, 171

FIFO synchronization, 57
flip-flop, see CSE (Clocked Storage

Element)
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heterochronous clocking scheme, 54, 57
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Q factor, 110
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inter-symbol interference, see ISI
interconnect variation, 301–306
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clock distribution, 13–18
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transfer function, 157
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on-die measurement, 49
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analytical model, 192
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Negative Bias Temperature Instability, see
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optical proximity correction, 286

package inductance, 300
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package-level clock distribution, 58
performance tuning (manufacturing), 252
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bang-bang, 184
design characteristics, 188
example, 189
MTBF, 201
sampling window, 184, 190
synchronization failure example, 201
transfer function, 184

phase interpolator, 212–215
phase noise

definition, 142
relationship to jitter, 143

phase-locked loop
see PLL, 144

physical design guidelines, 307–308
plesiochronous clocking scheme, 54, 55
PLL
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frequency domain modelling, 144–161
noise
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intrinsic, 145–151
loop filter, 150–151
phase detector, 146–148
reference clock, 151–152
supply noise, 152
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point-of-divergence delay, 17
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power supply filtering, 47
pulsed-latch clocking, 78–80

quadrature clock generation, 187

Razor technique, 94–95, 262–272
recovery from timing errors, 266–268

reference spur (PLL), 167
regional voltage detector (RVD), 256
resiliency, 261–272
resonant clock distribution, 128–131
root sum of squares, see RSS
rotary traveling wave, 121, 123
RSS, 164, 172, 174

scan methodology, 85–88
selective process bias (SPB) effect, 301
setup constraint, 11
setup time, 10, 68
shallow trench isolation (STI), 295
shielding, 306
skew, see clock skew
skew-tolerant domino, 246
skin depth, 109
skin effect, 108
soft cycle boundary, 73, 79, 82, 88
soft errors, 91–93
standing wave clock distribution, 124–128
standing wave oscillator, 124–128
strain, 292–296

physical design guidelines, 296
shallow trench isolation (STI), 295
SiGe, compressive (PMOS), 293
tensile (NMOS), 293

synchronization failure, 191
synchronous clocking scheme, 54

temperature gradient (across chip), 300, 306
temperature sensing, 241
temperature variation, 300
thermal gradient (across chip), 300, 306
threshold voltage variation

short channel effects, 284
time borrowing, 76, 246–251
time-to-digital conversion, 187
transmission line, 110–114

characteristic impedance, 111
coplanar waveguide, 113
distortionless, 112
microstrip, 113
propagation constant, 111
reflection coefficient, 112
termination, 112

two-phase level-sensitive clocking, 76–78,
246



320 Index

variable frequency mode (VFM), 255
VCO

distributed, 120
LC differential, 115–118
LC quadrature, 118–121
noise, 145
phase noise, 117
poly-phase circular distributed, 121–122

vernier delay line, 51, 255
voltage controlled oscillator, see VCO
voltage identification in manufacturing, 252
voltage variation, 298–300
voltage-locked loop, 256

well proximity effect (WPE), 291

zero-delay buffering, 186
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