

EE EVerification and Control of
Hybrid Systems

Paulo Tabuada

A Symbolic Approach

Verification and Control of

Foreword by Rajeev Alur

Hybrid Systems

All rights reserved.

10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

This work may not be translated or copied in whole or in part without the written

permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY

Library of Congress Control Number: 2009926478

Springer Dordrecht Heidelberg London New York

Paulo Tabuada
Department of Electrical Engineering

66-147F, Engineering Bldg. IV
Los Angeles, CA 90095-1594
USA
tabuada@ee.ucla.edu

DOI 10.1007/978-1-4419-0224-5
e-ISBN 978-1-4419-0224-5ISBN 978-1-4419-0223-8

© Springer Science+Business Media, LLC 2009

Springer is part of Springer Science+Business Media (www.springer.com)

University of California, Los Angeles

This book is dedicated to my father.
Stricken again, by the bitterness of life, while this book was being written.

Foreword

It is my great pleasure to write this foreword to this remarkable monograph
on hybrid systems by Paulo Tabuada. A hybrid system combines the state-
machine models of discrete control with differential-equation models of con-
tinuous dynamics. Traditionally, state machines have been used extensively
for modeling and analysis in computer science, and dynamical systems are
studied by researchers in control theory. The embedded applications, consist-
ing of discrete software reacting to continuous environment, have motivated
the study of the problems at the boundary of the two fields, leading to the
growing and exciting field of hybrid systems. This research discipline brings
together researchers from software engineering and formal methods, control
theory, and applications such as robotics and systems biology.

The results at the computer science end were motivated by a desire to
generalize the symbolic methods that had proved to be so successful in mod-
eling and analyzing digital hardware. Early results focused on models such as
timed automata and linear hybrid automata that augmented finite-state con-
trol with simple dynamics. At the other spectrum, control theorists developed
ways for generalizing analysis techniques for linear and non-linear systems to
switched counterparts. Over the years, a wealth of results have emerged at
the intersection, but more importantly, the cross-fertilization of ideas have led
to new insights and analysis techniques. For example, the theory of property-
preserving abstractions, studied extensively in the formal methods literature,
has led to computational techniques for reducing the dimensionality of linear
control systems; the concepts of barrier certificates and Lyapunov functions
from dynamical systems theory have led to effective tools for verification of
safety and liveness properties of hybrid systems.

The rapidly growing and interdisciplinary research demands that re-
searchers must understand concepts and tools from both computer science
and control theory. This is undoubtedly a daunting task, and this is where
this book can come to the rescue. It covers a wide range of foundational topics
in verification and control of hybrid systems. More impressively, it themati-
cally weaves them together using the recurring theme of simulation relations.

VIII Foreword

The notion of a simulation or a bisimulation relation between two descrip-
tions of a system, possibly at different levels of detail, has proved to be an
important concept, both in theory and practice, for modeling and verification
of discrete systems. Using richer concepts such as alternating relations and
approximate relations, this book develops the foundations for hybrid control
systems.

Paulo is ideally suited for the challenge of explaining the foundations of
hybrid systems. Having interacted with him for many years, I am well aware
of the breadth of his technical expertise that spans across topics in formal
verification and control theory. He has made numerous important contribu-
tions to the field, particularly to foundations and tools for property-preserving
abstractions of hybrid control systems. The exposition is technically rigorous,
and uses a number of well-chosen illustrations to explain the concepts.

There are a number of conferences on hybrid systems. It is also an integral
component of the newly emerging and broader discipline of cyber-physical
systems. There are new challenges, and research opportunities, related to,
for instance, robustness in presence of uncertainties and design of networked
control systems. I recommend this book highly to students and researchers
who want to tackle these challenges. Studying this book will be an excellent
way to understand the mathematical foundations of this vibrant field.

Rajeev AlurUniversity of Pennsylvania

Preface

Hybrid systems arose more than 15 years ago in a bold attempt to yoke to-
gether computer science and control theory in the context of, what are now
called, cyber-physical systems. Although it is still early to give an unified
account of hybrid systems research, certain conceptual similarities, between
different results developed by different researchers, have recently come into
view. This book aims at highlighting these similarities by providing a system-
atic exposition of several key verification and control synthesis results.

The guiding concept used in this book is the notion of bisimulation. To
understand how it winds through hybrid systems research, a digression into
digital control and timed automata is in order. Before hybrid systems, the
existing paradigm for computer controlled systems was digital control. Un-
der this paradigm, a computer interfaces with the physical world through an
Analog-to-Digital (A/D) converter, transforming measured physical quantities
into digital format, and through a Digital-to-Analog (D/A) converter, trans-
forming digital control commands into analog signals. The enabling result of
this paradigm states that when the continuous dynamics is described by a con-
trolled linear differential equation, the combination of the continuous dynam-
ics with certain classes of D/A and A/D converters can be represented by a
discrete-time linear control system. Consequently, discrete-time linear control
systems were widely used as the abstraction of choice for computer controlled
physical systems. Although powerful, the digital control paradigm provides no
support to study the interaction of software with the physical world. The first
models for hybrid systems extended the digital control paradigm by model-
ing the software as a finite-state machine interfacing with the physical world,
described by a controlled differential equation, through A/D and D/A con-
verters. This model for hybrid systems later evolved into hybrid automata
but no enabling representation result, such as the one for digital control, was
known. The desired representation result had already been partially given by
Alur and Dill’s work on timed automata. In the 1990 paper [AD90], Alur and
Dill showed that timed automata, a special class of hybrid automata, could
be represented by a finite-state symbolic model, i.e., a model with finitely

X Preface

many states where each state or symbol represents infinitely many states of
the timed automaton. Essential to their results was the observation that the
notion of bisimulation was versatile enough to establish a formal equivalence
between timed automata and finite-state symbolic models. Bisimulation, orig-
inally introduced by Park [Par81] and Milner [Mil89] as a notion of equiva-
lence between software processes, provided the motto for extensions of Alur
and Dill’s pioneering work to other classes of hybrid systems. Although the
initial effort was on representation results for the verification of hybrid sys-
tems, later results showed that symbolic models could also be constructed
for control design. A further twist in this research stream occurred recently
when it was recognized that bisimulation could be generalized to approximate
bisimulation with the purpose of further enlarging the class of hybrid systems
admitting symbolic models.

The excursion into hybrid systems research, offered in this book, is di-
vided into four parts. The first part presents basic concepts centered around
a notion of system that is general enough to describe finite-state machines,
differential equations, and hybrid systems. However, a system, by itself, is
not very interesting. More interesting are the ways in which systems relate to
other systems. Two such relationships are presented in Part II: behavioral in-
clusion/equivalence and simulation/bisimulation. These relationships are then
used to study verification and control synthesis problems for finite-state sys-
tems. Only a flavor of the existing results is provided since the focus of the
book are the infinite-state (hybrid) systems discussed in Part III and Part IV.
By drawing inspiration from timed automata, several classes of hybrid sys-
tems with richer continuous dynamics are shown to be related to finite-state
symbolic systems in Part III. Once such (bi)simulation relations are estab-
lished, verification and control synthesis problems can be immediately solved
by resorting to the techniques described in Part II for finite-state systems.
The same strategy is followed in Part IV by generalizing (bi)simulation re-
lationships to approximate (bi)simulation relationships that can be used for
wider classes of hybrid systems.

The choice of results presented in this book is admittedly biased by my
view of hybrid systems and my own research interests. Moreover, I confess
that the guiding concept of bisimulation warrants a longer route visiting many
other important results. The decision not to include such topics was difficult
to make, but including them would have required more time than I could
give to this project at this stage. In addition to the choice of topics, I faced
another challenge: to make the book accessible and interesting to both com-
puter scientists and control theorists. On the one hand, the computer scientist
will certainly find Part II to be a very narrow account of formal verification
and Part III to treat timed automata very superficially. On the other hand,
the control theorist will be intrigued with the notion of system used in this
book, yet disappointed with the relegation of nonlinear systems to several cur-
sory sections. Nonetheless, I hope the readers, independently of their technical

Preface XI

background, will find the results interesting enough to consult the specialized
literature for the missing details.

It is a great pleasure to acknowledge the influence of Rajeev Alur and
George J. Pappas that helped shape my view of hybrid systems. Some of the
results in Part IV were developed in collaboration with Giordano Pola and
Antoine Girard and for that, I am very grateful. My students and postdocs, es-
pecially Manuel Mazo Jr. and Ramkrishna Pasumarthy, also deserve a special
word of acknowledgement for carefully reading different versions of this book
and providing me with valuable feedback. This book would not have been
possible without the scholarly environment created by my colleagues at the
Electrical Engineering Department of the University of California at Los An-
gles, and without the support of Dr. Helen Gill and Dr. Radhakishan Baheti
from the National Science Foundation. My final words of acknowledgment go
to my brother, who showed me how to persevere and prosper among brilliant
minds, to my parents, for being a constant source of support, and to my wife,
to whom I now have to repay the countless nights and weekends spent in the
writing of this book.

Paulo TabuadaLos Angeles and Lisboa

Contents

Part I Basic concepts

1 Systems . 3
1.1 System definition . 3
1.2 System behavior . 6
1.3 Examples . 8
1.4 Composing systems . 19
1.5 Notes . 21

2 Verification problems . 23
2.1 Sa ∼= Sb . 23
2.2 Sa � Sb . 24

3 Control problems . 25
3.1 Sc ×I Sa ∼= Sb . 25
3.2 Sc ×I Sa � Sb . 26

Part II Finite systems

4 Exact system relationships . 29
4.1 Behavioral relationships . 30
4.2 Similarity relationships . 33
4.3 Alternating similarity relationships . 40
4.4 Notes . 42

5 Verification . 43
5.1 Behavioral relations . 43
5.2 Similarity relations . 45
5.3 Notes . 50

XIV Contents

6 Control . 51
6.1 Feedback composition . 52
6.2 Safety games . 55
6.3 Reachability games . 61
6.4 Behavioral games . 64
6.5 Similarity games . 64
6.6 Notes . 70

Part III Infinite Systems: Exact symbolic models

7 Exact symbolic models for verification . 73
7.1 Dynamical and hybrid dynamical systems as systems 74
7.2 Timed automata . 80
7.3 Order minimal hybrid dynamical systems 87
7.4 Sign based abstractions . 94
7.5 Barrier certificates . 103
7.6 Computation of reachable sets . 105
7.7 Advanced topics . 109
7.8 Notes . 110

8 Exact symbolic models for control . 113
8.1 Control systems as systems . 114
8.2 Controller refinement . 117
8.3 Discrete-time linear control systems . 118
8.4 Continuous-time multi-affine control systems 133
8.5 Notes . 142

Part IV Infinite Systems: Approximate symbolic models

9 Approximate system relationships . 145
9.1 Approximate similarity relationships . 145
9.2 Approximate alternating similarity relationships 148
9.3 Notes . 149

10 Approximate symbolic models for verification 151
10.1 Stability of linear dynamical systems . 152
10.2 Dynamical systems as systems . 155
10.3 Symbolic models for affine dynamical systems 156
10.4 Advanced topics . 163
10.5 Notes . 166

Contents XV

11 Approximate symbolic models for control 167
11.1 Stability of linear control systems . 168
11.2 Control and switched systems as systems 170
11.3 Approximate feedback composition and controller refinement . . 172
11.4 Symbolic models for affine control systems 175
11.5 Symbolic models for switched affine systems 183
11.6 Advanced topics . 186
11.7 Notes . 189

Appendix . 191

References . 195

Index . 201

A.1 Lattice theory . 191
A.2 Fixed-points . 192

Part I

Basic concepts

1

Systems

The word system is used in this book as a synonym for mathematical model
of a dynamical phenomenon. Since different problems may require different
models of the same phenomenon, we need a versatile notion of system that
can be equipped with relationships explaining how different systems can be
related. The purpose of this chapter is to provide one such notion and to
illustrate its use in different contexts.

Notation

For a set Z, 1Z : Z → Z denotes the identity map on Z defined by 1Z(z) = z
for every z ∈ Z. Given a map f : Z →W and a set K ⊆ Z, f(K) denotes the
subset of W defined by f(K) = {w ∈ W | w = f(k) for some k ∈ K} while
f |K : K → W describes the restriction of f to K defined by f |K (k) = f(k)
for every k ∈ K. The projection map taking (xa, xb, ua, ub) ∈ Xa×Xb×Ua×Ub
to (xa, xb) ∈ Xa ×Xb is denoted by πX .

1.1 System definition

Among the many different mathematical models used to describe dynamical
phenomena we are especially interested in models with states belonging to
finite sets, infinite sets, and combinations thereof. By a finite-state system we
mean a system described by finitely many states. The finite-state machines
used to model digital circuits are one such example. We also consider infinite-
state systems described by difference or differential equations with solutions
evolving in infinite sets such as Rn. Hybrid systems, combining aspects of
finite-state and infinite-state systems, consist of another class of systems that
can be described by the notion of system adopted in this book.

© Springer Science + Business Media, LLC 2009DOI: 10.1007/978-1-4419-0224-5_1,
3P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach,

4 1 Systems

Definition 1.1 (System). A system S is a sextuple (X,X0, U, - , Y,H)
consisting of:

• a set of states X;
• a set of initial states X0 ⊆ X;
• a set of inputs U ;
• a transition relation - ⊆ X × U ×X;
• a set of outputs Y ;
• an output map H : X → Y .

States in X are regarded as internal to the system whereas outputs are
externally visible. The set of initial states may be a proper subset X0 ⊂ X, a
fixed initial state x0 ∈ X, or the whole set of states X0 = X. A system is called
finite-state if X is a finite set. A system that is not finite-state is called infinite-
state. Systems described by differential equations are examples of infinite-state
systems. The adjectives finite and infinite always qualify the state set of a
system whereas the adjectives discrete and continuous are used to qualify
time. Even though a state cannot1 be qualified as finite or infinite, we shall
abuse language and call a state finite or infinite when the corresponding state
set is finite or infinite, respectively. This abuse of language will be extremely
useful throughout the book. The relationship between finite-state and infinite-
state systems is an important topic that is considered in great detail in this
book.

The evolution of a system is captured by the transition relation. A tran-
sition (x, u, x′) ∈ - is, throughout the book, denoted by x

u- x′. For
such a transition, state x′ is called a u-successor, or simply successor, of state
x. Similarly, x is called a u-predecessor, or predecessor, of state x′. Note that,
since - ⊆ X×U×X is a relation, for any state and any input u ∈ U there
may be: no u-successors, one u-successor, or many u-successors. For concise-
ness, we denote the set of u-successors of a state x by Postu(x). Since Postu(x)
may be empty, we denote by U(x) the set of inputs u ∈ U for which Postu(x)
is nonempty. As discussed in later chapters, the semantics of the elements in
U depends on the problem being solved. Inputs in U can represent choices to
be made by a controller, choices to be made by the environment, or they can
simply describe the passage of time.

Example 1.2. Finite-state systems naturally arise as models of a variety of
man-made phenomena. In addition to being completely defined by the data
described in Definition 1.1, they also admit a graphical representation that is
very useful. States are represented by circles and transitions are represented
by arrows between states. Initial states are distinguished by being the target
of a sourceless arrow. Each circle is labeled by the state (top half) and the

1 A state is simply an element of the set of states X. Therefore, unless additional
structure is imposed on X, the expressions “infinite state” and “finite state” have
no defined meaning.

1.1 System definition 5

corresponding output (bottom half), and each arrow is labeled by the input.
The graphical representation of the finite-state system defined by the data:

X = {x0, x1, x2, x3}, X0 = {x0, x2}, U = {u0, u1}, (1.1)
- = {(x0, u0, x1), (x0, u1, x2), (x1, u0, x1),

(x1, u0, x3), (x2, u1, x3), (x3, u1, x1)}, (1.2)
Y = {y0, y1, y2}, (1.3)

H(x0) = y0, H(x1) = y0, H(x2) = y1, H(x3) = y2, (1.4)

is displayed in Figure 1.1. C

A system is called blocking if there is a state x ∈ X from which no further
transitions are possible, i.e., x has no u-successors for any u ∈ U . This can
also be expressed as U(x) = ∅. A system is called nonblocking if the set
of successors of every x ∈ X is nonempty. An equivalent characterization is
U(x) 6= ∅ for every x ∈ X.

A system is called deterministic if for any state x ∈ X and any input
u ∈ U , x

u- x′ and x
u- x′′ imply x′ = x′′. Therefore, a system is

deterministic if given any state x ∈ X and any input u ∈ U , there exists at
most one u-successor (there may be none). A system is output deterministic if:
H|X0 is injective; and for any state x ∈ X and any inputs u, u′ ∈ U , x

u- x′

and x
u′- x′′ with H(x′) = H(x′′) imply x′ = x′′. For output deterministic

systems, different successors of a state always have different outputs.
A system is called nondeterministic if it is not deterministic. Hence for

a nondeterministic system it is possible for a state to have two (or possibly
more) distinct u-successors.

x0

y0

x1

y0

x2

y1

x3

y2

u0

u1

u0

u0

u1

u1

Fig. 1.1. Graphical representation of the finite-state system defined by (1.1)
through (1.4).

6 1 Systems

One can easily see that the system represented in Figure 1.1 is nonblocking
since every state has an outgoing transition. It is also nondeterministic as
there are two u0-successors of the state x1, namely x1 and x3. Albeit not
being deterministic this system is output deterministic.

To simplify notation we also denote a system S = (X,X0, U, - , Y,H)
by the quintuple S = (X,U, - , Y,H) when X0 = X, by the quadru-
ple S = (X,X0, U, -) when Y = X and H = 1X , or by the triple
S = (X,U, -) when X0 = X = Y and H = 1X .

1.2 System behavior

Given any state x ∈ X, a finite internal behavior generated from x is a finite
sequence of transitions:

x0
u0- x1

u1- x2
u2- . . .

un−2- xn−1
un−1- xn

such that x0 = x and xi
ui- xi+1 for all 0 ≤ i < n. A state x ∈ X can also

be seen as a behavior comprising zero transitions in which case n = 0. An
internal behavior generated from x is initialized if x ∈ X0.

In some cases, a finite internal behavior can be extended to an infinite
internal behavior. An infinite internal behavior generated from x is an infinite
sequence:

x0
u0- x1

u1- x2
u2- x3

u3- . . .

that satisfies x0 = x and xi
ui- xi+1 for all i ∈ N0. An infinite internal

behavior generated from x is called initialized if x ∈ X0. In nonblocking
systems, every finite internal behavior can be extended to an infinite internal
behavior.

Through the output map, every internal behavior:

x0
u0- x1

u1- x2
u2- . . .

un−2- xn−1
un−1- xn

defines an external behavior:

y0 - y1 - y2 - . . . - yn−1
- yn (1.5)

with H(xi) = yi ∈ Y for all 0 ≤ i ≤ n. We also use the more succinct notation
y = y0y1y2 . . . yn to represent the external behavior (1.5). The set of external
behaviors that are defined by internal behaviors generated from state x is
denoted by Bx(S) and is called the external behavior from state x.

Definition 1.3 (Finite External Behavior). The finite external behavior
generated by a system S, denoted by B(S), is defined by:

B(S) =
⋃
x∈X0

Bx(S).

1.2 System behavior 7

For output deterministic systems any finite external behavior y determines
uniquely the corresponding internal behavior. This can easily be shown by
induction. Given an external behavior y = y0y1y2 . . . yn we can recover the
corresponding initial state x0 since H|X0 is injective. Then, we consider all the
successors x1 of x0 satisfying H(x1) = y1. If there is more than one successor,

say x1 and x′1, we have x0
u1- x1 and x0

u′1- x′1 with H(x1) = H(x′1). It
follows by output determinism that x1 = x′1 and x1 is uniquely determined.
Applying the same argument to the successors of x1 we can uniquely recover
x2 and so on.

An infinite internal behavior from x:

x0
u0- x1

u1- x2
u2- x3

u3- . . .

defines an infinite external behavior:

y0 - y1 - y2 - y3 - . . . (1.6)

corresponding to the infinite sequence of outputs with H(xi) = yi for all
i ∈ N0. The infinite external behavior (1.6) can also be succinctly denoted by
y = y0y1y2y3 The set of all infinite external behaviors that are generated
from x is denoted by Bωx (S) and called the infinite external behavior from
state x.

Definition 1.4 (Infinite External Behavior). The infinite external be-
havior generated by a system S, denoted by Bω(S), is defined by:

Bω(S) =
⋃
x∈X0

Bωx (S).

Infinite behaviors describe the nonterminating interaction of a system with
other systems and the environment. They are thus adequate to model the
operation of reactive systems, such as embedded controllers, that must operate
without interruption for arbitrarily long periods of time. For this reason, we
focus mostly on infinite behaviors and drop the adjective infinite whenever
clear from the context.

If a system S is non-blocking, then Bω(S) is nonempty. However, Bω(S)
may be nonempty even if S is a blocking system. Figure 1.2 displays one
such example where the infinite external behavior aaaaa . . . belongs to Bω(S)
although S is blocking since the state x1 has no successors.

x0

a

x1

b
loop

stay

Fig. 1.2. Graphical representation of a blocking finite-state system with nonempty
infinite external behavior.

8 1 Systems

In Chapter 4 we discuss in further detail the relation between B(S), Bω(S),
and the blocking/nonblocking properties of S. For now, we veer to the relation
between inputs and outputs. In many situations the inputs provide valuable
information that is not directly captured by the internal or external behavior
of a system. This can be easily remedied by suitably extending the state set.
Starting from a system S = (X,X0, U, - , Y,H) we can construct a new
system So = (Xo, Xo0, Uo,

o
- , Yo, Ho) with:

• Xo = X × U ;
• Xo0 = X0 × {∗} for some element ∗ /∈ U ;
• Uo = U ∪ {∗};
• (x, u)

u′

o
- (x′, u′) in So if x

u′- x′ in S;
• Yo = Y × U ;
• Ho(x, u) = (H(x), u).

An infinite external behavior of So is of the form:

(y0, ∗) - (y1, u0) - (y2, u1) - (y3, u2) - . . .

thus containing not only the infinite external behavior of S:

y0 - y1 - y2 - y3 - . . . (1.7)

but also the sequence of inputs u0u1u2 . . . used to generated (1.7) in S. Hence,
the output set Y and output map H can be designed to make externally visible
the aspects (inputs and states) of a system that are considered relevant for
the verification or control problem being solved.

1.3 Examples

The examples that follow illustrate the versatility of the notion of system
adopted in this book. The results presented in Part II, III, and IV apply not
only to the examples in this section but also to many other examples that can
be suitably described by the adopted notion of system.

1.3.1 Finite-state systems

Communication protocol

As a first example of finite-state systems we model a very simple communica-
tion protocol. Consider a sender and a receiver exchanging messages over an
unreliable communication channel. The sender obtains the data to be trans-
mitted from a buffer and sends it through the channel. Since the channel is
unreliable, the sender waits for a confirmation message from the receiver. If the
confirmation message acknowledges a correct reception, new data is fetched

1.3 Examples 9

get data

idle

send data

tx/rx

bad tx

repeat

good tx

ack

send

bad

good

send

get

Fig. 1.3. Graphical representation of the finite-state system modeling the sender.

and transmitted. When the confirmation message acknowledges an incorrect
reception, the previous message is resent. The behavior of the sender can be
described by the finite-state system in Figure 1.3.

The communication channel can either deliver the sent message without
errors or deliver a corrupted version of the sent message. The communication
channel is not independently modeled but is integrated in the model of the
sender and the model of the receiver.

The receiver sends a confirmation message acknowledging the reception
of an error free message or a repeat request when the received message is
corrupted. The receiver is described by the finite-state system in Figure 1.4.

bad rx

repeat

receive data

tx/rx

good rx

ack

store data

idle

bad

receive

good

store
receive

Fig. 1.4. Graphical representation of the finite-state system modeling the receiver.

10 1 Systems

Although we have modeled the sender and transmitter individually, any
analysis regarding the correctness of this protocol is based on the concurrent
execution of these two systems. In Section 1.4 we will see how we can compose
individual systems into a single system describing its concurrent evolution. For
now, we note that both the sender and receiver systems are nonblocking and
deterministic. Possible external behaviors of the system modeling the receiver
are:

idle - tx/rx - ack - idle - tx/rx - repeat
- tx/rx - repeat - tx/rx - ack - idle

idle - tx/rx - repeat - tx/rx - repeat - tx/rx
- repeat - tx/rx - repeat - tx/rx - repeat

- tx/rx - repeat - tx/rx - repeat - . . .

idle - tx/rx - repeat - tx/rx - ack - idle
- tx/rx - repeat - tx/rx - ack - idle - tx/rx

Software

Finite-state systems can also be used to model software. Intuitively, we can
regard the memory contents of a computational device as its state and the
software as a description of how memory contents change over time. Since we
can only store finitely many bits of information in the memory of a computing
system, the set of states is necessarily finite.

Constructing finite-state models of software is a challenging task that we
shall not address in this book. Instead, we provide a very simple example.

Example 1.5. The computation of averages is a problem that occurs frequently
in applications. Suppose that we want to compute the average of a stream of
numbers but we do not know a priori the length of the stream. One possible
way to compute the average is to update the average upon the reception of a
new number in the stream. This idea is implemented by Algorithm 1.1 where y
contains the latest received number and x contains the average of the numbers
that have been received so far. Assume now that we are interested in knowing
if x is smaller, equal, or greater than 1 when y is restricted to assume values

x:=0;
n:=0;
while true do

y:=read(input);
x := x n

n+1
+ y 1

n+1
;

n := n+ 1;
end

Algorithm 1.1: Average of a stream of numbers.

1.3 Examples 11

x0

x<1

x1

x=1

x2

x>1

2

1 2

1

1

2

Fig. 1.5. Finite-state system describing if x < 1, x = 1, or x > 1 when y ∈ {1, 2}
and x evolves according to Algorithm 1.1.

in the set {1, 2}. One possible finite-state model capturing the dynamics of x
is represented in Figure 1.5. Every execution of the while loop is captured by
a transition of the system. C

1.3.2 Infinite-state systems

Dynamical systems

Paul Samuelson introduced in 1939 the following model for the evolution of
the national income:

y(n) = c(n) + i(n) + g(n)
c(n+ 1) = αy(n)
i(n+ 1) = β(c(n+ 1)− c(n))

where α and γ are parameters and y denotes the national income that is
formed by three different kinds of expenditures: consumption, denoted by c;
investment, denoted by i; and government expenditure, denoted by g. Elimi-
nating y we obtain:

c(n+ 1) = α
(
c(n) + i(n) + g(n)

)
i(n+ 1) = βα

(
c(n) + i(n) + g(n)

)
− βc(n).

If we assume that g is a fixed value, the preceding model defines the system
S with:

• X = (R+
0)2;

• X0 = X;
• U = {∗};
• (c, i)

∗- (c′, i′) iff c′ = α(c+ i+ g) and i′ = βα(c+ i+ g)− βc;
• Y = R+

0 ;
• H(c, i) = c+ i+ g.

12 1 Systems

For discrete-time dynamical systems, the input ∗ is merely used to advance
the current state to the uniquely defined next state. Hence, system S is non-
blocking and deterministic.

Dynamical systems evolving in continuous-time can also be modeled as
systems. Consider Euler’s equations for the rotational dynamics of a rigid
body around its center of mass:

d

dt
ξ1 =

I2 − I3
I1

ξ2ξ3 (1.8)

d

dt
ξ2 =

I3 − I1
I2

ξ3ξ1 (1.9)

d

dt
ξ3 =

I1 − I2
I3

ξ1ξ2 (1.10)

where ξ = (ξ1, ξ2, ξ3) is the body angular velocity and I1, I2, I3 ∈ R are the
principal moments of inertia. A solution to these equations with initial con-
dition x0 = (x10, x20, x30) is a continuously differentiable curve ξ :]a, b[→ R3

with a < 0 < b, satisfying ξ(0) = x0 and (1.8) through (1.10) for all t ∈]a, b[.
We can thus model the preceding continuous-time dynamical system as a
system S with:

• X = R3;
• X0 = X;
• U = R+

0 ;
• x

τ- x′ if there exists a solution ξ to equations (1.8) through (1.10)
satisfying ξ(0) = x and ξ(τ) = x′;

• Y = X;
• H = 1X .

The preceding construction encodes in the transition relation of S all the
information contained in the solution ξ since there exists a transition x

τ- x′

in S iff ξ(0) = x and ξ(τ) = x′. Although this is natural from a mathematical
point of view, some readers may feel unsettled with this modeling choice: by
labeling the transitions with time we are formally treating time as the input
of S. If one thinks of dynamics as change in space corresponding to change in
time, then one can easily reconcile oneself with the idea of treating time as an
input. Although one can conceive the existence of a uniform notion of time
across all systems, different interactions with a system may require different
time inputs. As an example, consider two different digital platforms measuring
the output of system S. If platform A has a clock cycle of 2 time units and
platform B has a clock cycle of 3 time units, then platform A feeds time
inputs from the set {0, 2, 4, 6, . . .} into S while platform B feeds time inputs
from the set {0, 3, 6, 9, . . .} into S. Treating time as the input also has the
added benefit of rendering S nonblocking and deterministic as an immediate
consequence of existence and uniqueness of solutions for smooth differential
equations. In Chapter 7 and Chapter 10 we discuss different ways in which
dynamical systems can be modeled as systems.

1.3 Examples 13

Control systems

The national income model described in the previous section can be regarded
as a control system if one assumes that the government expenditure at time
n + 1 can be chosen by the government. In this case we obtain the following
equations:

c(n+ 1) = α
(
c(n) + i(n) + g(n)

)
i(n+ 1) = βα

(
c(n) + i(n) + g(n)

)
− βc(n)

g(n+ 1) = u(n)

where u is regarded as an input to be chosen by the government and belonging
to the set [0, D] for some maximal expenditure D ∈ R+. This model defines a
system with:

• X = (R+
0)3;

• X0 = X;
• U = [0, D];
• (c, i, g)

u- (c′, i′, g′) iff c′ = α(c + i + g), i′ = βα(c + i + g) − βc, and
g′ = u;

• Y = R+
0 ;

• H(c, i, g) = c+ i+ g.

Control systems in continuous-time can also be described as systems. Con-
sider the motion of a satellite subject to the torque produced by gas jet actua-
tors. Its dynamics can be described by the forced version of Euler’s equations:

d

dt
ξ1 =

I2 − I3
I1

ξ2ξ3 + υ1 (1.11)

d

dt
ξ2 =

I3 − I1
I2

ξ3ξ1 + υ2 (1.12)

d

dt
ξ3 =

I1 − I2
I3

ξ1ξ2 (1.13)

where the parameters υ1 and υ2 are inputs describing the effect of the gas
jets. A system model for the controlled satellite requires a choice of curves U ,
from]a, b[to R2, to be used as inputs. From a mathematical point of view, we
need to restrict U to a class of functions that are regular enough to guaran-
tee existence and uniqueness of solutions for the differential equations (1.11)
through (1.13). From an engineering point of view, the curves in U describe
signals that are implemented by physical actuators. Therefore, there are lim-
itations on the curves in U stemming from the actuator technology. Once the

14 1 Systems

set of input curves U is chosen, we can describe the dynamics of the controlled
satellite by the system S with:

• X = R3;
• X0 = X;
• U = U ;
• x

υ- x′ if there exist curves2 U 3 υ : [0, τ] → R2 and ξ : [0, τ] → R3

satisfying equations (1.11) through (1.13) with ξ(0) = x and ξ(τ) = x′;
• Y = X;
• H = 1X .

The sedulous reader certainly noticed that system S is also driven by time.
An input υ ∈ U is a curve υ : [0, τ]→ R2 describing not only the contribution
of the gas jets to the angular acceleration, but also the length of time τ during
which such contribution lasts. In particular, we can recover equations (1.8)
through (1.10) from equations (1.11) through (1.13) by restricting U to be
the set of all input curves with codomain {(0, 0)} ⊂ R2. In such case, each
input υ ∈ U is a constant curve assuming the value (0, 0) on its domain [0, τ].
Hence, we can identify υ with the length τ of its domain, thereby identifying
U with R+

0 , and recovering time as the input of system S modeling the rigid
body without gas jets. Different system models for control systems appear in
Chapter 8 and in Chapter 11.

1.3.3 Hybrid systems

Hybrid systems combine the characteristics of finite-state systems with those
of infinite-state systems. We introduce them through examples.

Real-time scheduling

In many safety-critical applications the execution of software tasks needs to be
completed in a timely fashion. Timeliness is typically formulated by equipping
each software task with a worst case execution time C, a relative deadline D,
and, in the case of periodic tasks, a period T . This formulation entails that a
task becomes active every T units of time and its execution must finish no later
than D units of time after becoming active. A scheduler is a special task that
decides which of the active tasks should be executed by the processor. The
decision process takes into account the period, relative deadline, and the fact
that the execution may take, in the worst case, C units of time to complete.
A set of tasks is said to be schedulable if it can be executed without violating
any of the deadlines. We can model a periodic task by the hybrid system in
Figure 1.6 where we assume that C < D < T so that the task execution

2 We use curves υ and ξ defined on closed sets while implicitly assuming the exis-
tence of curves υ′ :]a, b[→ R2 and ξ′ :]a, b[→ R3 satisfying υ = υ′|[0,τ], ξ = ξ′|[0,τ],
and all the additional conditions imposed on υ and ξ.

1.3 Examples 15

sleep

ξ̇1 = 1 ξ̇2 = 1
0 ≤ ξ1 ≤ T

ξ1 := 0
ξ2 := 0

active

ξ̇1 = 1 ξ̇2 = 1
0 ≤ ξ1 ≤ D

execute

ξ̇1 = 1 ξ̇2 = 1
0 ≤ ξ1 ≤ D
0 ≤ ξ2 ≤ C

error

ξ̇1 = 1 ξ̇2 = 1
D ≤ ξ1

awake

ξ1 = T
ξ1 := 0

expired

ξ1 = D

starting

0 ≤ ξ1 < D
ξ2 := 0

expired

ξ1 = D
finished

0 < ξ2 < C

Fig. 1.6. Hybrid system representing a periodic real-time task.

can finish before the relative deadline and before the next activation. We also
assume that the task cannot be pre-empted, i.e., once the execution starts the
task runs to completion.

There are several new ingredients in Figure 1.6 with respect to the finite-
state systems that appeared so far. Firstly, each finite state is decorated with
a differential equation which, in this example, is the same for all finite states:

ξ̇1 = 1 (1.14)
ξ̇2 = 1. (1.15)

The special form of this equation allows us to regard ξ1 and ξ2 as clocks
measuring the passage of time since ξ1(t) = ξ1(0) + t and ξ2(t) = ξ2(0) + t.
Secondly, each finite state is also decorated with an invariant set. For example,
the finite state sleep has 0 ≤ ξ1 ≤ T as its invariant set. The invariant
represents a condition on the solutions of the differential equation that must

16 1 Systems

be satisfied. This means that a task is in the finite state sleep provided that
ξ1 is between 0 and T . When ξ1 reaches T , the invariant can no longer be
satisfied since ξ1 continues to increase according to ξ̇1 = 1. Consequently, a
transition must be taken and the only transition originating at the finite state
sleep is guarded by the condition ξ1 = T . A guarded transition can only be
taken when the guard is satisfied. Hence, the transition from the state sleep
to the state active can only be taken when ξ1 is exactly equal to T (the
activation period). The reset ξ1 := 0 also decorates this transition and forces
ξ1 to be reset to zero once the task enters the finite state active. It is also
possible that a transition takes place at different instants of time. This is the
case with the transition from execute to sleep. This transition is enabled
whenever the guard 0 < ξ2 < C is satisfied. Therefore, a task may finish its
execution to enter the sleep state at any time, measured by ξ2, between 0
and the worst case execution time C. The reader is encouraged to inspect the
remaining invariants, guards, and resets to become convinced that the system
in Figure 1.6 does model the evolution of a periodic real-time task.

The set of states of the hybrid system in Figure 1.6 is:

X = {sleep, active, error, execute} × (R+
0)2.

A state x ∈ X is thus a pair x = (xa, xb) consisting of a finite part
xa ∈ {sleep, active, error, execute} and an infinite part xb ∈ (R+

0)2. For
every finite state xa we have an invariant Inxa ⊆ (R+

0)2 and a differential
equation ξ̇ = fxa(ξ). Moreover, for every transition (xa, ua, x′a) we have a
guard Gu(xa,ua,x′a)

⊆ Inxa and a reset map Re(xa,ua,x′a)
: Inxa → Inx′a . All

these new ingredients are used to describe this hybrid system as a system
S = (X,X0, U, -) with:

• X = {sleep, active, error, execute} × (R+
0)2;

• X0 = {(xa, xb) ∈ X | xa = sleep ∧ xb ∈ Insleep};
• U = {awake, expired, starting, finished} ∪ R+

0 ;
• (xa, xb)

u- (x′a, x
′
b) if one of the following two conditions holds:

1. u ∈ R+
0 , x′a = xa, and there exists a solution ξ : [0, u] → Inxa to

the differential equations (1.14) and (1.15) satisfying ξ(0) = xb and
ξ(u) = x′b;

2. u ∈ {awake, expired, starting, finished}, x′b = Re(xa,u,x′a)
(xb), and

xb ∈ Gu(xa,u,x′a)
.

The transition relation consists of two different kinds of transitions: con-
tinuous flows and discrete transitions. During continuous flows the finite part
of the state remains unaltered and the infinite part of the state, whose evo-
lution is prescribed by the differential equations (1.14) and (1.15), remains
inside the invariant set. Discrete transitions may change the finite and the
infinite part of the state and are conditioned by the corresponding guards.

1.3 Examples 17

A boost DC-DC converter

A different example of a hybrid system is the boost DC-DC converter rep-
resented in Figure 1.7. If one uses the current iL through the inductor and
the voltage vC across the capacitor as state variables, a simple application of
Kirchoff’s laws provides the equations describing the evolution of vC and iL.
When the switch is in position s1 we have:

d

dt
iL = −RL

L
iL +

1
L
vS (1.16)

d

dt
vC = − 1

C

1
RC +R0

vC (1.17)

and when the switch is in position s2:

d

dt
iL = − 1

L

(
RL +

RCR0

RC +R0

)
iL −

1
L

R0

RC +R0
vC +

1
L
vS (1.18)

d

dt
vC =

1
C

R0

RC +R0
iL −

1
C

1
RC +R0

vC . (1.19)

There are two different modes of operation associated with the two differ-
ent positions for the switch. The dynamics of these two modes of operation
can be described by the finite-state system in Figure 1.8 in which the input
u1 takes the system to switch position s1 and input u2 takes the system to
switch position s2. However, the finite-state system in Figure 1.8 is not de-
tailed enough to capture the dynamics of iL and vC . A more detailed model

vs

RL L

RC

C

R0

s2

s1

Fig. 1.7. Boost DC-DC converter.

x0

s1

x1

s2

u2

u1

u1

u2

Fig. 1.8. Finite-state system describing the dynamics of the switch in the converter
represented in Figure 1.7.

18 1 Systems

has to combine the finite-state dynamics of the switch with the continuous-
time dynamics in equations (1.16) through (1.19). Such hybrid model can be
described by the system S = (X,U, -) with:

• X = {s1, s2} × R2;
• U = {u1, u2} ∪ R+

0 ;
• (s, iL, vC)

u- (s′, i′L, v
′
C) if one of the following four conditions holds:

1. u = u1, s′ = s1, iL = i′L, and vC = v′C ;
2. u = u2, s′ = s2, iL = i′L, and vC = v′C ;
3. u ∈ R+

0 , s′ = s = s1 and there exists a solution ξ : [0, u] → R2 to the
differential equations (1.16) and (1.17) satisfying ξ(0) = (iL, vC) and
ξ(u) = (i′L, v

′
C);

4. u ∈ R+
0 , s′ = s = s2 and there exists a solution ξ : [0, u] → R2 to the

differential equations (1.18) and (1.19) satisfying ξ(0) = (iL, vC) and
ξ(u) = (i′L, v

′
C).

For this hybrid system the invariants are Ins1 = R2 = Ins2 , the guards
are Gu(s1,u,s2) = R2 = Gu(s2,u,s1), and the reset maps are Re(s1,u,s2) = 1R2 =
Re(s2,u,s1) for any u ∈ {u1, u2}. The nature of the guards and of the invariants
implies that a discrete transition can take place independently of the specific
value of the infinite state. This is in stark contrast with the previous example
where discrete transitions were influenced by and influenced the continuous-
time dynamics. The modeling of hybrid systems as systems is discussed in
more detail in Chapter 7.

Fig. 1.9. Systems Sc, Sd, Se, and Sf resulting from composing system Sa with
system Sb with respect to the different interconnection relations in Table 1.1.

Sc

Sa

Sb

Sd

Sa

Sb

Se

Sa

Sb

Sf

Sa

Sb

1.4 Composing systems 19

1.4 Composing systems

Most engineering systems are designed and built by interconnecting simpler
and smaller components. This process of constructing larger systems by in-
terconnecting smaller ones can be mathematically described through a com-
position operation. In this book we consider a versatile notion of composition
based on an interconnection relation I ⊆ Xa ×Xb × Ua × Ub describing how
system Sa interacts with system Sb.

Definition 1.6 (Composition). Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha) and

Sb = (Xb, Xb0, Ub,
b
- , Yb, Hb) be two systems and let I ⊆ Xa×Xb×Ua×Ub

be a relation. The composition of Sa and Sb with interconnection relation I,
denoted by Sa×I Sb, is the system (Xab, Xab0, Uab,

ab
- , Yab, Hab) consisting

of:

• Xab = πX(I);
• Xab0 = Xab ∩ (Xa0 ×Xb0);
• Uab = Ua × Ub;
• (xa, xb)

(ua,ub)

ab
- (x′a, x

′
b) if the following three conditions hold:

1. xa
ua

a
- x′a in Sa;

2. xb
ub

b
- x′b in Sb;

3. (xa, xb, ua, ub) ∈ I;
• Yab = Ya × Yb;
• Hab(xa, xb) = (Ha(xa), Hb(xb)).

The system Sa×I Sb describes the concurrent evolution of systems Sa and
Sb subject to the synchronization prescribed by the interconnection relation I.
The compositions represented in Figure 1.9 are but a few examples of systems
that can be obtained by suitably defining I. The interconnection relation for
these examples is shown in Table 1.1. The very general notion of composition
in Definition 1.6 was not chosen for the mere sake of generality. The effort
placed by the reader in becoming acquainted with this notion of composition
will be rewarded later in the book with simple proofs of important results.

System (xa, xb, ua, ub) ∈ I if

Sc Ha(xa) = ub
Sd Ha(xa) = ub and Hb(xb) = ub
Se ua = ub
Sf Ha(xa) = Hb(xb)

Table 1.1. Description of the interconnection relation I for the compositions rep-
resented in Figure 1.9.

20 1 Systems

The compositions illustrated in Figure 1.9 enforce synchronization only
through inputs and outputs. However, the relation I enables also the use of
the state for synchronization. This will be essential when we discuss problems
of control. The way in which transitions of Sa ×I Sb are constructed from
transitions of Sa and Sb tells us that:

B(Sa ×I Sb) ⊆ B(Sa)× B(Sb) (1.20)

with equality holding for the trivial interconnection relation defined by
I = Xa ×Xb × Ua × Ub. In the later case, we denote Sa ×I Sb simply by
Sa × Sb.

When composing systems Sa and Sb having the same set of outputs and
using an interconnection relation satisfying:

(xa, xb) ∈ πX(I) =⇒ Ha(xa) = Hb(xb)

there is a certain redundancy in Sa ×I Sb. The output set is Ya × Yb with
Ya = Yb and the output at every state (xa, xb) ∈ Xab is (Ha(xa), Hb(xb))
with Ha(xa) = Hb(xb). Under these circumstances we simplify Sa ×I Sb by
redefining Yab to be:

Yab = Ya = Yb

and by redefining Hab to be:

Hab(xa, xb) = Ha(xa) = Hb(xb).

Equation (1.20) now tells us that the behavior of Sa ×I Sb is related to be
behavior of Sa and Sb by:

B(Sa ×I Sb) ⊆ B(Sa) B(Sa ×I Sb) ⊆ B(Sb).

Example 1.7. We now return to the communication protocol example to il-
lustrate system composition. If Sa is the system describing the sender (see
Figure 1.3) and if Sb is the system describing the receiver (see Figure 1.4),
we can construct Sa ×I Sb by choosing I to be the set of all quadruples
(xa, xb, ua, ub) ∈ Xa × Xb × Ua × Ub satisfying Ha(xa) = Hb(xb) and corre-
sponding to one of the interconnections represented in Figure 1.9. The result-
ing finite-state system is represented in Figure 1.10.

A possible specification for the communication protocol is that in every ex-
ternal behavior of Sa×I Sb, tx/rx is always followed, although not necessarily
immediately, by ack. This would require that any transmission is eventually
correctly received. By inspecting Figure 1.10, we see that it is possible to cy-
cle between the states (send data, receive data) and (bad tx, bad rx)
indefinitely, thus implying that tx/rx may not be followed by ack. Unless
additional assumptions are made about the communication channel, it is not
possible to guarantee that transmitted messages are eventually received. In
this example we could determine that Sa×I Sb does not conform to the spec-
ification simply by inspecting Sa ×I Sb. When dealing with large systems,
analyzing Sa ×I Sb by inspection is no longer possible and one has to resort
to algorithmic verification techniques such as the ones presented in Part II. C

1.5 Notes 21

Fig. 1.10. Graphical representation of the composition of the finite-state system
displayed in Figure 1.3 (modeling the sender) with the finite-state system displayed
in Figure 1.4 (modeling the receiver).

1.5 Notes

The notion of system introduced in this chapter is a blend between the au-
tomata theoretic models used for the verification of software systems with the
differential equation models used in control. Owing to its automata descent,
the dynamics is described by a relation instead of a function. The flexibility
afforded by relations will be used in Parts II, III, and IV to model the ef-
fect of disturbances through nondeterminism. Following the current practice
in control theory, outputs depend on the states rather than on the inputs.
This choice is motivated by the models used in control theory where the state
has physical meaning which is essential to define specifications. However, as
described in Section 1.2, the inputs can easily be extracted from the outputs
by suitable redefining the ingredients of a system.

The separation of variables into inputs, states, and outputs is a modeling
decision that is not always easy to make, especially when dealing with soft-
ware. Although this practice seems to be well rooted in the computer science
and control theory traditions, there exist alternative modeling formalisms that
do not require such distinctions [PW97].

(get data,
store data)

idle

(send data,
receive data)

tx/rx

(bad tx,
bad rx)

repeat

(good tx,
good rx)

ack

(send, receive)

(bad, bad)

(good, good)

(send, receive)

(get, store)

22 1 Systems

The national income model was proposed in [Sam39]. Hybrid systems have
been used by many authors to study problems of real-time scheduling see, for
example, [FKPY07]. The hybrid model for the DC-DC converter is taken
from [GPM04, GPT09] where further references can be found for the analysis
and design of DC-DC converters using hybrid systems techniques.

2

Verification problems

Systems are mathematical models of dynamical phenomena that allow for
rigorous analysis. In this chapter we describe the two kinds of verification
problems that are considered in this book.

2.1 Sa
∼= Sb

The first verification problem is the equivalence problem.

Problem 2.1 (Equivalence). Given systems Sa and Sb and a notion of
equivalence between systems, when is Sa equivalent to Sb?

If one denotes system equivalence by the symbol ∼=, then Problem 2.1 asks
when the following relationship holds:

Sa ∼= Sb.

Several different analysis and verification problems arising in the design of
complex systems can be casted as instances of the equivalence problem. This
can be done for systems that have already been designed as well as for systems
that have not yet, or have only been partially designed. In the former case, we
regard Sa as a model of the system that has already been designed and Sb as a
model of the specification. A positive answer to the equivalence problem would
then imply that the design conforms to the specification. In the later case, we
regard Sa and Sb as potential models of the same dynamical phenomenon
and seek to determine if both models are equivalent. A positive answer to
the equivalence problem would imply that any of the models could be used
to complete the design at hand. In both cases we are implicitly assuming
that one of the models is much simpler than the other. If Sb describes the
specification then it is natural to expect that it should be much easier to
construct Sb than Sa. When Sa and Sb are both models for the same system
being designed, Sb being a much simpler model than Sa would guarantee that

© Springer Science + Business Media, LLC 2009
23

DOI: 10.1007/978-1-4419-0224-5_2,
P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach,

24 2 Verification problems

the remaining design could be accomplished with greater ease by working with
the simpler model Sb. This observation immediately places some restrictions
on the notions of equivalence as they need to treat as equivalent, system Sa
and the much simpler system Sb.

In this book we distinguish between two different kinds of equivalence: ex-
act and approximate. While exact equivalence can be used for finite-state and
infinite-state systems, approximate equivalence is more natural in the context
of infinite-state systems describing dynamical, control, or hybrid systems. Ex-
act equivalence requires the outputs of equivalent systems to be exactly the
same while approximate equivalence relaxes this requirement by allowing the
outputs to differ up to some specified precision. It is shown in Part IV that the
additional flexibility afforded by approximate equivalence results in a larger
class of infinite-state systems having equivalent finite-state symbolic models.

2.2 Sa � Sb

In many circumstances the equivalence problem may be too demanding. If Sb
is a model for the specification, it may be impossible to design a system Sa
that is equivalent to Sb. However, Sa may still satisfy the specification in a
weaker sense captured by the pre-order problem.

Problem 2.2 (Pre-order). Given systems Sa and Sb and a pre-order1 be-
tween systems, when does Sa precede Sb?

If one denotes the pre-order by the symbol �, then Problem 2.2 asks when
the following relationship holds:

Sa � Sb.

Intuitively, Sa � Sb is interpreted as Sa being “included” in Sb. The exact
meaning of “included” will depend on the particular pre-order being used.
As was the case with equivalence we will consider exact and approximate
pre-orders, the later being a generalization of the former.

1 Recall that a pre-order is a relation which is reflexive and transitive. See the
Appendix for more details on pre-orders.

3

Control problems

Formal models and techniques can be used, not only for the verification of
systems, but also for its design. In this book we consider design problems for
equivalence and pre-order relations.

3.1 Sc ×I Sa
∼= Sb

The control problem for equivalence formalizes the essence of design.

Problem 3.1 (Control for equivalence). Given systems Sa and Sb, and
given a notion of equivalence between systems, when does it exist and how
can we construct a system Sc and an interconnection relation I such that:

Sc ×I Sa ∼= Sb. (3.1)

System Sb is typically a model of the specification that is to be enforced,
on a given platform modeled by Sa, through the design of Sc. The control
problem for equivalence makes sense at different levels of design. System Sa
could model a hardware platform and Sc could model an operating system
to be designed or Sa could model the hardware platform equipped with the
operating system and Sc could be the desired midleware or application level
software. When system Sc is designed so as to enforce (3.1), formal verification
is not necessary to prove the equivalence between the designed system Sc×ISa
and the specification Sb. This is one of the main advantages of the use of formal
methods for the design of complex engineered systems.

In this book we present methods and techniques for the solution of Prob-
lem 3.1 using exact and approximate notions of equivalence.

© Springer Science + Business Media, LLC 2009
25

DOI: 10.1007/978-1-4419-0224-5_3,
P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach,

26 3 Control problems

3.2 Sc ×I Sa � Sb

The same reasons that lead us to consider pre-orders for verification problems
suggest that one should also consider the control problem for pre-order.

Problem 3.2 (Control for pre-order). Given systems Sa and Sb and given
a pre-order between systems, when does it exist and how can we construct a
system Sc and an interconnection relation I such that:

Sc ×I Sa � Sb.

From a mathematical point of view one can also consider the problem of
designing Sc so that Sb � Sc ×I Sa holds. However, since composing Sc with
Sa results in a system that is more constrained than Sa, either Sb � Sa already
holds, in which case we do not need to design Sc, or Sb � Sa does not hold
and no matter which Sc we use to further constrain Sa, we will never achieve
Sb � Sc ×I Sa.

Part II

Finite systems

4

Exact system relationships

The verification problem for a system Sa and a model of desired behavior Sb,
asks the fundamental question of whether Sa is either equivalent to the desired
system (Sa ∼= Sb) or contained in the desired system (Sa � Sb). The answer
to such questions will always depend on what we mean by system equivalence
and system containment. In this chapter, we give various precise definitions
for such relationships between two systems.

