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Control

Whenever a system Sa fails to conform to its specification Sb, in the sense
that Sa � Sb, we may ask if there exists another system Sc, the controller,
such that Sc ×I Sa � Sb or even Sc ×I Sa ∼= Sb. In this chapter we discuss
these control problems in the behavioral and similarity contexts. We show
how to reduce controller synthesis problems from the behavioral context to
the similarity context and we solve the later by computing fixed-points of
suitably defined operators. In addition to these general control problems we
also present fixed-point solutions specialized for safety and reachability control
problems that frequently arise in applications.

Notation

For a set Z, Z∗ and Zω denote the set of all finite and infinite strings, re-
spectively, obtained by concatenating elements in Z. An element z ∈ Z∗ can
thus be seen as a map z : {0, 1, 2, . . . , n} → Z represented by z = z0z1z2 . . . zn
with z(i) = zi, i ∈ {0, 1, 2, . . . , n}. Similarly, an element z ∈ Zω is a map
z : N0 → Z represented by z = z0z1z2 . . . with z(i) = zi, i ∈ N0. A string
z ∈ L ⊆ Z∗ ∪ Zω is said to be maximal if z ∈ Zω or if z = z0z1 . . . zk ∈ Z∗
and there exists no string w = w0w1 . . . wkwk+1 ∈ L satisfying zi = wi for
i = 0, 1, . . . , k.

The natural projection taking (xa, xb) ∈ Xa × Xb to xa ∈ Xa is de-
noted by πa : Xa × Xb → Xa. Similarly, πb : Xa × Xb → Xb de-
notes the natural projection taking (xa, xb) ∈ Xa × Xb to xb ∈ Xb. The
map πX : Xa ×Xb × Ua × Ub → Xa ×Xb is also a projection and sends the
quadruple (xa, xb, ua, ub) ∈ Xa×Xb×Ua×Ub to the pair (xa, xb) ∈ Xa×Xb.
The set of all subsets of Z, also known as the power set of Z, is denoted by
2Z .
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52 6 Control

6.1 Feedback composition

The notion of system introduced in Part I made no claims regarding the se-
mantics of the set U of inputs. While for some systems, the elements of U that
are fed into a system can be suitably chosen, for other systems this choice is
not possible. In the literature, two different approaches to the modeling of U
coexist. The set of inputs U can be treated as the disjoint union of Uc and
Ud, i.e., U = Uc ] Ud with Uc modeling the inputs under the designer’s con-
trol (controllable) and Ud modeling the inputs beyond the designer’s control
(uncontrollable). Under this paradigm the effect of controllable and uncon-
trollable inputs is interleaved or turn-based since a transition x

u- x′ will
either be labeled by a controllable or by an uncontrollable input u. The other
approach consists in describing U as the product U = C×D with C modeling
the control inputs and D modeling the disturbance or adversarial inputs. In
this case, starting from a state x and choosing a control input c ∈ C leads to
a transition x

c,d- x′ in which the reached state x′ depends on the choice of
disturbance input d ∈ D which is unknown and thus assumed adversarial. In
this paradigm, the effect of the control and disturbance is concurrent instead
of being interleaved or turn-based. We follow the concurrent approach since
this is the natural paradigm for continuous-time control systems and it will be
inherited by its finite-state models discussed in Parts III and IV. We do not
model disturbance inputs explicitly but rather implicitly through the nonde-
terminism of the transition relation. This means that the disturbance has the
power to decide which c-successor of a state x is reached when a control input
c is chosen at the state x.

The notion of controller can be formalized in several different ways. We
could regard a controller as a mechanism that determines which input should
be fed into the system being controlled based on observed states1. This intu-
itive description has one important limitation: there may be more than one
input that leads to a correct or desirable behavior. We thus revise the concept
of controller to a mechanism that determines which inputs can be fed to the
controlled system based on a sequence of observed outputs. Mathematically,
this can be described by a map:

φ : X∗ → 2U

transforming sequences of outputs into sets of inputs. A sequence of transi-
tions:

x0
u0- x1

u1- x2
u2- . . .

un−1- xn

would then be an internal behavior of the controlled system provided that
uk ∈ φ(x0x1 . . . xk) for every k ∈ {0, 1, . . . , n − 1}. Although this notion of
controller is conceptually very pleasing, for operational reasons we restrict
attention, in this chapter, to controllers φ : X∗ → 2U that can be described
1 To simplify the discussion, we assume Y = X and H = 1X .
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by a finite-state system Sc. To understand how this can be done we need to
digress into feedback composition.

If the effect of applying φ : X∗a → 2Ua to a system Sa is to be described by
Sc ×I Sa, we need to elaborate on the kind of interconnection relation that
is appropriate for control. Among the several different possibilities we shall
require I to be the extended relation Re of an alternating simulation relation
R from Sc to Sa. This choice renders the results that follow conceptually
simple.

