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2.1 Need for Classification

The wide-ranging diversity of Islamic geometric patterns is a

testimony to the degree of understanding that early Muslim

pattern artists had of geometry and symmetry. Their inspired

use of geometry led to the development of multiple varieties

of pattern, symmetrical stratagems, and generative

methodologies; the likes of which no other ancient culture

came close to equaling in ingenuity and beauty. The diver-

sity and complexity of this design tradition make it difficult

to categorize, and indeed, no systematized method of com-

prehensive classification has been established. At best,

writers and scholars addressing this subject employ descrip-

tive analysis; for example, “The design . . . is a fully devel-

oped star pattern based upon a triangular grid. Its primary

unit is a six-pointed star inscribed within a hexagon, which is

surrounded by six five-pointed stars whose external sides

form a larger hexagon.”1 However, detailed descriptions

rarely elucidate beyond the visually obvious star types and

square or triangular repeat units. Other fundamental features

are frequently unaddressed when examining a given geomet-

ric pattern, including the symmetrical schema for more

complex designs, the crystallographic plane symmetry

group, the generative methodology, the incorporation of

culturally associated additive features and treatments, and

identification of the specific pattern family. The absence of

appreciation for these less obvious, but nonetheless signifi-

cant design features obscures the extraordinary scope of this

design tradition, and it is only through a more nuanced and

differentiated approach to this study, with its myriad cultural

and geometric attributes, that a thorough understanding and

appreciation of Islamic geometric patterns can be achieved.

The benefits of a more comprehensive approach to the

classification of Islamic geometric patterns are wide ranging,

and highly relevant to historians of Islamic art and architec-

ture, as well as to contemporary artists, designers, and

architects who use such designs in their work. In addition

to the more general enhanced appreciation of the width and

breadth of this ornamental tradition, the highly detailed

classification of geometric patterns according to their overall

symmetry, repetitive schema, numeric qualities, generative

methodology, family type, and additive pattern variations

and treatments has very specific relevance to each Muslim

culture and dynasty. From the perspective of art and archi-

tectural history, the ascription of these differentiated

qualities to the ornamental use of geometric designs allows

for a far greater understanding of the artistic practices of a

given Muslim culture, as well as an enhanced comparative

appreciation for the subtle differences between the design

conventions of neighboring and succeeding cultures. What is

more, the categorization of the diverse geometric

characteristics that comprise this design tradition provides

the necessary methodological knowledge for those who wish

to more fully explore the range of possibilities and unlimited

potential for creating fresh original geometric designs that

these historical methodologies still offer. It is only through

such knowledge that this once great ornamental tradition can

be rekindled into a contemporary artistic movement

endowed with creative vitality.

Despite the expressed rationale for a more detailed cate-

gorization of Islamic geometric patterns, there is no evi-

dence to suggest that Muslim designers of the past were

particularly concerned with a need to systematically orga-

nize their geometric patterns into differentiated categories.

The design scrolls that have survived to the present day are a

random collection of diverse ornamental motifs that include

Kufi calligraphy, muqarnas, star net vaulting, domical gore

segments with geometric designs, and a wide variety of

two-dimensional geometric patterns. The fact that these pat-

tern scrolls have no logical sequence in the placement of

their many individual designs obviously does not imply that

Muslim designers had no appreciation for geometric
1 This quotation references a geometric pattern used on a door at the

Bimaristan al-Nuri in Damascus (1154). Tabbaa (2001), 88.
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differentiation within this ornamental tradition. On the con-

trary, the full range of sophistication in this Islamic design

tradition, in and of itself, provides clear evidence that Mus-

lim artists had a highly sophisticated knowledge of geomet-

ric diversity, but did not require this knowledge to be

outwardly systematized. The history of collecting and

classifying Islamic geometric patterns is closely associated

with nineteenth-century orientalism: frequently with the

objective of making illustrated representations of specific

patterns available to Western artists working with this

novel aesthetic.2 The publication of The Grammar of Orna-

ment by Owen Jones in 1856 included numerous geometric

designs from Muslim sources.3 The organizing principle

behind this work was loosely ethnographical rather than

geometric; with chapters dedicated to Arabian, Turkish,
Moresque, Persian, and Indian ornament, and the examples

of geometric design within these sections are arbitrarily

sequenced alongside their floral and calligraphic neighbors.

The earliest work to organize geometric patterns into geo-

metric categories was published in 1879 by the ornamental

theoretician and architect Jules Bourgoin.4 The 190 geomet-

ric designs that comprise this collection are divided into

eight numeric and geometric categories: hexagonal patterns;

octagonal designs; dodecagonal designs; patterns with two

different star forms; designs with squares and octagons;

patterns with three and four different star forms; sevenfold

patterns; and fivefold patterns with ten-pointed stars. While

these categories may seem somewhat limited today, at the

time this collection was a significant contribution to the

spread of interest in this subject throughout Europe, and

continues to be a standard reference book for Islamic geo-

metric pattern to this day.5 The history of the classification

of Islamic geometric design is an interesting study in itself,

and has mostly built upon the overtly obvious categories

identified by Bourgoin. This organizational refinement

began during the beginning of the last quarter of the twenti-

eth century with the publication of several books on the

subject of Islamic geometric patterns.6 For the most part,

these more recent studies have included the ordering of

patterns that repeat upon the isometric and orthogonal

grids by complexity, as well as patterns that have fivefold

symmetry. In the isometric examples the least complex

designs are comprised of triangles, hexagons, and

six-pointed stars. These are followed by patterns that place

increasingly large star forms upon the vertices of the repeti-

tive grid (and/or its hexagonal dual) whose local symmetry

is always a multiple of 3: e.g., 9-, 12-, and 15-pointed stars.

In some studies, recognition is also given to patterns with

greater complexity that exhibit more than a single region of

local symmetry, for example, the well-known designs with

9- and 12-pointed stars. Orthogonal patterns are similarly

organized by repeat unit and increasing complexity: the least

complex being comprised of squares, octagons, and eight-

pointed stars, followed by more complex designs with star

forms that are multiples of 4. The more thorough studies

include designs with more than one region of local symme-

try, such as 8- and 12-, 8- and 16-, as well as 8- and

24-pointed stars.7 The most comprehensive twentieth-

century catalogue of Islamic geometric design was published

by Gerd Schneider in 1980.8 This study focuses exclusively

on the geometric ornament of the Seljuk Sultanate of Rum,

under whose patronage this ornamental tradition produced

many of the most sophisticated and complex geometric

designs. Schneider illustrates 440 patterns that are not

differentiated according to their repetitive structure, but

placed within a broad set of visually explicit categories

that include square Kufi calligraphy; orthogonal brick

designs; domical brick designs; three-, four-, five-, and six-

fold swastika designs; border designs; additive designs;

superimposed polygonal designs; star patterns with extended

points; patterns made up of a single repetitive device;

patterns with 6-pointed stars; patterns with 6- and

12-pointed stars; patterns with hexagonal centers; fourfold

patterns with square centers; 8-pointed star patterns with

octagons; complicated 8-pointed star patterns; 9-pointed

star patterns; pentagonal designs with 5- and 10-pointed

stars; 10-pointed star patterns; 12-pointed star patterns;

patterns with 8- and 12-pointed stars; patterns with 9- and

12-pointed stars; 12-pointed star patterns with additional star

forms; 12- and 14-pointed star patterns; 16-pointed star

patterns with additional star forms; 15- and 18-pointed star

patterns with additional star forms; 24-pointed star patterns;

and geometric patterns on domes and hemispheres. Many of

2Necipoğlu (1995), Chapter 4. Ornamentalism and Orientalism: the
Nineteenth and Early Twentieth Century European Literature, 61–87.
3 Jones (1856).
4 Bourgoin (1879).
5 The ongoing availability of Bourgoin’s work is due to its being kept in
print as part of the Dover Pictorial Archive Series (printed without

original text). In creating the illustrations for his book, Bourgoin does

not appear to have used a traditional methodology for recreating the

patterns in his collection. As a consequence, the proportions within

many of his illustrations—especially those with greater complexity—

are inaccurately represented, and have clearly discernable distortion.

Being that this has been an artist’s reference for over 150 years, the

direct copying of such problematic designs has occasionally

promulgated these errors by their application within the applied and

architectural arts.

6 –Critchlow (1976).

–El-Said and Parman (1976).

–Wade (1976).
7Wade (1976), 63–79.
8 Schneider (1980).
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the designs illustrated in this valuable study are not

represented elsewhere. Equally impressive is the work of

Jean-Marc Castéra, dating from 1999, which focuses upon

the geometric design diversity found in the Moroccan orna-

mental tradition.9 This work includes orthogonal designs

with increasingly large numbers of primary star forms

(up to 96-pointed stars), the hexagonal family, the pentago-

nal family, and patterns with two varieties of star. This is

also one of the earliest publications to categorize a subset of

dual-level geometric designs, herein referred to as Type D,

as having self-similar properties: a type of design created

from what Castéra calls the “Alhambra method.”10 The

differentiation between systematic and nonsystematic gen-

erative methodologies was first introduced by the author in

2003,11 with the identification for the first time of four

historical systems used for creating geometric patterns: one

that produces patterns that can be either threefold or four-

fold; two that produce patterns that are fourfold; and one that

produces patterns that are fivefold. Further, this work also

identified three geometrically and aesthetically distinct

varieties of dual-level design with self-similar

characteristics that were reliant upon these systems for

their creation. This was expanded upon in 2012 to include

the historical use of a system that generates sevenfold geo-

metric patterns.12 The application of Islamic geometric

patterns to the parameters of the 17 plane symmetry groups

is a particularly interesting development in the efforts

toward methodical categorization. Beginning in 1944 a num-

ber of mathematicians and crystallographers have published

works devoted to this topic.13 Of especial note is the work of

Syed Jan Abas and Amer Shaker Salman, dating from 1995,

that identifies some 248 Islamic geometric patterns with

their respective crystallographic plane symmetry group.14

The abounding diversity of this design tradition

necessitates categorization according to several criteria.

The standard classification of Islamic geometric patterns

has provided a useful means for descriptive dialogue, and

is certainly relevant to art historians and contemporary

artists alike. However, this does not provide any insight

into the methods used in the creation of these designs. The

categorization according to methodology and pattern family

that concludes this chapter is a subject that has been largely

overlooked by previous studies, but is fundamental to the

thorough understanding of this ornamental tradition.

2.2 Classification by Symmetry
and Repetitive Stratagems

In examining this tradition, the most fundamental category

to which all patterns must ascribe is geometric symmetry.

Most Islamic geometric patterns exhibit threefold, fourfold,

or fivefold symmetry, although other more obscure symmet-

rical systems were also developed within this tradition.

Directly related to a pattern’s symmetry is its repeat unit.

Islamic geometric patterns are able to continuously fill the

plane through the repetitive use of a single element. These

repeat units will always contain the minimum portion of a

pattern that is able to seamlessly fill the plane through

repetitive edge-to-edge translation symmetry. In this way,

the repeat unit is essential to a pattern’s ability to success-

fully fill two-dimensional space. The laws that govern the

science of repetitive two-dimensional space filling, or tiling,

are universal, and apply no less to Islamic geometric design

than to any other pattern-orientated ornamental tradition. All

periodic covering of the two-dimensional plane must con-

form to the symmetrical determinants of one or another of

the 17 plane symmetry groups. Yet these limits offer tremen-

dous scope for symmetrical and aesthetic diversity. And no

artistic tradition explored symmetrical potential with the

degree of passion and ingenuity as those of successive Mus-

lim cultures.

A regular polygon is defined as having equal included

angles and common edge lengths. As illustrated in Fig. 1,

only three of the regular polygons are able to infinitely cover a

plane on their own: the triangle, square, and hexagon.

Figure 1a illustrates the isometric grid made from equilateral

triangles, along with its hexagonal dual (green); Fig. 1b shows

the orthogonal grid made from squares, with the dual grid

(green) being the same orthogonal grid; and Fig. 1c shows the

hexagonal grid made from regular hexagons, along with the

isometric dual grid (green). The majority of Islamic geometric

patterns repeat upon either the isometric or the orthogonal

grids. Each vertex of the isometric grid has sixfold symmetry

comprised of six acute angles of 60� where the six edge-to-

edge equilateral triangles meet. The dual of the isometric grid

is the grid of regular hexagons. This grid has threefold sym-

metry that results from the three coincident hexagons with

120� included angles that meet at each vertex. Islamic geo-

metric patterns that repeat upon the isometric grid will invari-

ably exhibit sixfold symmetry at the vertices of this grid, and

threefold symmetry at the centers of each triangular repeat

unit—which is to say the vertices of the dual-hexagonal grid.

As such, these patterns have regions of both sixfold and

9Castéra (1996).
10 Castéra (1996), 276–277.
11 Bonner (2003).
12 –Bonner and Pelletier (2012).

–Pelletier and Bonner (2012).
13 –Müller (1944).
–Weyl (1952).

–Lalvani (1982).

–Lalvani (1989).

–Lovric (2003), 423–431.
14 Abas and Salman (1995).
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threefold symmetry. However, for purposes of convenience,

this category of geometric design is referred to as simply

threefold. This is acceptable due to the fact that, three being

a devisor of six, the sixfold vertices also have threefold

symmetry. More complex threefold patterns will place higher

ordered star forms at the vertices of either or both these grids,

and the number of points of these stars will always be a

multiple of the threefold or sixfold symmetry of the vertex.

The vertices of the orthogonal grid have fourfold symmetry

resulting from the four coincident squares, with 90� included
angles, that meet at each vertex; and the dual of the orthogonal

grid is an identical orthogonal grid whose vertices are located

at the center of each square repeat unit of the original grid.

Patterns that employ square repeat units are therefore referred

to as fourfold. Similarly with threefold patterns, fourfold

designs will often place star forms at the vertices of both the

orthogonal grid and its dual that are multiples of 4, thus

creating regions of higher order local symmetry.

It is important to differentiate between the repeat unit of a

given pattern and its fundamental domain. The fundamental

domain is the minimal essential repetitive component of a

design. By the singular or combined functions of rotation,

reflection, and glide reflection, the fundamental domain will

populate the repeat unit. It is remarkable how little visual

information is contained within the fundamental domains of

many highly successful, albeit less complex geometric

designs. Figure 2 illustrates the classic threefold median
pattern comprised of 6-pointed stars located upon the verti-

ces of the isometric grid. The relationship between the

design and both the isometric grid (green) and its hexagonal

dual (red) is clearly evident; and indeed, the triangles or

hexagons are equally capable of being used as the underly-

ing generative polygons responsible for this design. The

fundamental domain for this pattern is a right scalene trian-

gle (blue) with a single applied pattern line. This is reflected

and then rotated to complete the repeat unit: �3 for the

triangle, and �6 for the hexagon. Figure 3 illustrates the

classic fourfold star-and-cross median pattern that places

eight-pointed stars at the vertices of the orthogonal grid

(green) and fourfold crosses at the vertices of the dual of

this grid (red). The fundamental domain is a right isosceles

triangle (blue) with just two applied pattern lines. By

reflecting the fundamental domain upon its hypotenuse,

and rotating this four times at the vertex of the dual grid,

the square repeat unit will be completed. Alternatively,

rotating four times at the vertex of the repeat unit will fill a

unit cell of the dual grid.

As said, the historical record is rife with Islamic geomet-

ric patterns based upon threefold and fourfold symmetry that

respectively utilize the triangle, hexagon, and square as

repeat units. Yet as early as the eleventh century Muslim

artists began working with distinctive patterns characterized

by fivefold and even sevenfold symmetry. This was made

possible through the use of rhombic, rectangular, and

A B C

Fig. 1

Fig. 2
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elongated hexagonal repeat units and resulting repetitive

grids with proportions that directly relate to fivefold and

sevenfold symmetry. What is more, the proportions of

these types of alternative repeat units could also conform

to symmetries more commonly associated with the regular

polygons. In this way, it was possible to create patterns with

higher order star forms with points that are multiples of

3 and 4 (for example: 8, 12, 15, 16, 18, and 24) that were

not confined to the isometric and orthogonal grids, yet often

shared visual characteristics with their more conventional

counterparts. These three less common repetitive stratagems

are elongated corollaries of the three grids produced from

the regular polygons: the isometric grid sharing properties

with rhombic grids; the orthogonal grid with rectangular

grids; and the regular hexagonal grid with elongated hexag-

onal grids. Changing the edge lengths and/or included angles

of the polygonal components of these three regular grids

such that the new angles and edge lengths correspond with

the inherent proportions of specified polygons opened this

tradition to the creation of designs with all manner of

symmetries, including fourfold patterns with 8-pointed

stars set upon a rhombic grid; fivefold patterns with

10-pointed stars set upon both rhombic and rectangular

grids; sevenfold patterns with 14-pointed stars set upon

both rhombic and rectangular grids; and patterns with

12-pointed stars set upon a rectangular grid. This more

flexible approach to repeat units with specific inherent pro-

portional properties also allowed for the creation of more

complex designs with multiple centers of local symmetry

that would ordinarily be incompatible. Such designs are

invariably nonsystematic and include a pattern with 7- and

9-pointed stars set upon an elongated hexagonal grid; a

pattern with 9- and 11-pointed stars set upon an elongated

hexagonal grid; and a pattern with 11- and 13-pointed stars

that is also set upon an elongated hexagonal grid.

The isometric grid is made up of three sets of parallel

lines. By removing one of these sets a rhombic grid is

produced. Each rhombus becomes a repeat unit with the

proportion of two edge-to-edge equilateral triangles. The

location and number of vertices remain identical to the

original isometric grid. Figure 4 illustrates a very successful

example of a class of pattern that uses this rhombic repetitive

schema by placing nine-pointed stars at each isometric ver-

tex. Whereas nines will work nicely at the vertices of the

regular hexagonal grid, they do not conform to the vertex

constraints of the regular triangular grid (because 9 is not

evenly divisible by 6). The placement of nines upon the

vertices of the rhombic grid elegantly overcomes this limi-

tation. The fundamental domain for this design is an equilat-

eral triangle (blue) that is reflected to create the rhombic

repeat unit with translation symmetry. Figure 5 illustrates

the proportional determinants for the two rhombi with five-

fold symmetry that were used historically for patterns with

5- and 10-pointed stars. The opposing included angles of

both these rhombi are multiples of 36�: a 1/10 division of the
circle. Figure 5a illustrates the wide rhombus with two

opposing acute angles with 2/10 included angles, and two

opposing obtuse angles with 3/10 included angles. The acute

included angles of the thin rhombus in Fig. 5b are a 1/10

segment, and the obtuse angles are 4/10 segments. Figure 6

illustrates the obtuse and acute fivefold grids that these two

rhombi produce; and Fig. 7a shows how the wide rhombi

relates to the pentagon, and Fig. 7b demonstrates how the

thin rhombi relates to the decagon. Figure 8 illustrates two

geometric patterns that repeat with these two rhombi.Fig. 3

Fig. 4
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1/10 = 36°
4/10 = 144°

2/10 = 72°
3/10 = 108°

Fig. 5

A B

Fig. 6

A B

Fig. 7
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Figure 8a is the classic fivefold acute pattern that repeats on

the obtuse rhombic grid (red) and has a dual-hexagonal

repetitive grid (green). The pattern in Fig. 8b (by author)

repeats upon the acute rhombic grid (red) and also has a

dual-hexagonal repetitive grid (green). The fundamental

domain of both varieties of rhombic repeat unit is a 1/4

triangular segment (blue) that requires reflection 4�, while

the fundamental domain of both types of the dual-hexagonal

repeats is a 1/4 quadrilateral (orange) that also requires

reflection 4�. Figure 9 demonstrates how these 2 fivefold

rhombi can be used together to tessellate the plane in several

fashions. The combined use of more than a single repetitive

element qualifies each of the three examples in this figure as

a hybrid design. Figure 9a is an example of a periodic

tessellation with translation symmetry that is provided by a

rectangular repeat unit (shaded) made up of four obtuse

rhombi and two acute rhombi; Fig. 9b is an example of a

radial tessellation; and Fig. 9c is an example of a

non-periodic tessellation devoid of translation symmetry.15

The success of such hybrid designs is conditioned upon the

applied pattern lines along the edge of each rhombus being

congruent. Although no historical examples of fivefold

hybrid designs that use just these two rhombi are known,

several periodic fivefold hybrid designs were produced that

employ multiple repetitive elements, including rhombi,

pentagons, triangles, and non-regular hexagons, always

with the requisite matching edge configurations within the

applied pattern lines [Figs. 261–268].