Notation

Every relation Q ⊆ Za × Zb, admits Q−1 = {(zb, za) ∈ Zb × Za | (za, zb) ∈ Q}
as its inverse relation. Moreover, if R ⊆ Zb × Zc is also a relation, we denote
by R ◦Q the composite relation defined by all the pairs (za, zc) ∈ Za×Zc for
which there exists zb ∈ Zb such that (za, zb) ∈ Q and (zb, zc) ∈ R. When Q
is an equivalence relation on a set Z, we denote by [z] the equivalence class
of z ∈ Z, by Z/Q the set of all equivalence classes, and by πQ : Z → Z/Q
the natural projection map taking a point z ∈ Z to its equivalence class
π(z) = [z] ∈ Z/Q. We say that an equivalence relation is finite when it has
finitely many equivalence classes.

Given a collection of sets Z = {Zi}i∈I and an element W ∈ Z, we say
that W is maximal (with respect to set inclusion) if for every Zi ∈ Z we have
Zi ⊆W .

The pre-image of a set K ⊆ W under a map f : Z → W is denoted by
f−1(K) and defined as the set f−1(K) = {z ∈ Z | f(z) ∈ K}.

For a set Z, Z∗ and Zω denote the set of all finite and infinite strings,
respectively, obtained by concatenating elements in Z. An element z ∈ Z∗ can
thus be seen as a map z : {0, 1, 2, . . . , n} → Z represented by z = z0z1z2 . . . zn
with z(i) = zi, i ∈ {0, 1, 2, . . . , n}. Similarly, an element z ∈ Zω is a map
z : N0 → Z represented by z = z0z1z2 . . . with z(i) = zi, i ∈ N0.

© Springer Science + Business Media, LLC 2009
29

DOI: 10.1007/978-1-4419-0224-5_4,
P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach,

30 4 Exact system relationships

4.1 Behavioral relationships

The first natural relationship between two systems Sa and Sb requires every
external behavior of system Sa to also be an external behavior of system Sb.

Definition 4.1 (Behavioral inclusion). Given two systems Sa and Sb with
Ya = Yb, we say that Sa is behaviorally included in Sb, denoted by Sa �B Sb,
if Bω(Sa) ⊆ Bω(Sb).

If Sa is a model of a system that we wish to analyze, and Sb is a model of
the desired behavior, then showing that Sa �B Sb effectively shows that all
behaviors of Sa satisfy the desired specification.

Behavioral inclusion can be viewed as a behavioral matching game between
the two systems. The game is played in alternating rounds between the two
systems. If we want to show that Sa �B Sb, then system Sa plays first and
selects any behavior y ∈ Bω(Sa). System Sb plays after system Sa and must
then produce exactly the same behavior, i.e., y ∈ Bω(Sb). If system Sb can
match every behavior that Sa produces, then Sb wins the game, resulting in
Sa �B Sb. On the other hand, if Sa produces a behavior y ∈ Bω(Sa) that Sb
cannot match, then clearly y 6∈ Bω(Sb) and thus Sa 6�B Sb.

Definition 4.2 (Behavioral equivalence). Given two systems Sa and Sb
with Ya = Yb, we say that Sa is behaviorally equivalent to Sb, denoted by
Sa ∼=B Sb, if Sa �B Sb and Sb �B Sa.

In other words, systems Sa and Sb are behaviorally equivalent if they
have exactly the same set of behaviors, i.e., Bω(Sa) = Bω(Sb). In our game
theoretic interpretation, we can play one game to show that Sa �B Sb and
another game to show that Sb �B Sa. If the first game is won by Sb, and
the second game is won by Sa, then the systems are behaviorally equivalent.
Alternatively, we can combine the two games into a single game, where in
each round of the combined game we arbitrarily choose which system plays
first, and which systems plays second. If, in every round, the system that plays
second can always match the system that plays first, regardless of the choice,
then the systems are behaviorally equivalent.

Example 4.3. As part of a larger effort to reduce pollution and alleviate traffic
congestion, UCLA has an agreement with a local bus company to encourage
members of the UCLA community to use public transportation. The agree-
ment results in reduced fares for the riders and is implemented as follows.
Upon entrance on the bus, any member of the UCLA community is encour-
aged to swipe his UCLA identification card on the fare machine. This action
produces a distinctive sound that we call ding. Following the swipe, the re-
duced fare of a quarter should be deposited into the fare machine. A different
sound, that we call dong, is then emitted to acknowledge the reception of the
complete fare. A possible model Sa for the fare machine is shown in Figure 4.1.

4.1 Behavioral relationships 31

xa0

silence

xa1

ding

xa2

dong

swipe

idle

quarter
idle

Fig. 4.1. Finite-state system modeling the bus fare machine for Example 4.3.

Figure 4.2 shows another model, Sb, that is equivalent to Sa in the sense
that Sa ∼=B Sb. The reader can convince himself of this fact by playing a few
rounds of the behavioral matching game. C

Note that given two systems, we may have Sa �B Sb, Sb �B Sa, Sa ∼=B Sb,
or neither in which case the systems are incomparable.

A sensible alternative to Definition 4.1 is to define behavioral inclusion
using finite external behaviors instead of infinite external behaviors. Under a
nonblocking assumption both alternatives are in fact equivalent.

xb0

silence

xb1

ding

xb2

dong

xb3

ding

swipe

quarterswipe idle
idle

Fig. 4.2. A different finite-state system Sb modeling the bus fare machine for Ex-
ample 4.3.

32 4 Exact system relationships

Proposition 4.4. For any two systems Sa and Sb with Ya = Yb, the following
implication holds:

B(Sa) = B(Sb) =⇒ Bω(Sa) = Bω(Sb).

Moreover, if Sa and Sb are nonblocking the following implication also holds:

Bω(Sa) = Bω(Sb) =⇒ B(Sa) = B(Sb).

Proof. This proof requires some notation that is not used elsewhere except in
the proof of Proposition 4.11. Consider a set Z. A finite prefix of an infinite
string z = z0z1z2 . . . ∈ Zω is a finite string w = w0w1w2 . . . wk ∈ Z∗ for
which there exists an infinite string w′ = w′0w

′
1w
′
2 . . . ∈ Zω such that ww′ =

w0w1w2 . . . wkw
′
0w
′
1w
′
2 . . . = z. Let now L be a subset of Z∗. The limit of L,

denoted by limL, is the subset of Zω defined by z ∈ limL iff every finite prefix
of z belongs to L. With these definitions in mind we see that for any system
S, Bω(S) = limB(S). Therefore:

B(Sa) = B(Sb) =⇒ limB(Sa) = limB(Sb) =⇒ Bω(Sa) = Bω(Sb).

This proves the first part of the result. For the second part we need again
additional notation. For a set L ⊆ Zω we denote by FinL, the set of all
finite prefixes of strings in L. Note that we always have FinBω(S) ⊆ B(S)
for any system S. But the opposite inclusion, B(S) ⊆ FinBω(S), only holds
when S is nonblocking since only in this case any finite external behavior
can be extended to an infinite external behavior. The second part of the
result then follows from the equality FinBω(S) = B(S) which holds under the
nonblocking assumption. ut

Formally relating system behaviors allows us to formally relate system
properties, and, in particular, their reachable states.

Definition 4.5 (Reachable states). A state x ∈ X is said to be reachable
in a system S if there exists an initialized internal behavior:

x0
u0- x1

u1- x2
- . . .

un−1- x.

An output y ∈ Y is said to be reachable in a system S if there exists a reachable
state x ∈ X satisfying H(x) = y. The reachable set of a system S, denoted by
Reach(S), is the set of all its reachable outputs.

Proposition 4.6. For any two systems Sa and Sb the following implications
hold:

Sa �B Sb =⇒ Reach(Sa) ⊆ Reach(Sb),

Sa ∼=B Sb =⇒ Reach(Sa) = Reach(Sb).

4.2 Similarity relationships 33

Proof. Let ya ∈ Reach(Sa). By definition of reachable output, there exists a
finite external behavior y = y0y1 . . . yn with yn = ya. Assuming that Sa �B Sb
holds, we have y ∈ B(Sb). Consequently, ya ∈ Reach(Sb) thus showing that
Reach(Sa) ⊆ Reach(Sb). The second claim follows immediately from the
first since Sa �B Sb implies Reach(Sa) ⊆ Reach(Sb) and Sb �B Sa implies
Reach(Sb) ⊆ Reach(Sa). ut

The preceding proposition can be very useful in simplifying safety analysis.
Given system Sa and an unsafe set B ⊂ Ya, the safety problem asks whether
Reach(Sa)∩B = ∅. If the reachable set of Sa intersects any element of B, then
Sa is declared unsafe, whereas if the intersection is empty, then Sa is declared
safe. In the real-time scheduling example, given in Chapter 1, the unsafe set
would contain only outputs corresponding to states having error as its finite
part since such states correspond to missed deadlines. The safety problem
admits an alternative formulation based on the safe outputs G = Ya\B. Using
G, we are now interested in deciding if Reach(Sa) ⊆ G. In other words, the
set G which encodes safe behavior is an invariant for all system behaviors.

Unfortunately, for many systems, Reach(Sa) may be difficult to compute.
In such cases, an alternative and simpler approach to the safety problem
is to consider another system Sb with Sa �B Sb and for which Reach(Sb)
is easier to compute. Since Reach(Sa) ⊆ Reach(Sb), if we can show that
Reach(Sb) ∩ Z = ∅ then, we can conclude Reach(Sa) ∩ Z = ∅.

In the context of the preceding paragraph, model Sb is not being used as a
model of desired behavior for Sa, but rather as a coarser model for Sa. System
Sb is also known as a modeling abstraction of Sa, and, dually, Sa is known as
a modeling refinement of Sb. When dealing with safety properties, it is impor-
tant that abstractions are overconservative, in the sense that all behaviors of
Sa are included in Sb. Note, however, that overconservative abstractions are
only sufficient for safety, as the abstracted model Sb may contain behaviors
that are not feasible in Sa. Therefore, if Sb is found to be unsafe then we
cannot necessarily infer that Sa is also unsafe: we have no way of knowing
whether the lack of safety should be attributed to behaviors of Sa or to be-
haviors that belong in Sb but are not feasible in Sa. If, however, Sa ∼=B Sb,
then clearly Reach(Sa) = Reach(Sb) and therefore Sa is safe if and only if Sb
is safe.

4.2 Similarity relationships

It was argued in the previous section that behavioral inclusion Sa �B Sb
of two systems is important for abstracting system Sa by system Sb or for
verifying that Bω(Sa) is contained in the desired behaviors Bω(Sb). However,
for infinite-state systems it is difficult, from a technical point of view, to work
directly with behaviors. In this section, we develop new relationships between
systems which are stronger than their behavioral counterparts. The first such
relationship is based on the notion of simulation relation.

34 4 Exact system relationships

Definition 4.7 (Simulation Relation). Consider systems Sa and Sb with
Ya = Yb. A relation R ⊆ Xa × Xb is a simulation relation from Sa to Sb if
the following three conditions are satisfied:

1. for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;
2. for every (xa, xb) ∈ R we have Ha(xa) = Hb(xb);
3. for every (xa, xb) ∈ R we have that:
xa

ua

a
- x′a in Sa implies the existence of xb

ub

b
- x′b in Sb satisfying

(x′a, x
′
b) ∈ R.

Intuitively, a simulation relation R ⊆ Xa×Xb captures which states of Sa
are simulated by which states of Sb. Therefore, if (xa, xb) ∈ R, then state xa
of system Sa is simulated by state xb of system Sb. Note that there is a clear
order between the two systems as system Sb simulates system Sa.

With this intuition, we revisit the three requirements of Definition 4.7.
First, the simulation relation must respect initial states which means that
every initial state of Sa is simulated by some initial state of Sb. Second, the
simulation relation must respect observations which means that if xb simu-
lates xa, then the output at xb should be exactly the same as the output
at xa. The final and most challenging requirement is that the simulation re-
lation must respect transitions. Informally speaking, the requirement states
that no matter which transition xa

ua

a
- x′a system Sa chooses, such transi-

tion can be matched by some transition xb
ub

b
- x′b of Sb, possibly labeled

by a different input. Matching means that the successor states remain in the
simulation relation, hence (x′a, x

′
b) ∈ R. This matching of transitions can also

be given a game theoretic interpretation in which system Sa chooses a transi-
tion xa

ua

a
- x′a that system Sb needs to match with a transition xb

ub

b
- x′b

for which (x′a, x
′
b) ∈ R. If system Sb can match all the choices of transition

made by player a, then R is a simulation relation. Note that while behavior
containment required the matching of behaviors, simulation requires the more
detailed matching of individual transitions.

Definition 4.8 (Simulation). Given two systems Sa and Sb with Ya = Yb,
we say that Sa is simulated by Sb or that Sb simulates Sa, denoted by
Sa �S Sb, if there exists a simulation relation from Sa to Sb.

The simple observation that behaviors are no more than a sequence of
transitions leads to the next result.

Proposition 4.9. For any two systems Sa and Sb with Ya = Yb, the following
implication holds:

Sa �S Sb =⇒ Sa �B Sb. (4.1)

4.2 Similarity relationships 35

Proof. Assume that Sa �S Sb and let R be the simulation relation. Let
y ∈ Bω(Sa) and let:

xa0
ua0

a
- xa1

ua1

a
- xa2

ua2

a
- . . . (4.2)

be the corresponding initialized internal behavior. We now construct an ini-
tialized internal behavior:

xb0
ub0

b
- xb1

ub1

b
- xb2

ub2

b
- . . . (4.3)

of Sb satisfying Hb(xbi) = Ha(xai) for i ∈ N0. Since (4.2) is an initialized
internal behavior, xa0 ∈ Xa0 and by definition of simulation relation there
exists xb0 ∈ Xb0 such that (xa0, xb0) ∈ R. It now follows again from the defi-
nition of simulation relation that, since (xa0, xb0) ∈ R and xa0

ua0

a
- xa1, there

must exist a transition xb0
ub0

b
- xb1 in Sb with (xa1, xb1) ∈ R. We can repeat

the argument again by using (xa1, xb1) ∈ R and xa1
ua1

a
- xa2 to conclude

the existence of xb1
ub1

b
- xb2 with (xa2, xb2) ∈ R. By repeating this argument

inductively we conclude the existence of the initialized internal behavior (4.3)
satisfying (xai, xbi) ∈ R for i ∈ N0. Finally, invoking the definition of simu-
lation relation, (xai, xbi) ∈ R implies Ha(xai) = Hb(xbi) so that the external
behavior associated with (4.3) is y. Therefore y ∈ Bω(Sa) implies y ∈ Bω(Sb)
as desired. ut

As the next example illustrates, the implication (4.1) cannot, in general,
be reversed.

Example 4.10. Consider again the systems Sa and Sb, represented in Fig-
ures 4.1 and 4.2, respectively, and modeling the bus fare machine of the pre-
vious section. Although these systems satisfy Sa �B Sb we now show that
Sa �S Sb fails to hold. We proceed by contradiction and try to construct a
simulation relation R. Since each system only has one initial state we neces-
sarily have (xa0, xb0) ∈ R. Consider now the transition xa0

swipe

a
- xa1. There

are two possible states of Sb that can be related to xa1: xb1 and xb3. The
states xb0 and xb2 cannot be related to xa1 since they have different observa-
tions. Relating xb1 to xa1 would not result in a simulation relation since the
transition xa1

idle

a
- xa0 in Sa cannot be matched by a transition from xb1 in

Sb. Moreover, relating xb3 to xa1 would also not result in a simulation relation
since the transition xa1

quarter

a
- xa2 in Sa cannot be matched by a transition

from xb3 in Sb. We thus conclude that there cannot be a simulation relation
from Sa to Sb. C

36 4 Exact system relationships

Notwithstanding the negative result illustrated by the previous example,
we have the following partial converse to Proposition 4.9.

Proposition 4.11. Let Sa and Sb be systems with Ya = Yb and assume that
Sb is output deterministic. Then, the following implication holds:

B(Sa) ⊆ B(Sb) =⇒ Sa �S Sb.

Furthermore, when Sa is nonblocking the preceding implication can be strength-
ened to:

Sa �B Sb =⇒ Sa �S Sb.

Proof. Without loss of generality we assume that every state xa ∈ Xa is
reachable in Sa and that every state xb ∈ Xb is reachable in Sb. We can make
this assumption since states that are not reachable can be eliminated without
changing the internal and external behavior. Define the relation R ⊆ Xa×Xb

by (xa, xb) ∈ R if there exists an initialized internal behavior:

xa0
ua0

a
- xa1

ua1

a
- . . .

uak

a
- xak+1 = xa (4.4)

in Sa and an initialized internal behavior:

xb0
ub0

b
- xb1

ub1

b
- . . .

ubk

b
- xbk+1 = xb (4.5)

in Sb satisfying Ha(xai) = Hb(xbi) for i = 0, 1, . . . , k+1. The rest of the proof
consists in showing that R is a simulation relation from Sa to Sb.

Let xa0 ∈ Xa0 and consider the initialized internal behavior of length one
given by xa0. It follows from B(Sa) ⊆ B(Sb) that Ha(xa0) = y ∈ B(Sb). But
this implies the existence of xb0 ∈ Xb0 satisfying Hb(xb0) = y = Ha(xa0).
Consequently, (xa0, xb0) ∈ R thus showing that the first requirement in Defi-
nition 4.7 holds.

Since the second requirement in Definition 4.7 is satisfied by construction,
we only need to show the third requirement.

Let (xa, xb) ∈ R and consider a transition xa
ua

a
- x′a in Sa. This transition

can be appended to the sequence of transitions (4.4) to obtain:

xa0
ua0

a
- xa1

ua1

a
- . . .

uak

a
- xak+1 = xa

ua=uak+1

a
- x′a = xak+2.

The corresponding external behavior y = y0y1 . . . yk+2 with yi = Ha(xai) for
i = 0, 1, . . . , k+2 belongs to B(Sb) in virtue of the assumption B(Sa) ⊆ B(Sb).
But this implies the existence of a sequence of transitions:

xb0
ub0

b
- xb1

ub1

b
- . . .

ubk

b
- xbk+1

ubk+1

b
- xbk+2 (4.6)

in Sb satisfying Hb(xbi) = yi for i = 0, 1, . . . , k+2. It now follows from the out-
put determinism assumption that y0y1 . . . yk+1 determines the corresponding

4.2 Similarity relationships 37

internal behavior in Sb uniquely and this implies that the restriction of (4.6) to
its first k+1 transitions is given by (4.5). Therefore, we conclude the existence
of the transition xb = xbk+1

ub=ubk+1

b
- xbk+2 = x′b satisfying (x′a, x

′
b) ∈ R.

To prove the last assertion in the proposition, recall from the proof of
Proposition 4.4 that FinL is the set of all finite prefixes of strings in L ⊆ Y ω.
Recall also that we always have FinBω(S) ⊆ B(S) but the reverse inclusion
only holds when S is nonblocking. With these facts in mind, the last assertion
is proved by noting that:

Bω(Sa) ⊆ Bω(Sb) =⇒ FinBω(Sa) ⊆ FinBω(Sb) ⊆ B(Sb) =⇒ B(Sa) ⊆ B(Sb)

where the last implication follows from the nonblocking assumption on Sa.
ut

Symmetrizing the notion of simulation we arrive at bisimulation.

Definition 4.12 (Bisimulation). Given two systems Sa and Sb with Ya = Yb,
we say that Sa is bisimilar to Sb, denoted by Sa ∼=S Sb, if there exists a relation
R satisfying:

1. R is a simulation relation from Sa to Sb;
2. R−1 is a simulation relation from Sb to Sa.

Alternatively, we can define bisimilarity through the notion of bisimulation
relation.

Definition 4.13 (Bisimulation Relation). Consider systems Sa and Sb
with Ya = Yb. A relation R ⊆ Xa × Xb is called a bisimulation relation
between Sa and Sb if the following conditions are satisfied:

1. a) for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;
b) for every xb0 ∈ Xb0, there exists xa0 ∈ Xa0 with (xa0, xb0) ∈ R;

2. for every (xa, xb) ∈ R we have Ha(xa) = Hb(xb);
3. for every (xa, xb) ∈ R we have that:

a) xa
ua

a
- x′a in Sa implies the existence of xb

ub

b
- x′b in Sb satisfying

(x′a, x
′
b) ∈ R;

b) xb
ub

b
- x′b in Sb implies the existence of xa

ua

a
- x′a in Sa satisfying

(x′a, x
′
b) ∈ R.

Systems Sa and Sb are said to be bisimilar if there exists a bisimulation relation
between Sa and Sb.

The reader should convince himself that the two proposed definitions of
bisimulation are in fact equivalent. The relation between behavioral equiv-
alence and bisimulation can be obtained by combining Propositions 4.9
and 4.11.

38 4 Exact system relationships

Proposition 4.14. For any two systems Sa and Sb with Ya = Yb, the follow-
ing implication holds:

Sa ∼=S Sb =⇒ Sa ∼=B Sb.

Moreover, if Sa and Sb are nonblocking and output deterministic then the
converse is also true.

Example 4.15. The following relation shows that systems Sa and Sb in Fig-
ure 4.3 are bisimilar:

R = {(xa0, xb0), (xa1, xb0), (xa2, xb1), (xa3, xb2)}.

Although equivalent, systems Sa and Sb have state sets of different cardi-
nality. This flexibility offered by bisimulation will be exploited in Part III to
construct finite-state systems that are bisimilar to infinite-state ones. C

If we have two simulation relations R and R′ from a system Sa to a system
Sb, it follows from the definition of simulation relation that R ∪ R′ is still a
simulation relation from Sa to Sb. Moreover, any simulation relation from Sa
to Sb is necessarily contained in the relation Xa×Xb. This simple observation
is also true for bisimulation and implies the next result.

Proposition 4.16. Let Sa and Sb be systems with Ya = Yb. The set of all
simulation relations from Sa to Sb and the set of all bisimulation relations
between Sa and Sb have maximal elements with respect to set inclusion.

This property will be instrumental in later chapters since many questions
in the context of verification and control can be reduced to questions regarding
the maximal simulation or bisimulation.

xa0
y0

Sa

xa1
y0

xa2
y1

xa3
y0

xb0
y0

Sb

xb1
y1

xb2
y0

a b

b

c c
ba

c

c

e

Fig. 4.3. Two bisimilar finite-state systems.

4.2 Similarity relationships 39

We now present a construction that will be extensively used in Chapter 7
and Chapter 8 to obtain finite-state systems from infinite-state systems. The
starting point is an equivalence relation Q on the state set of a system S. If two
states related by Q can be treated as equivalent, it is possible to construct
a simplified description of S, a quotient system, that does not distinguish
between related states.

Definition 4.17 (Quotient system). Let S = (X,X0, U, - , Y,H) be
a system and let Q be an equivalence relation on X such that (x, x′) ∈ Q
implies H(x) = H(x′). The quotient of S by Q, denoted by S/Q, is the system
(X/Q, X/Q0, U/Q, /Q

- , Y/Q, H/Q) consisting of:

• X/Q = X/Q;
• X/Q0 = {x/Q ∈ X/Q | x/Q ∩X0 6= ∅};
• U/Q = U ;

• x/Q
u

/Q
- x′/Q if there exists x

u- x′ in S with x ∈ x/Q and x′ ∈ x′/Q;
• Y/Q = Y ;
• H/Q(x/Q) = H(x) for some x ∈ x/Q.

The quotient system S/Q is also called a symbolic model of S since each
state x/Q ∈ X/Q can be regarded as a symbol representing all the states
π−1
Q (x/Q) ⊆ X of the original system.

System S/Q simulates S by construction. This is easily seen by using the
graph of πQ as the required simulation relation. This statement has a converse
whenever Q is a bisimulation relation between S and S.

Theorem 4.18. Let S = (X,X0, U, - , Y,H) be a system and let Q be an
equivalence relation on X such that (x, x′) ∈ Q implies H(x) = H(x′). The
relation:

Γ (πQ) = {(x, x/Q) ∈ X ×X/Q | x/Q = πQ(x)}

is a simulation relation from S to S/Q. Moreover, Γ (πQ) is a bisimulation
relation between S and S/Q iff Q is bisimulation relation between S and S.

Proof. The first assertion can be proved be checking that Γ (πQ) satisfies all
the requirements in Definition 4.7.

We now show that when Q is a bisimulation relation between S and
S, Γ (πQ) is a simulation relation from S/Q to S. The first two require-
ments in Definition 4.7 hold by construction so we focus on the third. Let
(x, x/Q) ∈ Γ (πQ), or equivalently πQ(x) = x/Q, and let x/Q

u

/Q
- x′/Q in

S/Q. By construction of
/Q
- , there exists x̂ ∈ x/Q and x̂′ ∈ x′/Q satisfying

x̂
u- x̂′. But then (x, x̂) ∈ Q and since Q is a bisimulation relation, there

exists x′ ∈ X satisfying x
u′- x′ in S and πQ(x′) = πQ(x̂′). Therefore,

x
u′- x′ is the transition we needed to conclude that Γ (πQ) satisfies the

third requirement.

40 4 Exact system relationships

A similar argument shows that if Γ (πQ) is a simulation relation from S/Q
to S then Q is a bisimulation relation. ut

When the equivalence relation Q has finitely many equivalence classes,
S/Q is guaranteed to be finite-state. Although the set of inputs U/Q = U
will still be infinite, in general, we ask the reader to show that any finite-state
system is always bisimilar to a finite-state system with a set of inputs of finite1

cardinality.

4.3 Alternating similarity relationships

When discussing problems of control, a different kind of similarity relation-
ship is needed. Simulation relations require the matching of transitions while
in problems of control we require the existence of inputs enforcing desired
transitions. We thus need a similarity relationship that captures the effect
that different choices of inputs have on transitions.

Definition 4.19 (Alternating simulation relation). Let Sa and Sb be
systems with Ya = Yb. A relation R ⊆ Xa ×Xb is an alternating simulation
relation from Sa to Sb if the following three conditions are satisfied:

1. for every xa0 ∈ Xa0 there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;
2. for every (xa, xb) ∈ R we have Ha(xa) = Hb(xb);
3. for every (xa, xb) ∈ R and for every ua ∈ Ua(xa) there exists ub ∈ Ub(xb)

such that for every x′b ∈ Postub(xb) there exists x′a ∈ Postua(xa) satisfying
(x′a, x

′
b) ∈ R.

As in the non-alternating case, alternating simulation relations underlie
the notion of alternating simulation.

Definition 4.20 (Alternating simulation). Given two systems Sa and Sb
with Ya = Yb, we say that Sa is alternatingly simulated by Sb or that Sb al-
ternatingly simulates Sa, denoted by Sa �AS Sb, if there exists an alternating
simulation relation from Sa to Sb.

The difference between simulation relations and alternating simulation re-
lations is best explained through an example.

Example 4.21. Consider systems Sa and Sb in Figure 4.4. The relation:

R = {(xa0, xb0), (xa1, xb1), (xa2, xb2)}

is a simulation relation from Sa to Sb but not an alternating simulation. This
can be seen by noting that xb3 ∈ Posta(xb0) in Sb although neither xa1 nor

1 If nondeterminism is not a concern, we can even take the set of inputs to be a
singleton and label every transition by the same input.

4.3 Alternating similarity relationships 41

xa0
y0

xa1
y1

xa2
y1

xb0
y0

xb1
y1

xb2
y1

xb3
y1

a

a

b

a

a

a

a

b

a

a

b

Sa Sb

Fig. 4.4. Systems Sa and Sb for Example 4.21.

xa2, the only elements in Posta(xa0) in Sa, are related by R to xb3. Conversely,
the reader is invited to verify that the relation:

R′ = {(xa0, xb0), (xa1, xb1), (xa1, xb2), (xa1, xb3)}

is an alternating simulation relation from Sa to Sb. However, R′ is not a
simulation relation from Sa to Sb since the transition xa0

a

a
- xa2 in Sa

cannot be matched by Sb. C

Although alternating simulation is substantially different from simulation,
these two notions coincide in the very special case of deterministic systems.
This can be easily seen by noting that determinism implies |Postub(xb)| ≤ 1
and |Postua(xa)| ≤ 1 for every ub ∈ Ub(xb) and ua ∈ Ua(xa). Hence, the third
requirement in Definition 4.19 becomes the third requirement in Definition 4.7.

When addressing problems of control in Chapter 6 we will need an alter-
nating simulation relation relating, not only states, but also inputs.

Definition 4.22 (Extended alternating simulation relation). Let R be
an alternating simulation relation from system Sa to system Sb. The extended
alternating simulation relation Re ⊆ Xa ×Xb × Ua × Ub associated with R is
defined by all the quadruples (xa, xb, ua, ub) ∈ Xa × Xb × Ua × Ub for which
the following three conditions hold:

1. (xa, xb) ∈ R;
2. ua ∈ Ua(xa);
3. ub ∈ Ub(xb) and for every x′b ∈ Postub(xb) there exists x′a ∈ Postua(xa)

satisfying (x′a, x
′
b) ∈ R.

Note that the third requirement in Definition 4.22 is no more than the third
requirement in Definition 4.19.

42 4 Exact system relationships

The following proposition, whose simple proof we omit, will be needed
when discussing refinement of controllers in Chapter 6.

Proposition 4.23. Let Sa, Sb, and Sc be systems with Ya = Yb = Yc. If aRb
is an alternating simulation relation from Sa to Sb and bRc is an alternating
simulation relation from Sb to Sc, then bRc ◦ aRb is an alternating simulation
relation from Sa to Sc.

We arrive at the stronger notion of alternating bisimulation by symmetriz-
ing alternating simulation.

Definition 4.24 (Alternating bisimulation). Given two systems Sa and
Sb with Ya = Yb, we say that Sa is alternatingly bisimilar to Sb, denoted by
Sa ∼=AS Sb, if there exists a relation R satisfying:

1. R is an alternating simulation relation from Sa to Sb;
2. R−1 is an alternating simulation relation from Sb to Sa.

The reader is asked to patiently wait until Chapter 8, where we discuss
problems of controller design and refinement, to fully appreciate the role of
alternating simulations and bisimulations.

4.4 Notes

The notions of simulation and bisimulation, considered in this book, closely
mirror the classical homonym notions introduced by Park [Par81] and Mil-
ner [Mil89]. The main difference lies in a shift of emphasis from inputs to out-
puts: related states need to have the same outputs but matching transitions
do not need to be labeled by the same inputs. There is an important topic in
the study of simulation relations that we did not discuss: the relation between
simulation and composition. Simulation relations are known to commute with
composition, i.e., if Sa �S Sb and Sc �S Sd, then Sa×ISc �S Sb×J Sd where
J is an interconnection relation that can be computed from I and from the
simulation relations from Sa to Sb and from Sc to Sd. In Chapters 8 and 11
we touch upon these results in the context of alternating simulation relations
and controller refinement.

The notion of alternating simulation and bisimulation relation is adapted
from the work of Alur and co-workers [AHKV98].

5

Verification

Verification problems can be formulated using behavioral and similarity rela-
tionships. We discuss both versions in this chapter and show how to convert
verification problems using behavioral relationships into verification problems
using similarity relationships. The later kind can be solved by computing
fixed-points of conveniently defined operators.

Notation

For a set Z, |Z| denotes the cardinality of Z and Zω denotes the set of all
infinite strings obtained by concatenating elements in Z. An element z ∈ Zω
can thus be seen as a map z : N0 → Z represented by z = z0z1z2 . . . with
z(i) = zi, i ∈ N0.

Given a map f : Z → W and a subset K ⊆ W we denote by f−1(K) the
subset of Z defined by f−1(K) = {z ∈ Z | f(z) ∈ K}. When K ⊆ Z, we de-
note by f(K) the set f(K) = {w ∈W | w = f(z) for some z ∈ Z}. Also used
is the map πa : Xa×Xb → Xa taking the pair (xa, xb) to πa(xa, xb) = xa ∈ Xa.
The set of all subsets of Z, also known as the power set of Z, is denoted by
2Z .

5.1 Behavioral relations

Showing that a system Sa satisfies a desired property P is a problem that re-
currently appears in the analysis and design of complex engineering systems.
Using the notion of system introduced in Chapter 1, we can formalize the
concept of property as a subset of Y ωa . Intuitively, a property P of a system
Sa allows us to separate Y ωa into the set of strings that satisfy P and the set
of strings that do not satisfy P . Therefore, we can identify P with the set of
strings that satisfies this property and thus think of a property as being a sub-
set of Y ωa . This conceptually appealing formulation is difficult to be directly

© Springer Science + Business Media, LLC 2009
43

DOI: 10.1007/978-1-4419-0224-5_5,
P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach,

44 5 Verification

used since writing down explicitly the set of all strings satisfying a given prop-
erty P is very difficult if not impossible. Fortunately, there exist alternative
and simpler ways to specify properties such as temporal logics and other for-
mal specification formalisms. A detailed exposition of these techniques would
force us to digress into the realm of temporal logics and automata theory
for which good expositions are already available in the literature. Instead, we
consider only properties that can be specified as Bω(Sb) for some finite-state
system Sb. In order to determine if a system Sa satisfies property P we equiv-
alently test if Bω(Sa) belongs to the set of all the infinite strings satisfying P ,
which is simply Bω(Sb). Hence, this formulation leads to the preorder problem
Sa �B Sb, formulated in Part I, that asks if the following inclusion is satisfied:

Bω(Sa) ⊆ Bω(Sb) (5.1)

for a system Sa and a specification system Sb. From Proposition 4.11 we know
that inclusion (5.1) is equivalent to:

Sa �S Sb

whenever Sa is nonblocking and Sb is output deterministic. These are reason-
able assumptions that we shall adopt. We can easily check if Sa is blocking
by searching for states that have no outgoing transitions. If one such state is
found, then Sa needs to be redesigned since Sa is a model for a reactive system,
such as an embedded controller, that must operate uninterruptedly for arbi-
trarily long periods of time. Regarding the output determinism assumption
on Sb, we now show that we can always construct an output deterministic
system Sc that is behaviorally equivalent to Sb. The proof of this result is
based on the Myhill-Nerode equivalence classes which have long been used
to solve realization problems in automata theory as well as in systems and
control theory.

Proposition 5.1. For any system Sb there exists an output deterministic sys-
tem Sc satisfying Sb ∼=B Sc.

Proof. In view of Proposition 4.4 it is sufficient to show the existence of an
output deterministic system Sc satisfying B(Sc) = B(Sb).

Let R be the equivalence relation on B(Sb) rendering y = y0y1 . . . yk
equivalent to y′ = y′0y

′
1 . . . y

′
l if yk = y′l and for every y ∈ Yb we have

yy = y0y1 . . . yky ∈ B(Sb) ⇔ y′y = y′0y
′
1 . . . y

′
ly ∈ B(Sb). Note that R has the

property:
(y, y′) ∈ R =⇒ (yy, y′y) ∈ R ∀y ∈ Yb. (5.2)

We now define Sc starting with the set of states Xc given by Xc = B(Sb)/R,
the set of all equivalence classes induced by R. The set of initial states Xc0 is
the set of equivalence classes containing the behaviors y of unit length given
by y = Hb(xb0) for every xb0 ∈ Xb0. The set of inputs is given by Uc = Yb

and the transition relation is defined by xc
y

c
- x′c if xc is the equivalence

5.2 Similarity relations 45

class containing a behavior y and x′c is the equivalence class containing the
behavior yy. The transition relation is well defined in view of (5.2). The set of
outputs is Yc = Yb and Hc(xc) = y when xc is the equivalence class containing
the behavior yy.

We claim that Sc is output deterministic. First, note that the cardinality
of Xc0 is the cardinality of Hb(Xb0) and every element in Xc0 is mapped by Hc

to a different output. Therefore Hc|Xc0 is injective. Moreover, if xc
uc

c
- x′c,

xc
u′c

c
- x′′c in Sc and Hc(x′c) = y = Hc(x′′c), it follows by definition of

c
- that uc = y = u′c, x

′
c is the equivalence class containing yy, x′′c is

the equivalence class containing yy, and xc is the equivalence class containing
y. Therefore x′c = x′′c , as desired, and the claim is proved.

Finally, B(Sc) = B(Sb) follows by construction of Sc. ut

When system Sb is finite-state, system Sc is also guaranteed to be finite-state.
Therefore, there is no loss of generality1 in assuming that the specification
system is output deterministic. The behavioral inclusion problem can thus be
reduced to the verification problem in the similarity context which is discussed
in the next section. Similarly, the problem of verifying behavioral equivalence
of two systems can be transformed into the problem of verifying bisimilarity
between two systems.

5.2 Similarity relations

Existence of simulation or bisimulation relations between two finite-state sys-
tems can be studied through the fixed-points of certain operators. The per-
spective offered by fixed-points of operators is advantageous on two counts.
Operators are a convenient mathematical abstraction allowing us to study
correctness and termination of algorithms without being distracted by the im-
plementation details. The second advantage is the possibility of implementing
symbolically the algorithms defined by fixed-points. This means that explicit
enumeration of the states is avoided by manipulating instead succinct repre-
sentations for sets of states.

5.2.1 Simulation relations as fixed-points

Given a system Sa and a system specification Sb we are interested in de-
termining if Sa �S Sb. Ideally, an affirmative answer would also provide a
simulation relation from Sa to Sb. We can thus reinterpret the simulation
preorder problem as the search for a simulation relation.

1 It should be noted, however, that the cardinality of Xc can be exponential in the
cardinality of Xb.

46 5 Verification

Consider the operator:

F : 2Xa×Xb → 2Xa×Xb

defined by (xa, xb) ∈ F (W), for some W ⊆ Xa × Xb, if the following three
conditions are satisfied:

1. Ha(xa) = Hb(xb);
2. (xa, xb) ∈W ;
3. for every transition xa

ua

a
- x′a in Sa there exists a transition xb

ub

b
- x′b

in Sb with (x′a, x
′
b) ∈W .

The definition of F closely mirrors the definition of simulation relation. This
observation justifies the second assertion of the following proposition.

Proposition 5.2. The operator F : 2Xa×Xb → 2Xa×Xb satisfies:

1. Z ⊆ Z ′ implies F (Z) ⊆ F (Z ′);
2. R ⊆ Xa × Xb is a simulation relation from Sa to Sb iff R ⊆ F (R) and
Xa0 ⊆ πa(R ∩ (Xa0 ×Xb0)).

Proof. If (xa, xb) ∈ F (Z), we have: Ha(xa) = Hb(xb), (xa, xb) ∈ Z, and
xa

ua

a
- x′a implies xb

ub

b
- x′b with (x′a, x

′
b) ∈ Z. Let now Z ⊆ Z ′ and

note that Ha(xa) = Hb(xb), (xa, xb) ∈ Z ′, and xa
ua

a
- x′a implies xb

ub

b
- x′b

with (x′a, x
′
b) ∈ Z ′. Hence, (xa, xb) ∈ F (Z ′) and we conclude that Z ⊆ Z ′

implies F (Z) ⊆ F (Z ′).
We now prove the second assertion. Assume that R is a simulation relation

from Sa to Sb and let (xa, xb) ∈ R. The first requirement in the definition of
simulation implies that Xa0 ⊆ πa(R ∩ (Xa0 ×Xb0)). The second requirement
implies Ha(xa) = Hb(xb). Finally, the third requirement implies that for every
xa

ua

a
- x′a we have xb

ub

b
- x′b with (x′a, x

′
b) ∈ R. Therefore, (xa, xb) ∈ F (R)

which shows that R ⊆ F (R).
Conversely, let R be a relation for which the inclusions R ⊆ F (R) and

Xa0 ⊆ πa(R ∩ (Xa0 ×Xb0)) are satisfied. From Xa0 ⊆ πa(R ∩ (Xa0 × Xb0))
follows directly the first requirement in the definition of simulation relation.
Let now (xa, xb) ∈ R. Then, the first requirement in the definition of F
implies the second requirement in the definition of simulation relation. Finally,
since for every xa

ua

a
- x′a we have xb

ub

b
- x′b with (x′a, x

′
b) ∈ R, the third

requirement in the definition of simulation relation is also satisfied and the
result is proved. ut

It follows from the general results on lattice theory reviewed in the Ap-
pendix that the maximal relation R satisfying R ⊆ F (R) is a fixed-point of F ,
i.e., F (R) = R. This can be seen by noting that the first assertion in Proposi-
tion 5.2 and R ⊆ F (R) imply F (R) ⊆ F

(
F (R)

)
. But since R is the maximal

5.2 Similarity relations 47

relation satisfying the inclusion R ⊆ F (R) we necessarily have F (R) ⊆ R,
thus concluding F (R) = R. Moreover, it also follows from Corollary 12.6 in
the Appendix that the first assertion in Proposition 5.2 implies the existence
of the maximal fixed-point of F that can be obtained by iterating F . We
summarize this discussion in the following result.

Theorem 5.3. Let Sa and Sb be systems with Ya = Yb. The maximal simu-
lation relation from Sa to Sb is the maximal fixed-point Z, of the operator F ,
that satisfies Xa0 ⊆ πa(Z ∩ (Xa0 ×Xb0)). Moreover:

Z = lim
i→∞

F i(Xa ×Xb) (5.3)

and Sa �S Sb iff Xa0 ⊆ πa(Z ∩ (Xa0 ×Xb0)).

For finite-state systems, the limit (5.3) is reached after finitely many iter-
ations and Z can be computed in time polynomial in |Xa||Xb|.

Example 5.4. Consider system Sa and system Sb represented in Figure 4.3.
The states in Xa×Xb are displayed in Figure 5.2. To simplify the presentation
we show in Figure 5.3 the result of iterating F over Xa×Xb without labeling
the states. A fixed-point is reached after two iterations and the resulting
simulation relation is the one presented in Example 4.15. C

Example 5.5. Consider again the bus fare machine system in Figure 4.1, that
we denote by Sa, and suppose that we want to verify Sa �B Sb with respect
to the specification Sb given in Figure 5.1. This specification allows the bus
riders to swipe their card and trigger the ding sound but prevents them from
dropping a quarter and hearing the dong sound.

System Sa is non-blocking and Sb is output deterministic, hence Sa �B Sb
is equivalent to Sa �S Sb. To test Sa �S Sb we iterate F over Xa ×Xb. The
states in Xa × Xb are displayed in Figure 5.4. To simplify the presentation
we show in Figure 5.5 the result of iterating F over Xa×Xb without labeling
the states. After three iterations we obtain F 3(Xa×Xb) = ∅ thus concluding
Sa �S Sb and consequently Sa �B Sb. C

xb0

silence

xb1

ding

swipe

idle

Fig. 5.1. Finite-state system Sb describing the specification for Example 5.5.

48 5 Verification

(xa0, xb0)

(y0, y0)

(xa1, xb0)

(y0, y0)

(xa2, xb0)

(y1, y0)

(xa3, xb0)

(y0, y0)

(xa0, xb1)

(y0, y1)

(xa1, xb1)

(y0, y1)

(xa2, xb1)

(y1, y1)

(xa3, xb1)

(y0, y1)

(xa0, xb2)

(y0, y0)

(xa1, xb2)

(y0, y0)

(xa2, xb2)

(y1, y0)

(xa3, xb2)

(y0, y0)

Fig. 5.2. States in the set Xa ×Xb over which the operator F acts.

Fig. 5.3. Computation of the maximal simulation relation from Sa to Sb. The
image of the operator F is represented by the dark-colored states. For conciseness,
the states are not labeled and the corresponding labels can be found in Figure 5.2.

5.2.2 Bisimulation relations as fixed-points

Verifying bisimilarity between two systems can be solved by strengthening the
operator F to the operator:

G : 2Xa×Xb → 2Xa×Xb

defined by (xa, xb) ∈ G(W), for some W ⊆ Xa × Xb, if the following four
conditions are satisfied:

1. Ha(xa) = Hb(xb);
2. (xa, xb) ∈W ;
3. for every transition xa

ua

a
- x′a in Sa there exists a transition xb

ub

b
- x′b

in Sb with (x′a, x
′
b) ∈W ;

4. for every transition xb
ub

b
- x′b in Sb there exists a transition xa

ua

a
- x′a

in Sa with (x′a, x
′
b) ∈W .

F 1(Xa × Xb) F 2(Xa × Xb) F 3(Xa × Xb)

5.2 Similarity relations 49

Reasoning in the same manner as in the simulation case, we can charac-
terize the maximal bisimulation relation between two systems as the maximal
fixed-point of G.

Theorem 5.6. Let Sa and Sb be systems with Ya = Yb. The maximal bisimu-
lation relation between Sa and Sb is the maximal fixed-point Z, of the operator
G, that satisfies Xa0 ⊆ πa(Z ∩ (Xa0 ×Xb0)) and Xb0 ⊆ πb(Z ∩ (Xa0 ×Xb0)).
Moreover:

Z = lim
i→∞

Gi(Xa ×Xb) (5.4)

and Sa ∼=S Sb iff Xa0 ⊆ πa(Z ∩ (Xa0×Xb0)) and Xb0 ⊆ πb(Z ∩ (Xa0×Xb0)).

The iteration of G is guaranteed to converge in time polynomial in
|Xa||Xb| when Sa and Sb are finite-state systems. For infinite-state systems,
the limit (5.4) may not be reached in finitely many steps so that (5.4) only
defines a semi-algorithm. In Part III we will use a variation of this algorithm
to compute the maximal bisimulation relation between an infinite-state sys-
tem S and itself as an intermediate step in the construction of a finite-state
abstraction bisimilar to S.

(xa0, xb0)

(silence,

silence)

(xa1, xb0)

(ding,

silence)

(xa2, xb0)

(dong,

silence)

(xa0, xb1)

(silence,

ding)

(xa1, xb1)

(ding,

ding)

(xa2, xb1)

(dong,

ding)

Fig. 5.4. States in the set Xa ×Xb over which the operator F acts.

F 1(Xa ×Xb) F 2(Xa ×Xb) F 3(Xa ×Xb)

Fig. 5.5. Computation of the maximal simulation relation from Sa to Sb. The
image of the operator F is represented by the dark-colored states. For conciseness,
the states are not labeled and the corresponding labels can be found in Figure 5.4.

50 5 Verification

5.3 Notes

In this chapter we used systems to model both the system to be verified
and the specification. In practice, however, formal specifications mechanisms
such as temporal logics are preferred to systems since they are much more
succinct. Modeling specifications as systems allowed us to give a flavor of
the existing automated verification techniques in a concise and self-contained
manner. In particular, we avoided discussing liveness specifications and its
associated automata theoretic constructions. Liveness, however, will surface in
Chapter 6 when discussing the synthesis of controllers enforcing reachability
specifications. Chapter 6, devoted to controller synthesis problems, can be
seen as a complement to this chapter since controller synthesis algorithms
also answer verification questions: when a property is satisfied, no controller
is necessary! The interested reader is referred to [CGP99], and [BBF+01] as
entry points into the rich world of formal verification.

The proof of Proposition 5.1 is based on Myhill-Nerode’s equivalence
classes introduced in [Ner58].

Although we discussed verification problems for simulation and bisimula-
tion, one could also conceive verification problems using alternating simula-
tion and bisimulation. Fixed-point algorithms for such problems are described
in [AHKV98]. In this book, alternating simulations and bisimulations will ap-
pear in the context of controller synthesis problems and they will be explicitly
constructed.

6

Control

Whenever a system Sa fails to conform to its specification Sb, in the sense
that Sa � Sb, we may ask if there exists another system Sc, the controller,
such that Sc ×I Sa � Sb or even Sc ×I Sa ∼= Sb. In this chapter we discuss
these control problems in the behavioral and similarity contexts. We show
how to reduce controller synthesis problems from the behavioral context to
the similarity context and we solve the later by computing fixed-points of
suitably defined operators. In addition to these general control problems we
also present fixed-point solutions specialized for safety and reachability control
problems that frequently arise in applications.

Notation

For a set Z, Z∗ and Zω denote the set of all finite and infinite strings, re-
spectively, obtained by concatenating elements in Z. An element z ∈ Z∗ can
thus be seen as a map z : {0, 1, 2, . . . , n} → Z represented by z = z0z1z2 . . . zn
with z(i) = zi, i ∈ {0, 1, 2, . . . , n}. Similarly, an element z ∈ Zω is a map
z : N0 → Z represented by z = z0z1z2 . . . with z(i) = zi, i ∈ N0. A string
z ∈ L ⊆ Z∗ ∪ Zω is said to be maximal if z ∈ Zω or if z = z0z1 . . . zk ∈ Z∗
and there exists no string w = w0w1 . . . wkwk+1 ∈ L satisfying zi = wi for
i = 0, 1, . . . , k.

The natural projection taking (xa, xb) ∈ Xa × Xb to xa ∈ Xa is de-
noted by πa : Xa × Xb → Xa. Similarly, πb : Xa × Xb → Xb de-
notes the natural projection taking (xa, xb) ∈ Xa × Xb to xb ∈ Xb. The
map πX : Xa ×Xb × Ua × Ub → Xa ×Xb is also a projection and sends the
quadruple (xa, xb, ua, ub) ∈ Xa×Xb×Ua×Ub to the pair (xa, xb) ∈ Xa×Xb.
The set of all subsets of Z, also known as the power set of Z, is denoted by
2Z .

© Springer Science + Business Media, LLC 2009DOI: 10.1007/978-1-4419-0224-5_6,
51P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach,

52 6 Control

6.1 Feedback composition

The notion of system introduced in Part I made no claims regarding the se-
mantics of the set U of inputs. While for some systems, the elements of U that
are fed into a system can be suitably chosen, for other systems this choice is
not possible. In the literature, two different approaches to the modeling of U
coexist. The set of inputs U can be treated as the disjoint union of Uc and
Ud, i.e., U = Uc] Ud with Uc modeling the inputs under the designer’s con-
trol (controllable) and Ud modeling the inputs beyond the designer’s control
(uncontrollable). Under this paradigm the effect of controllable and uncon-
trollable inputs is interleaved or turn-based since a transition x

u- x′ will
either be labeled by a controllable or by an uncontrollable input u. The other
approach consists in describing U as the product U = C×D with C modeling
the control inputs and D modeling the disturbance or adversarial inputs. In
this case, starting from a state x and choosing a control input c ∈ C leads to
a transition x

c,d- x′ in which the reached state x′ depends on the choice of
disturbance input d ∈ D which is unknown and thus assumed adversarial. In
this paradigm, the effect of the control and disturbance is concurrent instead
of being interleaved or turn-based. We follow the concurrent approach since
this is the natural paradigm for continuous-time control systems and it will be
inherited by its finite-state models discussed in Parts III and IV. We do not
model disturbance inputs explicitly but rather implicitly through the nonde-
terminism of the transition relation. This means that the disturbance has the
power to decide which c-successor of a state x is reached when a control input
c is chosen at the state x.

The notion of controller can be formalized in several different ways. We
could regard a controller as a mechanism that determines which input should
be fed into the system being controlled based on observed states1. This intu-
itive description has one important limitation: there may be more than one
input that leads to a correct or desirable behavior. We thus revise the concept
of controller to a mechanism that determines which inputs can be fed to the
controlled system based on a sequence of observed outputs. Mathematically,
this can be described by a map:

φ : X∗ → 2U

transforming sequences of outputs into sets of inputs. A sequence of transi-
tions:

x0
u0- x1

u1- x2
u2- . . .

un−1- xn

would then be an internal behavior of the controlled system provided that
uk ∈ φ(x0x1 . . . xk) for every k ∈ {0, 1, . . . , n − 1}. Although this notion of
controller is conceptually very pleasing, for operational reasons we restrict
attention, in this chapter, to controllers φ : X∗ → 2U that can be described
1 To simplify the discussion, we assume Y = X and H = 1X .

6.1 Feedback composition 53

by a finite-state system Sc. To understand how this can be done we need to
digress into feedback composition.

If the effect of applying φ : X∗a → 2Ua to a system Sa is to be described by
Sc ×I Sa, we need to elaborate on the kind of interconnection relation that
is appropriate for control. Among the several different possibilities we shall
require I to be the extended relation Re of an alternating simulation relation
R from Sc to Sa. This choice renders the results that follow conceptually
simple.

Definition 6.1 (Feedback composition). A system Sc is said to be feed-
back composable with a system Sa if there exists an alternating simulation
relation R from Sc to Sa. When Sc is feedback composable with Sa, the feed-
back composition of Sc and Sa, with interconnection relation F = Re, is given
by Sc ×F Sa.

The term feedback is justified by the following interpretation of Sc×F Sa.
Assume that Sc ×F Sa is at the state (xc, xa) ∈ R. Controller Sc offers to
execute any of the inputs uc ∈ Uc(xc). System Sa responds by selecting any
input ua ∈ Ua(xa) satisfying (xc, xa, uc, ua) ∈ F and by taking any transition
xa

ua

a
- x′a labeled by the chosen input ua. This transition then triggers a

matching transition by the controller. This means that Sc measures the new
state x′a of Sa and takes a transition xc

uc

c
- x′c satisfying (x′a, x

′
c) ∈ R.