Definition 6.1 (Feedback composition). A system Sc is said to be feed-
back composable with a system Sa if there exists an alternating simulation
relation R from Sc to Sa. When Sc is feedback composable with Sa, the feed-
back composition of Sc and Sa, with interconnection relation F = Re, is given
by Sc ×F Sa.

The term feedback is justified by the following interpretation of Sc×F Sa.
Assume that Sc ×F Sa is at the state (xc, xa) ∈ R. Controller Sc offers to
execute any of the inputs uc ∈ Uc(xc). System Sa responds by selecting any
input ua ∈ Ua(xa) satisfying (xc, xa, uc, ua) ∈ F and by taking any transition
xa

ua

a
- x′a labeled by the chosen input ua. This transition then triggers a

matching transition by the controller. This means that Sc measures the new
state x′a of Sa and takes a transition xc

uc

c
- x′c satisfying (x′a, x

′
c) ∈ R.

Existence of the matching transition is guaranteed by the fact that R is an
alternating simulation relation. We can thus interpret an internal behavior of
Sc×F Sa as being the result of a feedback process during which the controller
offers a set of inputs, measures the state of Sa, updates its own state, offers
again a new set of inputs based on its updated state, and so on. Although
it would be more appropriate to use the term state-feedback, given that Sc
has access to the states of Sa, we use feedback for brevity. To emphasize this
feedback interpretation, the interconnection relation Re is denoted by F .

The next example illustrates the notion of feedback composition.

Example 6.2. Consider the system Sa displayed in Figure 6.1 and assume that
we want to eliminate all the internal behaviors containing transitions of the
form xa1

a

a
- xa1 or containing transitions of the form xa0

b

a
- xa0. This

objective can be achieved by resorting to the controller Sc also represented in
Figure 6.1. The required alternating simulation relation is given by:

{(xc0, xa0), (xc1, xa1), (xc2, xa2)}.

The feedback composed system Sc ×F Sa is also depicted in Figure 6.1 and
it can be seen that it is equal, up to a relabeling of states and inputs, to Sc.
Therefore, the controller enforces the desired requirements on Sa.
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Fig. 6.1. From top to bottom we have: system Sa, controller Sc, and the feedback
composed system Sc ×F Sa.

To understand the need to require the existence of an alternating simula-
tion relation from Sc to Sa, let us attempt to use system Sd in Figure 6.2 as a
controller. The relation R = {(xd0, xa0), (xd1, xa1)} is an obvious simulation
relation from Sd to Sa but not an alternating simulation relation. Although
the composition Sd ×I Sa is well defined for the interconnection relation:

I = {(xd, xa, ud, ua) ∈ Xd ×Xa × Ud × Ua | (xd, xa) ∈ R},

the transition (xd0, xa0)
a,a

da
- (xd1, xa2) is not present in Sd×ISa even though

it is labeled by the same input as the transition (xd0, xa0)
a,a

da
- (xd1, xa1)

which is present in Sd×I Sa. This means that an implementation of Sd×I Sa
requires a synchronization procedure between Sd and Sa that is not purely
based on inputs. C
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Fig. 6.2. Candidate controller for system Sa in Figure 6.1.

The following result, which is also valid for other forms of composition,
explains how feedback composition can restrict the behavior of systems.

Proposition 6.3. Let Sa and Sb be systems with Ya = Yb and let I be an
interconnection relation satisfying:

(xa, xb) ∈ πX(I) =⇒ Ha(xa) = Hb(xb).

Then, the following holds:

• Sa ×I Sb �S Sb;
• Sb ×I Sa �S Sa.

Proof. The proof consists in routinely checking that the relations:

{((xa, xb), x′b) ∈ Xab ×Xb | xb = x′b}
{((xb, xa), x′a) ∈ Xba ×Xa | xa = x′a}

are simulation relations from Sa×I Sb to Sb and from Sb×I Sa to Sa, respec-
tively. ut

Feedback composition not only restricts the behavior of the system to be
controlled but also its initial states. Recall that (xc, xa) is an initial state
of Sc ×F Sa if xc is an initial state of Sc, xa is an initial state of Sa, and
(xc, xa) ∈ R. Therefore, it suffices that R does not relate xa to an initial
state of Sc to prevent xa from being part of an initial state of Sc ×F Sa. The
introduced notion of feedback composition thus assumes that the controller
has the possibility of initializing Sa. As this assumption may not hold in many
situations, we also show how to generalize the results in this chapter to the
case where Sa cannot be initialized.

6.2 Safety games

We start by considering a very simple class of control problems whose objective
is to design a controller Sc for a system Sa so that Sc ×F Sa is nonblocking
and Reach(Sc ×F Sa) ⊆ W for some set W ⊆ Ya. If we regard W as a set
of safe outputs, the objective of Sc is then to render W invariant for the
behaviors in Bω(Sc×F Sa), thus keeping the composed system safe. This class
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of control problems are termed safety games since the controller Sc arises as
the solution of a game played against an opponent that tries to prevent the
composed system from being safe.

