
11

Approximate symbolic models for control

This chapter continues the generalization from exact to approximate similar-
ity, now in the context of symbolic models for control. We discuss approximate
feedback composition and refinement, and show how the techniques developed
in Chapter 10 can be suitably extended to control systems and switched affine
systems. Nonlinear extensions of these results are presented as special topics.

Notation

The following notation is used in this chapter. For any matrix P ∈ Rn×n, PT

denotes the transposed matrix. Matrix P is said to be symmetric if PT = P ,
and is said to be positive definite if for every x ∈ Rn, x 6= 0 implies xTPx > 0.
We denote by SP(n) the set of all symmetric and positive definite matrices in
Rn×n. The minimum and the maximum eigenvalues of a matrix P ∈ Rn×n are
denoted by λm(P ) and λM (P ), respectively. For any x ∈ Rn, ‖x‖ represents

the Euclidean norm of x defined by ‖x‖ =
(
x2

1 + x2
2 + . . .+ x2

n

) 1
2 where xi is

the ith component of the vector x. This norm induces a norm in the space
of matrices that can be computed as ‖A‖ = λ

1
2
M (ATA) for any A ∈ Rn×m.

The exponential of any matrix A ∈ Rn×n is denoted by eA and is the analytic
function

∑∞
i=0

1
i!A

i. The ball of radius r ∈ R+
0 centered at x ∈ Rn is denoted

by Br(x) and defined as the set of all the points x′ ∈ Rn satisfying ‖x−x′‖ ≤ r.
If Z ⊆ Rn and η ∈ R+, [Z]η denotes the subset [Z]η ⊆ Z defined by:

[Z]η =
{
z ∈ Z | zi = ki

2√
n
η for some ki ∈ Z and i = 1, 2, . . . , n

}
.

Note that we can cover Z by balls of radius η centered at the points in [Z]η.
This observation is used several times in this chapter.

Given a subset W ⊆ Z we denote by ı : W ↪→ Z the natural inclusion of
W in Z taking w ∈W to ı(w) = w ∈ Z. The identity map on Z is denoted by
1Z : Z → Z while πX : Xa ×Xb × Ua × Ub → Xa ×Xb denotes the projection
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168 11 Approximate symbolic models for control

sending (xa, xb, ua, ub) ∈ Xa×Xb×Ua×Ub to (xa, xb) ∈ Xa×Xb. A relation
R ⊆ Z ×W is surjective when for every w ∈ W there is a z ∈ Z satisfying
(z, w) ∈ R.

A metric on a set Z is a function d : Z×Z → R+
0 satisfying: d(z, z′) = 0 iff

z = z′; d(z, z′) + d(z′, z′′) ≥ d(z, z′′); d(z, z′) = d(z′, z). A metric d is said to
be norm-induced if d(x, y) = ‖x−y‖ for some norm ‖·‖ and for every x, y ∈ Z.
A metric d : Z × Z → R+

0 on the set Z induces a pseudo-metric on 2Z , the set
of all subsets of Z. Such pseudo-metric, called the Hausdorff pseudo-metric
and denoted by dh, is defined by dh(K,W ) = max

{−→
dh(K,W ),

−→
dh(W,K)

}
,

where
−→
dh(K,W ) = supk∈K infw∈W d(k,w) is the directed Hausdorff pseudo-

metric and K,W ⊆ Z. We recall that the Hausdorff pseudo-metric dh satisfies
all the requirements of a metric except that W = W ′ implies dh(W,W ′) = 0
but dh(W,W ′) = 0 does not imply W = W ′.

A function f : ]a, b[→ Rn, a, b ∈ R, is said to be piecewise continuous if
there exists an ordered sequence of real numbers a = i1 < i2 < . . . < ik = b
such that for every j ∈ {1, 2, . . . , k − 1}, the restriction of f to the interval
]ij , ij+1[ is continuous. A piecewise continuous function f : ]a, b[→ Rn is es-
sentially bounded if there exists a compact set K ⊂ Rn such that f(t) ∈ K for
almost all t ∈ ]a, b[. When f :]a, b[→ Rn is an essentially bounded piecewise
continuous function, the supremum norm of f , denoted by ‖f‖, is the supre-
mum of the set {r ∈ R+

0 | ∃ t ∈]a, b[ r = ‖f(t)‖ ∧ f(t) ∈ K}. The domain of
a function f : Z →W is denoted by dom f .

11.1 Stability of linear control systems

We review a few stability results needed for the study of approximate simu-
lations and bisimulations. The reader is expected to have read Section 8.1.2
where several concepts related to control systems were introduced. Here, we
consider affine control systems described by the affine differential equation:

d

dt
ξ = Aξ + Cχ+Dδ + h (11.1)

with ξ(t) ∈ Rn, χ(t) ∈ Rm, δ(t) ∈ Rl, χ ∈ C, δ ∈ D, A ∈ Rn×n, C ∈ Rn×m,
D ∈ Rn×l, h ∈ Rn, and t ∈ R+

0 . We distinguish between two different kinds
of inputs: control inputs χ, and disturbance inputs δ. We are thus taking
U = C × D and υ = (χ, δ) according to the notion of continuous-time control
system introduced in Section 8.1.2. Independently of the nature of the inputs,
a solution to (11.1) can always be written in the form:

ξxχδ(τ) = eAτx+
∫ τ

0

eA(τ−t) (Cχ(t) +Dδ(t) + h) dt. (11.2)

Affine control systems are denoted by the septuple Σ = (Rn, C,D, A,C,D, h)
or by the sextuple Σ = (Rn, C,D, A,C,D) when h = 0. In the later case we
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speak of a linear control system. Although we are interested in the slightly
more general class of affine control systems, it is sufficient to consider the
stability properties of linear control systems. In some of the results we will
assume the absence of disturbances, i.e., D = 0. In such cases we denote Σ
by the quadruple (Rn, C, A,C).

Definition 11.1 (Input-to-state stability). A linear control system
(Rn, C,D, A,C,D) is said to be input-to-state stable (ISS) when there exist
constants κ, λ, ρc, ρd ∈ R+ such that for any x ∈ Rn, any χ ∈ C, any δ ∈ D,
and any t ∈ R+, the following inequality is satisfied:

‖ξxχδ(t)‖ ≤ κe−λt‖x‖+ ρc‖χ‖+ ρd‖δ‖. (11.3)

Inequality (11.3) extends inequality (10.3) from linear dynamical systems
to linear control systems. The next step is to extended also the concept of
Lyapunov function.