The same rhombic repetitive logic applies to the genera-

tion of sevenfold geometric patterns. Figure 10 illustrates the

proportional determinants for the three rhombi with seven-

fold symmetry, with the obtuse rhombus in Fig. 10a being

A B

Fig. 8

A CB

Fig. 9

15 These 2 fivefold rhombi are the same as those identified by Sir Roger

Penrose in his groundbreaking research into aperiodic tilings. However,

the application of the geometric patterns to the two rhombi in Fig. 9

does not include Penrose’s matching rules for forced aperiodicity and

the design in Fig. 9c is therefore referred to herein as non-periodic

rather than aperiodic. While never occurring within the historical

record, it is certainly possible to populate these 2 fivefold rhombi

with patterns that conform to the Penrose matching rules, thereby

forcing the geometric design to be aperiodic [Figs. 480 and 482].

–Penrose (1974), 266–271.

–Gardener, Martin (January 1977), “Extraordinary nonperiodic tiling

that enriches the theory of tiling,” Scientific America, pp. 110–121.
–Penrose (1978), 16–22.
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comprised of 3/14 and 4/14 included angles; the median

rhombus in Fig. 10b having 2/14 and 5/14 included angles;

and the acute rhombus in Fig. 10c having 1/14 and 6/14

included angles. Figure 11 shows the three rhombic grids

that these three rhombi produce. Figure 12 demonstrates

several simple methods for creating the 3 sevenfold rhombi

from the heptagon and tetradecagon. Figure 12a shows two

ways of creating the obtuse rhombus; Fig. 12b shows two

A B C

3/14 = 77.1428...°
4/14 = 102.8571...°

2/14 = 51.4285...°
5/14 = 128.5714...°

1/14 = 25.7142...°
6/14 = 154.2857...°

Fig. 10

A CB

Fig. 11

A CB

Fig. 12
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ways of producing the median rhombus; and Fig. 12c shows

two ways of producing the acute rhombus. Figure 13

illustrates two historical examples of patterns that employ

the obtuse and median sevenfold rhombic repeat units. The

design in Fig. 13a is from the ’Abd al-Ghani al-Fakhri

mosque in Cairo (1418). This repeats with either the obtuse

rhombic grid (red) or the dual-hexagonal grid (green). The

fundamental domain of the rhombic repeat unit is a 1/4

segment right triangle (blue) that requires reflection 4� to

fill the repeat. The fundamental domain of the dual-

hexagonal repeat unit is a 1/4 segment quadrilateral (orange)

that also requires reflection 4�. The design in Fig. 13b is

from the Bayezid Pasha mosque in Amasya, Turkey (1414-

19). This utilizes the median sevenfold rhombic grid (red),

and also has a hexagonal dual grid (green). Like the previous

example, the fundamental domain of the rhombic repeat is a

1/4 segment right triangle (blue) that requires reflection 4�
to fill the repeat, and the fundamental domain of the dual-

hexagonal repeat (orange) is a 1/4 segment quadrilateral that

also requires reflection 4�. The acute sevenfold rhombus

does not appear to have been used historically. As with the

fivefold rhombi, the 3 sevenfold rhombi can be used with

one another to create more complex periodic [Fig. 284],

radial [Fig. 285], and non-periodic hybrid designs,16 and

indeed, these two historical examples have the requisite

identical edge configuration to produce hybrid variations

[Fig. 26d]. However, no examples of sevenfold hybrid

designs are known from the historical record.

The use of rectangular repeat units for geometric designs

with symmetries that do not readily conform with either the

isometric or the orthogonal grids began in Khurasan during

the late twelfth century. Figure 14 illustrates such an

example from the Maghak-i Attari mosque in Bukhara,

Uzbekistan (1178-79). This is one of the earliest examples

of a pattern that repeats upon a rectangular grid, and is also

one of the least complex rectangular fivefold patterns. This

design places ten-pointed stars at the vertices of the rectan-

gular grid (red), and the specific proportions of the rectangu-

lar repeat unit are determined by the arrangement of the

underlying generative polygonal modules from the fivefold

system that are responsible for this pattern [Figs. 203 and

245a]. As with the orthogonal grid, the dual of a rectangular

grid is the same rectangular grid (green). Fundamental

domains for designs that utilize rectangular repeat units are

almost always a 1/4 rectangular segment (blue) that fills the

repeat unit through reflection 4�.

Figure 15 illustrates a design from the Sultan

al-Mu’ayyad Shaikh complex in Cairo (1412-22) that is

created from the sevenfold system and repeats upon both a

BA

Fig. 13

Fig. 14

16 Pelletier and Bonner (2012), 141–148.
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rectangular grid (red) and a hexagonal grid (green)

[Fig. 294] [Photograph 50]. The hexagonal repeat unit is

half the area of the rectangle, and is the true minimal repeti-

tive cell. However, the rectangular repeat units place the

14-pointed stars at their vertices, and this is frequently

more convenient for practical application. When considered

from the perspective of the rectangular grid, this design has a

second unusual characteristic: applied pattern lines on the

rectangular repeats that are precisely the same as on its dual

grid. (Note: were it not for the skewed orientation between

the 14-pointed stars at the vertices and center of each rect-

angular repeat unit, this pattern would repeat upon a rhombic

grid.) The fundamental domain of the rectangular repeat is a

quadrilateral (blue) that must rotate 180� upon the center

point of the long edge before filling the remaining repeat unit

through reflection 4� to fill the repeat. As said, the hexago-

nal grid (green) is the true minimal repeat unit with transla-

tion symmetry. This shares the same fundamental domain,

but only requires reflection 4� to fill the repeat.

Rectangular repeat units were also used with geometric

designs that have more than a single region of local symme-

try. Such patterns will typically place one variety of star at

the vertices of the rectangular grid, and another star form at

the center of each repeat unit; which is to say, upon the

vertices of the dual grid. Figure 16 illustrates a particularly

successful example of this type of compound pattern from

the minbar of the Great Mosque of Aksaray in Turkey17

(1150-53). This places 12-pointed stars upon the vertices

of the primary grid (red), and 10-pointed stars on the vertices

of the identically proportioned dual grid (green). The

proportions of this rectangular repeat unit are the direct

product of the correlation between the 12- and 10-fold

local symmetries as they relate to the underlying polygonal

tessellation that generates this design [Fig. 414]. The

fundamental domain (blue) of this pattern is a 1/4 segment

of the repeat unit that fills the unit by reflection 4�.

The use of non-regular hexagonal repeat units encom-

passes a wide variety of design types, including systematic

and nonsystematic patterns, more simplistic field patterns,

and very complex patterns with compound local symmetries

and multiple star forms. The discovery that this repetitive

Fig. 15

Fig. 16

17 Schneider (1980), pattern no. 416.
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stratagem was applicable to symmetries that do not conform

to the convenient tessellating properties of the regular trian-

gle, square, and regular hexagon can be traced back to the

sevenfold design used by Seljuk artists in the northeast dome

chamber of the Friday Mosque at Isfahan (1088-89)

[Fig. 279] [Photograph 26], and the sevenfold designs cre-

ated by Ghaznavid artists on the tower of Mas’ud III (1099-

1115) [Figs. 280 and 281]. Figure 17 illustrates two rather

simple, but nonetheless elegant, field designs that repeat

upon non-regular hexagonal grids. Figure 17a is created

from the fivefold system, and Fig. 17b from the sevenfold

system. Similar to rhombic repeat units, each of the included

angles of the hexagonal repeat units for both of these

patterns (red) are multiples of a 10- and 14-fold division of

a circle, respectively. The perpendicularly orientated dual of

each of these hexagonal grids is also a hexagonal grid

(green), and their included angles are likewise multiples of

10- and 14-fold divisions of a circle. Both the repetitive grid

and its dual for each of these patterns have their own quadri-

lateral fundamental domain, and each fills the repeat unit

through reflection 4�. Both of these patterns are from the

Seljuk Sultanate of Rum: the fivefold pattern from the Sitte

Melik tomb in Divrigi (1196) [Fig. 213], and the sevenfold

design from the Great Mosque of Dunaysir in Kiziltepe

(1204) [Fig. 282a]. Many of the more complex patterns

that utilize a non-regular hexagonal repeat unit will have a

combination of differing star forms that are seemingly irrec-

oncilable in their geometric symmetry. Figure 18 is a

remarkable design from the Mu’mine Khatun in

Nakhichevan, Azerbaijan (1186). This design has two

regions of local symmetry: 13-fold placed upon the vertices

of the hexagonal primary grid (red), and 11-fold located at

the vertices of the perpendicularly orientated hexagonal dual

grid (green). The combination of equal numbers of 13- and

11-pointed stars requires a geometric dexterity that pushes

the limits of two-dimensional space filling. The fundamental

domain for each type of hexagonal repeat is a right-angled

quadrilateral that is a 1/4 segment of their respective repeat

unit requiring reflection 4� to fill their respective repeat

unit. Figure 19 illustrates the origin of the included angles

of the 13-fold and 11-fold hexagonal repeat units from this

design. Figure 19a illustrates a 1/13 division of a 13-fold

tridecagon. Four of the included angles of the 13-fold hex-

agonal repeat unit are made up of three-and-a-half 1/13

segments, and two are made up of six 1/13 segments. Figure

19b illustrates a 1/11 division of a 11-fold hendecagon. Four

of the included angles of the 11-fold hexagonal repeat unit

are comprised of three 1/11 segments, while the remaining

two included angles have five 1/13 segments.

The use of parallelograms as a repetitive device in the

Islamic geometric tradition is extremely rare. One such

example is from the Khwaja Atabek mausoleum in Kerman

(1100-1150) [Fig. 211]. Figure 20 illustrates several repeti-

tive features of this design. Figures 20a and b illustrate two

distinct chevron repeat units, each comprised of mirrored

parallelograms. The fundamental domains for these repeat

units are rotated 180� and then reflected to fill the chevron

repeat units. Figure 20c shows a 1/5 decagonal kite repetitive

element that must be rotated 180� for edge-to-edge transla-

tion symmetry. The fundamental domain for this kite is a

1/10 triangular segment of a decagon that is reflected to fill

the repetitive element.

Most motifs with a radial symmetry in Islamic ornament

tend to be floral. However, Muslim designers also created

many geometric radial patterns; mostly created from one or

another of the polygonal systems (although the sevenfold

system does not appear to have been used for such designs).

Radial geometric designs that are applied to the gore

segments of domes are a special category within this tradi-

tion. Whether on a two-dimensional plane or on the curved

surface of a dome, a pattern with radial symmetry is signifi-

cantly different from patterns that employ translation sym-

metry to cover the plane. Radial patterns work by dividing a

circle into n number of equal divisions, and treating each

BA

Fig. 17
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segment as a distinct repetitive element that is copied and

rotated n times around the center of the circle. In this way,

the pattern is made to repeat through rotation along the

radius of the circle. The Islamic conventions for applying

radial geometric patterns onto domes most commonly

employ 8-, 12-, 16- or 24-fold gore segments. Each of

these relates comfortably to the square or octagonal base

upon which domes most commonly rested. In his 1925

publication The Drawing of Geometric Patterns in

Saracenic Art, E. H. Hankin demonstrates a Mughal

Fig. 18
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technique for designing the gore segments of four domes in

Fatehpur Sikri, India.18 Each example that Hankin cites is

created from the fivefold system, and characterized by the

judicious use of ten-pointed stars. Figure 21 illustrates his

analysis of the dome in the Samosa Mahal at Fatehpur Sikri,

India (sixteenth century). This illustration shows how the

geometric pattern is designed to fit the 1/10 division of a

circle, and demonstrates how this segment can be arrayed

around the central point ten times to create a very satisfac-

tory radial pattern. Figure 21b shows how the fundamental

domain of this radial design (blue) is half of the 1/10 seg-

ment divided through its central axis and reflected to fill the

segment. As reported by Hankin, the Mughal technique for

applying such patterns onto the three-dimensional interior

surface of a dome called for the removal of two of the ten

segments, and adjoining the remaining eight segments into a

conical form that could then be applied to the curved surface

of the dome with minimal distortion. This technique has the

benefit of maintaining the integrity of this type of fivefold

pattern even while being applied to a three-dimensional

surface. Other than the minimal distortion, the only real

change to the pattern is that the central star will have eight

points rather than the original ten. A feature of this method-

ology is the fact that the curvature of the dome is a direct

result of the chosen geometric design. This is distinct from

the more common approach to designing domical geometric

patterns wherein the design is applied to a predetermined

gore segment. Each segment of the design from the Samosa

Mahal has acute projections at the periphery that, when

applied to the dome, extend downward into eight arched

pendentives. Historical examples of geometric designs with

radial symmetry are far less common than two-dimensional

patterns that repeat with translation symmetry. Some of the

more interesting examples of two-dimensional radial design

are from the flat stellate soffits that were incorporated into

Persian muqarnas vaults during the Safavid period

[Figs. 440 and 441], and from the secondary infill of dual-

level designs [Fig. 447]. Figure 22 illustrates two radial

designs with tenfold rotation symmetry from the Topkapi

Scroll. Figure 22a is an obtuse pattern from the ten-pointed

star component of a dual-level design from this collection of

designs,19 and Fig. 22b is the full dodecagonal infill of the

A CB

Fig. 20

A CB

Fig. 21

18 Hankin (1925a), Figs. 45–50. 19 Necipoğlu (1995), diagram no. 29.
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1/10 segment of an acute pattern20 that was possibly

intended for use on a dome—as per the Mughal technique

illustrated in Fig. 21. Both designs were produced from the

fivefold system of pattern generation.

Another means of incorporating unusual symmetrical

relationships in Islamic geometric patterns utilizes a particu-

lar tessellation of squares and rhombic repetitive units. This

variety of tessellation is characterized by the square elements

oscillating in orientation, and the rhombi being placed in an

alternating perpendicular layout. Designs based upon this

configuration of squares and rhombi are orthogonal, but

eccentric; and are herein referred to as oscillating square

patterns. The geometric structure of this variety of Islamic

geometric pattern invariably adheres to the p4g plane sym-

metry group. This rather simple geometric repetitive device

was occasionally used as ornament in and of itself, and an

early example is found in the carved stucco panels of the

Khirbat al-Mafjar outside Jericho (eighth century). However

oscillating square tessellations can also provide the repetitive

structure formore complex Islamic geometric patterns. In this

class of design, the angular proportions of the rhombic

elements will always inform the geometric characteristics of

the completed pattern. Figure 23 illustrates the geometric

principle behind two historical oscillating square patterns.

Figure 23a illustrates the square-within-a-square motif. In

this particular oscillating square tessellation, the rhombi are

made up of two contiguous equilateral triangles, and the

distribution of squares and rhombi is effectively the 32.4.3.4

semi-regular tessellation [Fig. 89].Oscillating square patterns

are characterized by multiple lines of symmetry, leading to a

surprising number of equally valid repeat units with transla-

tion symmetry for a single design. Figure 23b places diagonal

lines (green) within the square elements of this tessellation.

This produces a grid comprised of concave octagonal shield

shapes (orange) that tessellate through 90� rotation. The fun-
damental domain (blue) is rotated 4� to populate theminimal

square region, and this is reflected 4� to complete a square

repeat with translation symmetry. Each of these square repeat

units has 16 fundamental domains. However, this is not the

minimal repeat unit with translation symmetry. This grid also

produces two types of hexagonal repeat unit (brown) with

translation symmetry, each comprised of just eight funda-

mental domains. These are identical except for their respec-

tive 90� orientations, and the proportions of each are based

upon 105� and 150� included angles. Figure 23c places an

alternative set of lines (green) within the oscillating square

elements that bisect the midpoints of each set of parallel

edges. This creates the dual of the original square and rhom-

bic grid (green) in Fig. 23a, and is similarly comprised of

alternating concave octagonal shield repetitive units

(orange), although with very different proportions as those

from Fig. 23b. The fundamental domain (blue) for this dual

grid is likewise a 1/4 segment of the minimal square region

that is rotated 4� and reflected 4� to complete the square

repeat unit with 16 fundamental domains. This dual grid also

produces two types of hexagonal repeat units (brown) that are

perpendicularly orientated and comprised of just eight funda-

mental domains. Like the regular hexagon, these non-regular

hexagonal repeat units have 120� at each included angle: the
difference being the two edge lengths rather than uniform

BA

Fig. 22

20 Necipoğlu (1995), diagram no. 90a.
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edges. The two historical designs in this figure are imbued

with each of these repetitive characteristics. The pattern in

Fig. 23d through f is from the exterior stucco ornament of the

Mustansiriyah madrasa in Baghdad (1227-34), as well as the

Topkapi Scroll.21 Figure 23d emphasizes the oscillating

square and rhombic repetitive cells that govern the geometry

of this pattern. The applied pattern lines within both the

oscillating squares and rhombi are able to fill the plane

independently with very acceptable designs, and their com-

bined use in these examples qualifies this example as a hybrid

design. The pattern within just the rhombus is a variant of an

isometric nonsystematic design with 12-pointed stars at the

vertices of the isometric grid [Fig. 321b], while the design

within each square cell is a very well-known nonsystematic

design that places 12-pointed stars at the vertices of the

orthogonal grid and 8-pointed stars at the center of each repeat

unit [Fig. 379b]. Figure 23e demonstrates the placement of

this pattern within the hexagonal repeat unit with 105� and

150� included angles, and Fig. 23f shows how the pattern fits

A CB

D FE

G IH

Fig. 23

21 Necipoğlu (1995), diagram no. 35.
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within the repetitive hexagon with exclusively 120� included
angles. The design with non-regular seven-pointed stars in