Existence of the matching transition is guaranteed by the fact that R is an
alternating simulation relation. We can thus interpret an internal behavior of
Sc×F Sa as being the result of a feedback process during which the controller
offers a set of inputs, measures the state of Sa, updates its own state, offers
again a new set of inputs based on its updated state, and so on. Although
it would be more appropriate to use the term state-feedback, given that Sc
has access to the states of Sa, we use feedback for brevity. To emphasize this
feedback interpretation, the interconnection relation Re is denoted by F .

The next example illustrates the notion of feedback composition.

Example 6.2. Consider the system Sa displayed in Figure 6.1 and assume that
we want to eliminate all the internal behaviors containing transitions of the
form xa1

a

a
- xa1 or containing transitions of the form xa0

b

a
- xa0. This

objective can be achieved by resorting to the controller Sc also represented in
Figure 6.1. The required alternating simulation relation is given by:

{(xc0, xa0), (xc1, xa1), (xc2, xa2)}.

The feedback composed system Sc ×F Sa is also depicted in Figure 6.1 and
it can be seen that it is equal, up to a relabeling of states and inputs, to Sc.
Therefore, the controller enforces the desired requirements on Sa.

54 6 Control

xa0
ya0

xa1
ya1

xa2
ya2

Sa

b

a b

a

a

c

b

xc0
ya0

xc1
ya1

xc2
ya2

Sc b

a

a

c

b

(xc0, xa0)

ya0

(xc1, xa1)

ya1

(xc2, xa2)

ya2
Sc ×F Sa (b,b)

(a,a)

(a,a)

(c,c)

(b,b)

Fig. 6.1. From top to bottom we have: system Sa, controller Sc, and the feedback
composed system Sc ×F Sa.

To understand the need to require the existence of an alternating simula-
tion relation from Sc to Sa, let us attempt to use system Sd in Figure 6.2 as a
controller. The relation R = {(xd0, xa0), (xd1, xa1)} is an obvious simulation
relation from Sd to Sa but not an alternating simulation relation. Although
the composition Sd ×I Sa is well defined for the interconnection relation:

I = {(xd, xa, ud, ua) ∈ Xd ×Xa × Ud × Ua | (xd, xa) ∈ R},

the transition (xd0, xa0)
a,a

da
- (xd1, xa2) is not present in Sd×ISa even though

it is labeled by the same input as the transition (xd0, xa0)
a,a

da
- (xd1, xa1)

which is present in Sd×I Sa. This means that an implementation of Sd×I Sa
requires a synchronization procedure between Sd and Sa that is not purely
based on inputs. C

6.2 Safety games 55

xd0
ya0

xd1
ya1

a

b

Fig. 6.2. Candidate controller for system Sa in Figure 6.1.

The following result, which is also valid for other forms of composition,
explains how feedback composition can restrict the behavior of systems.

Proposition 6.3. Let Sa and Sb be systems with Ya = Yb and let I be an
interconnection relation satisfying:

(xa, xb) ∈ πX(I) =⇒ Ha(xa) = Hb(xb).

Then, the following holds:

• Sa ×I Sb �S Sb;
• Sb ×I Sa �S Sa.

Proof. The proof consists in routinely checking that the relations:

{((xa, xb), x′b) ∈ Xab ×Xb | xb = x′b}
{((xb, xa), x′a) ∈ Xba ×Xa | xa = x′a}

are simulation relations from Sa×I Sb to Sb and from Sb×I Sa to Sa, respec-
tively. ut

Feedback composition not only restricts the behavior of the system to be
controlled but also its initial states. Recall that (xc, xa) is an initial state
of Sc ×F Sa if xc is an initial state of Sc, xa is an initial state of Sa, and
(xc, xa) ∈ R. Therefore, it suffices that R does not relate xa to an initial
state of Sc to prevent xa from being part of an initial state of Sc ×F Sa. The
introduced notion of feedback composition thus assumes that the controller
has the possibility of initializing Sa. As this assumption may not hold in many
situations, we also show how to generalize the results in this chapter to the
case where Sa cannot be initialized.

6.2 Safety games

We start by considering a very simple class of control problems whose objective
is to design a controller Sc for a system Sa so that Sc ×F Sa is nonblocking
and Reach(Sc ×F Sa) ⊆ W for some set W ⊆ Ya. If we regard W as a set
of safe outputs, the objective of Sc is then to render W invariant for the
behaviors in Bω(Sc×F Sa), thus keeping the composed system safe. This class

56 6 Control

of control problems are termed safety games since the controller Sc arises as
the solution of a game played against an opponent that tries to prevent the
composed system from being safe.

Definition 6.4 (Safety game). Let Sa be a system with Ya = Xa and
Ha = 1Xa , and let W ⊆ Xa be a set of safe states. The safety game for
system Sa and specification set W asks for the existence of a controller Sc
such that:

1. Sc is feedback composable with Sa;
2. Sc ×F Sa is nonblocking;
3. ∅ 6= Bω(Sc ×F Sa) ⊆Wω.

A safety game is said to be solvable when Sc exists.

The requirement Ya = Xa and Ha = 1Xa is made without loss of generality
since the general case where Ya 6= Xa can be reduced to this one. We shall elab-
orate on this fact once we know how to solve safety games. Note that the third
requirement in the preceding definition is equivalent to Reach(Sc ×F Sa) ⊆W
since a behavior y0y1y2 . . . in Wω necessarily satisfies yi ∈W for every i ∈ N0

and vice-versa.
Safety games can be solved by constructing a suitable operator:

FW : 2Xa → 2Xa

for any specification set W ⊆ Xa. A fixed-point of this operator provides a
collection of states from which it is possible to control system Sa so as to
remain in W . The operator FW :

FW (Z) = {xa ∈ Z | xa ∈W and ∃ua ∈ Ua(xa) ∅ 6= Postua(xa) ⊆ Z}

captures the essence of safety games in the sense that the set FW (Z) contains
all the states xa ∈ Z ∩W for which all the ua-successors of xa are in Z. The
next result shows that a maximal fixed-point of FW exists and relates the
solvability of safety games to fixed-points of FW .

Proposition 6.5. Let Sa be a system with Ya = Xa and Ha = 1Xa , and let
W ⊆ Xa be a set of safe states. The operator FW : 2X → 2X satisfies:

1. Z ⊆ Z ′ implies FW (Z) ⊆ FW (Z ′);
2. if the safety game for system Sa and specification set W is solvable, then

the maximal fixed-point Z of FW satisfies Z ∩Xa0 6= ∅.

Proof. The first assertion follows directly from the definition of FW .
To prove the second assertion, assume that a solution Sc to the safety

game exists, let K be the set of all states reachable in Sc ×F Sa, and let
Z ′ = Reach(Sc ×F Sa). Note that K ⊆ Xa ×Xb while πa(K) = Z ′ ⊆ Xa. We
claim that Xa0 ∩Z ′ 6= ∅ and Z ′ ⊆ F (Z ′). The first claim is proved by noting

6.2 Safety games 57

that the second and third requirement in the definition of safety game imply
K ∩Xca0 6= ∅ and thus:

Z ′ ∩Xa0 = πa(K) ∩ πa(Xca0) ⊇ πa(K ∩Xca0) 6= ∅.

The second claim can be proved as follows. Let xa ∈ Z ′ and let xc ∈ Xc be
such that (xc, xa) ∈ K. Since state (xc, xa) is reachable in Sc×F Sa and since
Sc is a solution to the safety game, there must exist (uc, ua) ∈ Uca(xc, xa)
such that (xc, xa)

uc,ua

ca
- (x′c, x

′
a) with x′a ∈W . Moreover, (x′c, x

′
a) ∈ K which

implies x′a ∈ Z ′. We now invoke the definition of feedback composition to
conclude that every transition xa

ua

a
- x′′a in Sa labeled by the same input

ua gives rise to a transition (xc, xa)
uc,ua

ca
- (x′′c , x

′′
a) in Sc ×F Sa. Necessarily,

(x′′c , x
′′
a) ∈ K and thus x′′a ∈ Z ′. Hence, we conclude the existence of an input

ua ∈ Ua(xa) for which ∅ 6= Postua(xa) ⊆ Z ′. According to the definition of
FW , xa ∈ FW (Z ′) and the second claim is proved. Finally, by definition of
FW we always have FW (Z ′) ⊆ Z ′ so that FW (Z ′) = Z ′ and Z ′ is a fixed-point
of FW . Since the second assertion in the proposition holds for any fixed-
point Z ′ of FW , it also holds for its maximal fixed-point whose existence is a
consequence of the first assertion in the proposition. ut

A controller solving a safety game with specification set W can always be
constructed from the information contained in a fixed-point Z of FW satisfying
Z ∩Xa0 6= ∅. One possibility is the controller:

Sc = (Xc, Xc0, Ua,
c
-) (6.1)

defined by:

• Xc = Z;
• Xc0 = Z ∩Xa0;
• xc

ua

c
- x′c if ∅ 6= Postua(xc) ⊆ Z,

and where Postua(xc) refers to the ua-successors in Sa. It is a simple matter
to check that the relation defined by all the pairs (xc, xa) ∈ Xc × Xa with
xc = xa is an alternating simulation relation from Sc to Sa. According to
Proposition 6.3, Sc×F Sa �S Sc and we can interpret the result of composing
Sc with Sa as the elimination of all the transitions labeled by inputs for which
the corresponding successor sets are not contained in Z. Intuitively, Sc forces
the behavior of Sc ×F Sa to remain in Zω ⊆Wω.

A complete characterization of the solutions to safety games can now be
obtained by noting that it follows from the results in the Appendix that the
maximal fixed-point of FW can be obtained by iterating FW .

58 6 Control

Fig. 6.3. System Sa for Example 6.7.

Theorem 6.6. Let Sa be a system with Ya = Xa and Ha = 1Xa , and let
W ⊆ Xa be a set of safe states. The safety game for system Sa and speci-
fication set W is solvable iff the maximal fixed-point Z of the operator FW
satisfies Z ∩Xa0 6= ∅. Moreover, Z can be obtained as:

Z = lim
i→∞

F iW (Xa).

When Z ∩ Xa0 6= ∅, a solution to the safety game is given by the con-
troller (6.1).

Example 6.7. To illustrate Theorem 6.6 consider the finite-state system Sa in
Figure 6.3 and let W be the set of all light-colored states. The maximal fixed-
point of FW can be obtained by iterating FW and the result of this iteration
is shown in Figure 6.4.

After 5 iterates of FW a fixed-point is reached. The resulting set Z defines
a controller that restricts the inputs to e at the state xa5 and to c at state xa6.
The reader can verify that this choice of inputs prevents the behavior of Sa to
leave Wω. The feedback composition of Sc with Sa, displayed in Figure 6.5,
results in a finite-state system equal to Sc if we identify the states (xa5, xa5)
and (xa6, xa6) with the states xa5 and xa6, and if we identify the inputs (e, e)
and (c, c) with the inputs e and c, respectively. C

The controller (6.1) is completely determined by a given fixed-point of
FW . When we use the maximal fixed-point of FW , (6.1) becomes the best
possible controller in the sense that any other controller solving the same
safety problem would be more restrictive.

6.2 Safety games 59

a

a

b

b

b c
e

c

e

c

e
b

c

a

a

a

b

b

b c
e

c

e

c

e
b

c

a

FW (Xa) F 2
W (Xa)

a

a

b

b

b c
e

c

e

c

e
b

c

a

a

a

b

b

b c
e

c

e

c

e
b

c

a

F 3
W (Xa) F 4

W (Xa)

a

a

b

b

b c
e

c

e

c

e
b

c

a

F 5
W (Xa)

Fig. 6.4. Iterates of FW . Dark-colored states correspond to the image of FW .

Proposition 6.8. Let Sa be a system with Ya = Xa and Ha = 1Xa , and let
W ⊆ Xa be a set of safe states. For any controller Sd solving the safety game
for system Sa and specification set W we have:

Sd ×G Sa �S Sc ×F Sa

where Sc is the controller (6.1) defined by the maximal fixed-point of FW .

60 6 Control

(xa5, xa5) (xa6, xa6)

(e,e)

(c,c)

(c,c)

Fig. 6.5. System Sc ×F Sa for Example 6.7.

Proof. It was shown in the proof of Proposition 6.5 that for any controller Sd
solving the safety game, the set Z ′ = Reach(Sd×G Sa) is a fixed-point of FW .
Therefore, Z ′ ⊆ Z where Z is the maximal fixed-point of FW . This suggests
that the relation:

R = {((xd, x′a), (xc, xa)) ∈ Xda ×Xca | x′a = xa}

is a simulation relation from Sd ×G Sa to Sc ×F Sa. The proof consists in
showing that this is indeed the case. Before starting we note that by definition
of Sc and since Ha = 1Xa , (xc, xa) ∈ Xca iff xc = xa.

Consider the first requirement in Definition 4.7 and let (xd0, xa0) ∈ Xda0.
Then, xa0 ∈ Z ′ ⊆ Z and xa0 ∈ Xa0. By definition of Sc and by defi-
nition of feedback composition, (xa0, xa0) ∈ Xca0 . Consequently, the pair
((xd0, xa0), (xa0, xa0)) belongs to R.

The second requirement follows directly from the definition of R.
To prove the third requirement let ((xd, xa), (xa, xa)) ∈ R and assume that

(xd, xa)
ud,ua

da
- (x′d, x

′
a) in Sd×GSa. Since Sd is a controller for the safety prob-

lem we necessarily have ∅ 6= Postua(xa) ⊆ Z ′ ⊆ Z. But by definition of Sc, for
every such input ua we have ua ∈ Uc(xa). Therefore, (xa, xa)

ua,ua

ca
- (x′a, x

′
a)

in Sc ×F Sa and by definition of R, ((x′d, x
′
a), (x′a, x

′
a)) ∈ R. ut

Theorem 6.6 can be generalized to the case where the initial state of
Sa cannot be initialized. The modification amounts to replace the condition
Z ∩Xa0 6= ∅, which requires the existence of at least one initial state from
which Sc can operate, to Xa0 ⊆ Z, which requires that Sc can operate from
every initial state in Xa0.

The apparently more general problem of synthesizing a controller Sc to
enforce Bω(Sc ×F Sa) ⊆ Wω when Ya 6= Xa and Ha 6= 1Xa can be reduced
to the problem studied in this section. It suffices to consider a new safe set
W ′ ⊆ Xa defined by W ′ = H−1

a (W) and to apply Theorem 6.6 to system
(Xa, Xa0, Ua,

a
- , Xa, 1Xa) and specification set W ′.

6.3 Reachability games 61

6.3 Reachability games

While the objective of safety games is to keep the behaviors of the composed
system within a safe set, reachability games ask for a certain set W of outputs
to be reached. As in the previous section we consider only the case where
Ha = 1Xa since the general case can be reduced to this one by suitably
redefining W .

Definition 6.9 (Reachability game). Let Sa be a system satisfying Ya = Xa

and Ha = 1Xa , and let W ⊆ Xa be a set of states. The reachability game for
system Sa and specification set W asks for the existence of a controller Sc
such that:

1. Sc is feedback composable with Sa;
2. for every maximal behavior y ∈ B(Sc ×F Sa) ∪ Bω(Sc ×F Sa) there exists
k ∈ N0 such that y(k) = yk ∈W .

A reachability game is said to be solvable when Sc exists.

The second condition in the definition of reachability game requires that
any infinite behavior y = y0y1 . . . of Sc ×F Sa visits the set W in finite time.
Moreover, it also requires that any finite behavior y0y1 . . . yl that cannot be
extended to an infinite behavior, visits W before or when reaching a blocking
state. In particular, no nonblocking condition is imposed since the objective
is simply to reach W in finitely many steps. Once states in W are reached, no
further requirements are imposed by the reachability game. More demanding
requirements, such as reaching a set of states W and remaining within W
thereafter, can be obtained by combining safety with reachability.

Similarly to safety games, reachability games can also be given a fixed-
point characterization. For any W ⊆ Xa we can define the operator:

GW : 2Xa → 2Xa

by:

GW (Z) = {xa ∈ Xa | xa ∈W or ∃ua ∈ Ua(xa) ∅ 6= Postua(xa) ⊆ Z}.

It is not difficult to see that for any W ⊆ Xa, the inclusion Z ⊆ Z ′ implies
GW (Z) ⊆ GW (Z ′), thus guaranteeing the existence of a unique minimal fixed-
point of GW . Several different controllers solving the reachability game can
be constructed from a fixed-point Z of GW for which Z ∩Xa0 6= ∅.

62 6 Control

Among the several possible solutions, we consider the controller:

Sc = (Xc, Xc0, Ua,
c
-) (6.2)

defined as:

• Xc = Z;
• Xc0 = Z ∩Xa0;
• xc

ua

c
- x′c if there exists a k ∈ N such that xc /∈ GkW (∅) and

∅ 6= Postua(xc) ⊆ GkW (∅),

and where Postua(xc) refers to the ua-successors in Sa. Moreover, one can
easily verify that the relation defined by all the pairs (xc, xa) ∈ Xc ×Xa with
xc = xa is an alternating simulation relation from Sc to Sa. Similarly to safety
games, the solution of reachability games can be fully characterized in terms
of the fixed-points of GW .

Theorem 6.10. Let Sa be a system with Ya = Xa and Ha = 1Xa , and let
W ⊆ Xa be a set of states. The reachability game for Sa and specification
set W is solvable iff the minimal fixed-point Z of the operator GW satisfies
Z ∩Xa0 6= ∅. Moreover, Z can be obtained as:

Z = lim
i→∞

GiW (∅).

When Z ∩Xa0 6= ∅, a solution to the reachability game is given by the con-
troller (6.2).

Example 6.11. Consider again the finite-state system in Figure 6.3 and assume
that W consists of the single state xa4. The computation of the fixed-point of
GW by iteration is presented in Figure 6.6. The resulting controller (6.2) is
displayed in Figure 6.7. Note that state xa2 is not helpful for this particular
problem since it is not reachable. However, it may be useful when this set of
states, corresponding to the minimal fixed-point of GW , is used as the starting
point for further design problems. C

For reachability games there is no optimal controller in the sense of Propo-
sition 6.8. This observation is illustrated in Example 6.12.

Example 6.12. Consider the system Sa in Figure 6.8 where the set W consists
of the state x2. Let Sc be any finite-state controller solving the reachability
problem for system Sa and let k be the maximum number of times2 that an
internal behavior of Sc ×F Sa visits the state x1 before reaching the state x2.
We can always construct a controller Sd that allows the internal behaviors
of Sd ×G Sa to visit x1 any number of times smaller than or equal to k + 1
before reaching x2. Clearly, Sd is less restrictive than Sc which shows that a
minimally restrictive controller does not exist. C

2 Such number exists since both Sc and Sa are finite-state systems.

6.3 Reachability games 63

a

a

b

b

b c
e

c

e

c

e
b

c

a

a

a

b

b

b c
e

c

e

c

e
b

c

a

GW (∅) G2
W (∅)

a

a

b

b

b c
e

c

e

c

e
b

c

a

a

a

b

b

b c
e

c

e

c

e
b

c

a

G3
W (∅) G4

W (∅)

Fig. 6.6. Iterates of GW . Dark-colored states correspond to the image of GW .

xa5 xa6 xa4 xa2
e e c

Fig. 6.7. Controller Sc for Example 6.11.

Analogously to safety games, Theorem 6.10 can be generalized to the case
where the initial states of Sa cannot be initialized by the controller. This
generalization consists in replacing Z ∩ Xa0 6= ∅ with the stronger condi-
tion Xa0 ⊆ Z guaranteeing that no initial state of Sa is eliminated in the
composition with the controller.

Fig. 6.8. System Sa for Example 6.12. The set W consists of the state x2.

64 6 Control

6.4 Behavioral games

Safety games are special instances of behavioral games. If Sb is a system such
that Bω(Sb) = Wω, then the safety game specified by Sa and W can be
reformulated as the existence of a controller Sc such that Sc ×F Sa �B Sb.

Definition 6.13 (Behavior inclusion game). Let Sa be a system and let
Sb be a system specification satisfying Yb = Ya. The behavior inclusion game
for system Sa and specification system Sb asks for the existence of a controller
Sc such that:

1. Sc is feedback composable with Sa;
2. Sc ×F Sa is nonblocking;
3. Sc ×F Sa �B Sb.

A behavior inclusion game is said to be solvable when Sc exists.

In Chapter 4 we saw that under reasonable assumptions the specification
system is output deterministic. Therefore, by Proposition 4.11, the third re-
quirement in the definition of behavior inclusion games can be converted to
Sc×FSa �S Sb. Replacing behavior inclusion with simulation leads to similar-
ity games which are discussed in detail in the next section. Behavioral games,
where the stronger requirement Sc ×F Sa ∼=B Sb is to be enforced, can also
be transformed into similarity games with the requirement Sc ×F Sa ∼=S Sb.
These games are also discussed in the next section.

6.5 Similarity games

The controller synthesis problem in a similarity context is called a simulation
game.

Definition 6.14 (Simulation game). Let Sa be a system and let Sb be a
system specification satisfying Yb = Ya. The simulation game for system Sa
and specification system Sb asks for the existence of a controller Sc such that:

1. Sc is feedback composable with Sa;
2. Sc ×F Sa is nonblocking;
3. Sc ×F Sa �S Sb.

A simulation game is said to be solvable when Sc exists.

Simulation games can be solved by using an extension of the operator F
introduced in Chapter 5. The operator FC :

FC : 2Xa×Xb → 2Xa×Xb

in which the subscript C refers to control, is defined by (xa, xb) ∈ FC(W), for

6.5 Similarity games 65

some W ⊆ Xa ×Xb, if the following three conditions are satisfied:

1. Ha(xa) = Hb(xb);
2. (xa, xb) ∈W ;
3. there exists ua ∈ Ua(xa) such that for every x′a ∈ Postua(xa) there exists

a transition xb
ub

b
- x′b in Sb with (x′a, x

′
b) ∈W .

As before, Z ⊆ Z ′ implies FC(Z) ⊆ FC(Z ′) so that FC has a unique max-
imal fixed-point which can be used to construct a solution to the simulation
game whenever Z∩(Xa0×Xb0) 6= ∅. In this case we can define the controller:

Sc = (Xc, Xc0, Ua,
c
- , Ya, Hc) (6.3)

by:

• Xc = Z;
• Xc0 = Z ∩ (Xa0 ×Xb0);
• (xa, xb)

ua

c
- (x′a, x

′
b) in Sc if the following three conditions hold:

1. (x′a, x
′
b) ∈ Z;

2. xb
ub

b
- x′b in Sb for some ub ∈ Ub(xb);

3. xa
ua

a
- x′a in Sa for some ua ∈ Ua(xa) such that for all x′′a ∈ Postua(xa)

there exists a transition xb
u′b

b
- x′′b in Sb with (x′′a, x

′′
b) ∈ Z;

• Hc(xa, xb) = Ha(xa).

The reader should verify that the definition of FC ensures that the relation:

R = {((xa, xb), x′a) ∈ Z ×Xa | xa = x′a}

is an alternating simulation relation from Sc to Sa.
The previous discussion can be summarized in the following result char-

acterizing the solution to behavior inclusion games.

Theorem 6.15. Let Sa be a system and let Sb be a system specification
with Yb = Ya. The simulation game for system Sa and specification sys-
tem Sb is solvable iff the maximal fixed-point Z of the operator FC satisfies
Z ∩ (Xa0 ×Xb0) 6= ∅. Moreover, Z can be obtained as:

Z = lim
i→∞

F iC(Xa ×Xb).

When Z ∩ (Xa0×Xb0) 6= ∅, a solution to the simulation game is given by the
controller (6.3).

66 6 Control

Proof. It was already shown, by defining explicitly the controller Sc in (6.3),
that existence of a fixed-point Z of FC satisfying Z ∩ (Xa0 ×Xb0) 6= ∅ leads
to a solution of the simulation game.

The converse implication can be proved by noting that from any con-
troller Sc solving the simulation game and from the corresponding simulation
relation R from Sc ×F Sa to Sb we can construct a relation R′ ⊆ Xa × Xb

defined by (xa, xb) ∈ R′ if there exists xc ∈ Xc such that ((xc, xa), xb) ∈ R.
It is now simple to verify that R′ is a fixed-point of FC . The crucial inclu-
sion is R′ ⊆ FC(R′) and the key step is to show that any (xa, xb) ∈ R′

satisfies the third requirement in the definition of FC . We focus on this step.
Let (xa, xb) ∈ R′ and recall that by definition of R′ there exists xc ∈ Xc

such that ((xc, xa), xb) ∈ R. Since Sc ×F Sa is nonblocking, there exists an
input (uc, ua) ∈ Uca(xc, xa). Moreover, it follows from the definition of feed-
back composition, that for every x′a ∈ Postua(xa) there exists a transition
(xc, xa)

uc,ua

ca
- (x′c, x

′
a) in Sc ×F Sa. But as R is a simulation relation from

Sc×F Sa to Sb, for every transition (xc, xa)
uc,ua

ca
- (x′c, x

′
a) in Sc×F Sa there

exists a transition xb
u′b- x′b in Sb satisfying ((x′c, x

′
a), x′b) ∈ R. We thus

conclude the existence of ua ∈ Ua(xa) such that for every x′a ∈ Postua(xa)

there exists a transition xb
u′b- x′b in Sb satisfying (x′a, x

′
b) ∈ R′ which is

precisely the third requirement in the definition of FC . ut

Example 6.16. To illustrate the construction of Sc we revisit the models for
the bus fare machine used in Example 4.3 and displayed in Figure 4.1 and
Figure 4.2. Although Sa ∼=B Sb, system Sa is not simulated by system Sb.
We thus seek a controller solving the simulation game for system Sa and
specification system Sb. The iteration of FC starts with the set Xa ×Xb and
terminates with the fixed-point Z after two iterations.

F 0
C(Xa ×Xb) = {(xa0, xb0), (xa0, xb1), (xa0, xb2), (xa0, xb3), (xa1, xb0),

(xa1, xb1), (xa1, xb2), (xa1, xb3), (xa2, xb0), (xa2, xb1),
(xa2, xb2), (xa2, xb3)},

F 1
C(Xa ×Xb) = {(xa0, xb0), (xa1, xb1), (xa1, xb3), (xa2, xb2)},
F 2
C(Xa ×Xb) = {(xa0, xb0), (xa1, xb1), (xa1, xb3), (xa2, xb2)}.

The corresponding controller Sc is displayed in Figure 6.9 and Sc ×F Sa is
shown in Figure 6.10. The simulation relation from Sc×F Sa to Sb is given by
the fixed-point Z of FC . Note that the state (xa1, xb3), albeit not reachable,
can be useful when Sc ×F Sa is the starting point for further designs. C

The operator FC can be seen as a control generalization of the operator
F defined in Chapter 5. If there exists a simulation relation from system Sa
to system Sb, then the maximal fixed-point FC coincides with the maximal
fixed-point of F . However, if no simulation relation from Sa to Sb exists, then

6.5 Similarity games 67

(xa0, xb0)

silence

(xa1, xb1)

ding

(xa2, xb2)

dong

(xa1, xb3)

ding

swipe

quarter
idle

idle

Fig. 6.9. Controller Sc for Example 6.16.

(xa0, xb0, xa0)

silence

(xa1, xb1, xa1)

ding

(xa2, xb2, xa2)

dong

(xa1, xb3, xa1)

ding

swipe

quarter
idle

idle

Fig. 6.10. Composed system Sc ×F Sa for Example 6.16.

Xa0 * πa(Z ∩ (Xa0 ×Xb0)) for the maximal fixed-point Z of F . In contrast,
the maximal fixed-point of FC provides a simulation relation from a restricted
version of Sa to Sb whenever a solution for the simulation game exists. Such
restricted version can then be constructed as Sc ×F Sa for a controller Sc.

The iteration of the operator FC provides an algorithm which is guaranteed
to terminate in time polynomial in |Xa||Xb| for finite-state systems. Moreover,
the controller Sc constructed from the maximal fixed-point of FC in (6.3) is
optimal in the sense that it minimally restricts Sa in order to enforce the
specification.

68 6 Control

Proposition 6.17. Let Sa be a system and let Sb be a system specification
with Yb = Ya. For any controller Sd solving the simulation game for system
Sa and specification system Sb we have:

Sd ×G Sa �S Sc ×F Sa

where Sc is the controller (6.3) defined by the maximal fixed-point of FC .

Proof. It was shown in the proof of Theorem 6.15 that any controller Sd
solving the simulation game leads to a fixed-point Z ′ of FC . Moreover, Sc is
completely determined by the maximal fixed-point Z of FC . If we denote by
R and R′ the simulation relations from Sc ×F Sa and Sd ×G Sa, respectively,
to Sb, it follows from the maximality of Z that the relation defined by the
pairs ((xd, x′a), (xc, xa)) ∈ Xda × Xca for which there exists a state xb ∈ Xb

such that ((xd, x′a), xb) ∈ R′ and ((xc, xa), xb) ∈ R is the desired simulation
relation from Sd×G Sa to Sc×F Sa. The rest of the proof consists in routinely
checking that all the requirements in Definition 4.7 are satisfied and is left to
the reader. ut

Theorem 6.15 assumes that the initial states of Sa can be initialized by the
controller. When this is not the case we need to replace Z ∩ (Xa0×Xb0) 6= ∅
with Xa0 = πa(Z ∩ (Xa0 × Xb0)) in Theorem 6.15 to ensure Sc can operate
from any initial state of Sa.

The more demanding bisimulation games require the composed system
Sc ×F Sa to be bisimilar to the specification.

Definition 6.18 (Bisimulation game). Let Sa be a system and let Sb be a
system specification satisfying Yb = Ya. The bisimulation game for system Sa
and specification system Sb asks for the existence of a controller Sc such that:

1. Sc is feedback composable with Sa;
2. Sc ×F Sa ∼=S Sb.

A simulation game is said to be solvable when Sc exists.

Note that no nonblocking requirement is imposed on Sc ×F Sa since a state
in Sc ×F Sa is blocking iff it is bisimulated by a blocking state in Sb. Hence,
the existence or absence of blocking states is completely determined by the
specification Sb.

Before molding bisimulation games into a fixed-point computation we
make two observations. First, if there exists a controller Sc rendering Sc×F Sa
bisimilar to Sb, it follows that Sb �S Sa since Sb ∼=S Sc ×F Sa �S Sa in
virtue of Proposition 6.3. The second observation notes that for any input
ua ∈ Ua(xa) enabled by the controller Sc and for any x′a ∈ Postua(xa) there
must exist a matching transition xb

ub

b
- x′b in Sb.

6.5 Similarity games 69

The preceding observations motivate the definition of the operator:

GC : 2Xa×Xb → 2Xa×Xb

given by (xa, xb) ∈ GC(W), for some W ⊆ Xa × Xb, if the following three
conditions are satisfied:

1. Ha(xa) = Hb(xb);
2. (xa, xb) ∈W ;
3. for every transition xb

ub

b
- x′b in Sb there exists an input ua ∈ Ua(xa)

satisfying:
a) there exists x′a ∈ Postua(xa) with (x′a, x

′
b) ∈W ;

b) for every x′′a ∈ Postua(xa) there exists a transition xb
u′b

b
- x′′b in Sb

with (x′′a, x
′′
b) ∈W .

A controller based on a fixed-point Z of GC can be constructed whenever
πb(Z ∩ (Xa0×Xb0)) = Xb0. Under this assumption, one possible controller is:

Sc = (Xc, Xc0, Ua,
c
- , Ya, Hc) (6.4)

defined by:

• Xc = Z;
• Xc0 = Z ∩ (Xa0 ×Xb0);
• for every transition xb

ub

b
- x′b in Sb, (xa, xb)

ua

c
- (x′a, x

′
b) in Sc if the

following two conditions hold:
1. (x′a, x

′
b) ∈ Z;

2. xa
ua

a
- x′a in Sa for some ua ∈ Ua(xa) such that for all x′′a ∈ Postua(xa)

there exists a transition xb
u′b

b
- x′′b in Sb with (x′′a, x

′′
b) ∈ Z;

• Hc(xa, xb) = Ha(xa).

Controller Sc is defined so as to make the relation:

{((xa, xb), x′a) ∈ Z ×Xa | xa = x′a}

an alternating simulation relation from Sc to Sa. Arguing as we did for sim-
ulation games we arrive at the following result characterizing the solution of
bisimulation games.

Theorem 6.19. Let Sa be a system and let Sb be a system specification
with Yb = Ya. The bisimulation game for system Sa and specification sys-
tem Sb is solvable iff the maximal fixed-point Z of the operator GC satisfies
πb(Z ∩ (Xa0 ×Xb0)) = Xb0. Moreover, Z can be obtained as:

Z = lim
i→∞

GiC(Xa ×Xb).

When πb(Z ∩ (Xa0 ×Xb0)) = Xb0, a solution to the simulation game is given
by the controller (6.4).

70 6 Control

For finite-state systems, a fixed-point of GC is reached after finitely
many iterations and the bisimulation game is solvable in time polynomial
in |Xa||Xb|. Although the operator GC can also be used for infinite-state sys-
tems, a fixed-point may not be reached in finitely many steps unless one is
working with an infinite-state system satisfying additional assumptions such
as the ones described in Part III.

In situations where it is not possible to initialize Sa we can still apply Theo-
rem 6.19 by strengthening it with the requirement πa(Z ∩ (Xa0 ×Xb0)) = Xa0.

6.6 Notes

Problems of control in the behavioral context have been studied in the
discrete-event systems community since the pioneering work of Ramadge and
Wonham [RW87, RW89]. The main results of this line of work can now be
found in several books [KG95, CL99]. Similar problems were independently
solved in the context of reactive software synthesis [PR89a, PR89b]. Except
for [QL91], the corresponding simulation and bisimulation games have been
addressed much more recently and using very different mathematical formal-
izations [MT02, AVW03, Tab04, ZKJ06, Tab08b]. The use of alternating sim-
ulation relations to formalize feedback composition and the systematic expo-
sition based on fixed-points appears to be new.

The adroit reader certainly noticed the reachability problem to be different
from all the other control problems considered in this chapter: its solution is
given by a minimal and not a maximal fixed-point, and no least restrictive
controller exists. Reachability is an instance of a liveness property as opposed
to safety. See, e.g., [AS87] for definitions of safety and liveness. This distinction
between safety and liveness properties also occurs in verification problems and
makes verification a much more interesting topic than what can be judged by
the superficial treatment in Chapter 5.

Worth mentioning is also the similarity between the definition of the op-
erator GC , used to solve bisimulation games, and the definition of alternating
simulation relation. This is no coincidence since the solutions of bisimulation
games can be completely characterized in terms of certain alternating simu-
lation relations, see [Tab04, Tab08b].

Part III

Infinite Systems: Exact symbolic models

7

Exact symbolic models for verification

The evolution of physical quantities such as position, temperature, humid-
ity, etc, is usually described by differential equations with solutions evolving
on Rn or appropriate subsets. The infinite cardinality of Rn prevents a di-
rect application of the verification methods described in Chapter 5. However,
verification algorithms are still applicable whenever suitable finite-state ab-
stractions of these infinite-state systems can be constructed. In recent years,
several methods have been proposed for the construction of these abstractions
based on a very interesting blend of different mathematical techniques. We
present several of these methods starting with timed automata to illustrate
the general principles of the abstraction process. Most of the abstraction tech-
niques described in this chapter require linear differential equations. For this
reason, we discuss as a special topic how to transform a class of nonlinear
differential equations into linear differential equations in larger state spaces.

Notation

The identity map on a set Z is denoted by 1Z : Z → Z. The graph
of a function f : Z → W is denoted by Γ (f) and defined as the set
Γ (f) = {(z, w) ∈ Z ×W | w = f(z)}. The pre-image of K ⊆ W under f is
the set f−1(K) = {z ∈ Z | f(z) ∈ K}. The function sign : R → {−1, 0, 1} is
defined by sign(x) = −1 for x < 0, sign(x) = 0 for x = 0, and sign(x) = 1 for
x > 0.

Given an equivalence relationQ on a set Z, we denote by [z] the equivalence
class of z ∈ Z, by Z/Q the set of all equivalence classes, and by πQ : Z → Z/Q
the natural projection map taking a point z ∈ Z to its equivalence class
π(z) = [z] ∈ Z/Q. We say that an equivalence relation is finite when it
has finitely many equivalence classes. An equivalence relation Q refines an
equivalence relation R when (z, z′) ∈ Q implies (z, z′) ∈ R. Given a collection
of sets Z = {Zi}i∈I , Zi ⊆ Z, we say that an equivalence relation Q on Z
respects Z if (z, z′) ∈ Q implies z ∈ Zi iff z′ ∈ Zi for every i ∈ I.

© Springer Science + Business Media, LLC 2009
73

DOI: 10.1007/978-1-4419-0224-5_7,
P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach,

74 7 Exact symbolic models for verification

A finite partition P of a set Z is a finite collection of sets P = {Pi}i∈I ,
Pi ⊆ Z, satisfying ∪i∈IPi = Z and i 6= j =⇒ Pi ∩ Pj = ∅ for any i, j ∈ I.

For any set Z ⊆ Rn, Z denotes the topological closure of Z and intZ
denotes its interior. The Minkowski sum of two sets Z,W ⊆ Rn is the
set Z +W = {x ∈ Rn | x = z + w for some z ∈ Z and w ∈W}. The infinity
norm of a vector x ∈ Rn is denoted by ‖x‖∞ = maxi=1,...,n |xi| and the
corresponding induced matrix norm by ‖A‖∞ = maxi=1,...,m

∑n
j=1 |aij | for

A ∈ Rn×m where aij is the entry of matrix A on the ith row and the jth
column. The natural projections taking a vector x ∈ Rn to its ith component
xi are denoted by πi : Rn → R, i = 1, 2, . . . , n.

7.1 Dynamical and hybrid dynamical systems as systems

With the objective of constructing finite-state abstractions for verification, we
show in this chapter how to model dynamical systems and hybrid dynamical
systems as systems.

7.1.1 Dynamical systems

The reader less familiar with differential equations will benefit from rereading
the rigid body example in Chapter 1 before progressing through this section.

We consider differential equations:

d

dt
ξ = f(ξ) (7.1)

in which f : Rn → Rn is an infinitely differentiable1 function. We also call such
functions smooth. The simpler notation ξ̇ = f(ξ) is also used to denote (7.1).
By a solution or trajectory of (7.1), with initial condition x ∈ Rn, we mean a
smooth curve:

ξ :]a, b[→ Rn

satisfying:

1. a < 0 < b;
2. ξ(0) = x;
3. d

dtξ(t) = f(ξ(t)) for all t ∈]a, b[.

When we want to emphasize the initial condition x ∈ Rn, we denote a trajec-
tory by ξx. For the preceding class of differential equations, classical results
guarantee that for any initial condition x ∈ Rn there exists a unique solu-
tion ξ :]ax, bx[→ Rn of (7.1) where the constants ax, bx ∈ R depend on x.
When −ax = bx = +∞ for any x ∈ Rn, the differential equation is said to be

1 Most results in this chapter hold under weaker regularity assumptions. The dif-
ferentiability assumption is only made for simplicity of presentation.

7.1 Dynamical and hybrid dynamical systems as systems 75

complete. For complete differential equations there exists a unique solution
defined for all t ∈ R and for every initial condition. We can thus speak of a
family of solutions indexed by x ∈ Rn. This family is denoted by:

θ : Rn × R→ Rn

where θ(x, t) = ξx(t) is the solution of (7.1) with initial condition x. It is
known from classical results on differential equations that θ satisfies:

θ(x, 0) = x (7.2)
θ(x, t1 + t2) = θ(θ(x, t1), t2) (7.3)

for very x ∈ Rn and t1, t2 ∈ R. Moreover, if we are given a smooth map
θ : Rn × R→ Rn satisfying (7.2) and (7.3), there is a unique differential equa-
tion that has θ(x, t) as its solution with initial condition x. For convenience,
we will use both f and θ to define the corresponding differential equation.
The pair (Rn, f) or (Rn, θ) defines a dynamical system.

Definition 7.1 (Dynamical system). A dynamical system Σ is a pair
(Rn, f) consisting of :

• the state space Rn;
• a smooth map f : Rn → Rn defining a differential equation as in (7.1).

A solution or trajectory of a dynamical system is a solution or trajectory
of the differential equation defined by f . A dynamical system is said to be
complete when the differential equation defined by f is complete.

We will also consider dynamical systems (X , f) with f defined in a strict
subset X of Rn. We note that in such cases a solution is a curve ξ :]a, b[→ X
with image in X .

When Σ = (Rn, f) describes the evolution of some physical quantity being
measured or regulated by a control system, we are many times confronted
with the need to prove that θ or ξ satisfies some desired requirements or
specifications. Moreover, the requirements to be proven seldom require that
we distinguish between arbitrary elements of Rn. In a chemical plant, for
example, it is usually necessary to guarantee that pressures and concentrations
are controlled to lie within a set of admissible values rather than to a specific
value. We can thus construct a finite set of outputs:

Y = {Ok, TempViolation, ConcViolation, TempAndConcViolation}

and an output map H : Rn → Y sending: the set of states in which temper-
ature and concentration are within the desired range to the symbol Ok; the
set of states in which temperature is outside the desired range but concen-
tration is within the desired range to the symbol TempViolation; the set of
states in which concentration is outside the desired range but temperature is
within the desired range to the symbol ConcViolation; and the set of states

76 7 Exact symbolic models for verification

in which both temperature and concentration are outside the desired range to
the symbol TempAndConcViolation. The behavior of Σ observed through the
output map H is a subset of Y ω, and since Y is a finite set, it is natural to
ask if there exists a finite-state system generating the same output behavior.
The answer will depend not only on Σ but also on the choice of output set
Y and output map H. Hence, we revisit the different ways in which we can
specify Y and H and how such choices lead to a system describing Σ.

There are different equivalent ways in which we can define the output of
a dynamical system Σ. As in the previous chemical plant example, we can
specify an output map H : Rn → Y to a finite set Y describing the desired
outputs. Such map defines an equivalence relation Q on Rn by (x, x′) ∈ Q if
H(x) = H(x′). Equivalently, we can directly specify an equivalence relation
Q on Rn having a finite number of equivalence classes. The relation Q defines
the canonical projection map πQ : Rn → Rn/Q that can be used as output
map. A third equivalent way consists in defining a finite partition P of Rn.
Given one such partition, we can regard each set P ∈ P as an equivalence
class and obtain an equivalence relation. Conversely, an equivalence relation
on Rn defines a partition of Rn where each set P ∈ P is an equivalence class
of Q.

Since all the preceding ways of defining the output set and map are equiva-
lent, we take a dynamical system to be verified and a finite equivalence relation
on its state set as the starting point for the methods described in this chapter.

Definition 7.2. Consider a dynamical system Σ = (Rn, f), let Q be a finite
equivalence relation on Rn, and let L ⊆ Rn be a set of initial states. The
system associated with Σ, Q, and L, denoted by SQL(Σ), consists of:

• X = Rn;
• X0 = L;
• U = R+

0 ;

• x
τ- x′ if any of the following two conditions is satisfied:

1. πQ(x) 6= πQ(x′), ξx : [0, τ] → Rn is a solution2 of Σ satisfying
ξx(τ) = x′, and there exists ε ∈ [0, τ] satisfying one of the following:
a) πQ(ξx(t)) = πQ(x) for t ∈ [0, ε[and πQ(ξx(t)) = πQ(x′) for
t ∈ [ε, τ];

b) πQ(ξx(t)) = πQ(x) for t ∈ [0, ε] and πQ(ξx(t)) = πQ(x′) for
t ∈]ε, τ];

2. πQ(x) = πQ(x′) and ξx : R+
0 → Rn is a solution of Σ satisfying

ξx(τ) = x′ and πQ(ξx(t)) = πQ(x) for all t ∈ R+
0 ;

• Y = X/Q;
• H = πQ.

2 We consider a curve ξx defined on the closed set [0, τ] while implicitly assuming the
existence of a curve ξ′x :]a, b[→ Rn satisfying ξx = ξ′x|[0,τ], and all the additional
conditions imposed on ξx.

7.1 Dynamical and hybrid dynamical systems as systems 77

The construction of SQL(Σ) depends on Q to define both the outputs and the
transitions. In fact, the transitions of SQL(Σ) were constructed to describe the
observations that a user can make of Σ through the output map H. Instead of
recording the outputs periodically, we record only the changes or transitions
in the output signal. An output change, say from y to y′, is witnessed by
the transition x

τ- ξx(τ) of SQL(Σ) satisfying H(x) = y and H(x′) = y′.
Note that we only allow H ◦ ξ to switch once from y to y′. The switching
time is ε ∈ [0, τ] and two situations may occur: the point ξ(ε) belongs to
H−1(y′), corresponding to 1a in Definition 7.2, or the point ξ(ε) belongs to
H−1(y), corresponding to 1b in Definition 7.2. This sampling strategy has two
important consequences: the output strings never have repeated symbols, and
trajectories ξ of unbounded duration may be sampled into finite strings. The
last consequence occurs, e.g., when H ◦ ξ(t) = H ◦ ξ(0) for t ∈ R+

0 . This is
quite unfortunate since a finite observed string suggests that Σ is a blocking
system even if this is not the case. To overcome this difficulty, we clairvoyantly
repeat the last output y in an observed string induced by a trajectory ξ of
unbounded duration. This is done by equipping SQL(Σ) with the transition

x
τ- ξx(τ) when H(x) = H ◦ ξx(t) for t ∈ R+

0 , as described in case 2 of
Definition 7.2. To simplify notation, we denote SQL(Σ) by SQ(Σ) whenever
L = X. A different way of modeling dynamical systems as systems, closer to
the discussion in Section 1.3.2, appears in Chapter 10.

7.1.2 Hybrid dynamical systems

In addition to dynamical systems, we also consider hybrid dynamical systems
consisting of a finite collection of dynamical systems and a set of rules describ-
ing when and how to switch among the individual dynamical systems. The
definitions of hybrid dynamical system and its associated system are known
to be difficult to digest. The reader in need of an aperitif is invited to reread
Chapter 1 where hybrid systems are introduced through examples and several
important notions such as invariant sets, guard sets, and reset functions are
discussed.

Definition 7.3 (Hybrid dynamical system). A hybrid dynamical sys-
tem Σ is a quintuple (S, {Inx}x∈X , {Gut}t∈ - , {Ret}t∈ - , {fx}x∈X)
consisting of:

• a finite-state system S = (X,U, -);
• a non-empty invariant set Inx ⊆ Rn for each x ∈ X;
• a non-empty guard set Gu(x,u,x′) ⊆ Inx for each (x, u, x′) ∈ - ;
• a reset function Re(x,u,x′) : Inx → Inx′ for each (x, u, x′) ∈ - ;
• a dynamical system (Inx, fx) for each x ∈ X.

78 7 Exact symbolic models for verification

right

ξ̇ = −1
0 ≤ ξ ≤ π

left

ξ̇ = 1
0 ≤ ξ ≤ π

ξ = 0
switch

ξ = π
switch

Fig. 7.1. Hybrid dynamical system modeling a windshield wiper.

As we distinguish between dynamical systems and control systems, we also
distinguish between hybrid dynamical systems and hybrid control systems.
The former are equipped with a dynamical system for each finite state while
the later are equipped with a control system for each finite state.

Example 7.4. We consider a simplistic model for a windshield wiper given
by the hybrid dynamical system Σ in Figure 7.1. The finite-state system
S corresponding to Σ is defined by the set of states X = {right, left},
by the set of inputs U = {switch}, and by the transition relation contain-
ing only two transitions right

switch- left and left
switch- right. The fi-

nite state right describes the clockwise motion of the wiper while the fi-
nite state left describes its counterclockwise motion. The angle described
by the wiper is denoted by ξ and taken as positive when measure in the
counter clockwise direction. Its dynamics is given by the dynamical sys-
tem ([0, π],−1) at the state right and by the dynamical system ([0, π], 1)
at the state left. In particular, this implies Inright = [0, π] = Inleft since
the wiper’s angle changes between 0 and π radians. The analogue of a tra-
jectory for a dynamical system is an execution for a hybrid dynamical sys-
tem. Given an initial condition, e.g., (right, π2) ∈ X × Inright, the execution
from (right, π2) starts with the solution ξπ

2
= π

2 − t of ([0, π],−1). At time
t = π

2 we have ξπ
2

(π2) = π
2 −

π
2 = 0 and the guard associated with the

transition right
switch- left, Gu(right,switch,left) = {0}, is satisfied, that is,

ξπ
2

(π2) ∈ Gu(right,switch,left). The execution can be continued from (right, 0)
by a transition from state right to state left. In this case, this transition
has to be taken since failure to do so would force the angle to leave the in-
variant set. Taking the transition right

switch- left changes the state from
(right, 0) to (left,Re(left,switch,right)(0)) = (left, 0). Upon taking the tran-
sition, the execution proceeds from (left, 0) with the evolution of the angle
according to the solution of ([0, π], 1) until another transition is taken and so
on. C

7.1 Dynamical and hybrid dynamical systems as systems 79

The previous example suggested that executions of hybrid dynamical sys-
tems consist of sequences of continuous-time evolutions interleaved with tran-
sitions between finite states. We do not need to formally define executions since
they arise as the internal behavior of the systems modeling hybrid dynamical
systems. Therefore, system models for hybrid dynamical systems require tran-
sition relations describing both the continuous-time dynamics defined by the
dynamical systems (Inx, fx) as well as the dynamics induced by the finite-state
system S through the guards and reset maps.

Definition 7.5. Consider a hybrid dynamical system:

Σ = (Sa, {Inxa}xa∈Xa , {Guta}ta∈
a
- , {Reta}ta∈

a
- , {fxa}xa∈Xa).

For each xa ∈ Xa let Qxa be a finite equivalence relation on Inxa , and let
L ⊆ {(xa, xb) ∈ Xa × Rn | xb ∈ Inxa} be a set of initial states. The system
associated with Σ, {Qxa}xa∈Xa , and L, denoted by SQL(Σ), consists of:

• X = {(xa, xb) ∈ Xa × Rn | xb ∈ Inxa};
• X0 = L;
• U = Ua ∪ R+

0 ;

• (xa, xb)
u- (x′a, x

′
b) if one of the following three conditions holds:

1. u ∈ Ua, xb ∈ Gu(xa,u,x′a)
, and x′b = Re(xa,u,x′a)

(xb);
2. u ∈ R+

0 , x′a = xa, πQxa (xb) 6= πQxa (x′b), ξxb : [0, u] → Inxa is a
solution of (Inxa , fxa) satisfying ξxb(u) = x′b, and there exists ε ∈ [0, u]
satisfying one of the following:
a) πQxa (ξxb(t)) = πQxa (xb) for t ∈ [0, ε[and πQxa (ξxb(t)) = πQxa (x′b)

for t ∈ [ε, u];
b) πQxa (ξxb(t)) = πQxa (xb) for t ∈ [0, ε] and πQxa (ξxb(t)) = πQxa (x′b)

for t ∈]ε, u];
3. u ∈ R+

0 , x′a = xa, πQxa (xb) = πQxa (x′b), ξxb : R+
0 → Inxa is a solution

of (Inxa , fxa) satisfying ξxb(u) = x′b, and πQxa (ξxb(t)) = πQxa (xb) for
all t ∈ R+

0 .
• Y =

{
(xa, y) ∈ Xa ×

⋃
x′a∈Xa

Inx′a/Qx′a | y ∈ Inxa/Qxa
}

;
• H(xa, xb) = (xa, πQxa (xb)).

For a hybrid dynamical system Σ, the state of the system SQL(Σ) is pair
(xa, xb) ∈ Xa × Inxa consisting of a finite part xa, inherited from the finite-
state system Sa, and an infinite part xb, inherited from the dynamical system
(Inxa , fxa). The evolution of the finite part is governed by a coupling between
the transition relation of Sa and the transition relation of SQxa (Inxa , fxa).

A transition xa
ua

a
- x′a in Sa defines a transition (xa, xb)

ua- (x′a, x
′
b)

in SQL(Σ) only when the infinite part of the state belongs to the guard
Gu(xa,ua,x′a)

and when x′b is obtained from xb by applying the reset map
Re(xa,ua,x′a)

. This kind of transitions, corresponding to case 1 in Definition 7.5,

80 7 Exact symbolic models for verification

are termed discrete transitions since they are induced by the transitions in Sa.
In addition to discrete transitions there are also continuous flows described
by cases 2 and 3. A transition (xa, xb)

u- (x′a, x
′
b) describes a continuous

flow when u ∈ R+
0 is the duration of the flow defined by the solution ξxb of

(Inxa , fxa) satisfying ξxb(u) = x′b. Note that a continuous flow leaves the finite
part of the state unaltered, i.e., x′a = xa. Consequently, during a continuous
flow, a hybrid dynamical system behaves as the dynamical system (Inxa , fxa)
and the construction of SQL(Σ) mirrors the construction of SQxa (Inxa , fxa)
in Definition 7.2. The construction in Definition 7.5 is the starting point for
the different abstraction techniques described in this chapter.

