
1

Systems

The word system is used in this book as a synonym for mathematical model
of a dynamical phenomenon. Since different problems may require different
models of the same phenomenon, we need a versatile notion of system that
can be equipped with relationships explaining how different systems can be
related. The purpose of this chapter is to provide one such notion and to
illustrate its use in different contexts.

Notation

For a set Z, 1Z : Z → Z denotes the identity map on Z defined by 1Z(z) = z
for every z ∈ Z. Given a map f : Z →W and a set K ⊆ Z, f(K) denotes the
subset of W defined by f(K) = {w ∈ W | w = f(k) for some k ∈ K} while
f |K : K → W describes the restriction of f to K defined by f |K (k) = f(k)
for every k ∈ K. The projection map taking (xa, xb, ua, ub) ∈ Xa×Xb×Ua×Ub
to (xa, xb) ∈ Xa ×Xb is denoted by πX .

1.1 System definition

Among the many different mathematical models used to describe dynamical
phenomena we are especially interested in models with states belonging to
finite sets, infinite sets, and combinations thereof. By a finite-state system we
mean a system described by finitely many states. The finite-state machines
used to model digital circuits are one such example. We also consider infinite-
state systems described by difference or differential equations with solutions
evolving in infinite sets such as Rn. Hybrid systems, combining aspects of
finite-state and infinite-state systems, consist of another class of systems that
can be described by the notion of system adopted in this book.

© Springer Science + Business Media, LLC 2009DOI: 10.1007/978-1-4419-0224-5_1,
3P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach,

4 1 Systems

Definition 1.1 (System). A system S is a sextuple (X,X0, U, - , Y,H)
consisting of:

• a set of states X;
• a set of initial states X0 ⊆ X;
• a set of inputs U ;
• a transition relation - ⊆ X × U ×X;
• a set of outputs Y ;
• an output map H : X → Y .

States in X are regarded as internal to the system whereas outputs are
externally visible. The set of initial states may be a proper subset X0 ⊂ X, a
fixed initial state x0 ∈ X, or the whole set of states X0 = X. A system is called
finite-state if X is a finite set. A system that is not finite-state is called infinite-
state. Systems described by differential equations are examples of infinite-state
systems. The adjectives finite and infinite always qualify the state set of a
system whereas the adjectives discrete and continuous are used to qualify
time. Even though a state cannot1 be qualified as finite or infinite, we shall
abuse language and call a state finite or infinite when the corresponding state
set is finite or infinite, respectively. This abuse of language will be extremely
useful throughout the book. The relationship between finite-state and infinite-
state systems is an important topic that is considered in great detail in this
book.

The evolution of a system is captured by the transition relation. A tran-
sition (x, u, x′) ∈ - is, throughout the book, denoted by x

u- x′. For
such a transition, state x′ is called a u-successor, or simply successor, of state
x. Similarly, x is called a u-predecessor, or predecessor, of state x′. Note that,
since - ⊆ X×U×X is a relation, for any state and any input u ∈ U there
may be: no u-successors, one u-successor, or many u-successors. For concise-
ness, we denote the set of u-successors of a state x by Postu(x). Since Postu(x)
may be empty, we denote by U(x) the set of inputs u ∈ U for which Postu(x)
is nonempty. As discussed in later chapters, the semantics of the elements in
U depends on the problem being solved. Inputs in U can represent choices to
be made by a controller, choices to be made by the environment, or they can
simply describe the passage of time.

Example 1.2. Finite-state systems naturally arise as models of a variety of
man-made phenomena. In addition to being completely defined by the data
described in Definition 1.1, they also admit a graphical representation that is
very useful. States are represented by circles and transitions are represented
by arrows between states. Initial states are distinguished by being the target
of a sourceless arrow. Each circle is labeled by the state (top half) and the

1 A state is simply an element of the set of states X. Therefore, unless additional
structure is imposed on X, the expressions “infinite state” and “finite state” have
no defined meaning.

1.1 System definition 5

corresponding output (bottom half), and each arrow is labeled by the input.
The graphical representation of the finite-state system defined by the data:

X = {x0, x1, x2, x3}, X0 = {x0, x2}, U = {u0, u1}, (1.1)
- = {(x0, u0, x1), (x0, u1, x2), (x1, u0, x1),

(x1, u0, x3), (x2, u1, x3), (x3, u1, x1)}, (1.2)
Y = {y0, y1, y2}, (1.3)

H(x0) = y0, H(x1) = y0, H(x2) = y1, H(x3) = y2, (1.4)

is displayed in Figure 1.1. C

A system is called blocking if there is a state x ∈ X from which no further
transitions are possible, i.e., x has no u-successors for any u ∈ U . This can
also be expressed as U(x) = ∅. A system is called nonblocking if the set
of successors of every x ∈ X is nonempty. An equivalent characterization is
U(x) 6= ∅ for every x ∈ X.