Fig. 23g through i is found in several locations, including the

Malik mosque in Kerman, Iran (eleventh century), as well as

the Topkapi Scroll.22 Figure 23g places this pattern into the

oscillating squares and rhombi. The pattern is composed of

90� angular openings placed at the midpoints of the 32.4.3.4

grid. This produces the non-regular seven-pointed stars that

are a primary feature of this design. As with the previous

pattern from the Mustansiriyah madrasa, the pattern lines in

both the square and rhombic elements produce very-well-

known designs on their own: the squares making the classic

star-and-cross design [Fig. 124b], and the rhombi making a

patternwith point-to-point six-pointed stars [Fig. 95c]. Figure

23h shows this pattern placed within the hexagonal repeat

unit with 105� and 150� included angles, and Fig. 23i

demonstrates the placement of this pattern into the repetitive

hexagon comprised of just 120� included angles.
As mentioned, the proportions of the rhombic cells in

oscillating square patterns are not restricted to 60� and 120�

included angles. Muslim geometric artist discovered that

the angles of the rhombic elements within oscillating

square tessellations can be adjusted to conform to other

polygonal symmetries, thereby introducing the visual

characteristics inherent to these forms. Figure 24

demonstrates an oscillating square pattern from the Sultan

Han in Aksaray, Turkey23 (1229). The rhombic repetitive

cells in Fig. 24a have 22.5� and 157.5� included angles. The
fundamental domain (blue) is rotated 4� to fill the square

cell that is reflected 4� to produce a square repeat unit with

translation symmetry that is made up of 16 fundamental

domains. As with the previous designs, the dual of this

tessellation (green) provides for the two perpendicular

elongated hexagonal repeat units (brown) comprised of

eight fundamental domains. This figure also illustrates the

concave octagonal shield element (orange) that requires

alternating 90� rotations to cover the plane. And as with

the examples in Fig. 23, this oscillating square grid will

also repeat with perpendicular hexagonal grids created

from diagonal lines placed within each oscillating square

(not shown). Figure 24b illustrates how the pattern can be

derived from simply placing octagons within each of the

oscillating squares and extending the pattern lines until

they meet with other extended pattern lines. The specific

proportions of the rhombi provide for the pattern lines to

extend uninterrupted from octagon to octagon through the

center point of each rhombus. Figure 24c is a representation

of the historical design with widened pattern lines. Figure

25 illustrates two additional historical examples of

oscillating square tessellations that use rhombi that are

proportioned differently from that of the double-equilateral

triangle. The proportions of the rhombic elements used in

Fig. 25a are associated with sevenfold symmetry and can

be derived from either the heptagon or the tetradecagon

[Fig. 12c], with the acute angles being 1/14 divisions of a

circle, and the obtuse angles being 6/14 [Fig. 10c]. The use

of this rhombus elegantly provides for the incorporation of

regular seven-pointed stars within a pattern matrix that is

otherwise orthogonal in structure. This design was used in

numerous locations, including the Mirjaniyya madrasa in

Baghdad (1357), and the Amir Qijmas al-Ishaqi mosque in

Cairo24 (1479-81). Figure 25a illustrates the fundamental

domain (blue) that is rotated 4� to populate the square that

is then reflected 4� to produce a square repeat unit with

translation symmetry. This repeat has 16 fundamental

domains and, as with the previous examples, is not the

A CB

Fig. 24

22 Necipoğlu (1995), diagram no. 81a.
23 Schnieder (1980), pattern no. 297. 24 Bourgoin (1879), pl. 170.

168 2 Differentiation: Geometric Diversity and Design Classification

http://dx.doi.org/10.1007/978-1-4419-0217-7_3#Fig41
http://dx.doi.org/10.1007/978-1-4419-0217-7_3#Fig12


minimal repeat unit. Figure 25b illustrates the two perpen-

dicular hexagonal grids (green) that, together, are the dual

of the square and rhombus tessellation. The two elongated

perpendicular hexagons (brown) are the minimal repeat

units with translation symmetry, comprised of eight funda-

mental domains. This figure also illustrates the repetitive

shield element (orange) that requires alternating 90�

rotations to cover the plane. This pattern will also repeat

with the two perpendicularly orientated hexagonal grids cre-

ated from the diagonal lines applied to each oscillating square

(not shown). Figure 25c is a representation of the very suc-

cessful historical design based upon this repetitive geometric

schema. Figures 25d through f illustrate an interesting

oscillating square raised brick design from the western tomb

tower at Kharraqan in northwestern Iran (1093). This

incorporates squares, near-regular pentagons, and near-

regular triangles into the pattern matrix. Figure 25d illustrates

the oscillating squares located within the orthogonal repetitive

element. The fundamental domain (blue) requires rotation 4�
to populate each square cell, and this, in turn, is reflected 4�
to produce a square repeat unit with translation symmetry.

The included angles of the rhombi are 36� and 144�: equal-
ing 1/10 and 4/10 segments of the decagon. The applied

pattern lines include lines from the dual grid that bisect the

midpoints of the oscillating squares, as well as an arbitrary

network of pentagons, squares, and rhombi that complete the

design. While visually becoming, the aesthetics of this

design are atypical to this tradition. Figure 25e illustrates

both orientations of the identical elongated hexagonal repeat

unit. These are minimal repeat units with translation sym-

metry, and comprised of eight fundamental domains. This

figure also illustrates the repetitive shield element (orange)

that requires alternating 90� rotation to fill the plane. This is

comprised of just four fundamental domains. The alternative

hexagonal repeat unit produced from diagonal lines within

each oscillating square also works as a repeat unit with

translation symmetry (not shown). Figure 25f represents

the widened line expression of this design as per the histori-

cal example.

Although not known to the historical record, a variation of

oscillating square designs will make interesting patterns with

unique repetitive structures. Figure 26a demonstrates the

ability of two varieties of rhombus to tessellate together in a

similar manner as the squares and rhombi of oscillating

square configurations. In this variation, obtuse rhombi

replace the square modules, and acute rhombi are placed on

each of the edges of the obtuse rhombi such that they are in a

rotational pinwheel arrangement. This can be thought of as a

A CB
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skewed oscillating square tessellation, and the angular

proportions of both the rhombi in this particular example

are derived from sevenfold symmetry [Figs. 10a and

b]. The dual of this grid (green) creates an interesting tessel-

lation of irregular hexagons. Figure 26b illustrates how each

hexagonal repeat unit (red) contains the area of two obtuse

rhombi and two acute rhombi. Because of the skewed nature

of the rhombic tessellation, the hexagonal repeat does not

have reflection symmetry, and the fundamental domain

(blue) requires rotation�2 (point symmetry) to fill the repeat.

This changes the p4g plane symmetry group typical of

oscillating square patterns to p2: one of the least common

plane symmetry groups among Islamic geometric patterns.

Figure 26c shows how the repetitive grid for this rhombic

tessellation can also be orientated in a roughly perpendicular

direction. This is analogous to the perpendicular hexagonal

repeats of standard oscillating square designs. Figure 26d

applies a sevenfold geometric pattern to each of the two

varieties of rhombus in this unusual tessellation. The com-

bined use of two types of rhombus qualifies this as a hybrid

D

A CB

Fig. 26

170 2 Differentiation: Geometric Diversity and Design Classification



design (by author). Although examples of this variety of

hybrid design are unknown within the historical record, this

is a successful variation of traditional design methodology.

The pattern placed within the obtuse rhombi is from the ’Abd

al-Ghani al-Fakhri mosque in Cairo (1418) [Fig. 13a], and the

pattern within the acute rhombi is from the Bayezid Pasa

mosque in Amasya, Turkey (1414-19) [Fig. 13b].

Other historical examples of particularly fine oscillating

square designs include a Khwarizmshahid example from the

Zuzan madrasa in northeastern Iran (1219) [Fig. 103] [Pho-

tograph 39], and a remarkably complex Anatolian Seljuk

example from the Huang Hatun complex in Kayseri (1237)

created from the fourfold system A25 [Fig. 156]. As with the

above-mentioned oscillating square patterns from the

Mustansiriyah madrasa in Baghdad and the Malik mosque

in Kerman, the design from the Huang Hatun complex in

Kayseri is also represented in the Topkapi Scroll.26 Other

oscillating square patterns in the Topkapi Scroll include a

simple but affective design that incorporates floating squares

and rhombi in a matrix of four-pointed stars with swastika

centers27, and a design that is suitable for polychrome ablaq
inlaid stone that places swastikas inside the square elements

and utilizes rhombi with 45� and 135� included angles.28

While oscillating square patterns are essentially fourfold in

that they repeat upon a square grid, their distinctive arrange-

ment of local symmetries creates the topsy-turvy quality that

is a hallmark of this unusual category of Islamic geometric

design. It is worth noting that this same repetitive schema

can be used to create substantially more complex designs

than those found within the historical record. This category

of design requires the star or regular polygon at the center of

the square cell to have fourfold symmetry, and for a set of

four additional centers of local symmetry to be located upon

the edges of the square cell. These additional centers of local

symmetry are required to have bilateral symmetry so that

they mirror upon the square edges. This type of geometric

construction is relatively unexplored, and lends itself to

contemporary pattern making [Figs. 406–411].

Another historical method for introducing seemingly

incompatible symmetries into an orthogonal repetitive struc-

ture employs the placement of four quadrilateral kites

rotated around a central square. As with oscillating square

designs, the rotating kite motif is mirrored into adjacent

square cells, creating an overall reciprocating structure,

and like oscillating square designs, this closely related vari-

ety of Islamic geometric pattern is invariably of the p4g

plane symmetry group. This is a well-known ornamental

motif in its own right, but was occasionally used as a repeti-

tive stratagem for more complex designs. Figure 27a

demonstrates two simple methods of constructing a common

form of the rotating kite motif: one from a single square, and

the other from a 3� 3 grid of nine squares. In addition to the

two mirrored 90� included angles, these kites have acute

angles of 53.1301. . .� and obtuse angles of 126.8698. . .�.
Figure 27b shows the structural composition of the standard

rotating kite design, and examples with this proportion and

widened line thickness abound, including a Mughal high-

relief red sandstone panel at the Agra Fort (1550). Among

the earliest examples are several Ghurid raised brick panels

from the exterior of both the western (1167) and eastern (late

twelfth century) mausolea at Chisht in Afghanistan. These

have wider pattern lines, but are otherwise identical. The

fundamental domain (blue) is rotated 4� to create a square

that is then reflected 4� to create a square repeat unit with

translation symmetry. Figure 27c represents a Seljuk varia-

tion from the brickwork façade of the western tomb tower at

Kharraqan, Iran (1093). This utilizes the same fundamental

domain (not shown). As with oscillating square designs, the

included angles of the kites can be adjusted for specific

proportions and symmetries. The proportions of these two

examples are the most commonly found within the historical

record, and are characterized by the length of the square

elements being equal to the short edges of each kite. Figure

28 illustrates two rotating kite patterns that utilize a kite and

square tessellation with 60� and 120� included angles

accompanying the two obligatory 90� angles. Rather than

being used as the design itself, these two examples make use

of this repetitive schema to construct a far more elaborate

design. Just as the included angles of the rhombic elements

in oscillating square patterns can be adjusted to conform to

n-fold symmetry, the acute and obtuse angles of the kites in

rotating kite designs can also be adjusted to accommodate

local symmetries that are ordinarily incompatible with

orthogonal patterns. While the 90� included angles of the

kite are invariable, the n-fold symmetry of the kite’s acute
and obtuse included angles is required to be even numbered,

thus imposing fourfold reflective symmetry on the pattern

elements centered upon the vertices of each kite’s acute and
obtuse included angles. This includes n-fold symmetries that

are not divisible by 4, such as 6 and 10. Figure 28a is from a

stone jali screen at the Taj Mahal in India (1632-48). The 60�

and 120� included angles of each kite provide the sixfold

local symmetry at each vertex of the orthogonal grid. This

allows for six-pointed stars to be located at each vertex of the

kite’s acute and obtuse angles, and the orientation of these

stars is rotated by 90� from alternating vertices. The design

in Fig. 28b is from the Topkapi Scroll.29 This employs the25 Schneider (1980), pattern no. 330.
26 Necipoğlu (1995), diagram no. 61.
27 Necipoğlu (1995), diagram no. 41.
28 Necipoğlu (1995), diagram no. 69b. 29 Necipoğlu (1995), diagram no. 59.
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same repetitive schema, and is also characterized by an

alternating distribution of six-pointed stars. The fundamental

domain for each of these designs (blue) is rotated 4�
followed by reflection 4� to fill the square repeat with

translation symmetry. Figure 29 illustrates a design based

upon the repetitive structure of rotating kites that has

ten-pointed stars placed at the vertices of the orthogonal

grid, and four-pointed stars within the square elements of

the tessellation. This unusual pattern is also from the

Topkapi Scroll.30 Figure 29a indicates the 72� and 108�

included angles of the kites that correspond to tenfold sym-

metry. Each of the lines emanating from the square elements

are slightly kinked so that they are not collinear, with

6.7783. . .� off 180�, providing each kite with six sides rather
than four. While somewhat forced, this allows for the tenfold

symmetry of the acute and obtuse angles to combine with a

large fourfold center within each square cell, which in turn

produces a four-pointed star that is balanced with the other

elements within the pattern matrix. This example is testa-

ment to the flexible methodological practices employed by

artists engaged in this tradition. Figure 29b shows the design

from the Topkapi Scroll along with its repetitive schema. As

with the six-pointed stars from the previous example, the

ten-pointed stars are placed in 90� alternating orientation at

the vertices of the orthogonal grid. As with other examples

of this variety of pattern, the fundamental domain for this

design (blue) rotates 4� followed by reflection 4� to fill the

square repeat with translation symmetry.

2.3 Classification by Numeric Quality

Another means of classifying Islamic geometric patterns

takes into account their prevalent numeric qualities. Because

of the variables within this design tradition, this type of

classification requires descriptive text rather than a singular

nomenclature. When categorizing geometric patterns from

this perspective, the numbers of points found in the charac-

teristic star forms with n-fold rotation symmetry are particu-

larly significant. The least complex and easiest to describe

are those patterns with only a single variety of primary star;

for example, the classic star-and-cross pattern that can be

described as a fourfold pattern, with point-to-point eight-
pointed stars that repeat upon an orthogonal grid: or more

concisely, 8s on squares [Fig. 3]. As patterns become more

complex, the identification of their numeric qualities

becomes a useful tool for differentiating the particular

attributes of a given design, as well as qualifying the scope

and potential within this tradition overall. In addition to star

forms, many patterns will incorporate regular polygons as

key elements of the design that are located at the vertices of

the primary grid or its dual. In abbreviating the numeric

description of a given design that includes such polygons it

is useful to follow the nomenclature of Gerd Schneider31 by

using Roman numerals for distinguishing these primary reg-

ular polygons. This is especially helpful in differentiating

between regular polygonal features and stars with n-fold

A B

72° 108°

Fig. 29

30 Necipoğlu (1995), diagram no. 72c. 31 Schneider (1980).
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symmetry. Figure 30 illustrates a widely utilized fourfold

design comprised of eight-pointed stars and regular

octagons. Describing this pattern as having fourfold symme-
try, with eight-pointed stars placed at the vertices of the

orthogonal grid and octagons upon the vertices of the dual
grid, or simply 8s on squares/VIIIs at center, does not

uniquely apply to this pattern alone, but identifies it within

a category into which only a select number of other patterns

fall [Figs. 173a, 175a, 176b, 177a, 177c, etc.]. Figure 31

illustrates a fourfold design that repeats on a rhombic grid

(red) with 45� and 135� angles. This was used in several

locations historically, including: the Lower Maqam Ibrahim

in the citadel of Aleppo, Syria; and the Izzeddin Kaykavus

hospital and mausoleum in Sivas, Turkey (1217). This

design places eight-pointed stars on the vertices of a rhombic

grid, and octagons upon the vertices of the hexagonal dual

grid (green): or 8s on rhombic vertices/VIIIs on hexagonal

dual vertices [Fig. 181]. This example also illustrates how

the duals of rhombic grids are always hexagonal grids.

Not all Islamic geometric patterns employ star motifs.

Some are composed of a repetitive field of polygonal forms.

Such field patterns are most commonly made up of either

threefold or fourfold symmetry, although fivefold field

patterns are also well known, and especially appealing.

Figure 32 shows a well-known threefold pattern comprised

of two sizes of hexagons, the larger placed at the vertices of

the isometric grid and the smaller upon the vertices of the

hexagonal dual grid: or VIs on triangle/smaller VIs at center

[Fig. 96d]. Figure 33 illustrates a fourfold field pattern

comprised of two sets of differently sized octagons, one set

placed upon the vertices of the orthogonal grid, and the other

on the vertices of the orthogonal dual grid: or simply, VIIIs

Fig. 30

Fig. 31

Fig. 32
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on square/smaller VIIIs at center. This was used in

the celebrated Baghdad Quran (1001) produced by Ibn

al-Bawwab [Photograph 6] [Figs. 127c and 128d]. Figure

34 illustrates a fivefold field pattern from the Great Mosque

at Malatya (1237-38). This design can be described as a

matrix of regular pentagons, concave octagonal shields,

kites, and decagonal hourglass figures that will repeat upon

several alternative grids with translation symmetry. These

include a rectangular grid (red); the rectangular dual of this

grid (green), both with eight fundamental domains; and a

grid of hexagonal repeat units (brown) made up of just four

fundamental domains (blue). The lack of higher order

polygons or stars at the vertices of the different repetitive

cells makes it more difficult to ascribe an abbreviated

description with the tools discussed thus far. To populate

the rectangular repeat units, the fundamental domains are

rotated 2� and then reflected 4�, and to fill the hexagonal

repeat unit the fundamental domain is simply reflected 4�.

The plane symmetry group is cmm. The lack of stellar

centers and the similarity in size of the polygonal elements

give this example a pleasing homogeneous aesthetic that is a

common quality of fivefold field patterns [Fig. 220].

As discussed previously, there is a direct corollary

between the n-fold rotational symmetry at the vertices of a

repetitive grid and the numeric quality of geometric star

patterns. With threefold patterns, the vertices of the isomet-

ric grid support the application of stars with n-fold rotational

symmetry that are multiples of 6. The vertices of the hexag-

onal dual grid similarly support stars whose points are

multiples of 3. The simplest threefold star patterns employ

six-pointed stars; and more complex designs will have

higher numbered stars, such as 9, 12, and 15. The most

Fig. 33

Fig. 34

Fig. 35
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common of the more complex threefold designs employ

12-pointed stars placed at the vertices of the isometric grid.

Figure 35 is just such a design, and can be concisely

described simply as 12s on triangle, for which it is one

among many designs that fit this simple description

[Figs. 300, 320, 321, etc.]. This example was used above

the entrance to the tomb of Umar al-Suhrawardi in Baghdad

(1234) [Fig. 300a, two-point]. Figure 36 shows a similar

design [Fig. 321j], but with a curvilinear treatment. This is

from a Turkish miniature (1558) painted during the reign of

Süleyman the Magnificent.32 This is a threefold curvilinear

pattern, with 12-pointed stars at the vertices of the isometric

grid: or simply curvilinear 12s on triangle. While less fre-

quently used, patterns with nine-pointed stars at their repeti-

tive vertices are particularly interesting. Figure 4 is an

example of this type of pattern from the Great Mosque at

Malatya (1237-38) comprised of threefold symmetry, with

nine-pointed stars at the vertices of a rhombic grid: or simply

9s on rhombus [Fig. 311]. As mentioned, threefold patterns

with n-pointed stars that are higher multiples of 6 and 3 were

also widely used. Figure 37 shows an exquisite design with

24-pointed stars in the vertices of the isometric grid and

7-pointed stars within the field: or 24s on triangle/7s in

field. This pattern was executed in the carved stone relief

of the portal at the Nalinci Baba tomb and madrasa in

Konya, Turkey (1255-65), and in the cut-tile mosaic mihrab
niche at the Esrefoglu Süleyman Bey mosque in Beysehir,

Turkey (1296-97) [Fig. 327] [Photograph 44].