Definition 11.2 (ISS Lyapunov function). Let (Rn, C,D, A,C,D) be a
linear control system and consider a function V : Rn → R satisfying the
following three properties:

1. V is continuous on Rn and smooth on Rn\{0};
2. V (x) ≥ 0 for all x ∈ Rn;
3. V (x) = 0 implies x = 0.

The function V is an ISS-Lyapunov function for Σ if there exist constants
λ, σc, σd ∈ R+ such that for all x ∈ Rn\{0}, c ∈ Rm, and d ∈ Rl, the following
inequality holds:

∂V

∂x
(Ax+ Cc+Dd) ≤ −λV (x) + σc‖c‖+ σd‖d‖. (11.4)

Inequality (11.4) entails the differential inequality:

d

dt
V ◦ ξ ≤ −λV ◦ ξ + σc‖χ‖+ σd‖δ‖

that can be integrated to provide the estimate:

V ◦ ξ(t) ≤ e−λtV (ξ(0)) +
σc‖χ‖
λ

(1− e−λt) +
σd‖δ‖
λ

(1− e−λt)

≤ e−λtV (ξ(0)) +
σc
λ
‖χ‖+

σd
λ
‖δ‖. (11.5)

Inequality (11.5) can be combined with (10.5) to fully characterize ISS in
terms of ISS-Lyapunov functions as stated in the next result.

Theorem 11.3. A linear control system Σ is input-to-state stable iff Σ ad-
mits an ISS-Lyapunov function.
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For linear systems, the above theorem can be strengthened by assert-
ing that ISS implies the existence of an ISS-Lyapunov function of the form
V (x) =

√
xTPx with P ∈ SP(n). Moreover, it can be shown that a linear

control system (Rn, C,D, A,C,D) is ISS iff the origin is an asymptotically
stable equilibrium point for the linear dynamical system (Rn, A). The ISS
assumption is thus very simple to check since Theorem 10.2 asserts that it
suffices to determine if all the eigenvalues of the matrix A have negative real
part.

Although input-to-state stability is the assumption upon which all the
results in this chapter rely, there is a straightforward extension to a wider
class of control systems. When a linear control system Σ is not ISS, it may be
rendered ISS by suitably designing a linear feedback control law χ = Kξ+χ′

transforming Σ into the linear control system defined by:

d

dt
ξ = (A+ CK)ξ + Cχ′ +Dδ

with new control input χ′. ISS is achieved whenever K makes the real part of
the eigenvalues of A+ CK negative. The results in this chapter remain valid
for this larger class of systems even though, for simplicity, we will directly
assume input-to-state stability.

11.2 Control and switched systems as systems

11.2.1 Control Systems

In Chapter 10 we introduced the system Sτ (Σ) describing the time-triggered
sampled version of a given dynamical system Σ. A simple generalization is
available for control systems.

Definition 11.4. The system Sτ = (Xτ , Uτ ,
τ
- ) associated with a control

system Σ = (Rn, C × D, f) and with τ ∈ R+ consists of:

• Xτ = Rn;
• Uτ = {χ ∈ C | domχ = [0, τ ]};
• x

χ

τ
- x′ if there exist χ ∈ Uτ , δ ∈ D, and a trajectory ξxχδ : [0, τ ]→ Rn

of Σ satisfying ξxχδ(τ) = x′;
• Yτ = Rn;
• Hτ = ı : Xτ ↪→ Rn.

The output set Yτ = Rn of Sτ (Σ) is naturally equipped with the norm-
induced metric d(y, y′) = ‖y − y′‖. In addition to control systems, we also
consider switched systems.
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11.2.2 Switched systems

Switched systems are a class of hybrid dynamical systems frequently aris-
ing in embedded control applications. We restrict the discussion to the case
where the continuous-time dynamics in each finite state is given by an affine
dynamical system.

Definition 11.5 (Switched affine system). A hybrid dynamical system:

Σ = (Sa, {Inxa}xa∈Xa , {Guta}ta∈
a
- , {Reta}ta∈

a
- , {fxa}xa∈Xa)

is said to be a switched affine system if the following conditions are satisfied:

1. Ua = Xa;
2.

a
- = {(xa, ua, x′a) ∈ Xa ×Xa ×Xa | ua = x′a};

3. Inxa = Rn for every xa ∈ Xa;
4. Gu(xa,ua,x′a)

= Rn for every (xa, ua, x′a) ∈
a
- ;

5. Re(xa,ua,x′a)
(xb) = xb for every (xa, ua, x′a) ∈

a
- and xb ∈ Inxa ;

6. fxa(xb) = Axaxb + hxa for some matrix Axa ∈ Rn×n, some vector
hxa ∈ Rn, and all xa ∈ Xa, xb ∈ Inxa .

In a switched affine system it is possible, at any time and independently
of the infinite state, to switch from any finite state to any other finite state
without changing the infinte part of the state. This possibility is described by
the several requirements in Definition 11.5. The first two requirements ask that
for every two finite states xa, x′a ∈ Xa there exists one and only one transition

between them: xa
x′a

a
- x′a. The third and sixth requirements ask that in each

finite state xa ∈ Xa, the switched system behaves like the affine dynamical
system (Rn, Axa , hxa). The fourth requirement allows for discrete transitions
to take place at any time and for any value of the infinite part of the state.
Finally, the fifth condition declares that discrete transitions do not alter the
infinite part of the state. These restrictions also imply that a switched affine
system is completely defined by the finite set of states Xa, and the collection
of affine dynamical systems {(Rn, Axa , hxa)}xa∈Xa . For this reason, we also
denote a switched affine system by the triple Σ = (Xa,Rn, {Axa , hxa}xa∈Xa).

Example 11.6. Switched affine systems provide a useful framework for switch-
ing control. Suppose that several affine controllers:

c = K1x+ h1, c = K2x+ h2, . . . , c = Kpx+ hp,

have been designed to control the linear system:

ξ̇ = Aξ + Cχ, ξ(t) ∈ Rn, χ(t) ∈ Rm, t ∈ R+
0 .
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If these controllers can be used independently of the infinite state x ∈ Rn, we
have a switched affine system Σ described by:

({1, 2, . . . , p},Rn, {A+ CKi, Chi}i∈{1,2,...,p}).

A software module deciding which controller is executed and when, can now
be seen as a supervisory controller acting on the switched affine system Σ. C

When switched affine systems are viewed as models for switching control,
the supervisory controller is typically implemented as a periodic task, with
period τ , running on a microprocessor. This implies that discrete transitions
only happen at instants that are integer multiples of τ . An appropriate model
for this kind of system is Sτ (Σ), capturing only transitions of duration τ .