A system is called deterministic if for any state x ∈ X and any input
u ∈ U , x

u- x′ and x
u- x′′ imply x′ = x′′. Therefore, a system is

deterministic if given any state x ∈ X and any input u ∈ U , there exists at
most one u-successor (there may be none). A system is output deterministic if:
H|X0 is injective; and for any state x ∈ X and any inputs u, u′ ∈ U , x

u- x′

and x
u′- x′′ with H(x′) = H(x′′) imply x′ = x′′. For output deterministic

systems, different successors of a state always have different outputs.
A system is called nondeterministic if it is not deterministic. Hence for

a nondeterministic system it is possible for a state to have two (or possibly
more) distinct u-successors.

x0

y0

x1

y0

x2

y1

x3

y2

u0

u1

u0

u0

u1

u1

Fig. 1.1. Graphical representation of the finite-state system defined by (1.1)
through (1.4).

6 1 Systems

One can easily see that the system represented in Figure 1.1 is nonblocking
since every state has an outgoing transition. It is also nondeterministic as
there are two u0-successors of the state x1, namely x1 and x3. Albeit not
being deterministic this system is output deterministic.

To simplify notation we also denote a system S = (X,X0, U, - , Y,H)
by the quintuple S = (X,U, - , Y,H) when X0 = X, by the quadru-
ple S = (X,X0, U, -) when Y = X and H = 1X , or by the triple
S = (X,U, -) when X0 = X = Y and H = 1X .

1.2 System behavior

Given any state x ∈ X, a finite internal behavior generated from x is a finite
sequence of transitions:

x0
u0- x1

u1- x2
u2- . . .

un−2- xn−1
un−1- xn

such that x0 = x and xi
ui- xi+1 for all 0 ≤ i < n. A state x ∈ X can also

be seen as a behavior comprising zero transitions in which case n = 0. An
internal behavior generated from x is initialized if x ∈ X0.

In some cases, a finite internal behavior can be extended to an infinite
internal behavior. An infinite internal behavior generated from x is an infinite
sequence:

x0
u0- x1

u1- x2
u2- x3

u3- . . .

that satisfies x0 = x and xi
ui- xi+1 for all i ∈ N0. An infinite internal

behavior generated from x is called initialized if x ∈ X0. In nonblocking
systems, every finite internal behavior can be extended to an infinite internal
behavior.

Through the output map, every internal behavior:

x0
u0- x1

u1- x2
u2- . . .

un−2- xn−1
un−1- xn

defines an external behavior:

y0 - y1 - y2 - . . . - yn−1
- yn (1.5)

with H(xi) = yi ∈ Y for all 0 ≤ i ≤ n. We also use the more succinct notation
y = y0y1y2 . . . yn to represent the external behavior (1.5). The set of external
behaviors that are defined by internal behaviors generated from state x is
denoted by Bx(S) and is called the external behavior from state x.

Definition 1.3 (Finite External Behavior). The finite external behavior
generated by a system S, denoted by B(S), is defined by:

B(S) =
⋃
x∈X0

Bx(S).

1.2 System behavior 7

For output deterministic systems any finite external behavior y determines
uniquely the corresponding internal behavior. This can easily be shown by
induction. Given an external behavior y = y0y1y2 . . . yn we can recover the
corresponding initial state x0 since H|X0 is injective. Then, we consider all the
successors x1 of x0 satisfying H(x1) = y1. If there is more than one successor,

say x1 and x′1, we have x0
u1- x1 and x0

u′1- x′1 with H(x1) = H(x′1). It
follows by output determinism that x1 = x′1 and x1 is uniquely determined.
Applying the same argument to the successors of x1 we can uniquely recover
x2 and so on.

An infinite internal behavior from x:

x0
u0- x1

u1- x2
u2- x3

u3- . . .

defines an infinite external behavior:

y0 - y1 - y2 - y3 - . . . (1.6)

corresponding to the infinite sequence of outputs with H(xi) = yi for all
i ∈ N0. The infinite external behavior (1.6) can also be succinctly denoted by
y = y0y1y2y3 The set of all infinite external behaviors that are generated
from x is denoted by Bωx (S) and called the infinite external behavior from
state x.

Definition 1.4 (Infinite External Behavior). The infinite external be-
havior generated by a system S, denoted by Bω(S), is defined by:

Bω(S) =
⋃
x∈X0

Bωx (S).