7.2 Timed automata

Several abstraction techniques for hybrid systems are generalizations of a con-
struction developed for a special class of hybrid dynamical systems: timed
automata. This class was originally introduced to reason about the tempo-
ral properties of software systems and is characterized by restrictions on the
invariants, guards, resets, and continuous-time dynamics.

Definition 7.6 (Timed automaton). A hybrid dynamical system:

Σ = (Sa, {Inxa}xa∈Xa , {Guta}ta∈
a
- , {Reta}ta∈

a
- , {fxa}xa∈Xa).

is said to be a timed automaton if the following four conditions are satisfied:

1. for every xa ∈ Xa, the sets Inxa ⊆ Rn are defined by finitely many
conjunctions of conditions of the form xbi ∼ c with i ∈ {1, 2, . . . , n},
∼∈ {≤, <,=, >,≥}, and c ∈ Q+

0 ;
2. for every (xa, ua, x′a) ∈ - , the sets Gu(xa,ua,x′a)

are defined by finitely
many conjunctions of conditions of the form xbi ∼ c with i ∈ {1, 2, . . . , n},
∼∈ {≤, <,=, >,≥}, and c ∈ Q+

0 ;
3. for every (xa, ua, x′a) ∈ - , xb ∈ Inxa , and i ∈ {1, 2, . . . , n}, the com-

posite πi ◦ Re(xa,ua,x′a)
(xb) is either xbi or 0;

4. for every xa ∈ Xa, xb ∈ Inxa , and i ∈ {1, 2, . . . , n}, πi ◦ fxa(xb) = 1.

We explain the meaning of the preceding restrictions by referring to the
timed automaton, modeling a periodic real-time task, presented in Chap-
ter 1, Figure 1.6. For convenience, this timed automaton is also depicted in
Figure 7.2. The invariant associated with any of the finite states is a con-
junction of inequalities in which an infinite state variable xbi is compared
with a non-negative constant. The invariant associated with the state active
is 0 ≤ xb1 ≤ D, the conjunction of xb1 ≥ 0 with xb1 ≤ D. The guards
are defined by sets constructed in the same fashion. The guard associated
with the transition active

expired- error is xb1 = D and of the form re-
quired by the definition of timed automata. Consider now the transition

7.2 Timed automata 81

sleep

ξ̇1 = 1 ξ̇2 = 1
0 ≤ ξ1 ≤ T

ξ1 := 0
ξ2 := 0

active

ξ̇1 = 1 ξ̇2 = 1
0 ≤ ξ1 ≤ D

execute

ξ̇1 = 1 ξ̇2 = 1
0 ≤ ξ1 ≤ D
0 ≤ ξ2 ≤ C

error

ξ̇1 = 1 ξ̇2 = 1
D ≤ ξ1

awake

ξ1 = T
ξ1 := 0

expired

ξ1 = D

starting

0 ≤ ξ1 < D
ξ2 := 0

expired

ξ1 = D
finished

0 < ξ2 < C

Fig. 7.2. Timed automaton representing a periodic real-time task.

active
starting- execute which is decorated with xb2 := 0. The assign-

ment xb2 := 0 defines the reset map associated with this transition to be
Re(active,starting,execute)(xb) = (xb1, 0) by stating that xb2 should be reset to
zero while xb1 should remain unchanged. Finally, the differential equations in
each of the finite states are of the form ξ̇1 = 1 and ξ̇2 = 1.

Existence of a finite-state system bisimilar to the infinite-state system S
associated with a timed automaton implies that for each finite state xa ∈ Xa

of S, there exists a finite-state system bisimulating the system SQ(Inxa , fxa)
for some finite equivalence relation Q ⊆ Inxa×Inxa . The converse of this obser-
vation does not hold unless we make some additional assumptions. The next
result, a direct consequence of Theorem 4.18, offers the missing assumptions
in the general context of hybrid systems.

82 7 Exact symbolic models for verification

Lemma 7.7. Consider a hybrid dynamical system:

Σ = (Sa, {Inxa}xa∈Xa , {Guta}ta∈
a
- , {Reta}ta∈

a
- , {fxa}xa∈Xa)

and let Q = {Qxa}xa∈Xa be a collection of finite equivalence relations with
Qxa ⊆ Inxa × Inxa . If Q satisfies the following three properties:

1. Qxa is a bisimulation relation between SQxa (Inxa , fxa) and SQxa (Inxa , fxa);
2. Qxa respects the guard sets;
3. for every (xb, x′b) ∈ Qxa we have:

xb, x
′
b ∈ Gu(xa,u,x′a)

=⇒ (Re(xa,u,x′a)
(xb),Re(xa,u,x′a)

(x′b)) ∈ Qx′a ,

then there exists a finite-state system bisimilar to SQ(Σ).

Proof. The proof consists in weaving together the finite equivalence rela-
tions Qxa into a single finite equivalence relation R ⊆ X × X, on the state
set of SQ(Σ) = (X,X0, U, - , Y,H), satisfying the requirements of Theo-
rem 4.18. Relation R is defined by all the pairs ((xa, xb), (x′a, x

′
b)) ∈ X × X

satisfying xa = x′a and (xb, x′b) ∈ Qxa . Since R is finite by construction, the
result follows from Theorem 4.18 once we show that R is a bisimulation rela-
tion between SQ(Σ) and SQ(Σ). Requirements 1a, 1b, and 2 in Definition 4.13
follow directly from the way in which we defined R. To show requirements 3a
and 3b, we first note that requirement 3a implies requirement 3b since we are
relating SQ(Σ) with SQ(Σ). We discuss separately discrete transitions and
continuous flows.

Let ((xa, xb), (x′a, x
′
b)) ∈ R and let (xa, xb)

u- (x′′a, x
′′
b) be a discrete tran-

sition in SQ(Σ). By definition of R, xa = x′a and (xb, x′b) ∈ Qxa . Moreover,
by definition of SQ(Σ), xb ∈ Gu(xa,u,x′′a). Since Qxa respects guard sets, x′b
also belongs to Gu(xa,u,x′′a). It now follows from the third property of Q that
(Re(xa,u,x′a)

(xb),Re(xa,u,x′a)
(x′b)) = (x′′b , x

′′′
b) ∈ Qx′′a . Consequently, by con-

struction of SQ(Σ), we have the transition (x′a, x
′
b)

u- (x′′a, x
′′′
b) in SQ(Σ).

Since (x′′b , x
′′′
b) ∈ Qx′′a implies ((x′′a, x

′′
b), (x′′a, x

′′′
b)) ∈ R we conclude that re-

quirement 3a in Definition 4.13 holds for discrete transitions.
Consider now a continuous flow (xa, xb)

u- (x′′a, x
′′
b) in SQ(Σ) and

let ((xa, xb), (x′a, x
′
b)) ∈ R, i.e., xa = x′a and (xb, x′b) ∈ Qxa . By def-

inition of continuous flow, xa = x′′a and xb
u- x′′b is a transition in

SQxa (Inxa , fxa). Since Qxa is a bisimulation relation between SQxa (Inxa , fxa)

and SQxa (Inxa , fxa), there exists a transition x′b
u′- x′′′b in SQxa (Inxa , fxa)

satisfying (x′′b , x
′′′
b) ∈ Qxa . We thus conclude the existence of the continuous

flow (xa, x′b)
u′- (xa, x′′′b) in SQ(Σ) satisfying ((xa, x′b), (xa, x

′′′
b)) ∈ R which

concludes the proof. ut

7.2 Timed automata 83

Fig. 7.3. Partition of (R+0)2, induced by the equivalence relation Q, distinguishing
guards, and invariant sets.

Lemma 7.7 can be straightforwardly applied to hybrid dynamical systems
with constant reset maps since in such cases condition 3 is automatically
satisfied in virtue of the equality Re(xa,u,x

a)(xb) = Re(xa,u,x
a)(xb). Hence, it

suffices to construct finite-state abstractions for the systems SQxa
(Inxa

, fxa
),

based on equivalence relationsQxa
respecting the guard sets, in order to obtain

a finite-state abstraction for SQ(Σ). This observation justifies why we devote
a large portion of this chapter to the construction of finite-state abstractions
of several classes of dynamical systems.

For timed automata, we do not need to rely on constant reset maps due to
the simple nature of the differential equations describing the continuous-time
dynamics. We illustrate the construction of a family of equivalence relations
{Qxa}xa∈Xa satisfying the conditions in Lemma 7.7 using again the timed
automaton in Figure 7.2. For concreteness, we take C = 1, D = 2, and T = 3.
Instead of constructing directly an equivalence relation for each invariant set,
we start by constructing a single equivalence relation Q on (R+

0)
2 that re-

spects all the invariant sets and all the guards. Relation Q is displayed in
Figure 7.3 and defines three different kinds of equivalence classes. The first
kind, of dimension zero, consists of six singleton sets:

{(0, 0)}, {(2, 0)}, {(3, 0)}, {(0, 1)}, {(2, 1)}, {(3, 1)}.

The second kind, of dimension 1, consists of twelve horizontal and vertical
open line segments:

{(xb1, xb2) ∈ R2 | 0 < xb1 < 2 ∧ xb2 = 0},
{(xb1, xb2) ∈ R2 | 2 < xb1 < 3 ∧ xb2 = 0},
{(xb1, xb2) ∈ R2 | 3 < xb1 ∧ xb2 = 0},
{(xb1, xb2) ∈ R2 | 0 < xb1 < 2 ∧ xb2 = 1},
{(xb1, xb2) ∈ R2 | 2 < xb1 < 3 ∧ xb2 = 1},
{(xb1, xb2) ∈ R2 | 3 < xb1 ∧ xb2 = 1},

1

2 3 xb1

xb2

84 7 Exact symbolic models for verification

{(xb1, xb2) ∈ R2 | xb1 = 0 ∧ 0 < xb2 < 1},
{(xb1, xb2) ∈ R2 | xb1 = 0 ∧ 1 < xb2},
{(xb1, xb2) ∈ R2 | xb1 = 2 ∧ 0 < xb2 < 1},
{(xb1, xb2) ∈ R2 | xb1 = 2 ∧ 1 < xb2},
{(xb1, xb2) ∈ R2 | xb1 = 3 ∧ 0 < xb2 < 1},
{(xb1, xb2) ∈ R2 | xb1 = 3 ∧ 1 < xb2}.

The third kind, is formed by the six open sets of dimension 2:

{(xb1, xb2) ∈ R2 | 0 < xb1 < 2 ∧ 0 < xb2 < 1},
{(xb1, xb2) ∈ R2 | 2 < xb1 < 3 ∧ 0 < xb2 < 1},
{(xb1, xb2) ∈ R2 | 3 < xb1 ∧ 0 < xb2 < 1},
{(xb1, xb2) ∈ R2 | 0 < xb1 < 2 ∧ 1 < xb2},
{(xb1, xb2) ∈ R2 | 2 < xb1 < 3 ∧ 1 < xb2},
{(xb1, xb2) ∈ R2 | 3 < xb1 ∧ 1 < xb2}.

Although the equivalence relation Q respects invariant sets and guards, it
fails to respect the continuous flow in the sense that different points in the
same equivalence class may visit, under the continuous flow, different equiva-
lence classes. This is illustrated in Figure 7.4 where the flow is represented by
the dashed lines. Since failure to respect the continuous flow implies failure
of the first assumption in Lemma 7.7, we refine Q to an equivalence relation
Q respecting the continuous flow. Given the special nature of the differential
equations present in timed automata, the continuous flow with initial condi-
tion (xb1, xb2) is the straight line with unit slope passing through (xb1, xb2).
Using this fact, it is straightforward to refine Q to the equivalence relation
Q represented in Figure 7.5. The reader should verify that any two points
in the same equivalence class of Q are taken by the continuous flow through
the same equivalence classes. Upon inspection of Figure 7.5, we observe that
the equivalence classes of Q are not closed under projection maps. To be

Fig. 7.4. Two points on the same equivalence taken by the continuous flow to
different equivalence classes.

1

2 3 xb1

xb2

7.2 Timed automata 85

Fig. 7.5. Partition of (R+0)2, induced by equivalence relation Q refining equivalence
relation Q. Guard and invariant sets are distinguished while the continuous flow is
respected.

Fig. 7.6. Partition of (R+0)2, induced by equivalence relation Q refining equiva-
lence relation Q. Guard and invariant sets are distinguished while reset maps are
respected.

precise, consider the maps r1 : (R+
0)2 → (R+

0)2, r2 : (R+
0)2 → (R+

0)2, and
r12 : (R+

0)2 → (R+
0)2 defined by:

r1(xb1, xb2) = (xb1, 0), r2(xb1, xb2) = (0, xb2), r12(xb1, xb2) = (0, 0).

For any equivalence class [xb] ∈ (R+
0)2/Q and for any map g ∈ {1(R+

0)2 , r2, r12},
g([xb]) is an equivalence class of Q. However, this is no longer the case when
g = r1. In particular, applying r1 to the equivalence class defined by:

{(xb1, xb2) ∈ (R+
0)2 | 0 < xb1 < 2 ∧ xb2 = 1}

results in the set:

{(xb1, xb2) ∈ (R+
0)2 | 0 < xb1 < 2 ∧ xb2 = 0}

which clearly does not belong to (R+
0)2/Q. Since the reset maps are neces-

sarily of the form 1(R+
0)2 , r1, r2, and r12, we conclude that Q does not respect

the reset maps. Failure to respect the reset maps implies failure of the third
assumption in Lemma 7.7. The next step is then obvious: refine Q to the

1

1

2 3 xb1

xb2

1

1

2 3 xb1

xb2

86 7 Exact symbolic models for verification

Fig. 7.7. Partition of (R+0)2, induced by equivalence relation Q refining equiva-
lence relation Q. Guard and invariant sets are distinguished while reset maps and
the continuous flow are respected.

equivalence relation Q, shown in Figure 7.6, respecting the reset maps. Un-
fortunately, by refining Q to Q we obtain an equivalence relation that no
longer respects the continuous flow. A further refinement step is necessary to
obtain the equivalence relation Q, depicted in Figure 7.7, that respects both
the continuous flows and the reset maps.

At this point we have an equivalence relation respecting all the ingredients
of our timed automaton: invariant sets, guards, the continuous flow, and reset
maps. This observation implies that the second and third assumptions in
Lemma 7.7 hold for the equivalence relations:

Qxa
= (Inxa

× Inxa
) ∩Q, xa ∈ Xa.

Furthermore, as these equivalence relations also respect the continuous flow,
they are bisimulation relations between SQxa

(Inxa , fxa) and SQxa
(Inxa , fxa).

Lemma 7.7 then guarantees the existence of a finite-state system bisimilar to
SQ(Σ).

The previously described steps lead to the following general result.

Theorem 7.8. Let Σ be a timed automaton and let Q = {Qxa
}xa∈Xa

be a
collection of finite equivalence relations Qxa

⊆ Inxa
× Inxa

whose equivalence
classes are defined by finitely many conjunctions of conditions of the form
xbi ∼ c with i ∈ {1, 2, . . . , n}, ∼∈ {≤, <,=, >,≥}, and c ∈ Q+

0 . Then, there
exists a finite-state system bisimilar to SQ(Σ).

The strategy to obtain Theorem 7.8 consisted in refining an initial finite
equivalence relation until invariants, guards, resets, and the continuous flow
were respected. The resulting finite equivalence relation lead directly to the
quotient system which is finite-state and bisimilar to the original system. We
refer to these abstractions as quotient based abstractions. The existence of
quotient based abstractions for timed automata can be further exploited to
prove several deep and beautiful results for this class of systems. Instead of
exploring further timed automata, we veer to more general classes of hybrid
dynamical systems possessing richer continuous-time dynamics.

1

1

2 3 xb1

xb2

7.3 Order minimal hybrid dynamical systems 87

7.3 Order minimal hybrid dynamical systems

Polynomial functions have remarkable finiteness properties that are highly
desirable for the construction of finite-state models for verification. Unfortu-
nately, even if a differential equation is linear, its solutions are not, in general,
polynomial functions of time. We thus need a larger class of sets and functions
that still enjoys the same finiteness properties of polynomials and contains the
solutions of (some) differential equations. Order minimal structures provide an
axiomatization for a class that is general enough to include semi-linear, semi-
algebraic, and even more complicated sets and functions, while still possessing
very strong finiteness properties. In what follows, we restrict the discussion
to order minimal structures over the real numbers.

Definition 7.9 (Order minimal structure). An order minimal structure
on R is a sequence S = {Sn}n∈N such that for each n ∈ N we have:

1. Sn is a boolean algebra of subsets of Rn, i.e., Sn is a collection of subsets
of Rn such that:
a) ∅ ∈ Sn;
b) Z,W ∈ Sn implies Z ∪W ∈ Sn;
c) Z ∈ Sn implies Rn\Z ∈ Sn;

2. Z ∈ Sn implies Z × R ∈ Sn+1 and R× Z ∈ Sn+1;
3. {(x1, x2, . . . , xn) ∈ Rn | xi = xj} ∈ Sn for 1 ≤ i < j ≤ n;
4. Z ∈ Sn+1 implies π(Z) ∈ Sn where π : Rn+1 → Rn is the usual projection

taking (x1, . . . , xn−1, xn) to (x1, . . . , xn−1);
5. {r} ∈ S1 for each r ∈ R and {(x1, x2) ∈ R2 | x1 < x2} ∈ S2;
6. the only sets in S1 are the finite unions of open intervals and points.

Example 7.10. The class of semi-linear sets on Rn is defined by finite unions
of subsets of Rn satisfying conjunctions of conditions of the form f ∼ 0 where
f is an affine function and ∼∈ {=, >}. Semi-linear sets form an order minimal
structure. When the functions f are polynomial instead of affine, we obtain
the class of semi-algebraic sets. This class constitutes another example of an
order minimal structure.

The set W , depicted in Figure 7.8, is a semi-algebraic set defined by:

W = {(x1, x2) ∈ R2 | x2
1 + x2

2 ≤ 1 ∧ −x2 + x1 ≤ 0} (7.4)
∪ {(x1, x2) ∈ R2 | x2

1 + x2
2 ≤ 1 ∧ x2 + x1 ≤ 0}. (7.5)

Although the sets (7.4) and (7.5) are not defined by conditions of the form
f ∼ 0 with ∼∈ {=, >}, they can be rewritten in that form. For example (7.4)
can be written as:

{(x1, x2) ∈ R2 | − x2
1 − x2

2 + 1 > 0 ∧ x2 − x1 > 0} (7.6)
∪ {(x1, x2) ∈ R2 | − x2

1 − x2
2 + 1 = 0 ∧ x2 − x1 = 0}. (7.7)

C

88 7 Exact symbolic models for verification

Fig. 7.8. Semi-algebraic set defined by (7.4) and (7.5).

Given an order minimal structure S on R, we say that a set Z ⊆ Rm is
definable (in the structure S) if Z ∈ Sm. A map f : Z → Rn is said to be
definable (in the structure S) if its graph Γ (f) ⊆ Rm × Rn is definable, i.e.,
Γ (f) ∈ Sn+m.

Let W ⊆ Rm × Rn be a definable set. For every z ∈ Rm the following set
is a well defined subset of Rn called the fiber of W over z:

Wz = {z′ ∈ Rn | (z, z′) ∈W}.

We can regard W as a family of sets in Rn parameterized by points z ∈ Rm.
The only result we need from the theory of order minimal structures shows
the existence of an upper bound for the number of connected components of
Wz which is independent of z.

Theorem 7.11 (Uniform finiteness). Let W ⊆ Rm×Rn be a definable set.
Then, there is a number k ∈ N such that for every z ∈ Rm, the fiber Wz has
at most k connected components.

Example 7.12. Consider the set W ⊆ R × R in Figure 7.8. For 1 < z < −1,
Wz = ∅; for −1 ≤ z ≤ 0, Wz consists of a single connected component;
and for 0 < z ≤ 1, Wz consists of two connected components. Although the
number of connected components changes with z, Theorem 7.11 guarantees
the existence of a uniform upper-bound which is this case is 2. C

In addition to semi-linear and semi-algebraic sets there are two other order
minimal structures that will play an important role in this section. The first
consists of semi-exponential-algebraic sets. Such sets are finite unions of sets
in Rn described by conjunctions of conditions of the form f ∼ 0 where the
functions f are polynomials in the variables x1, x2, . . . , xn, e

x1 , ex2 , . . . , exn

and ∼∈ {=, >}. The fact that we can work with the exponential function
will be essential when dealing with solutions of linear differential equations.
The second structure extends semi-exponential-algebraic sets with any fi-
nite number of analytic functions h : Rn → R restricted to the hyper-cube
[−1, 1]n. This means that the functions f are polynomials in the variables
x1, x2, . . . , xn, e

x1 , ex2 , . . . , exn , h1(x), h2(x), . . . , hk(x) for analytic functions
hi : Rn → R restricted to [−1, 1]n.

7.3 Order minimal hybrid dynamical systems 89

We now consider dynamical systems Σ = (Rn, θ) in which θ : Rn×R→ Rn
is a definable map. The finiteness properties of θ, ensured by definability, can
be used to guarantee the existence of finite-state abstractions. The starting
point is a dynamical system Σ = (Rn, θ) and an equivalence relation Q on
Rn with finitely many equivalence classes consisting of definable sets. Such
equivalence relations are termed definable finite equivalence relations.

Theorem 7.13. Let Σ = (Rn, θ) be a complete dynamical system in which
θ : Rn × R → Rn is a definable map. For any definable finite equivalence
relation Q on Rn, there exists a finite-state system bisimilar to SQ(Σ).

Proof. Recall that since Σ is a complete dynamical system, for every x ∈ Rn
there is a unique solution ξx : R→ Rn satisfying ξx(0) = x. Let P be the par-
tition of Rn induced by Q. Then ξ−1

x (P) is a partition of R that we denote by
PR(x). The cardinality of PR(x) corresponds to the number (with multiplicity)
of equivalence classes visited (in positive and negative time) by the solution
ξx. We now use Theorem 7.11 to assert the existence of a global bound for the
cardinality of PR(x) independent of x ∈ Rn. To do this, we let Z(q) be the set
θ−1(q) where q is an equivalence class of Q, thus (x, t) ∈ Z(q) if θ(x, t) ∈ q.
By Theorem 7.11, there is a uniform upper-bound on the cardinality of the
fibers Zx(q) = {t ∈ R | θ(x, t) ∈ q}. This upper-bound describes how many
times the equivalence class q is visited by ξx. Moreover, since there are finitely
many equivalence classes q, there is a finite upper-bound for the cardinality
of θ−1(P) and therefore also for the cardinality of PR(x), independently of
x ∈ Rn. To each point x ∈ Rn we can now associate a finite string q(x)
obtained by concatenating elements in {q1, . . . , qk} ∪ {q̂1, . . . , q̂k} where each
qi is an equivalence class of Q. This string describes the equivalence classes
of Q visited along ξx, and is of the form q(x) = q0q1 . . . qi−1q̂iqi+1 . . . ql with
qj representing the equivalence classes of Q to be visited in the future when
j > i, visited in the past when j < i, and q̂i representing the equivalence
class containing x. The set of all such strings is finite, since there is a uniform
upper bound on the cardinality of PR(x), and defines the state set X of the
finite-state system S. The remaining elements of S = (X,U, - , Y,H) are
as follows:

U = {∗}, Y = X/Q, H(q0q1 . . . qi−1q̂iqi+1 . . . ql) = qi

with - consisting of two kinds of transitions:

1. q0q1 . . . qi−1q̂iqi+1 . . . ql
∗- q0q1 . . . qi−1qiq̂i+1 . . . ql;

2. q0q1 . . . ql−1q̂l
∗- q0q1 . . . ql−1q̂l.

It is now routine to check that the relation R ⊆ Rn × X defined by all the
pairs (x, q(x)) is a bisimulation relation between SQ(Σ) and S. ut

The proof of Theorem 7.13 can be seen as an application of Theorem 4.18
to the system SQ(Σ) and to the equivalence relation R ⊆ Rn×Rn obtained by

90 7 Exact symbolic models for verification

declaring (x, x′) ∈ R when q(x) = q(x′). Definability of θ and Q is then used to
prove that R has finitely many equivalence classes. In this sense, Theorem 7.13
follows very closely the spirit of Theorem 7.8 for timed automata and provides
another example of a quotient based abstraction.

When initial states L ⊂ Rn are to be described in the finite-state model
S, we can refine the equivalence relation Q to an equivalence relation Q′

respecting L, and apply Theorem 7.13 to Σ and Q′. The set of initial states
on the finite-state system S can then be obtained as the set of all states related
to the states of SQ′(Rn, θ) belonging to L.

Theorem 7.13 is a powerful result that can be specialized for different kinds
of differential equations.

Corollary 7.14. Let Σ = (Rn, f) be a dynamical system in which f(x) = Ax
is linear map represented by the matrix A ∈ Rn×n. If the eigenvalues of A are
purely real, or if the matrix A is diagonalizable and its eigenvalues are purely
imaginary, then for any definable finite equivalence relation Q on Rn there
exists a finite-state system bisimilar to SQ(Σ).

Proof. It is known from classical results [AM97] that the solution of a lin-
ear differential equation dξ/dt = Aξ with initial condition x ∈ Rn is given
by ξ(t) = eAtx =

∑∞
i=0

1
i!A

itix. When the eigenvalues of A are real, for
every i = 1, 2, . . . , n, ξi(t) is a semi-exponential-algebraic function of t and
x1, x2, . . . , xn, see [AM97] for a detailed description of ξi(t). Therefore, θ is
definable and the result follows from Theorem 7.13. When the matrix A is di-
agonalizable and its eigenvalues are purely imaginary, then ξi(t) can be written
in terms of the analytic function sin. It follows from periodicity of sin that we
can restrict its argument to [−π, π] without altering its image. The restriction
of sin induces a restriction θ′ of θ which is definable in the order minimal
structure containing restricted analytic functions. Since this restriction leads
to a system SQ(Rn, θ′) that is bisimilar to SQ(Rn, θ), the result follows by a
straightforward adaptation of Theorem 7.13 applicable to SQ(Rn, θ′). ut

Example 7.15. A typical problem in control engineering is to design feedback
control laws forcing the solutions of a particular differential equation, modeling
the physical process being controlled, to converge to some desired operating
point or region. We consider the following linear dynamical system Σ on R2:

f(x) =
[
−7 3
−3 0

] [
x1

x2

]
(7.8)

which describes the result of applying a stabilizing feedback controller to a
linear system. Although the solutions of the differential equation defined by
f are guaranteed to converge to the origin, we would like to verify that tra-
jectories do not violate the operating envelope by entering the set of unsafe
states defined by:

B = {(x1, x2) ∈ R2 | x2 ≤ −4 ∨ x2 ≥ 4)}

7.3 Order minimal hybrid dynamical systems 91

Fig. 7.9. Finite partition defined by an equivalence relation respecting continuous
flows, the set of initial states L, and the set of unsafe states B. The set L is light-
colored while the set B is dark-colored. The continuous-time dynamics defined by
smooth map (7.8) is superimposed in gray.

when the initial conditions belong to the set:

L = {(x1, x2) ∈ R2 | 5 ≤ x1 ≤ 6 ∧ −1 ≤ x2 ≤ 1}.

The verification problem is specified by Σ and by the equivalence relation Q
on R2 defined by the equivalence classes B, L, and R2\(B ∪ L). Noting that
the eigenvalues of the matrix A defining the dynamics of Σ are purely real,
we can apply Corollary 7.14 to conclude the existence of a finite-state system
S bisimilar to SQ(Σ). The partition of R2 defining the states of S is depicted
in Figure 7.9. The resulting finite-state system S is shown in Figure 7.10 with
the states of S superimposed onto the equivalence classes they represent. The
state in the center of the figure corresponds to the equivalence class containing
only the state {(0, 0)}. By analyzing the finite-state system S we see that it
is not possible to reach the set B from L and thus SQ(Σ) is safe. C

The conditions in Corollary 7.14 are tight in the sense that there exist
systems that do not satisfy these conditions and for which no finite-state
bisimilar system exists. One such example is given by the dynamical system
on R2 defined by:

f(x) =
[
0.1 −1

1 0.1

] [
x1

x2

]
. (7.9)

The corresponding A matrix has eigenvalues 0.1 ± i and the solution to the
differential equation defined by (7.9) is:

θ(x, t) = e0.1t
[
cos(t) − sin(t)
sin(t) cos(t)

] [
x1

x2

]
.

92 7 Exact symbolic models for verification

Fig. 7.10. Finite-state system S bisimilar to SQ(Σ). The states of S are superim-
posed on the equivalence classes they correspond to. The state in the center of the
figure corresponds to the equivalence class consisting of the single state (0, 0).

Solutions are spirals that unwind away from the origin as shown in Figure 7.11.
Consider the partition of R2 defined by the sets:

and let Q be the corresponding equivalence relation. Any system that is bisim-
ilar to SQ(Σ) needs to distinguish between the points of P2 that visit P1 a

0.2 0.1 0.1 0.2

0.2

0.1

0.1

0.2

Fig. 7.11. Solution of the differential equation defined by (7.9) with initial condition
x1 = 0, and x2 = 0.001.

P1 = {(x1, 0) ∈ R2 | 0 < x1 < 1}
P2 = {(x1, 0) ∈ R2 | − 1 < x1 < 0}
P3 = R2\P1 ∪ P2

7.3 Order minimal hybrid dynamical systems 93

different number k ∈ N0 of times. If we denote by P2k the set of points of P2

that visit P1 k times, a simple computation shows that:

P2k =
{

(x1, 0) ∈ R2 | e−
(2k−1)π

10 < x1 < 0
}
.

Since these sets are all different for different values of k, we conclude that any
system bisimilar to SQ(Σ) would necessarily have an infinite number of states
and thus cannot be finite-state.

Differential equations in strict feed-forward form with a definable f also
have definable solutions.

Corollary 7.16. Let Σ = (Rn, f) be a dynamical system in which f is in
strict feed-forward form, i.e., f is of the form:

f1(x) = f1(x2, . . . , xn)
...

fn−2(x) = fn−2(xn−1, xn)
fn−1(x) = fn−1(xn)
fn(x) = fn

with fi definable for i = 1, 2 . . . , n. Then, for any definable finite equivalence
relation Q on Rn there exists a finite-state system bisimilar to SQ(Σ).

Proof. The differential equation dξ/dt = f(ξ) can be solved by successive
integration and substitution. We start by integrating fn to obtain:

ξn(t) = ξn(0) +
∫ t

0

fndτ = ξn(0) + fnt.

Then we substitute ξn into fn−1 to obtain fn−1(ξn(t), t) which can also be ex-
plicitly integrated, substituted in fn−2, integrated, and so on. Since

∫ t
0
fn(τ)dτ

is definable for a definable function fn, see [Spe99], it follows that θ is defin-
able. Therefore the result follows from Theorem 7.13. ut

For general hybrid dynamical systems, refining a relation that already re-
spects the continuous-time dynamics to a relation respecting reset maps, leads
to a relation that no longer respects the continuous-time dynamics. Similarly,
refining a relation that already respects the reset maps to a relation respect-
ing the continuous-time dynamics, leads to a relation that no longer respects
the reset maps. Therefore, there is no guarantee that a finite equivalence re-
lation respecting both continuous-time dynamics and reset maps exists, even
if all the data is definable. Nevertheless, Theorem 7.13 can still be used, in
conjunction with Lemma 7.7, to show existence of finite-state bisimulations
of hybrid dynamical systems with constant reset maps.

94 7 Exact symbolic models for verification

Corollary 7.17. Let Σ be a hybrid dynamical system:

Σ = (Sa, {Inxa}xa∈Xa , {Guta}ta∈
a
- , {Reta}ta∈

a
- , {fxa}xa∈Xa).

satisfying the following properties:

1. Guta is a definable set for every ta ∈
a
- ;

2. Inxa in a definable set for every xa ∈ Xa;
3. (Inxa , fxa) is complete dynamical system with definable solutions for every
xa ∈ Xa;

4. the maps Reta are constant for every ta ∈
a
- .

For any collection of finite and definable equivalence relations Q = {Qxa}xa∈Xa
with Qxa ⊆ Inxa × Inxa , there exists a finite-state system bisimilar to SQ(Σ).

Order minimality in an important tool in proving that certain classes of
dynamical and hybrid dynamical systems admit finite-state bisimilar models.
However, the computation of such abstractions remains a challenge since, in
general, it requires the explicit knowledge of the solution ξ. In the following
sections we describe different abstractions techniques that do not require the
knowledge of ξ.

7.4 Sign based abstractions

We now describe a very different technique for the construction of finite-state
abstractions based on a judicious analysis of the sign of real-valued functions
on the state space. The underlying idea is quite simple and can be explained
as follows. Consider a dynamical system Σ = (Rn, f) and let p : Rn → R be
a smooth real-valued function. Function p induces a ternary partition of Rn
defined by:

p+ =
{
x ∈ Rn | p(x) > 0

}
,

p0 =
{
x ∈ Rn | p(x) = 0

}
,

p− =
{
x ∈ Rn | p(x) < 0

}
.

Composing p with ξ we obtain p ◦ ξ : R → R, a smooth function of time.
Continuity of p◦ξ tells us that if p◦ξ is negative for some τ1 ∈ R and positive
for some τ2 > τ1, there must exist a τ ∈]τ1, τ2[such that p ◦ ξ is zero at τ . We
thus see that continuity imposes some restrictions on the different sequences
of signs that a smooth real-valued function of the state can assume. Such
restrictions can be encoded in a finite-state symbolic model for Σ describing
how the trajectories of Σ interact with the sets p+, p0 and p−. These simple
ideas can be developed into a very powerful abstraction technique that we
now describe in more detail.

7.4 Sign based abstractions 95

g1 g2 g3 g4 g5 g6 g7 g8 g9
p1 1 1 1 0 −1 −1 −1 0 0
p2 1 0 −1 −1 −1 0 1 1 0

Table 7.1. Sign conditions for the functions p1 and p2 in (7.10).

Given a finite collection P = {pi}i∈I of smooth real-valued functions on
Rn, {1, 0,−1}P denotes the set of all functions g : P → {1, 0,−1}. We call the
functions g ∈ {1, 0,−1}P sign conditions since g(pi) ∈ {1, 0,−1} is regarded
as a sign for pi ∈ P. Each sign condition g defines a subset of Rn denoted by
〈g〉 and defined by:

〈g〉 =
⋂
i∈I

{
x ∈ Rn | sign(pi(x)) = g(pi)

}
.

A point x ∈ Rn belongs to 〈g〉 if for every function pi : Rn → R, the sign of
pi(x) agrees with g(pi) in the sense that sign(pi(x)) = g(pi). The collection
of sets 〈g〉 with g ∈ {1, 0,−1}P defines a partition of Rn and we denote the
corresponding equivalence relation by P . We extend the notation 〈g〉 to sets
of functions G = {g1, g2, . . . , gk} by 〈G〉 =

⋃
i=1,...,k〈gi〉.

Example 7.18. Let n = 2 and consider the functions:

p1(x) = x1, p2(x) = x2. (7.10)

There are 32 = 9 sign conditions as shown in Table 7.1. The sign condition
g3 defines the set 〈g3〉 consisting of all the points (x1, x2) ∈ R2 such that
sign(p1) = sign(x1) = 1 and sign(p2) = sign(x2) = −1. This corresponds to
the points satisfying the constraints x1 > 0 and x2 < 0. C

The key idea underlying the construction of sign based abstractions is the
interplay between the Lie derivative of pi along f and the sign of pi. The Lie
derivative of a smooth function p : Rn → R along f is the function:

Lfp =
n∑
i=1

∂p

∂xi
fi

which can also be expressed as:

Lfp (x) =
d

dt

∣∣∣
t=0

p ◦ ξx

with ξx the solution of (Rn, f). We also use Lkfp with k ∈ N to denote the kth
Lie derivative of p along f defined by:

Lk+1
f p = Lf (Lkfp), L0

fp = p.

96 7 Exact symbolic models for verification

If the inequality Lfpi (x) > 0 is satisfied at a point x = ξx(0) for which
pi(x) = 0, positivity of this derivative implies pi ◦ ξx(ε) > 0 for sufficiently
small ε > 0. This can be restated as: if ξx(0) belongs to the set (sign◦pi)−1(0),
then ξx(ε) belongs to the set (sign ◦ pi)−1(1). We can thus use the valuable
information provided by the Lie derivatives of the functions pi along f to
build a model constraining the evolution of the signs of the functions pi.

Definition 7.19. Let Σ = (Rn, f) be a dynamical system, let P = {pi}i∈I
be a finite collection of smooth real-valued functions on Rn, and let P be the
equivalence relation defined by P. For any set of initial states L ⊆ Rn, the
finite-state system induced by S(Σ), P, and L, denoted by SPL(Σ), consists
of:

• X = {1, 0,−1}P ;
• X0 = {g ∈ X | 〈g〉 ∩ L 6= ∅};
• U = {∗};
• g

∗- g′ if for every i ∈ I any of the following holds:
1. g(pi) = 1 implies any of the following:

a) sign(Lfpi(〈g〉)) ⊆ {1, 0} and g′(pi) = 1;
b) sign(Lfpi(〈g〉)) ⊇ {−1} and g′(pi) ∈ {1, 0};

2. g(pi) = 0 implies any of the following:
a) sign(Lfpi(〈g〉)) = {1} and g′(pi) = 1;
b) sign(Lfpi(〈g〉)) = {−1} and g′(pi) = −1;
c) sign(Lfpi(〈g〉)) = {1,−1} and g′(pi) ∈ {1,−1};
d) sign(Lfpi(〈g〉)) ⊇ {0} and g′(pi) ∈ {1, 0,−1};

3. g(pi) = −1 implies any of the following:
a) sign(Lfpi(〈g〉)) ⊇ {1} and g′(pi) ∈ {0,−1};
b) sign(Lfpi(〈g〉)) ⊆ {0,−1} and g′(pi) = −1;

• Y = Rn/P ;
• H(g) = 〈g〉.

Before proceeding further, we illustrate the construction of SPL(Σ).

Example 7.20. Consider the linear dynamical system on R2 defined by:

f(x) =
[

x2

−x1

]
. (7.11)

The trajectories of this system revolve around the origin under a circular
clock-wise motion as depicted in Figure 7.12. We take P = {p1, p2}, with p1

and p2 as defined in (7.10), and L = {x ∈ R2 | x1 > 0∧x2 > 0}. The state set
X is defined by the 32 = 9 functions represented in Table 7.1. The transition
relation of SPL(Σ) is constructed by adding transitions g

∗- g′ according to
the rules in Definition 7.19. We illustrate the construction for the transitions
originating from g1 and g2. We first compute:

Lfp1 =
∂p1

∂x1
f1 +

∂p1

∂x2
f2 = x2, Lfp2 =

∂p2

∂x1
f1 +

∂p2

∂x2
f2 = −x1.

7.4 Sign based abstractions 97

Fig. 7.12. Trajectories of the dynamical system defined by (7.11) with ini-
tial conditions (x1, x2) = (0, 0.05), (x1, x2) = (0, 0.1), (x1, x2) = (0, 0.15), and
(x1, x2) = (0, 0.2).

On the set 〈g1〉 = {(x1, x2) ∈ R2 | x1 > 0 ∧ x2 > 0} we have Lfp1 > 0 and
Lfp2 < 0. Since p1 is positive in 〈g1〉 and Lfp1 > 0, the successor g′ of g1
satisfies g′(p1) = 1. Moreover, as p2 > 0 in 〈g2〉 and Lfp2 < 0, g′ also satisfies
g′(p2) ∈ {1, 0}. The only elements g′ ∈ X satisfying the constraints g′(p1) = 1
and g′(p2) ∈ {1, 0} are g1 and g2. Therefore, there are only the following two
transitions originating from g1:

g1
∗- g1, g1

∗- g2.

Similarly, on the set 〈g2〉 we have Lfp1 = 0 and Lfp2 < 0 implying that the
successor g′ of g2 satisfies g′(p1) = 1 and g′(p2) = −1. Consequently, the only
transition originating from g2 is:

g2
∗- g3.

The remaining transitions can be similarly constructed resulting in the sys-
tem SPL(Σ) depicted in Figure 7.13. Although SPL(Σ) simulates SPL(Σ),
SPL(Σ) is not bisimilar to SPL(Σ) since, e.g., the transitions gi

∗- gi with
i ∈ {1, 3, 5, 7} do not correspond to transitions in SPL(Σ). C

0.1 0.2

−0.2

−0.1

−0.1−0.2

0.1

0.2

98 7 Exact symbolic models for verification

g1

〈g1〉

g2

〈g2〉

g3

〈g3〉

g4

〈g4〉

g5

〈g5〉

g6

〈g6〉

g7

〈g7〉

g8

〈g8〉

g9

〈g9〉

*

*

*

*
*

*

*

*

*

*
*

*

*
*

*

*
*

*

*

*
*

Fig. 7.13. Finite-state sign based system SPL(Σ) simulating the infinite-state sys-
tem SPL(Σ).

The system SPL(Σ) is a finite-state abstraction of §PL(Σ) in the following
sense.

Proposition 7.21. Let Σ = (Rn, f) be a dynamical system, and let P be a
finite collection of smooth real-valued functions on Rn. For any set of initial
states L ⊆ Rn, the relation R ⊆ Rn × {1, 0,−1}P defined by:

(x, g) ∈ R if x ∈ 〈g〉

is a simulation relation from SPL(Σ) to SPL(Σ).

Proof. By construction, the first and second conditions in the definition of
simulation relation are satisfied. Let now (x, g) ∈ R, assume that x

τ- x′ in
SPL(Σ) and recall that this implies the existence of a trajectory ξ satisfying
ξ(0) = x and ξ(τ) = x′. Consider any pi ∈ P. We only provide the details for
the case where g(pi) = 1 since all the other cases are similar. By definition of
the equivalence relation P defined by P, and by definition of SPL(Σ), three
situations can occur: sign(pi ◦ ξ(t)) = 1 for t ∈ [0, τ]; sign(pi ◦ ξ(t)) = 1 for
t ∈ [0, ε[and sign(pi ◦ ξ(t)) = 0 for t ∈ [ε, τ]; or sign(pi ◦ ξ(t)) = 1 for t ∈ [0, ε]
and sign(pi ◦ ξ(t)) = 0 for t ∈]ε, τ].

First situation: according to Definition 7.19, independently of the sign of
Lfpi(〈g〉), there exists a transition g

∗- g′ in SPL(Σ) with g′(pi) = 1 and
thus (x′, g′) ∈ R.

7.4 Sign based abstractions 99

Second and third situations: in both cases cases, smoothness of pi◦ξ implies
the existence of t′ ∈ [0, ε[such that:

d

dt

∣∣∣
t=t′

pi ◦ ξ < 0.

Therefore, Lfpi(x′′) < 0 for x′′ = ξ(t′) and thus {−1} ⊆ sign(Lfpi(〈g〉)). It

then follows from Definition 7.19 the existence of a transition g
∗- g′ in

SPL(Σ) with g′(pi) = 0, hence (x′, g′) ∈ R.
Using the same argument for the remaining cases we conclude that R is a

simulation relation as desired. ut

The relationship SPL(Σ) �S SPL(Σ) is quite useful in practice since the
construction of ΣPL(Σ) only requires the knowledge of the signs of Lie deriva-
tives. By contrast, the construction of SPL(Σ) requires knowledge of the tra-
jectories of Σ.

Example 7.22. Sign based abstractions can also be used to verify the system
in Example 7.15. Consider the set P consisting of the single function:

p(x) = 7x2
1 − 6x1x2 + 28x2

2 − 320.

The reason for choosing this function will become apparent in the next section
where we discuss barrier certificates. For now, we compute SPL(Σ). We have
three states g1(p) = 1, g2(p) = 0, and g3(p) = −1. The set of initial states
is X0 = {g3} since L ⊂ 〈g3〉. To construct the transition relation we note
that Lfp(x) < 0 for any x ∈ R2. According to Definition 7.19 the transition
relation consists of the transitions:

g1
∗- g1, g1

∗- g2, g2
∗- g3, g3

∗- g3.

The resulting abstraction is depicted in Figure 7.14, clearly showing that g1
is not reachable in SPL(Σ). Since SPL(Σ) simulates SPL(Σ) and B ⊂ 〈g1〉,
the system is safe. C

The rules used to construct the transition relation in SPL(Σ) are conser-
vative whenever the sign of Lfpi is not constant on a given set 〈g〉 since in this
case g′(pi) is not uniquely determined. A less conservative abstraction can be
obtained by adding Lfpi as a new function to the set P if the sign of Lfpi

g1

〈g1〉

g2

〈g2〉

g3

〈g3〉
* *

* *

Fig. 7.14. Sign based abstraction SPL(Σ) of SPL(Σ).

100 7 Exact symbolic models for verification

is not constant on 〈g〉. Termination of this closure or saturation process, con-
sisting of adding Lie derivatives to P, leads to a set of functions P for which
SPL(Σ) is a tight abstraction of SPL(Σ) as measured by the inclusions:

∪Z∈Reach(SPL(Σ))Z ⊆ ∪Z∈Reach(SPL(Σ))Z ⊆ ∪Z∈Reach(SPL(Σ))Z. (7.12)

Before discussing further the preceding inclusions, we need to give meaning
to the expression “termination of the saturation process”. We say that a set
P of smooth real-valued functions is closed with respect to the sign of the
Lie derivative when for every p ∈ P and for every k ∈ N, the sign of Lkfp
is constant on every set 〈g〉 and can be determined from the knowledge of
g ∈ {1, 0,−1}P .

Example 7.23. The set P used in Example 7.20 is closed with respect to
the sign of the Lie derivative since Lfp1 = p2 and Lfp2 = −p1 imply
sign(Lfp1) = sign(p2) and sign(Lfp2) = −sign(p1). Hence, by recursively
using these equalities we can determine the sign of Lkfp1 and Lkfp2 for any
k ∈ N as a function of the sign of p1 and p2. C

Whenever the set of functions P is closed with respect to the the sign of the
Lie derivative, the rules for defining the transition relation of SPL(Σ) simplify
since there is no ambiguity in the sign of (Lfpi)(〈g〉). A careful analysis of these
rules shows that the only transitions in SPL(Σ) that might not correspond to
transitions in SPL(Σ) are generalizations of the next example.

Example 7.24. Consider the dynamical system Σ = (R,−x) and the set P
consisting of the just one function p(x) = x. It is easy to see that in this case
the set P is closed with respect to the sign of the Lie derivative. Moreover,
{1, 0,−1}P = {g1, g2, g3} with g1(p) = 1, g2(p) = 0 and g3(p) = −1. On
the set defined by 〈g1〉 we have Lfp = −x < 0. According to the rules in
Definition 7.19 we have the following two transitions, in SPL(Σ), from g1:

g1
∗- g2, g1

∗- g1.

However, for any initial condition x > 0 we know that the solution ξ(t) = e−tx
of ξ̇ = −ξ satisfying ξ(0) = x will never reach the set 〈g2〉 and thus the
transition g1

∗- g2 does not correspond to a transition in SPL(Σ).
Nevertheless, when L = 〈g1〉 we have:

∪Z∈Reach(SPL(Σ))Z = 〈g1〉 = {x ∈ R | x > 0}

and:
∪Z∈Reach(SPL(Σ))Z = 〈g1〉 ∪ 〈g2〉 = {x ∈ R | x ≥ 0},

hence:

∪Z∈Reach(SPL(Σ))Z ⊆ ∪Z∈Reach(SPL(Σ))Z ⊆ ∪Z∈Reach(SPL(Σ))Z.

C

7.4 Sign based abstractions 101

The containment (7.12) holds whenever P is closed with respect to the
sign of Lie derivatives. This fact, formally stated below, can be proved by
meticulously generalizing Example 7.24.

Theorem 7.25. Consider a dynamical system Σ = (Rn, f), let P be a finite
collection of smooth real-valued functions on Rn, and let P be the equivalence
relation defined by P. If L is any set of initial states that is a union of equiv-
alence classes of P , and if P is closed with respect to the sign of the Lie
derivative, then:

∪Z∈Reach(SPL(Σ))Z ⊆ ∪Z∈Reach(SPL(Σ))Z ⊆ ∪Z∈Reach(SPL(Σ))Z. (7.13)

The inclusions (7.13) show that SPL(Σ) defines a tight abstraction of
SPL(Σ). From Proposition 7.21 and Proposition 4.6 we know that:

Reach(SPL(Σ)) ⊆ Reach(SPL(Σ))

from which follows directly:

∪Z∈Reach(SPL(Σ))Z ⊆ ∪Z∈Reach(SPL(Σ))Z

by noting that Reach(SPL(Σ)) and Reach(SPL(Σ)) are sets of equivalence
classes. Although the reverse containment:

∪Z∈Reach(SPL(Σ))Z ⊇ ∪Z∈Reach(SPL(Σ))Z

cannot be guaranteed, a state belonging to ∪Z∈Reach(SPL(Σ))Z that fails to be-
long to ∪Z∈Reach(SPL(Σ))Z must belong to the boundary of ∪Z∈Reach(SPL(Σ))Z
which is a “thin” set. This can also be expressed by the equality:

int ∪Z∈Reach(SPL(Σ)) Z = int ∪Z∈Reach(SPL(Σ) Z.

Theorem 7.25 requires the collection of functions P to be closed with
respect to the sign of Lie derivative. In concrete applications, one starts with
a set of functions P defined by the verification problem to be solved. Since
the set P may not be closed with respect to the sign of the Lie derivative, one
can enlarge P by adding the functions Lfp. Unfortunately, this saturation or
closure procedure is not guaranteed to terminate except in some special cases.
When the dynamics is linear, i.e., f(x) = Ax for some matrix A, there are
several obvious choices for the functions p. Some examples include p(x) = vTx
with v an eigenvector of AT . In this case:

Lfp = vTAx = (AT v)Tx = (λv)Tx = λp

and thus sign(Lkfp) = sign(λk)sign(p). If A is nilpotent, then for any affine
function p there exists a l ∈ N such that Lkfp = 0 for all k ≥ l.

It is important to emphasize that even if the saturation process does not
terminate, SPL(Σ) is always guaranteed to simulate SPL(Σ) and can be de-
tailed enough to verify the desired properties.

102 7 Exact symbolic models for verification

g1

〈g1〉

g2

〈g2〉

g3

〈g3〉
*

*

*

*

Fig. 7.15. Sign based abstraction of SP ([0, π],−1) for Example 7.26.

g1

〈g1〉

g2

〈g2〉

g3

〈g3〉
*

*

*

*

Fig. 7.16. Sign based abstraction of SP ([0, π], 1) for Example 7.26.

Sign based abstractions can also be used to verify hybrid dynamical sys-
tems. Given a hybrid dynamical system Σ, we can use Definition 7.19 to con-
struct a finite-state system Sxa , for every xa ∈ Xa, simulating the continuous-
time dynamics in each finite state of Σ. These abstractions can then be weaved
together into an abstraction of Σ by adding discrete transitions between the
systems Sxa simulating the discrete transitions of Σ. This construction is
illustrated in the next example.

Example 7.26. We revisit Example 7.4 and in particular the hybrid dynamical
system Σ, depicted in Figure 7.1, modeling the windshield wiper. If P consists
of the functions p1(x) = x and p2(x) = x− π

2 there are only three nonempty
sign conditions. The corresponding sets are:

〈g1〉 = {x ∈ [0, π] | x = 0 ∧ x− π

2
< 0}

〈g2〉 = {x ∈ [0, π] | x > 0 ∧ x− π

2
< 0}

〈g3〉 = {x ∈ [0, π] | x > 0 ∧ x− π

2
= 0}.

Following Definition 7.19 we obtain the sign based abstraction SP([0, π],−1)
of SP ([0, π],−1), represented in Figure 7.15, and the sign based abstrac-
tion SP([0, π], 1) of SP ([0, π], 1), represented in Figure 7.16. The finite-state
systems SP([0, π],−1) and SP([0, π], 1) can now be combined into a sin-
gle finite-state system simulating SQ(Σ) with Q = {Qright, Qleft} where
Qleft = P = Qright. This is done by adding transitions simulating the dis-
crete transitions of SQ(Σ) as shown in Figure 7.17. C

7.5 Barrier certificates 103

(left,g1)

〈g1〉

(left,g2)

〈g2〉

(left,g3)

〈g3〉

(right,g1)

〈g1〉

(right,g2)

〈g2〉

(right,g3)

〈g3〉

*

*

*

*

switch

*

*

*

*

switch

Fig. 7.17. Sign based abstraction of SP (Σ) for Example 7.26.