Definition 6.4 (Safety game). Let Sa be a system with Ya = Xa and
Ha = 1Xa , and let W ⊆ Xa be a set of safe states. The safety game for
system Sa and specification set W asks for the existence of a controller Sc
such that:

1. Sc is feedback composable with Sa;
2. Sc ×F Sa is nonblocking;
3. ∅ 6= Bω(Sc ×F Sa) ⊆Wω.

A safety game is said to be solvable when Sc exists.

The requirement Ya = Xa and Ha = 1Xa is made without loss of generality
since the general case where Ya 6= Xa can be reduced to this one. We shall elab-
orate on this fact once we know how to solve safety games. Note that the third
requirement in the preceding definition is equivalent to Reach(Sc ×F Sa) ⊆W
since a behavior y0y1y2 . . . in Wω necessarily satisfies yi ∈W for every i ∈ N0

and vice-versa.
Safety games can be solved by constructing a suitable operator:

FW : 2Xa → 2Xa

for any specification set W ⊆ Xa. A fixed-point of this operator provides a
collection of states from which it is possible to control system Sa so as to
remain in W . The operator FW :

FW (Z) = {xa ∈ Z | xa ∈W and ∃ua ∈ Ua(xa) ∅ 6= Postua(xa) ⊆ Z}

captures the essence of safety games in the sense that the set FW (Z) contains
all the states xa ∈ Z ∩W for which all the ua-successors of xa are in Z. The
next result shows that a maximal fixed-point of FW exists and relates the
solvability of safety games to fixed-points of FW .

Proposition 6.5. Let Sa be a system with Ya = Xa and Ha = 1Xa , and let
W ⊆ Xa be a set of safe states. The operator FW : 2X → 2X satisfies:

1. Z ⊆ Z ′ implies FW (Z) ⊆ FW (Z ′);
2. if the safety game for system Sa and specification set W is solvable, then

the maximal fixed-point Z of FW satisfies Z ∩Xa0 6= ∅.

Proof. The first assertion follows directly from the definition of FW .
To prove the second assertion, assume that a solution Sc to the safety

game exists, let K be the set of all states reachable in Sc ×F Sa, and let
Z ′ = Reach(Sc ×F Sa). Note that K ⊆ Xa ×Xb while πa(K) = Z ′ ⊆ Xa. We
claim that Xa0 ∩Z ′ 6= ∅ and Z ′ ⊆ F (Z ′). The first claim is proved by noting
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that the second and third requirement in the definition of safety game imply
K ∩Xca0 6= ∅ and thus:

Z ′ ∩Xa0 = πa(K) ∩ πa(Xca0) ⊇ πa(K ∩Xca0) 6= ∅.

The second claim can be proved as follows. Let xa ∈ Z ′ and let xc ∈ Xc be
such that (xc, xa) ∈ K. Since state (xc, xa) is reachable in Sc×F Sa and since
Sc is a solution to the safety game, there must exist (uc, ua) ∈ Uca(xc, xa)
such that (xc, xa)

uc,ua

ca
- (x′c, x

′
a) with x′a ∈W . Moreover, (x′c, x

′
a) ∈ K which

implies x′a ∈ Z ′. We now invoke the definition of feedback composition to
conclude that every transition xa

ua

a
- x′′a in Sa labeled by the same input

ua gives rise to a transition (xc, xa)
uc,ua

ca
- (x′′c , x

′′
a) in Sc ×F Sa. Necessarily,

(x′′c , x
′′
a) ∈ K and thus x′′a ∈ Z ′. Hence, we conclude the existence of an input

ua ∈ Ua(xa) for which ∅ 6= Postua(xa) ⊆ Z ′. According to the definition of
FW , xa ∈ FW (Z ′) and the second claim is proved. Finally, by definition of
FW we always have FW (Z ′) ⊆ Z ′ so that FW (Z ′) = Z ′ and Z ′ is a fixed-point
of FW . Since the second assertion in the proposition holds for any fixed-
point Z ′ of FW , it also holds for its maximal fixed-point whose existence is a
consequence of the first assertion in the proposition. ut

A controller solving a safety game with specification set W can always be
constructed from the information contained in a fixed-point Z of FW satisfying
Z ∩Xa0 6= ∅. One possibility is the controller:

Sc = (Xc, Xc0, Ua,
c
- ) (6.1)

defined by:

• Xc = Z;
• Xc0 = Z ∩Xa0;
• xc

ua

c
- x′c if ∅ 6= Postua(xc) ⊆ Z,

and where Postua(xc) refers to the ua-successors in Sa. It is a simple matter
to check that the relation defined by all the pairs (xc, xa) ∈ Xc × Xa with
xc = xa is an alternating simulation relation from Sc to Sa. According to
Proposition 6.3, Sc×F Sa �S Sc and we can interpret the result of composing
Sc with Sa as the elimination of all the transitions labeled by inputs for which
the corresponding successor sets are not contained in Z. Intuitively, Sc forces
the behavior of Sc ×F Sa to remain in Zω ⊆Wω.