Definition 11.7. The system Sτ (Σ) = (Xτ , Uτ ,
τ
- , Yτ , Hτ ) associated

with a switched affine system Σ = (Xa,Rn, {Axa , hxa}xa∈Xa) and with τ ∈ R+

consists of:

• Xτ = Rn;
• Uτ = Xa;
• x

ua

τ
- x′ if there exists a solution ξx : [0, τ ]→ Rn of the affine dynamical

system (Rn, Aua , hua) satisfying ξx(τ) = x′;
• Yτ = Rn;
• Hτ = ı : Xτ ↪→ Rn.

Note that Sτ (Σ) is both infinite-state as well as metric with a norm-
induced metric.

11.3 Approximate feedback composition and controller
refinement

The controller refinement process carries over, mutatis mutandis, from the
exact to the approximate case. We recall that in Chapter 1 we simplified
the representation of the composition Sa ×I Sb whenever the interconnection
relation I satisfied the condition:

(xa, xb) ∈ πX(I) =⇒ Ha(xa) = Hb(xb).

In the current approximate context, we consider the generalized condition:

(xa, xb) ∈ πX(I) =⇒ d(Ha(xa), Hb(xb)) ≤ ε

and make the additional assumption that d is norm-induced. Note that this
assumption entails that Ya = Yb are normed vector spaces with the same
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norm. Under these assumptions, we denote the composition by:

Sa ×εI Sb = (Xab, Xab0, Uab,
ab
- , Yab, Hab)

and simplify its representation to:

• Xab = πX(I);
• Xab0 = Xab ∩ (Xa0 ×Xb0);
• Uab = Ua × Ub;
• (xa, xb)

ua,ub

ab
- (x′a, x

′
b) if the following three conditions hold:

1. xa
ua

a
- x′a in Sa;

2. xb
ub

b
- x′b in Sb;

3. (xa, xb, ua, ub) ∈ I;
• Yab = Ya = Yb;
• Hab(xa, xb) = 1

2 (Ha(xa) +Hb(xb)).

The apparently arbitrary choice of output map is justified by the following
three important properties of approximate composition:

1. Sa ×εI Sb is commutative, i.e., Sa ×εI Sb ∼=S Sb ×εI Sa;
2. Sa ×εI Sb generalizes exact composition, i.e., Sa ×0

I Sb = Sa ×I Sb;
3. Sa ×εI Sb satisfies the following version of Proposition 6.3.

Proposition 11.8. Let Sa and Sb be metric systems with Ya = Yb normed
vector spaces with the same norm-induced metric, and let I be an intercon-
nection relation satisfying:

(xa, xb) ∈ πX(I) =⇒ d(Ha(xa), Hb(xb)) ≤ ε.

Then, the following holds:

• Sa ×εI Sb �
1
2 ε

S Sa;

• Sa ×εI Sb �
1
2 ε

S Sb.

Proof. The proof of this result is the same as the proof of its exact counterpart,
Proposition 6.3, except for the computation of the precision. We thus focus on
this part and consider only Sa ×εI Sb �

1
2 ε

S Sa since the case Sa ×εI Sb �
1
2 ε

S Sb
can be similarly proved. The desired 1

2ε-approximate simulation relation from
Sa ×εI Sb to Sa is given by:

Ra = {((xa, xb), x′a) ∈ Xab ×Xa | xa = x′a}.
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For any ((xa, xb), xa) ∈ Ra it is simple to see that:

d(Hab(xa, xb), Ha(xa)) =
∥∥∥∥1

2
Ha(xa) +

1
2
Hb(xb)−Ha(xa)

∥∥∥∥
=
∥∥∥∥−1

2
Ha(xa) +

1
2
Hb(xb)

∥∥∥∥
=

1
2
d(Ha(xa), Hb(xb)) ≤

1
2
ε

since (xa, xb) ∈ πX(I). ut

With the notion of approximate composition at our disposal we venture
into approximate feedback composition.

Definition 11.9 (Approximate feedback composition). A system Sc
is said to be ε-approximately feedback composable with a system Sa, if there
exists an ε-approximate alternating simulation relation R from Sc to Sa. When
Sc is ε-approximate feedback composable with Sa, the feedback composition of
Sc and Sa, with interconnection relation F = Re, is given by Sc ×εF Sa.

Proposition 8.7 also admits an approximate version.

Proposition 11.10. Let Sa, Sb, and Sc be systems with the same output
set, assume that Sc is cεa-approximately feedback composable with Sa, and
let cRa be the corresponding cεa-approximate alternating simulation relation.
If there exists a aεb-approximate alternating simulation relation aRb from Sa
to Sb then Sc ×cεacRea

Sa is feedback composable with Sb and the corresponding
(cεa + aεb)-approximate alternating simulation relation is given by:

caRb = {((xc, xa), xb) ∈ (Xc ×Xa)×Xb | (xc, xa) ∈ cRa ∧ (xa, xb) ∈ aRb}.

The proof of this result consists in inserting the word approximate in
several locations along the proof of Proposition 8.7 and is therefore omitted.
Proposition 11.10 suggests how to refine a controller Scont synthesized to solve
a simulation game for an approximate finite-state abstraction Sabs of S and a
specification Sspec. If the simulation game is solved exactly, i.e., with ε = 0,
we have:

Scont ×F Sabs �0
S Sspec.

Assuming the abstraction Sabs to be related to the original system S by
an ε-approximate alternating simulation relation, we can invoke Proposi-
tion 11.10 to conclude that Scont ×F Sabs is ε-approximately feedback com-
posable with S. Therefore, using S′cont = Scont ×F Sabs as a controller for S
we obtain:

S′cont ×0+ε
G S �

1
2 ε

S S′cont = Scont ×F Sabs �0
S Sspec

which shows the specification approximately simulating the controlled system
S′cont ×εG S with precision 1

2ε.
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11.4 Symbolic models for affine control systems

The abstractions constructed in Chapter 10 for dynamical systems relied on
quantizing the set of states and approximating the transitions of Sτ (Σ). A
natural generalization to control systems leads to the following construction.

Definition 11.11. The system Sτη = (Xτη, Uτη,
τη
- , Yτη, Hτη) associated

with a control system Σ = (Rn, C × D, f) and with τ, η ∈ R+ consists of:

• Xτη = [Rn]η;
• Uτη = {χ ∈ C | domχ = [0, τ ]};
• x

χ

τη
- x′ if there exist χ ∈ Uτη, δ ∈ D, and a trajectory ξxχδ : [0, τ ]→ Rn

of Σ satisfying ‖ξxχδ(τ)− x′‖ ≤ η;
• Yτη = Rn;
• Hτη = ı : Xτη ↪→ Rn.