7.5 Barrier certificates

Constructing finite-state bisimulations of SQL(Σ), when Σ is a dynamical or
hybrid dynamical system, is a difficult task even when they are known to exist.
However, safety verification problems can often be solved without computing
very detailed finite-state systems abstracting SQL(Σ). Recall that the safety
verification problem asks if given a system S, which we take as S = SQL(Σ),
and given a set of unsafe outputs B ⊆ Y , wether Reach(SQL(Σ))∩πQ(B) = ∅.
The next result provides a very simple and elegant sufficient solution for an
affirmative answer to the safety verification problem.

Theorem 7.27. Let Σ = (Rn, f) be a dynamical system, let L ⊆ Rn be a set
of initial states, let B ⊆ Rn = Y be a set of unsafe outputs, and let Q be a
finite equivalence relation on Rn respecting L and π−1

Q (B). If there exists a
smooth function E : Rn → R satisfying:

1. E(x) ≤ 0 for x ∈ L;
2. E(x) > 0 for x ∈ π−1

Q (B);
3. (LfE)(x) ≤ 0 for x ∈ Rn;

then Reach(SQL(Σ)) ∩ πQ(B) = ∅.

104 7 Exact symbolic models for verification

Proof. For the sake of contradiction assume that a smooth function E sat-
isfying the assumptions exists and that Reach(SL(Σ)) ∩ πQ(B) 6= ∅. Then,
there must exists a solution ξ of the differential equation dξ/dt = f(ξ) sat-
isfying ξ(0) ∈ L and ξ(τ) ∈ π−1

Q (B) for some τ ∈ R. Since E(ξ(0)) ≤ 0 and
E(ξ(τ)) > 0, it follows from smoothness of E ◦ ξ the existence of 0 ≤ τ ′ ≤ τ
such that:

d

dt

∣∣∣
t=τ ′

E ◦ ξ(t) > 0.

However, the preceding inequality contradicts LfE ≤ 0 thus contradicting
Reach(SL(Σ)) ∩ πQ(B) 6= ∅. ut

A function E satisfying the conditions in Theorem 7.27 is called a barrier
certificate since the set E−1(0) cannot be crossed by the solutions of Σ and can
thus be regarded as a barrier separating L from π−1

Q (B). This result places the
onus of the verification on the construction of E. For the case of polynomial
vector fields, the search for polynomial barrier certificates can be performed by
resorting to convex optimization techniques which makes barrier certificates
a very appealing approach. The next example illustrates the use of barrier
certificates and explains the choice for the collection P used in Example 7.22.

Example 7.28. We revisit Example 7.15 using barrier certificates. Since the
dynamical system in Example 7.15 is stable, a natural candidate for E is a
Lyapunov like function. The following choice:

E(x) = 7x2
1 − 6x1x2 + 28x2

2 − 320 (7.14)

satisfies all the conditions in Theorem 7.27 and thus proves that system Σ in
Example 7.15 is safe. The zero level set of E is the ellipsoid represented in
Figure 7.18 where it can be seen that it does separate L from π−1

Q (B). C

Fig. 7.18. Representation of the zero level set for the barrier certificate (7.14). The
initial set is light-colored while the unsafe set is dark-colored. The continuous-time
dynamics defined by the smooth map (7.8) is shown in the figure on the right.

2 4 6

−4

−2

−2−4−6

2

4

−2

−2

−2

−4−6 2 4 6

2

4

7.6 Computation of reachable sets 105

7.6 Computation of reachable sets

A direct approach to safety verification problems is the computation of
an over-approximation to the reachable set. When W is such an over-
approximation, i.e., Reach(SQL(Σ)) ⊆ W , showing that W ∩ B = ∅ is suffi-
cient to conclude that Reach(SQL(Σ))∩B = ∅. The computation of reachable
sets is not only useful for verification purposes but also for the construction
of some symbolic models for control discussed in Chapter 11.

Several different competing techniques for the computation of reachable
sets are available in the literature. Here, we focus on a very simple but efficient
technique applicable to linear dynamical systems. The starting point is a linear
dynamical system Σ = (Rn, f) with f(x) = Ax, for some matrix A ∈ Rn×n,
and a set of initial states L ⊆ Rn. We use zonotopes to represent all the
sets appearing in the computations. A zonotope is a convex polytope that
is the image of the unit cube under an affine transformation. An equivalent
definition will be more convenient for our purposes.

Definition 7.29 (Zonotope). A zonotope Z is a set Z ⊆ Rn described by:

Z =

{
x ∈ Rn | x = c+

k∑
i=1

λivi, −1 ≤ λi ≤ 1

}

where c, v1, v2, . . . , vk are vectors in Rn.

We denote a zonotope Z by Z = (c,< v1, . . . , vk >) and note that the point
c is the center of the zonotope. The class of zonotopes is closed under linear
transformations and Minkowski sum.

Proposition 7.30. Consider two zonotopes Za = (ca, < va1, . . . , vak >) and
Zb = (cb, < vb1, . . . , vbl >) in Rn and let g(x) = Gx be a linear transformation.
The following holds:

• Za + Zb = (ca + cb, < va1, . . . , vak, vb1, . . . , vbl >);
• g(Za) = (Gca, < Gva1, . . . , Gvak >).

We now denote byRτ (Z) the set of points reached at time τ by trajectories
of Σ starting in Z:

Rτ (Z) = {x ∈ Rn | x = ξ(τ) ∧ ξ(0) ∈ Z} .

and by R[τ1,τ2](Z) the set of points reached at time τ ∈ [τ1, τ2] by trajectories
of Σ starting in Z:

R[τ1,τ2](Z) =
⋃

τ∈[τ1,τ2]

Rτ (Z).

106 7 Exact symbolic models for verification

The computation of Rτ (Z) is straightforward when Z is a zonotope
Z = (c,< v1, . . . , vk >). Since the solution of dξ/dt = Aξ with initial con-
dition x ∈ Rn is ξ(t) = eAtx and since eAτ is a linear transformation we have:

Rτ (Z) = eAτ (Z) = (eAτ c,< eAτv1, . . . , e
Aτvk >).

The computation of R[0,τ](Z) involves a sequence of steps. First, we con-
struct a zonotope Za containing Z and eAτ (Z) by:

Za =
(
c+ eAτ c

2
,

〈
v1 + eAτv1

2
, . . . ,

vk + eAτvk
2

,

c− eAτ c
2

,
v1 − eAτv1

2
, . . . ,

vk − eAτvk
2

〉)
. (7.15)

The particular form of Za was chosen for technical reasons that will become
apparent in the proof of Proposition 7.31. Although Za contains Z and eAτ (Z),
there is no guarantee that it contains R[0,τ](Z). The next step is to inflate Za
by computing:

Zb = Za + Cατ (7.16)

where Cατ is the hyper-cube centered at zero and of radius ατ . Note that Cατ
is a zonotope since it can be written as (0, < ατ b1, . . . , ατ bn >) with bi being
the vector containing a one in position i and zeros elsewhere. The parameter
ατ is chosen so that Zb is large enough to contain R[0,τ](Z).

Proposition 7.31. Let Σ = (Rn, f) be a dynamical system with f(x) = Ax
for A ∈ Rn×n and let Z ⊆ Rn be a zonotope. If the parameter ατ is chosen
according to:

ατ =
(
e‖A‖∞τ − 1− τ‖A‖∞

)
sup
x∈Z
‖x‖∞

then R[0,τ](Z) ⊆ Zb where Zb is the zonotope computed according to (7.16)
and (7.15).

Proof. Let x ∈ Z and t ∈ [0, τ]. We use:

ξ̂(t) =
(

1− t

τ

)
x+

t

τ
eAτx (7.17)

as an estimate of ξ(t) = eAtx. Note that for t = 0 and t = τ we have
ξ̂(0) = x = ξ(0) and ξ̂(τ) = eAτx = ξ(τ). For other values of t ∈ [0, τ] the
error in this estimate is bounded by:

‖ξ(t)− ξ̂(t)‖∞ =
∥∥∥∥eAtx− (1− t

τ

)
x− t

τ
eAτx

∥∥∥∥
∞

=

∥∥∥∥∥
∞∑
k=2

t(tk−1 − τk−1)
k!

Akx

∥∥∥∥∥
∞

7.6 Computation of reachable sets 107

≤

∥∥∥∥∥
∞∑
k=2

τk

k!
Akx

∥∥∥∥∥
∞

≤
∞∑
k=2

τk

k!
‖A‖k∞‖x‖∞

=
(
e‖A‖∞τ − 1− ‖A‖∞τ

)
‖x‖∞

≤
(
e‖A‖∞τ − 1− ‖A‖∞τ

)
sup
x∈Z
‖x‖∞ = ατ . (7.18)

Consider now the following set containing all the estimates of the form (7.17):

C =
{
x′ ∈ Rn | x′ = x+

t

τ

(
etAx− x

)
with x ∈ Z and t ∈ [0, τ]

}
.

Since t ∈ [0, τ] implies t/τ ∈ [0, 1] we see that C ⊆ Za. Therefore, by inflating
Za by the error in (7.18) we conclude that R[0,τ](Z) ⊆ Za + Cατ = Zb as
desired. ut

Given some time horizon T ∈ R+ and a desired discretization step ∆ ∈ R+

such that T/∆ = k ∈ N we can decompose R[0,T](Z) as:

R[0,T](Z) = R[0,∆](Z) ∪R[∆,2∆](Z) ∪ . . . ∪R[(k−1)∆,k∆](Z). (7.19)

The first set in this union can be over-approximated by Zb. Moreover, the
remaining sets can also be recursively over-approximated using Zb as we now
show. Applying eA∆ on both sides of R[0,∆](Z) = ∪t∈[0,∆]e

At(Z) we obtain:

eA∆(R[0,∆](Z)) = eA∆

 ⋃
t∈[0,∆]

eAt(Z)

 =
⋃

t∈[∆,2∆]

eAt(Z) = R[∆,2∆](Z)

therefore R[0,∆](Z) ⊆ Zb implies R[∆,2∆](Z) ⊆ eA∆(Zb). Based on (7.19) we
can over-approximate R[0,T](Z) by:

R[0,T](Z) ⊆ Zb ∪ eA∆(Zb) ∪ eA2∆(Zb) ∪ . . . ∪ eAk∆(Zb). (7.20)

We note that approximation errors are only introduced in the computation
of Zb and these errors can be made arbitrarily small by reducing ∆. There-
fore, the computation of the reachable set by equation (7.20) can be made
arbitrarily precise by suitably reducing ∆.

Example 7.32. We revisit Example 7.15 to illustrate the computation of the
reachable set. In Figure 7.19 we show the set of initial states L and eA∆(L) for
∆ = 0.01. The trajectories of the vertices are also represented. Since Za is not
guaranteed to contain all the points in R[0,τ](L), Za is inflated to Zb according
to (7.16) with ατ = 0.103304. Both Za and Zb are depicted in Figure 7.19

108 7 Exact symbolic models for verification

Fig. 7.19. Representation of the zonotopes: L, eA∆(L), Za, and Zb. Set L is light-
colored while eA∆(L) is dark-colored. The left figure displays also the zonotope Za
in light gray while the right figure displays the zonotope Zb in light gray.

Fig. 7.20. Over-approximation of the reachable set. The left figure shows the inter-
mediate zonotopes and the right figure shows the over-approximation of the reach-
able set in gray. Also shown are the true trajectories of the vertices delimiting the
true reachable set. In both figures the set of unsafe states is dark-colored.

while in Figure 7.20 we show the over-approximation of the reachable set
We can clearly see that the over-approximation does not intersect

the set of unsafe states:

from which we conclude safety. 

5.0 5.5 6.0

1.0

0.5

0.5

1.0

1.5

5.0 5.5 6.0

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

1

1

2

3

4

5

1 2 3 4 5 6

1

1

2

3

4

5

B = {(x1, x2) ∈ R2 | x2 ≤ −4 ∨ x2 ≥ 4)}

R[0,1](L).

7.7 Advanced topics 109

7.7 Advanced topics

Several results in this chapter apply only to dynamical systems Σ = (Rm, f)
where f(x) = Ax is a linear map described by the matrix A ∈ Rn×n. In
this section we describe a class on nonlinear differential equations that can be
transformed into linear differential equations on a higher dimensional space.
The following discussion requires some familiarity with more advanced math-
ematical concepts.

We start by relating dynamical systems, living on different spaces, by a
map.

Definition 7.33. Let Σa = (Rm, f) and Σb = (Rn, g) be dynamical systems
and let φ : Rm → Rn be a smooth map. Dynamical system Σa is said to
be φ-related to dynamical system Σb if the following equality holds for every
x ∈ Rm:

∂φ

∂x
f(x) = g ◦ φ(x). (7.21)

Relating dynamical systems allows us to relate also their solutions.

Proposition 7.34. Let Σa = (Rm, f) and Σb = (Rn, g) be dynamical systems
and denote by ξ and ζ the solution of the differential equation defined by Σa
and Σb, respectively. Dynamical system Σa is φ-related to dynamical system
Σb iff the following equality holds for all x ∈ Rm and for all t ∈ R for which
ξ and ζ are defined:

φ ◦ ξx(t) = ζφ(x)(t). (7.22)

When Σa is φ-related to Σb and Σb is “simpler” than Σa, equality (7.22)
tell us that instead of studying the solutions ξ with initial condition x we
can study the solutions ζ of the simpler system Σb with initial condition
φ(x). Furthermore, when φ is an injective map, no information is lost in this
process. We now identify a class of dynamical systems that can be φ-related
to dynamical systems defining linear differential equations.

We introduce the main idea through a scalar differential equation ξ̇ = f(ξ),
f : R→ R. The key assumption we make is local finiteness. We say that (R, f)
is a locally finite dynamical system if there exist a natural number k and a
sequence of real numbers α0, α1, . . . , αk−1 such that:

Lkf1R = α01R + α1Lf1R + α2L
2
f1R + . . .+ αk−1L

k−1
f 1R. (7.23)

Under the local finiteness assumption, we can construct a linear differential
equation ζ = g(ζ) = Aζ defined by the A matrix:

A =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1
α0 α1 α2 . . . αk−2 αk−1



110 7 Exact symbolic models for verification

and we can construct the map φ : R→ Rk defined by:

φ1 = 1R, φ2 = Lf1R, φ3 = L2
f1R, . . . φk = Lk−1

f 1R.

A simple computation now shows that (7.21) holds:

∂φ

∂x
f(x) =


Lf1R(x)
L2
f1R(x)

L3
f1R(x)
. . .

Lkf1R(x)

 = Aφ(x)

so that Σa = (R, f) is φ-related to Σb = (Rk, g) with g(y) = Ay. This process
can be generalized to differential equations on Rm by replacing 1R with 1Rm .
In order to summarize the previous discussion, we introduce the concept of
locally finite dynamical system.

Definition 7.35 (Locally finite dynamical system). A dynamical sys-
tem Σ = (Rm, f) is said to be locally finite if for every projection map
πi : Rm → R, i = 1, 2, . . . ,m, the R-vector space spanned by the functions:

πi, Lf (πi), L2
f (πi), L3

f (πi), . . .

is finite dimensional.

When the vector space described in the previous definition is finite dimen-
sional, say of dimension k, we can write Lkf (πi) as a linear combination of
Ljf (πi) for j = 0, . . . , k − 1. This is a generalization of the requirement (7.23)
to the case m > 1. The map φ can be constructed in the same manner by
starting with φ1 = 1Rm and the construction of the A matrix follows from the
specific coefficients appearing in the linear combinations defining the m scalar
functions Lkfπi for i = 1, . . . ,m.

Theorem 7.36. Let Σa = (Rm, f) be a locally finite dynamical system. Then,
there exists an injective and smooth map φ : Rm → Rn, with n ≥ m, and there
exists a dynamical system Σb = (Rn, g), with g(y) = Ay a linear map, such
that Σa is φ-related to Σb.

7.8 Notes

In the literature, several different notions and mathematical formalizations
of hybrid systems coexist. The one presented in this chapter represents a
reasonable compromise between generality and tractability. It was inspired in
the hybrid automaton model in [Hen96].

Timed automata were introduced by Alur and Dill in [AD90, AD94] and
since then a wealth of deep results on verification and control appeared in the

7.8 Notes 111

literature. We limited the discussion of timed automata to the rudiments of
quotient based abstractions that set tone for the whole chapter. Introductory
expositions on timed automata include Chapter 17 in [CGP99] and [Alu99,
AM04, BY04].

Order-minimality was first used to show existence of symbolic mod-
els for hybrid systems in [LPS99, LPS00]. A much more insightful proof
of a slight generalization of these results appears in [BM05]. The proof
of Theorem 7.13 was based on [BM05]. The early work on decidability of
several verification problems for restricted classes of hybrid systems, re-
ported in [ACH+95, HKPV98], can now be understood as a consequence
of Lemma 7.7 and Theorem 7.13. The proof of Theorem 7.11 can be found
in [vdD98].

Sign based abstractions are discussed in [Tiw08] where the hybrid version
of Proposition 7.21 is stated and proved. The reader can also find in this refer-
ence complete proofs for Proposition 7.21 and Theorem 7.25. Other abstrac-
tion techniques based on the analysis of Lie derivatives include [SSM06, PC08].

Barrier certificates for safety verification were introduced in [PR07, PJP07]
where it is proved, under mild additional assumptions, a converse to The-
orem 7.27: safety implies the existence of a barrier certificate. Although
there is no systematic way of constructing barrier certificates, they can be
searched for using an efficient convex programming technique called “sums of
squares” [PPP02].

There is a large literature on reachability computation using different
set representations such as a ellipsoids [KV00, BT00], polyhedra [ABDM00,
CK03], level-sets [TMBO03], etc. The results in Section 7.6 are from [Gir05]
and represent a very particular view of reachability computation.

Locally finite dynamical systems are discussed in [vdE94] under the name
of locally finite derivations. In this reference the reader can find a proof of
Theorem 7.36. This result can also be seen as a special case of similar results
for control systems reported in [LM86]. The proof of Proposition 7.34 can be
found, among other sources, in [AMR88].

8

Exact symbolic models for control

The prevalent role that software plays in modern complex engineering systems
creates new control problems combining requirements of finite-state and of
infinite-state nature. The existence of symbolic models for control systems
suggests that we can use these abstractions to synthesize controllers enforcing
finite-state requirements while accounting for the infinite-state dynamics. In
this chapter, we discuss two classes of control systems admitting finite-state
abstractions and how these can be used for control. Although the starting
point is an infinite-state control system, the synthesized controllers are hybrid
since they enforce finite-state and infinite-state requirements.

Notation

Given an equivalence relation Q on a set Z we denote by [z] the equivalence
class of z ∈ Z, by Z/Q the set of all equivalence classes, and by πQ : Z → Z/Q
the natural projection map taking a point z ∈ Z to its equivalence class
π(z) = [z] ∈ Z/Q. We say that an equivalence relation is finite when it
has finitely many equivalence classes. An equivalence relation Q refines an
equivalence relation R when (z, z′) ∈ Q implies (z, z′) ∈ R. A finite partition
P of a set Z is a finite collection of sets P = {Pi}i∈I satisfying Pi ⊆ Z,
∪i∈IPi = Z, and for any i, j ∈ I, i 6= j implies Pi ∩ Pj = ∅. A partition P of
a set Z defines an equivalence relation P on Z by declaring each set Pi ∈ P
to be an equivalence class of P .

The transpose of a vector x ∈ Rn is denoted by xT while the ith component
is denoted by xi. The topological closure of a set Z ⊆ Rn is denoted by Z and
the interior of Z is denoted by intZ.

A function f :]a, b[→ Rn, a, b ∈ R, is said to be piecewise continuous or
piecewise continuously differentiable if there exists an ordered sequence of real
numbers a = i1 < i2 < . . . < ik = b such that for every j ∈ {1, 2, . . . , k − 1},
the restriction of f to the interval]ij , ij+1[is continuous or has continuous

© Springer Science + Business Media, LLC 2009DOI: 10.1007/978-1-4419-0224-5_8,
113P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach,

114 8 Exact symbolic models for control

derivative, respectively. A piecewise continuous function f :]a, b[→ Rn is es-
sentially bounded if there exists a compact set K ⊂ Rn such that f(t) ∈ K
for almost all t ∈]a, b[.

8.1 Control systems as systems

The notion of system introduced in Chapter 1 can be used to model control
systems in discrete-time and continuous-time.

8.1.1 Discrete-time control systems

A discrete-time control system consists of a smooth map f : Rn × Rm → Rn
describing the state f(x, u) ∈ Rn that is reached by applying the input u ∈ Rm
at the state x ∈ Rn. The controlled economy model in Chapter 1 offers an
example of a discrete-time control system.

Definition 8.1 (Discrete-time control system). A discrete-time control
system is a triple Σ = (Rn,Rm, f) consisting of:

• the state space Rn;
• the input space Rm;
• a smooth map f : Rn × Rm → Rn.

Using an equivalence relation on Rn to define the outputs, we can describe
discrete-time control systems using the notion of system adopted in this book.

Definition 8.2. Let Σ = (Rn,Rm, f) be a discrete-time control system and
let Q be an equivalence relation on Rn. The system associated with Σ and Q,
denoted by SQ(Σ), consists of:

• X = Rn;
• U = Rm;
• x

u- x′ if x′ = f(x, u);
• Y = X/Q;
• H = πQ.

In control theory, and also in this chapter, the notion of controllability
plays a fundamental role.

Definition 8.3 (Controllable discrete-time system). A discrete-time
control system Σ is said to be controllable if for any two states x, x′ ∈ Rn
there exists a finite internal behavior of SQ(Σ):

x0
u0- x1

u1- x2
u2- . . .

uk−1- xk

with x0 = x and xk = x′.

8.1 Control systems as systems 115

Controllability admits a very simple characterization for linear control
systems. Recall that a discrete-time control system is said to be linear when:

f(x, u) = Ax+Bu

for matrices A ∈ Rn×n and B ∈ Rn×m. We denote a linear control system
by the quadruple Σ = (Rn,Rm, A,B). The following classical result in linear
systems theory characterizes controllability by a rank condition.

Theorem 8.4. A discrete-time linear control system Σ = (Rn,Rm, A,B) is
controllable iff rank C = n where C is the controllability matrix of Σ defined
by:

C =
[
B|AB|A2B| . . . |An−1B

]
.

8.1.2 Continuous-time control systems

A control system in continuous-time is described by a differential equation
ξ̇ = f(ξ, υ) whose solution ξ can be influenced by external inputs υ. An exam-
ple is provided by the satellite equipped with gas jets, discussed in Chapter 1.

Definition 8.5 (Continuous-time control system). A continuous-time
control system is a triple Σ = (Rn,U , f) consisting of:

• the state space Rn;
• a set of input curves U whose elements are1 essentially bounded piece-

wise continuous functions of time from intervals of the form]a, b[⊆ R to
Rm ⊆ Rm with a < 0 < b;

• a smooth map f : Rn × Rm → Rn.

A piecewise continuously differentiable curve ξ :]a, b[→ Rn is said to be a
trajectory or solution of Σ if there exist υ ∈ U satisfying:

d

dt
ξ = f(ξ, υ)

for almost all t ∈]a, b[.

Although we have defined trajectories over open sets, we shall refer to
trajectories ξ : [0, τ]→ Rn defined on closed sets [0, τ], τ ∈ R+, with the un-
derstanding of the existence of a trajectory ξ′ :]a, b[→ Rn such that ξ = ξ′|[0,τ].
We also write ξxυ(t) to denote the point reached at time t ∈ [0, τ] under the

1 We do not allow U to be the set of all curves from]a, b[to Rm. From a mathemat-
ical point of view, we restrict U to a class of functions that are regular enough
to guarantee existence and uniqueness of solutions for the differential equation
ξ̇ = f(ξ, υ). From an engineering point of view, the curves in U describe signals
that are implemented by physical actuators. Hence, actuator technology poses a
different set of limitations on the curves in U .

116 8 Exact symbolic models for control

dx
dt

= f(x, u)

k(x)

x

u = k(x)

Fig. 8.1. Diagrammatic representation of a closed-loop system.

input υ from initial condition x. This point is uniquely determined since the
assumptions on f and U ensure existence and uniqueness of trajectories.

A feedback law for a control system is a smooth map k : Rn → Rm

transforming states x ∈ Rn into inputs k(x) = u ∈ Rm. The term feedback
describes the process of feeding the current state x back as the input u = k(x).
This process is diagrammatically illustrated in Figure 8.1 and results in a dy-
namical system, termed closed-loop system, defined by the differential equa-
tion:

dξ

dt
= f(ξ, k(ξ)).

The construction of a system SQ(Σ) from a dynamical system Σ and
a finite equivalence relation, discussed in Chapter 7, can be generalized to
continuous-time control systems.

Definition 8.6. Let Σ = (Rn,U , f) be a control system and let Q be an
equivalence relation on Rn. The system associated with Σ and Q, denoted
by SQ(Σ), consists of:

• X = Rn;
• U = U ;
• x

υ x if any of the following two conditions is satisfied:
1. πQ(x) = πQ(x), ξxυ : [0, τ] → Rn is a solution of Σ satisfying
ξxυ(τ) = x, and there exists ε ∈ [0, τ] satisfying one of the following:
a) πQ(ξxυ(t)) = πQ(x) for t ∈ [0, ε[, πQ(ξxυ(t)) = πQ(x) for t ∈ [ε, τ],
and πQ(x) = πQ(x);

b) πQ(ξxυ(t)) = πQ(x) for t ∈ [0, ε], πQ(ξxυ(t)) = πQ(x) for t ∈]ε, τ],
and πQ(x) = πQ(x);

2. πQ(x) = πQ(x) and ξxυ : R+
0 → Rn is a solution of Σ satisfying

ξxυ(τ) = x and πQ(ξxυ(t)) = πQ(x) for all t ∈ R+
0 ;

• Y = X/Q;
• H = πQ.

8.2 Controller refinement 117

Contrary to dynamical systems, we assume the set of initial states X0 to
equal the set of states X since in the vast majority of control problems we do
not have the possibility of initializing the state.

8.2 Controller refinement

The synthesis methods discussed in Chapter 7 produce a controller based on
a finite-state model of the system to be controlled. When this model is an
abstraction Sabs of an infinite-state system S, it is natural to ask how to
refine the controller synthesized for Sabs so that it can be applied to S. For
safety verification problems, the crucial relationship between a model S and its
abstraction Sabs is that Sabs simulates S. When this holds, a positive answer
to the safety verification problem for Sabs implies a positive answer to the
safety verification problem for S. For control problems, a similar relationship
holds provided that we work with alternating simulation relations.

Proposition 8.7. Let Sa, Sb, and Sc be systems with the same output set,
assume that Sc is feedback composable with Sa, and let cRa be the correspond-
ing alternating simulation relation. If there exists an alternating simulation
relation aRb from Sa to Sb, then Sc ×cRea Sa is feedback composable with Sb
and the corresponding alternating simulation relation is given by:

caRb = {((xc, xa), xb) ∈ (Xc ×Xa)×Xb | (xc, xa) ∈ cRa ∧ (xa, xb) ∈ aRb}.

Proof. The proof consists in showing that the relation caRb satisfies all the
requirements in Definition 4.19.

We start with the first requirement. Let (xc0, xa0) ∈ Xca0. By definition
of feedback composition (xc0, xa0) ∈ cRa and xa0 ∈ Xa0. Invoking now the
alternating simulation relation aRb from Sa to Sb, there exists xb0 ∈ Xb0

satisfying (xa0, xb0) ∈ aRb. Consequently, ((xc0, xa0), xb0) ∈ caRb.
The second requirement follows immediately from the definition of caRb.
Consider now the third requirement, let ((xc, xa), xb) ∈ caRb, and let

(uc, ua) be any element of Uca(xc, xa). By definition of feedback composition,
and since cRa is an alternating simulation relation, we know that:

∀x′a ∈ Postua(xa) ∃x′c ∈ Postuc(xc) (x′c, x
′
a) ∈ cRa. (8.1)

Moreover, as aRb is an alternating simulation relation, we also have:

∃ub ∈ Ub(xb) ∀x′b ∈ Postub(xb) ∃x′a ∈ Postua(xa) (xa, xb) ∈ aRb. (8.2)

Combining (8.1) with (8.2) we conclude the existence of ub ∈ Ub(xb) such
that for all x′b ∈ Postub(xb) there exists (x′c, x

′
a) ∈ Post(uc,ua)(xc, xa) for

which ((x′c, x
′
a), x′b) ∈ caRb thus concluding the proof. ut

118 8 Exact symbolic models for control

Proposition 8.7 can be summarized by the following implication:

Sc �AS Sa ∧ Sa �AS Sb =⇒ Sc ×F Sa �AS Sb (8.3)

and used to explain how a controller Scont synthesized for an abstraction Sabs
of a system S can be refined to a controller for S. If Scont solves a simulation
game for system Sabs and specification Sspec, we have:

Scont �AS Sabs, (8.4)
Scont ×F Sabs �S Sspec. (8.5)

Moreover, if Sabs is an abstraction of S in the sense:

Sabs �AS S, (8.6)

we can use Proposition 8.7, or implication (8.3), applied to the conjunction
of (8.4) with (8.6), to conclude that Scont×F Sabs is feedback composable with
S. This suggests that we use the controller:

S′cont = Scont ×F Sabs

to control S. Indeed:

S′cont ×G S = (Scont ×F Sabs)×G S �S Scont ×F Sabs �S Sspec

where the first simulation relation follows from Proposition 6.3 and the second
follows from (8.5). We conclude that controller S′cont = Scont×F Sabs enforces
the specification Sspec on the original system S. However, if no controller exists
for Sabs, we cannot conclude the nonexistence of a controller for S. A stronger
claim can be made when the abstraction Sabs is related to the original model S
by an alternating bisimulation relation. In such case, existence of a controller
S′cont enforcing the specification Sspec on S implies, by Proposition 8.7, that
S′cont ×F S is a controller enforcing Sspec on Sabs. Hence, when the abstract
model Sabs is alternatingly bisimilar to the original model S, a controller exists
for Sabs iff a controller exists for S.

8.3 Discrete-time linear control systems

We saw in Section 7.3 that by placing certain restrictions on the eigenvalues
of linear dynamical systems, finite-state bisimilar abstractions are guaranteed
to exist. In this section we follow a complementary approach: instead of con-
straining the dynamics, we constrain the outputs. Intuitively, we work with
partitions consisting of sets that are adapted to the dynamics of the control
system.

8.3 Discrete-time linear control systems 119

Definition 8.8 (Adapted sets). Let Σ = (Rn,Rm, A,B) be a discrete-time
linear system and consider a collection of m vectors c1, c2, . . . , cm ∈ Rn for
which there exist numbers ν1, ν2, . . . , νm ∈ N satisfying:

1. cTr br = 0, cTr Abr = 0, . . . , cTr A
νr−2br = 0, cTr A

νr−1br 6= 0, r = 1, . . . ,m;
2. the vectors cT1 A

ν1B, cT2 A
ν2B, . . . , cTmA

νmB are linearly independent,

where b1, b2, . . . , bm are the columns of B. The class of subsets of Rn adapted
to Σ is formed by finite unions of sets defined by conjunctions of conditions
of the form f ∼ 0 with f = ±cTr Alx ± e, e ∈ R, l ∈ {0, 1, . . . , νr − 1}, and
∼∈ {=, >}.

Example 8.9. We revisit the controlled model for the national income, dis-
cussed in Chapter 1 and repeated here for convenience:

c(n+ 1) = α
(
c(n) + i(n) + g(n)

)
i(n+ 1) = βα

(
c(n) + i(n) + g(n)

)
− βc(n)

g(n+ 1) = d(n).

Taking α = 1
2 and β = 2, the corresponding A and B matrices are given by:

A =

 1
2

1
2

1
2

−1 1 1
0 0 0

 B =

0
0
1

 . (8.7)

For this system m = 1 and adapted sets are defined using a single vector c1.
The choice:

c1 =

1
0
0

 (8.8)

satisfies cT1 B = 0, cT1 AB 6= 0 and thus ν1 = 2. Note that in this case the
second condition in Definition 8.8 is trivially satisfied since m = 1. Noting
that cT1 x = c and cT1 Ax = 1

2 (c+ i+ g), the 8 possible functions f for a fixed
e ∈ R are given by:

f1(c, i, g) = c+ e,

f2(c, i, g) = c− e,
f3(c, i, g) = −c+ e,

f4(c, i, g) = −c− e,

f5(c, i, g) =
1
2

(c+ i+ g) + e,

f6(c, i, g) =
1
2

(c+ i+ g)− e,

f7(c, i, g) = −1
2

(c+ i+ g) + e,

f8(c, i, g) = −1
2

(c+ i+ g)− e. C

120 8 Exact symbolic models for control

Adapted sets exist for any discrete-time linear system Σ. It suffices to
take ν1 = ν2 = . . . = νm = 1 and to define the vectors ci by ci = bi. More
interesting choices for the vectors ci are discussed once we show how finite
partitions defined by adapted sets, termed adapted finite partitions, lead to
finite-state bisimilar systems.

Theorem 8.10. Let Σ = (Rn,Rm, f) be a discrete-time linear system. For
any finite partition P of Rn adapted to Σ there exists a finite-state system
bisimilar to SQ(Σ) where Q is the equivalence relation defined by P.

Proof. The first step in the proof consists in making a change of input coor-
dinates. We define new inputs v by u = Lv where L ∈ Rm×m is defined by:

DL = Im (8.9)

with Im the m×m identity matrix and D the matrix having cTi A
νi−1B as its

i-th row. Matrix L exists and is invertible since, by assumption, the vectors
cTi A

νi−1B are linearly independent. Therefore, if we denote by Σ′ the control
system (Rn,Rm, A,B′) with B′ = BL, it follows that SQ(Σ) is bisimilar to
SQ(Σ′). This can be seen by using the identity relation on Rn as bisimulation

relation since x
u- x′ in SQ(Σ) iff x

L−1u- x′ in SQ(Σ′). Therefore, in the
remaining proof we work with Σ′. We shall not prove it here, but if follows
from well established results in systems theory [AM97] that for every l < νr−1
we have:

cTr A
lB = 0. (8.10)

Every set P in P is a finite union of sets defined by conditions of the
form f ∼ 0 with f = ±cTr Alx ± e and ∼∈ {=, >}. We now construct a new
set of functions consisting of all the functions g(x) = ±cTr Alx ± e in which
r ∈ {1, 2, . . . ,m}, 0 ≤ l ≤ νr − 1, and the constants e appear in the functions
f defining the sets P ∈ P. The functions g induce an equivalence relation R
on Rn defined by (x, x′) ∈ R if sign ◦ g(x) = sign ◦ g(x′) for every function g.
Note that R is finite as we have finitely many functions g. We claim that R is
a bisimulation relation between SQ(Σ) and SQ(Σ). Note that for any x ∈ Rn,
(x, x) ∈ R which implies that conditions 1a and 1b in Definition 4.13 are
satisfied. Moreover, (x, x′) ∈ R implies πQ(x) = πQ(x′) since every function
f is also a function g, that is, R refines the equivalence relation defined by
P. Hence, condition 2 in Definition 4.13 is also satisfied. We now focus on
condition 3. Let (x, x′) ∈ R and assume that x

u- x′′, or equivalently, that
x′′ = Ax+BLv. We claim that x′′′ = Ax′+BLv′ satisfies (x′′, x′′′) ∈ R where:

v′i = cTi A
νi(x− x′) + vi. (8.11)

Let g be any function used to construct R. Noting that:

g(x′′′) = ±cTr Alx′′′±e = ±cTr Al(Ax′+BLv′)±e = ±cTr Al+1x′±cTr AlBLv′±e

8.3 Discrete-time linear control systems 121

we have the following two situations. When l < νr−1, cTr A
lBL = 0, by (8.10),

and sign ◦ g(x′′) = sign ◦ g(x′′′) becomes:

sign(±cTr Al+1x± e) = sign(±cTr Al+1x′ ± e)

which holds by definition of R and by the membership (x, x′) ∈ R. If l = νr−1,
then g(x′′′) = ±cTr Aνrx′± cTr Aνr−1BLv′± e with cTr A

νr−1BL 6= 0. Moreover:

g(x′′′) = ±cTr Aνrx′ ± cTr Aνr−1BLv′ ± e
= ±cTr Aνrx′ ± cTr Aνr (x− x′)± cTr Aνr−1BLv ± e by (8.11) and (8.9)
= ±cTr Aνrx± cTr Aνr−1BLv ± e = g(x′′).

It then follows that sign ◦ g(x′′′) = sign ◦ g(x′′) for any g used to construct R
and we conclude (x′′, x′′′) ∈ R. By symmetry, condition 3b in Definition 4.13
also holds and the result now follows from Theorem 4.18. ut

The notion of quotient system, introduced in Definition 4.17, preserves
determinism in the sense that the quotient of a deterministic system is a
deterministic system. Hence, SQ(Σ) being deterministic, has a symbolic de-
terministic quotient S. We can thus refine controllers synthesized for S to
controllers acting on SQ(Σ), as described in Section 8.2, since alternating
simulation degenerates into simulation for deterministic systems.

The equivalence relation R used in the proof of Theorem 8.10 is not guar-
anteed to be the maximal bisimulation relation between SQ(Σ) and SQ(Σ).
Therefore, the resulting finite-state system S, constructed as the quotient
S = (SQ(Σ))/R, is not guaranteed to have the smallest number of states.
Although we could use the operator G, introduced in Chapter 5, to construct
the maximal bisimulation relation, we would not be exploiting the fact that
we seek a bisimulation relation between SQ(Σ) and itself. Using the operator
Pre : 2X → 2X defined, for any W ⊆ X, by:

Pre(W) = {x ∈ X | x u- x′ for some u ∈ U and x′ ∈W}, (8.12)

and the fact that we are dealing with deterministic systems, we can specialize
the algorithm defined by G. Starting from a partition P we can refine it
using the Pre operator until it stabilizes, i.e., until Pre(P) can be written as
a union of sets in P for any set P ∈ P. Once stabilization is achieved, the
resulting partition defines a bisimulation relation between SQ(Σ) and SQ(Σ)
since P ′ ∩ Pre(P) 6= ∅ implies that every point x ∈ P ′ also belongs to Pre(P).
These ideas lead to Algorithm 8.1 whose correctness can be easily proved
using the fixed-point techniques of Chapter 5. Moreover, a careful analysis of
the proof of Theorem 8.10 reveals that the number of equivalence classes in
the equivalence relation computed by Algorithm 8.1 is |P|ν ≤ |P|n. In this
expression, |P| denotes the number of elements in the partition P and ν is
the largest number in the sequence ν1, ν2, . . . , νm introduced in Definition 8.8.
Consequently, the number of states in the finite-state abstraction S, whose
existence is asserted by Theorem 8.10, is bounded by |P|ν .

122 8 Exact symbolic models for control

Input: Partition P and system S
Output: P ′
P ′ := P;
while ∃P, P ′ ∈ P ′ such that ∅ 6= P ′ ∩ Pre(P) 6= P ′ do

Pa := P ′ ∩ Pre(P);
Pb := P ′\Pre(P);
P ′ := (P ′\{P ′}) ∪ {Pa, Pb};

end

Algorithm 8.1: Computation of the largest bisimulation relation, re-
specting partition P, between S and S.

Example 8.11. Consider again the controlled model for the national income
and suppose that we are interested in reducing the internal consumption from
10 units to 2 units while keeping the national income above 20 units. Using
the vector c1 in (8.8) we define the finite partition P adapted to Σ by:

P1 = {(c, i, g) ∈ R3 | cT1 Ax < 10}
P2 = {(c, i, g) ∈ R3 | cT1 Ax ≥ 10 ∧ cT1 x ≤ 2}
P3 = {(c, i, g) ∈ R3 | cT1 Ax ≥ 10 ∧ 2 < cT1 x < 10}
P4 = {(c, i, g) ∈ R3 | cT1 Ax ≥ 10 ∧ cT1 x ≥ 10}.

In terms of these four regions, our objective can be formulated as the existence
of a control strategy driving all the points in region P4 to region P2 without
entering region P1.

In order to obtain a bisimulation relation, we refine this partition using
Algorithm 8.1. We first apply Pre to P1 and obtain the set of points x ∈ R3 sat-
isfying cT1 A

2x+cT1 ABu < 10. Since cT1 AB 6= 0 we conclude that Pre(P1) = R3

as we can always find a u ∈ R such that cT1 A
2x + cT1 ABu < 10 is satisfied.

Applying Pre to P2 results in the set defined by the points x ∈ R3 satisfying
cT1 A

2x + cT1 ABu ≥ 10 and cT1 Ax + cT1 Bu ≤ 2. As we saw before, the first
condition is satisfied by every point in R3. The second condition is equiv-
alent to cT1 Ax ≤ 2 since cT1 B = 0. Note now that P1 ∩ Pre(P2) 6= ∅ and
P1 ∩Pre(P2) 6= P1. We thus split the set P1 into the sets P1a and P1b defined
by:

P1a = {(c, i, g) ∈ R3 | cT1 Ax ≤ 2}
P1b = {(c, i, g) ∈ R3 | 2 < cT1 Ax < 10}.

We can easily check that the resulting partition:

P1a = {(c, i, g) ∈ R3 | cT1 Ax ≤ 2}
P1b = {(c, i, g) ∈ R3 | 2 < cT1 Ax < 10}
P2 = {(c, i, g) ∈ R3 | cT1 Ax ≥ 10 ∧ cT1 x ≤ 2}
P3 = {(c, i, g) ∈ R3 | cT1 Ax ≥ 10 ∧ 2 < cT1 x < 10}
P4 = {(c, i, g) ∈ R3 | cT1 Ax ≥ 10 ∧ cT1 x ≥ 10}

8.3 Discrete-time linear control systems 123

x1a

P1

x1b

P1

x2

P2

x3

P3

x4

P4

Fig. 8.2. Finite-state system S = (SQ(Σ))/R bisimilar to SQ(Σ) with Σ defined
by (8.7).

is already closed under the Pre operator and thus defines the maximal bisimu-
lation relation R between SQ(Σ) and SQ(Σ). The resulting finite-state system
S = (SQ(Σ))/R is depicted in Figure 8.2 where each state xi represents the
set Pi. Inspecting Figure 8.2 we immediately see that it is not possible to
reach P2 from P4 without passing through P1. Since S is bisimilar to SQ(Σ)
we conclude that the desired objective cannot be achieved in SQ(Σ) neither in
S. When the finite-state abstraction is more complex, it is no longer possible
to solve the control synthesis problem by inspection and one resorts of the
fixed-point algorithms described in Chapter 6. C

Theorem 8.10 critically depends on the use of adapted sets. Its practical
importance is thus tied to the flexibility we have in using adapted sets to de-
scribe the problem being solved. A reasonable requirement is that we have n
linearly independent vectors cTr A

l at our disposal to define adapted sets. Al-
though this is not guaranteed in general, n such linearly independent vectors
do exist whenever Σ is controllable. In fact, existence of such vectors is equiv-
alent to controllability. Furthermore, there exists a procedure to construct the
vectors c1, . . . , cm that we now describe. We start by constructing an n × n
matrix C̃ containing n linearly independent columns of C. The columns of
C̃ are found by sweeping the columns of C from left to right and extracting
the first n linearly independent columns. Note that if the columns in B are
linearly independent, then they are among the n linearly independent chosen
columns. Once we identify these columns, we reorder them in the form:

C̃ =
[
b1|Ab1| . . . |Aν1−1b1|b2|Ab2| . . . |Aν2−1b2| . . . |bm|Abm| . . . |Aνm−1bm

]
.

This reordering also defines the numbers ν1, ν2, . . . , νm appearing in Defini-
tion 8.8. Since all the columns of C̃ are linearly independent, C̃ is invertible
and its inverse satisfies:

C̃−1C̃ = In (8.13)

124 8 Exact symbolic models for control

where In is the n× n identity matrix. If we denote by qi the ith row of C̃−1,
we define the vectors cj as follows:

cT1 = qν1 , (8.14)
cT2 = qν1+ν2 , (8.15)
cT3 = qν1+ν2+ν3 , (8.16)

... (8.17)
cTm = qν1+ν2+...+νm = qn. (8.18)

We leave it to the reader to verify that this choice of vectors and (8.13) imply
the first requirement in Definition 8.8. The second requirement is satisfied by
construction since all the rows in C̃−1 are linearly independent.

Example 8.12. We illustrate the preceding construction using the matrices:

A =


1 5 3 4
−2 4 −1 3

0 0 3 1
2 −1 0 1

 B =


1 3
0 2
2 −4
−1 1

 .
The controllability matrix is given by:

C =
[
B|AB|A2B

]
=


1 3 3 5 −13 37
0 2 −7 9 −36 52
2 −4 5 −11 16 −28
−1 1 1 5 14 6


and the matrix C̃ is obtained from the first four columns of C, which are
linearly independent, by reordering:

C̃ =
[
b1|Ab1|b2|Ab2

]
=


1 3 3 5
0 −7 2 9
2 5 −4 −11
−1 1 1 5

 .
The construction of C̃ also defines the numbers ν1 and ν2 as ν1 = 2 = ν2. We
invert C̃ to obtain:

C̃−1 =
1

144


36 45 45 −18
8 −8 8 24
28 −37 −53 −78
0 18 18 36

 .
The vectors c1 and c2 and finally obtained as:

cT1 =
1

144
[
8 −8 8 24

]
cT2 =

1
144

[
0 18 18 36

]
.

C

8.3 Discrete-time linear control systems 125

The next example illustrates how symbolic abstractions of control sys-
tems can be used to synthesize controllers enforcing requirements stemming
from infinite-state and finite-state specifications. It also shows the refinement
process from the controller synthesized for the finite-state abstraction to the
refined controller for the original infinite-state system.

Example 8.13. This is the longest example in the book. For the sake of read-
ability it is divided in several sections.

Problem description

We consider an infra-red camera onboard of a mobile rover exploring the cold
landscape of Mars. As the temperature on the Mars surface is typically below
zero degrees Celsius, the rover is equipped with a heater that maintains the
camera and other sensors warm. The objective is to synthesize the control
software responsible for using the camera to take pictures. The requirements
for this software module are:

1. the heater must be turned off when pictures are taken since the heater
radiation masks the other infra-red sources;

2. the heater can only be turned off once per picture and must be turned on
immediately after taking a picture to prevent the camera from freezing;

3. the camera must be controlled from the home position to the position
required to take the picture and back to the home position in no more
than 5 units of time.

Heater model

The heater is a shared resource since there are other software tasks that need
to switch the heater on and off. This means that a request to turn the heater
off may not be immediately granted. However, we assume that such request is
granted after some time. To simplify the discussion, we assume this time to be
one time step so that two consecutive requests to turn the heater off always
result in the heater being turned off. Hence, we model the heater by the system
Sheat in Figure 8.3. We can see that a request to turn the heater off, modeled
by the input off, at the state xheat 1 may result in the heater remaining on, if
the system moves to state xheat 2, or being turned off, if the system moves to
state xheat 3. However, at the state xheat 2 a request to turn the heater off is
immediately honored. The system in Figure 8.3 is a metaphor for other shared
software/hardware resources which typically require more complex interaction
protocols and are the source of several software bugs.

126 8 Exact symbolic models for control

Sheat

xheat 1

Hon

xheat 2

Hon

xheat 3

Hoff

off off

on

off

on on

off

Fig. 8.3. Finite-state model Sheat for the heater.

Camera model

The software module to be designed, not only needs to interact correctly with
the heater system, but it also needs to send continuous-time input signals to
the camera pointing system. The later is described by a simple mechanical
system including a friction term proportional to the angular velocity and an
input describing the torque applied by a motor:

θ̇ = ω (8.19)
ω̇ = −γω + u. (8.20)

In this model, θ describes the angle that the camera makes with the rest
position, that we call home position; ω represents the angular velocity of the
camera; and u is the input. To keep our discussion simple, we let2 γ = 0.
Assuming that the input is updated every unit3 of time and held constant
between updates, we can explicitly integrate the differential equations (8.19)
and (8.20) to obtain the discrete-time control system Σ defined by:

θ(k + 1) = θ(k) + ω(k) +
1
2
u(k)

ω(k + 1) = ω(k) + u

with k ∈ N0 and where θ(t) = θ(k) and ω(t) = ω(k) at t = k, and u(t) = u(k),
for all t ∈ [k, k + 1[. In order to apply Theorem 8.10, we model Σ as a system
2 It is also possible to carry out the subsequent constructions with a nonzero friction

term at the expense of a lengthier presentation.
3 The choice of unit sampling period was made for simplicity of presentation only.

Given any other sampling period, and assuming the inputs to be constant in
between updates, we can always construct a discrete-time linear control system
describing the evolution of a continuous-time linear control system at the sampling
instants.

8.3 Discrete-time linear control systems 127

SQ(Σ) with Q an equivalence relation defined by a finite partition P adapted
to Σ and adequate to express the specification. One possible choice for P is
obtained by first constructing the vector c1 from the requirement cT1 b1 = 0
as:

cT1 =
[
1 −1

2

]
.

Using cT1 and cT1 A we consider the partition P consisting of the following sets:

P1 = {(θ, ω) ∈ R2 | cT1 x ≤ ε ∧ cT1 x ≥ −ε ∧ cT1 Ax ≤ ε ∧ cT1 Ax ≥ −ε}
P2 = {(θ, ω) ∈ R2 | cT1 x ≤ ε+ θdes ∧ cT1 x ≥ −ε+ θdes ∧ cT1 Ax ≤ ε+ θdes

∧ cT1 Ax ≥ −ε+ θdes}
P3 = R2\(P1 ∪ P2)

where ε is a sufficiently small design parameter and θdes is the angle to which
the camera should be controlled to, in order to take the picture. The set P1 can
be made arbitrarily small by choosing ε sufficiently small and thus describes
a small neighborhood of x = (θ, ω) = (0, 0). Similarly, the set P2 describes a
small neighborhood of x = (θ, ω) = (θdes, 0). The sets P1 and P2 are depicted
in Figure 8.4 for ε = 0.5 and θdes = 4. In terms of these sets, the objective is
to control the camera from the home position P1 to the orientation required
for the picture and described by the set P2. Once the picture has been taken,
the camera should return to the home position P1. Applying Algorithm 8.1
to this partition we obtain the new partition represented in Figure 8.4, for
ε = 0.5 and θdes = 4, and defined by:

P1 = {(θ, ω) ∈ R2 | cT1 x ≤ ε ∧ cT1 x ≥ −ε ∧ cT1 Ax ≤ ε ∧ cT1 Ax ≥ −ε}
P2 = {(θ, ω) ∈ R2 | cT1 x ≤ ε+ θdes ∧ cT1 x ≥ −ε+ θdes ∧ cT1 Ax ≤ ε+ θdes

∧ cT1 Ax ≥ −ε+ θdes}
P3 = {(θ, ω) ∈ R2 | cT1 Ax ≤ ε ∧ cT1 Ax ≥ −ε ∧ (cT1 x > ε ∨ cT1 x < −ε)}
P4 = {(θ, ω) ∈ R2 | cT1 Ax ≤ ε+ θdes ∧ cT1 Ax ≥ −ε+ θdes ∧ (cT1 x > ε+ θdes

∨ cT1 x < −ε+ θdes)}
P5 = R2\(P1 ∪ P2 ∪ P3 ∪ P4).

Figure 8.5 depicts the finite-state system Sabs bisimilar to SQ(Σ). System Sabs
is obtained from the quotient of SQ(Σ) by the equivalence relation defined by
the partition {P1, P2, P3, P4, P5} as follows. The set on inputs U/R is redefined
to be X/R and every transition is relabeled with the destination state as the
corresponding input. As discussed in Chapter 4, these changes result in a
finite-state system Sabs that is still bisimilar to SQ(Σ). The states xabs i of
Sabs correspond to the sets Pi for i = 1, . . . , 5. This correspondence defines
the bisimulation relation absRQ between Sabs and SQ(Σ). We note that since
SQ(Σ) is deterministic, absRQ is also an alternating bisimulation relation.

128 8 Exact symbolic models for control

Fig. 8.4. Finite partition defining the finite-state system Sabs bisimilar to SQ(Σ)
and depicted in Figure 8.5.

The composed system Sabs × Sheat describes the concurrent4 operation of
the camera pointing system and the heater system. For later use, we note that
the alternating bisimulation relation absRQ can be extended to an alternating
bisimulation relation abs heatRQheat between Sabs × Sheat and SQ(Σ)× Sheat
defined by ((xabs, xheat), (x, x′heat)) ∈ abs heatRQheat if (xabs, x) ∈ absRQ and
xheat = x′heat.