Infinite behaviors describe the nonterminating interaction of a system with
other systems and the environment. They are thus adequate to model the
operation of reactive systems, such as embedded controllers, that must operate
without interruption for arbitrarily long periods of time. For this reason, we
focus mostly on infinite behaviors and drop the adjective infinite whenever
clear from the context.

If a system S is non-blocking, then Bω(S) is nonempty. However, Bω(S)
may be nonempty even if S is a blocking system. Figure 1.2 displays one
such example where the infinite external behavior aaaaa . . . belongs to Bω(S)
although S is blocking since the state x1 has no successors.

x0

a

x1

b
loop

stay

Fig. 1.2. Graphical representation of a blocking finite-state system with nonempty
infinite external behavior.

8 1 Systems

In Chapter 4 we discuss in further detail the relation between B(S), Bω(S),
and the blocking/nonblocking properties of S. For now, we veer to the relation
between inputs and outputs. In many situations the inputs provide valuable
information that is not directly captured by the internal or external behavior
of a system. This can be easily remedied by suitably extending the state set.
Starting from a system S = (X,X0, U, - , Y,H) we can construct a new
system So = (Xo, Xo0, Uo,

o
- , Yo, Ho) with:

• Xo = X × U ;
• Xo0 = X0 × {∗} for some element ∗ /∈ U ;
• Uo = U ∪ {∗};
• (x, u)

u′

o
- (x′, u′) in So if x

u′- x′ in S;
• Yo = Y × U ;
• Ho(x, u) = (H(x), u).

An infinite external behavior of So is of the form:

(y0, ∗) - (y1, u0) - (y2, u1) - (y3, u2) - . . .

thus containing not only the infinite external behavior of S:

y0 - y1 - y2 - y3 - . . . (1.7)

but also the sequence of inputs u0u1u2 . . . used to generated (1.7) in S. Hence,
the output set Y and output map H can be designed to make externally visible
the aspects (inputs and states) of a system that are considered relevant for
the verification or control problem being solved.

1.3 Examples

The examples that follow illustrate the versatility of the notion of system
adopted in this book. The results presented in Part II, III, and IV apply not
only to the examples in this section but also to many other examples that can
be suitably described by the adopted notion of system.

1.3.1 Finite-state systems

Communication protocol

As a first example of finite-state systems we model a very simple communica-
tion protocol. Consider a sender and a receiver exchanging messages over an
unreliable communication channel. The sender obtains the data to be trans-
mitted from a buffer and sends it through the channel. Since the channel is
unreliable, the sender waits for a confirmation message from the receiver. If the
confirmation message acknowledges a correct reception, new data is fetched

1.3 Examples 9

get data

idle

send data

tx/rx

bad tx

repeat

good tx

ack

send

bad

good

send

get

Fig. 1.3. Graphical representation of the finite-state system modeling the sender.

and transmitted. When the confirmation message acknowledges an incorrect
reception, the previous message is resent. The behavior of the sender can be
described by the finite-state system in Figure 1.3.

The communication channel can either deliver the sent message without
errors or deliver a corrupted version of the sent message. The communication
channel is not independently modeled but is integrated in the model of the
sender and the model of the receiver.

The receiver sends a confirmation message acknowledging the reception
of an error free message or a repeat request when the received message is
corrupted. The receiver is described by the finite-state system in Figure 1.4.

bad rx

repeat

receive data

tx/rx

good rx

ack

store data

idle

bad

receive

good

store
receive

Fig. 1.4. Graphical representation of the finite-state system modeling the receiver.

10 1 Systems

Although we have modeled the sender and transmitter individually, any
analysis regarding the correctness of this protocol is based on the concurrent
execution of these two systems. In Section 1.4 we will see how we can compose
individual systems into a single system describing its concurrent evolution. For
now, we note that both the sender and receiver systems are nonblocking and
deterministic. Possible external behaviors of the system modeling the receiver
are:

idle - tx/rx - ack - idle - tx/rx - repeat
- tx/rx - repeat - tx/rx - ack - idle

idle - tx/rx - repeat - tx/rx - repeat - tx/rx
- repeat - tx/rx - repeat - tx/rx - repeat

- tx/rx - repeat - tx/rx - repeat - . . .

idle - tx/rx - repeat - tx/rx - ack - idle
- tx/rx - repeat - tx/rx - ack - idle - tx/rx

Software

Finite-state systems can also be used to model software. Intuitively, we can
regard the memory contents of a computational device as its state and the
software as a description of how memory contents change over time. Since we
can only store finitely many bits of information in the memory of a computing
system, the set of states is necessarily finite.