A complete characterization of the solutions to safety games can now be
obtained by noting that it follows from the results in the Appendix that the
maximal fixed-point of FW can be obtained by iterating FW .
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Fig. 6.3. System Sa for Example 6.7.

Theorem 6.6. Let Sa be a system with Ya = Xa and Ha = 1Xa , and let
W ⊆ Xa be a set of safe states. The safety game for system Sa and speci-
fication set W is solvable iff the maximal fixed-point Z of the operator FW
satisfies Z ∩Xa0 6= ∅. Moreover, Z can be obtained as:

Z = lim
i→∞

F iW (Xa).

When Z ∩ Xa0 6= ∅, a solution to the safety game is given by the con-
troller (6.1).

Example 6.7. To illustrate Theorem 6.6 consider the finite-state system Sa in
Figure 6.3 and let W be the set of all light-colored states. The maximal fixed-
point of FW can be obtained by iterating FW and the result of this iteration
is shown in Figure 6.4.

After 5 iterates of FW a fixed-point is reached. The resulting set Z defines
a controller that restricts the inputs to e at the state xa5 and to c at state xa6.
The reader can verify that this choice of inputs prevents the behavior of Sa to
leave Wω. The feedback composition of Sc with Sa, displayed in Figure 6.5,
results in a finite-state system equal to Sc if we identify the states (xa5, xa5)
and (xa6, xa6) with the states xa5 and xa6, and if we identify the inputs (e, e)
and (c, c) with the inputs e and c, respectively. C

The controller (6.1) is completely determined by a given fixed-point of
FW . When we use the maximal fixed-point of FW , (6.1) becomes the best
possible controller in the sense that any other controller solving the same
safety problem would be more restrictive.
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Fig. 6.4. Iterates of FW . Dark-colored states correspond to the image of FW .

Proposition 6.8. Let Sa be a system with Ya = Xa and Ha = 1Xa , and let
W ⊆ Xa be a set of safe states. For any controller Sd solving the safety game
for system Sa and specification set W we have:

Sd ×G Sa �S Sc ×F Sa

where Sc is the controller (6.1) defined by the maximal fixed-point of FW .
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(xa5, xa5) (xa6, xa6)

(e,e)

(c,c)

(c,c)

Fig. 6.5. System Sc ×F Sa for Example 6.7.

Proof. It was shown in the proof of Proposition 6.5 that for any controller Sd
solving the safety game, the set Z ′ = Reach(Sd×G Sa) is a fixed-point of FW .
Therefore, Z ′ ⊆ Z where Z is the maximal fixed-point of FW . This suggests
that the relation:

R = {((xd, x′a), (xc, xa)) ∈ Xda ×Xca | x′a = xa}

is a simulation relation from Sd ×G Sa to Sc ×F Sa. The proof consists in
showing that this is indeed the case. Before starting we note that by definition
of Sc and since Ha = 1Xa , (xc, xa) ∈ Xca iff xc = xa.

Consider the first requirement in Definition 4.7 and let (xd0, xa0) ∈ Xda0.
Then, xa0 ∈ Z ′ ⊆ Z and xa0 ∈ Xa0. By definition of Sc and by defi-
nition of feedback composition, (xa0, xa0) ∈ Xca0 . Consequently, the pair
((xd0, xa0), (xa0, xa0)) belongs to R.

The second requirement follows directly from the definition of R.
To prove the third requirement let ((xd, xa), (xa, xa)) ∈ R and assume that

(xd, xa)
ud,ua

da
- (x′d, x

′
a) in Sd×GSa. Since Sd is a controller for the safety prob-

lem we necessarily have ∅ 6= Postua(xa) ⊆ Z ′ ⊆ Z. But by definition of Sc, for
every such input ua we have ua ∈ Uc(xa). Therefore, (xa, xa)

ua,ua

ca
- (x′a, x

′
a)

in Sc ×F Sa and by definition of R, ((x′d, x
′
a), (x′a, x

′
a)) ∈ R. ut

Theorem 6.6 can be generalized to the case where the initial state of
Sa cannot be initialized. The modification amounts to replace the condition
Z ∩Xa0 6= ∅, which requires the existence of at least one initial state from
which Sc can operate, to Xa0 ⊆ Z, which requires that Sc can operate from
every initial state in Xa0.

The apparently more general problem of synthesizing a controller Sc to
enforce Bω(Sc ×F Sa) ⊆ Wω when Ya 6= Xa and Ha 6= 1Xa can be reduced
to the problem studied in this section. It suffices to consider a new safe set
W ′ ⊆ Xa defined by W ′ = H−1

a (W ) and to apply Theorem 6.6 to system
(Xa, Xa0, Ua,

a
- , Xa, 1Xa) and specification set W ′.
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6.3 Reachability games

While the objective of safety games is to keep the behaviors of the composed
system within a safe set, reachability games ask for a certain set W of outputs
to be reached. As in the previous section we consider only the case where
Ha = 1Xa since the general case can be reduced to this one by suitably
redefining W .