Specification model

The software module to be designed can be regarded as a controller Scont
enforcing the previously described specification on Sabs × Sheat. Noting that
the infinite external behavior of Sabs×Sheat is a subset of (Yabs×Yheat)ω, we
can describe the specification as the subset of (Yabs × Yheat)ω defined by the
strings:

(home, Hon)(pointed, Hoff)(home, Hon)ω, (8.21)
(home, Hon)(pointed, Hoff)(?, Hon)(home, Hon)ω, (8.22)
(home, Hon)(pointed, Hoff)(?, Hon)(?, Hon)(home, Hon)ω, (8.23)
(home, Hon)(pointed, Hoff)(?, Hon)(?, Hon)(?, Hon)(home, Hon)ω, (8.24)

4 Recall from Chapter 1 that Sabs × Sheat denotes composition with respect to the
trivial interconnection relation Xabs ×Xheat × Uabs × Uheat.

- -4 2 2 4 6 8

-2

-4

2

4

P1 P2

P3

P3

P4

P4

P5 P5 P5

8.3 Discrete-time linear control systems 129

(home, Hon)(?, Hon)(pointed, Hoff)(home, Hon)ω, (8.25)
(home, Hon)(?, Hon)(pointed, Hoff)(?, Hon)(home, Hon)ω, (8.26)
(home, Hon)(?, Hon)(pointed, Hoff)(?, Hon)(?, Hon)(home, Hon)ω, (8.27)
(home, Hon)(?, Hon)(?, Hon)(pointed, Hoff)(home, Hon)ω, (8.28)
(home, Hon)(?, Hon)(?, Hon)(pointed, Hoff)(?, Hon)(home, Hon)ω, (8.29)
(home, Hon)(?, Hon)(?, Hon)(?, Hon)(pointed, Hoff)(home, Hon)ω. (8.30)

In the description of the specification, we used (home, Hon)ω to describe the
infinite repetition of the symbol (home, Hon) and we used (?, Hon) to denote
any element of Yabs × Yheat with the second component equal to Hon. Note
that all these strings start and end at the home position with the heater on;
return to the home position in no more than 5 time units; visit the output

xabs 5

elsewhere

xabs 3

homing

xabs 4

pointing

xabs 1

home

xabs 2

pointed

xabs 5

xabs 3 xabs 4

xabs 5

xabs 1

xabs 4

xabs 5

xabs 2

xabs 3

xabs 4
xabs 3

xabs 1

xabs 1

xabs 3

xabs 4

xabs 1

xabs 2

Fig. 8.5. Finite-state model Sabs, bisimilar to SQ(Σ), for the camera dynamics.

130 8 Exact symbolic models for control

pointed with the heater off; and switch off the heater only once. Therefore,
they describe all the behaviors of Sabs × Sheat that satisfy the specification.

Finite-state controller

The controller Scont can now be synthesized by constructing an output de-
terministic finite-state system Sspec whose external behavior consists of the
subset of (Yabs×Yheat)ω defined by strings (8.21) through (8.30), and by solv-
ing a simulation game for system Sabs × Sheat and specification Sspec. Using
the methods described in Chapter 6 we obtain the controller Scont, represented
in Figure 8.6 and the following alternating simulation relation from Scont to
Sabs × Sheat:

contRabs heat = {(xcont 1, (xabs 5, xheat 1)), (xcont 2, (xabs 4, xheat 1)),
(xcont 3, (xabs 2, xheat 3)), (xcont 4, (xabs 2, xheat 1)),
(xcont 5, (xabs 4, xheat 1)), (xcont 6, (xabs 5, xheat 1)),
(xcont 7, (xabs 3, xheat 1)), (xcont 8, (xabs 1, xheat 1))
(xcont 9, (xabs 2, xheat 2)), (xcont 10, (xabs 2, xheat 3))}.

Controller refinement

Controller Scont acts on the abstraction Sabs × Sheat. According to Proposi-
tion 8.7, Scont can be refined to a controller S′cont = Scont ×F (Sabs × Sheat)
acting on the refined system SQ(Σ) × Sheat. In order to compose S′cont
with SQ(Σ)× Sheat we need to construct the alternating simulation relation
cont′RQheat from S′cont to SQ(Σ)× Sheat.

Following Proposition 8.7, cont′RQheat consists of all the pairs:(
(x′cont, (xabs, xheat)), (x, xheat)

)
∈
(
X ′cont × (Xabs ×Xheat)

)
×
(
X ×Xheat

)
for which the memberships:

1. (x′cont, (xabs, xheat)) ∈ contRabs heat;
2. ((xabs, xheat), (x, x′heat)) ∈ abs heatRQheat,

hold. The relation cont′RQheat and the system S′cont completely describe the
software module in charge of taking pictures. In Figure 8.7 we represent S′cont
with transitions labeled by the continuous-time signals to be sent to the cam-
era pointing system SQ(Σ) and with the inputs to be sent to the heating
system Sheat. The sets of inputs Udes and U0 are defined by (8.33) and (8.34),
respectively, and obtained from the extended relation of cont′RQheat. We illus-
trate the construction of these sets with the transition from xcont 1 to xcont 2 in
S′cont. According to cont′Rabs heat, this transition is matched by the transition:

(xabs 5, xheat 1)
xabs 4,on

abs heat
- (xabs 4, xheat 1)

8.3 Discrete-time linear control systems 131

xcont 1

(home,
Hon)

xcont 2

(pointing,
Hon)

xcont 3

(pointed,
Hoff)

xcont 5

(pointing,
Hon)

xcont 4

(pointed,
Hon)

xcont 6

(elsewhere,
Hon)

xcont 7

(homing,
Hon)

xcont 8

(home,
Hon)

xcont 10

(pointed,
Hoff)

xcont 9

(pointed,
Hon)

Fig. 8.6. Finite-state controller Scont obtained as the solution of a simulation game
for system Sabs × Sheat and specification system Sspec.

132 8 Exact symbolic models for control

xcont 1

xcont 2

xcont 3

xcont 5xcont 4 xcont 6

xcont 7

xcont 8

xcont 10

xcont 9

uheat = on
u ∈ Udes

uheat = off
u ∈ Udes

uheat = off
u ∈ Udes

uheat = on
u ∈ Udes

uheat = on
u ∈ U0

u ∈ Udes
uheat = on

uheat = on
u ∈ R\(U0 ∪ Udes)

uheat = on
u ∈ U0

uheat = on
u ∈ U0 uheat = on

u ∈ U0

uheat = on
u ∈ U0

uheat = on
u ∈ U0

uheat = off
u ∈ Udes

u ∈ U0

uheat = on

Fig. 8.7. Controller S′cont with transitions labeled with the continuous-time and
discrete-time inputs sent to SQ(Σ)× Sheat.

8.4 Continuous-time multi-affine control systems 133

in Sabs × Sheat and according to abs heatRQheat, it is also matched by all the

transitions x
u- x′ in SQ(Σ) for which x ∈ P5 and x′ = Ax + Bu ∈ P4.

Using the definition of the set P4, the inclusion Ax+Bu ∈ P4 can be expressed
as the set of points x ∈ P5 for which there exists u ∈ R satisfying:

cT1 A
2x+ cT1 ABu ≤ ε+ θdes ∧ cT1 A2x+ cT1 ABu ≥ −ε+ θdes (8.31)
cT1 Ax+ cT1 Bu > ε+ θdes ∨ cT1 Ax+ cT1 Bu < −ε+ θdes (8.32)

Noting that cT1 B = 0, (8.32) simplifies to cT1 Ax > ε+θdes ∨ cT1 Ax < −ε+θdes.
Since all the points in P5 already satisfy these inequalities we analyze (8.31).
Using cT1 AB = 1 we obtain the explicit description:

u ∈ Udes(θ, ω) =
[
−θ − 3

2
ω + θdes − ε,−θ −

3
2
ω + θdes + ε

]
(8.33)

for the set of inputs labeling the transition x
u- x′ in SQ(Σ). Similar

computations lead to the set of inputs:

u ∈ U0(θ, ω) =
[
−θ − 3

2
ω − ε,−θ − 3

2
ω + ε

]
(8.34)

labeling transitions in SQ(Σ) matching the transition from xcont 5 to xcont 7
in S′cont. Using the sets Udes and U0 we can describe all the inputs that need
to be sent to the camera pointing system, as depicted in Figure 8.7.

Controller S′cont uses state measurements from SQ(Σ)× Sheat in two dif-
ferent ways: in order to determine which inputs are to be sent to SQ(Σ), since
the sets Udes and U0 depend on the current infinite state; and in order to
determine which state of Sheat is reached when the input off is applied at
the state xheat 1 of Sheat, corresponding to state xcont 2 in S′cont. The system
represented in Figure 8.7 can also be seen as a hybrid controller since it re-
quires infinite-state and finite-state measurements to operate and it generates
continuous-time and discrete-time output signals to control SQ(Σ)×Sheat. C

8.4 Continuous-time multi-affine control systems

In this section we describe a different abstraction technique applicable to a
large class of control systems in continuous-time.

Before recalling the notion of affine function, we introduce some notation
that is only used in this section. Given a map f : A1 ×A2 ×A3 → B, we
denote by fca2 : A2 → B the map f(a1, ·, a3) : A2 → B obtained from f by
fixing the entries a1 and a3. Similarly, fca1 : A1 → B and fca3 : A3 → B denote
the maps obtained from f by fixing a2 and a3 in the first case and a1 and
a2 in the second case. Given a point a ∈ A, the membership function for a is
denoted by χa : A→ {0, 1} and satisfies χa(x) = 1 if x = a and χa(x) = 0 if
x 6= a.

134 8 Exact symbolic models for control

Affine functions are characterized by the following property.

Definition 8.14 (Affine function). A map f : R → R is said to be affine
when for every x, y ∈ R and for every α, β ∈ R satisfying α + β = 1 the
following equality holds:

f(αx+ βy) = αf(x) + βf(y).

The number αx + βy is said to be an affine combination of x and y when
α+ β = 1. The constraint α+ β = 1 can be expressed using a single variable
λ ∈ R to define the affine combination of x and y as (1 − λ)x + λy. A set
Z ⊆ Rn is said to be convex when it contains all the affine combinations of
points x, y ∈ Z with λ > 0. Consider now two intervals E1 =]a1, b1[⊂ R and
E2 =]a2, b2[⊂ R. A point x1 ∈ E1 can be written as the affine combination
(1 − λ1)a1 + λ1b1 of the vertices a1 and b1 of E1 where λ1 is obtained by
solving x1 = (1− λ1)a1 + λ1b1 to obtain:

λ1 =
x1 − a1

b1 − a1
. (8.35)

Similarly, a point x2 ∈ E2 can always be written as the affine combination
x2 = (1− λ2)a2 + λ2b2 with:

λ2 =
x2 − a2

b2 − a2
. (8.36)

This idea can be generalized to points x ∈ E1 ×E2 ⊂ R2. In this case we can
still write x as an affine combination of the vertices:

vaa =
[
a1

a2

]
, vab =

[
a1

b2

]
, vba =

[
b1
a2

]
, vbb =

[
b1
b2

]
of the rectangle E1 × E2:

x = (1−λ1)(1−λ2)vaa+(1−λ1)(λ2)vab+(λ1)(1−λ2)vba+(λ1)(λ2)vbb. (8.37)

Although it is not difficult to see that the preceding coefficients do add to one,
it may not be immediately obvious that λ1 and λ2 are still given by (8.35)
and (8.36), respectively. This can be verified by simply substituting (8.35)
and (8.36) in (8.37). The affine combination in (8.37) is not unique since a
point in E1 × E2 can be written as an affine combination of three vertices
only. However, the particular affine combination in (8.37) enables us to con-
sider non-affine functions while still retaining some of the properties of affine
functions. Consider a function f : R2 → R such that fcx1 : R → R and
fcx2 : R → R are affine maps. Then, f(x) for x ∈ E1 × E2 can be obtained
as the affine combination of f(vaa), f(vab), f(vba) and f(vbb). To see this,
introduce first the auxiliary variables:

z = (1− λ2)vaa + (λ2)vab w = (1− λ2)vba + (λ2)vbb.

8.4 Continuous-time multi-affine control systems 135

Using z and w we can write (8.37) as:

x = (1− λ1)z + (λ1)w

and:

f(x) = f
(
(1− λ1)z + (λ1)w

)
= fcx1

(
(1− λ1)z + (λ1)w

)
= (1− λ1)fcx1(z) + (λ1)fcx1(w)
= (1− λ1)f(z) + (λ1)f(w). (8.38)

Note now that:

f(z) = f
(
(1− λ2)vaa + (λ2)vab

)
= fcx2

(
(1− λ2)vaa + (λ2)vab

)
= (1− λ2)fcx2(vaa) + (λ2)fcx2(vab)
= (1− λ2)f(vaa) + (λ2)f(vab). (8.39)

Similarly:

f(w) = f
(
(1− λ2)vba + (λ2)vbb

)
= (1− λ2)f(vba) + (λ2)f(vbb). (8.40)

Finally, we combine (8.38), (8.39) and (8.40) to obtain:

f(x) = (1− λ1)(1− λ2)f(vaa) + (1− λ1)(λ2)f(vab) (8.41)
+(λ1)(1− λ2)f(vba) + (λ1)(λ2)f(vbb).

We now generalize this simple idea beyond rectangles in R2.

Definition 8.15 (n-rectangle). A n-rectangle E in Rn is a set defined by:

E =
n∏
i=1

]ai, bi[

where ai, bi ∈ R satisfy ai < bi for i = 1, . . . , n. The set of vertices of an
n-rectangle is denoted by V(E) and defined by:

V(E) =
{
x ∈ Rn | xi ∈ {ai, bi}

}
.

Definition 8.16 (Multi-affine function). A map f : Rn → R is said to
be multi-affine when for each xi, i = 1, . . . , n, f bxi : R → R is affine. A map
f : Rn → Rm is multi-affine, when for each i = 1, . . . ,m the map fi : Rn → R
is multi-affine.

136 8 Exact symbolic models for control

The following result generalizes (8.41) to arbitrary dimensions.

Proposition 8.17. Let E be an n-rectangle in Rn and f : Rn → Rm a multi-
affine function. The following holds:

x ∈ E =⇒ f(x) =
∑

v∈V(E)

λvf(v),
∑

v∈V(E)

λv = 1.

Multi-affine maps are completely determined by the values they assume on
the vertices of n-rectangles in Rn.

Proposition 8.18. Let E be an n-rectangle in Rn and consider a func-
tion g : V(E) → Rm. There exists one and only one multi-affine function
f : Rn → Rm such that f |V(E) = g. Moreover, f is given by:

f(x) =
∑

v∈V(E)

n∏
i=1

(
xi − ai
bi − ai

)χbi (vi)(bi − xi
bi − ai

)χai (vi)
g(v). (8.42)

The function f in (8.42) was obtained as a straightforward generalization
of equality (8.41) thus guaranteeing that f is multi-affine and that f |V(E) = g.
Moreover, f is unique since if we assume the existence of another multi-affine
function f ′ : Rn → Rm satisfying f ′|V(E) = g we conclude that f − f ′ is
still multi-affine and satisfies (f − f ′)|V(E) = g − g = 0. It then follows from
Proposition 8.17 that f − f ′ is the function identically zero and thus f = f ′.

Multi-affine control systems are characterized by restrictions on U and f .

Definition 8.19 (Multi-affine control system). A control system (Rn,U , f)
is said to be multi-affine if f is of the form f(x, u) = g(x)+Bu with B ∈ Rn×m
and g : Rn → Rn a multi-affine function.

Multi-affine control systems are also denoted by the more informative
quadruple Σ = (Rn,U , g, B). The definition of multi-affine control systems
requires B to be constant. When B is not constant but a multi-affine function
of x, the results in this section are still applicable by considering the extended
system: [

ẋ
u̇

]
=
[
g(x) +B(x)u

0

]
+
[

0
Im

]
v (8.43)

where the state is now (x, u) ∈ Rn × Rm, the input is v ∈ Rm, and Im is the
m×m identity matrix.

Whenever a control system is multi-affine, we can exploit its multi-affine
properties to obtain symbolic abstractions based on partitions of state space
induced by n-rectangles. The construction of such abstractions is based on a
careful analysis of the interplay between the functions g and B, defining the
dynamics, and the facets and vertices of n-rectangles. Recall that a facet of
an n-rectangle E is the intersection of E with an affine subspace of dimension
n − 1 defined by xi = ai or xi = bi. Given a vertex v ∈ V(E) we denote by

8.4 Continuous-time multi-affine control systems 137

F(v) the set of all facets containing v. Moreover, to each facet F defined by
xi = ai we associate a normal vector ηF defined by ηFj = 0 for j 6= i and
ηFj = −1 for j = i. Similarly, to a facet defined by xi = bi we associate a
normal vector defined by ηFj = 0 for j 6= i and ηFj = 1 for j = i. When F is
a facet defined by xi = ai, F o denotes the opposite facet defined by xi = bi.
Similarly, if F denotes the facet xi = bi, F o denotes the opposite facet defined
by xi = ai. For each n-rectangle we consider the following two problems:

Problem 8.20 (Rectangular invariant). Let Σ = (Rn,U , g, B) be a
multi-affine control system and let E be an n-rectangle. The rectangular in-
variant problem consists in determining if there exists a multi-affine feedback
control law k : Rn → Rm such that any solution ξ of the closed-loop dynamical
system (Rn, g +Bk) satisfies:

ξ(0) ∈ E =⇒ ξ(t) ∈ E ∀t ∈ R+.

Problem 8.21 (Control to facet). Let Σ = (Rn,U , g, B) be a multi-affine
control system, let E be an n-rectangle, and let F be a facet of E. The control
to facet problem consists in determining if there exists a multi-affine feedback
control law k : Rn → Rm such that for any solution ξ of the closed-loop
dynamical system (Rn, g+Bk) for which ξ(0) ∈ E there exists a time τ ∈ R+

satisfying:

1. ξ(t) ∈ E for t ∈ [0, τ [;
2. ξ(τ) ∈ F ;
3. ξ(t) /∈ E ∪ F for t ∈]τ, τ + ε] and some ε ∈ R+.

Once we know how to solve the preceding problems, the construction of
finite-state abstractions is conceptually simple. We use n-rectangles as states
and we place a transition from: a rectangle E to itself when Problem 8.20 has
a solution for E; a rectangle E to rectangle E′ when they share a facet F and
Problem 8.21 has a solution for E and F .

The rectangular invariant problem admits the following solution.

Theorem 8.22. Let Σ be a multi-affine control system and let E be a
n-rectangle. The rectangular invariant problem admits a solution if the fol-
lowing sets are non-empty:

UE(v) =
⋂

F∈F(v)

{
u ∈ Rm | ηTF (g(v) +Bu) < 0

}
(8.44)

for all v ∈ V(E).

Proof. We first show how to construct the multi-affine feedback from the sets
UE which are assumed to be nonempty. Let h : V(E)→ Rm be a function sat-
isfying h(v) ∈ UE(v). This function can be constructed by picking an element
uv ∈ UE(v) for every v ∈ V(E) and setting h(v) = uv. By Proposition 8.18

138 8 Exact symbolic models for control

there exists a unique multi-affine function k : Rn → Rm satisfying k|V(E) = h.
Let us consider now the closed loop system defined by the differential equation
ξ̇ = f(ξ) with f(x) = g(x) + Bk(x). The function f is multi-affine and since
k(v) ∈ UE(v) we have ηTF f(v) < 0 for every facet F of E. Consider now a
point x ∈ F . By writing x as an affine combination of the vertices of F we
conclude that ηTF f(v) < 0 for every vertex v of F implies ηTF f(x) < 0. It now
follows from continuity of the function ηTF f that ηTF f(x) < 0 for x ∈ F implies
ηTF f(y) < 0 for every y in a neighborhood of x and thus in a neighborhoodN of
F . Consequently, no trajectory ξ of Σ starting inside E can touch F since this
would require that for some τ , ξ(τ) ∈ N . However, d

dtη
T
F ξ
∣∣
t=τ

= ηTF f(ξ(τ)) < 0
which implies that ηTF f is decreasing and cannot reach F . Since this argument
holds for all the facets of E, trajectories of S starting inside E cannot leave
E. ut

Theorem 8.22 provides us with very friendly conditions to test the exis-
tence of a solution to Problem 8.20. It suffices to check non-emptiness of the
sets UE(v) which are described by affine inequalities. Moreover, when these
sets are non-empty, a multi-affine feedback can be constructed by using ex-
pression (8.42) with g(v) being any element of the set UE(v).

The control to facet problem also admits a simple solution.

Theorem 8.23. Let Σ be a multi-affine control system, let E be an n-
rectangle and let F be a facet of E. The control to facet problem admits a
solution if the following sets are non-empty:

UE(v) =
⋂

G∈F(v)

{
u ∈ Rm | ηTG(g(v) +Bu) < 0

}
for all v ∈ V(E) such that F /∈ F(v), and:

UE(v) =
⋂

G∈F(v),G6=F

{
u ∈ Rm | ηTG(g(v) +Bu) < 0 ∧ ηTF

(
g(v) +Bu

)
> 0
}

for all v ∈ V(E) such that F ∈ F(v).

Proof. As in the proof of Theorem 8.22 we construct the feedback k : Rn → Rm
as the unique multi-affine map satisfying k|V(E) = h for some function
h : V(E) → Rm with h(v) ∈ UE(v). Consider now any facet G 6= F . Since
ηTG
(
g(v)+Bk(v)

)
< 0 for every vertex v of F , it follows ηTG

(
g(x) +Bk(x)

)
< 0

for every x ∈ G. As shown in the proof of Theorem 8.22, trajectories starting
inside E cannot touch G. To conclude the proof we need to show that every
trajectory starting inside E leaves E through F in finite time. To do this, we
note that ηTF

(
g(v) +Bk(v)

)
> 0 for every v ∈ V(E) implies, by writing x ∈ E

as a linear combination of the vertices of E, that ηTF
(
g(x) + Bk(x)

)
> 0 for

every x ∈ E. Let now δ = minx∈E η
T
F

(
g(x)+Bk(x)

)
which is well defined since

E is a compact set and ηTF
(
g(x) + Bk(x)

)
is a continuous function of x ∈ E.

8.4 Continuous-time multi-affine control systems 139

If we consider the evolution of ηTF ξ for a trajectory ξ such that ξ(0) = x ∈ E,
it follows that:

d

dt
ηTF ξ = ηTF

(
g(ξ) +Bk(ξ)

)
≥ δ

for all t such that ξ(t) ∈ E. Therefore:

ηTF ξ(t) ≥ ηTF ξ(0) + δt

for all t such that ξ(t) ∈ E. This means that is takes no longer than
(ηTF y − ηTF ξ(0))/δ units of time for ξ to reach a point y ∈ F . Let us denote by
τ the exact time at which ξ(τ) ∈ F . It now follows from ηTF

(
g(y)+Bk(y)

)
> δ,

for any y ∈ F , the existence of ε > 0 such that ξ(t) /∈ E ∪ F for t ∈]τ, τ + ε].
ut

Example 8.24. Consider the Lotka-Volterra predator-prey model:

ξ̇1 = −ξ1 + ξ1ξ2 − υ (8.45)
ξ̇2 = ξ2 − ξ1ξ2 (8.46)

where ξ1(t) ∈ R+
0 describes the number of predators, ξ2(t) ∈ R+

0 describes the
number of preys, and υ(t) ∈ R+

0 describes the effect5 of pesticides repressing
the predators at time t ∈ R. We assume that the initial population lies in the
rectangle]5, 6[×]5, 6[. Without applying any control, the number of preys will
diminish at the expense of increasing the number of predators. Assume now
that we want to force the number of predators to remain in the interval]5, 6[
while reducing the number to preys to a level below 2. This objective can be
formulated as an instance of the control to facet problem. The objective is to
synthesize a multi-affine control law ensuring that all the trajectories starting
in the rectangle E =]5, 6[×]2, 6[exit through the facet [5, 6] × {2}. For this
example we have four vertices:

V(E) = {(5, 6), (6, 6), (5, 2), (6, 2)}.

The set UE(5, 6) can be computed as:

UE(5, 6) = {u ∈ R+
0 | − 5 + 5 · 6− u > 0 ∧ 6− 5 · 6 < 0}

= {u ∈ R+
0 | u < 25}

and similar computations provide:

UE(6, 6) = {u ∈ R+
0 | u > 30},

UE(5, 2) = {u ∈ R+
0 | u < 5},

UE(6, 2) = {u ∈ R+
0 | u > 6}.

5 A more accurate model is ξ̇1 = −ξ1 + ξ1ξ2 − ξ1υ, describing the decrease of
predators as being proportional to the product of the quantity of pesticides with
the number of predators. This more general model can be converted into the
multi-affine format by considering the extended system described in (8.43).

140 8 Exact symbolic models for control

Since all the sets are non-empty, the problem is solvable. We choose the fol-
lowing points from each set:

15 ∈ UE(5, 6), 40 ∈ UE(6, 6), 0 ∈ UE(5, 2), 15 ∈ UE(6, 2),

which define the desired multi-linear feedback k : R+
0 × R

+
0 → R+

0 uniquely.
Using expression (8.42) we obtain:

k(x1, x2) = −115
2

+ 10x1 −
35
4
x2 +

5
2
x1x2. (8.47)

The resulting closed loop dynamical system is displayed in Figure 8.8 where
it can be appreciated that g(x) +Bk(x) always points inside E except at the
exit facet. C

Fig. 8.8. Dynamical system resulting from applying the multi-affine feedback
law (8.47) to the control system defined by (8.45) and (8.46). The rectangle E
is dark-colored.

5.0 5.5 6.0 6.5

2

3

4

5

6

8.4 Continuous-time multi-affine control systems 141

The solutions to Problems 8.20 and 8.21 given by Theorems 8.22 and 8.23
enable us to construct finite-state models for multi-affine systems. Although
a collection of n-rectangles E does not form a partition of Rn, under certain
circumstances we can complete E to partition although not uniquely. We say
that a partition P of Rn is a completion of a collection E of n-rectangles when:

1. ∀E ∈ E ∃P ∈ P intE = intP ;
2. ∀P ∈ P ∃E ∈ E intP = intE.

Moreover, we denote by P (E) the element of P for which intP (E) = intE.

Definition 8.25. Consider a multi-affine control system Σ, let P be a parti-
tion of Rn that is a completion of a collection of n-rectangles E, and let Q be
the equivalence relation defined by P. The finite-state system associated with
Σ and E, denoted by SE(Σ) = (XE , UE , E

- , YE , HE), consists of:

• XE = E;
• UE = E;
• x

x′

E
- x′ if any of the following two conditions holds:

1. the equality x = x′ is satisfied and Problem 8.20 is solvable for Σ with
n-rectangle x;

2. the n-rectangles x and x′ share a facet F and Problem 8.21 is solvable
for Σ with n-rectangle x and facet F ;

• YE = Rn/Q;
• HE(E) = P (E).

Definition 8.25, Theorem 8.22, and Theorem 8.23 have the following im-
mediate consequence.

Theorem 8.26. Consider a multi-affine control system Σ, let P be a partition
of Rn that is a completion of a collection of n-rectangles E, and let Q be the
equivalence relation defined by P. The relation R ⊆ E × Rn defined by:

R = {(E, x) ∈ E × Rn | x ∈ E}

is a simulation relation from SE(Σ) to SQ(Σ).

The simulation relation from SE(Σ) to SQ(Σ) is also an alternating sim-
ulation relation since both systems are deterministic. Therefore, the abstract
system SE(Σ) can be used to synthesize a controller that can be refined to a
controller acting on SQ(Σ) as discussed in Section 8.2.

The abstraction technique based on the solutions to Problem 8.20 and
Problem 8.21 is closely related to the sign based abstractions discussed in
Chapter 7. Consider the solution to the rectangular invariant problem given
in Theorem 8.22. Condition (8.44) can be understood as a sign condition of the
form sign(Lg(x)+Bup) = −1 for the function p(x) = ηTFx. Due to the special
geometry of the considered sets, n-rectangles, and due to the multi-affine

142 8 Exact symbolic models for control

nature of g, the analysis of the sign conditions only needs to be performed at
the vertices of the n-rectangles. This fact makes this technique very appealing
from a computational perspective. However, the construction of sign based
abstractions can be generalized to control systems thus allowing to deal with
more general differential equations and more general partitions.

8.5 Notes

Our treatment of controller refinement touched very superficially upon the
relation between (alternating) simulation relations and composition. A more
detailed treatment of these ideas can be found, e.g., in [Mil89].

Adapted sets first appeared in the paper [TP03] discussing the possibility
of model checking Linear Temporal Logic (LTL) formulas over controllable
linear systems. A generalization of these results, allowing for the synthesis of
controllers enforcing LTL specifications, is described in [TP06]. The results
reported in the preceding two references require controllability. The discus-
sion in Section 8.3 clearly separates the role of adapted sets from the role of
controllability in the existence and construction of symbolic bisimilar models.

The proof of Theorem 8.4 can be found in any linear systems theory book
such as [AM97].

The line of research on abstractions of multi-affine control systems and
n-rectangles first started with piecewise linear systems defined on simplices
and rectangles [HvS01]. The technique was then extended to multi-affine
systems on n-rectangles [BH06]. The discussion in Section 8.4 treats rect-
angles as open sets while in [BH06] rectangles are treated as closed sets.
The use of closed sets makes the conditions appearing in Theorem 8.23 not
only sufficient but also necessary. However, treating rectangles as open sets
allowed us to relate the abstraction to the original system through a sim-
ulation relation. Other results on this abstraction technique can be found
in [HvS04, HCvS06, RB06, RB07].

The use of finite-state abstractions for control design has been advocated
in the literature several times. Earlier examples include [Wan68] while more
recent examples include: [SKA01, dAHM01, KA03] in the context of hybrid
systems, [BMP02] in the context of quantized control systems, [FDF05] in
the context of maneuver automata, [Lun94] in the context of stochastic mod-
els, [AMP95] in the context of discrete and timed-systems, among many other
examples.

Part IV

Infinite Systems: Approximate symbolic models

9

Approximate system relationships

The similarity relationships introduced in Chapter 4 provided the framework
upon which most of the abstraction techniques in Part III relied. In this
chapter, we take an important conceptual step forward by abandoning the
exact nature of these relationships.

Notation

A metric on a set Z is a function d : Z × Z → R+
0 satisfying: d(z, z′) = 0

iff z = z′; d(z, z′) + d(z′, z′′) ≥ d(z, z′′); d(z, z′) = d(z′, z). A metric d
on the set Z induces a distance between points z ∈ Z and sets W ⊆ Z by
d(z,W) = minw∈W d(z, w). This distance can be used to define the ε-inflation
of a set W ⊆ Z, denoted by W ε, and defined by W ε = {z ∈ Z | d(z,W) ≤ ε}
for any ε ∈ R+

0 . The set W ε contains all the points in Z whose distance to
W is bounded by ε. Note that W ⊂ W ε since d(w,W) = 0 for any w ∈ W .
Every relation Q ⊆ Z ×W , admits Q−1 = {(w, z) ∈W × Z | (z, w) ∈ Q} as
its inverse relation.

9.1 Approximate similarity relationships

The notion of simulation relation, formalized in Definition 4.7, requires related
states to be sent by the output maps to the same output. It may be argued that
such requirement is too strong since in concrete physical systems this exact
equality is seldom achieved. Noise in measurements, imprecisions in actuators,
and numerical computation errors are some of the factors preventing an exact
equality between the outputs. These arguments suggest that one could relax
the equality requirement by allowing related states to correspond to different
outputs provided that the mismatch is bounded by some desired precision
ε ∈ R+

0 . To quantify the desired precision we need a metric on the set of
outputs.

© Springer Science + Business Media, LLC 2009DOI: 10.1007/978-1-4419-0224-5_9,
145P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach,

146 9 Approximate system relationships

Definition 9.1 (Metric system). A system S is said to be a metric system
if the set of outputs Y is equipped with a metric d : Y × Y → R+

0 .

When referring to metric systems, equality between two sets of outputs
Ya and Yb will also imply equality between the corresponding metrics, i.e.,
Ya = Yb entails da = db where da is the metric on Ya and db is the metric on
Yb. For metric systems it is possible to generalize Definition 4.7 by replacing
the second requirement with an approximate version.

Definition 9.2 (Approximate Simulation Relation). Consider two met-
ric systems Sa and Sb with Ya = Yb, and let ε ∈ R+

0 . A relation R ⊆ Xa×Xb

is an ε-approximate simulation relation from Sa to Sb if the following three
conditions are satisfied:

1. for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;
2. for every (xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) ≤ ε;
3. for every (xa, xb) ∈ R we have that:
xa

ua

a
- x′a in Sa implies the existence of xb

ub

b
- x′b in Sb satisfying

(x′a, x
′
b) ∈ R.

We say that Sa is ε-approximately simulated by Sb or that Sb ε-approximately
simulates Sa, denoted by Sa �εS Sb, if there exists an ε-approximate simulation
relation from Sa to Sb.

When ε = 0 the inequality d(Ha(xa), Hb(xb)) ≤ ε impliesHa(xa) = Hb(xb).
In this sense, we can regard approximate simulations as a generalization of
the exact simulations introduced in Chapter 4. Before proceeding further, we
give an example to illustrate this concept.

Example 9.3. Consider the dynamical system Σ described by the differential
equation:

d

dt
ξ = −ξ, ξ(t) ∈ R, t ∈ R+

0 (9.1)

that can be explicitly integrated to obtain ξx(t) = e−tx. The closed form ex-
pression for ξ is used to show that for any ε ∈ R+

0 , the relation Rε ⊆ R× R
defined by (x, x′) ∈ Rε iff ‖x − x′‖ ≤ ε is an ε-approximate simulation rela-
tion from S(Σ) to S(Σ). Here, S(Σ) is the system (R,R+

0 ,
-) defined

by x
τ- x′ if there exists a solution ξx : [0, τ] → R of (9.1) satisfying

ξx(τ) = x′. To see why Rε is an ε-approximate simulation relation, con-
sider a pair (x, x′) ∈ Rε and a transition x

τ- x′′ in S(Σ). The definition
of - implies x′′ = ξx(τ) = e−τx, and we claim that (x′′, x′′′) ∈ Rε

with x′′′ = ξx′(τ), or equivalently, x′
τ- x′′′ in S(Σ). To determine if

(x′′, x′′′) ∈ Rε, we compute:

‖x′′−x′′′‖ = ‖ξx(τ)−ξx′(τ)‖ = ‖e−τx−e−τx′‖ ≤ ‖e−τ‖‖x−x′‖ ≤ ‖x−x′‖ ≤ ε.

This simple argument is valid in far greater generality and it is at the heart
of all the results to be proved in Part IV. C

9.1 Approximate similarity relationships 147

As the previous example suggests, approximate simulation relations are
especially useful for infinite-state systems in which the output set is naturally
endowed with a metric. One typical usage of approximate simulation relations
is the simplification of verification problems. To understand how such simpli-
fication arises, we relate the reachable sets of systems related by approximate
simulation relations.

Proposition 9.4. For any two metric systems Sa and Sb with Ya = Yb, the
following implication holds:

Sa �εS Sb =⇒ Reach(Sa) ⊆ Reachε(Sb).

Proof. Denote by R the ε-approximate simulation relation from Sa to Sb,
and let ya ∈ Reach(Sa). By definition of reachable output, there exists an
initialized finite internal behavior of Sa:

xa0
ua0

a
- xa1

ua1

a
- . . .

uak−1

a
- xak

with Ha(xak) = ya. Repeating the argument in the proof of Proposition 4.11
we conclude the existence of an initialized internal behavior of Sb:

xb0
ub0

b
- xb1

ub1

b
- . . .

ubk−1

b
- xbk

satisfying (xai, xbi) ∈ R for i = 0, 1, . . . , k. Hence, yb = Hb(xbk) ∈ Reach(Sb)
and it follows from the second requirement in the definition of approximate
simulation relation that d(ya, yb) ≤ ε. Consequently, ya ∈ Reachε(Sb). ut

Returning to verification problems, consider a system Sa and a set of
unsafe outputs B. If a system Sb ε-approximately simulates system Sa,
Proposition 9.4 can be used to conclude that Reachε(Sb) ∩B = ∅ implies
Reach(Sa) ∩B = ∅. For reachability problems, showing Reach(Sa) ∩ Z 6= ∅
for a set Z satisfying Zε ⊆ B, implies Reach(Sb) ∩ B 6= ∅. Clearly, these
implications are only useful if we are able to construct abstractions based on
ε-approximate simulation relations that are simpler than the systems they
abstract. In Chapters 10 and 11 we discuss the existence and construction of
such abstractions. Before, however, we strengthen approximate simulation to
approximate bisimulation.

Definition 9.5 (Approximate bisimulation). Consider two metric sys-
tems Sa and Sb with Ya = Yb, and let ε ∈ R+

0 . We say that system Sa is
ε-approximately bisimilar to system Sb, denoted by Sa ∼=ε

S Sb, if there exists
a relation R satisfying:

1. R is an ε-approximate simulation relation from Sa to Sb;
2. R−1 is an ε-approximate simulation relation from Sb to Sa.

148 9 Approximate system relationships

Some care needs to be exerted when composing approximate (bi)simulation
relations. Although it is a simple exercise to show that the composition of ap-

relation, the precision is altered by composition. In detail, if aRb is an
aεb-approximate (bi)simulation relation from Sa to Sb and if bRc is an
bεc-approximate (bi)simulation relation from Sb to Sc, the composite bRc ◦ aRb
is an (aεb + bεc)-approximate (bi)simulation relation from Sa to Sc.

9.2 Approximate alternating similarity relationships

When discussing problems of control, ε-approximate similarity relationships
need to be replaced with ε-approximate alternating similarity relationships.
This generalization from exact to approximate consists again in relaxing the
equality requirement on the outputs of related states.

Definition 9.6 (Approximate alternating simulation relation). Let
Sa and Sb be metric systems with Ya = Yb and let ε ∈ R+

0 . A relation
R ⊆ Xa ×Xb is an ε-approximate alternating simulation relation from Sa
to Sb if the following three conditions are satisfied:

1. for every xa0 ∈ Xa0 there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;
2. for every (xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) ≤ ε;
3. for every (xa, xb) ∈ R and for every ua ∈ Ua(xa) there exists ub ∈ Ub(xb)

such that for every x′b ∈ Postub(xb) there exists x′a ∈ Postua(xa) satisfying
(x′a, x

′
b) ∈ R.

We say that Sa is ε-approximately alternatingly simulated by Sb or that Sb
ε-approximately alternatingly simulates Sa, denoted by Sa �εAS Sb, if there
exists an ε-approximate alternating simulation relation from Sa to Sb.

Approximate alternating simulation relations are used to define approxi-
mate feedback composition in Chapter 11. To that purpose, we introduce now
the extended ε-approximate alternating simulation relation associated with
an ε-approximate alternating simulation relation.

Definition 9.7 (Extended approximate alternating simulation rela-
tion). Let R be an ε-approximate alternating simulation relation from metric
system Sa to metric system Sb. The extended ε-approximate alternating sim-
ulation relation Re ⊆ Xa ×Xb × Ua × Ub associated with R is defined by all
the quadruples (xa, xb, ua, ub) ∈ Xa × Xb × Ua × Ub for which the following
three conditions hold:

1. (xa, xb) ∈ R;
2. ua ∈ Ua(xa);
3. ub ∈ Ub(xb) and for every x′b ∈ Postub(xb) there exists x′a ∈ Postua(xa)

satisfying (x′a, x
′
b) ∈ R.

proximate (bi)simulation relations results in an approximate (bi)simulation

9.3 Notes 149

Note that the third requirement in the previous definition is no more than the
third requirement in Definition 9.6.

Approximate alternating bisimulations can be obtained by introducing
the adjective approximate in the definition of alternating bisimulation or by
symmetrizing the definition of approximate alternating simulation.

Definition 9.8 (Approximate alternating bisimulation). Given two met-
ric systems Sa and Sb with Ya = Yb, and given ε ∈ R+

0 , we say that Sa is
ε-approximately alternatingly bisimilar to Sb, denoted by Sa ∼=ε

AS Sb, if there
exists a relation R satisfying:

1. R is an ε-approximate alternating simulation relation from Sa to Sb;
2. R−1 is an ε-approximate alternating simulation relation from Sb to Sa.

Approximate alternating simulations and bisimulations are instrumental to
refine controllers synthesized for symbolic abstractions based on approximate
simulations and bisimulations. We return to this topic in Chapter 11.

9.3 Notes

Approximate equivalence was first discussed in the context of timed-automata
[GHJ97] and probabilistic systems [DGJP99]. In both cases, it was formalized
by resorting to metrics and metric systems. Although in a different context,
metric systems had been studied much earlier, see for example [vB98]. Most of
the work that followed the papers [GHJ97, DGJP99] focused on probabilistic
systems and the notion of approximate simulation for dynamical and control
systems only appeared recently. In [GP05, GP07], approximate bisimulation
was introduced by resorting to a metric on the set of outputs. A different
formalization of approximate simulation appeared in [Tab05, Tab06] through
the use of set-valued output maps. The discussion in this chapter is based
on [GP07, PGT08].

10

Approximate symbolic models for verification

The abstraction techniques presented in Chapter 7 and Chapter 8 were based
on the construction of quotient systems. In generalizing exact to approximate
similarity relationships, we abandon quotient based abstractions to focus on
a different abstraction technique introduced in this chapter for affine dynam-
ical systems. Similar results for nonlinear dynamical systems are presented as
special topics. The results in Chapter 11 further enlarge the class of approxi-
mate symbolic models for verification by considering the effect of adversarial
inputs.

Notation

For any matrix P ∈ Rn×n, PT denotes the transposed matrix. Matrix P
is said to be symmetric if PT = P , and is said to be positive definite if for
every x ∈ Rn, x 6= 0 implies xTPx > 0. We denote by SP(n) the set of
all symmetric and positive definite matrices in Rn×n. The minimum and the
maximum eigenvalues of a matrix P ∈ Rn×n are denoted by λm(P) and
λM (P), respectively. For any x ∈ Rn, ‖x‖ represents the Euclidean norm of

x defined by ‖x‖ =
(
x2

1 + x2
2 + . . .+ x2

n

) 1
2 where xi is the ith component of

the vector x. This norm induces a norm in the space of matrices that can be
computed as ‖A‖ = λ

1
2
M (ATA) for any A ∈ Rn×m. The exponential of any

matrix A ∈ Rn×n is denoted by eA and is the analytic function
∑∞
i=0

1
i!A

i.
The ball of radius r ∈ R+

0 centered at x ∈ Rn is denoted by Br(x) and defined
as the set of all the points x′ ∈ Rn satisfying ‖x − x′‖ ≤ r. If Z ⊆ Rn and
η ∈ R+, [Z]η denotes the subset [Z]η ⊆ Z defined by:

[Z]η =
{
z ∈ Z | zi = ki

2√
n
η for some ki ∈ Z and i = 1, 2, . . . , n

}
.

Note that we can cover Z by balls of radius η centered at the points in [Z]η.
This observation is used several times in this chapter. Given a subset W ⊆ Z

© Springer Science + Business Media, LLC 2009DOI: 10.1007/978-1-4419-0224-5_10,
151P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach,

152 10 Approximate symbolic models for verification

we denote by ı : W ↪→ Z the natural inclusion of W in Z taking w ∈ W to
ı(w) = w ∈ Z. The identity map on Z is denoted by 1Z : Z → Z.

10.1 Stability of linear dynamical systems

The results in this chapter require some classical notions of stability that are
recalled in this section. In doing so, we freely use several concepts of dynamical
systems introduced in Section 7.1.1. The starting point is an affine dynamical
system described by a differential equation:

d

dt
ξ = Aξ + h (10.1)

with ξ(t) ∈ Rn, A ∈ Rn×n, h ∈ Rn, and t ∈ R. The adjective affine qualifies
the right hand side of (10.1) which is an affine function represented by the
matrix A and the vector h. For this reason, we represent an affine dynamical
system by the triple Σ = (Rn, A, h) or by the pair Σ = (Rn, A) when h = 0.
In the later case we speak of a linear dynamical system. Recall that a solution
ξ of (10.1) is given by:

ξx(τ) = eAτx+
∫ τ

0

eA(τ−t)h dt. (10.2)

The following discussion focuses on the linear case since affine systems
can be handled by techniques similar to those developed for linear dynamical
systems. An equilibrium point of a linear dynamical system is a point xe ∈ Rn
for which Axe = 0. The equality Axe = 0 implies that any solution ξxe
of (10.1) with h = 0 remains at xe for all future time. The reader can easily
check this observation by noting that ξxe = xe is indeed a solution of (10.1)
with h = 0 or by using (10.2). For linear dynamical systems, the origin is
always an equilibrium point and we focus on this equilibrium point.

Many of the dynamical and hybrid dynamical systems to be verified arise
as the result of applying a feedback control law to a physical system. In such
cases, the objective for the continuous feedback control law is to render the
equilibrium xe asymptotically stable.

Definition 10.1 (Asymptotically stable equilibrium point). The equi-
librium point xe = 0 of a linear dynamical system Σ = (Rn, A) is said to be
asymptotically stable if there exist κ, λ ∈ R+ such that for every x ∈ Rn and
every t ∈ R+

0 , the following inequality is satisfied:

‖ξx(t)‖ ≤ κe−λt‖x‖. (10.3)

When λ is allowed to become zero, the equilibrium point xe = 0 is said to be
stable.

10.1 Stability of linear dynamical systems 153

Inequality (10.3) entails that the trajectory ξx is bounded for all time by
κ‖x‖. Moreover, ξx(t) converges asymptotically to the equilibrium xe = 0, as
t→∞, since:

lim
t→∞

‖ξx(t)‖ ≤ lim
t→∞

κe−λt‖x‖ = 0 =⇒ lim
t→∞

ξx(t) = 0.

Although (10.3) also states that ξx converges exponentially fast, we shall not
make use of this fact. For linear dynamical systems, asymptotic stability can
be checked by analyzing the eigenvalues of the matrix A.

Theorem 10.2. The equilibrium point xe = 0 of a linear dynamical system
Σ = (Rn, A) is asymptotically stable iff all the eigenvalues of the matrix A
have negative real part.

For nonlinear dynamical systems we cannot use the preceding eigenvalue
test and have to resort to an alternative criterion based on Lyapunov func-
tions. This criterion is also useful for linear dynamical systems. In fact, all the
results in this chapter are based on Lyapunov functions.

Definition 10.3 (Lyapunov function). Let Σ = (Rn, A) be a linear dy-
namical system and consider a function V : Rn → R satisfying the following
three properties:

1. V is continuous on Rn and smooth on Rn\{0};
2. V (x) ≥ 0 for all x ∈ Rn;
3. V (x) = 0 implies x = 0.

The function V is a Lyapunov function for Σ if there exists λ ∈ R+ such that
for every x ∈ Rn\{0}, the following inequality holds:

∂V

∂x
Ax ≤ −λV (x). (10.4)

When λ is allowed to become zero, V is a weak Lyapunov function for Σ.

Inequality (10.4) is at the core of several results in this chapter. Note that if
ξ : R→ Rn is a trajectory of Σ, then V ◦ ξ : R→ R+

0 is a smooth function of
time that obeys the following differential inequality:

d

dt
V ◦ ξ =

∂V

∂x

∣∣∣
x=ξ

dξ

dt
=
∂V

∂x

∣∣∣
x=ξ

Aξ ≤ −λV ◦ ξ.

Integration, provides the bound:

V ◦ ξ(t) ≤ e−λtV (ξ(0))

showing that V decays exponentially along the trajectories of Σ. This obser-
vation can be used to show that Lyapunov functions completely characterize
asymptotic stability for linear dynamical systems.

154 10 Approximate symbolic models for verification

Theorem 10.4. The equilibrium point xe = 0 of a linear dynamical system
Σ is asymptotically stable iff Σ admits a Lyapunov function. Analogously, the
equilibrium point xe = 0 of a linear dynamical system Σ is stable iff Σ admits
a weak Lyapunov function.

For linear dynamical systems, existence of a Lyapunov function also implies
the existence of a Lyapunov function of the form V (x) =

√
xTPx for some

P ∈ SP(n). Moreover, Lyapunov functions of this form satisfy several useful
inequalities.

Proposition 10.5. Let V :Rn → R+
0 be a function of the form V (x) =

√
xTPx

for some P ∈ SP(n). There exist constants α, α, γ ∈ R+ such that for all
x, x′, x′′ ∈ Rn, the following inequalities are satisfied:

α‖x‖ ≤ V (x) ≤ α‖x‖, (10.5)
V (x− x′)− V (x− x′′) ≤ γ‖x′ − x′′‖. (10.6)

Proof. Let V ′ = V 2 and recall1 that since P = PT and P ∈ Rn×n there
exists a matrix Q ∈ Rn×n satisfying Q−1 = QT and rendering the matrix
D = Q−1PQ diagonal. Let now z = Qx and note that:

V ′(z) = V ′(Qx) = xTQTPQx = xTQ−1PQx = xTDx.

Since D is diagonal and the eigenvalues of D and P are the same, we have:

λm(P)‖z‖2 = λm(P)zT z ≤ V ′(z) ≤ λM (P)zT z = λM (P)‖z‖2.

Inequality (10.5) now follows by setting α =
√
λm(P) and α =

√
λM (P).

Fix x ∈ Rn and consider the function g : Rn → R+
0 defined by

g(z) = V (x− z). This function is differentiable for all z 6= x and continu-
ous for all z ∈ Rn. Consider now two points z, w ∈ Rn and let L be line
joining these two points. If x /∈ L, then, by the mean value theorem, there
exists a point x∗ ∈ L ⊂ Rn that satisfies:

g(z)− g(w) =
∂g

∂z

∣∣∣
z=x∗

(z − w).

The right hand side of the above equality is bounded by:

∂g

∂z

∣∣∣
z=x∗

(z − w) ≤
∥∥∥∥∂g∂z ∣∣∣z=x∗(z − w)

∥∥∥∥ ≤ ∥∥∥∥∂g∂z ∣∣∣z=x∗
∥∥∥∥ ‖z − w‖.

Moreover, ‖∂g/∂z‖ is bounded by:∥∥∥∥∂g∂z
∥∥∥∥ =

∥∥∥∥−2(x− z)TP
2V (x− z)

∥∥∥∥ ≤ ‖P‖‖x− z‖√
λm(P)‖x− z‖

≤ λM (P)√
λm(P)

.

1 See for example [AM97].

10.2 Dynamical systems as systems 155

We now consider the case when x ∈ L. Since the points x, z, w belong to the
same line L it follows that x− w = λ(x− z) for some λ ∈ R+

0 . Therefore:

V (x− z)− V (x− w) = V (x− z)− V (λ(x− z))
= V (x− z)− λV (x− z)
= (1− λ)V (x− z)
= V ((1− λ)(x− z))
= V (x− z − λ(x− z))
= V (x− z − (x− w))

= V (z − w) ≤
√
λM (P)‖z − w‖.

The result now follows by taking γ = max
{

λM (P)√
λm(P)

,
√
λM (P)

}
= λM (P)√

λm(P)
.

ut
The bounds given in (10.5) allow us to estimate the norm of a vec-

tor x ∈ Rn from the knowledge of V (x) and vice-versa. Inequality (10.6)
can be seen as a generalization of the triangular inequality. Recall that
‖x− x′‖ ≤ ‖x− x′′‖+ ‖x′ − x′′‖ and thus ‖x − x′‖ − ‖x − x′′‖ ≤ ‖x′ − x′′‖.
Therefore, if V (x− x′) = ‖x− x′‖, (10.6) is satisfied with γ = 1.

10.2 Dynamical systems as systems

Dynamical systems can be modeled as systems in several different ways. In
Section 7.1 we presented one construction based on a dynamical system and
a finite equivalence relation defining the outputs. Here, we present a different
construction where the set of outputs remains infinite so as to retain the
Euclidean metric on Rn.

Definition 10.6. The system Sτ (Σ) = (Xτ , Uτ ,
τ
- , Yτ , Hτ) associated with

a dynamical system Σ = (Rn, f) and with τ ∈ R+ consists of:

• Xτ = Rn;
• Uτ = {τ};
• x

τ

τ
- x′ if there exists a solution ξx : [0, τ] → Rn of Σ satisfying

ξx(τ) = x′;
• Yτ = Rn;
• Hτ = ı : Xτ → Rn.

System Sτ (Σ) only describes the states reached by trajectories of Σ of dura-
tion τ . We can thus regard Sτ (Σ) as a time-triggered sampled version of Σ
where as the system SQ(Σ), described in Section 7.1, can be regarded as an
output-triggered sampled version of Σ. The parameter τ defines the desired
sampling rate and is a measure of time quantization. It is not difficult to see
that Sτ (Σ) is a metric system since Y = Rn is equipped with the Euclidean
metric d(y, y′) = ‖y − y′‖.

156 10 Approximate symbolic models for verification

10.3 Symbolic models for affine dynamical systems

The abstractions considered in this chapter are obtained by quantizing the
state set of Sτ (Σ) and approximating its transitions.