Constructing finite-state models of software is a challenging task that we
shall not address in this book. Instead, we provide a very simple example.

Example 1.5. The computation of averages is a problem that occurs frequently
in applications. Suppose that we want to compute the average of a stream of
numbers but we do not know a priori the length of the stream. One possible
way to compute the average is to update the average upon the reception of a
new number in the stream. This idea is implemented by Algorithm 1.1 where y
contains the latest received number and x contains the average of the numbers
that have been received so far. Assume now that we are interested in knowing
if x is smaller, equal, or greater than 1 when y is restricted to assume values

x:=0;
n:=0;
while true do

y:=read(input);
x := x n

n+1
+ y 1

n+1
;

n := n+ 1;
end

Algorithm 1.1: Average of a stream of numbers.

1.3 Examples 11

x0

x<1

x1

x=1

x2

x>1

2

1 2

1

1

2

Fig. 1.5. Finite-state system describing if x < 1, x = 1, or x > 1 when y ∈ {1, 2}
and x evolves according to Algorithm 1.1.

in the set {1, 2}. One possible finite-state model capturing the dynamics of x
is represented in Figure 1.5. Every execution of the while loop is captured by
a transition of the system. C

1.3.2 Infinite-state systems

Dynamical systems

Paul Samuelson introduced in 1939 the following model for the evolution of
the national income:

y(n) = c(n) + i(n) + g(n)
c(n+ 1) = αy(n)
i(n+ 1) = β(c(n+ 1)− c(n))

where α and γ are parameters and y denotes the national income that is
formed by three different kinds of expenditures: consumption, denoted by c;
investment, denoted by i; and government expenditure, denoted by g. Elimi-
nating y we obtain:

c(n+ 1) = α
(
c(n) + i(n) + g(n)

)
i(n+ 1) = βα

(
c(n) + i(n) + g(n)

)
− βc(n).

If we assume that g is a fixed value, the preceding model defines the system
S with:

• X = (R+
0)2;

• X0 = X;
• U = {∗};
• (c, i)

∗- (c′, i′) iff c′ = α(c+ i+ g) and i′ = βα(c+ i+ g)− βc;
• Y = R+

0 ;
• H(c, i) = c+ i+ g.

12 1 Systems

For discrete-time dynamical systems, the input ∗ is merely used to advance
the current state to the uniquely defined next state. Hence, system S is non-
blocking and deterministic.

Dynamical systems evolving in continuous-time can also be modeled as
systems. Consider Euler’s equations for the rotational dynamics of a rigid
body around its center of mass:

d

dt
ξ1 =

I2 − I3
I1

ξ2ξ3 (1.8)

d

dt
ξ2 =

I3 − I1
I2

ξ3ξ1 (1.9)

d

dt
ξ3 =

I1 − I2
I3

ξ1ξ2 (1.10)

where ξ = (ξ1, ξ2, ξ3) is the body angular velocity and I1, I2, I3 ∈ R are the
principal moments of inertia. A solution to these equations with initial con-
dition x0 = (x10, x20, x30) is a continuously differentiable curve ξ :]a, b[→ R3

with a < 0 < b, satisfying ξ(0) = x0 and (1.8) through (1.10) for all t ∈]a, b[.
We can thus model the preceding continuous-time dynamical system as a
system S with:

• X = R3;
• X0 = X;
• U = R+

0 ;
• x

τ- x′ if there exists a solution ξ to equations (1.8) through (1.10)
satisfying ξ(0) = x and ξ(τ) = x′;

• Y = X;
• H = 1X .

The preceding construction encodes in the transition relation of S all the
information contained in the solution ξ since there exists a transition x

τ- x′

in S iff ξ(0) = x and ξ(τ) = x′. Although this is natural from a mathematical
point of view, some readers may feel unsettled with this modeling choice: by
labeling the transitions with time we are formally treating time as the input
of S. If one thinks of dynamics as change in space corresponding to change in
time, then one can easily reconcile oneself with the idea of treating time as an
input. Although one can conceive the existence of a uniform notion of time
across all systems, different interactions with a system may require different
time inputs. As an example, consider two different digital platforms measuring
the output of system S. If platform A has a clock cycle of 2 time units and
platform B has a clock cycle of 3 time units, then platform A feeds time
inputs from the set {0, 2, 4, 6, . . .} into S while platform B feeds time inputs
from the set {0, 3, 6, 9, . . .} into S. Treating time as the input also has the
added benefit of rendering S nonblocking and deterministic as an immediate
consequence of existence and uniqueness of solutions for smooth differential
equations. In Chapter 7 and Chapter 10 we discuss different ways in which
dynamical systems can be modeled as systems.