The system Sτη(Σ) can be regarded as a time and space quantization of a
control system Σ. It is constructed by approximating the transitions of Sτ (Σ)
so as to enforce departure from and arrival at states in Xτη = [Rn]η. This
construction is not guaranteed to result in a system approximately simulated
by Sτ (Σ) since the mismatch between outputs of Sτη(Σ) and Sτ (Σ) can grow
without bounds along any two external behaviors. In Chapter 10 we relied on
asymptotic stability to overcome this difficulty in the context of dynamical
systems. A similar strategy can be employed for control systems in order to
establish the existence of an approximate alternating simulation relation from
Sτη(Σ) to Sτ (Σ). Moreover, such relation would desirably be surjective since
this allows us to relate any state of Sτ (Σ) to a state of Sτη(Σ) for which a
controller can be designed.

Theorem 11.12. Let Σ = (Rn, C,D, A,C,D, h) be an affine control system
and assume that the linear dynamical system, (Rn, A) admits a Lyapunov
function V of the form V (x) =

√
xTPx with P ∈ SP(n). For any desired

precision ε ∈ R+, for any desired time quantization τ ∈ R+, and for any
space quantization η ∈ R+ satisfying:

η ≤ min
{
γ−1αε

(
1− e−λτ

)
, α−1αε

}
, (11.6)

the relation Rε ⊆ Xτη ×Xτ defined by:

Rε = {(xτη, xτ ) ∈ Xτη ×Xτ | V (xτ − xτη) ≤ αε} (11.7)

is a surjective ε-approximate alternating simulation relation from Sτη(Σ) to
Sτ (Σ).
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Proof. The proof consists in showing that Rε satisfies all the requirements in
the definition of approximate alternating simulation relation.

We first note that Rε is surjective since Rn ⊆ ∪x∈[Rn]ηBη(x) implies that
for every xτ ∈ Xτ = Rn there exists xτη ∈ Xτη satisfying ‖xτ − xτη‖ ≤ η. It
follows from the sequence of inequalities (10.9) that (xτη, xτ ) ∈ Rε.

The first requirement in Definition 9.6 follows immediately from the def-
inition of Xτ0 and Xτη0, and from the observation that xτη0 ∈ Xτη0 ⊂ Xτ0

implies (xτη0, xτ0) ∈ Rε for xτ0 = xτη0.
The second requirement is a consequence of the definition of Rε. If

(xτη, xτ ) ∈ Rε, then V (xτη−xτ ) ≤ αε which leads, by (10.5), to ‖xτη − xτ‖ ≤ ε.
We now consider the third requirement which requires us to show that

(xτη, xτ ) ∈ Rε implies:

∀uτη ∈ Uτη(xτη) ∃uτ ∈ Uτ (xτ ) ∀x′τ ∈ Postuτ (xτ ) ∃x′τη ∈ Postuτη (xτη)

with (x′τη, x
′
τ ) ∈ Rε. Fix an input uτη ∈ Uτη(xτη) and note that it follows

from the definition of Uτη that uτη ∈ Uτ (xτ ). We then choose uτ to be uτη,
i.e., uτ = uτη. Let now x′τ ∈ Postuτ (xτ ). This means that x′τ = ξxτuτδ(τ) for
some essentially bounded piecewise continuous curve δ ∈ D. Consider a state
x′τη ∈ Postuτη (xτη) satisfying xτη

uτη,δ

τη
- x′τη in Sτη(Σ) and recall that, by

definition of Sτη(Σ), we have:

‖ξxτηuτηδ(τ)− x′τη‖ ≤ η. (11.8)

We claim that (x′τη, x
′
τ ) ∈ Rε. To prove the claim, consider the sequence of

inequalities:

V (x′τ , x
′
τη) ≤ V

(
x′τ − ξxτηuτηδ(τ)

)
+ γ‖ξxτηuτηδ(τ)− x′τη‖

≤ V

(
eAτxτ +

∫ τ

0

eA(τ−t) (Cuτη(t) +Dδ(t) + h) dt

−eAτxτη −
∫ τ

0

eA(τ−t) (Cuτη(t) +Dδ(t) + h) dt
)

+ γη

≤ V
(
eAτxτ − eAτxτη

)
+ γη

≤ V
(
ξxτ00(τ)− ξxτη00(τ)

)
+ γη

≤ e−λτV
(
ξxτ00(0)− ξxτη00(0)

)
+ γη

≤ e−λτV (xτ − xτη) + γη

≤ e−λταε+ γη

≤ αε

where the first, second, fifth, seventh, and eight inequalities are a consequence
of (10.6), (11.8), (10.16), (11.7), and (11.6), respectively. ut

Although we established the existence of a surjective ε-approximate al-
ternating simulation relation from Sτη(Σ) to Sτ (Σ), one problem remains
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unsolved: how do we compute Sτη(Σ)? We address this problem in two steps.
First, we treat the case where disturbance inputs are absent: D = 0. By
choosing a finite set C of control inputs curves, it becomes possible to com-
pute Sτη(Σ) using numerical methods. The errors introduced by numerical
simulation can be explicitly accounted for, as discussed in Chapter 10. In
practice, the choice of the set C is based on domain knowledge about the sys-
tem and problem being solved. When a solution to a control synthesis problem
fails to exist for the abstraction, one can choose a larger set C and compute a
new and more faithful abstraction of the system to be controlled. Ideally, one
would like to avoid this iterative process and construct directly a symbolic
model that can be used to prove or disprove the existence of a controller. This
is possible for the important case where the inputs are kept constant during
the intervals [0, τ ], commonly referred to as digital control or sampled-data
control. The appropriate system model for this situation is the abstraction
Sτηω(Σ).

Definition 11.13. The system Sτηω = (Xτηω, Uτηω,
τηω

- , Yτηω, Hτηω) as-

sociated with a control system Σ = (Rn, C × D, f) and with τ, η, ω ∈ R+

consists of:

• Xτηω = [Rn]η;
• Uτηω = {χ ∈ C | χ(t) = χ(t′) ∈ [Rm]ω ∀t, t′ ∈ [0, τ ] = domχ};
• x

χ

τηω
- x′ if there exist χ ∈ Uτηω, δ ∈ D, and a trajectory ξxχδ : [0, τ ]→ Rn

of Σ satisfying ‖ξxχδ(τ)− x′‖ ≤ η;
• Yτηω = Rn;
• Hτηω = ı : Xτηω ↪→ Rn.

The assumption of piecewise constant inputs is satisfied by most embed-
ded control systems implemented in digital platforms. The frequency of the
updates is dictated by the dynamics of the physical system being controlled
and by the frequency of the embedded microprocessor executing the control
software. Under this assumption we can strengthen Theorem 11.12 from sim-
ulation to bisimulation.