Definition 6.9 (Reachability game). Let Sa be a system satisfying Ya = Xa

and Ha = 1Xa , and let W ⊆ Xa be a set of states. The reachability game for
system Sa and specification set W asks for the existence of a controller Sc
such that:

1. Sc is feedback composable with Sa;
2. for every maximal behavior y ∈ B(Sc ×F Sa) ∪ Bω(Sc ×F Sa) there exists
k ∈ N0 such that y(k) = yk ∈W .

A reachability game is said to be solvable when Sc exists.

The second condition in the definition of reachability game requires that
any infinite behavior y = y0y1 . . . of Sc ×F Sa visits the set W in finite time.
Moreover, it also requires that any finite behavior y0y1 . . . yl that cannot be
extended to an infinite behavior, visits W before or when reaching a blocking
state. In particular, no nonblocking condition is imposed since the objective
is simply to reach W in finitely many steps. Once states in W are reached, no
further requirements are imposed by the reachability game. More demanding
requirements, such as reaching a set of states W and remaining within W
thereafter, can be obtained by combining safety with reachability.

Similarly to safety games, reachability games can also be given a fixed-
point characterization. For any W ⊆ Xa we can define the operator:

GW : 2Xa → 2Xa

by:

GW (Z) = {xa ∈ Xa | xa ∈W or ∃ua ∈ Ua(xa) ∅ 6= Postua(xa) ⊆ Z}.

It is not difficult to see that for any W ⊆ Xa, the inclusion Z ⊆ Z ′ implies
GW (Z) ⊆ GW (Z ′), thus guaranteeing the existence of a unique minimal fixed-
point of GW . Several different controllers solving the reachability game can
be constructed from a fixed-point Z of GW for which Z ∩Xa0 6= ∅.
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Among the several possible solutions, we consider the controller:

Sc = (Xc, Xc0, Ua,
c
- ) (6.2)

defined as:

• Xc = Z;
• Xc0 = Z ∩Xa0;
• xc

ua

c
- x′c if there exists a k ∈ N such that xc /∈ GkW (∅) and

∅ 6= Postua(xc) ⊆ GkW (∅),

and where Postua(xc) refers to the ua-successors in Sa. Moreover, one can
easily verify that the relation defined by all the pairs (xc, xa) ∈ Xc ×Xa with
xc = xa is an alternating simulation relation from Sc to Sa. Similarly to safety
games, the solution of reachability games can be fully characterized in terms
of the fixed-points of GW .

Theorem 6.10. Let Sa be a system with Ya = Xa and Ha = 1Xa , and let
W ⊆ Xa be a set of states. The reachability game for Sa and specification
set W is solvable iff the minimal fixed-point Z of the operator GW satisfies
Z ∩Xa0 6= ∅. Moreover, Z can be obtained as:

Z = lim
i→∞

GiW (∅).

When Z ∩Xa0 6= ∅, a solution to the reachability game is given by the con-
troller (6.2).

Example 6.11. Consider again the finite-state system in Figure 6.3 and assume
that W consists of the single state xa4. The computation of the fixed-point of
GW by iteration is presented in Figure 6.6. The resulting controller (6.2) is
displayed in Figure 6.7. Note that state xa2 is not helpful for this particular
problem since it is not reachable. However, it may be useful when this set of
states, corresponding to the minimal fixed-point of GW , is used as the starting
point for further design problems. C

For reachability games there is no optimal controller in the sense of Propo-
sition 6.8. This observation is illustrated in Example 6.12.

Example 6.12. Consider the system Sa in Figure 6.8 where the set W consists
of the state x2. Let Sc be any finite-state controller solving the reachability
problem for system Sa and let k be the maximum number of times2 that an
internal behavior of Sc ×F Sa visits the state x1 before reaching the state x2.
We can always construct a controller Sd that allows the internal behaviors
of Sd ×G Sa to visit x1 any number of times smaller than or equal to k + 1
before reaching x2. Clearly, Sd is less restrictive than Sc which shows that a
minimally restrictive controller does not exist. C

2 Such number exists since both Sc and Sa are finite-state systems.
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xa5 xa6 xa4 xa2
e e c

Fig. 6.7. Controller Sc for Example 6.11.

Analogously to safety games, Theorem 6.10 can be generalized to the case
where the initial states of Sa cannot be initialized by the controller. This
generalization consists in replacing Z ∩ Xa0 6= ∅ with the stronger condi-
tion Xa0 ⊆ Z guaranteeing that no initial state of Sa is eliminated in the
composition with the controller.

Fig. 6.8. System Sa for Example 6.12. The set W consists of the state x2.
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6.4 Behavioral games

Safety games are special instances of behavioral games. If Sb is a system such
that Bω(Sb) = Wω, then the safety game specified by Sa and W can be
reformulated as the existence of a controller Sc such that Sc ×F Sa �B Sb.

Definition 6.13 (Behavior inclusion game). Let Sa be a system and let
Sb be a system specification satisfying Yb = Ya. The behavior inclusion game
for system Sa and specification system Sb asks for the existence of a controller
Sc such that:

1. Sc is feedback composable with Sa;
2. Sc ×F Sa is nonblocking;
3. Sc ×F Sa �B Sb.

A behavior inclusion game is said to be solvable when Sc exists.