1.3 Examples 13

Control systems

The national income model described in the previous section can be regarded
as a control system if one assumes that the government expenditure at time
n + 1 can be chosen by the government. In this case we obtain the following
equations:

c(n+ 1) = α
(
c(n) + i(n) + g(n)

)
i(n+ 1) = βα

(
c(n) + i(n) + g(n)

)
− βc(n)

g(n+ 1) = u(n)

where u is regarded as an input to be chosen by the government and belonging
to the set [0, D] for some maximal expenditure D ∈ R+. This model defines a
system with:

• X = (R+
0)3;

• X0 = X;
• U = [0, D];
• (c, i, g)

u- (c′, i′, g′) iff c′ = α(c + i + g), i′ = βα(c + i + g) − βc, and
g′ = u;

• Y = R+
0 ;

• H(c, i, g) = c+ i+ g.

Control systems in continuous-time can also be described as systems. Con-
sider the motion of a satellite subject to the torque produced by gas jet actua-
tors. Its dynamics can be described by the forced version of Euler’s equations:

d

dt
ξ1 =

I2 − I3
I1

ξ2ξ3 + υ1 (1.11)

d

dt
ξ2 =

I3 − I1
I2

ξ3ξ1 + υ2 (1.12)

d

dt
ξ3 =

I1 − I2
I3

ξ1ξ2 (1.13)

where the parameters υ1 and υ2 are inputs describing the effect of the gas
jets. A system model for the controlled satellite requires a choice of curves U ,
from]a, b[to R2, to be used as inputs. From a mathematical point of view, we
need to restrict U to a class of functions that are regular enough to guaran-
tee existence and uniqueness of solutions for the differential equations (1.11)
through (1.13). From an engineering point of view, the curves in U describe
signals that are implemented by physical actuators. Therefore, there are lim-
itations on the curves in U stemming from the actuator technology. Once the

14 1 Systems

set of input curves U is chosen, we can describe the dynamics of the controlled
satellite by the system S with:

• X = R3;
• X0 = X;
• U = U ;
• x

υ- x′ if there exist curves2 U 3 υ : [0, τ] → R2 and ξ : [0, τ] → R3

satisfying equations (1.11) through (1.13) with ξ(0) = x and ξ(τ) = x′;
• Y = X;
• H = 1X .

The sedulous reader certainly noticed that system S is also driven by time.
An input υ ∈ U is a curve υ : [0, τ]→ R2 describing not only the contribution
of the gas jets to the angular acceleration, but also the length of time τ during
which such contribution lasts. In particular, we can recover equations (1.8)
through (1.10) from equations (1.11) through (1.13) by restricting U to be
the set of all input curves with codomain {(0, 0)} ⊂ R2. In such case, each
input υ ∈ U is a constant curve assuming the value (0, 0) on its domain [0, τ].
Hence, we can identify υ with the length τ of its domain, thereby identifying
U with R+

0 , and recovering time as the input of system S modeling the rigid
body without gas jets. Different system models for control systems appear in
Chapter 8 and in Chapter 11.

1.3.3 Hybrid systems

Hybrid systems combine the characteristics of finite-state systems with those
of infinite-state systems. We introduce them through examples.

Real-time scheduling

In many safety-critical applications the execution of software tasks needs to be
completed in a timely fashion. Timeliness is typically formulated by equipping
each software task with a worst case execution time C, a relative deadline D,
and, in the case of periodic tasks, a period T . This formulation entails that a
task becomes active every T units of time and its execution must finish no later
than D units of time after becoming active. A scheduler is a special task that
decides which of the active tasks should be executed by the processor. The
decision process takes into account the period, relative deadline, and the fact
that the execution may take, in the worst case, C units of time to complete.
A set of tasks is said to be schedulable if it can be executed without violating
any of the deadlines. We can model a periodic task by the hybrid system in
Figure 1.6 where we assume that C < D < T so that the task execution

2 We use curves υ and ξ defined on closed sets while implicitly assuming the exis-
tence of curves υ′ :]a, b[→ R2 and ξ′ :]a, b[→ R3 satisfying υ = υ′|[0,τ], ξ = ξ′|[0,τ],
and all the additional conditions imposed on υ and ξ.