Theorem 11.14. Let Σ = (Rn, C, A,C, h) be an affine control system where
C is the set of all constant curves, and assume that the linear control system
(Rn, C, A,C) admits an ISS-Lyapunov function V of the form V (x) =

√
xTPx

with P ∈ SP(n). For any desired precision ε ∈ R+, for any desired time
quantization τ ∈ R+, for any desired input quantization ω ∈ R+, and for any
space quantization η ∈ R+ satisfying:

η ≤ min
{
γ−1αε

(
1− e−λτ

)
− γ−1λ−1σc ω, α

−1αε
}
, (11.9)

the relation Rε ⊆ Xτη ×Xτ defined by:

Rε = {(xτη, xτ ) ∈ Xτη ×Xτ | V (xτ − xτη) ≤ αε} (11.10)

is an ε-approximate bisimulation relation between Sτ (Σ) and Sτη(Σ).
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Inequality (11.9) describes the tradeoff between precision, time quantiza-
tion, space quantization, and input quantization. It specializes to (10.7), when
inputs are absent, thus making Theorem 10.8 a special case of Theorem 11.14.

Proof. We only present the main steps since the proof mirrors the proof of
Theorem 11.12. The first important step is to show that the third requirement
in Definition 9.2 holds. For this, we consider a pair (xτ , xτηω) ∈ Rε, we assume

that xτ
uτ

τ
- x′τ , and we seek to show that (x′τ , x

′
τηω) ∈ Rε where x′τηω satisfies

xτηω
uτηω

τηω
- x′τηω for an input uτηω ∈ Uτηω(xτηω) close to uτ in the sense:

‖uτηω − uτ‖ ≤ ω.

Note that such input always exists since Rm ⊆ ∪u∈[Rm]ωBω(u). The member-
ship (x′τ , x

′
τηω) ∈ Rε follows from the following sequence of inequalities where

we use x′′ = xτ − xτηω, u′′ = uτ − uτηω, and the inequality (11.5):

V (x′τ − x′τηω) ≤ V (x′τ − ξxτηωuτηω (τ)) + γ‖ξxτηωuτηω (τ)− x′τηω‖(11.11)

≤ V

(
eAτxτ +

∫ τ

0

eA(τ−t)(Cuτ + h)dt (11.12)

−eAτxτηω −
∫ τ

0

eA(τ−t)(Cuτηω + h)dt
)

+ γη (11.13)

≤ V

(
eAτx′′ +

∫ τ

0

eA(τ−t)Cu′′dt

)
+ γη (11.14)

≤ V ◦ ξx′′u′′(τ) + γη (11.15)

≤ e−λτV ◦ ξx′′u′′(0) +
σc
λ
‖u′′‖+ γη (11.16)

≤ e−λτV (xτ − xτηω) +
σc
λ
‖u′′‖+ γη (11.17)

≤ e−λταε+
σc
λ
ω + γη (11.18)

≤ αε. (11.19)

The reverse direction is similarly shown. If (xτ , xτηω) ∈ Rε and xτηω
uτηω

τηω
- x′τηω,

then we claim that (x′τ , x
′
τηω) ∈ Rε where x′τ is given by xτ

uτηω

τ
- x′τ .

The claim follows directly from inequalities (11.11) through (11.19) by us-
ing uτ = uτηω. ut

Example 11.15. To illustrate Theorem 11.12 we consider the linear control
system defined by:

A =
[
−1 1
−8 5

]
, C =

[
0
1

]
.
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Since the origin is not an asymptotically stable equilibrium point for (Rn, A),
we first design the feedback control law:

u = Kx = 7x1 − 6x2 + u′

rendering the origin an asymptotically stable equilibrium point for the linear
dynamical system (Rn, A+ CK) where:

A+ CK =
[
−1 1
−1 −1

]
.

Using the function V (x) =
√
xTPx with:

P =
[

1 1
16

1
16 1

]
as a Lyapunov function we obtain:

γ =
17

4
√

15
, λ =

16−
√

2
17

, α =
15
16
, α =

17
16
.

For a sampling time τ = 0.25 and a precision ε = 0.1 we conclude from (11.6)
that η needs to be smaller than 0.017. We choose η =

√
2

100 ≈ 0.014, restrict
Σ to the set [−1, 1]× [−1, 1], and define C as the finite set consisting of con-
stant input curves assuming values on {−0.5,−0.25, 0, 0.25, 0.5}. Although
Sτη(Σ) is only guaranteed to be approximately simulated by Sτ (Σ), several
control problems that are difficult to solve directly on Sτ (Σ) become fairly
straightforward computations on Sτη(Σ). Consider the safety game for system
Sτ (Σ) and specification set [−0.35,−0.15]× [−0.15, 0.15]. It is quite difficult
to solve this problem on Sτ (Σ), but it is immediate to solve it on Sτη(Σ)
due to its finite-state nature. According to the discussion in Section 11.3, if
we synthesize a controller Scont solving the safety game for system Sτη(Σ)
and specification set W , the controller Scont ×F Sτη(Σ) solves the safety
game for system Sτ (Σ) and specification set W

1
2 ε. Therefore, we define W as

W = [[−0.3,−0.1]× [−0.1, 0.1]]η and use the operator FW defined in Chap-
ter 6 to solve the safety game. The solution of this game is shown in Figure 11.1
where transitions with the same source and destination are not displayed to
keep the figure legible.

Example 11.16. The synthesis of trajectories satisfying desired specifications
can also be easily done on Sτη(Σ). Assume that we are interested in designing
a periodic trajectory passing through (0.2, 0) and (−0.2, 0). Since Sτη(Σ) is
finite-state, this problem reduces to a simple search on a graph. A possible
solution is shown in Figure 11.2 where, in addition to the transitions of Sτη(Σ),
we also show several trajectories of the closed-loop system. More elaborate
control problems can be solved on Sτη(Σ) with similar ease by resorting to
the synthesis algorithms in Chapter 6. C
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Fig. 11.1. Solution to the safety game for system Sτη(Σ) and specification set
W = [[−0.3,−0.1]× [−0.1, 0.1]]η. The left figure shows the states in W from which
it is possible to control the system to remain within W . The right figure shows the
corresponding transitions for which the source and destination are not the same
state.

Fig. 11.2. Periodic trajectory passing through the points (−0.2, 0) and (0.2, 0). The
left figure shows the transitions of Sτη(Σ). The right figure shows several trajectories
of the controlled system for different initial conditions.
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When disturbance inputs are present, it is still possible to construct a
finite-state system which is ε-approximate anternatingly bisimilar to Sτ (Σ)
by a careful analysis of reachable sets. From equality (11.2) we know that
all the possible contributions of the control and disturbance inputs to ξ are
captured by the reachable sets:

RτC =
{
x ∈ Xτ : x =

∫ τ

0

eA(τ−t)Cχ(t)dt, χ ∈ C
}
,

RτD =
{
x ∈ Xτ : x =

∫ τ

0

eA(τ−t)Dδ(t)dt, δ ∈ D
}
.