In Chapter 4 we saw that under reasonable assumptions the specification
system is output deterministic. Therefore, by Proposition 4.11, the third re-
quirement in the definition of behavior inclusion games can be converted to
Sc×FSa �S Sb. Replacing behavior inclusion with simulation leads to similar-
ity games which are discussed in detail in the next section. Behavioral games,
where the stronger requirement Sc ×F Sa ∼=B Sb is to be enforced, can also
be transformed into similarity games with the requirement Sc ×F Sa ∼=S Sb.
These games are also discussed in the next section.

6.5 Similarity games

The controller synthesis problem in a similarity context is called a simulation
game.

Definition 6.14 (Simulation game). Let Sa be a system and let Sb be a
system specification satisfying Yb = Ya. The simulation game for system Sa
and specification system Sb asks for the existence of a controller Sc such that:

1. Sc is feedback composable with Sa;
2. Sc ×F Sa is nonblocking;
3. Sc ×F Sa �S Sb.

A simulation game is said to be solvable when Sc exists.

Simulation games can be solved by using an extension of the operator F
introduced in Chapter 5. The operator FC :

FC : 2Xa×Xb → 2Xa×Xb

in which the subscript C refers to control, is defined by (xa, xb) ∈ FC(W ), for
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some W ⊆ Xa ×Xb, if the following three conditions are satisfied:

1. Ha(xa) = Hb(xb);
2. (xa, xb) ∈W ;
3. there exists ua ∈ Ua(xa) such that for every x′a ∈ Postua(xa) there exists

a transition xb
ub

b
- x′b in Sb with (x′a, x

′
b) ∈W .

As before, Z ⊆ Z ′ implies FC(Z) ⊆ FC(Z ′) so that FC has a unique max-
imal fixed-point which can be used to construct a solution to the simulation
game whenever Z∩(Xa0×Xb0) 6= ∅. In this case we can define the controller:

Sc = (Xc, Xc0, Ua,
c
- , Ya, Hc) (6.3)

by:

• Xc = Z;
• Xc0 = Z ∩ (Xa0 ×Xb0);
• (xa, xb)

ua

c
- (x′a, x

′
b) in Sc if the following three conditions hold:

1. (x′a, x
′
b) ∈ Z;

2. xb
ub

b
- x′b in Sb for some ub ∈ Ub(xb);

3. xa
ua

a
- x′a in Sa for some ua ∈ Ua(xa) such that for all x′′a ∈ Postua(xa)

there exists a transition xb
u′b

b
- x′′b in Sb with (x′′a, x

′′
b ) ∈ Z;

• Hc(xa, xb) = Ha(xa).

The reader should verify that the definition of FC ensures that the relation:

R = {((xa, xb), x′a) ∈ Z ×Xa | xa = x′a}

is an alternating simulation relation from Sc to Sa.
The previous discussion can be summarized in the following result char-

acterizing the solution to behavior inclusion games.

Theorem 6.15. Let Sa be a system and let Sb be a system specification
with Yb = Ya. The simulation game for system Sa and specification sys-
tem Sb is solvable iff the maximal fixed-point Z of the operator FC satisfies
Z ∩ (Xa0 ×Xb0) 6= ∅. Moreover, Z can be obtained as:

Z = lim
i→∞

F iC(Xa ×Xb).

When Z ∩ (Xa0×Xb0) 6= ∅, a solution to the simulation game is given by the
controller (6.3).
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Proof. It was already shown, by defining explicitly the controller Sc in (6.3),
that existence of a fixed-point Z of FC satisfying Z ∩ (Xa0 ×Xb0) 6= ∅ leads
to a solution of the simulation game.

The converse implication can be proved by noting that from any con-
troller Sc solving the simulation game and from the corresponding simulation
relation R from Sc ×F Sa to Sb we can construct a relation R′ ⊆ Xa × Xb

defined by (xa, xb) ∈ R′ if there exists xc ∈ Xc such that ((xc, xa), xb) ∈ R.
It is now simple to verify that R′ is a fixed-point of FC . The crucial inclu-
sion is R′ ⊆ FC(R′) and the key step is to show that any (xa, xb) ∈ R′

satisfies the third requirement in the definition of FC . We focus on this step.
Let (xa, xb) ∈ R′ and recall that by definition of R′ there exists xc ∈ Xc

such that ((xc, xa), xb) ∈ R. Since Sc ×F Sa is nonblocking, there exists an
input (uc, ua) ∈ Uca(xc, xa). Moreover, it follows from the definition of feed-
back composition, that for every x′a ∈ Postua(xa) there exists a transition
(xc, xa)

