
9

Approximate system relationships

The similarity relationships introduced in Chapter 4 provided the framework
upon which most of the abstraction techniques in Part III relied. In this
chapter, we take an important conceptual step forward by abandoning the
exact nature of these relationships.

Notation

A metric on a set Z is a function d : Z × Z → R+
0 satisfying: d(z, z′) = 0

iff z = z′; d(z, z′) + d(z′, z′′) ≥ d(z, z′′); d(z, z′) = d(z′, z). A metric d
on the set Z induces a distance between points z ∈ Z and sets W ⊆ Z by
d(z,W ) = minw∈W d(z, w). This distance can be used to define the ε-inflation
of a set W ⊆ Z, denoted by W ε, and defined by W ε = {z ∈ Z | d(z,W ) ≤ ε}
for any ε ∈ R+

0 . The set W ε contains all the points in Z whose distance to
W is bounded by ε. Note that W ⊂ W ε since d(w,W ) = 0 for any w ∈ W .
Every relation Q ⊆ Z ×W , admits Q−1 = {(w, z) ∈W × Z | (z, w) ∈ Q} as
its inverse relation.

9.1 Approximate similarity relationships

The notion of simulation relation, formalized in Definition 4.7, requires related
states to be sent by the output maps to the same output. It may be argued that
such requirement is too strong since in concrete physical systems this exact
equality is seldom achieved. Noise in measurements, imprecisions in actuators,
and numerical computation errors are some of the factors preventing an exact
equality between the outputs. These arguments suggest that one could relax
the equality requirement by allowing related states to correspond to different
outputs provided that the mismatch is bounded by some desired precision
ε ∈ R+

0 . To quantify the desired precision we need a metric on the set of
outputs.
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146 9 Approximate system relationships

Definition 9.1 (Metric system). A system S is said to be a metric system
if the set of outputs Y is equipped with a metric d : Y × Y → R+

0 .

When referring to metric systems, equality between two sets of outputs
Ya and Yb will also imply equality between the corresponding metrics, i.e.,
Ya = Yb entails da = db where da is the metric on Ya and db is the metric on
Yb. For metric systems it is possible to generalize Definition 4.7 by replacing
the second requirement with an approximate version.

Definition 9.2 (Approximate Simulation Relation). Consider two met-
ric systems Sa and Sb with Ya = Yb, and let ε ∈ R+

0 . A relation R ⊆ Xa×Xb

is an ε-approximate simulation relation from Sa to Sb if the following three
conditions are satisfied:

1. for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;
2. for every (xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) ≤ ε;
3. for every (xa, xb) ∈ R we have that:
xa

ua

a
- x′a in Sa implies the existence of xb

ub

b
- x′b in Sb satisfying

(x′a, x
′
b) ∈ R.

We say that Sa is ε-approximately simulated by Sb or that Sb ε-approximately
simulates Sa, denoted by Sa �εS Sb, if there exists an ε-approximate simulation
relation from Sa to Sb.

When ε = 0 the inequality d(Ha(xa), Hb(xb)) ≤ ε impliesHa(xa) = Hb(xb).
In this sense, we can regard approximate simulations as a generalization of
the exact simulations introduced in Chapter 4. Before proceeding further, we
give an example to illustrate this concept.

Example 9.3. Consider the dynamical system Σ described by the differential
equation:

d

dt
ξ = −ξ, ξ(t) ∈ R, t ∈ R+

0 (9.1)

that can be explicitly integrated to obtain ξx(t) = e−tx. The closed form ex-
pression for ξ is used to show that for any ε ∈ R+

0 , the relation Rε ⊆ R× R
defined by (x, x′) ∈ Rε iff ‖x − x′‖ ≤ ε is an ε-approximate simulation rela-
tion from S(Σ) to S(Σ). Here, S(Σ) is the system (R,R+

0 ,
- ) defined

by x
τ- x′ if there exists a solution ξx : [0, τ ] → R of (9.1) satisfying

ξx(τ) = x′. To see why Rε is an ε-approximate simulation relation, con-
sider a pair (x, x′) ∈ Rε and a transition x

τ- x′′ in S(Σ). The definition
of - implies x′′ = ξx(τ) = e−τx, and we claim that (x′′, x′′′) ∈ Rε

with x′′′ = ξx′(τ), or equivalently, x′
τ- x′′′ in S(Σ). To determine if

(x′′, x′′′) ∈ Rε, we compute:

‖x′′−x′′′‖ = ‖ξx(τ)−ξx′(τ)‖ = ‖e−τx−e−τx′‖ ≤ ‖e−τ‖‖x−x′‖ ≤ ‖x−x′‖ ≤ ε.

This simple argument is valid in far greater generality and it is at the heart
of all the results to be proved in Part IV. C
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As the previous example suggests, approximate simulation relations are
especially useful for infinite-state systems in which the output set is naturally
endowed with a metric. One typical usage of approximate simulation relations
is the simplification of verification problems. To understand how such simpli-
fication arises, we relate the reachable sets of systems related by approximate
simulation relations.

Proposition 9.4. For any two metric systems Sa and Sb with Ya = Yb, the
following implication holds:

Sa �εS Sb =⇒ Reach(Sa) ⊆ Reachε(Sb).