Through these sets we can indirectly quantize the inputs leading to the system
Sτηη(Σ).

Definition 11.17. The system Sτηη = (Xτηη, Uτηη,
τηη

- , Yτηη, Hτηη) asso-

ciated with an affine control system Σ = (Rn, C,D, A,C,D), with τ, η ∈ R+,
and with a set Dη ⊆ [Rn]η satisfying dh(Dη,RτD) ≤ η, consists of:

• Xτηη = [Rn]η;
• Uτηη is any subset of [Rm]η satisfying dh(Uτηη,RτC) ≤ η;

• xτηη
χ

τηη
- x′τηη if there exist χ ∈ Uτηη, δ ∈ Dη, and a trajectory

ξxτηη00 : [0, τ ]→ Rn of Σ satisfying:

‖ξxτηη00(τ) + χ+ δ − x′τηη‖ ≤ η; (11.20)

• Yτηη = Rn;
• Hτηη = ı : Xτηη ↪→ Rn.

The construction of Sτηη(Σ) requires the knowledge of the reachable sets
RτC and RτD. However, the computation of these sets does not need to be
exact. Using the method described in Section 7.6, we can compute approxi-
mations R̂τC and R̂τD to the sets RτC and RτD with approximating errors
eC and eD, i.e.:

dh(R̂τC ,RτC) ≤ eC dh(R̂τD,RτD) ≤ eD.

Hence, we can redefine Xτηη as [Rn]η−eC−eD and declare the existence of a

transition xτηη
u

τηη
- x′τηη when ‖ξxτηη00(τ) + χ̂+ δ̂− x′τηη‖ ≤ η− eC − eD for

some χ̂ ∈ R̂τC and δ̂ ∈ R̂τD. With this new state set and transition relation
we have:

‖ξxτηη00(τ) + χ+ δ − x′τηη‖ = ‖ξxτηη00(τ) + χ̂+ δ̂ − x′τηη + χ− χ̂+ δ − δ̂‖

≤ ‖ξxτηη00(τ) + χ̂+ δ̂ − x′τηη‖

+‖χ− χ̂‖+ ‖δ − δ̂‖
≤ η − eC − eD + eC + eD ≤ η

thus maintaining the validity of the next result intact.
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Theorem 11.18. Let Σ = (Rn, C,D, A,C,D, h) be an affine control system
and assume that the linear control system (Rn, C,D, A,C,D) admits an ISS-
Lyapunov function V of the form V (x) =

√
xTPx with P ∈ SP(n). For any

desired precision ε ∈ R+, for any desired time quantization τ , and for any
space quantization η ∈ R+ satisfying:

η ≤ min
{

1
3
γ−1αε(1− e−λτ ), α−1αε

}
, (11.21)

the relation Rε ⊆ Xτ ×Xτηη defined by:

Rε = {(xτ , xτηη) ∈ Xτ ×Xτηη | V (xτ − xτηη) ≤ αε} (11.22)

is an ε-approximate alternating bisimulation relation between Sτ (Σ) and
Sτηη(Σ).

Proof. We first show that Rε is an ε-approximate alternating simulation from
Sτ (Σ) to Sτηη(Σ). The first two requirments in Definition 9.6 are proved as
in Theorem 11.12.

Regarding the third requirement, let (xτ , xτηη) ∈ Rη and recall that we
need to show that:

∀uτ ∈ Uτ (xτ ) ∃uτηη ∈ Uτηη(xτηη) ∀x′τηη ∈ Postuτηη (xτηη) ∃x′τ ∈ Postuτ (xτ )

satisfying (x′τ , x
′
τηη) ∈ Rε. Choose any uτ ∈ Uτ (xτ ) and let uτηη be any input

in Uτηη(xτηη) satisfying:∥∥∥∥∫ τ

0

eA(τ−t)Cuτ (t)dt− uτηη
∥∥∥∥ ≤ η. (11.23)

Note that such input exists by definition of Uτηη. Let now x′τηη be any state
in Postuτηη (xτηη). This means that:

‖ξxτηη00(τ) + uτηη + δτηη − x′τηη‖ ≤ η (11.24)

for some δτηη ∈ Dη. By definition of Dη, there exists δτ ∈ D such that:∥∥∥∥∫ τ

0

eA(τ−t)Dδτ (t)dt− δτηη
∥∥∥∥ ≤ η. (11.25)

We then choose x′τ to be the element of Postuτ (xτ ) given by x′τ = ξxτuτδτ (τ)
and we claim that (x′τ , x

′
τηη) ∈ Rε. The claim is a direct consequence of the
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following chain of inequalities where we used (10.6), (11.5), (11.23), (11.25),
(11.22), (11.24), (11.21), and x′′ = xτ − xτηη:

V (x′τ − x′τηη) ≤ V

(
x′τ − eAτxτηη −

∫ τ

0

eA(τ−t) (Cχτ (t) +Dδτ (t) + h) dt
)

+γ
∥∥∥∥x′τηη − eAτxτηη − ∫ τ

0

eA(τ−t) (Cχτ (t) +Dδτ (t) + h) dt
∥∥∥∥

≤ V
(
eAτxτ − eAτxτηη

)
+γ
∥∥∥∥eAτxτηη +

∫ τ

0

eA(τ−t) (Cχτ (t) +Dδτ (t) + h) dt− x′τηη
∥∥∥∥

≤ V (ξx′′00(τ))

+γ
∥∥∥∥eAτxτηη +

∫ τ

0

eA(τ−t)hdt+ uτηη + δτηη − x′τηη
∥∥∥∥

+γ
∥∥∥∥∫ τ

0

eA(τ−t)Cχτ (t)dt− uτηη
∥∥∥∥

+γ
∥∥∥∥∫ τ

0

eA(τ−t)Dδτ (t)dt− δτηη
∥∥∥∥

≤ e−λτV (ξx′′00(0)) + γ
∥∥ξxτηη00 + uτηη + δτηη − x′τηη

∥∥
+γη + γη

≤ e−λταε+ 3γη ≤ αε.

The proof that R−1
ε is an ε-approximate alternating simulation from

Sτηη(Σ) to Sτ (Σ) is similar and thus omitted. ut

The previous result can also be used in the context of verification when
C = 0. In this case, we regard the affine control system (11.1) as a closed-loop
system affected by an adversarial input δ and the verification objective is to
prove that a certain property holds, independently of δ.