uc,ua

ca
- (x′c, x

′
a) in Sc ×F Sa. But as R is a simulation relation from

Sc×F Sa to Sb, for every transition (xc, xa)
uc,ua

ca
- (x′c, x

′
a) in Sc×F Sa there

exists a transition xb
u′b- x′b in Sb satisfying ((x′c, x

′
a), x′b) ∈ R. We thus

conclude the existence of ua ∈ Ua(xa) such that for every x′a ∈ Postua(xa)

there exists a transition xb
u′b- x′b in Sb satisfying (x′a, x

′
b) ∈ R′ which is

precisely the third requirement in the definition of FC . ut

Example 6.16. To illustrate the construction of Sc we revisit the models for
the bus fare machine used in Example 4.3 and displayed in Figure 4.1 and
Figure 4.2. Although Sa ∼=B Sb, system Sa is not simulated by system Sb.
We thus seek a controller solving the simulation game for system Sa and
specification system Sb. The iteration of FC starts with the set Xa ×Xb and
terminates with the fixed-point Z after two iterations.

F 0
C(Xa ×Xb) = {(xa0, xb0), (xa0, xb1), (xa0, xb2), (xa0, xb3), (xa1, xb0),

(xa1, xb1), (xa1, xb2), (xa1, xb3), (xa2, xb0), (xa2, xb1),
(xa2, xb2), (xa2, xb3)},

F 1
C(Xa ×Xb) = {(xa0, xb0), (xa1, xb1), (xa1, xb3), (xa2, xb2)},
F 2
C(Xa ×Xb) = {(xa0, xb0), (xa1, xb1), (xa1, xb3), (xa2, xb2)}.

The corresponding controller Sc is displayed in Figure 6.9 and Sc ×F Sa is
shown in Figure 6.10. The simulation relation from Sc×F Sa to Sb is given by
the fixed-point Z of FC . Note that the state (xa1, xb3), albeit not reachable,
can be useful when Sc ×F Sa is the starting point for further designs. C

The operator FC can be seen as a control generalization of the operator
F defined in Chapter 5. If there exists a simulation relation from system Sa
to system Sb, then the maximal fixed-point FC coincides with the maximal
fixed-point of F . However, if no simulation relation from Sa to Sb exists, then
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(xa0, xb0)

silence

(xa1, xb1)

ding

(xa2, xb2)

dong

(xa1, xb3)

ding

swipe

quarter
idle

idle

Fig. 6.9. Controller Sc for Example 6.16.

(xa0, xb0, xa0)

silence

(xa1, xb1, xa1)

ding

(xa2, xb2, xa2)

dong

(xa1, xb3, xa1)

ding

swipe

quarter
idle

idle

Fig. 6.10. Composed system Sc ×F Sa for Example 6.16.

Xa0 * πa(Z ∩ (Xa0 ×Xb0)) for the maximal fixed-point Z of F . In contrast,
the maximal fixed-point of FC provides a simulation relation from a restricted
version of Sa to Sb whenever a solution for the simulation game exists. Such
restricted version can then be constructed as Sc ×F Sa for a controller Sc.

The iteration of the operator FC provides an algorithm which is guaranteed
to terminate in time polynomial in |Xa||Xb| for finite-state systems. Moreover,
the controller Sc constructed from the maximal fixed-point of FC in (6.3) is
optimal in the sense that it minimally restricts Sa in order to enforce the
specification.
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Proposition 6.17. Let Sa be a system and let Sb be a system specification
with Yb = Ya. For any controller Sd solving the simulation game for system
Sa and specification system Sb we have:

Sd ×G Sa �S Sc ×F Sa

where Sc is the controller (6.3) defined by the maximal fixed-point of FC .

Proof. It was shown in the proof of Theorem 6.15 that any controller Sd
solving the simulation game leads to a fixed-point Z ′ of FC . Moreover, Sc is
completely determined by the maximal fixed-point Z of FC . If we denote by
R and R′ the simulation relations from Sc ×F Sa and Sd ×G Sa, respectively,
to Sb, it follows from the maximality of Z that the relation defined by the
pairs ((xd, x′a), (xc, xa)) ∈ Xda × Xca for which there exists a state xb ∈ Xb

such that ((xd, x′a), xb) ∈ R′ and ((xc, xa), xb) ∈ R is the desired simulation
relation from Sd×G Sa to Sc×F Sa. The rest of the proof consists in routinely
checking that all the requirements in Definition 4.7 are satisfied and is left to
the reader. ut

Theorem 6.15 assumes that the initial states of Sa can be initialized by the
controller. When this is not the case we need to replace Z ∩ (Xa0×Xb0) 6= ∅
with Xa0 = πa(Z ∩ (Xa0 × Xb0)) in Theorem 6.15 to ensure Sc can operate
from any initial state of Sa.

The more demanding bisimulation games require the composed system
Sc ×F Sa to be bisimilar to the specification.

Definition 6.18 (Bisimulation game). Let Sa be a system and let Sb be a
system specification satisfying Yb = Ya. The bisimulation game for system Sa
and specification system Sb asks for the existence of a controller Sc such that:

1. Sc is feedback composable with Sa;
2. Sc ×F Sa ∼=S Sb.

A simulation game is said to be solvable when Sc exists.