Numeric description becomes especially relevant when

differentiating patterns with more than a single region of

local symmetry. Figure 38 is a classic threefold compound

pattern used throughout the Islamic world that uses

12-pointed stars set upon the vertices of the isometric grid,

and 9-pointed stars at the vertices of the hexagonal dual grid:

or 12s on triangle/9s at center [Fig. 346a]. Figure 39

illustrates a more complex threefold compound pattern

from a carved stone lintel at the Qartawiyya madrasa in

Tripoli, Lebanon (1316-26). This pattern has 12-pointed

stars at the vertices of the isometric grid and 15-pointed

stars at the vertices of the hexagonal dual grid: or simply,

12s on triangle/15s at center [Fig. 355d].

Similar to threefold designs, the application of stars to the

vertices of the orthogonal grid, as well as to the center of

each square repeat unit, will invariably exhibit n-fold

Fig. 36

Fig. 37

32 Süleymanname: Presentations of gifts to S€uleyman the Magnificent
on the occasion of the circumcision of his sons Bayezid and Cihangir in
1530 by Ali b. Amir beg Sirvani. Topkapi Museum, Istanbul TKS

H. 1517. See: Rogers and Ward (1988), 45c (f. 360a).
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rotational symmetry that is a multiple of 4. In this way,

patterns with 8-, 12-, and 16-pointed stars are very common,

and higher order stars, such as those with 24 points, are not

unusual. Figure 40 is an illustration of a fourfold pattern that

was used throughout the Islamic world and is made up of

12-pointed stars placed at the corners of a square repeat unit

with a 4-pointed star placed at the center of the repeat: or

simply, 12s on square/4s at center [Fig. 113a]. Figure 41

illustrates an orthogonal design with 16-pointed stars at the

vertices of the orthogonal grid with octagons at the vertices of

the dual grid: or 16s on square/VIIIs at center. This fine design

was used to illuminate a Mamluk Quran commissioned by

Sultan Sha’ban in Cairo33 (1369) [Fig. 344d].

Many of the more complex fourfold geometric patterns

will incorporate higher order star forms at the vertices of

both the orthogonal grid and its orthogonal dual: each

constrained by the same multiple-of-four numeric mandate.

Figure 42 shows a variant of a compound pattern with

12-pointed stars at the vertices, and 8-pointed stars at the

center points: or just 12s on square/8s at center. This partic-

ular version of this well-known design is located at the Kale

mosque in Divrigi (1180-81) [Fig. 379b]. Figure 43 is a

fourfold compound pattern with 16-pointed stars at the ver-

tices and 8-pointed stars in the centers: or 16s on square/8s at

center. This example was used in the Quran of Uljaytu34

Fig. 38

Fig. 39

Fig. 40

33 Cairo, National Library, 7, ff. IV-2r.
34 This Ilkhanid Quran is in the National Library in Cairo: 72, pt.19.
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(1313), written and illuminated by ’Abd Allah ibn

Muhammad al-Hamadani [Fig. 389a]. Figure 44 shows a

considerably more complex fourfold compound pattern

with 16-pointed stars at the vertices of the orthogonal grid

and 12-pointed stars at the vertices of the dual grid: or 16s on

square/12s at center. This beautiful pattern was used on the

minaret of the Mughulbay Taz mosque in Cairo (1466)

[Fig. 396b]. Figure 45 shows a fourfold design with

20-pointed stars at the vertices of the orthogonal grid, and

8-pointed stars in the center of each square repeat unit: or

20s on square/8s at center. However, it is relevant to further

note that the eight-pointed star at the center of the repeat unit

is an arbitrary feature. This exceptional Sa’did pattern is

from the Badi’ Palace in Marrakesh, Morocco (1578-

1594). These examples are but a few of the vast number of

fourfold designs with two primary regions of local symmetry

employed frequently within the tradition of Islamic geomet-

ric patterns. It is worth noting that both of the previous

examples employ seven-pointed stars within their pattern

matrix, but these have not been included in categorizing

according to their primary stars. This is due to the fact that

in both cases the seven-pointed stars are not regular, are not

placed upon nodal centers, and are, therefore, not primary

star forms.

Fig. 41

Fig. 42

Fig. 43

Fig. 44
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Historically, star patterns with fivefold symmetry are

typically limited to a single variety of primary star: ten-

pointed. Because these patterns are derived from the fivefold
system they are limited by the polygonal modules that com-

prise this system, including the decagon as the generative

module for the ten-pointed stars. Occasionally, 20-pointed

stars were incorporated into patterns created from this sys-

tem: creating fivefold designs with two varieties of primary

star. Figure 46 is a very successful design that places

20-pointed stars at the vertices of a rectangular grid,

20-pointed stars at the vertices of the rectangular dual grid,

and a network of 10-pointed stars upon the repetitive edges

and within the field of the design: or more concisely, 20s on

rectangle/20 at center/10s on edges/10s in field

[Fig. 268]. As with many, but not all, patterns that repeat

with a rectangular grid and have the same star at the center of

the repeat as at the vertices, the pattern within the repeat is

exactly the same as that of the dual. This feature can be

described as self-dualing. This outstanding fivefold pattern

was employed in the ornament of the Bu ’Inaniyya madrasa
in Fez (1350-55). Figure 13a illustrates a Mamluk pattern

from the ’Abd al-Ghani al-Fakhri in Cairo (1418) that is

created from the sevenfold system, and characterized by

two varieties of primary star: the 14-pointed stars located

on the vertices of the rhombic grid, and the 7-pointed stars

placed upon the vertices of the hexagonal dual grid. This can

be abbreviated as 14s on rhombus/7s on hexagonal dual

[Fig. 292a].

Among nonsystematic designs with two varieties of pri-

mary star are those that are neither threefold nor fourfold,

and utilize other repetitive structures such as rectangular

grids and irregular hexagonal grids. Figure 16 shows a

design from the Great Mosque of Aksaray in Turkey

(1150-53) that has 12-pointed stars at the vertices of its

rectangular grid and 10-pointed stars at the vertices of the

rectangular dual grid: or simply, 12s on rectangle/10s at

center [Fig. 414]. Figure 47 shows one of the more geomet-

rically complex nonsystematic designs from the Topkapi

Scroll.35 This repeats with equal efficiency upon either the

irregular hexagonal grid with 11-fold proportional angles at

the vertices (red), or the perpendicular irregular hexagonal

dual grid with 9-fold proportional angles at the vertices

(green). This allows for the placement of 11-pointed stars

at the vertices of the former irregular hexagonal grid, and

9-pointed stars at the vertices of the latter irregular hexago-

nal dual grid: or 11s on hexagons/9s on dual hexagons

[Fig. 431]. Figure 18 is a conceptually similar design from

the Mu’mine Khatun in Nakhichevan, Azerbaijan (1186),

with 13- and 11-pointed stars at the vertices of the dualing

hexagonal grids: or 13s on hexagons/11s on dual hexagons

[Fig. 434].

Triangles and squares as repeat units also support consid-

erably more complex compound patterns with three or more

regions of local symmetry. These will often have unusual,

and seemingly irreconcilable, combinations of star forms. As

with less complex compound patterns, these will place

appropriately numbered n-pointed stars at the vertices of

Fig. 45

Fig. 46

35 Necipoğlu (1995), diagram no. 42.
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both the repetitive grid and its dual. However, these more

complex compound patterns are fixed upon these locations

by placing added primary stars with regular n-fold rotation

symmetry upon the edges of the repeat unit and/or along the

bisecting radii of the repeat unit. The number of points for

the stars at these secondary locations is less constrained by

predetermined local symmetries, often resulting in star

forms with unexpected numeric qualities. Figure 48 shows

a threefold design from the Karatay Han near Kayseri, Tur-

key (1235-41) that has 12-pointed stars at the vertices of the

triangular repeat unit, 9-pointed stars at the center of the

repeat, 10-pointed stars at the midpoint of each edge of the

repeat, and 11-pointed stars upon the bisecting radii of each

corner of the repeat unit. This can be described more con-

cisely as 12s on triangle/9s at center/10s on edge/11s on

bisecting radii (not shown) [Fig. 367]. The stars that are

located at the midpoints of the repetitive edges of such

patterns are required to be even numbered, such as the

ten-pointed stars in this example, while those located upon

the bisecting radii can be either even or odd numbered.

Figure 49 shows an orthogonal design from the Agzikarahan

near Aksaray, Turkey (1231), that places 12-pointed stars at

the vertices of the square repeat unit, an octagon at the center

of the repeat, 10-pointed stars at the midpoints of the edges

of the repeat, and 9-pointed stars along the bisecting

diagonals of the repeat unit. This can be described more

briefly as 12s on square/VIII at center/10s on edges/9s on

diagonals [Fig. 400]. Figure 50 illustrates a design with three

varieties of higher order star that repeats upon a rectangular

grid of unusually long proportions. This was reportedly used

at the Lower Maqam Ibrahim in the citadel of Aleppo36

(1168). This highly complex nonsystematic pattern places

12-pointed stars at the vertices of the rectangular repeat unit

Fig. 47 Fig. 48

36 The wooden panel described and drawn by Herzfeld is no longer

present at the Lower Maqam Ibrahim, and its current location is

unknown. Herzfeld (1954-56), Fig. 56.
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(red), 10-pointed stars at the midpoints of each long edge of

the repeat, and two 11-pointed stars within the field of the

pattern matrix, or 12s on rectangle/10s on long edges/11s in

field [Fig. 427]. The plane symmetry group of this design is

pmm, and the fundamental domain (blue) is a rectangle that

is reflected 4� to fill the repeat unit.

Designs that use repetitive stratagems that allow n-

pointed stars, with an otherwise incompatible number of

points, to be placed at the vertices of the orthogonal grid

can also be categorized according to their numeric qualities.

As discussed earlier, oscillating square patterns and rotating

kite designs will occasionally have local symmetries such as

6-, 7-, 8-, 10-, and 12-fold. The design in Fig. 23d through

f is an oscillating square pattern with 12-pointed stars at

vertices of the square and rhombus tessellation, and

8-pointed stars at the center of each square element. How-

ever, from the perspective of the overall orthogonal repeat,

this design places 12-pointed stars upon each edge of the

square repeat and 8-pointed stars at the centers: or 12s on

square edges/8s at centers. Other historical oscillating square

and rotating kite designs can be described in a similar fash-

ion: the design in Fig. 23g through i can be described as

irregular 7s on square edges/IVs on centers; Fig. 24 as VIIIs

at centers; Fig. 25c as 7s on square edges/VIIIs at centers;

Fig. 28a as alternating 6s on squares/IVs at center; Fig. 28b

as alternating 6s on squares; and Fig. 29 as alternating 10s on

square/4s at center.

Another category of design that elegantly utilizes local

symmetries that are ordinarily incompatible with the repeti-

tive structure is imposed symmetry designs. These do not

have oscillating characteristics, but achieve their inclusion

of otherwise atypical regular polygons or stars by (1) only

using forms that have two perpendicular lines of reflected

symmetry, and (2) placing the imposed stars or polygons

upon the edges of the repeat unit rather than the vertices.

Figure 51 illustrates three related imposed symmetry designs

that introduce octagons into an isometric structure: each

octagon being placed at the midpoint of each repetitive

triangular edge. Figure 51a shows a design from the Çifte

Minare madrasa in Erzurum, Turkey (late thirteenth cen-

tury), and is comprised exclusively of superimposed

octagons. The size and distribution of the octagons are

determined by the constraints of the underlying 3.4.6.4 gen-

erative grid [Fig. 107a]. The included angles of the octagons

produce the ditrigonal hexagons at the centers of each trian-

gular repeat. Figure 51b shows a design from the Cincikh

mosque in Aksaray, Turkey (1220-30). This maintains the

identical octagonal structure as in Fig. 51a, but with the

addition of hexagons into the superimposed polygonal

design matrix [Fig. 107b]. Figure 51c shows a design from

Fig. 49

Fig. 50
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the mausoleum of Yusuf ibn Kathir in Nakhichevan,

Azerbaijan (1161-62). This also maintains the same octago-

nal structure, but includes the 3.6.3.6 tessellation of triangles

and hexagons into the design matrix. In this case, the

octagons are located at the vertices of the 3.6.3.6 tessella-

tion. As such, this tessellation can be regarded as equally

generative of the overall design as the 3.4.6.4 tessellation.

Figure 52 represents two orthogonal imposed symmetry

designs that are generated from the deployment of

six-pointed stars upon the midpoints of each square repeat

unit. Figure 52a shows a design from the original portal of

the Palace of Malik al-Zahir at the citadel of Aleppo (before

1193). The parallel lines of the six-pointed stars extend

outward to create a four-pointed star at the center of the

square repeat, an irregular octagon centered upon the corners

of the repeat, and the small square at the corners of the repeat

unit: IVs on square/6s on edge/4s at center. Figure 52b

shows a design from the mausoleum of Yusuf ibn Kathir in

Nakhichevan (1161-62) that is similarly produced from the

extension of the parallel lines of the identically placed

six-pointed stars. However, the smaller size of these stars

provides for the inclusion of a hexagon that bounds each

six-pointed star. The corners of this hexagon, together with

the extended lines of the six-pointed stars, create an irregular

eight-pointed star at the center of each repeat unit, or IVs on

square/6s on edge/irregular 8s at center.

B CA

Fig. 51

A B

Fig. 52
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2.4 Classification by Plane Symmetry Group

In the late nineteenth century, scientists working in the field

of crystallography determined that there are just 17 symmet-

rical conditions by which the plane can be periodically tiled.

The two-dimensional periodic space filling characteristics of

Islamic geometric patterns are, ipso facto, governed by the

constraints of these 17 plane symmetry groups. As such, the

inherent symmetry of all two-dimensional Islamic geometric

patterns conforms to an imposition of a fundamental domain

to the singular or combined isometric forces of translation,

rotation, reflection, and glide reflection. This is not to sug-

gest that artists knowingly applied these four isometric

functions to pre-identified fundamental domains as part

of their generative methodology. Rather, these are inherent

geometric features that govern all periodic two-dimensional

space filling and are, therefore, more relevant to the geomet-

ric analysis of these patterns than to questions of design

methodology and historicity.

The crystallographic discoveries advanced by pioneering

scientists including Yevgraf Fyodorov, Arthur Sch€onflies,

William Barlow, and later George Pólya37 were soon to

find artistic expression. George Pólya is particularly relevant

for his pronounced influence on Maurits Cornelis Escher.38

Escher traveled twice to the Alhambra in Spain and was

heavily influenced by the geometric designs there, recording

many patterns in his workbooks. The same year of his first

visit to the Alhambra (1924) he was sent a copy of Pólya’s
publication that included line drawings of repetitive patterns

in each of the 17 plane symmetry groups, some of which

were derived from Muslim architectural sources. Pólya and

especially Escher appear to be the first individuals to exam-

ine Islamic geometric designs from the perspective of their

crystallographic group. Later ethnomathematical studies of

Islamic geometric design focused more specifically upon

their crystallographic characteristics,39 and historical

examples of all 17 plane symmetry groups have been

identified. The works of Syed Jan Abas and Amer Shaker

Salman,40 as well as Emil Makovicky,41 are particularly

significant to this study.

Figure 53 shows a flowchart that identifies the four iso-

metric conditions of rotation, reflection, glide reflection, and

translation for each of the 17 plane symmetry groups,42 and

from which existing designs can be analyzed to readily

identify their specific symmetry group. Figure 54 represents

a geometric design from each of the plane symmetry groups

with 120� rotational centers and/or 60� rotational centers.

The p3 symmetry group has three types of 120� rotation

center (threefold), and is without reflections or glide

reflections. Islamic geometric patterns that conform to this

group are uncommon (the example shown is the author’s
creation). The p31m symmetry group has three types of 120�

rotation center (threefold), and three directions of reflection.

The lines of reflection form the isometric grid (red) and two

of the points of rotation are located at the center of each

triangular cell, while the third is located at each vertex of this

grid. This structure also has three directions of glide reflec-

tion with lines that are parallel to and located in the middle

of adjacent parallel lines of reflection. The design

representing this symmetry group is a design that is easily

created from the 63 underlying tessellation. The p3m1 sym-

metry group has three types of 120� rotation center (three-

fold) and three directions of reflection that comprise the

isometric grid. Each point of rotation is located at a vertex

of this grid. This structure has three directions of glide

reflection that are identical to the previous group. Mughal

artists frequently used the design representing this symmetry

group in the production of jali screens. The additive three-

fold lines at the center of each six-pointed star provide the

stone screen with greater uniformity in the size of the

openings, as well as greater structural integrity, an important

consideration in this pierced stone medium. This additive

device also changes the plane symmetry group of the well-

known pattern of superimposed dodecagons from p6m to

p3m1. The p6 symmetry group has one variety of 60� rota-
tion center (sixfold), and two types of 120� rotation center

(threefold), and a single 180˚ rotation center. There are no

reflections or glide reflections. The design that represents

37 –Fedorov (1891), 345–291.

–Sch€onflies (1891).
–Barlow (1894), 1–63.

–Pólya (1924), 278–298.
38 Schattschneider (1990).
39 –Müller (1944).
–Bixler (1980).

–Lalvani (1982).

–Grünbaum, Grünbaum, and Sheppard (1986), 641–653.

–Mamedov (1986), 511–529.

–Pérez-Gómez (1987), 133–137.

–Lalvani (1989).

–Chorbachi (1989), 751–789.

–Abas and Salman (1995).

–Lovric (2003), 423–432.

40 Abas and Salman (1995).
41 –Makovicky and Makovicky (1977), 58–68.

–Makovicky (1989), 955–999.

–Makovicky (1994), 1–16.

–Makovicky (1995), 1–6.

–Makovicky (1997), 1–40.

–Makovicky (1998), 107–127.

–Makovicky (1999), 143–183.
42 This flowchart replicates that of Donald Crowe, Department of

Mathematics, University of Wisconsin-Madison, and is included in

his book on symmetry in cultural artifacts: See Washburn and

Crowe (1988).
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this symmetry was used widely throughout Muslim cultures,

and one of the earliest examples is from the brickwork

ornament of the western tomb tower at Kharraqan, Iran

(1093). The p6m symmetry group has one variety of 60�

rotation center (sixfold), two types of 120� rotation center

(threefold), which are perpendicularly orientated; and three

types of 180� rotation center. This group has six directions of
reflection, and six directions of glide reflection (not shown)

that are parallel with, and centered between, the lines of

reflection. The example shown is one of the most common

threefold geometric patterns. Figure 55 represents a geomet-

ric design from each of the plane symmetry groups with 180�

rotational centers and/or 90� rotational centers. The p2 sym-

metry group has four types of 180� rotation center, with no

reflections or glide reflections. Islamic geometric patterns

structured on this symmetry group are unusual. Among the

more interesting examples are a variety of square Kufi calli-

graphic designs, in this case with a simple Allah motif (the

example shown is the author’s creation). The pgg symmetry

group has two types of 180� rotation center, with two glide

reflections in perpendicular directions. There is no reflection

symmetry. The example shown is a well-known key pattern

with swastikas in glide reflection. The pmg symmetry group

has two types of 180� rotation center, with parallel lines of

reflection in just one direction. It also has glide reflections

that are perpendicular to the lines of reflection, and the

rotation centers are located on the lines of glide reflection.