11.5 Symbolic models for switched affine systems

The abstraction techniques developed for dynamical and control systems re-
markably generalize to switched affine systems. At this point, the reader
should be able to foresee how such generalization unfolds. The first step con-
sists in quantizing the states and approximating the transitions of a switched
affine system.
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Definition 11.19. The system Sτη(Σ) = (Xτη, Uτη,
τη
- , Yτη, Hτη) associ-

ated with a switched affine system Σ = (Xa,Rn, {Axa , hxa}xa∈Xa) and with
τ, η ∈ R+ consists of:

• Xτη = [Rn]η;
• Uτη = Xa;

• x
ua

τη
- x′ if there exists a solution ξx : [0, τ ]→ Rn of the affine dynamical

system (Rn, Aua , hua) satisfying ‖ξx(τ)− x′‖ ≤ η;
• Yτη = Rn;
• Hτη = ı : Xτη ↪→ Rn.

A close analysis of the proof of Theorem 11.14 reveals that its conclu-
sion does not depend on the particular form of the differential equation
ξ̇ = Aξ + Cχ+ h but only on the inequality ∂V

∂x (Ax+Cc) ≤ −λV (x)+σc‖c‖.
For many affine switched systems it is possible to find a single Lyapunov
function V satisfying the inequalities:

∂V

∂x
Axax ≤ −λV (x) ∀xa ∈ Xa.

When this is the case we say that V is a common Lyapunov function for Σ.
The arguments in the proof of Theorem 11.14 apply directly to this case and
provide the following corollary.

Corollary 11.20. Let Σ = (Xa,Rn, {Axa , hxa}xa∈Xa) be a switched affine
system admitting a common Lyapunov function V of the form V (x) =

√
xTPx

with P ∈ SP(n). For any desired precision ε ∈ R+, for any desired time
quantization τ ∈ R+, and for any space quantization η ∈ R+ satisfying:

η ≤ min
{
γ−1αε

(
1− e−λτ

)
, α−1αε

}
, (11.26)

the relation Rε ⊆ Xτ ×Xτη defined by:

Rε = {(xτ , xτη) ∈ Xτ ×Xτη | V (xτ − xτη) ≤ αε} (11.27)

is an ε-approximate bisimulation relation between Sτ (Σ) and Sτη(Σ).

This result can be used in two different ways. When the inputs Xa are
regarded as adversarial, Sτη(Σ) can be used to verify properties that hold
independently of the disturbance input. When Xa is regarded as a set of
control inputs, then Sτη(Σ) can be used for control design.

Corollary 11.20 can also be extended to the case when there exists a Lya-
punov function Vxa for every linear dynamical system (Rn, Axa). It is well
known that existence of such Lyapunov functions does not imply the exis-
tence of a common Lyapunov function for Σ. In this case, a more elaborate
construction is required, building upon the concept of dwell time used to study
the stability properties of switched systems.
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Example 11.21. We revisit the boost DC-DC converter of Chapter 1, repre-
sented in Figure 1.7. This is a switched affine system with two modes of
operation corresponding to the two positions of the switch. The dynamics in
mode 1 is described by (1.16) and (1.17) while the dynamics in mode 2 is
described by (1.18) and (1.19). The values of the components, given in the
per unit system, are:

C = 70, L = 3, RC = 0.005, RL = 0.05, vs = 1, R0 = 1.

Before proceeding with our analysis, we make the linear change of coordinates
defined by : [

z1
z2

]
=
[
1 0
0 5

] [
x1

x2

]
to better condition the problem numerically.

The purpose of the boost DC-DC converter is to regulate the voltage across
the load resistor R0. This objective can be reformulated as the regulation of
the current flowing through the inductor, which is one of the infinite state
variables. In order to synthesize a controller, we regard this problem as an
instance of a safety game where the specification set W contains the desired
values for the current. Although safety games are difficult to solve on Sτ (Σ),
we can use Corollary 11.20 to construct the finite-state abstraction Sτη(Σ) and
solve the safety game on Sτη(Σ). One possible common Lyapunov function is
V (z) =

√
zTPz with:

P =
[
1.0224 0.0084
0.0084 1.0031

]
and satisfying:

∂V

∂z
A1z ≤ −0.0139V

∂V

∂z
A2z ≤ −0.0138V.

Therefore, λ = min{0.0138, 0.00139} = 0.0138. A bound for γ can be com-
puted using the expression in the proof of Proposition 10.5: γ = 1.0256. We
select a sampling time τ = 0.2 and a precision of ε = 3. Although this pre-
cision is not useful for practical purposes, it will keep the symbolic model
Sτη(Σ) small so that it can be easily visualized. From inequality (11.26) we
obtain the bound η ≤ 0.00807 and set η =

√
2

200 ≈ 0.0071. With these parame-
ters we construct Sτη(Σ) and consider the safety game with specification set
W = [1.2, 1.6] × [5.6, 5.8] that is easily solved by iterating the operator FW
studied in Chapter 6. In Figure 11.3, the reader can find the points in W
where mode 1 should be used and the points in W where mode 2 should be
used. The fixed-point of FW is displayed in Figure 11.4 and the closed-loop
system Sc ×F Sτη(Σ) is represented in the book’s cover. C
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Fig. 11.3. Solution of the safety game for system Sτη(Σ) and specification set
W = [1.2, 1.6]× [5.6, 5.8]. The points in W where mode 1 should be used are shown
in the left figure and the points in W where mode 2 should be used are shown in
the right figure.

Fig. 11.4. Solution of the safety game for system Sτη(Σ) and specification set
W = [1.2, 1.6]× [5.6, 5.8]. The fixed-point of the operator FW is represented as the
superposition of the images in Figure 11.3.

11.6 Advanced topics

In this section we show how Theorem 11.12 and Theorem 11.14 can be gen-
eralized to nonlinear control systems. The exposition will be swift and relies
on advanced control theoretical concepts.

We make extensive use of comparison functions of class K and KL to sim-
plify the arguments. A continuous function γ : R+

0 → R+
0 , is said to belong to

class K if it is strictly increasing and γ(0) = 0; γ is said to belong to class K∞
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if γ ∈ K and γ(r)→∞ as r →∞. A continuous function β : R+
0 × R

+
0 → R+

0

is said to belong to class KL if for each fixed s, the map β(r, s) belongs to
class K∞ with respect to r and, for each fixed r, the map β(r, s) is decreasing
with respect to s and β(r, s)→ 0 as s→∞.

In a nonlinear context we need to replace the asymptotic stability assump-
tion with the stronger assumption of incremental stability.