Note that no nonblocking requirement is imposed on Sc ×F Sa since a state
in Sc ×F Sa is blocking iff it is bisimulated by a blocking state in Sb. Hence,
the existence or absence of blocking states is completely determined by the
specification Sb.

Before molding bisimulation games into a fixed-point computation we
make two observations. First, if there exists a controller Sc rendering Sc×F Sa
bisimilar to Sb, it follows that Sb �S Sa since Sb ∼=S Sc ×F Sa �S Sa in
virtue of Proposition 6.3. The second observation notes that for any input
ua ∈ Ua(xa) enabled by the controller Sc and for any x′a ∈ Postua(xa) there
must exist a matching transition xb

ub

b
- x′b in Sb.
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The preceding observations motivate the definition of the operator:

GC : 2Xa×Xb → 2Xa×Xb

given by (xa, xb) ∈ GC(W ), for some W ⊆ Xa × Xb, if the following three
conditions are satisfied:

1. Ha(xa) = Hb(xb);
2. (xa, xb) ∈W ;
3. for every transition xb

ub

b
- x′b in Sb there exists an input ua ∈ Ua(xa)

satisfying:
a) there exists x′a ∈ Postua(xa) with (x′a, x

′
b) ∈W ;

b) for every x′′a ∈ Postua(xa) there exists a transition xb
u′b

b
- x′′b in Sb

with (x′′a, x
′′
b ) ∈W .

A controller based on a fixed-point Z of GC can be constructed whenever
πb(Z ∩ (Xa0×Xb0)) = Xb0. Under this assumption, one possible controller is:

Sc = (Xc, Xc0, Ua,
c
- , Ya, Hc) (6.4)

defined by:

• Xc = Z;
• Xc0 = Z ∩ (Xa0 ×Xb0);
• for every transition xb

ub

b
- x′b in Sb, (xa, xb)

ua

c
- (x′a, x

′
b) in Sc if the

following two conditions hold:
1. (x′a, x

′
b) ∈ Z;

2. xa
ua

a
- x′a in Sa for some ua ∈ Ua(xa) such that for all x′′a ∈ Postua(xa)

there exists a transition xb
u′b

b
- x′′b in Sb with (x′′a, x

′′
b ) ∈ Z;

• Hc(xa, xb) = Ha(xa).

Controller Sc is defined so as to make the relation:

{((xa, xb), x′a) ∈ Z ×Xa | xa = x′a}

an alternating simulation relation from Sc to Sa. Arguing as we did for sim-
ulation games we arrive at the following result characterizing the solution of
bisimulation games.

Theorem 6.19. Let Sa be a system and let Sb be a system specification
with Yb = Ya. The bisimulation game for system Sa and specification sys-
tem Sb is solvable iff the maximal fixed-point Z of the operator GC satisfies
πb(Z ∩ (Xa0 ×Xb0)) = Xb0. Moreover, Z can be obtained as:

Z = lim
i→∞

GiC(Xa ×Xb).

When πb(Z ∩ (Xa0 ×Xb0)) = Xb0, a solution to the simulation game is given
by the controller (6.4).
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For finite-state systems, a fixed-point of GC is reached after finitely
many iterations and the bisimulation game is solvable in time polynomial
in |Xa||Xb|. Although the operator GC can also be used for infinite-state sys-
tems, a fixed-point may not be reached in finitely many steps unless one is
working with an infinite-state system satisfying additional assumptions such
as the ones described in Part III.

In situations where it is not possible to initialize Sa we can still apply Theo-
rem 6.19 by strengthening it with the requirement πa(Z ∩ (Xa0 ×Xb0)) = Xa0.

6.6 Notes

Problems of control in the behavioral context have been studied in the
discrete-event systems community since the pioneering work of Ramadge and
Wonham [RW87, RW89]. The main results of this line of work can now be
found in several books [KG95, CL99]. Similar problems were independently
solved in the context of reactive software synthesis [PR89a, PR89b]. Except
for [QL91], the corresponding simulation and bisimulation games have been
addressed much more recently and using very different mathematical formal-
izations [MT02, AVW03, Tab04, ZKJ06, Tab08b]. The use of alternating sim-
ulation relations to formalize feedback composition and the systematic expo-
sition based on fixed-points appears to be new.

The adroit reader certainly noticed the reachability problem to be different
from all the other control problems considered in this chapter: its solution is
given by a minimal and not a maximal fixed-point, and no least restrictive
controller exists. Reachability is an instance of a liveness property as opposed
to safety. See, e.g., [AS87] for definitions of safety and liveness. This distinction
between safety and liveness properties also occurs in verification problems and
makes verification a much more interesting topic than what can be judged by
the superficial treatment in Chapter 5.

Worth mentioning is also the similarity between the definition of the op-
erator GC , used to solve bisimulation games, and the definition of alternating
simulation relation. This is no coincidence since the solutions of bisimulation
games can be completely characterized in terms of certain alternating simu-
lation relations, see [Tab04, Tab08b].