Islamic geometric designs with this symmetry group are

ordinarily very simple. The example shown is from the

Khwaja Atabek mausoleum in Kerman (1100-1150) and is

pggp2 pmg

cmmpmm

p4gp4 p4m

Fig. 55
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one of the more complex historical designs with this crystal-

lographic structure. The pmm symmetry group has four types

of 180� rotation center, each located at a vertex of the

perpendicular lines of reflection. There are no glide

reflections. The example shown is ubiquitous throughout

the Islamic world. The cmm symmetry group has four

types of 180� rotation center: two located on the vertices of

the perpendicular lines of reflection, and two that are not

located on lines of reflection. The example shown is a very

common fivefold obtuse pattern that repeats upon a rhombic

grid. The p4 symmetry group has two types of 90� rotation
center, and two types of 180� rotation center (twofold).

There are no lines of reflection or glide reflection. The

example shown is well known from the historical record.

The p4g symmetry group has two types of 90� rotation

center (fourfold), and two types of 180� rotation center

(twofold). The 90� rotation centers are not located on lines

of reflection, while the 180� rotation centers are located on

the vertices of the orthogonal lines of reflection. There are

diagonally oriented glide reflections that run halfway

between the vertices of the lines of reflection (not shown).

This design was used in numerous locations historically.

The p4m symmetry group has two types of 90� rotation

center (fourfold), two types of 180� rotation center (two-

fold), and four directions of reflection. All rotation centers

are located at the vertices of the lines of reflection. This

design is from a frontispiece from a Quran produced in

1001 by ibn al-Bawwab (d.1022). Figure 56 represents a

geometric design from each of the plane symmetry groups

with no rotation symmetry. The p1 symmetry group relies

solely upon translation symmetry, with no rotations,

reflections, or glide reflections. Islamic geometric patterns

based upon this group are very rare, and the example shown

(by author) avoids reflection symmetry by the introduction

of chirality with the interweaving lines. The pg symmetry

group is defined by glide reflection only, with no rotation or

reflection. This variety of pattern is also very rare in Islamic

geometric design, and the illustrated example (by author) is a

rather complex design that is otherwise indicative of the

early brickwork ornament of Khurasan. The pm symmetry

group only has parallel lines of reflection, with no rotation or

glide reflection. This design places an additive pentagonal

device within the otherwise central ten-pointed stars. With-

out this added fivefold device there would be the additional

pgp1

pm cm

Fig. 56

186 2 Differentiation: Geometric Diversity and Design Classification



lines of reflection and points of rotation of the pmm symme-

try group. The cm symmetry group has parallel lines of

reflection and parallel lines of glide reflection located half-

way between the reflections. There are no points of rotation.

Islamic ornament in this group is predominantly floral, such

as certain ogee designs. The classic geometric patterns of

Muslim cultures do not ordinarily conform to this symmetry

group, although decent designs are possible (example shown

by author).

It is beyond the scope of this work to quantify the distri-

bution of historical geometric designs within a given Muslim

culture, let alone the totality of Islamic art, according to their

plane symmetry group. However, without question, certain

isometric transformations occurred with greater frequency

within this tradition, while others are less common or very

rare. According to Abas and Salman, the p6m and p4m

symmetries are the most widely distributed; the cmm, pmm,

and p6 are also significantly represented; the p4, p31m, pm,
and p3m1 are significantly fewer; and the p4g, p3, cm, p2,

pgg, pmg, p1, and pg are very rare.43 The question of why

certain symmetry groups were favored over others appears

to have more to do with methodological practices than

aesthetic predilections. The vast majority of Islamic geomet-

ric patterns are readily created from the polygonal technique

wherein a tessellation of diverse edge-to-edge polygons is

used to extract the design. The symmetry group of an under-

lying generative tessellation directly determines the symme-

try group of the extracted pattern. This is not to say that the

two are always identical, especially when additive design

features alter or cancel the rotation and reflection, or lines of

reflection are annulled through the introduction of chirality

with interweaving lines. Creating successful polygonal

tessellations that are well suited to extracting patterns that

conform to the aesthetic standards of this tradition typically

involves the placement of higher order primary polygons at

strategic locations of the repetitive grid. These invariably

have n-fold rotation symmetry and their placement at the

vertices, centers, and edges of the repeat unit insures com-

pliance with those symmetry groups that are similarly

structured, and is generally less suited to symmetry groups

without rotation or reflection. Field patterns created from the

polygonal technique eschew regions of local symmetry cre-

ated from higher order polygons affiliated with strategic

locations within the repeat. This lack of affiliation occasion-

ally allows field patterns to be structured upon symmetry

groups that are less common to this tradition. Islamic

geometric designs that are not created from the polygonal

technique will also occasionally employ these less com-

monly used symmetry groups. These can include key

patterns, designs with swastika motifs, and square Kufi

brickwork designs.

2.5 Classification by Design Methodology

2.5.1 The Polygonal Technique

The aesthetic character of a given geometric design is

greatly determined by the method used in its creation. Gen-

erative methodology is therefore an important criterion for

better understanding of Islamic geometric patterns. Some of

the less complex geometric patterns are able to be produced

from more than a single generative methodology, and it is

not always possible to ascertain with certainty which was

used in the creation of a particular historical example. As

stated previously, surviving evidence indicates that the most

widely used and, therefore, historically relevant design

methodology was the polygonal technique, wherein strategic

points of a polygonal tessellation, such as the midpoints of

each polygonal edge, are used to locate pattern lines, after

which the tessellation is discarded, leaving behind the

completed design. Depending on the angles of the applied

pattern lines, multiple designs can be created from a single

underlying tessellation. Insofar as Islamic geometric patterns

are concerned, no other design methodology provides the

level of flexibility and consequent design diversity, and

other approaches used over the centuries are of significantly

less importance to this overall tradition.

It appears that the artists responsible for the development

and furtherance of Islamic geometric patterns were discrim-

inating in their need to balance generational transferral with

protection of the highly specialized design practices required

of this art form. There are no known historical sources that

speak to the methodological secrecy employed by

individuals, ateliers, and artists’ guilds employed in the

geometric arts. One must assume that the ongoing develop-

ment of geometric design flourished under the same sort of

protectionist control as other arts reliant upon patronage for

their survival. This might explain the paucity of geometric

artists’ reference scrolls (tumar) and design manuals cur-

rently known to art historians. Of the few such documents,

one is particularly significant in that it is very likely the

earliest depiction of a geometric pattern accompanied by

its underlying generative polygonal tessellation. Figure 57

illustrates a design created from one of the many figures

contained in the anonymous Persian language treatise titled

On Similar and Complementary Interlocking Figures in the

43 The methodology behind the gathering of the data points for this

statistical analysis of the distribution of the 17 symmetry groups within

the tradition of Islamic geometric patterns is not provided in this study.

See Abas and Salman (1995), 138.
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Bibliothèque Nationale de France in Paris.44 This pattern is

all the more remarkable in that its only known architectural

use is from one of the blind arches in the Seljuk northeast

dome chamber of the Friday Mosque in Isfahan45 (1088-89)

[Photograph 26]. Figure 57a represents the manuscript’s
depiction of the polygonal tessellation comprised of two

types of irregular hexagon, as well as the generated acute

pattern whose intersecting lines rest upon the midpoints of

each polygonal edge: the classic formulation of the polygonal

technique. Figure 57b illustrates the pattern on its own. This

heptagonal design is all the more interesting in that it is the

earliest known example of a design created from the sevenfold
system of pattern generation, and its use in Isfahan precedes

later extant examples created from this system by 100 years.

One of the remarkable features of On Similar and Comple-
mentary Interlocking Figures are the written instructions that

accompany most of the illustrations, and the step-by-step

instructions that accompany this figure are revealing in that

they provide instructions for the creation of the polygonal

tessellation, but not the pattern that this tessellation creates.

The absence of secondary instructions for the application of

the pattern lines onto the tessellation may indicate that this

process was a given: sufficiently understood so as not to

warrant further instruction. The many illustrations and

instructions for geometric patterns in this anonymous manu-

script are better known as one of the very few historical

sources of evidence for what is herein referred to as the

point-joining methodology. The historical relevance of this

aspect of the manuscript is examined below; but the inclusion

of this one representation of the polygonal technique is sig-

nificant for four reasons: (1) it is one of the earliest known

examples of a pattern accompanied by its underlying genera-

tive tessellation; (2) it includes written instructions for creat-

ing the generative tessellation; (3) it is one of the earliest

examples of a pattern created from the sevenfold system of

pattern generation; and (4) it is one of the very few historical

documents that overtly demonstrates the polygonal technique.

On its own, the example of the polygonal technique from

the anonymous manuscript might be regarded as merely an

interesting anomaly. However, in association with the many

additional examples from diverse media, wide-ranging

regions, and over prolonged periods of time, the validity of

the polygonal technique as the preeminent historical meth-

odology used in creating Islamic geometric patterns

becomes unassailable. The earliest architectural examples

include numerous patterns that maintain the generative tes-

sellation as part of the completed design. Even during the

eleventh and twelfth centuries when this ornamental tradi-

tion was in the process of rapid development, it was far more

common for the generative tessellations to be discarded after

completion of the design process. However, some early

examples of patterns created from the system of regular
polygons include the generative tessellation within the

completed design. The least complex of these are based

upon the 63 tessellation of regular hexagons, and include a

Qarakhanid two-point pattern from the southern portal of the

Maghak-i Attari mosque in Bukhara, Uzbekistan (1179-79)

[Fig. 96f], and a Sultanate of Rum two-point pattern from the

Great Mosque of Bayburt in northeastern Turkey (1220-35)

[Fig. 97b]. A Mamluk two-point design from the mihrab of

the Aqbughawiyya madrasa (1340) at the al-Azhar mosque

in Cairo similarly expresses the 3.6.3.6 generative tessella-

tion as part of the completed design [Fig. 100d]. The design

of a brickwork panel in the portal of the anonymous southern

tomb in the complex of three adjoining Qarakhanid

mausolea in Uzgen (1186) includes the depiction of its

3.4.6.4 generative tessellation [Fig. 104d]. Several patterns

that overtly express their 4.82 generative tessellation of

squares and octagons are known to the historical record,

A B

Fig. 57

44MS Persan 169, fol. 192a.
45 The author is indebted to Professor Jan Hogendijk at the University

of Utrecht for pointing out the connection between the panel with

sevenfold symmetry at the Friday Mosque at Isfahan and the design

from folio 192r in the anonymous manuscript at the Bibliothèque

Nationale de France in Paris.
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including a Timurid variation of the classic star-and-cross

pattern from the Ghiyathiyya madrasa in Khargird, Iran

(1438-40) [Fig. 126d].

One of the most compelling examples of architectural

evidence for the polygonal technique is from the main

entry portal of the Sultan al-Nasir Hasan funerary complex

in Cairo (1356-63). In one of the sidewalls of this Mamluk

iwan is an arched niche with a muqarnas hood. This niche is

decorated with an interesting nonsystematic pattern with six-

and eight-pointed stars that repeats on a rectangular grid

[Photograph 58]. The pattern in this niche is produced in

white marble inlaid into a beige limestone background. The

artist also inlaid a black stone representation of the genera-

tive tessellation of octagons, distorted hexagons, and rhombi

[Fig. 413]. This is significantly different from the previously

cited examples in that the geometric pattern is distinctly

independent of the generative tessellation rather than being

incorporated into the finished design. The presence of the

tessellation is highly unusual in that it reveals the methodo-

logical key to this design specifically, and to almost all

Islamic geometric patterns generally.

In addition to the panel from the Sultan al-Nasir Hasan

funerary complex in Cairo, the most overt architectural

examples of geometric designs accompanied by their gener-

ative tessellations come from several jali screens from

Mughal India. A marble jali in the tomb of I’timad

al-Daula in Agra (1622-28) expresses the generative tessel-

lation in high relief as the primary visual motif, and the

resulting geometric design as secondary elements. This

example is the classic fivefold acute pattern created from

the fivefold system [Fig. 226c]. Additional Mughal examples

are located in the jali screens of the tomb of Salim Chishti at

Fatehpur Sikri (1605-07), including a very-well-known

acute pattern created from the fourfold system B

[Fig. 173a] [Photograph 77]; a widely used nonsystematic

acute design with 12-pointed stars on vertices of the isomet-

ric grid [Fig. 300a acute]; and an unusual example wherein

the fivefold pattern generator is, itself, a field pattern created

from the fivefold system. This field pattern is made up of just

two design elements, pentagons and hourglass decagons.

The simplicity of this design allows for it to be used as a

generative tessellation for the secondary pattern.

Evidence of the polygonal technique is occasionally

found in objects that employ comparatively complex polyg-

onal tessellations without the presence of one of the geomet-

ric designs that can be generated from the tessellation. A

particularly early example of such an item is a Persian

fritware tile (c. 1250-1300) in the collection of the Los

Angeles County Museum of Art46 [Photograph 104]. The

date of origin suggests that this is either late

Khwarizmshahid or early Ilkhanid. The molded relief deco-

ration boldly depicts a polygonal tessellation comprised of

dodecagons, decagons, and nonagons, with concave hexag-

onal secondary interstitial polygons that function within the

tessellation much like the concave hexagons within the

fivefold system [Fig. 232]. There are no known historical

designs created from this nonsystematic polygonal tessella-

tion. Rather than the midpoints of the polygonal edges being

used to locate geometric pattern lines, these points determine

the construction of a floral design. This is the only known

example of an Islamic floral design being extracted from a

complex polygonal substructure, and the fact that the polyg-

onal midpoints are similarly used as location points is sig-

nificant. Another significant example of a complex

nonsystematic polygonal tessellation being used as orna-

ment without the depiction of one of the geometric designs

that the tessellation can create is from a Karamanid walnut

door from the Imaret mosque in Karaman, Turkey47 (1433)

[Photograph 105]. The repetitive structure is orthogonal, and

the local regions of symmetry are 8- and 12-fold, separated

by irregular pentagons and barrel hexagons. This particular

nonsystematic tessellation is one of the most commonly

employed historically, and was used to produce innumerable

geometric designs in all four of the principal pattern families

throughout the Islamic world [Figs. 379–382].

By far the most convincing evidence of the polygonal

technique as the primary historical method used by artists for

creating complex Islamic geometric patterns is the Topkapi

Scroll.48 According to Gülru Necipoğlu, the prominent

authority on the historical significance of this scroll:

The Topkapi Scroll was probably compiled in the late fifteenth

or sixteenth century somewhere in western or central Iran,

possibly in Tabriz, which served as a major cultural capital

under the Ilkhanids, the Qaraqoyunlu, and the Aqqoyunlu

Turkman dynasties, as well as the early Safavids. Its geometric

designs in all likelihood were produced under Turkman patron-

age, but an early Safavid date is also a possibility as the interna-

tional Timurid heritage would still have been very much alive.49

The Topkapi Scroll contains 157 different designs that

represent the full range of geometric ornament in the regions

directly influenced by Timurid aesthetics. These include

muqarnas vaulting, star-net (rasmi) vaulting, geometric

ornament for domes, Kufi script, square or chessboard

(shatranji) Kufi motifs, and numerous examples of geomet-

ric patterns. Among the many geometric patterns is a wide

range of diverse types, including three designs produced

46 Los Angeles County Museum of Art, the Madina Collection of

Islamic Art, gift of Camilla Chandler Frost (M.2002.1.285).

47 In the collection of the Museum of Turkish and Islamic Arts,

Istanbul, Turkey, accession no. 244.
48 Topkapi Palace Museum Library MS H. 1956.
49 Necipoğlu (1995), 37–38.
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from the fourfold system A (nos. 1, 67, 61)50: one from the

fourfold system B (no. 57); eight designs with rhombic repeat

units made from the fivefold system (nos. 8, 52, 53, 54,

55, 62, 64, 73); six with rectangular repeats from the fivefold
system (nos. 33, 48, 50, 56, 58, 60); five Type A dual-level

designs created from the fivefold system (nos. 28, 29, 31, 32,

34); one Type B dual-level design produced from the fivefold
system (no. 49); one Type B dual-level design that uses

hybrid square and triangle repetitive elements with 8- and

12-pointed stars (no. 38); an additional hybrid design with

square and triangle repeats with 8- and 12-pointed stars

(no. 35); two nonsystematic designs with 12-pointed stars

located at the vertices of the isometric grid, one with rotating

square swastikas (nos. 63 and 70); two nonsystematic

orthogonal compound patterns, one with 8- and 12-pointed

stars (no. 72d), and the other with 13- and 16-pointed stars

(no. 30); three nonsystematic designs that do not use either

Photograph 104 Persian fritware relief tile with a polygonal tessel-

lation comprised of quarter dodecagons and a half decagon as the

primary ornament, and a floral motif with symmetry that is governed

by the polygonal structure (The Los Angeles County Museum of Art:

the Madina Collection of Islamic Art, gift of Camilla Chandler Frost

(M.2002.1.285): www.lacma.org)

50 The indicated numbers in this paragraph follow the numbering pro-

tocol in the Topkapi Scroll—Geometry and Ornament in Islamic Archi-

tecture. See Necipoğlu (1995).
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the isometric or the orthogonal grids, including one with 8-,

10-, and 12-pointed stars (no. 39), one with 10- and

12-pointed stars (no. 44), and one with 9- and 11-pointed

stars (no. 42); one rotating kite design with 6-pointed stars

(no. 59); two oscillating square patterns with swastikas (nos.

41 and 69b); three designs with forced 10-pointed stars in a

square repeat unit (nos. 66, 68, 72c); and three designs for

application onto domical surfaces, including two created

from the fivefold system (nos. 4, 90a), and one compound

design with 8- and 10-pointed stars (no. 10b). The Topkapi

Scroll is drawn primarily in black and red ink. These two

colors are used to differentiate the features of a given illus-

tration. This frequently involves the contrast between the

pattern and its generative tessellation. Further differentiation

Photograph 105 A Karaminid walnut door from the Imaret mosque in Karaman, Turkey, that depicts a nonsystematic tessellation associated

with the polygonal technique that includes partial octagons and dodecagons surrounded by pentagons and barrel hexagons (# Dick Osseman)
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is occasionally achieved through using dotted lines. What is

more, many of the geometric patterns that do not overtly

show the generative tessellation in ink reveal this important

methodological feature in finely scribed layout lines made

with a steel stylus and referred to as dead drawing. With the

exception of the oscillating square, rotating kite, and forced

patterns, virtually all of the geometric designs in the Topkapi

Scroll visually represent their generative tessellation in

either ink or inscribed lines. This is by far the largest

known single repository of geometric designs represented

in association with their underlying generative tessellations.

The fact that this scroll was an artist’s reference intended for
practical application is an incontrovertible evidence for the

polygonal technique being the preeminent methodology

employed in the creation of Islamic geometric patterns dur-

ing the time and place of the scroll’s production, and by

extrapolation, to this tradition more generally. The designs

from the Topkapi Scroll range in complexity between the

more basic systematic patterns and those that are highly

complex with more than one region of local symmetry, as

well as dual-level designs with self-similar characteristics.

As demonstrated so aptly in this scroll, the polygonal tech-

nique is uniquely capable of creating these exceptionally

complex designs.

Further scroll evidence for the historical use of the polyg-

onal technique is found among the scroll fragments at the

Institute of Oriental Studies in Tashkent. These range in date

between the fifteenth to seventeenth centuries. Like the

Topkapi scroll, these depict a combination of vaulting

systems for three-dimensional application, and

two-dimensional geometric patterns, and also include the

use of colored inks and scribed lines. Of particular interest

to the question of design methodology are a series of geo-

metric patterns that include the underlying generative tessel-

lation. These examples are estimated to date from the

sixteenth or possibly seventeenth century, and employ only

black ink with the underlying tessellation represented in the

un-inked incised lines produced with a steel stylus.51 The

geometric patterns include median and two-point designs
created from the fivefold system, as well as a nonsystematic

median pattern with 9- and 12-pointed stars [Fig. 346b].