Definition 11.22 (Incremental global asymptotic stability). A con-
trol system Σ = (Rn,U , f) is incrementally globally asymptotically stable
(δ–GAS) if it is forward complete and there exists a KL function β such that
for any t ∈ R+

0 , any x, x′ ∈ Rn, and any υ ∈ U , the following inequality is
satisfied:

‖ξxυ(t)− ξx′υ(t)‖ ≤ β(‖x− x′‖ , t). (11.28)

We also need the stronger notion of incremental input-to-state stability.

Definition 11.23 (Incremental global input-to-state stability). A con-
trol system Σ = (Rn,U , f) is incrementally globally input-to-state stable
(δ–ISS) if it is forward complete and there exist a KL function β and a K∞
function ρ such that for any t ∈ R+

0 , any x, x′ ∈ Rn, and any υ, υ′ ∈ U , the
following inequality is satisfied:

‖ξxυ(t)− ξx′υ′(t)‖ ≤ β(‖x− x′‖ , t) + ρ(‖υ − υ′‖). (11.29)

It is clear that δ–ISS implies δ–GAS since (11.28) can be obtained
from (11.29) by setting υ = υ′. Both δ–GAS and δ–ISS can be character-
ized by dissipation inequalities.

Definition 11.24 (δ–GAS Lyapunov function). A smooth function
V : Rn × Rn → R is called a δ–GAS Lyapunov function for a control sys-
tem Σ = (Rn,U , f), if there exist λ ∈ R+ and K∞ functions α and α such
that for any x, x′ ∈ Rn and any u ∈ Rm we have:

α(‖x− x′‖) ≤ V (x, x′) ≤ α(‖x− x′‖)
∂V

∂x
f(x, u) +

∂V

∂x′
f(x′, u) ≤ −λV (x, x′).

Function V is called a δ–ISS Lyapunov function for Σ, if there exist K∞
functions α, α, and σ such that for any x, x′ ∈ Rn and any u, u′ ∈ Rm we
have:

α(‖x− x′‖) ≤ V (x, x′) ≤ α(‖x− x′‖)
∂V

∂x
f(x, u) +

∂V

∂x′
f(x′, u′) ≤ −λV (x, x′) + σ(‖u− u′‖).

The following result completely characterizes δ–GAS and δ–ISS in terms of
existence of Lyapunov functions.
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Theorem 11.25. For any control system Σ = (Rn,U , f) the following holds:

1. if the elements of U assume values on compact set K ⊆ Rm, then Σ is
δ–GAS if and only if it admits a δ–GAS Lyapunov function;

2. if the elements of U assume values on closed and convex set K ⊆ Rm
containing the origin, and if f(0, 0) = 0, then Σ is δ–ISS if it admits a
δ–ISS Lyapunov function. Moreover if the elements of U assume values on
compact set K ⊆ Rm, existence of a δ–ISS Lyapunov function is equivalent
to δ–ISS.

Theorems 11.12 and 11.14 can now be generalized to the nonlinear context.

Theorem 11.26. Let Σ = (Rn,U , f) be a control system admitting a δ-GAS
Lyapunov function V satisfying:

V (x, x′)− V (x, x′′) ≤ γ(‖x′ − x′′‖)

for some class K∞ function γ and for every x, x′, x′′ ∈ Rn. For any desired
precision ε ∈ R+, for any desired time quantization τ ∈ R+, and for any space
quantization η ∈ R+ satisfying:

η ≤ min
{
γ−1

(
(1− eλτ )α(ε)

)
, α−1 ◦ α(ε)

}
, (11.30)

the relation Rε ⊆ Xτη ×Xτ defined by:

Rε = {(xτη, xτ ) ∈ Xτη ×Xτ | V (xτ , xτη) ≤ α(ε)} (11.31)

is a surjective ε-approximate simulation relation from Sτη(Σ) to Sτ (Σ). More-
over, if V is a δ-ISS Lyapunov function and U contains only constant curves,
then for any desired precision ε ∈ R+, for any desired time quantization
τ ∈ R+, for any desired input quantization ω ∈ R+, and for any space quan-
tization η ∈ R+ satisfying:

η ≤ min
{
γ−1

(
α(ε)(1− e−λτ )− λ−1σω

)
, α−1 ◦ α(ε)

}
, (11.32)

the relation (11.31) is an ε-approximate bisimulation relation between Sτηω(Σ)
and Sτ (Σ).

Proof. The proof parallels the proof of Theorems 11.12 and 11.14. The only
modification is the replacement of the sequence of inequalities used to prove
the third condition in Definitions 9.5 and 9.6. We only provide the details for
the inequalities (11.11) through (11.19) since the same argument applies to
the remaining ones.

V (x′τ , x
′
τηω) = V (x′τ , ξxτηωuτηω (τ)) + γ(‖ξxτηωuτηω (τ)− x′τηω‖)

≤ V (ξxτuτ (τ), ξxτηωuτηω (τ)) + γ(η)

≤ e−λτV (xτ , xτηω) +
σ

λ
ω + γ(η)

≤ e−λτα(ε) +
σ

λ
ω + γ(η) ≤ α(ε).

ut
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11.7 Notes

The results in this chapter are quite recent and based on [PGT08, GPT09,
PT09]. Earlier work relating stability properties of control systems to the
existence of approximate simulation relations appeared in [Tab06, Tab08a].
In [GPT09], the reader can find a nonlinear version of Corollary 11.20 that
does not require a common Lyapunov function. Instead, it relies on the con-
cept of dwell time from the switched systems literature. The generalization of
Theorem 11.18 to nonlinear systems is reported in [PT09].

The boost DC-DC example is taken from [GPM04] and was also used
in [GPT09]. In this reference, the interested readers can find a more detailed
treatment of Example 11.21.

The discussion of δ-ISS properties in Section 11.6 follows [Ang02] where
the proof of Theorem 11.25 can be found.

Although we only used the notions of approximate simulation and bisimu-
lation to construct finite-state abstractions, they can also be used to construct
infinite-state abstractions to simplify controller design problems [GP09].

Controller synthesis based on finite-state approximate models had already
been discussed in [RO98, MRO02] although the notion of approximation used
in these references corresponds that what we defined as a simulation relation.

As mentioned in Section 10.5, the abstraction techniques discussed in
Part IV have not yet been extended to hybrid systems. The main difficulty
consists in inferring, from the entrance of a single trajectory in a guard set,
the entrance of the surrounding trajectories in the same guard set . The ex-
ception of switched systems, discussed in Section 11.5, is easy to explain since
for this class of hybrid systems the guards coincide with the invariant sets.
A very recent and promising research direction that may lead to the desired
extension is a direct study of the stability properties of hybrid systems and
its corresponding Lyapunov functions [CTG07, CGT08].