1.3 Examples 15

sleep

ξ̇1 = 1 ξ̇2 = 1
0 ≤ ξ1 ≤ T

ξ1 := 0
ξ2 := 0

active

ξ̇1 = 1 ξ̇2 = 1
0 ≤ ξ1 ≤ D

execute

ξ̇1 = 1 ξ̇2 = 1
0 ≤ ξ1 ≤ D
0 ≤ ξ2 ≤ C

error

ξ̇1 = 1 ξ̇2 = 1
D ≤ ξ1

awake

ξ1 = T
ξ1 := 0

expired

ξ1 = D

starting

0 ≤ ξ1 < D
ξ2 := 0

expired

ξ1 = D
finished

0 < ξ2 < C

Fig. 1.6. Hybrid system representing a periodic real-time task.

can finish before the relative deadline and before the next activation. We also
assume that the task cannot be pre-empted, i.e., once the execution starts the
task runs to completion.

There are several new ingredients in Figure 1.6 with respect to the finite-
state systems that appeared so far. Firstly, each finite state is decorated with
a differential equation which, in this example, is the same for all finite states:

ξ̇1 = 1 (1.14)
ξ̇2 = 1. (1.15)

The special form of this equation allows us to regard ξ1 and ξ2 as clocks
measuring the passage of time since ξ1(t) = ξ1(0) + t and ξ2(t) = ξ2(0) + t.
Secondly, each finite state is also decorated with an invariant set. For example,
the finite state sleep has 0 ≤ ξ1 ≤ T as its invariant set. The invariant
represents a condition on the solutions of the differential equation that must

16 1 Systems

be satisfied. This means that a task is in the finite state sleep provided that
ξ1 is between 0 and T . When ξ1 reaches T , the invariant can no longer be
satisfied since ξ1 continues to increase according to ξ̇1 = 1. Consequently, a
transition must be taken and the only transition originating at the finite state
sleep is guarded by the condition ξ1 = T . A guarded transition can only be
taken when the guard is satisfied. Hence, the transition from the state sleep
to the state active can only be taken when ξ1 is exactly equal to T (the
activation period). The reset ξ1 := 0 also decorates this transition and forces
ξ1 to be reset to zero once the task enters the finite state active. It is also
possible that a transition takes place at different instants of time. This is the
case with the transition from execute to sleep. This transition is enabled
whenever the guard 0 < ξ2 < C is satisfied. Therefore, a task may finish its
execution to enter the sleep state at any time, measured by ξ2, between 0
and the worst case execution time C. The reader is encouraged to inspect the
remaining invariants, guards, and resets to become convinced that the system
in Figure 1.6 does model the evolution of a periodic real-time task.

The set of states of the hybrid system in Figure 1.6 is:

X = {sleep, active, error, execute} × (R+
0)2.

A state x ∈ X is thus a pair x = (xa, xb) consisting of a finite part
xa ∈ {sleep, active, error, execute} and an infinite part xb ∈ (R+

0)2. For
every finite state xa we have an invariant Inxa ⊆ (R+

0)2 and a differential
equation ξ̇ = fxa(ξ). Moreover, for every transition (xa, ua, x′a) we have a
guard Gu(xa,ua,x′a)

⊆ Inxa and a reset map Re(xa,ua,x′a)
: Inxa → Inx′a . All

these new ingredients are used to describe this hybrid system as a system
S = (X,X0, U, -) with:

• X = {sleep, active, error, execute} × (R+
0)2;

• X0 = {(xa, xb) ∈ X | xa = sleep ∧ xb ∈ Insleep};
• U = {awake, expired, starting, finished} ∪ R+

0 ;
• (xa, xb)

u- (x′a, x
′
b) if one of the following two conditions holds:

1. u ∈ R+
0 , x′a = xa, and there exists a solution ξ : [0, u] → Inxa to

the differential equations (1.14) and (1.15) satisfying ξ(0) = xb and
ξ(u) = x′b;

2. u ∈ {awake, expired, starting, finished}, x′b = Re(xa,u,x′a)
(xb), and

xb ∈ Gu(xa,u,x′a)
.

The transition relation consists of two different kinds of transitions: con-
tinuous flows and discrete transitions. During continuous flows the finite part
of the state remains unaltered and the infinite part of the state, whose evo-
lution is prescribed by the differential equations (1.14) and (1.15), remains
inside the invariant set. Discrete transitions may change the finite and the
infinite part of the state and are conditioned by the corresponding guards.