Much like the incised lines from the Topkapi and

Tashkent scrolls, Quranic illuminators also used a steel

stylus to lay out their designs prior to painting the final

illumination. The relevance of Quranic illumination to the

understanding of traditional design methodology has not

received the research it deserves. The likely significance of

this artistic discipline in providing further corroboration of

the prevalent use of the polygonal technique is found in an

outstanding Mamluk illuminated frontispiece (c. 1399-1411)

at the British Library [Photograph 48].52 This is decorated

with an obtuse pattern created from the fivefold system

[Fig. 233b] that was used in many locations over the years,

including the Izzeddin Kaykavus hospital and mausoleum in

Sivas, Turkey (1217-18); the Agzikarahan in Turkey (1242-

43); and the Sultan Qala’un funerary complex in Cairo

(1284-85). Upon close inspection with oblique lighting, the

fine incised lines beneath the paint that were used for laying

out this illumination are faintly detectable with the naked

eye. In this example, these painted-over incised lines reveal

the underlying generative tessellation that was used to pro-

duce the pattern [Fig. 233c]. Unless this example is an

anomaly, considering that this is just one of a very large

number of illuminated pages with geometric ornament, it is

entirely possible that a study of Quranic examples will

reveal further evidence that illuminators used this design

methodology when laying out their compositions.

The last piece of evidence for the historicity of the polyg-

onal technique comes from the published observations of

Ernest Hanbury Hankin, a bacteriologist working in India in

the latter part of the nineteenth century. His observations of a

deteriorating stucco ceiling in a bathhouse (hammam) at

Fatehpur Sikri led to his discovery that Islamic geometric

designs were constructed from underlying polygonal

tessellations:

During visits to Fathpur-Sikri many years ago, I spent much

time in measuring the angles and making tracings of these

designs but always failed to find any rational scheme by which

they could be constructed. At last, by good fortune, I happened

to enter a small Turkish bath attached to Jodh Bai’s Palace. It
had previously been inhabited by Indians, who had only just

been evicted, and I was probably the first European to visit the

place. In one of the rooms of the bath was a half dome decorated

by a straight-line pattern. In addition to the pattern, some faint

scratches were discovered on the plaster. Obtaining a table and

chair and a piece of tracing paper I succeeded in making a copy.

On closer examination these scratches were found to be parts of

polygons, which, when completed, surrounded the star-shaped

spaces of which the pattern was composed, and it turned out that

these polygons were the actual construction lines on which the

pattern was formed.53

Hankin first published his finding in a 1905 article in the

Journal of the Society of Arts54 entitled On some

Discoveries of the Methods of Design employed in
Mahomedan Art, and in greater detail in his 1925 article

The Drawing of Geometric Patterns in Saracenic Art for

the Memoirs of the Archeological Survey of India. In these

51 There are relatively few sources of photographs of the geometric

patterns from the Tashkent scrolls. See

–Rempel’ (1961).
–Necipoğlu (1995), 12–13.

52 British Library, London, BL Or. MS 848, ff. 1v-2.
53 Hankin (1925a), 3–4, no. 15.
54 Hankin (1905), 461.
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works and others,55 Hankin describes in considerable detail

the design process for the polygonal technique, and analyzes

a number of historical designs. He is the first European to

have discovered this design methodology, yet the signifi-

cance of his discoveries has had far less impact than

deserved upon the prevailing views regarding traditional

design methodologies that came after him. Since the turn

of the millennium, recognition of the polygonal technique

has gradually gathered momentum for its historicity and

methodological flexibility.56

Regarded as a group, the above-cited methodological

examples provide compelling evidence for the efficacy and

historicity of the polygonal technique as a primary tool for

generating the diverse range of designs that characterize this

geometric art form. While the more basic designs can often

be produced with alternative methods, the polygonal tech-

nique is the only methodology that will produce the more

complex patterns within this tradition. This preponderance

of evidence provides the certainty that the polygonal tech-

nique was the preeminent design methodology used histori-

cally. Without this evidence, the relevance of this method of

creating geometric designs would be based solely upon

common sense and experience.57

The earliest Islamic geometric patterns are easily created

from regular, semi-regular, and occasionally two-uniform

tessellations comprised of regular polygons. These polygons

include the triangle, square, hexagon, octagon, and dodeca-

gon. Being that the octagon is limited to only one semi-

regular tessellation, and that other than the square, it will

not tessellate with any of the other regular polygons, the 4.82

semi-regular tessellation is, for practical purposes, regarded

within this study as its own group with its own distinctive

aesthetic merits. This is why, for the purposes of this discus-

sion, the octagon is not included within the modules of the

system of regular polygons [Fig. 92]. The 4.82 tessellation is

one of the most widely used, versatile, and prolific

underlying generative substrates used within this ornamental

tradition [Figs. 124–129]. Figure 58 demonstrates just two of

the many designs that can be produced from the orthogonal

4.82 semi-regular tessellation of octagons and squares. Fig-

ure 58a shows the classic median star-and-cross pattern used

frequently throughout the Islamic world. Employing the

polygonal technique to produce this pattern involves draw-

ing lines through the edge at every second midpoint within

the octagons, creating two superimposed squares with 90�

crossing pattern lines at each midpoint. These lines are

trimmed so that the interior octagons are converted to the

characteristic eight-pointed stars. The design in Fig. 58b is

also very well known within this tradition, and is produced in

a similar fashion, except that the applied pattern lines tran-

sect the midpoints of every third octagonal edge: creating

45� crossing pattern lines at these midpoints, and four-

pointed stars within each underlying square. The interior

octagonal region is similarly trimmed to create the eight-

pointed stars. The 45� crossing pattern lines in Fig. 58b

qualify this as an acute pattern.

As mentioned, there are four standard techniques for

extracting geometric designs from underlying polygonal

tessellations. In addition to the acute and median families

illustrated in Fig. 58, this tradition also includes obtuse and
two-point patterns. Each of these four families has an identi-

fiable visual quality that is independent of its symmetrical

characteristics or repeat unit. These appear with such regu-

larity, and are sufficiently distinct from one another that it is

appropriate for each to be included as a distinct category of

pattern created from the polygonal technique. Figure 59

highlights the distinctive features of each of these four

pattern families. For the purposes of demonstration, the

four examples shown are created from the fivefold system,
but the four pattern families are equally relevant to all

systematic and nonsystematic geometric designs created

from the polygonal technique. What is more, the visual

characteristics of the pattern elements created from the five-

fold system have direct analogs to those created from other

types of geometric design, and the examples provided in this

illustration are therefore representative of this tradition gen-

erally. Figure 59a demonstrates the characteristics of the

acute family, with stars, darts, kites, and bilateral shield-

shaped hexagons. Quick visual references for identifying

acute designs are the acute angles of the points that surround

the primary star forms, as well as the acute angles of the five-

pointed stars. Figure 59b demonstrates the more open char-

acter of the pattern elements of themedian family, especially

as pertains to the points of the primary stars and five-pointed

stars. The angles of the stars, darts, overlapping darts, kites,

and shields are recognizably less acute, and fall between the

angles of the acute family and the obtuse family: hence the

name median. Figure 59c demonstrates the characteristics of

the obtuse family. The pattern elements in this type of

55 In addition to the two articles mentioned above, E. Hanbury Hankin,

M.A., Sc.D., also published occasional articles concerning Islamic

geometric pattern derivation in the Mathematical Gazette. I am

indebted to Dr. Carl Ernst for first bringing the work of Hankin to my

attention in 1980. See

–Hankin (1925b), 371–373.

–Hankin (1934), 165–168.

–Hankin (1936), 318–319.
56 –Bonner (2003).

–Kaplan (2005).

–Lu and Steinhardt (2007a).
57 In 1987 I had the good fortune to see and photograph the Topkapi

Scroll while it was on temporary display at the Topkapi Museum in

Istanbul. Other than the publications of Ernest Hanbury Hankin, this

was my first corroboration that the polygonal methodology I had

developed independently, and had been employing as an artist for

many years, was, in fact, historical.
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pattern will typically have primary stars with points that are

appreciably more obtuse, pentagons rather than five-pointed

stars, kites, concave octagons, and distinctive hourglass

polygons with ten sides. Figure 59d demonstrates the

characteristics of the two-point family. This type of pattern

is recognizable for its matrix of overlapping closed

polygons, including kites, rhombi, and concave hexagons.

Each of these families is subject to considerable stylistic

variation and additive treatment, especially to the primary

star forms.

In creating the primary stars, the application of pattern

lines is most frequently determined by drawing lines that

connect the midpoints of the primary underlying polygons.

Figure 60 illustrates this process as applied to octagons and

decagons as representative examples. The four pattern

families are only descriptive of an aesthetic quality. For a

more precise design classification it is often helpful to define

the specific variety of star contained within the primary

underlying polygons. The method illustrated roughly

follows the nomenclature of Anthony J. Lee by identifying

the number of sides of the primary polygon in relation to the

number of sequential sides in midpoint-to-midpoint line

application for creating a given star.58 This way of

identifying primary star forms is especially relevant to the

regularity of systematic patterns. However, it is important to

note that the application of pattern lines to primary underly-

ing polygons does not always follow the convenient

midpoint-to-midpoint method in this illustration. In some

cases, especially with nonsystematic designs, the

supplemental angles of the pattern lines that are placed at

the midpoints of each edge of the primary underlying

polygons are not determined by a straight line that connects

to another midpoint. Rather, the precise angle of the pattern

lines that are applied to these points, that ultimately

determines the visual character of the primary star, is arrived

at through aesthetic evaluation on the part of the artist. This

decision is greatly influenced by how the extended lines

behave within the adjacent secondary underlying polygonal

cells. When this aesthetic approach is used, the identifying

nomenclature of Fig. 60 is not applicable.

Every underlying generative tessellation is capable of

producing a pattern from each of the four families. However,

this is a nuanced discipline and not all of the patterns so

generated will be acceptable to the aesthetic standards of this

tradition. Prior to the maturity of Islamic geometric patterns,

the approach to applying pattern lines onto underlying

tessellations was less codified and more experimental. Dur-

ing the twelfth and thirteenth centuries, as part of the overall

maturing of this artistic tradition, these four pattern families

were established as distinct methodological aspects of the

polygonal technique, each producing designs that were rec-

ognizably distinct from one another, and each with its own

aesthetic appeal. What is more, the aesthetic predilections of

different Muslim cultures favored, to a lesser or greater

extent, specific pattern families over others, as well as cer-

tain additive variations that were frequently applied to these

designs. The acute, median, and obtuse families differ

according to the angle of the crossing pattern lines that are

located at, or near, the midpoints of each underlying polyg-

onal edge, while the two-point family has applied pattern

lines placed on two points of each edge. Figure 61 illustrates

8-s1
obtuse

8-s2
median

8-s3
acute

10-s1
meta-obtuse

10-s2
obtuse

10-s3
median

10-s4
acute

Fig. 60

58 Lee (1995), 182–197.
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these four pattern families as associated with an underlying

tessellation of decagons, pentagons, and hexagons that

repeat upon a rhombic grid. This is one of the most basic

rhombic repeats produced from the fivefold system, and each

of the four patterns created from this tessellation was used

widely. Figure 61a shows the acute pattern created from this

tessellation. The crossing pattern lines of acute patterns

created from the fivefold system have a 36� angular opening
at each midpoint of the polygonal edge. The bisector of the

angular opening is perpendicular to the polygonal edge.

These crossing pattern lines are easily determined by their

transecting every second midpoint of the pentagons (5-s2),

and every fourth midpoint of the decagons (10-s4). Figure

61b illustrates the application of the pattern lines of the

obtuse family wherein the pattern lines transect the underly-

ing pentagonal edges at adjacent midpoints (5-s1), and the

decagons at every second midpoint (10-s2), creating cross-

ing pattern lines at these midpoints with 108� angular

openings. As stated, one of the visual characteristics of

obtuse patterns is the occurrence of pentagons nested within

the pentagons of the underlying tessellation—creating a

more open aesthetic. Figure 61c shows the median pattern

created from this tessellation. As the name implies, the angle

of the crossing pattern lines is between the acute and obtuse

angles. Within the fivefold system this is 72�. These lines are

conveniently determined by transecting every third midpoint

of the decagon (10-s3). Figure 61d illustrates the two-point
pattern created from this tessellation. This variety of design

employs two points on each underlying polygonal edge

rather than just one, and the resulting designs are almost

always given a widened line or interweaving line treatment

(rather than the colored tiling treatment in this illustration).

The above-mentioned angular openings in the four pattern

families mentioned above are standard to the fivefold system.

In other systems, and indeed in nonsystematic designs, the

angles of the crossing pattern lines employed in each pattern

family will vary according to the inherent geometry of the

system. For example: in the system of regular polygons the

acute, median, and obtuse angular openings are typically

60�, 90�, 120� respectively, whereas those of both fourfold

systems will have 45�, 90�, and 135�, respectively. In each

case, the aesthetic character of each pattern family is essen-

tially the same.

The extraordinary design diversity provided by the polyg-

onal technique necessitates further subcategorization beyond

the four standard pattern families. As mentioned previously,

Islamic geometric patterns created from the polygonal tech-

nique fall into two distinct categories: systematic and non-

systematic. Differentiation between these two types of

design is a primary form of classification and is fundamental

A C DB

Fig. 61
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to a thorough understanding of this tradition. Systematic

designs employ a limited set of polygonal modules, with

associated applied pattern lines, that are assembled into

different tessellations to create myriad designs. There are

five polygonal design systems that were used historically: I

have named these the system of regular polygons, the four-
fold system A, the fourfold system B, the fivefold system, and

the sevenfold system. The numeric values in the names of the

four-, five-, and sevenfold systems reference the smallest

value of rotational symmetry within the primary star forms

(other than 2). The patterns that Hankin analyzed in his

publications include both systematic and nonsystematic

examples. Hankin’s groundbreaking work on the polygonal

technique did not identify systematic characteristics or dif-

ferentiate between these two categories of design. As such,

he does not appear to have recognized the systematic nature

of the underlying polygonal modules in many of his

reconstructions. The use of methodological systems

provided geometric artists with a fast and accurate means

of producing new and original geometric designs with great

ease. With few exceptions, each of the five pattern families

has a specific set of pattern lines associated with each polyg-

onal module. The simplicity of creating systematic geomet-

ric patterns explains the vast number of examples from all

but the sevenfold system. The patterns produced from this

latter system are very beautiful, and the paucity of examples

found within the historical record is more likely due to a

limited number of artists trained in this system rather than

any aesthetic distaste for this variety of design. With the

exception of the sevenfold system, these design systems were

first discovered by the author as systems per se in the late

1970s and early 1980s while working on polygonal design

methodologies. These findings were first recorded in an

unpublished manuscript in 2000,59 and later published in

2003 in the paper Three Traditions of Self-Similarity in

Fourteenth and Fifteenth Century Islamic Geometric Orna-
ment.60 In addition to Hankin, several authors had previously

identified some of the underlying polygonal modules that

make up the fivefold system, but only in relation to individual
tessellations rather than as components of a flexible modular

system with associated pattern lines.61 More recently, in

2007 a limited subset of the fivefold system received signifi-

cant public acclaim as the methodological basis employed in

the production of an allegedly quasicrystalline design at the

Imamzada Darb-i Imam in Isfahan some 500 years before

the discovery of fivefold aperiodic tilings by Sir Roger

Penrose.62 The first published account of the sevenfold sys-
tem as a historical design methodology was in 2012.63

Figure 62 illustrates a design, along with its generative

tessellation, from each of these five polygonal systems.

Figure 62a shows a design created from the system of regu-

lar polygons that is located at the G€ok madrasa and mosque

in Amasya, Turkey (1266-67); Figure 62b shows a design

created by the fourfold system A that was used widely, with a

particularly early example at the eastern tomb tower at

Kharraqan, Iran (1067-68); Fig. 62c shows a design pro-

duced by the fourfold system B that was used ubiquitously

by Muslim cultures; Fig. 62d shows a design created by the

fivefold system from the Patio de las Doncellas at the Alcazar

in Seville (1364); and Fig. 62e shows a design created by the

sevenfold system that comes from the Sultan al-Mu’ayyad

Shaykh complex in Cairo (1412-22). Except for the fourfold

system B, which is more restricted due to the smaller number

of modules, the polygonal modules in each of these systems

can be assembled in an infinite number of tessellations,

providing for an unlimited number of possible geometric

patterns. And, as demonstrated, depending upon the angular

opening of the crossing pattern lines located on the edges of

the underlying polygons, no less than four distinct designs

can be produced from any single tessellation, thus

augmenting the already significant design potential within

each of these systems.

Another variety of design classification is the differentia-

tion within dual-level designs. These are associated most

directly with the use of one or another of the design systems.

As discussed in the previous chapter, these place scaled-

down secondary modules from a given system into the

pattern matrix of a design that was created from the same

set of non-scaled-down modules. This variety of design is

especially beautiful, and is the last of the great innovations

associated with Islamic geometric patterns. Furthermore,

many of these designs have geometric self-similarity

whereby the qualities of the primary pattern are replica-

ted within the scaled-down secondary pattern, and this

recursive diminution can, in theory, be applied ad infinitum.

59 Bonner (2000).
60 Bonner (2003), 1–12.
61 –Wade (1976) (after Hankin).

–Pander (1982).

–Makovicky (1992), 67–86.

62 In 2007 Paul Steinhardt and Peter Lu published a paper citing their

discovery of a set of “girih tiles” that share the inflation symmetry

characteristics of the set of two prototiles with matching rules discov-

ered by Sir Roger Penrose in the 1970s. The five “girih tiles” presented
by the authors are, in fact, a subset of the ten polygonal modules with

associated pattern lines detailed in my 2003 paper. Lu and Steinhardt’s
pattern lines for each “girih tile” are identical to the pattern lines of the

median pattern family (with characteristic 72� crossing pattern lines

located at the midpoints of each polygonal edge) that is described in

detail in my 2003 paper. See

–Bonner (2003).

–Lu and Steinhardt (2007a).
63 –Bonner and Pelletier (2012), 141–148.