Definition 10.7. The system Sτη(Σ) = (Xτη, Uτη,
τη
- , Yτη, Hτη) associ-

ated with a dynamical system Σ = (Rn, f) and with τ, η ∈ R+ consists of:

• Xτη = [Rn]η;
• Uτη = {τ}
• x

τ

τη
- x′ if there exists a solution ξx : [0, τ] → Rn of Σ satisfying

‖ξx(τ)− x′‖ ≤ η;
• Yτη = Rn;
• Hτη = ı : Xτη ↪→ Rn.

Note that Sτη(Σ) has countably many states and when the domain of f
is a bounded set, Sτη(Σ) becomes finite-state. Bounded domains occur fre-
quently in applications where physical variables, such as temperatures and
pressures, cannot grow unbounded under normal operating circumstances.
Although [Rn]η has the desirable consequence of rendering Xτη countable,
it also forces the transition relation of Sτη(Σ) to inaccurately describe the

transitions in Sτ (Σ) since x
τ

τη
- x′ does not entail x′ = ξx(τ), but only

‖x′ − ξx(τ)‖ ≤ η. The extent to which the inaccuracies in
τ
- can be tol-

erated is described by the next result.

Theorem 10.8. Consider a linear dynamical system Σ admitting a Lyapunov
function V of the form V (x) =

√
xTPx with P ∈ SP(n). For any desired

precision ε ∈ R+, for any desired time quantization τ ∈ R+, and for any
space quantization η ∈ R+ satisfying:

η ≤ min
{
γ−1αε

(
1− e−λτ

)
, α−1αε

}
, (10.7)

the relation Rε ⊆ Xτ ×Xτη defined by:

Rε = {(xτ , xτη) ∈ Xτ ×Xτη | V (xτ − xτη) ≤ αε} (10.8)

is an ε-approximate bisimulation relation between Sτ (Σ) and Sτη(Σ).

Proof. The proof consists in showing that the relation Rε satisfies all the
conditions in the definition of ε-approximate bisimulation relation. We first
show that Rε is an ε-approximate simulation relation from Sτ (Σ) to Sτη(Σ).

The first requirement in Definition 9.2 asks that for every xτ0 ∈ Xτ0 = Xτ

there exists xτη0 ∈ Xτη0 = Xτη satisfying (xτ0, xτη0) ∈ Rε or equivalently

10.3 Symbolic models for affine dynamical systems 157

V (xτ0 − xτη0) ≤ αε. If xτ ∈ Xτ0 then, by definition of Xτη0, there exists
xτη0 ∈ Xτη0 satisfying ‖xτ0 − xτη0‖ ≤ η. Consequently:

V (xτ0 − xτη0) ≤ α‖xτ0 − xτη0‖ ≤ αη ≤ αε (10.9)

where the first inequality follows from (10.5) and the second follows from (10.7).
The second requirement holds by construction since (xτ , xτη) ∈ Rε, (10.5),

and (10.8) imply:

d(Hτ (xτ), Hτη(xτη)) = ‖xτ − xτη‖ ≤
1
α
V (xτ − xτη) ≤ ε.

Regarding the third requirement, let (xτ , xτη) ∈ Rε and consider the tran-

sition xτ
τ

τ
- x′τ in Sτ (Σ). Since the origin is an asymptotically stable equi-

librium point, Σ is forward complete and the transition xτη
τ

τ
- x′′τη is well

defined. By definition of Sτη(Σ), for any x′τη ∈ Xτη satisfying:

‖x′′τη − x′τη‖ ≤ η, (10.10)

xτη
τ

τη
- x′τη is a transition in Sτη(Σ). Note that a point x′τη satisfying (10.10)

always exists since Rn ⊆ ∪z∈XτηBη(z). We now need to show that (x′τ , x
′
τη)

belongs to Rε, i.e., V (x′τ − x′τη) ≤ αε. This follows from the sequence of
inequalities:

V (x′τ − x′τη) ≤ V (x′τ − x′′τη) + γ‖x′τη − x′′τη‖ (10.11)
≤ V (ξxτ (τ)− ξxτη (τ)) + γη (10.12)

≤ e−λτV (ξxτ (0)− ξxτη (0)) + γη (10.13)

≤ e−λταε+ γη (10.14)
≤ αε (10.15)

where we used (10.6), (10.10), (10.8), and (10.7) in the first, second, fourth,
and fifth inequalities, respectively. The third inequality is a consequence of:

V (ξx(τ)− ξx′(τ)) ≤ e−λτV (ξx(0)− ξx′(0)), (10.16)

proved in the slightly more general context of Corollary 10.10.
The proof that R−1

ε is an ε-approximate simulation relation from Sτη(Σ)
to Sτ (Σ) is similar and, for that reason, omitted. ut

The main assumption in Theorem 10.8 is asymptotic stability of the origin.
This assumption is satisfied by a large class of verification problems where the
dynamical system being verified results from applying a feedback control law,
to a physical system, with the objective of achieving asymptotic stability. The
inequality (10.7) describes the tradeoff between the desired precision ε, the
desired time quantization τ , and the required space quantization η.

158 10 Approximate symbolic models for verification

The construction of Sτη(Σ) is not based on an equivalence relation and
its corresponding quotient, but rather on a judicious approximation of in-
finitely many transitions in Sτ (Σ). In particular, a transition x

τ

τη
- x′′ in

Sτη(Σ) represents the infinitely many transitions x′
τ

τ
- x′′′ in Sτ (Σ) with

V (x− x′) ≤ αε. This approximation is possible due to the stability proper-
ties of the class of differential equations being considered and the flexibility
afforded by the approximate nature of approximate bisimulation relations.

Example 10.9. We recall here the example used to illustrate the exact abstrac-
tion techniques discussed in Chapter 7. It consists of the linear dynamical
system defined by:

ξ̇1 = −7ξ1 + ξ2

ξ̇1 = 8ξ1 − 10ξ2,

the set of initial states:

L = {(x1, x2) ∈ R2 | 5 ≤ x1 ≤ 6 ∧ −1 ≤ x2 ≤ 1},

and the set of unsafe states:

B = {(x1, x2) ∈ R2 | x2 ≤ −4 ∨ x2 ≥ 4}.

The objective is to determine if the trajectories of Σ starting in L avoid the
set B. In order to apply Theorem 10.8 we identify V (x) =

√
x2

1 + x2
2 as a

suitable Lyapunov function. We have:

P = I2, α = 1, α = 1, λ =
7
2
,

where I2 is the 2× 2 identity matrix. For this choice of Lyapunov function we
can directly verify that γ = 1:

V (x− x′)− V (x− x′′) ≤ α‖x− x′‖ − α‖x− x′′‖
= ‖x− x′‖ − ‖x− x′′‖
≤ ‖x′ − x′′‖.

Choosing ε = 0.5 and τ = 0.05, inequality (10.7) requires η ≤ min{0.08027, 1}.
We choose η =

√
2

20 ≈ 0.0707 thus satisfying (10.7). Using these parameters
and restricting Σ to the bounded set:

{(x1, x2) ∈ R2 | − 0.5 ≤ x1 ≤ 6.5 ∧ −1.5 ≤ x2 ≤ 4.5},

we compute, through numerical simulation, the finite-state bisimilar system
Sτη(Σ). In Figure (10.1) the reader can appreciate: dots representing the
states Xτη of Sτη(Σ); larger and dark-colored dots representing Xτη ∩B; and

10.3 Symbolic models for affine dynamical systems 159

Fig. 10.1. Graphical representation of the states reachable from L. The dots repre-
sent the states of Sτη(Σ), the larger and dark-colored dots represent Xτη ∩B while
the larger and light-colored dots represent Reach (Sτη(Σ)).

Fig. 10.2. Graphical representation of the transitions of Sτη(Σ) used to compute
the states reachable from L displayed in Figure 10.1.

1 2 3 4 5 6

−1

1

2

3

4

1 2 3 4 5 6

-1

1

2

3

4

160 10 Approximate symbolic models for verification

Fig. 10.3. Graphical representation of the transition of Sτη joining (5, 0) to
(3.6, 1.3). The light-colored disks represent balls of radius 0.5 centered at (5, 0) and
at (3.6, 1.3). Also represented are several trajectories of Σ.

larger and light-colored dots representing Reach (Sτη(Σ)). The actual tran-
sitions of Sτη(Σ) used to compute Reach (Sτη(Σ)) are represented in Fig-
ure 10.2. By analyzing Figure 10.1 and Figure 10.2 we see that Reach (Sτη(Σ))
does not intersect B0.5 from which we conclude that the specification is sat-
isfied.

To illustrate the approximate nature of Sτη(Σ), we show in Figure 10.3
the transition (5, 0)

τη
- (3.6, 1.3). The state (5, 0) ∈ Xτη is related to all the

states x ∈ Xτ satisfying V (x − (5, 0)) ≤ αε = 0.5. Since V (x) =
√
x2

1 + x2
2,

all the points in the ball of radius 0.5 centered at (5, 0) are ε-approximately
related to (5, 0). Consequently, all such points should be taken by transitions
of Sτ (Σ) to points contained in the ball of radius 0.5 centered at (3.6, 1.3).
This is shown in Figure 10.3 where several trajectories of Σ with duration τ
and starting on the boundary of B0.5(5, 0) are depicted. C

The previous example raises the natural question of how to handle the
numerical errors arising in the computation of Sτη(Σ). These can be incorpo-
rated in the construction of Sτη(Σ) while ensuring that Theorem 10.8 remains
valid. Assume the existence of a parameter ρ describing the error between the
true trajectory ξ and the trajectory ξ̂ obtained through numerical methods,
when evaluated at time τ , i.e., ‖ξ(τ)− ξ̂(τ)‖ ≤ ρ. Then, we can replace Xτη

with [Rn]η−ρ and redefine
τη
- by declaring the existence of a transition

x
τ

τη
- x′ when ξ̂x satisfies ‖ξ̂x(τ)−x′‖ ≤ η−ρ. This modification guarantees:

‖ξx(τ)− x′‖ ≤ ‖ξx(τ)− ξ̂x(τ) + ξ̂x(τ)− x′‖
≤ ‖ξx(τ)− ξ̂x(τ)‖+ ‖ξ̂x(τ)− x′‖
≤ ρ+ η − ρ = η

3.5 4.0 4.5 5.0 5.5

−0.5

0.5

1.0

1.5

10.3 Symbolic models for affine dynamical systems 161

which is the original definition of
τη
- in the absence of numerical errors.

A different concern that may arise when using Sτη(Σ) for verification is the
inter-sample behavior: can a specification be violated for t ∈]0, τ [even though
it is satisfied at t = 0 and t = τ? The techniques employed in Section 7.6 for
the computation of reachable sets provide an answer to this concern. Recall
that a transition xτη

τ

τη
- x′τη in Sτη implies the existence of a trajectory ξxτη

of Σ satisfying ‖x′τη − ξxτη (τ)‖ ≤ η. We can thus enclose xτη in a zonotope,
enclose Bη(x′τη) in a different zonotope, and use Proposition 7.31 to obtain
another zonotope containing all the states ξxτη (t) for t ∈ [0, τ]. In practice,
however, the parameter τ is chosen to be sufficiently small so that the speci-
fication is directly verified against Sτη(Σ).

Theorem 10.8 admits a simple generalization to affine dynamical systems.

Corollary 10.10. Consider an affine dynamical system Σ = (Rn, A, h) and
assume that the linear dynamical system (Rn, A) admits a Lyapunov function
V of the form V (x) =

√
xTPx with P ∈ SP(n). For any desired precision

ε ∈ R+, for any desired time quantization τ ∈ R+, and for any space quanti-
zation η ∈ R+ satisfying:

η ≤ min
{
γ−1αε

(
1− e−λτ

)
, α−1αε

}
, (10.17)

the relation Rε ⊆ Xτ ×Xτη defined by:

Rε = {(xτ , xτη) ∈ Xτ ×Xτη | V (xτ − xτη) ≤ αε} (10.18)

is an ε-approximate bisimulation relation between Sτ (Σ) and Sτη(Σ).

Proof. The proof is the same as the proof of Theorem 10.8 except for a sim-
ple modification needed to show that (10.16) holds for all affine dynamical
systems. For completeness we now present this argument. Let x′, x′′ ∈ Rn.
Considering V (ξx′(t)− ξx′′(t)) as a function of time we have:

d

dt
V (ξx′ − ξx′′) =

∂V

∂x

∣∣∣
x=ξx′−ξx′′

d

dt
(ξx′ − ξx′′)

=
∂V

∂x

∣∣∣
x=ξx′−ξx′′

(Aξx′ + h−Aξx′′ − h)

=
∂V

∂x

∣∣∣
x=ξx′−ξx′′

A(ξx′ − ξx′′)

≤ −λV (ξx′ − ξx′′).

By integration we obtain:

V (ξx′(t)− ξx′′(t)) ≤ e−λtV (ξx′(0)− ξx′′(0))

which is the desired inequality. ut

162 10 Approximate symbolic models for verification

Theorem 10.8 and Corollary 10.10 rely on the existence of a Lyapunov
function. From Theorem 10.4 we know that existence of a Lyapunov function
is equivalent to asymptotic stability of the origin. Therefore, we can first
check for existence of a Lyapunov function by determining if the origin is an
asymptotically stable equilibrium point. According to Theorem 10.2 this can
be done by determining if the eigenvalues of the matrix A have negative real
part. When this is the case, we can resort to one of several well established
methods in control theory to compute the matrix P defining the required
Lyapunov function.

Lyapunov functions are more than a convenient tool in the construction of
symbolic abstractions. Under the assumptions of Theorem 10.8, the relation
defined by the pairs (xτ , x′τ) ∈ Xτ × Xτ satisfying V (xτ − x′τ) ≤ αε is in
fact an ε-approximate bisimulation relation between Sτ (Σ) and Sτ (Σ) for
any τ ∈ R+. This is consistent with what happens in the exact case where
Theorem 4.18 tells us that existence of a bisimulation relation R between a
system S and itself leads to a bisimulation relation between S and the symbolic
abstraction S/R. Although the abstractions considered in this chapter are
not quotient based, they require identical assumptions on the system S to
be abstracted: existence of an approximate bisimulation relation between S
and S. Note also that (10.18) defines not one, but a family of approximate
bisimulation relations parameterized by ε. The converse is also true under one
additional assumption.

Proposition 10.11. Consider an affine dynamical system Σ = (Rn, A, h)
and let V be a weak Lyapunov function for the linear dynamical system (Rn, A)
of the form V (x) =

√
xTPx with P ∈ SP(n). For any ε ∈ R+ and any τ ∈ R+,

the relation defined by:

Rε = {(xτ , x′τ) ∈ Xτ ×Xτ | V (xτ − x′τ) ≤ αε}

is an ε-approximate bisimulation relation between Sτ (Σ) and Sτ (Σ). Con-
versely, assume the existence of α ∈ R+ such that for any ε ∈ R+ and any
τ ∈ R+, Rε is an ε-approximate bisimulation relation between Sτ (Σ) and
Sτ (Σ) satisfying:

‖xτ − x′τ‖ ≤ αε =⇒ (xτ , x′τ) ∈ Rε. (10.19)

Then, there exists a weak Lyapunov function V for the linear dynamical system
(Rn, A).

Proof. We first note that since R−1
ε = Rε, it suffices to show that Rε is an

ε-approximate simulation relation from Sτ (Σ) to Sτ (Σ) to conclude that Rε
is also an ε-approximate bisimulation relation between Sτ (Σ) and Sτ (Σ). The
first requirement in Definition 9.2 is immediate since Xτ0 = Xτ and for any

10.4 Advanced topics 163

xτ ∈ Xτ , (xτ , xτ) ∈ Rε. The second requirement follows at once from (10.5)
and:

d(Hτ (xτ), Hτ (x′τ)) = ‖xτ − x′τ‖ ≤
1
α
V (xτ − x′τ) ≤ ε.

Regarding the third requirement, let (xτ , x′τ) ∈ Rε and xτ
τ

τ
- x′′τ in Sτ (Σ).

It suffices to show that (x′′τ , x
′′′
τ) ∈ Rε for x′τ

τ

τ
- x′′′τ . This follows from:

V (x′′τ−x′′′τ) = V (ξxτ (τ)−ξx′τ (τ)) ≤ e−λτV (ξxτ (0)−ξx′τ (0)) ≤ V (xτ−x′τ) ≤ αε

where we used (10.16).
Assume now the existence of α ∈ R+ such that for any ε ∈ R+ and any

τ ∈ R+, Rε is an ε-approximate bisimulation relation between Sτ (Σ) and
Sτ (Σ) satisfying (10.19). Consider any point x ∈ Rn and let ε be ‖x‖/α,
i.e., ε = ‖x‖/α. Since ‖x‖ = ‖x − 0‖ ≤ αε, we conclude from (10.19) that
(x, 0) ∈ Rε. As Rε is a simulation relation from Sτ (Σ) to Sτ (Σ), for any
τ ∈ R+ and any transition x

τ

τ
- x′, there exists a transition 0

τ

τ
- x′′ such

that (x′, x′′) ∈ Rε. In other words, for any t ∈ R+ we have (ξx(t), ξ0(t)) ∈ Rε.
If we now denote by ζ the solution of the linear dynamical system (Rn, A), it
is not difficult to see, given (10.2), that ‖ξx(t)−ξ0(t)‖ = ‖ζx(t)−ζ0(t)‖. More-
over, as ζ0(t) = 0 for all t ∈ R+, and invoking the definition of approximate
bisimulation relation, we obtain:

‖ζx(t)‖ = ‖ζx(t)− ζ0(t)‖ = ‖ξx(t)− ξ0(t)‖ ≤ ε =
1
α
‖x‖e−0t.

According to Definition 10.1, with κ = 1/α and λ = 0, xe = 0 is a stable
equilibrium point for (Rn, A) and it follows from Theorem 10.4 the existence
of a weak Lyapunov function for (Rn, A). ut

Although stability of the origin is sufficient to guarantee the existence of
an approximate bisimulation between Sτ (Σ) and Sτ (Σ), Theorem 10.8 does
require the stronger assumption of asymptotic stability. It is the dissipative
nature of Σ, measured by λ, that compensates the approximation errors,
measured by η, introduced in the construction of the transitions of Sτη(Σ).
This is quantified by inequality (10.7) showing that a smaller λ implies a
smaller η.

10.4 Advanced topics

In this section we show that Theorem 10.8 also holds for nonlinear differential
equations. The results in this section are based on advanced control theoretic
concepts.

We make extensive use of comparison functions of class K∞ and KL to
simplify the arguments. A continuous function γ : R+

0 → R+
0 is said to belong

164 10 Approximate symbolic models for verification

to class K∞ if it is strictly increasing, γ(0) = 0, and γ(r) → ∞ as r → ∞.
A continuous function β : R+

0 × R
+
0 → R+

0 is said to belong to class KL if for
each fixed s, the map β(r, s) belongs to class K∞ with respect to r and, for
each fixed r, the map β(r, s) is decreasing with respect to s and β(r, s) → 0
as s→∞.

In a nonlinear context, we need to replace the asymptotic stability assump-
tion with the stronger assumption of incremental stability. We first recall the
notion of globally asymptotically stable equilibrium point in the framework
of comparison functions.

Definition 10.12 (Globally asymptotically stable equilibrium point).
The equilibrium point xe ∈ Rn of a dynamical system Σ = (Rn, f) is globally

asymptotically stable (GAS) if there exists a KL function β such that for any
t ∈ R+

0 and any x ∈ Rn the following inequality is satisfied:

‖ξx(t)− xe‖ ≤ β(‖x− xe‖ , t).

Definition 10.1 can now be seen as the special case where xe = 0 and
β(r, s) = κe−λs‖r‖. The notion of global asymptotic stability compares tra-
jectories of Σ with the special trajectory ξxe(t) = xe. If we compare arbitrary
trajectories of Σ we are lead to incremental global asymptotic stability.

Definition 10.13 (Incremental global asymptotic stability). A dy-
namical system Σ = (Rn, f) is incrementally globally asymptotically stable
(δ–GAS) if it is forward complete and there exists a KL function β such that
for any t ∈ R+

0 and any x, x′ ∈ Rn the following inequality is satisfied:

‖ξx(t)− ξx′(t)‖ ≤ β(‖x− x′‖ , t). (10.20)

In the linear case, δ-GAS degenerates into GAS since ‖ξx(t) − ξx′(t)‖ =
‖eAtx − eAtx′‖ ≤ ‖eAt‖‖x − x′‖ ≤ κe−λt‖x − x′‖ = β(‖x − x′‖, t), as re-
quired by (10.20). For nonlinear dynamical systems with an equilibrium point
xe, δ-GAS implies GAS. This can be seen by replacing x′ and ξx′(t) with
xe in (10.20). However, the converse is not true: the existence of a globally
asymptotically stable equilibrium point does not imply δ-GAS. Nevertheless,
δ-GAS can still be characterized by a dissipation inequality.

Definition 10.14 (δ–GAS Lyapunov function). Let Σ = (Rn, f) be a
dynamical system and consider a smooth function V : Rn × Rn → R+

0 . The
function V is a δ–GAS Lyapunov function for Σ, if there exist K∞ functions
α, α, and λ ∈ R+ such that the following inequalities hold for all x, x′ ∈ Rn:

α(‖x− x′‖) ≤ V (x, x′) ≤ α(‖x− x′‖)
∂V

∂x
f(x) +

∂V

∂x′
f(x′) ≤ −λV (x, x′).

10.4 Advanced topics 165

The usual definition of δ-GAS Lyapunov function requires ∂V
∂x f(x) + ∂V

∂x′ f(x′)
to be bounded by −ρ(‖x−x′‖) for some ρ ∈ K∞. By modifying V , if necessary,
it can be shown that both definitions are in fact equivalent. The following
result provides a Lyapunov-like characterization of δ–GAS dynamical systems.

Theorem 10.15. A dynamical system Σ is δ–GAS if and only if it admits a
δ–GAS Lyapunov function.

In practice, the δ–GAS assumption is tested by searching for a δ–GAS
Lyapunov function V . Once V is found, δ-GAS is proved and V can be used
to construct an approximately bisimilar symbolic model, as described in the
next result.

Theorem 10.16. Let Σ = (Rn, f) be a δ-GAS dynamical system admitting a
δ-GAS Lyapunov function satisfying:

V (x, x′)− V (x, x′′) ≤ γ(‖x′ − x′′‖) (10.21)

for some class K∞ function γ and for every x, x′, x′′ ∈ Rn. For any desired
precision ε ∈ R+, for any desired time quantization τ ∈ R+, and for any space
quantization η ∈ R+ satisfying:

η ≤ min
{
γ−1

(
(1− eλτ)α(ε)

)
, α−1 ◦ α(ε)

}
, (10.22)

the relation Rε ⊆ Xτ ×Xτη defined by:

Rε = {(xτ , xτη) ∈ Xτ ×Xτη | V (xτ , xτη) ≤ α(ε)} (10.23)

is an ε-approximate bisimulation relation between Sτ (Σ) and Sτη(Σ).

Proof. We only provide a sketch since the proof proceeds along the same lines
of the proof of Theorem 10.8. The first two requirements in Definition 9.2
follow by construction of Rε and the third requirement requires a simple
modification of the sequence of inequalities (10.11) through (10.15):

V (x′τ , x
′
τη) ≤ V (x′τ , x

′′
τη) + γ

(
‖x′τη − x′′τη‖

)
≤ V (ξxτ (τ), ξxτη (τ)) + γ(η)

≤ e−λτV (ξxτ (0), ξxτη (0)) + γ(η)

≤ e−λτα(ε) + γ(η)
≤ α(ε)

where the first inequality is now a consequence of (10.21). ut
The reader can easily verify that Theorem 10.8 can be recovered as a

special case of the preceding result by taking α(r) = αr, α(r) = αr, and
γ(r) = γr.

Inequality (10.21) is no longer guaranteed to hold, as was the case for
linear dynamical systems, and is thus an additional assumption. Neverthe-
less, (10.21) is satisfied provided that V is continuously differentiable and we
work on a convex compact set.

166 10 Approximate symbolic models for verification

10.5 Notes

The study of abstractions based on approximate similarity is very recent.
This chapter is based on [PGT08, GPT09] where it is shown that, under suit-
able stability assumptions, nonlinear control systems and nonlinear switched
systems admit finite-state approximate bisimilar models. While the results
in [PGT08] do not require Lyapunov functions, they impose a lower bound
on the sampling time τ used to construct Sτ (Σ) and Sτη(Σ). The approach
followed in this chapter originally appeared in [GPT09] and does not impose
any constraint on τ . This means that for any desired value of τ ∈ R+, and
for any desired precision of ε ∈ R+, there always exists a space quantiza-
tion η ∈ R+ satisfying (10.7) for linear dynamical systems, (10.17) for affine
dynamical systems, or (10.22) for nonlinear dynamical systems.

The converse result described by Proposition 10.11 appeared in [Tab08a]
where the implication (10.19) was taken as an integral part of the definition of
approximate simulation. This result shows that Lyapunov functions, a typical
weapon in the control theorist arsenal, are essential ingredients in the study
of the recently introduced notion of approximate bisimulation for dynami-
cal and control systems. Lyapunov functions also appear, under the name
of bisimulation functions, in the study of metrics for dynamical and control
systems [GP07], following previous work on probabilistic systems [DGJP99],
finite-state systems [dAFS04], and timed automata [HMP05].

Earlier attempts to use incremental stability to simplify verification prob-
lems appeared in [GGM06, GP06, FGP06, Gir07] and were preceded by
work on approximate verification that did not rely on incremental stabil-
ity [PVB95, CK01].

The treatment of δ-GAS follows [Ang02] where the proof of Theorem 10.15
can be found. The proofs of Theorem 10.2 and Theorem 10.4 can be found on
any book on linear system theory such as [AM97].

Although Theorem 10.8 can potentially be used to construct abstractions
of hybrid dynamical systems, no systematic construction procedure appeared
in the literature so far. The difficulty lies in identifying easily checkable con-
ditions determining when the entrance of a trajectory in a guard set implies
that all the surrounding trajectories also enter the same guard set.

11

Approximate symbolic models for control

This chapter continues the generalization from exact to approximate similar-
ity, now in the context of symbolic models for control. We discuss approximate
feedback composition and refinement, and show how the techniques developed
in Chapter 10 can be suitably extended to control systems and switched affine
systems. Nonlinear extensions of these results are presented as special topics.

Notation

The following notation is used in this chapter. For any matrix P ∈ Rn×n, PT

denotes the transposed matrix. Matrix P is said to be symmetric if PT = P ,
and is said to be positive definite if for every x ∈ Rn, x 6= 0 implies xTPx > 0.
We denote by SP(n) the set of all symmetric and positive definite matrices in
Rn×n. The minimum and the maximum eigenvalues of a matrix P ∈ Rn×n are
denoted by λm(P) and λM (P), respectively. For any x ∈ Rn, ‖x‖ represents

the Euclidean norm of x defined by ‖x‖ =
(
x2

1 + x2
2 + . . .+ x2

n

) 1
2 where xi is

the ith component of the vector x. This norm induces a norm in the space
of matrices that can be computed as ‖A‖ = λ

1
2
M (ATA) for any A ∈ Rn×m.

The exponential of any matrix A ∈ Rn×n is denoted by eA and is the analytic
function

∑∞
i=0

1
i!A

i. The ball of radius r ∈ R+
0 centered at x ∈ Rn is denoted

by Br(x) and defined as the set of all the points x′ ∈ Rn satisfying ‖x−x′‖ ≤ r.
If Z ⊆ Rn and η ∈ R+, [Z]η denotes the subset [Z]η ⊆ Z defined by:

[Z]η =
{
z ∈ Z | zi = ki

2√
n
η for some ki ∈ Z and i = 1, 2, . . . , n

}
.

Note that we can cover Z by balls of radius η centered at the points in [Z]η.
This observation is used several times in this chapter.

Given a subset W ⊆ Z we denote by ı : W ↪→ Z the natural inclusion of
W in Z taking w ∈W to ı(w) = w ∈ Z. The identity map on Z is denoted by
1Z : Z → Z while πX : Xa ×Xb × Ua × Ub → Xa ×Xb denotes the projection

©DOI: 10.1007/978-1-4419-0224-5_11, Springer Science + Business Media, LLC 2009
167P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach,

168 11 Approximate symbolic models for control

sending (xa, xb, ua, ub) ∈ Xa×Xb×Ua×Ub to (xa, xb) ∈ Xa×Xb. A relation
R ⊆ Z ×W is surjective when for every w ∈ W there is a z ∈ Z satisfying
(z, w) ∈ R.

A metric on a set Z is a function d : Z×Z → R+
0 satisfying: d(z, z′) = 0 iff

z = z′; d(z, z′) + d(z′, z′′) ≥ d(z, z′′); d(z, z′) = d(z′, z). A metric d is said to
be norm-induced if d(x, y) = ‖x−y‖ for some norm ‖·‖ and for every x, y ∈ Z.
A metric d : Z × Z → R+

0 on the set Z induces a pseudo-metric on 2Z , the set
of all subsets of Z. Such pseudo-metric, called the Hausdorff pseudo-metric
and denoted by dh, is defined by dh(K,W) = max

{−→
dh(K,W),

−→
dh(W,K)

}
,

where
−→
dh(K,W) = supk∈K infw∈W d(k,w) is the directed Hausdorff pseudo-

metric and K,W ⊆ Z. We recall that the Hausdorff pseudo-metric dh satisfies
all the requirements of a metric except that W = W ′ implies dh(W,W ′) = 0
but dh(W,W ′) = 0 does not imply W = W ′.

A function f :]a, b[→ Rn, a, b ∈ R, is said to be piecewise continuous if
there exists an ordered sequence of real numbers a = i1 < i2 < . . . < ik = b
such that for every j ∈ {1, 2, . . . , k − 1}, the restriction of f to the interval
]ij , ij+1[is continuous. A piecewise continuous function f :]a, b[→ Rn is es-
sentially bounded if there exists a compact set K ⊂ Rn such that f(t) ∈ K for
almost all t ∈]a, b[. When f :]a, b[→ Rn is an essentially bounded piecewise
continuous function, the supremum norm of f , denoted by ‖f‖, is the supre-
mum of the set {r ∈ R+

0 | ∃ t ∈]a, b[r = ‖f(t)‖ ∧ f(t) ∈ K}. The domain of
a function f : Z →W is denoted by dom f .

11.1 Stability of linear control systems

We review a few stability results needed for the study of approximate simu-
lations and bisimulations. The reader is expected to have read Section 8.1.2
where several concepts related to control systems were introduced. Here, we
consider affine control systems described by the affine differential equation:

d

dt
ξ = Aξ + Cχ+Dδ + h (11.1)

with ξ(t) ∈ Rn, χ(t) ∈ Rm, δ(t) ∈ Rl, χ ∈ C, δ ∈ D, A ∈ Rn×n, C ∈ Rn×m,
D ∈ Rn×l, h ∈ Rn, and t ∈ R+

0 . We distinguish between two different kinds
of inputs: control inputs χ, and disturbance inputs δ. We are thus taking
U = C × D and υ = (χ, δ) according to the notion of continuous-time control
system introduced in Section 8.1.2. Independently of the nature of the inputs,
a solution to (11.1) can always be written in the form:

ξxχδ(τ) = eAτx+
∫ τ

0

eA(τ−t) (Cχ(t) +Dδ(t) + h) dt. (11.2)

Affine control systems are denoted by the septuple Σ = (Rn, C,D, A,C,D, h)
or by the sextuple Σ = (Rn, C,D, A,C,D) when h = 0. In the later case we

11.1 Stability of linear control systems 169

speak of a linear control system. Although we are interested in the slightly
more general class of affine control systems, it is sufficient to consider the
stability properties of linear control systems. In some of the results we will
assume the absence of disturbances, i.e., D = 0. In such cases we denote Σ
by the quadruple (Rn, C, A,C).

Definition 11.1 (Input-to-state stability). A linear control system
(Rn, C,D, A,C,D) is said to be input-to-state stable (ISS) when there exist
constants κ, λ, ρc, ρd ∈ R+ such that for any x ∈ Rn, any χ ∈ C, any δ ∈ D,
and any t ∈ R+, the following inequality is satisfied:

‖ξxχδ(t)‖ ≤ κe−λt‖x‖+ ρc‖χ‖+ ρd‖δ‖. (11.3)

Inequality (11.3) extends inequality (10.3) from linear dynamical systems
to linear control systems. The next step is to extended also the concept of
Lyapunov function.

Definition 11.2 (ISS Lyapunov function). Let (Rn, C,D, A,C,D) be a
linear control system and consider a function V : Rn → R satisfying the
following three properties:

1. V is continuous on Rn and smooth on Rn\{0};
2. V (x) ≥ 0 for all x ∈ Rn;
3. V (x) = 0 implies x = 0.

The function V is an ISS-Lyapunov function for Σ if there exist constants
λ, σc, σd ∈ R+ such that for all x ∈ Rn\{0}, c ∈ Rm, and d ∈ Rl, the following
inequality holds:

∂V

∂x
(Ax+ Cc+Dd) ≤ −λV (x) + σc‖c‖+ σd‖d‖. (11.4)

Inequality (11.4) entails the differential inequality:

d

dt
V ◦ ξ ≤ −λV ◦ ξ + σc‖χ‖+ σd‖δ‖

that can be integrated to provide the estimate:

V ◦ ξ(t) ≤ e−λtV (ξ(0)) +
σc‖χ‖
λ

(1− e−λt) +
σd‖δ‖
λ

(1− e−λt)

≤ e−λtV (ξ(0)) +
σc
λ
‖χ‖+

σd
λ
‖δ‖. (11.5)

Inequality (11.5) can be combined with (10.5) to fully characterize ISS in
terms of ISS-Lyapunov functions as stated in the next result.

Theorem 11.3. A linear control system Σ is input-to-state stable iff Σ ad-
mits an ISS-Lyapunov function.

170 11 Approximate symbolic models for control

For linear systems, the above theorem can be strengthened by assert-
ing that ISS implies the existence of an ISS-Lyapunov function of the form
V (x) =

√
xTPx with P ∈ SP(n). Moreover, it can be shown that a linear

control system (Rn, C,D, A,C,D) is ISS iff the origin is an asymptotically
stable equilibrium point for the linear dynamical system (Rn, A). The ISS
assumption is thus very simple to check since Theorem 10.2 asserts that it
suffices to determine if all the eigenvalues of the matrix A have negative real
part.

Although input-to-state stability is the assumption upon which all the
results in this chapter rely, there is a straightforward extension to a wider
class of control systems. When a linear control system Σ is not ISS, it may be
rendered ISS by suitably designing a linear feedback control law χ = Kξ+χ′

transforming Σ into the linear control system defined by:

d

dt
ξ = (A+ CK)ξ + Cχ′ +Dδ

with new control input χ′. ISS is achieved whenever K makes the real part of
the eigenvalues of A+ CK negative. The results in this chapter remain valid
for this larger class of systems even though, for simplicity, we will directly
assume input-to-state stability.

11.2 Control and switched systems as systems

11.2.1 Control Systems

In Chapter 10 we introduced the system Sτ (Σ) describing the time-triggered
sampled version of a given dynamical system Σ. A simple generalization is
available for control systems.

Definition 11.4. The system Sτ = (Xτ , Uτ ,
τ
-) associated with a control

system Σ = (Rn, C × D, f) and with τ ∈ R+ consists of:

• Xτ = Rn;
• Uτ = {χ ∈ C | domχ = [0, τ]};
• x

χ

τ
- x′ if there exist χ ∈ Uτ , δ ∈ D, and a trajectory ξxχδ : [0, τ]→ Rn

of Σ satisfying ξxχδ(τ) = x′;
• Yτ = Rn;
• Hτ = ı : Xτ ↪→ Rn.

The output set Yτ = Rn of Sτ (Σ) is naturally equipped with the norm-
induced metric d(y, y′) = ‖y − y′‖. In addition to control systems, we also
consider switched systems.

11.2 Control and switched systems as systems 171

11.2.2 Switched systems

Switched systems are a class of hybrid dynamical systems frequently aris-
ing in embedded control applications. We restrict the discussion to the case
where the continuous-time dynamics in each finite state is given by an affine
dynamical system.

Definition 11.5 (Switched affine system). A hybrid dynamical system:

Σ = (Sa, {Inxa}xa∈Xa , {Guta}ta∈
a
- , {Reta}ta∈

a
- , {fxa}xa∈Xa)

is said to be a switched affine system if the following conditions are satisfied:

1. Ua = Xa;
2.

a
- = {(xa, ua, x′a) ∈ Xa ×Xa ×Xa | ua = x′a};

3. Inxa = Rn for every xa ∈ Xa;
4. Gu(xa,ua,x′a)

= Rn for every (xa, ua, x′a) ∈
a
- ;

5. Re(xa,ua,x′a)
(xb) = xb for every (xa, ua, x′a) ∈

a
- and xb ∈ Inxa ;

6. fxa(xb) = Axaxb + hxa for some matrix Axa ∈ Rn×n, some vector
hxa ∈ Rn, and all xa ∈ Xa, xb ∈ Inxa .

In a switched affine system it is possible, at any time and independently
of the infinite state, to switch from any finite state to any other finite state
without changing the infinte part of the state. This possibility is described by
the several requirements in Definition 11.5. The first two requirements ask that
for every two finite states xa, x′a ∈ Xa there exists one and only one transition

between them: xa
x′a

a
- x′a. The third and sixth requirements ask that in each

finite state xa ∈ Xa, the switched system behaves like the affine dynamical
system (Rn, Axa , hxa). The fourth requirement allows for discrete transitions
to take place at any time and for any value of the infinite part of the state.
Finally, the fifth condition declares that discrete transitions do not alter the
infinite part of the state. These restrictions also imply that a switched affine
system is completely defined by the finite set of states Xa, and the collection
of affine dynamical systems {(Rn, Axa , hxa)}xa∈Xa . For this reason, we also
denote a switched affine system by the triple Σ = (Xa,Rn, {Axa , hxa}xa∈Xa).

Example 11.6. Switched affine systems provide a useful framework for switch-
ing control. Suppose that several affine controllers:

c = K1x+ h1, c = K2x+ h2, . . . , c = Kpx+ hp,

have been designed to control the linear system:

ξ̇ = Aξ + Cχ, ξ(t) ∈ Rn, χ(t) ∈ Rm, t ∈ R+
0 .

172 11 Approximate symbolic models for control

If these controllers can be used independently of the infinite state x ∈ Rn, we
have a switched affine system Σ described by:

({1, 2, . . . , p},Rn, {A+ CKi, Chi}i∈{1,2,...,p}).

A software module deciding which controller is executed and when, can now
be seen as a supervisory controller acting on the switched affine system Σ. C

When switched affine systems are viewed as models for switching control,
the supervisory controller is typically implemented as a periodic task, with
period τ , running on a microprocessor. This implies that discrete transitions
only happen at instants that are integer multiples of τ . An appropriate model
for this kind of system is Sτ (Σ), capturing only transitions of duration τ .

Definition 11.7. The system Sτ (Σ) = (Xτ , Uτ ,
τ
- , Yτ , Hτ) associated

with a switched affine system Σ = (Xa,Rn, {Axa , hxa}xa∈Xa) and with τ ∈ R+

consists of:

• Xτ = Rn;
• Uτ = Xa;
• x

ua

τ
- x′ if there exists a solution ξx : [0, τ]→ Rn of the affine dynamical

system (Rn, Aua , hua) satisfying ξx(τ) = x′;
• Yτ = Rn;
• Hτ = ı : Xτ ↪→ Rn.

Note that Sτ (Σ) is both infinite-state as well as metric with a norm-
induced metric.

11.3 Approximate feedback composition and controller
refinement

The controller refinement process carries over, mutatis mutandis, from the
exact to the approximate case. We recall that in Chapter 1 we simplified
the representation of the composition Sa ×I Sb whenever the interconnection
relation I satisfied the condition:

(xa, xb) ∈ πX(I) =⇒ Ha(xa) = Hb(xb).

In the current approximate context, we consider the generalized condition:

(xa, xb) ∈ πX(I) =⇒ d(Ha(xa), Hb(xb)) ≤ ε

and make the additional assumption that d is norm-induced. Note that this
assumption entails that Ya = Yb are normed vector spaces with the same

11.3 Approximate feedback composition and controller refinement 173

norm. Under these assumptions, we denote the composition by:

Sa ×εI Sb = (Xab, Xab0, Uab,
ab
- , Yab, Hab)

and simplify its representation to:

• Xab = πX(I);
• Xab0 = Xab ∩ (Xa0 ×Xb0);
• Uab = Ua × Ub;
• (xa, xb)

ua,ub

ab
- (x′a, x

′
b) if the following three conditions hold:

1. xa
ua

a
- x′a in Sa;

2. xb
ub

b
- x′b in Sb;

3. (xa, xb, ua, ub) ∈ I;
• Yab = Ya = Yb;
• Hab(xa, xb) = 1

2 (Ha(xa) +Hb(xb)).

The apparently arbitrary choice of output map is justified by the following
three important properties of approximate composition:

1. Sa ×εI Sb is commutative, i.e., Sa ×εI Sb ∼=S Sb ×εI Sa;
2. Sa ×εI Sb generalizes exact composition, i.e., Sa ×0

I Sb = Sa ×I Sb;
3. Sa ×εI Sb satisfies the following version of Proposition 6.3.

Proposition 11.8. Let Sa and Sb be metric systems with Ya = Yb normed
vector spaces with the same norm-induced metric, and let I be an intercon-
nection relation satisfying:

(xa, xb) ∈ πX(I) =⇒ d(Ha(xa), Hb(xb)) ≤ ε.

Then, the following holds:

• Sa ×εI Sb �
1
2 ε

S Sa;

• Sa ×εI Sb �
1
2 ε

S Sb.

Proof. The proof of this result is the same as the proof of its exact counterpart,
Proposition 6.3, except for the computation of the precision. We thus focus on
this part and consider only Sa ×εI Sb �

1
2 ε

S Sa since the case Sa ×εI Sb �
1
2 ε

S Sb
can be similarly proved. The desired 1

2ε-approximate simulation relation from
Sa ×εI Sb to Sa is given by:

Ra = {((xa, xb), x′a) ∈ Xab ×Xa | xa = x′a}.

174 11 Approximate symbolic models for control

For any ((xa, xb), xa) ∈ Ra it is simple to see that:

d(Hab(xa, xb), Ha(xa)) =
∥∥∥∥1

2
Ha(xa) +

1
2
Hb(xb)−Ha(xa)

∥∥∥∥
=
∥∥∥∥−1

2
Ha(xa) +

1
2
Hb(xb)

∥∥∥∥
=

1
2
d(Ha(xa), Hb(xb)) ≤

1
2
ε

since (xa, xb) ∈ πX(I). ut

With the notion of approximate composition at our disposal we venture
into approximate feedback composition.

Definition 11.9 (Approximate feedback composition). A system Sc
is said to be ε-approximately feedback composable with a system Sa, if there
exists an ε-approximate alternating simulation relation R from Sc to Sa. When
Sc is ε-approximate feedback composable with Sa, the feedback composition of
Sc and Sa, with interconnection relation F = Re, is given by Sc ×εF Sa.

Proposition 8.7 also admits an approximate version.

Proposition 11.10. Let Sa, Sb, and Sc be systems with the same output
set, assume that Sc is cεa-approximately feedback composable with Sa, and
let cRa be the corresponding cεa-approximate alternating simulation relation.
If there exists a aεb-approximate alternating simulation relation aRb from Sa
to Sb then Sc ×cεacRea

Sa is feedback composable with Sb and the corresponding
(cεa + aεb)-approximate alternating simulation relation is given by:

caRb = {((xc, xa), xb) ∈ (Xc ×Xa)×Xb | (xc, xa) ∈ cRa ∧ (xa, xb) ∈ aRb}.

The proof of this result consists in inserting the word approximate in
several locations along the proof of Proposition 8.7 and is therefore omitted.
Proposition 11.10 suggests how to refine a controller Scont synthesized to solve
a simulation game for an approximate finite-state abstraction Sabs of S and a
specification Sspec. If the simulation game is solved exactly, i.e., with ε = 0,
we have:

Scont ×F Sabs �0
S Sspec.

Assuming the abstraction Sabs to be related to the original system S by
an ε-approximate alternating simulation relation, we can invoke Proposi-
tion 11.10 to conclude that Scont ×F Sabs is ε-approximately feedback com-
posable with S. Therefore, using S′cont = Scont ×F Sabs as a controller for S
we obtain:

S′cont ×0+ε
G S �

1
2 ε

S S′cont = Scont ×F Sabs �0
S Sspec

which shows the specification approximately simulating the controlled system
S′cont ×εG S with precision 1

2ε.

11.4 Symbolic models for affine control systems 175

11.4 Symbolic models for affine control systems

The abstractions constructed in Chapter 10 for dynamical systems relied on
quantizing the set of states and approximating the transitions of Sτ (Σ). A
natural generalization to control systems leads to the following construction.

Definition 11.11. The system Sτη = (Xτη, Uτη,
τη
- , Yτη, Hτη) associated

with a control system Σ = (Rn, C × D, f) and with τ, η ∈ R+ consists of:

• Xτη = [Rn]η;
• Uτη = {χ ∈ C | domχ = [0, τ]};
• x

χ

τη
- x′ if there exist χ ∈ Uτη, δ ∈ D, and a trajectory ξxχδ : [0, τ]→ Rn

of Σ satisfying ‖ξxχδ(τ)− x′‖ ≤ η;
• Yτη = Rn;
• Hτη = ı : Xτη ↪→ Rn.

The system Sτη(Σ) can be regarded as a time and space quantization of a
control system Σ. It is constructed by approximating the transitions of Sτ (Σ)
so as to enforce departure from and arrival at states in Xτη = [Rn]η. This
construction is not guaranteed to result in a system approximately simulated
by Sτ (Σ) since the mismatch between outputs of Sτη(Σ) and Sτ (Σ) can grow
without bounds along any two external behaviors. In Chapter 10 we relied on
asymptotic stability to overcome this difficulty in the context of dynamical
systems. A similar strategy can be employed for control systems in order to
establish the existence of an approximate alternating simulation relation from
Sτη(Σ) to Sτ (Σ). Moreover, such relation would desirably be surjective since
this allows us to relate any state of Sτ (Σ) to a state of Sτη(Σ) for which a
controller can be designed.

Theorem 11.12. Let Σ = (Rn, C,D, A,C,D, h) be an affine control system
and assume that the linear dynamical system, (Rn, A) admits a Lyapunov
function V of the form V (x) =

√
xTPx with P ∈ SP(n). For any desired

precision ε ∈ R+, for any desired time quantization τ ∈ R+, and for any
space quantization η ∈ R+ satisfying:

η ≤ min
{
γ−1αε

(
1− e−λτ

)
, α−1αε

}
, (11.6)

the relation Rε ⊆ Xτη ×Xτ defined by:

Rε = {(xτη, xτ) ∈ Xτη ×Xτ | V (xτ − xτη) ≤ αε} (11.7)

is a surjective ε-approximate alternating simulation relation from Sτη(Σ) to
Sτ (Σ).

176 11 Approximate symbolic models for control

Proof. The proof consists in showing that Rε satisfies all the requirements in
the definition of approximate alternating simulation relation.

We first note that Rε is surjective since Rn ⊆ ∪x∈[Rn]ηBη(x) implies that
for every xτ ∈ Xτ = Rn there exists xτη ∈ Xτη satisfying ‖xτ − xτη‖ ≤ η. It
follows from the sequence of inequalities (10.9) that (xτη, xτ) ∈ Rε.

The first requirement in Definition 9.6 follows immediately from the def-
inition of Xτ0 and Xτη0, and from the observation that xτη0 ∈ Xτη0 ⊂ Xτ0

implies (xτη0, xτ0) ∈ Rε for xτ0 = xτη0.
The second requirement is a consequence of the definition of Rε. If

(xτη, xτ) ∈ Rε, then V (xτη−xτ) ≤ αε which leads, by (10.5), to ‖xτη − xτ‖ ≤ ε.
We now consider the third requirement which requires us to show that

(xτη, xτ) ∈ Rε implies:

∀uτη ∈ Uτη(xτη) ∃uτ ∈ Uτ (xτ) ∀x′τ ∈ Postuτ (xτ) ∃x′τη ∈ Postuτη (xτη)

with (x′τη, x
′
τ) ∈ Rε. Fix an input uτη ∈ Uτη(xτη) and note that it follows

from the definition of Uτη that uτη ∈ Uτ (xτ). We then choose uτ to be uτη,
i.e., uτ = uτη. Let now x′τ ∈ Postuτ (xτ). This means that x′τ = ξxτuτδ(τ) for
some essentially bounded piecewise continuous curve δ ∈ D. Consider a state
x′τη ∈ Postuτη (xτη) satisfying xτη

uτη,δ

τη
- x′τη in Sτη(Σ) and recall that, by

definition of Sτη(Σ), we have:

‖ξxτηuτηδ(τ)− x′τη‖ ≤ η. (11.8)

We claim that (x′τη, x
′
τ) ∈ Rε. To prove the claim, consider the sequence of

inequalities:

V (x′τ , x
′
τη) ≤ V

(
x′τ − ξxτηuτηδ(τ)

)
+ γ‖ξxτηuτηδ(τ)− x′τη‖

≤ V

(
eAτxτ +

∫ τ

0

eA(τ−t) (Cuτη(t) +Dδ(t) + h) dt

−eAτxτη −
∫ τ

0

eA(τ−t) (Cuτη(t) +Dδ(t) + h) dt
)

+ γη

≤ V
(
eAτxτ − eAτxτη

)
+ γη

≤ V
(
ξxτ00(τ)− ξxτη00(τ)

)
+ γη

≤ e−λτV
(
ξxτ00(0)− ξxτη00(0)

)
+ γη

≤ e−λτV (xτ − xτη) + γη

≤ e−λταε+ γη

≤ αε

where the first, second, fifth, seventh, and eight inequalities are a consequence
of (10.6), (11.8), (10.16), (11.7), and (11.6), respectively. ut

Although we established the existence of a surjective ε-approximate al-
ternating simulation relation from Sτη(Σ) to Sτ (Σ), one problem remains

11.4 Symbolic models for affine control systems 177

unsolved: how do we compute Sτη(Σ)? We address this problem in two steps.
First, we treat the case where disturbance inputs are absent: D = 0. By
choosing a finite set C of control inputs curves, it becomes possible to com-
pute Sτη(Σ) using numerical methods. The errors introduced by numerical
simulation can be explicitly accounted for, as discussed in Chapter 10. In
practice, the choice of the set C is based on domain knowledge about the sys-
tem and problem being solved. When a solution to a control synthesis problem
fails to exist for the abstraction, one can choose a larger set C and compute a
new and more faithful abstraction of the system to be controlled. Ideally, one
would like to avoid this iterative process and construct directly a symbolic
model that can be used to prove or disprove the existence of a controller. This
is possible for the important case where the inputs are kept constant during
the intervals [0, τ], commonly referred to as digital control or sampled-data
control. The appropriate system model for this situation is the abstraction
Sτηω(Σ).

Definition 11.13. The system Sτηω = (Xτηω, Uτηω,
τηω

- , Yτηω, Hτηω) as-

sociated with a control system Σ = (Rn, C × D, f) and with τ, η, ω ∈ R+

consists of:

• Xτηω = [Rn]η;
• Uτηω = {χ ∈ C | χ(t) = χ(t′) ∈ [Rm]ω ∀t, t′ ∈ [0, τ] = domχ};
• x

χ

τηω
- x′ if there exist χ ∈ Uτηω, δ ∈ D, and a trajectory ξxχδ : [0, τ]→ Rn

of Σ satisfying ‖ξxχδ(τ)− x′‖ ≤ η;
• Yτηω = Rn;
• Hτηω = ı : Xτηω ↪→ Rn.

The assumption of piecewise constant inputs is satisfied by most embed-
ded control systems implemented in digital platforms. The frequency of the
updates is dictated by the dynamics of the physical system being controlled
and by the frequency of the embedded microprocessor executing the control
software. Under this assumption we can strengthen Theorem 11.12 from sim-
ulation to bisimulation.

Theorem 11.14. Let Σ = (Rn, C, A,C, h) be an affine control system where
C is the set of all constant curves, and assume that the linear control system
(Rn, C, A,C) admits an ISS-Lyapunov function V of the form V (x) =

√
xTPx

with P ∈ SP(n). For any desired precision ε ∈ R+, for any desired time
quantization τ ∈ R+, for any desired input quantization ω ∈ R+, and for any
space quantization η ∈ R+ satisfying:

η ≤ min
{
γ−1αε

(
1− e−λτ

)
− γ−1λ−1σc ω, α

−1αε
}
, (11.9)

the relation Rε ⊆ Xτη ×Xτ defined by:

Rε = {(xτη, xτ) ∈ Xτη ×Xτ | V (xτ − xτη) ≤ αε} (11.10)

is an ε-approximate bisimulation relation between Sτ (Σ) and Sτη(Σ).