1.3 Examples 17

A boost DC-DC converter

A different example of a hybrid system is the boost DC-DC converter rep-
resented in Figure 1.7. If one uses the current iL through the inductor and
the voltage vC across the capacitor as state variables, a simple application of
Kirchoff’s laws provides the equations describing the evolution of vC and iL.
When the switch is in position s1 we have:

d

dt
iL = −RL

L
iL +

1
L
vS (1.16)

d

dt
vC = − 1

C

1
RC +R0

vC (1.17)

and when the switch is in position s2:

d

dt
iL = − 1

L

(
RL +

RCR0

RC +R0

)
iL −

1
L

R0

RC +R0
vC +

1
L
vS (1.18)

d

dt
vC =

1
C

R0

RC +R0
iL −

1
C

1
RC +R0

vC . (1.19)

There are two different modes of operation associated with the two differ-
ent positions for the switch. The dynamics of these two modes of operation
can be described by the finite-state system in Figure 1.8 in which the input
u1 takes the system to switch position s1 and input u2 takes the system to
switch position s2. However, the finite-state system in Figure 1.8 is not de-
tailed enough to capture the dynamics of iL and vC . A more detailed model

vs

RL L

RC

C

R0

s2

s1

Fig. 1.7. Boost DC-DC converter.

x0

s1

x1

s2

u2

u1

u1

u2

Fig. 1.8. Finite-state system describing the dynamics of the switch in the converter
represented in Figure 1.7.

18 1 Systems

has to combine the finite-state dynamics of the switch with the continuous-
time dynamics in equations (1.16) through (1.19). Such hybrid model can be
described by the system S = (X,U, -) with:

• X = {s1, s2} × R2;
• U = {u1, u2} ∪ R+

0 ;
• (s, iL, vC)

u- (s′, i′L, v
′
C) if one of the following four conditions holds:

1. u = u1, s′ = s1, iL = i′L, and vC = v′C ;
2. u = u2, s′ = s2, iL = i′L, and vC = v′C ;
3. u ∈ R+

0 , s′ = s = s1 and there exists a solution ξ : [0, u] → R2 to the
differential equations (1.16) and (1.17) satisfying ξ(0) = (iL, vC) and
ξ(u) = (i′L, v

′
C);

4. u ∈ R+
0 , s′ = s = s2 and there exists a solution ξ : [0, u] → R2 to the

differential equations (1.18) and (1.19) satisfying ξ(0) = (iL, vC) and
ξ(u) = (i′L, v

′
C).

For this hybrid system the invariants are Ins1 = R2 = Ins2 , the guards
are Gu(s1,u,s2) = R2 = Gu(s2,u,s1), and the reset maps are Re(s1,u,s2) = 1R2 =
Re(s2,u,s1) for any u ∈ {u1, u2}. The nature of the guards and of the invariants
implies that a discrete transition can take place independently of the specific
value of the infinite state. This is in stark contrast with the previous example
where discrete transitions were influenced by and influenced the continuous-
time dynamics. The modeling of hybrid systems as systems is discussed in
more detail in Chapter 7.

Fig. 1.9. Systems Sc, Sd, Se, and Sf resulting from composing system Sa with
system Sb with respect to the different interconnection relations in Table 1.1.

Sc

Sa

Sb

Sd

Sa

Sb

Se

Sa

Sb

Sf

Sa

Sb

1.4 Composing systems 19

1.4 Composing systems

Most engineering systems are designed and built by interconnecting simpler
and smaller components. This process of constructing larger systems by in-
terconnecting smaller ones can be mathematically described through a com-
position operation. In this book we consider a versatile notion of composition
based on an interconnection relation I ⊆ Xa ×Xb × Ua × Ub describing how
system Sa interacts with system Sb.

Definition 1.6 (Composition). Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha) and

Sb = (Xb, Xb0, Ub,
b
- , Yb, Hb) be two systems and let I ⊆ Xa×Xb×Ua×Ub

be a relation. The composition of Sa and Sb with interconnection relation I,
denoted by Sa×I Sb, is the system (Xab, Xab0, Uab,

ab
- , Yab, Hab) consisting

of:

• Xab = πX(I);
• Xab0 = Xab ∩ (Xa0 ×Xb0);
• Uab = Ua × Ub;
• (xa, xb)

(ua,ub)

ab
- (x′a, x

′
b) if the following three conditions hold:

1. xa
ua

a
- x′a in Sa;

2. xb
ub

b
- x′b in Sb;

3. (xa, xb, ua, ub) ∈ I;
• Yab = Ya × Yb;
• Hab(xa, xb) = (Ha(xa), Hb(xb)).

The system Sa×I Sb describes the concurrent evolution of systems Sa and
Sb subject to the synchronization prescribed by the interconnection relation I.
The compositions represented in Figure 1.9 are but a few examples of systems
that can be obtained by suitably defining I. The interconnection relation for
these examples is shown in Table 1.1. The very general notion of composition
in Definition 1.6 was not chosen for the mere sake of generality. The effort
placed by the reader in becoming acquainted with this notion of composition
will be rewarded later in the book with simple proofs of important results.