–Pelletier and Bonner (2012), 149–156.
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This variety of Islamic geometric design has four distinct

classifications: type A, type B, type C, and type D

[Fig. 442].64

Nonsystematic designs created from the polygonal tech-

nique utilize underlying tessellations that include irregular

polygons with proportions that are specific to the

circumstances of the tessellation, and will not reassemble

into other tessellations. This variety of geometric design is

characterized by greater geometric complexity, often com-

bining multiple centers of higher order local symmetry. As

mentioned previously, the characteristic n-pointed stars are

typically placed at the vertices of the repeat unit, and greater

complexity is frequently achieved through placing further

higher order star forms at the center of the repeat, at the

midpoints of the edges of the repeat, and/or within the field

of the repeat. These higher order stars are the product of their

associated n-sided primary polygons within the underlying

generative tessellation. A polygonal matrix comprised of

smaller polygons, such as irregular pentagons and hexagons,

separates the primary polygons from one another. Figure 63

illustrates three nonsystematic orthogonal tessellations in

sequential levels of complexity. Figure 63a shows

dodecagons at the vertices of the square repeat unit with a

connecting matrix of pentagons. Four of the pentagons (yel-

low) are clustered at the center of the repeat and have a

different proportion than the two separating the dodecagons

(dark blue). A feature of this underlying tessellation is the

ring of pentagons that surrounds each dodecagon. This is a

common motif in both systematic and nonsystematic

tessellations, and reliably provides distinctive and desirable

visual characteristics to the completed designs in each of the

four pattern families. This tessellation was used to produce a

number of very fine geometric designs [Figs. 335 and 336],

including an acute pattern from the Great Mosque of Siirt in

Turkey (1129); a median pattern from the Great Mosque of

Silvan in Turkey (1152-57); and an obtuse pattern that was

used frequently throughout the Islamic world. Figure 63b

also employs dodecagons at the vertices of the square repeat,

with added octagons at the centers of each repeat. This

tessellation has a ring of pentagons around each octagon,

as well as a ring of pentagons and barrel hexagons around

each dodecagon. This ring of pentagons with included

hexagons is also commonly encountered in both systematic

and nonsystematic underlying tessellations. This tessellation

was used to create very successful designs in all four pattern

D E

CBA

Fig. 62

64 See footnote 241 from Chap. 1.
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families [Figs. 379–382]. The two regions of local symmetry

allow for the 8- and 12-pointed stars that characterize these

patterns. In addition to the dodecagons placed on the corners

of the square repeat, Fig. 63c includes decagons placed at the

midpoints of each repeat and enneagons placed upon the

diagonal of the repeat unit. This is one of the most complex

orthogonal generative tessellations employed within this

overall tradition, and the acute pattern that this tessellation

produces was used in several locations by Seljuk artists

working during the Sultanate of Rum [Fig. 400]. The earliest

example is from the Kayseri hospital (1205-06). This under-

lying tessellation also creates very attractive designs from

the other three pattern families, although no historical

examples are known. Patterns produced from this tessella-

tion combine 9-, 10-, and 12-pointed stars.

A further subcategory of design created by the polygonal

technique achieves greater complexity through added sec-

ondary pattern elements to an already existing design.

Almost all such additive patterns are produced from one or

another of the design systems: most frequently the system of

regular polygons or the fourfold system A, although the

fivefold system was occasionally used for additive modifica-

tion. As with so many geometric design innovations, addi-

tive patterns were initially developed under the auspices of

Seljuk influence, and early examples are found at the

Gunbad-i Surkh in Maragha, Iran (1147-48), and the

Gunbad-i Qabud in Maragha, Iran (1196-97). This additive

practice was especially popular among artist working under

the Ilkhanids in Persia. Figure 64 illustrates an Ilkhanid

additive pattern from the portal of the Khanqah-i Shaykh

’Abd al-Samad in Natanz, Iran (1304-25), that is created

from a very simple design from the system of regular

polygons. The primary median pattern (blue) is generated

from the underlying 63 tessellation of regular hexagons

[Fig. 95c], and the additive component places octagons at

each vertex of the primary design. The incorporation of

octagons into a design with sixfold symmetry works by

virtue of the 180� rotational symmetry at the vertices of the

primary design. Without the primary design, this arrange-

ment of octagons placed upon the isometric grid is identical

to the imposed symmetry design in Fig. 51a. The design in

Fig. 65 is an Ilkhanid additive pattern from the interior of the

Friday Mosque at Varamin, Iran (1322). The initial acute

A CB

Fig. 63

Fig. 64

Fig. 65
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pattern is created from the same simple hexagonal grid as the

previous example, the difference being in the 60� angular

openings of the crossing pattern lines at the midpoints of

each underlying hexagonal edge [Fig. 95b]. The addition of

a second 6-pointed star in 30� rotation placed on the same

center point as in the original design creates a more complex

pattern of 12-pointed stars. Figure 66 shows an outstanding

Ilkhanid additive pattern from the mausoleum of Uljaytu in

Sultaniya, Iran (1305-1313). The original design (blue) is

created from the fourfold system A [Fig. 157b], and the

secondary additive elements provide this otherwise rather

simple design with a feeling of far greater complexity. Fig-

ure 67 is a detail of an obtuse additive pattern created from

the fivefold system that was used at the Gunbad-i Qabud in

Maragha, Iran (1196-97) [Photograph 24]. This is one of the

most ambitious examples of additive pattern making, and is

characterized by its unusually large repeat unit [Figs. 239

and 240]. This design anticipates the dual-level aesthetic that

developed in the same approximate region some 250 years

later.

Additive patterns are similar to a less common class of

patterns that are comprised of two superimposed designs that

are otherwise distinct from one another. And like additive

patterns, most of these are derived from the system of regular
polygons. These superimposed patterns are most common to

Anatolia during the Sultanate of Rum, and Gerd Schneider

provides multiple examples in his book devoted to the

geometric ornament of this region.65 Figure 68 illustrates a

threefold superimposed pattern with one component being

the classic threefold acute pattern with six-pointed stars

[Fig. 95b], but with additive six-pointed star rosettes, created

from the 63 hexagonal grid, and the second a well-known

design of superimposed dodecagons created from the 3.6.3.6

underlying tessellation of triangles and hexagons [Fig. 99b].

This very fine superimposed pattern was used during the

Sultanate of Rum at the Karatay Han (1235-41), 50 km

east of Kayseri, Turkey,66 as well as by the Timurids on a

door from the mausoleum of Sayf al-Din Bakharzi in

Bukhara67 (fourteenth century).

To summarize, only the polygonal technique has been

demonstrated to provide for so many fundamental features

of this ornamental tradition, including a method for producing

nonsystematic geometric patterns with greater complexity

characterized by multiple centers of local symmetry; the

occurrence of a multitude of designs with identical visual

characteristics that result from the use of systematic polygonal

methodologies; the extraordinary range of symmetrical and

repetitive diversity that results from manipulations of this

Fig. 66

65 Schneider (1980), pl. 22–23.
66 Schneider (1980), pattern no. 253.
67 In the collection of the Victoria and Albert Museum, London, acc.

No. 437–1902.
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design methodology; the four pattern families that are ubiqui-

tous to this tradition; and the means for producing highly

complex dual-level designs with recursive characteristics.

2.5.2 The Point-Joining Technique

In addition to the polygonal technique, many of the less

complex Islamic geometric patterns can also be produced

from alternative design methodologies. This is especially

true with the more basic patterns created from the system
of regular polygons and fourfold system A. However, there is

sparse historical evidence for the use of these other

methodologies. By contrast, and as demonstrated, the histor-

ical significance of the polygonal technique is supported by a

preponderance of evidence. Nonetheless, among some of the

less complex historical designs, it is not possible to know

categorically whether they were produced from the

polygonal technique or an alternative methodology. There

are two alternative design methodologies that have been

proposed as traditional and each has merit as a vehicle for

constructing geometric patterns. For the purpose of descrip-

tive clarity, these are referred to herein as the point-joining
technique, and the graph paper technique.

Since the 1970s, the point-joining technique has been

advanced by a number of proponents,68 causing it to gain

support as the dominant historical design methodology

Fig. 67

Fig. 68

68 –Maheronnaqsh (1976).

–El-Said and Parman (1976).

–Critchlow (1976).

–Wade (1976).

–Bakirer (1981).

–El-Said (1993).

–Marchant (2008), 106–123.

–Broug (2008, 2013).
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among the interested public. However, the multiple

publications that advance the point-joining technique do

not provide evidence for the historical use, let alone pri-

macy, of this methodology. Much of the enthusiasm during

the 1970s for the point-joining technique stemmed from its

conflation with esotericism69 wherein “the harmonious divi-

sion of a circle is no more than a symbolic way of expressing

tawhid, which is the metaphysical doctrine of Divine Unity

as the source and culmination of all diversity.”70 The prob-
lem with ascribing metaphysical symbolisms to this design

methodology, and indeed to the tradition of Islamic geomet-

ric design generally, is similar to that of point-joining itself:

the authors provide no evidence for its historicity.71 The

general method behind point-joining constructions involves

the use of a compass and straight edge: typically starting

with a circle that is divided and subdivided to produce a

square or regular hexagonal repeat unit, from which further

divisions lead to the construction of a matrix of geometric

coordinates. Lines that connect selected intersection points

within this matrix will produce the completed design within

its repeat unit. A fundamental feature of this technique is that

each individual pattern has its own unique step-by-step

construction. This is a formal process that lacks flexibility,

and while it is well suited to reproducing existing designs

with low to moderate complexity, it is not an especially

convenient method for creating original designs. This limi-

tation is exponentially true for creating designs with greater

complexity, such as those with multiple centers of local

symmetry. Even the reconstruction of preexisting patterns

with particularly complex compound local symmetries via

step-by-step point-joining constructions is extraordinarily

cumbersome at best, and for all intents and purposes imprac-

ticable. What is more, to use this methodology to originate
such designs begs credulity. The required independent point-

joining construction for each individual pattern is in marked

distinction to the inherent flexibility of the polygonal tech-

nique. With point-joining, an artist is limited by the number

of patterns that have been put to memory, or that have been

recorded with instructions on paper. By contrast, an artist

with knowledge of the polygonal technique is able to create

an unlimited number of original designs, or easily recreate

existing designs as needs be. What is more, the polygonal

technique is ideally suited to creating exceptionally complex

patterns with multiple centers of local symmetry.

Yet despite its limitations the point-joining technique

appears to have played an important role in the history of

this artistic tradition. The polygonal technique requires a

high level of commitment to master, and clearly not all

artists working in diverse media, and at varying degrees of

geometric skill, would have received training in this design

methodology. What is more, it is reasonable to assume that

the transmission of the polygonal technique was formal and

controlled, thereby protecting the patronal support and finan-

cial interests of the practitioners. As such, the primary role of

the point-joining technique may have been as a means of

providing specific instruction for individual designs to artists

and craftsmen who needed access to geometric patterns, but

were not privy to the methodological practices of the polyg-

onal technique. In this way, a wide variety of geometric

designs could have been introduced into the canon of general

artists and craftspeople, thereby disseminating these designs

into the wider cultural milieu while simultaneously

protecting the interests of the specialized artists responsible

for their original creation.

It is also likely that the point-joining technique occasion-

ally provided a convenient means of scaling up patterns for

their transferral to architectural surfaces. Due to the com-

plexity limits of point-joining, this would only have been

suitable with patterns of low or intermediate complexity, and

artists working with more complex designs would have

required alternative methods for accurately transferring

scaled-up patterns for architectural locations—as per the

above-referenced evidence of the polygonal technique

revealed in the ceiling at Fatehpur Sikri.

Historical evidence for the point-joining technique is

sparse. One rather amusing early twentieth-century anec-

dotal example comes from Archibald Christie who wrote:

Oriental workers carry intricate patterns in their heads and

reproduce them easily without notes or guides. There is a story

that tells of an English observer, seeing a most elaborate design

painted directly on a ceiling by a young craftsman, (the English-

man) sought the artist’s father to congratulate him on his son’s
ability, but the father replied that he regarded the boy as a dolt

for he knew only one pattern, but his brother was a genius—he

knew three!72

All humor aside, this story is revealing in that it relays the

mnemonic practices of artists working with geometric

patterns: albeit very late in the history of this tradition.

While this anecdote tells us that at least some artists were

reliant upon memory to recreate patterns within their limited

repertoire, it also implies that such artists lacked the neces-

sary skills that would allow them to create original designs.

69 –El-Said and Parman (1976).

–Critchlow (1976).

–Burckhardt (1976).
70 From the forward by Titus Burckhardt: El-Said and Parman (1976).
71 The popularized claims, advanced during the 1970s, that Islamic

geometric patterns are inherently associated with perennial symbolisms

have been convincingly refuted as ahistorical by several scholars of

note: See

–Chorbachi (1989), 751–789.

–Necipoğlu (1995), 73–83. 72 Christie (1910).
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However, considering the vast number of patterns from the

historical record, it is unlikely that these specific point-

joining constructions were held within memory alone, and

it must be assumed that design scrolls and manuals were

employed to a greater or lesser extent in propagating the

recreation of existing designs. Regrettably few artists’
scrolls (tumar) or bound manuscripts are known to have

survived to the present, and one hopes that more will turn

up with time.73 Two are of particular importance to the

question of traditional geometric design methodology: the

aforementioned Topkapi Scroll and the anonymous Persian

language treatise On Similar and Complementary
Interlocking Figures in the Bibliothèque Nationale de

France in Paris,74 henceforth referred to as Interlocking

Figures. The exceptional significance of this treatise is that

the illustrations are accompanied with written step-by-step

instructions for constructing the diverse range of geometric

figures, including multiple geometric patterns. Except for

those more complex examples that involve either conic

sections or verging procedures, some of these instructions

are very similar in concept to the point-joining methodology

advocated since the 1970s. This is currently the only known

ancient treatise that provides written instructions for

constructing geometric patterns, some of which are found

within the historical record. Interlocking Figures illustrates

over 60 geometric constructions, most of which are

accompanied with written instruction. Like the Topkapi

Scroll, the illustrations are inked in black and red, with

occasional dotted lines that provide further differentiation.

The provenance of Interlocking Figures is uncertain and

speculations for its date of origin have been based upon

both linguistic analysis and comparisons with identical or

near-identical geometric patterns within the architectural

record.75 Estimates for its date range between the eleventh

and thirteenth centuries during either the Great Seljuk or

Khwarizmshahid periods, with some portions added as late

as the Timurid period when the Paris manuscript was copied.

More recent research estimates its origin to circa 1300, the

later end of this spectrum.76 The problem with comparing

specific patterns from Interlocking Figures to architectural

examples from the historical record as a means of estimating

the approximate date of its original compilation is that it is

impossible to know whether (1) the manuscript may have

preceded and possibly influenced an architecture example,

and, if so, by how long; (2) the manuscript and architectural

examples were produced concurrently, possibly by the same

individuals; or (3) the production of a given architectural

example may have preceded and possibly influenced the

manuscript, and, if so, by how long. Adding to this uncer-

tainty is the fact that it is not known how many times the

original manuscript may have been copied, and to what

extent the copyists may have included examples of patterns

from later dates. Nonetheless, at the very least, comparisons

to the architectural record are a valuable means of contextu-

alizing the geometric patterns in Interlocking Figures.

The illustrations in Interlocking Figures fall into several

categories, including mathematical dissections of polygonal

figures that can be reassembled into other figures, and can be

regarded as sophisticated geometric puzzles; instructions

pertaining to the construction of geometric figures such as

triangles, pentagons, heptagons, and nonagons; three figures

without explanatory text that appear to be muqarnas plan

projections; and multiple examples of geometric designs

ranging from the simple to moderately complex. The ques-

tion naturally arises: Who created Interlocking Figures, and
for what purpose? Alpay Özdural makes a compelling case

for this treatise having possibly been compiled by a scribe as

a record of meetings, or conversazioni, between artists and

mathematicians over an unspecified period of time.77 Gülru
Necipoğlu suggests that the “anonymous author . . . seems to

have been a muhandis with practical rather than theoretical

training in geometry,” and that some of the more complex

mathematically precise constructions requiring an angle-

bracket and conic sections were followed by instructions

for simplified constructions that rely on approximations.78

Both of these scholars place Interlocking Figures into con-

text with other more widely known collaborations between

medieval Muslim artists and mathematicians whereby the

edification of the geometric arts was facilitated in part

through the direct influence of mathematicians. Of particular

note is the celebrated treatise by Abu al-Wafa al-Buzjani

(940-998): About that which the artisan needs to know about

geometric constructions. In fact, along with other works on

geometry, Interlocking Figures is appended to a copy of this

work by al-Buzjani. The general consensus among art

73 The most comprehensive study of known pattern manuals and scrolls

is that of Gülru Necipoǧlu. See Necipoğlu (1995).
74MS Persan 169, fol. 180a–199a. For a thorough account of the

significance of this manuscript as one of the very few historical Muslim

sources of geometric analysis and instruction for Islamic geometric

designs, and for its place among other historical documents concerned

with the practical application of mathematics, see

–Chorbachi (1989), 751–789.

–Chorbachi (1992), 283–305.

–Necipoğlu (1995), 131–175.

–Özdural (1996), 191–211.

–Necipoğlu [ed.] (forthcoming).
75 –Necipoğlu (1995), 168–169.

–Özdural (1996), 191–211.

76 Necipoğlu [ed.] (forthcoming).
77 Özdural (1996), 192.
78 Necipoğlu (1995), 169.
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historians is that Interlocking Figures was intended, at least
in part, to assist artists to better understand more advanced

geometric principles, and where necessary to familiarize

them with approximate constructions of figures that other-

wise require more complex procedures. Through this lens,

the multiple geometric designs included in Interlocking
Figures are similarly seen as instructions intended for artis-

tic application. However, there is another interpretation of

this important historical treatise. It is also possible that the

focus upon geometric patterns within Interlocking Figures

was the result of a fascination among some mathematicians

to better understand the underlying geometry of an art form

that was pervasive throughout their culture. Seen from this

perspective, the step-by-step constructions in Interlocking

Figures are not so much instructions for artists as exercises

for students of geometry. Were this the case, these medieval

constructions would be analogous to contemporary point-

joining constructions promoted by multiple Western authors

since the 1970s whereby people with an interest and facility

with geometry and an appreciation for Islamic geometric

patterns analyzed specific designs to better understand their

geometric nature by creating step-by-step construction

sequences.

The fact that Interlocking Figures is the only known

historical treatise that accompanies the illustrations of geo-

metric patterns with instructional text, coupled with the

simplified instructions for creating approximate

constructions that would otherwise require far greater math-

ematical sophistication, would appear to be a persuasive

argument for the step-by-step instructions being representa-

tive of the primary methodology responsible for this geo-

metric art form.79 Even prior to Interlocking Figures

becoming known to the public through the work of Wasma’a

Chorbachi,80 as mentioned, the conviction that point-joining

was the preeminent design methodology employed by Mus-

lim geometric artists had been promoted by several authors

since the 1970s. More recently, the polygonal technique has

become increasingly accepted as especially relevant to the

development of Islamic geometric patterns—especially con-

sidering the multiple examples of historical evidence for this

methodology. Despite the growth in acceptance of the

polygonal technique, the historical significance of the

point-jointing methodology is central to any serious study

of Islamic geometric design, and all the more so in light of

the constructions contained within Interlocking Figures.
The argument for the more exulted significance of this

treatise, whereby artists were provided with necessary

approximate solutions to geometric figures through

collaboration with mathematicians, runs as follows:

(1) there was a desire to create designs with geometric

figures, such as heptagons and nonagons, that required

advanced mathematical skill, such as intersecting conic

sections, to produce mathematically correct constructions;

(2) these mathematically correct constructions were beyond

the intellectual or practical abilities of artists working in the

geometric idiom; (3) and therefore mathematicians working

with artists produced simplified step-by-step instructions for

various geometric figures and individual patterns that would

approximate true mathematical accuracy through what is

described herein as point-joining constructions. The first

two parts of this proposition assume that artists, in their

wish to produce more complex designs employing less

straightforward n-fold rotational symmetries, would not

have conceived the very simple method of dividing the

circumference of a circle or arc into a desired number of

equal segments, or modular units, using a pair of dividers or

compass [Fig. 295]. While this does not provide true mathe-

matical precision, it is very fast, and no less accurate from a

practical standpoint. Whether working with intersecting

conic sections or the simple division of a circle’s circumfer-

ence into equal units, the drawing of any figure, let us say a

nonagon, requires the use of tools such as dividers, straight-

edge, and set squares. The use of these tools can never be

mathematically precise: the point of the divider will never

fall at the theoretically correct intersection; the opening of

the divider will never precisely conform with the precise

mathematical distance; and a line between two points will

never connect with absolute mathematical precision. The

more steps in a handmade geometric construction, the

greater the compounding error. Maintaining our example,

the simple division of a circle’s circumference into nine

segments requires fewer steps than creating a nonagon

through intersecting conic sections, and the end result is no

less accurate from a practical standpoint. In addition to more

complex formulae, Interlocking Figures indeed makes ref-

erence to this type of mathematical approximation.81 But to

assume that the presence of this divisional methodology in

some of the provided instructions is an indication that artists

needed to be taught this very simple procedure is disingenu-

ous to the intelligence and innovative spirit of artists, who

were, let us not forget, already well advanced in producing

highly complex patterns by the time of this treatise’s likely
creation. This calls into question the third part of the above

79 –Chorbachi (1989), 776.