Proof. Denote by R the ε-approximate simulation relation from Sa to Sb,
and let ya ∈ Reach(Sa). By definition of reachable output, there exists an
initialized finite internal behavior of Sa:

xa0
ua0

a
- xa1

ua1

a
- . . .

uak−1

a
- xak

with Ha(xak) = ya. Repeating the argument in the proof of Proposition 4.11
we conclude the existence of an initialized internal behavior of Sb:

xb0
ub0

b
- xb1

ub1

b
- . . .

ubk−1

b
- xbk

satisfying (xai, xbi) ∈ R for i = 0, 1, . . . , k. Hence, yb = Hb(xbk) ∈ Reach(Sb)
and it follows from the second requirement in the definition of approximate
simulation relation that d(ya, yb) ≤ ε. Consequently, ya ∈ Reachε(Sb). ut

Returning to verification problems, consider a system Sa and a set of
unsafe outputs B. If a system Sb ε-approximately simulates system Sa,
Proposition 9.4 can be used to conclude that Reachε(Sb) ∩B = ∅ implies
Reach(Sa) ∩B = ∅. For reachability problems, showing Reach(Sa) ∩ Z 6= ∅
for a set Z satisfying Zε ⊆ B, implies Reach(Sb) ∩ B 6= ∅. Clearly, these
implications are only useful if we are able to construct abstractions based on
ε-approximate simulation relations that are simpler than the systems they
abstract. In Chapters 10 and 11 we discuss the existence and construction of
such abstractions. Before, however, we strengthen approximate simulation to
approximate bisimulation.

Definition 9.5 (Approximate bisimulation). Consider two metric sys-
tems Sa and Sb with Ya = Yb, and let ε ∈ R+

0 . We say that system Sa is
ε-approximately bisimilar to system Sb, denoted by Sa ∼=ε

S Sb, if there exists
a relation R satisfying:

1. R is an ε-approximate simulation relation from Sa to Sb;
2. R−1 is an ε-approximate simulation relation from Sb to Sa.
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Some care needs to be exerted when composing approximate (bi)simulation
relations. Although it is a simple exercise to show that the composition of ap-

relation, the precision is altered by composition. In detail, if aRb is an
aεb-approximate (bi)simulation relation from Sa to Sb and if bRc is an
bεc-approximate (bi)simulation relation from Sb to Sc, the composite bRc ◦ aRb
is an (aεb + bεc)-approximate (bi)simulation relation from Sa to Sc.

9.2 Approximate alternating similarity relationships

When discussing problems of control, ε-approximate similarity relationships
need to be replaced with ε-approximate alternating similarity relationships.
This generalization from exact to approximate consists again in relaxing the
equality requirement on the outputs of related states.

Definition 9.6 (Approximate alternating simulation relation). Let
Sa and Sb be metric systems with Ya = Yb and let ε ∈ R+

0 . A relation
R ⊆ Xa ×Xb is an ε-approximate alternating simulation relation from Sa
to Sb if the following three conditions are satisfied:

1. for every xa0 ∈ Xa0 there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;
2. for every (xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) ≤ ε;
3. for every (xa, xb) ∈ R and for every ua ∈ Ua(xa) there exists ub ∈ Ub(xb)

such that for every x′b ∈ Postub(xb) there exists x′a ∈ Postua(xa) satisfying
(x′a, x

′
b) ∈ R.

We say that Sa is ε-approximately alternatingly simulated by Sb or that Sb
ε-approximately alternatingly simulates Sa, denoted by Sa �εAS Sb, if there
exists an ε-approximate alternating simulation relation from Sa to Sb.

Approximate alternating simulation relations are used to define approxi-
mate feedback composition in Chapter 11. To that purpose, we introduce now
the extended ε-approximate alternating simulation relation associated with
an ε-approximate alternating simulation relation.

Definition 9.7 (Extended approximate alternating simulation rela-
tion). Let R be an ε-approximate alternating simulation relation from metric
system Sa to metric system Sb. The extended ε-approximate alternating sim-
ulation relation Re ⊆ Xa ×Xb × Ua × Ub associated with R is defined by all
the quadruples (xa, xb, ua, ub) ∈ Xa × Xb × Ua × Ub for which the following
three conditions hold:

1. (xa, xb) ∈ R;
2. ua ∈ Ua(xa);
3. ub ∈ Ub(xb) and for every x′b ∈ Postub(xb) there exists x′a ∈ Postua(xa)

satisfying (x′a, x
′
b) ∈ R.

proximate (bi)simulation relations results in an approximate (bi)simulation
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Note that the third requirement in the previous definition is no more than the
third requirement in Definition 9.6.

Approximate alternating bisimulations can be obtained by introducing
the adjective approximate in the definition of alternating bisimulation or by
symmetrizing the definition of approximate alternating simulation.

Definition 9.8 (Approximate alternating bisimulation). Given two met-
ric systems Sa and Sb with Ya = Yb, and given ε ∈ R+

0 , we say that Sa is
ε-approximately alternatingly bisimilar to Sb, denoted by Sa ∼=ε

AS Sb, if there
exists a relation R satisfying:

1. R is an ε-approximate alternating simulation relation from Sa to Sb;
2. R−1 is an ε-approximate alternating simulation relation from Sb to Sa.

Approximate alternating simulations and bisimulations are instrumental to
refine controllers synthesized for symbolic abstractions based on approximate
simulations and bisimulations. We return to this topic in Chapter 11.

9.3 Notes

Approximate equivalence was first discussed in the context of timed-automata
[GHJ97] and probabilistic systems [DGJP99]. In both cases, it was formalized
by resorting to metrics and metric systems. Although in a different context,
metric systems had been studied much earlier, see for example [vB98]. Most of
the work that followed the papers [GHJ97, DGJP99] focused on probabilistic
systems and the notion of approximate simulation for dynamical and control
systems only appeared recently. In [GP05, GP07], approximate bisimulation
was introduced by resorting to a metric on the set of outputs. A different
formalization of approximate simulation appeared in [Tab05, Tab06] through
the use of set-valued output maps. The discussion in this chapter is based
on [GP07, PGT08].