System (xa, xb, ua, ub) ∈ I if

Sc Ha(xa) = ub
Sd Ha(xa) = ub and Hb(xb) = ub
Se ua = ub
Sf Ha(xa) = Hb(xb)

Table 1.1. Description of the interconnection relation I for the compositions rep-
resented in Figure 1.9.

20 1 Systems

The compositions illustrated in Figure 1.9 enforce synchronization only
through inputs and outputs. However, the relation I enables also the use of
the state for synchronization. This will be essential when we discuss problems
of control. The way in which transitions of Sa ×I Sb are constructed from
transitions of Sa and Sb tells us that:

B(Sa ×I Sb) ⊆ B(Sa)× B(Sb) (1.20)

with equality holding for the trivial interconnection relation defined by
I = Xa ×Xb × Ua × Ub. In the later case, we denote Sa ×I Sb simply by
Sa × Sb.

When composing systems Sa and Sb having the same set of outputs and
using an interconnection relation satisfying:

(xa, xb) ∈ πX(I) =⇒ Ha(xa) = Hb(xb)

there is a certain redundancy in Sa ×I Sb. The output set is Ya × Yb with
Ya = Yb and the output at every state (xa, xb) ∈ Xab is (Ha(xa), Hb(xb))
with Ha(xa) = Hb(xb). Under these circumstances we simplify Sa ×I Sb by
redefining Yab to be:

Yab = Ya = Yb

and by redefining Hab to be:

Hab(xa, xb) = Ha(xa) = Hb(xb).

Equation (1.20) now tells us that the behavior of Sa ×I Sb is related to be
behavior of Sa and Sb by:

B(Sa ×I Sb) ⊆ B(Sa) B(Sa ×I Sb) ⊆ B(Sb).

Example 1.7. We now return to the communication protocol example to il-
lustrate system composition. If Sa is the system describing the sender (see
Figure 1.3) and if Sb is the system describing the receiver (see Figure 1.4),
we can construct Sa ×I Sb by choosing I to be the set of all quadruples
(xa, xb, ua, ub) ∈ Xa × Xb × Ua × Ub satisfying Ha(xa) = Hb(xb) and corre-
sponding to one of the interconnections represented in Figure 1.9. The result-
ing finite-state system is represented in Figure 1.10.

A possible specification for the communication protocol is that in every ex-
ternal behavior of Sa×I Sb, tx/rx is always followed, although not necessarily
immediately, by ack. This would require that any transmission is eventually
correctly received. By inspecting Figure 1.10, we see that it is possible to cy-
cle between the states (send data, receive data) and (bad tx, bad rx)
indefinitely, thus implying that tx/rx may not be followed by ack. Unless
additional assumptions are made about the communication channel, it is not
possible to guarantee that transmitted messages are eventually received. In
this example we could determine that Sa×I Sb does not conform to the spec-
ification simply by inspecting Sa ×I Sb. When dealing with large systems,
analyzing Sa ×I Sb by inspection is no longer possible and one has to resort
to algorithmic verification techniques such as the ones presented in Part II. C

1.5 Notes 21

Fig. 1.10. Graphical representation of the composition of the finite-state system
displayed in Figure 1.3 (modeling the sender) with the finite-state system displayed
in Figure 1.4 (modeling the receiver).

1.5 Notes

The notion of system introduced in this chapter is a blend between the au-
tomata theoretic models used for the verification of software systems with the
differential equation models used in control. Owing to its automata descent,
the dynamics is described by a relation instead of a function. The flexibility
afforded by relations will be used in Parts II, III, and IV to model the ef-
fect of disturbances through nondeterminism. Following the current practice
in control theory, outputs depend on the states rather than on the inputs.
This choice is motivated by the models used in control theory where the state
has physical meaning which is essential to define specifications. However, as
described in Section 1.2, the inputs can easily be extracted from the outputs
by suitable redefining the ingredients of a system.

The separation of variables into inputs, states, and outputs is a modeling
decision that is not always easy to make, especially when dealing with soft-
ware. Although this practice seems to be well rooted in the computer science
and control theory traditions, there exist alternative modeling formalisms that
do not require such distinctions [PW97].

(get data,
store data)

idle

(send data,
receive data)

tx/rx

(bad tx,
bad rx)

repeat

(good tx,
good rx)

ack

(send, receive)

(bad, bad)

(good, good)

(send, receive)

(get, store)

22 1 Systems

The national income model was proposed in [Sam39]. Hybrid systems have
been used by many authors to study problems of real-time scheduling see, for
example, [FKPY07]. The hybrid model for the DC-DC converter is taken
from [GPM04, GPT09] where further references can be found for the analysis
and design of DC-DC converters using hybrid systems techniques.