178 11 Approximate symbolic models for control

Inequality (11.9) describes the tradeoff between precision, time quantiza-
tion, space quantization, and input quantization. It specializes to (10.7), when
inputs are absent, thus making Theorem 10.8 a special case of Theorem 11.14.

Proof. We only present the main steps since the proof mirrors the proof of
Theorem 11.12. The first important step is to show that the third requirement
in Definition 9.2 holds. For this, we consider a pair (xτ , xτηω) ∈ Rε, we assume

that xτ
uτ

τ
- x′τ , and we seek to show that (x′τ , x

′
τηω) ∈ Rε where x′τηω satisfies

xτηω
uτηω

τηω
- x′τηω for an input uτηω ∈ Uτηω(xτηω) close to uτ in the sense:

‖uτηω − uτ‖ ≤ ω.

Note that such input always exists since Rm ⊆ ∪u∈[Rm]ωBω(u). The member-
ship (x′τ , x

′
τηω) ∈ Rε follows from the following sequence of inequalities where

we use x′′ = xτ − xτηω, u′′ = uτ − uτηω, and the inequality (11.5):

V (x′τ − x′τηω) ≤ V (x′τ − ξxτηωuτηω (τ)) + γ‖ξxτηωuτηω (τ)− x′τηω‖(11.11)

≤ V

(
eAτxτ +

∫ τ

0

eA(τ−t)(Cuτ + h)dt (11.12)

−eAτxτηω −
∫ τ

0

eA(τ−t)(Cuτηω + h)dt
)

+ γη (11.13)

≤ V

(
eAτx′′ +

∫ τ

0

eA(τ−t)Cu′′dt

)
+ γη (11.14)

≤ V ◦ ξx′′u′′(τ) + γη (11.15)

≤ e−λτV ◦ ξx′′u′′(0) +
σc
λ
‖u′′‖+ γη (11.16)

≤ e−λτV (xτ − xτηω) +
σc
λ
‖u′′‖+ γη (11.17)

≤ e−λταε+
σc
λ
ω + γη (11.18)

≤ αε. (11.19)

The reverse direction is similarly shown. If (xτ , xτηω) ∈ Rε and xτηω
uτηω

τηω
- x′τηω,

then we claim that (x′τ , x
′
τηω) ∈ Rε where x′τ is given by xτ

uτηω

τ
- x′τ .

The claim follows directly from inequalities (11.11) through (11.19) by us-
ing uτ = uτηω. ut

Example 11.15. To illustrate Theorem 11.12 we consider the linear control
system defined by:

A =
[
−1 1
−8 5

]
, C =

[
0
1

]
.

11.4 Symbolic models for affine control systems 179

Since the origin is not an asymptotically stable equilibrium point for (Rn, A),
we first design the feedback control law:

u = Kx = 7x1 − 6x2 + u′

rendering the origin an asymptotically stable equilibrium point for the linear
dynamical system (Rn, A+ CK) where:

A+ CK =
[
−1 1
−1 −1

]
.

Using the function V (x) =
√
xTPx with:

P =
[

1 1
16

1
16 1

]
as a Lyapunov function we obtain:

γ =
17

4
√

15
, λ =

16−
√

2
17

, α =
15
16
, α =

17
16
.

For a sampling time τ = 0.25 and a precision ε = 0.1 we conclude from (11.6)
that η needs to be smaller than 0.017. We choose η =

√
2

100 ≈ 0.014, restrict
Σ to the set [−1, 1]× [−1, 1], and define C as the finite set consisting of con-
stant input curves assuming values on {−0.5,−0.25, 0, 0.25, 0.5}. Although
Sτη(Σ) is only guaranteed to be approximately simulated by Sτ (Σ), several
control problems that are difficult to solve directly on Sτ (Σ) become fairly
straightforward computations on Sτη(Σ). Consider the safety game for system
Sτ (Σ) and specification set [−0.35,−0.15]× [−0.15, 0.15]. It is quite difficult
to solve this problem on Sτ (Σ), but it is immediate to solve it on Sτη(Σ)
due to its finite-state nature. According to the discussion in Section 11.3, if
we synthesize a controller Scont solving the safety game for system Sτη(Σ)
and specification set W , the controller Scont ×F Sτη(Σ) solves the safety
game for system Sτ (Σ) and specification set W

1
2 ε. Therefore, we define W as

W = [[−0.3,−0.1]× [−0.1, 0.1]]η and use the operator FW defined in Chap-
ter 6 to solve the safety game. The solution of this game is shown in Figure 11.1
where transitions with the same source and destination are not displayed to
keep the figure legible.

Example 11.16. The synthesis of trajectories satisfying desired specifications
can also be easily done on Sτη(Σ). Assume that we are interested in designing
a periodic trajectory passing through (0.2, 0) and (−0.2, 0). Since Sτη(Σ) is
finite-state, this problem reduces to a simple search on a graph. A possible
solution is shown in Figure 11.2 where, in addition to the transitions of Sτη(Σ),
we also show several trajectories of the closed-loop system. More elaborate
control problems can be solved on Sτη(Σ) with similar ease by resorting to
the synthesis algorithms in Chapter 6. C

180 11 Approximate symbolic models for control

Fig. 11.1. Solution to the safety game for system Sτη(Σ) and specification set
W = [[−0.3,−0.1]× [−0.1, 0.1]]η. The left figure shows the states in W from which
it is possible to control the system to remain within W . The right figure shows the
corresponding transitions for which the source and destination are not the same
state.

Fig. 11.2. Periodic trajectory passing through the points (−0.2, 0) and (0.2, 0). The
left figure shows the transitions of Sτη(Σ). The right figure shows several trajectories
of the controlled system for different initial conditions.

−0.30 −0.25 −0.20 −0.15 −0.10

−0.10

−0.05

0.00

0.05

0.10

−0.30 −0.25 −0.20 −0.15 −0.10

0.10

0.05

0.00

0.05

0.10

−0.3 −0.2

−0.2

−0.4

−0.1 0.1 0.2 0.3

0.2

0.4

−0.3 −0.2 −0.1 0.1 0.2 0.3

−0.2

−0.4

0.2

0.4

11.4 Symbolic models for affine control systems 181

When disturbance inputs are present, it is still possible to construct a
finite-state system which is ε-approximate anternatingly bisimilar to Sτ (Σ)
by a careful analysis of reachable sets. From equality (11.2) we know that
all the possible contributions of the control and disturbance inputs to ξ are
captured by the reachable sets:

RτC =
{
x ∈ Xτ : x =

∫ τ

0

eA(τ−t)Cχ(t)dt, χ ∈ C
}
,

RτD =
{
x ∈ Xτ : x =

∫ τ

0

eA(τ−t)Dδ(t)dt, δ ∈ D
}
.

Through these sets we can indirectly quantize the inputs leading to the system
Sτηη(Σ).

Definition 11.17. The system Sτηη = (Xτηη, Uτηη,
τηη

- , Yτηη, Hτηη) asso-

ciated with an affine control system Σ = (Rn, C,D, A,C,D), with τ, η ∈ R+,
and with a set Dη ⊆ [Rn]η satisfying dh(Dη,RτD) ≤ η, consists of:

• Xτηη = [Rn]η;
• Uτηη is any subset of [Rm]η satisfying dh(Uτηη,RτC) ≤ η;

• xτηη
χ

τηη
- x′τηη if there exist χ ∈ Uτηη, δ ∈ Dη, and a trajectory

ξxτηη00 : [0, τ]→ Rn of Σ satisfying:

‖ξxτηη00(τ) + χ+ δ − x′τηη‖ ≤ η; (11.20)

• Yτηη = Rn;
• Hτηη = ı : Xτηη ↪→ Rn.

The construction of Sτηη(Σ) requires the knowledge of the reachable sets
RτC and RτD. However, the computation of these sets does not need to be
exact. Using the method described in Section 7.6, we can compute approxi-
mations R̂τC and R̂τD to the sets RτC and RτD with approximating errors
eC and eD, i.e.:

dh(R̂τC ,RτC) ≤ eC dh(R̂τD,RτD) ≤ eD.

Hence, we can redefine Xτηη as [Rn]η−eC−eD and declare the existence of a

transition xτηη
u

τηη
- x′τηη when ‖ξxτηη00(τ) + χ̂+ δ̂− x′τηη‖ ≤ η− eC − eD for

some χ̂ ∈ R̂τC and δ̂ ∈ R̂τD. With this new state set and transition relation
we have:

‖ξxτηη00(τ) + χ+ δ − x′τηη‖ = ‖ξxτηη00(τ) + χ̂+ δ̂ − x′τηη + χ− χ̂+ δ − δ̂‖

≤ ‖ξxτηη00(τ) + χ̂+ δ̂ − x′τηη‖

+‖χ− χ̂‖+ ‖δ − δ̂‖
≤ η − eC − eD + eC + eD ≤ η

thus maintaining the validity of the next result intact.

182 11 Approximate symbolic models for control

Theorem 11.18. Let Σ = (Rn, C,D, A,C,D, h) be an affine control system
and assume that the linear control system (Rn, C,D, A,C,D) admits an ISS-
Lyapunov function V of the form V (x) =

√
xTPx with P ∈ SP(n). For any

desired precision ε ∈ R+, for any desired time quantization τ , and for any
space quantization η ∈ R+ satisfying:

η ≤ min
{

1
3
γ−1αε(1− e−λτ), α−1αε

}
, (11.21)

the relation Rε ⊆ Xτ ×Xτηη defined by:

Rε = {(xτ , xτηη) ∈ Xτ ×Xτηη | V (xτ − xτηη) ≤ αε} (11.22)

is an ε-approximate alternating bisimulation relation between Sτ (Σ) and
Sτηη(Σ).

Proof. We first show that Rε is an ε-approximate alternating simulation from
Sτ (Σ) to Sτηη(Σ). The first two requirments in Definition 9.6 are proved as
in Theorem 11.12.

Regarding the third requirement, let (xτ , xτηη) ∈ Rη and recall that we
need to show that:

∀uτ ∈ Uτ (xτ) ∃uτηη ∈ Uτηη(xτηη) ∀x′τηη ∈ Postuτηη (xτηη) ∃x′τ ∈ Postuτ (xτ)

satisfying (x′τ , x
′
τηη) ∈ Rε. Choose any uτ ∈ Uτ (xτ) and let uτηη be any input

in Uτηη(xτηη) satisfying:∥∥∥∥∫ τ

0

eA(τ−t)Cuτ (t)dt− uτηη
∥∥∥∥ ≤ η. (11.23)

Note that such input exists by definition of Uτηη. Let now x′τηη be any state
in Postuτηη (xτηη). This means that:

‖ξxτηη00(τ) + uτηη + δτηη − x′τηη‖ ≤ η (11.24)

for some δτηη ∈ Dη. By definition of Dη, there exists δτ ∈ D such that:∥∥∥∥∫ τ

0

eA(τ−t)Dδτ (t)dt− δτηη
∥∥∥∥ ≤ η. (11.25)

We then choose x′τ to be the element of Postuτ (xτ) given by x′τ = ξxτuτδτ (τ)
and we claim that (x′τ , x

′
τηη) ∈ Rε. The claim is a direct consequence of the

11.5 Symbolic models for switched affine systems 183

following chain of inequalities where we used (10.6), (11.5), (11.23), (11.25),
(11.22), (11.24), (11.21), and x′′ = xτ − xτηη:

V (x′τ − x′τηη) ≤ V

(
x′τ − eAτxτηη −

∫ τ

0

eA(τ−t) (Cχτ (t) +Dδτ (t) + h) dt
)

+γ
∥∥∥∥x′τηη − eAτxτηη − ∫ τ

0

eA(τ−t) (Cχτ (t) +Dδτ (t) + h) dt
∥∥∥∥

≤ V
(
eAτxτ − eAτxτηη

)
+γ
∥∥∥∥eAτxτηη +

∫ τ

0

eA(τ−t) (Cχτ (t) +Dδτ (t) + h) dt− x′τηη
∥∥∥∥

≤ V (ξx′′00(τ))

+γ
∥∥∥∥eAτxτηη +

∫ τ

0

eA(τ−t)hdt+ uτηη + δτηη − x′τηη
∥∥∥∥

+γ
∥∥∥∥∫ τ

0

eA(τ−t)Cχτ (t)dt− uτηη
∥∥∥∥

+γ
∥∥∥∥∫ τ

0

eA(τ−t)Dδτ (t)dt− δτηη
∥∥∥∥

≤ e−λτV (ξx′′00(0)) + γ
∥∥ξxτηη00 + uτηη + δτηη − x′τηη

∥∥
+γη + γη

≤ e−λταε+ 3γη ≤ αε.

The proof that R−1
ε is an ε-approximate alternating simulation from

Sτηη(Σ) to Sτ (Σ) is similar and thus omitted. ut

The previous result can also be used in the context of verification when
C = 0. In this case, we regard the affine control system (11.1) as a closed-loop
system affected by an adversarial input δ and the verification objective is to
prove that a certain property holds, independently of δ.

11.5 Symbolic models for switched affine systems

The abstraction techniques developed for dynamical and control systems re-
markably generalize to switched affine systems. At this point, the reader
should be able to foresee how such generalization unfolds. The first step con-
sists in quantizing the states and approximating the transitions of a switched
affine system.

184 11 Approximate symbolic models for control

Definition 11.19. The system Sτη(Σ) = (Xτη, Uτη,
τη
- , Yτη, Hτη) associ-

ated with a switched affine system Σ = (Xa,Rn, {Axa , hxa}xa∈Xa) and with
τ, η ∈ R+ consists of:

• Xτη = [Rn]η;
• Uτη = Xa;

• x
ua

τη
- x′ if there exists a solution ξx : [0, τ]→ Rn of the affine dynamical

system (Rn, Aua , hua) satisfying ‖ξx(τ)− x′‖ ≤ η;
• Yτη = Rn;
• Hτη = ı : Xτη ↪→ Rn.

A close analysis of the proof of Theorem 11.14 reveals that its conclu-
sion does not depend on the particular form of the differential equation
ξ̇ = Aξ + Cχ+ h but only on the inequality ∂V

∂x (Ax+Cc) ≤ −λV (x)+σc‖c‖.
For many affine switched systems it is possible to find a single Lyapunov
function V satisfying the inequalities:

∂V

∂x
Axax ≤ −λV (x) ∀xa ∈ Xa.

When this is the case we say that V is a common Lyapunov function for Σ.
The arguments in the proof of Theorem 11.14 apply directly to this case and
provide the following corollary.

Corollary 11.20. Let Σ = (Xa,Rn, {Axa , hxa}xa∈Xa) be a switched affine
system admitting a common Lyapunov function V of the form V (x) =

√
xTPx

with P ∈ SP(n). For any desired precision ε ∈ R+, for any desired time
quantization τ ∈ R+, and for any space quantization η ∈ R+ satisfying:

η ≤ min
{
γ−1αε

(
1− e−λτ

)
, α−1αε

}
, (11.26)

the relation Rε ⊆ Xτ ×Xτη defined by:

Rε = {(xτ , xτη) ∈ Xτ ×Xτη | V (xτ − xτη) ≤ αε} (11.27)

is an ε-approximate bisimulation relation between Sτ (Σ) and Sτη(Σ).

This result can be used in two different ways. When the inputs Xa are
regarded as adversarial, Sτη(Σ) can be used to verify properties that hold
independently of the disturbance input. When Xa is regarded as a set of
control inputs, then Sτη(Σ) can be used for control design.

Corollary 11.20 can also be extended to the case when there exists a Lya-
punov function Vxa for every linear dynamical system (Rn, Axa). It is well
known that existence of such Lyapunov functions does not imply the exis-
tence of a common Lyapunov function for Σ. In this case, a more elaborate
construction is required, building upon the concept of dwell time used to study
the stability properties of switched systems.

11.5 Symbolic models for switched affine systems 185

Example 11.21. We revisit the boost DC-DC converter of Chapter 1, repre-
sented in Figure 1.7. This is a switched affine system with two modes of
operation corresponding to the two positions of the switch. The dynamics in
mode 1 is described by (1.16) and (1.17) while the dynamics in mode 2 is
described by (1.18) and (1.19). The values of the components, given in the
per unit system, are:

C = 70, L = 3, RC = 0.005, RL = 0.05, vs = 1, R0 = 1.

Before proceeding with our analysis, we make the linear change of coordinates
defined by : [

z1
z2

]
=
[
1 0
0 5

] [
x1

x2

]
to better condition the problem numerically.

The purpose of the boost DC-DC converter is to regulate the voltage across
the load resistor R0. This objective can be reformulated as the regulation of
the current flowing through the inductor, which is one of the infinite state
variables. In order to synthesize a controller, we regard this problem as an
instance of a safety game where the specification set W contains the desired
values for the current. Although safety games are difficult to solve on Sτ (Σ),
we can use Corollary 11.20 to construct the finite-state abstraction Sτη(Σ) and
solve the safety game on Sτη(Σ). One possible common Lyapunov function is
V (z) =

√
zTPz with:

P =
[
1.0224 0.0084
0.0084 1.0031

]
and satisfying:

∂V

∂z
A1z ≤ −0.0139V

∂V

∂z
A2z ≤ −0.0138V.

Therefore, λ = min{0.0138, 0.00139} = 0.0138. A bound for γ can be com-
puted using the expression in the proof of Proposition 10.5: γ = 1.0256. We
select a sampling time τ = 0.2 and a precision of ε = 3. Although this pre-
cision is not useful for practical purposes, it will keep the symbolic model
Sτη(Σ) small so that it can be easily visualized. From inequality (11.26) we
obtain the bound η ≤ 0.00807 and set η =

√
2

200 ≈ 0.0071. With these parame-
ters we construct Sτη(Σ) and consider the safety game with specification set
W = [1.2, 1.6] × [5.6, 5.8] that is easily solved by iterating the operator FW
studied in Chapter 6. In Figure 11.3, the reader can find the points in W
where mode 1 should be used and the points in W where mode 2 should be
used. The fixed-point of FW is displayed in Figure 11.4 and the closed-loop
system Sc ×F Sτη(Σ) is represented in the book’s cover. C

186 11 Approximate symbolic models for control

Fig. 11.3. Solution of the safety game for system Sτη(Σ) and specification set
W = [1.2, 1.6]× [5.6, 5.8]. The points in W where mode 1 should be used are shown
in the left figure and the points in W where mode 2 should be used are shown in
the right figure.

Fig. 11.4. Solution of the safety game for system Sτη(Σ) and specification set
W = [1.2, 1.6]× [5.6, 5.8]. The fixed-point of the operator FW is represented as the
superposition of the images in Figure 11.3.

11.6 Advanced topics

In this section we show how Theorem 11.12 and Theorem 11.14 can be gen-
eralized to nonlinear control systems. The exposition will be swift and relies
on advanced control theoretical concepts.

We make extensive use of comparison functions of class K and KL to sim-
plify the arguments. A continuous function γ : R+

0 → R+
0 , is said to belong to

class K if it is strictly increasing and γ(0) = 0; γ is said to belong to class K∞

11.6 Advanced topics 187

if γ ∈ K and γ(r)→∞ as r →∞. A continuous function β : R+
0 × R

+
0 → R+

0

is said to belong to class KL if for each fixed s, the map β(r, s) belongs to
class K∞ with respect to r and, for each fixed r, the map β(r, s) is decreasing
with respect to s and β(r, s)→ 0 as s→∞.

In a nonlinear context we need to replace the asymptotic stability assump-
tion with the stronger assumption of incremental stability.

Definition 11.22 (Incremental global asymptotic stability). A con-
trol system Σ = (Rn,U , f) is incrementally globally asymptotically stable
(δ–GAS) if it is forward complete and there exists a KL function β such that
for any t ∈ R+

0 , any x, x′ ∈ Rn, and any υ ∈ U , the following inequality is
satisfied:

‖ξxυ(t)− ξx′υ(t)‖ ≤ β(‖x− x′‖ , t). (11.28)

We also need the stronger notion of incremental input-to-state stability.

Definition 11.23 (Incremental global input-to-state stability). A con-
trol system Σ = (Rn,U , f) is incrementally globally input-to-state stable
(δ–ISS) if it is forward complete and there exist a KL function β and a K∞
function ρ such that for any t ∈ R+

0 , any x, x′ ∈ Rn, and any υ, υ′ ∈ U , the
following inequality is satisfied:

‖ξxυ(t)− ξx′υ′(t)‖ ≤ β(‖x− x′‖ , t) + ρ(‖υ − υ′‖). (11.29)

It is clear that δ–ISS implies δ–GAS since (11.28) can be obtained
from (11.29) by setting υ = υ′. Both δ–GAS and δ–ISS can be character-
ized by dissipation inequalities.

Definition 11.24 (δ–GAS Lyapunov function). A smooth function
V : Rn × Rn → R is called a δ–GAS Lyapunov function for a control sys-
tem Σ = (Rn,U , f), if there exist λ ∈ R+ and K∞ functions α and α such
that for any x, x′ ∈ Rn and any u ∈ Rm we have:

α(‖x− x′‖) ≤ V (x, x′) ≤ α(‖x− x′‖)
∂V

∂x
f(x, u) +

∂V

∂x′
f(x′, u) ≤ −λV (x, x′).

Function V is called a δ–ISS Lyapunov function for Σ, if there exist K∞
functions α, α, and σ such that for any x, x′ ∈ Rn and any u, u′ ∈ Rm we
have:

α(‖x− x′‖) ≤ V (x, x′) ≤ α(‖x− x′‖)
∂V

∂x
f(x, u) +

∂V

∂x′
f(x′, u′) ≤ −λV (x, x′) + σ(‖u− u′‖).

The following result completely characterizes δ–GAS and δ–ISS in terms of
existence of Lyapunov functions.

188 11 Approximate symbolic models for control

Theorem 11.25. For any control system Σ = (Rn,U , f) the following holds:

1. if the elements of U assume values on compact set K ⊆ Rm, then Σ is
δ–GAS if and only if it admits a δ–GAS Lyapunov function;

2. if the elements of U assume values on closed and convex set K ⊆ Rm
containing the origin, and if f(0, 0) = 0, then Σ is δ–ISS if it admits a
δ–ISS Lyapunov function. Moreover if the elements of U assume values on
compact set K ⊆ Rm, existence of a δ–ISS Lyapunov function is equivalent
to δ–ISS.

Theorems 11.12 and 11.14 can now be generalized to the nonlinear context.

Theorem 11.26. Let Σ = (Rn,U , f) be a control system admitting a δ-GAS
Lyapunov function V satisfying:

V (x, x′)− V (x, x′′) ≤ γ(‖x′ − x′′‖)

for some class K∞ function γ and for every x, x′, x′′ ∈ Rn. For any desired
precision ε ∈ R+, for any desired time quantization τ ∈ R+, and for any space
quantization η ∈ R+ satisfying:

η ≤ min
{
γ−1

(
(1− eλτ)α(ε)

)
, α−1 ◦ α(ε)

}
, (11.30)

the relation Rε ⊆ Xτη ×Xτ defined by:

Rε = {(xτη, xτ) ∈ Xτη ×Xτ | V (xτ , xτη) ≤ α(ε)} (11.31)

is a surjective ε-approximate simulation relation from Sτη(Σ) to Sτ (Σ). More-
over, if V is a δ-ISS Lyapunov function and U contains only constant curves,
then for any desired precision ε ∈ R+, for any desired time quantization
τ ∈ R+, for any desired input quantization ω ∈ R+, and for any space quan-
tization η ∈ R+ satisfying:

η ≤ min
{
γ−1

(
α(ε)(1− e−λτ)− λ−1σω

)
, α−1 ◦ α(ε)

}
, (11.32)

the relation (11.31) is an ε-approximate bisimulation relation between Sτηω(Σ)
and Sτ (Σ).

Proof. The proof parallels the proof of Theorems 11.12 and 11.14. The only
modification is the replacement of the sequence of inequalities used to prove
the third condition in Definitions 9.5 and 9.6. We only provide the details for
the inequalities (11.11) through (11.19) since the same argument applies to
the remaining ones.

V (x′τ , x
′
τηω) = V (x′τ , ξxτηωuτηω (τ)) + γ(‖ξxτηωuτηω (τ)− x′τηω‖)

≤ V (ξxτuτ (τ), ξxτηωuτηω (τ)) + γ(η)

≤ e−λτV (xτ , xτηω) +
σ

λ
ω + γ(η)

≤ e−λτα(ε) +
σ

λ
ω + γ(η) ≤ α(ε).

ut

11.7 Notes 189

11.7 Notes

The results in this chapter are quite recent and based on [PGT08, GPT09,
PT09]. Earlier work relating stability properties of control systems to the
existence of approximate simulation relations appeared in [Tab06, Tab08a].
In [GPT09], the reader can find a nonlinear version of Corollary 11.20 that
does not require a common Lyapunov function. Instead, it relies on the con-
cept of dwell time from the switched systems literature. The generalization of
Theorem 11.18 to nonlinear systems is reported in [PT09].

The boost DC-DC example is taken from [GPM04] and was also used
in [GPT09]. In this reference, the interested readers can find a more detailed
treatment of Example 11.21.

The discussion of δ-ISS properties in Section 11.6 follows [Ang02] where
the proof of Theorem 11.25 can be found.

Although we only used the notions of approximate simulation and bisimu-
lation to construct finite-state abstractions, they can also be used to construct
infinite-state abstractions to simplify controller design problems [GP09].

Controller synthesis based on finite-state approximate models had already
been discussed in [RO98, MRO02] although the notion of approximation used
in these references corresponds that what we defined as a simulation relation.

As mentioned in Section 10.5, the abstraction techniques discussed in
Part IV have not yet been extended to hybrid systems. The main difficulty
consists in inferring, from the entrance of a single trajectory in a guard set,
the entrance of the surrounding trajectories in the same guard set . The ex-
ception of switched systems, discussed in Section 11.5, is easy to explain since
for this class of hybrid systems the guards coincide with the invariant sets.
A very recent and promising research direction that may lead to the desired
extension is a direct study of the stability properties of hybrid systems and
its corresponding Lyapunov functions [CTG07, CGT08].

Appendix

We review Tarski’s fixed-point theorem, see [Tar55], and some of its corollaries.

Notation

In this appendix we denote the image of a set K ⊆ Z under a function
f : Z →W by f(K) = {w ∈W | w = f(k) for some k ∈ K}.

We start with a relation R ⊆ X × X on a set X. Relation R is said to be:
reflexive when (x, x) ∈ R for every x ∈ X; anti-symmetric when (x, x′) ∈ R
and (x′, x) ∈ R imply x = x′; and transitive when (x, x′) ∈ R and (x′, x′′) ∈ R
imply (x, x′′) ∈ R. When f : Z → Z, we denote by f i the i-fold composition
of f with itself.

Given a relation R ⊆ X ×X, we denote a pair (x, x′) ∈ R by xRx′.

Definition A.1 (Pre-order, partial order, and total order). A pre-
order on a set X, denoted by v, is a relation on X that is reflexive and
transitive. A pre-order v is said to be a partial order when v is also anti-
symmetric. A partial order is said to be total when for every x, x′ ∈ X either
x v x′ or x′ v x holds. The pair (X,v), where v is a partial order on X, is
called a partially ordered set.

Consider now a subset X ′ ⊆ X and an element x ∈ X. The element x is
said to be the supremum of X ′, denoted by supX ′, when the following two
conditions hold:

1. ∀x′ ∈ X ′ x′ v x (x is an upper bound);
2. ∀x′′ ∈ X (∀x′ ∈ X ′ x′ v x′′) =⇒ x v x′′ (x is the smallest upper

bound).

A.1 Lattice theory

192 Appendix

Dualizing the above definition we obtain the notion of infimum. The ele-
ment x ∈ X is the infimum of X ′ ⊆ X, denoted by inf X ′, if the following two
conditions hold:

1. ∀x′ ∈ X ′ x v x′ (x is a lower bound);
2. ∀x′′ ∈ X (∀x′ ∈ X ′ x′′ v x′) =⇒ x′′ v x (x is the greatest lower

bound).

Definition .2 (Lattice and complete lattice). A partially ordered set
(X,v) is said to be a lattice if for any finite set X ′ ⊆ X the supremum of X ′

and the infimum of X ′ exist and belong to X. Whenever supX ′ and inf X ′

exist and belong to X for any set X ′ ⊆ X we say that (X,v) is a complete
lattice.

The reader should check that (2Z ,⊆) is a complete lattice for any set Z,
for the set of all subsets of Z, denoted by 2Z , and for the usual set inclusion
relation ⊆. In this lattice, sup{A,B} = A∪B and inf{A,B} = A∩B for any
A,B ∈ 2Z .

A totally ordered subset X ′ ⊆ X is said to be a chain. A chain {xi}i∈N,
where xi ∈ X ′, is increasing when xi v xi+1 and decreasing when xi+1 v xi
for all i ∈ N.

Definition A.3. Let (X,v) be a complete lattice and consider a function
f : X → X. Function f is said to be:

• monotone if x v x′ =⇒ f(x) v f(x′) for every x, x′ ∈ X;
• sup-continuous if f(sup{xi}i∈N) = sup{f(xi)}i∈N for every increasing

chain {xi}i∈N with xi ∈ X;
• inf-continuous if f(inf{xi}i∈N) = inf{f(xi)}i∈N for every decreasing chain
{xi}i∈N with xi ∈ X.

A fixed-point of a function f : X → X is an element x ∈ X satisfying
f(x) = x. Tarski’s fixed-point theorem provides sufficient conditions for the
supremum and the infimum of the set of fixed-points of a function to be fixed-
points.

Theorem A.4. Let (X,v) be a complete lattice, let f : X → X be a function,
and denote by Y = {x ∈ X | f(x) = x} the set of all fixed-points of f . If f is
monotone then the following holds true:

• supY ∈ Y and supY = {x ∈ X | x v f(x)};
• inf Y ∈ Y and inf Y = {x ∈ X | f(x) v x}.

Although Tarski’s theorem asserts that a monotone function always has
an infimal and a supremal fixed-point, it does not state how such fixed-points
can be computed. The next result addresses this question.

A

A.2 fixed-points

fixed-points 193

Theorem .5. Let (X,v) be a complete lattice, let f : X → X be a function,
and denote by Y = {x ∈ X | f(x) = x} the set of all fixed-points of f . If f is
sup-continuous, then:

inf Y = sup
{

inf X, f(inf X), f2(inf X), . . .
}
. (12.1)

Dually, If f is inf-continuous, then:

supY = inf
{

supX, f(supX), f2(supX), . . .
}
. (12.2)

When the set X is finite any increasing or decreasing chain {xi}i∈N is
necessarily finite in the sense that there exists a k ∈ N such that xk = xj for
j ≥ k. This implies that the supremum of an increasing chain is:

sup{xi}i=1,2,...,k = xk = lim
i→∞

xi.

If we apply a monotone function f : X → X to the increasing chain {xi}i∈N
we obtain the increasing chain:

f(x1) v f(x2) v f(x3) v . . . v f(xk) = f(xk+1) = f(xk+2) = . . .

and its supremum is:

sup{f(xi)}i∈N = f(xk) = lim
i→∞

f(xi).

finite set is a sup-continuous function. The same argument also shows that f
is inf-continuous.

Consider now equality (12.1). By definition of infimum, inf X v X ′ for any
X ′ ⊆ X. Therefore, inf X v f(inf X). Since f is monotone, inf X v f(inf X)
implies f(inf X) v f2(inf X) and by induction f i(inf X) v f i+1(inf X) for ev-
ery i ∈ N. We conclude that {f i(inf X)}i∈N0 is an increasing chain. Finiteness
of X now ensures that this chain is finite and:

sup
{

inf X, f(inf X), f2(inf X), . . .
}

= lim
i→∞

f i(inf X).

Dually, we have:

inf
{

supX, f(supX), f2(supX), . . .
}

= lim
i→∞

f i(supX).

We summarize this discussion in the next result.

Corollary .6. Let (X,v) be a complete lattice over a finite set X, let
f : X → X be a function, and denote by Y = {x ∈ X | f(x) = x} the set
of all fixed-points of f . If f is monotone then:

inf Y = lim
i→∞

f i(inf X) supY = lim
i→∞

f i(supX).

This shows that any monotone function with respect to a lattice defined on a

A

A

References

ABDM00. A. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachabil-
ity analysis of piecewise-linear dynamical systems. In Hybrid Systems:
Computation and Control, volume 1790 of Lecture Notes in Computer
Science, pages 20–31. Springer, 2000.

ACH+95. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. N., A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science, 138:3–34, 1995.

AD90. R. Alur and D. L. Dill. Automata for modeling real-time systems. In Pro-
ceedings of the 17th International Colloquium on Automata, Languages
and Programming, ICALP, volume 443 of Lecture Notes in Computer
Science, pages 322–335. Springer, 1990.

AD94. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Com-
puter Science, 126(2):183–235, 1994.

AHKV98. R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating re-
finement relations. In Proceedings of the 8th International Conference
on Concurrence Theory, number 1466 in Lecture Notes in Computer
Science, pages 163–178. Springer, 1998.

Alu99. R. Alur. Timed automata. In 11th International Conference on
Computer-Aided Verification, volume 1633 of Lecture Notes in Computer
Sience, pages 8–22. Springer, 1999.

AM97. P. J. Antsaklis and A. N. Michel. Linear Systems. McGraw-Hill, 1997.
AM04. R. Alur and P. Madhusudan. Decision problems for timed automata:

A survey. In International School on Formal Methods for the Design of
Computer, Communication and Software Systems, SFM-RT 2004, vol-
ume 3185 of Lecture Notes in Computer Science, pages 1–24. Springer,
2004.

AMP95. E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for
discrete and timed systems. In Hybrid Systems II, volume 999 of Lecture
Notes in Computer Science, pages 1–20. Springer, 1995.

AMR88. R. Abraham, J. Marsden, and T. Ratiu. Manifolds, Tensor Analysis and
Applications. Applied Mathematical Sciences. Springer, 1988.

Ang02. D. Angeli. A Lyapunov approach to incremental stability properties.
IEEE Transactions on Automatic Control, 47(3):410–421, 2002.

196 References

AS87. B. Alpern and F. B. Schneider. Recognizing safety and liveness. Dis-
tributed Computing, 2(3):117–126, 1987.

AVW03. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of con-
trollers with partial observation. Theoretical Computer Science, 28(1):7–
34, 2003.

BBF+01. B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and P. Schnoebelen. Systems and Software Verification. Springer, 2001.

BH06. C. Belta and L.C.G.J.M. Habets. Controlling a class of nonlinear systems
on rectangles. IEEE Transactions on Automatic Control, 51(11):1749–
1759, 2006.

BM05. T. Brihaye and C. Michaux. On the expressiveness and decidability of
o-minimal hybrid systems. Journal of Complexity, 21(4):447–478, 2005.

BMP02. A. Bicchi, A. Marigo, and B. Piccoli. On the reachability of quantized
control systems. IEEE Transactions on Automatic Control, 47(4):546–
563, 2002.

BT00. O. Botchkarev and S. Tripakis. Verification of hybrid systems with lin-
ear differential inclusions using ellipsoidal approximations. In Hybrid
Systems: Computation and Control, volume 1790 of Lecture Notes in
Computer Science, pages 73–88. Springer, 2000.

BY04. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and
tools. In Lecture Notes on Concurrency and Petri Nets, volume 3098 of
Lecture Notes in Computer Science, pages 87–124. Springer, 2004.

CGP99. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

CGT08. C. Chaohong, R. Goebel, and A. Teel. Smooth Lyapunov functions for
hybrid systems Part II: (Pre)Asymptotically stable compact sets. IEEE
Transactions on Automatic Control, 53(3):734–748, 2008.

CK01. A. Chotinan and B.H. Krogh. Verification of infinite state dynamical sys-
tems using approximate quotient transition systems. IEEE Transactions
on Automatic Control, 46(9):1401–1410, 2001.

CK03. A. Chutinan and B. Krogh. Computational techniques for hybrid sys-
tem verification. IEEE Transactions on Automatic Control, 48(1):64–75,
2003.

CL99. C. Cassandras and S. Lafortune. Introduction to discrete event systems.
Kluwer Academic Publishers, Boston, MA, 1999.

CTG07. C. Chaohong, A. Teel, and R. Goebel. Smooth Lyapunov functions for
hybrid systemsPart I: Existence is equivalent to robustness. IEEE Trans-
actions on Automatic Control, 52(7):1264–1277, 2007.

dAFS04. L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching met-
rics for quantitative transition systems. In Proceedings of the 31st
International Colloquium on Automata, Languages and Programming,
ICALP, volume 3142 of Lecture Notes in Computer Science, pages 97–
109. Springer, 2004.

dAHM01. L. de Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic algorithms for
infinite-state games. In Proceedings of the 12th International Conference
on Concurrency Theory (CONCUR), volume 2154 of Lecture Notes in
Computer Science, pages 536–550. Springer, 2001.

DGJP99. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics
for labeled markov systems. In Proceedings of 10th International Confer-

References 197

ence on Concurrency Theory, volume 1664 of Lecture Notes in Computer
Science, pages 258–273. Springer, 1999.

FDF05. E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion plan-
ning for nonlinear systems with symmetries. IEEE Transactions on
Robotics, 21(6):1077–1091, 2005.

FGP06. G. E. Fainekos, A. Girard, and G. J. Pappas. Temporal logic verifica-
tion using simulation. In Formal Modelling and Analysis of Timed Sys-
tems, volume 4202 of Lecture Notes in Computer Science, pages 171–186.
Springer, 2006.

FKPY07. E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task automata: Schedu-
lability, decidability and undecidability. Information and Computation,
205(8):1149–1172, 2007.

GGM06. A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reach-
able sets of linear time-invariant systems with inputs. In Hybrid Systems:
Computation and Control, volume 3927 of Lecture Notes in Computer
Science, pages 257–271. Springer, 2006.

GHJ97. V. Gupta, T.A. Henzinger, and R. Jagadeesan. Robust timed automata.
In Proceedings of the International Workshop on Hybrid and Real-Time
Systems, volume 1201 of Lecture Notes in Computer Science, pages 331–
345. Springer, 1997.

Gir05. A. Girard. Reachability of uncertain linear systems using zonotopes. In
Hybrid Systems: Computation and Control, volume 3414 of Lecture Notes
in Computer Science, pages 291–305. Springer, 2005.

Gir07. A. Girard. Approximately bisimilar finite abstractions of stable linear
systems. In Hybrid Systems: Computation and Control, volume 4416 of
Lecture Notes in Computer Science, pages 231–244. Springer, 2007.

GP05. A. Girard and G. Pappas. Approximate bisimulations for nonlinear dy-
namical systems. In Proceedings of the 44th IEEE Conference on Deci-
sion and Control, pages 684–689, Seville, Spain, 2005.

GP06. A. Girard and G. J. Pappas. Verification using simulation. In Hybrid
Systems: Computation and Control, volume 3927 of Lecture Notes in
Computer Science, pages 272–286. Springer, 2006.

GP07. A. Girard and G. J. Pappas. Approximation metrics for discrete and con-
tinuous systems. IEEE Transactions on Automatic Control, 52(5):782–
798, 2007.

GP09. A. Girard and G.J. Pappas. Hierarchical control system design using
approximate simulation. Automatica, 45(2):566–571, 2009.

GPM04. T. Geyer, G. Papafotiou, and M. Morari. On the optimal control of
switch-mode dc-dc converters. In Hybrid Systems: Computation and
Control, volume 2993 of Lecture Notes in Computer Sience, pages 342–
356. Springer, 2004.

GPT09. A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic
models for incrementally stable switched systems. IEEE Transactions
on Automatic Control, 2009. In press.

HCvS06. L. C. G. J. M. Habets, P.J. Collins, and J. H. van Schuppen. Reachability
and control synthesis for piecewise-affine hybrid systems on simplices.
IEEE Transactions on Automatic Control, 51(6):938–948, 2006.

Hen96. T.A. Henzinger. The theory of hybrid automata. In Proceedings of
the 11th Annual IEEE Symposium on Logic in Computer Science, pages
278–292. IEEE Computer Society Press, 1996.

HKPV98. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? Journal of Computer and System Sciences,
57:94–124, 1998.

HMP05. T.A. Henzinger, R. Majumdar, and V.S. Prabhu. Quantifying similarities
between timed systems. In FORMATS: Formal Modeling and Analysis of
Timed Systems, Lecture Notes in Computer Science 3829, pages 226–241.
Springer, 2005.

HvS01. L.C.G.J.M. Habets and J. H. van Schuppen. Control of piecewise-linear
hybrid systems on simplices and rectangles. In Hybrid Systems: Compu-
tation and Control, volume 2034 of Lecture Notes in Computer Sience,
pages 261–274. Springer, 2001.

HvS04. L. C. G. J. M. Habets and J. H. van Schuppen. A control problem for
affine dynamical systems on a full-dimensional polytope. Automatica,
40(1):21–35, 2004.

KA03. X. Koutsoukos and P. Antsaklis. Safety and reachability of piecewise
linear hybrid dynamical systems based on discrete abstractions. Journal
of Discrete Event Dynamic Systems: Theory and Applications, 13(3):203–
243, 2003.

KG95. R. Kumar and V.K. Garg. Modeling and Control of Logical Discrete
Event Systems. Kluwer Academic Publishers, 1995.

KV00. A. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability
analysis. In Hybrid Systems: Computation and Control, volume 1790 of
Lecture Notes in Computer Science, pages 202–214. Springer, 2000.

LM86. J. Levine and R. Marino. Nonlinear system immersion, observers and
finite-dimensional filters. Systems and Control Letters, 7(2):133–142,
1986.

LPS99. G. Lafferriere, G. J. Pappas, and S. Sastry. Hybrid systems with finite
bisimulations. In Hybrid Systems V, volume 1567 of Lecture Notes in
Computer Science, pages 186–203. Springer, 1999.

LPS00. G. Lafferriere, G. J. Pappas, and S. Sastry. O-minimal hybrid systems.
Mathematics of Control, Signals and Systems, 13(1):1–21, 2000.

Lun94. J. Lunze. Qualitative modeling of linear dynamical systems with quan-
tized state measurements. Automatica, 30(3):417–431, 1994.

Mil89. R. Milner. Communication and Concurrency. International Series in
Computer Science. Prentice Hall, 1989.

MRO02. T. Moor, J. Raisch, and S. O’Young. Discrete supervisory control of
hybrid systems based on l-complete approximations. Journal of Discrete
Event Dynamic Systems, 12(1):83–107, 2002.

MT02. P. Madhusudan and P.S. Thiagarajan. Branching time controllers for dis-
crete event systems. Theoretical Computer Science, 274:117–149, 2002.

Ner58. A. Nerode. Linear automaton transformations. Proceedings of the Amer-
ican Mathematical Society, 9:541–544, 1958.

Par81. D. Park. Concurrency and automata on infinite sequences. In Theoretical
Computer Science, pages 167–183, 1981.

PC08. A. Platzer and E. M. Clarke. Computing differential invariants of hybrid
systems as fixed points. In Computer Aided Verification, CAV 2008, vol-
ume 5123 of Lecture Notes in Computer Sience, pages 176–189. Springer,
2008.

198 References

References 199

PGT08. G. Pola, A. Girard, and P. Tabuada. Approximately bisimilar symbolic
models for nonlinear control systems. Automatica, 44(10):2508–2516,
2008.

PJP07. A. Prajna, A. Jadbabaie, and G.J. Pappas. A framework for worst-
case and stochastic safety verification using barrier certificates. IEEE
Transactions on Automatic Control, 52(8):1415–1428, 2007.

PPP02. S. Prajna, A. Papachristodoulou, and P. A. Parrilo. Introducing SOS-
TOOLS: A general purpose sum of squares programming solver. In Pro-
ceedings of the 41st IEEE Conference on Decision and Control, pages
741–746, 2002.

PR89a. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
Proceedings of the 16th ACM Symposium on Principles of Programming
Languages, pages 170–190. ACM, 1989.

PR89b. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reac-
tive module. In Proceedings of the 16th International Colloquium on
Automata, Languages and Programming, ICALP, volume 372 of Lecture
Notes in Computer Science, pages 652–671. Springer, 1989.

PR07. S. Prajna and A. Rantzer. Convex programs for temporal verification of
nonlinear dynamical systems. SIAM Journal of Control and Optimiza-
tion, 46(3):999–1021, 2007.

PT09. G. Pola and P. Tabuada. Symbolic models for nonlinear control systems:
Alternating approximate bisimulations. SIAM Journal of Control and
Optimization, 48(2):719–733, 2009.

PVB95. A. Puri, P. Varaiya, and V. Borkar. ε-approximation of differential in-
clusions. In Proceedings of the 34th IEEE Conference on Decision and
Control, pages 2892–2897, 1995.

PW97. J. W. Polderman and J.C. Willems. Introduction to Mathematical Sys-
tems Theory: A Behavioral Approach. Springer, New York, 1997.

QL91. H. Qin and P. Lewis. Factorization of finite state machines under strong
and observational equivalences. Formal Aspects of Computing, 3(3):284–
307, 1991.

RB06. B. Roszak and M.E. Broucke. Necessary and sufficient conditions for
reachability on a simplex. Automatica, 42(11):1913–1918, 2006.

RB07. B. Roszak and M.E. Broucke. Reachability of a set of facets for linear
affine systems with n-1 inputs. IEEE Transactions on Automatic Control,
52(2):359–364, 2007.

RO98. J. Raisch and S. O’Young. Discrete approximation and supervisory con-
trol of continuous systems. IEEE Transactions on Automatic Control,
43(4):569–573, 1998.

RW87. P.J. Ramadge and W. M. Wonham. Supervisory control of a class of
discrete event systems. SIAM Journal on Control and Optimization,
25(1):206–230, 1987.

RW89. P.J. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of IEEE, 77(1):81–98, 1989.

Sam39. P. Samuelson. Interactions between the multiplier analysis and the prin-
ciple of acceleration. The Review of Economic Statistics, 21(2):75–78,
1939.

SKA01. J. Stiver, X. Koutsoukos, and P. Antsaklis. An invariant based approach
to the design of hybrid control systems. International Journal of Robust
and Nonlinear Control, 11(5):453–478, 2001.

200 References

Spe99. P. Speissegger. The pfaffian closure of an o-minimal structure. J. Reine
Angew. Math., 508:189–211, 1999.

SSM06. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Fixed point iteration
for computing the time elapse operator. In Hybrid Systems: Computation
and Control, volume 3927 of Lecture Notes in Computer Sience, pages
537–551. Springer, 2006.

Tab04. P. Tabuada. Open maps, alternating simulations and controller synthe-
sis. In Proceedings of the 15th International Conference on Concurrence
Theory, volume 3170 of Lecture Notes in Computer Science, pages 466–
480. Springer, 2004.

Tab05. P. Tabuada. Symbolic sub-systems and symbolic control of linear sys-
tems. In Proceedings of the 44th IEEE Conference on Decision and Con-
trol, pages 18–23, Seville, Spain, 2005.

Tab06. P. Tabuada. Symbolic control of linear systems based on symbolic sub-
systems. IEEE Transactions on Automatic Control, Special issue on
symbolic methods for complex control systems, 51(6):1003–1013, 2006.

Tab08a. P. Tabuada. An approximate simulation approach to symbolic control.
IEEE Transactions on Automatic Control, 53(6):1406–1418, 2008.

Tab08b. P. Tabuada. Controller synthesis for bisimulation equivalence. Systems
and Control Letters, 57(6):443–452, 2008.

Tar55. A. Tarski. A lattice theoretical fixed point and its applications. Pacific
Journal of Mathematics, 5(2):285–309, 1955.

Tiw08. A. Tiwari. Abstractions for hybrid systems. Formal Methods in Systems
Design, 32:57–83, 2008.

TMBO03. C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi. Computational tech-
niques for the verification of hybrid systems. Proceedings of the IEEE,
91(7):986–1001, 2003.

TP03. P. Tabuada and G. J. Pappas. Model checking LTL over controllable
linear systems is decidable. In Hybrid Systems: Computation and Con-
trol, volume 2623 of Lecture Notes in Computer Sience, pages 498–513.
Springer, 2003.

TP06. P. Tabuada and G. J. Pappas. Linear Time Logic control of discrete-time
linear systems. IEEE Transactions on Automatic Control, 51(12):1862–
1877, 2006.

vB98. F. van Breugel. Comparative Metric Semantics of Programming Lan-
guages: Non-determinism and Recursion. Birkhauser, Boston, 1998.

vdD98. L. van den Dries. Tame Topology and o-minimal structures, volume
248 of London Mathematical Society Lecture Note Series. Cambridge
University Press, 1998.

vdE94. A. van den Essen. Locally finite and locally nilpotent derivations with
applications to polynomial flows, morphisms, and Ga-actions II. In Pro-
ceedings of the American Mathematical Society, volume 121, pages 667–
678. American Mathematical Society, 1994.

Wan68. P.K.C. Wang. A method for approximating dynamical processes by
finite-state systems. International Journal of Control, 8(3):285–296,
1968.

ZKJ06. C. Zhou, R. Kumar, and S. Jiang. Control of nondeterministic discrete-
event systems for bisimulation equivalence. IEEE Transactions on Au-
tomatic Control, 51(5):754–765, 2006.

Index

φ-related, 109
n-rectangle, 135

adapted sets, 119
anti-symmetric, 191

behavior
external

finite, 6
infinite, 7

internal
finite, 6
infinite, 6

behavioral equivalence, 30
behavioral inclusion, 30
bisimulation, 37

alternating, 42
approximate, 147
approximate alternating, 149
relation, 37

chain, 192
complete, 75
completion, 141
composition, 19

approximate feedback, 174
feedback, 53

continuous, 4
control system

continuous-time, 115
controllable, 114
discrete-time, 114
multi-affine, 136
solution, 115

trajectory, 115

definable, 88
differential equation, 74
discrete, 4
dynamical system, 75

complete, 75
locally finite, 109, 110
solution, 75
trajectory, 75

equilibrium point, 152, 164
asymptotically stable, 152

fiber, 88
function

affine, 134
multi-affine, 135

game
behavior inclusion, 64
bisimulation, 68
reachability, 61
safety, 56
simulation, 64

guard, 16, 77

hybrid dynamical system, 77
hybrid system, 14

infimum, 192
input, 4
interconnection relation, 19
invariant, 15, 77

lattice, 192
Lie derivative, 95
Lyapunov function, 153
δ–GAS, 164, 187
ISS, 169

monotone, 192

order minimal structure, 87
output, 4

map, 4

partial order, 191
pre-order, 191
problem

control to facet, 137
controlled equivalence, 25
controlled pre-order, 26
equivalence, 23
pre-order, 24
rectangular invariant, 137

quotient, 39

reachability, 61
reflexive, 191
reset, 16, 77

safety, 56
semi-algebraic sets, 87
semi-exponential-algebraic sets, 88
semi-linear sets, 87
simulation, 34

alternating, 40
approximate, 146
approximate alternating, 148
extended alternating, 41
extended approximate, 148
extended approximate alternating,

148
relation, 34

solution, 74
stability

incremental global asymptotic, 164,
187

incremental global input-to-state, 187
input-to-state, 169
ISS, 169

state, 4
initial, 4
reachable, 32

supremum, 191
switched affine system, 171
system, 4

finite-state, 4
infinite-state, 4
metric, 146

timed automaton, 80
total order, 191
trajectory, 74
transition relation, 4
transitive, 191

zonotope, 105

202 Index

	186052_1_En_FM_OnlinePDF.pdf
	186052_1_En_1_PartFrontmatter_OnlinePDF.pdf
	186052_1_En_1_Chapter_OnlinePDF.pdf
	186052_1_En_2_Chapter_OnlinePDF.pdf
	186052_1_En_3_Chapter_OnlinePDF.pdf
	186052_1_En_2_PartFrontmatter_OnlinePDF.pdf
	186052_1_En_4_Chapter_OnlinePDF.pdf
	186052_1_En_5_Chapter_OnlinePDF.pdf
	186052_1_En_6_Chapter_OnlinePDF.pdf
	186052_1_En_3_PartFrontmatter_OnlinePDF.pdf
	186052_1_En_7_Chapter_OnlinePDF.pdf
	186052_1_En_8_Chapter_OnlinePDF.pdf
	186052_1_En_4_PartFrontmatter_OnlinePDF.pdf
	186052_1_En_9_Chapter_OnlinePDF.pdf
	186052_1_En_10_Chapter_OnlinePDF.pdf
	186052_1_En_11_Chapter_OnlinePDF.pdf
	186052_1_En_BM_OnlinePDF.pdf