–Bulatov (1988), 52.
80 Chorbachi (1989), 751–798.

81 For example: “But we have found a technique of approximation

(taqrı̄b) that, whenever we divide a right angle into nine equal parts,

four parts of that angle are بحآ and five parts are دوب . And this is the

limit of approximation.” MS Persan 169, fol. 190a (upper right corner,

diagonal text of four lines). Translation by Carl W. Ernst, Kenan

Distinguished Professor of Religious Studies, The University of North

Carolina at Chapel Hill.
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proposition: that artists required mathematicians to produce

simplified instructions for the construction of individual

patterns. If artists’ innate practical skills meant that they

were not reliant upon mathematicians to create such geomet-

ric masterpieces as the sevenfold designs on the façade of the

minaret of Mas’ud III in Ghazna, Afghanistan (1099-1115)

[Figs. 280 and 281], or the design with seven- and nine-

pointed stars that surrounds the mihrab at the Friday Mosque

at Barsian, Iran (1105) [Fig. 429], then the direct contribu-

tion of mathematicians toward the growth of sophistication

and maturity in this ornamental tradition becomes less sig-

nificant. And if other design methodologies, such as the

polygonal technique, are demonstrably superior in their

ability to generate new and original designs, and if this is

supported by the preponderance of historical evidence, then

elevating the methodological significance of Interlocking

Figures would appear open to question.

Many features of the anonymous Interlocking Figures do
not support the premise that this was a manual prepared for

use by artists to better equip them in their use of these

construction sequences, herein referred to as point-joining,

as a primary design methodology for creating new patterns.

Nowhere within the text does it state that the work is

intended for artists. In fact, the only references to artists

within this document pertain to specific constructions used

by some artists to construct rather simple designs.82 In short,

the author appears to be more influenced by artists than

influence upon them. And while certainly intriguing, the

large portion of this treatise dedicated to geometric

dissections does not appear to be of any practical use to

artists working with geometric design. Similarly, many of

the instructions are of questionable relevance to artists. For

example, the multiple permutations on the construction of

the pentagon would have no practical value to geometric

artists who it can be presumed would be very familiar with

the construction of this simple figure. The inclusion of these

instructions appears to corroborate a fascination with diverse

geometric solutions as intellectual exercises. Significant

attention is also given to the construction of the heptagon

and nonagon; but as mentioned, segmenting the

circumference of a circle with a pair of dividers was a

more practical way of accurately producing these polygons.

One possible reason for the preponderance of point-

joining instructions in Interlocking Figures could have to

do with the very different functions that these two design

methodologies appear to have within this ornamental tradi-

tion. The polygonal technique, in both its systematic and

nonsystematic variants, is predisposed to the creation of new

designs. By contrast, point-joining does not conveniently

lend itself to designing original patterns, but is an effective

method for recreating existing designs. As proposed above,

if indeed the point-joining technique was used principally

for reproducing existing patterns by artists and craftspeople

not otherwise trained in the very specific methodology of the

polygonal technique, then it would appear reasonable to

consider the possibility that the intention behind the

constructions for specific geometric patterns in Interlocking

Figures may have been to develop step-by-step instructions

for such non-specialized artists and craftspeople. If this was

indeed the case, Interlocking Figures provides important

evidence of how specific geometric patterns were introduced

and disseminated to artists and craftspeople throughout Mus-

lim cultures without jeopardizing the exclusivity of method-

ological knowledge among the actual originators of such

patterns.

Several of the geometric patterns included in Interlocking

Figures are also found within the architectural record. Of

particular interest is the presence of two notable examples

from this treatise that are also found within the northeast

dome chamber of the Friday Mosque at Isfahan (1088-89).

Indeed, there appears to be more than a coincidental rela-

tionship between Interlocking Figures and this remarkable

architectural monument. If the 1300 date attributed to

Interlocking Figures is correct, the examples within the

northeast dome chamber precede this treatise by approxi-

mately 200 years.83 Figure 57 illustrates one of the most

remarkable patterns from Interlocking Figures: the afore-

mentioned design with sevenfold symmetry that is the only

example from this treatise that includes an underlying gen-

erative tessellation typical to the polygonal technique. Con-

sidering the possibility of an earlier date of origin, Jan

Hogendijk has suggested that the occurrence of this heptag-

onal pattern in both the anonymous treatise84 and the north-

east dome chamber of the Friday Mosque at Isfahan

[Photograph 26] may indicate that the same individuals

produced both during the same period, and that the presence

of Omar Khayyam (1038-1141), the great Persian mathema-

tician and poet, in Isfahan during the construction of the

82 –“Some craftsmen (s
˙
unnā‘) draw this problem in such a way that

they take its height as seven portions and its width as six portions. The

magnitude (‘uz
˙
m) is close.” MS Persan 169, fol. 187b (four lines of

upside down text at the corner of the large rectangle). Translation by

Carl W. Ernst, Kenan Distinguished Professor of Religious Studies,

The University of North Carolina at Chapel Hill.

–“Masters perform a test of the proportion of this problem, and Abu

Bakr al-Khalil has performed the test by several methods (wajh,
lit.“face”) and has achieved it. One of those [methods] is the following,

which has been commented upon.” MS Persan 169, fol. 189a. (bottom

three lines of main text). Translation by Carl W. Ernst, Kenan Distin-

guished Professor of Religious Studies, The University of North

Carolina at Chapel Hill.

83 This 200-year discrepancy diminishes arguments for the importance

of this treatise to the development of this geometric idiom.
84MS Persan 169, fol. 192a.
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northeast dome suggests the possibility that he may have

been associated with this process.85 This heptagonal pattern

was used in the tympanum of one of the eight recessed

arches beneath the cupola. Whether or not Interlocking

Figures dates to this earlier period, or involved Omar

Khayyam in its preparation, it would appear significant that

another one of these eight arches from the northeast dome

chamber employs a pattern that is almost identical to a

design represented within Interlocking Figures.86 This non-
systematic design is represented in Fig. 69, and is

characterized by six-pointed stars placed at the vertices of

the isometric grid. The only differences between the design

from Interlocking Figures [Fig. 309b] and that from the

recessed arch in Isfahan [Fig. 309a] [Photograph 27] are

slightly different angles in the layout of the pattern lines,

as well as the absence of regular hexagons centered at each

vertex of the isometric grid. Although only small changes,

the slightly adjusted pattern angles and the inclusion of the

hexagons in the architectural example from Isfahan result in

a significant improvement to what is already a successful

design. In particular, these changes produce regular

heptagons and attractive five-pointed stars within the pattern

matrix. The inclusion of the regular heptagons would appear

to be a willful corollary with the above-referenced heptago-

nal pattern in one of the neighboring recessed arches in this

domed chamber. A nearly identical example of this nonsys-

tematic design in Isfahan is also found in the Zangid doors in

the portal of the Nur al-Din Bimaristan in Damascus (1154)

[Fig. 309c]. The pattern in these doors has slightly more

acute angles, as well as added geometric rosettes in place

of the six-pointed stars. All three of these examples are

easily created from the same underlying generative tessella-

tion. However, the illustration and written instructions in

Interlocking Figures do not include the underlying genera-

tive tessellation. The point-joining construction sequence

provided in the text of this manuscript is insufficient to

complete the design, although a person familiar with this

design tradition could reasonably extrapolate the complete

design from the instructions provided. However, this extrap-

olation requires advanced knowledge of the desired end

result, making the instructions unsuitable for teaching this

design to anyone not already familiar with it. Be that as it

may, the fact that both the heptagonal design in Fig. 57 and

the nonsystematic isometric pattern in Fig. 69 were used in

the Seljuk ornament of the northeast dome chamber of the

Friday Mosque at Isfahan suggests the possibility that the

compilers of Interlocking Figures were very likely familiar

with this building.

There are two patterns in Interlocking Figures that are

characterized by 10- and 12-pointed stars. With the excep-

tion of a very unsuccessful pattern with six-, seven-, and

eight-pointed stars (see below), these are the only patterns

represented with compound local symmetry. The first exam-

ple with 10- and 12-pointed stars87 is identical to a design

from the Great Mosque of Aksaray in Turkey (1150-53)

[Fig. 414]. Nonsystematic patterns that employ two seem-

ingly incompatible regions of local symmetry within the

pattern matrix were an early twelfth-century innovation;

and notable twelfth-century examples include a very suc-

cessful design with 7- and 9-pointed stars at the Friday

Mosque at Barsian, Iran (1105) [Fig. 429], and an outstand-

ing design with 11- and 13-pointed stars at the mausoleum of

Mu’mine Khatun in Nakhichevan, Azerbaijan (1186)

[Fig. 434] [Photograph 35]. As with the design from both

Interlocking Figures and the Great Mosque of Aksaray,

compound patterns with disparate local symmetries fre-

quently rely upon more complex repetitive stratagems that

transcend the more prosaic orthogonal and isometric grids.

As demonstrated previously, this variety of more complex

geometric design will frequently utilize either rectangular or

non-regular hexagonal repeat units. Compound patterns are

not a feature of Islamic geometric ornament prior to the early

twelfth century. Both of these patterns with 10- and

12-pointed stars from Interlocking Figures repeat upon a

rectangular grid, and it is worth noting that the first of the

two is also represented in the Topkapi Scroll88 wherein it is

illustrated along with its underlying generative tessellation.

The second design from Interlocking Figures with 10- and

Fig. 69

85 Hogendijk (2012), 37–43.
86MS Persan 169, fol. 193a.

87MS Persan 169, fol. 195b.
88 Necipoğlu (1995), diagram no. 44.
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12-pointed stars89 is not presently known within the archi-

tectural record, although it is a beautiful design, and fully in

keeping with the mature style of compound patterns. This

also repeats upon a rectangular grid, but its underlying

generative tessellation is completely different. While the

stylistic character of this design is fully in keeping with

similar patterns with compound local symmetry that were

created during the period of heightened maturation, the fact

that this illustration from Interlocking Figures is not

accompanied by any additional construction lines or instruc-

tional text, and that it is near the end of the manuscript,

suggests that this may have been added when the manuscript

was copied at a later date. Similarly, this is likely true of the

very last design in the manuscript, whose swastika aesthetic

suggests a later Timurid origin.90

Some of the examples in Interlocking Figures that have

been identified as geometric patterns intended for ornamen-

tal use appear to actually be mathematical exercises without

ornamental utility. In particular are two varieties of motif

based upon the rotational application of quadrilateral kite

shapes. Great emphasis was given within Interlocking
Figures to these two types of motif, with multiple

constructions in each case. In their ideal form, both require

conic sections to accurately construct the triangles that com-

prise these motifs, and in each case, the multiple construc-

tion sequences provide approximate solutions for their

production without conic sections. Ten of the figures in

Interlocking Figures are step-by-step point-joining

instructions for constructions comprised of quadrilateral

kites in fourfold rotation within a square. The kites are

subdivided into secondary quadrilaterals and triangles.91

Without their subdivision, most of these figures are similar

to the rotating kite constructions that were frequently used in

Islamic architectural ornament, with early examples found in

the brickwork façade of the western tomb tower at

Kharraqan (1093) [Fig. 27c], and on a wooden door at the

Imam Ibrahim mosque in Mosul92 (1104). The compilers of

Interlocking Figures paid considerable attention to approxi-

mate constructions of a rotating kite design with the specific

geometric proportion wherein the altitude of the right trian-

gle plus the shortest edge is equal to the hypotenuse. In the

text associated with one such construction, differentiation is

made between Ibn e-Heitham’s method of constructing this

triangle with conic sections, hyperbola and parabola, and the

provided construction using a T-square.93 In his paper that

references Interlocking Figures Jan Hogendijk has pointed

out that Ibn e-Heitham is the Persian form of Ibn al-Haytham

(965-1041), an important Arab mathematician and astrono-

mer (Alhazen) who was interested in conic sections, but

whose work on this triangle is missing. Jan Hogendijk also

points to the fact that Omar Khayyam (1038-1141) was also

concerned with this triangle, describing it in his treatise on
the division of the quadrant.94 It is important to note that the

fundamental constituent of a rotating kite design is a right

triangle that is mirrored on its hypotenuse to create the kite

motif, and that a rotating kite pattern can be made from any

right triangle.95 There are, therefore, a theoretically infinite

number of rotating kite patterns—each with common 90�

angles and differing pairs of acute angles.96 It is worth

noting that the proportions of the rotating kite patterns

used at both Kharraqan and Mosul, and in fact almost all

examples from the ornamental record, have a very simple

construction that produces a specific proportion wherein the

length of the edge of the central square is equal to the

shortest edge of the surrounding kites. This proportion is

very pleasing to the eye, but is not present in the multiple

examples in Interlocking Figures. There are a number of

ways that this visually more pleasing rotating kite motif can

be easily constructed, including from a simple square or a

3 � 3 grid of nine squares [Fig. 27]. Similarly, Abu al-Wafa

al-Buzjani (940-998) provided an elegant and equally simple

square-based method for drawing the identical fourfold

rotating motif in his About that which the artisan needs to
know about geometric constructions.97 Interlocking Figures

includes five approximate constructions for the rotating kite

motif created from the triangle described by Omar

Khayyam. The compiler’s reference to Ibn al-Haytham is a

clear indication that they knew that this triangle required

conic sections for a precise mathematical construction, and

their reason for including the multiple approximate

constructions has been proposed as a simplified approach

89MS Persan 169, fol. 196a.
90 Several scholars have suggested the possibility that some of the

illustrations in Interlocking Figures may date to the Timurid period.

Gülru Necipoğlu has specifically referenced the final illustration, with

its distinctive swastika aesthetic, as likely of Timurid origin, but goes

on to mention the possibility of an earlier origin: “even this last pattern

is not inconsistent with an earlier medieval repertory,” Necipoğlu

(1995), 180 [Part 4, note 113].

–MS Persan 169, fol. 199a.

–Bulatov (1988).

–Golombek and Wilber (1988).
91 –MS Persan 169, fols. 188a, 189b, and 19a.

–Jan Hogendijk refers to this motif as the 12 kite pattern. See:

Hogendijk (2012), 37–43.
92Wasma’a Khalid Chorbachi compares the rotating kite designs from

the anonymous manuscript to multiple historical examples, including

the door from Mosul. See Chorbachi (1989), 751–789.

93MS Persan 169, fol. 191a.
94 Hogendijk (2012), 37–43.
95 The one exception to the rule that all right triangles will produce

rotating kite designs is in the case of the isosceles triangle with equal

45� acute angles. When this is mirrored along its long side it produces a

square rather than a kite.
96 Cromwell and Beltrami (2011), 84–93.
97 Chorbachi (1989), 769.
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for artists who would not have known the methodology of

conic sections.98 However, there are two problems with this

assertion. Firstly, the visual character of the subdivided

rotating kite designs in Interlocking Figures does not con-
form to the many examples of fourfold rotating kite designs

from the architectural record. These are invariably

non-subdivided. Secondly, despite assertions to the con-

trary,99 the very specific geometric proportions of the rotat-

ing kite motif that results from using Omar Khayyam’s
elusive triangle do not appear to have been used within the

architectural record. Furthermore, the supposed need to edu-

cate artists in the difficulties of creating the rotating kite

motif is not supported by the fact that the examples from

the architectural record are very easy to produce. It would

therefore appear that the focus upon approximate

constructions for these subdivided rotating kite designs

with Khayyam-like proportions was more an intellectual

exercise on the part of the mathematicians who compiled

this section of the treatise, and less a product for use by

artists in their ornamental constructions.

The other rotational kite motif that received almost equal

attention in Interlocking Figures is comprised of two kite

motifs in twofold rotational point symmetry that are placed

within a bounding rectangle. This treatise contains seven

separate constructions for this motif, and as with several of

the fourfold rotational kite examples, these kites are

subdivided into three polygons that maintain the bilateral

symmetry of the original kite. Figure 70a is constructed from

the point-joining instructions given in fol. 185v from

Interlocking Figures. As with the fourfold rotational kite

motif, the basic constructive component is another triangle

of specific proportion that requires conic sections to draw

with mathematical precision, and like the fourfold examples,

the multiple instructions for this rectangular motif make use

of approximate constructions that side step the use of conic

sections. This is confirmed in the written instructions

wherein the author ends by stating that the triangular com-

ponent is difficult to create, that it is outside Euclid’s
Elements, and otherwise requires the use of conic

sections.100 As demonstrated in the upper portion of Fig.

70a, the completed rectangle is produced from the

generating triangle through mirroring the triangle on its

hypotenuse to create the distinctive quadrilateral kite. This

is subdivided into three secondary quadrilaterals. The

subdivided kite is rotated with point symmetry such that

the secondary approximate quarter octagons on adjacent

sides of the two kites are contiguous. The specific

proportions of the original triangle allow for the acute angles

of each kite to align with the extended edges of the other,

thus creating a bounding rectangle. Alpay Özdural suggests

A B C

Fig. 70

98 –Chorbachi (1989), 765.

–Özdural (1996), 191–211.

–Hogendijk (2012), 37–43.
99 Some scholars who have written on the significance of the fourfold

rotating kite designs in Interlocking figures have failed to differentiate

between the geometric proportions of the examples from this treatise

and the proportions of the examples from the architectural record. By

conflating all rotating kite designs into a single complex construct

requiring conic sections for mathematically accurate construction, the

need for mathematicians to assist artists in the construction of

simplified approximations is corroborated. See Chorbachi (1989),

751–789.

100 “Producing a triangle such as this is difficult, and it falls outside of

the Elements of Euclid. It belongs to the science of conics (makhrūṭāt)
and it is produced by the action of moving the ruler (misṭara). When the

height of the vertical is postulated (mafrūd
˙
) as in this example,

postulated as half of segment بآ , it produces the square وهحآ .” MS

Persan 169, fol. 185b. (Bottom three lines of diagonal text in upper

right). Translation by Carl W. Ernst, Kenan Distinguished Professor of

Religious Studies, The University of North Carolina at Chapel Hill.
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that the multiple constructions for this figure were intended

for artists to create a geometric design that mirrors the

rectangular motif to cover the plane.101 Figure 70b shows a

widened line version of this pattern, thereby providing a

more typical ornamental treatment to the line work in Fig.

70a. The deficiencies as an ornamental design are readily

apparent: the six-pointed stars lack sixfold rotational sym-

metry, and the irregular octagons are not in conformity with

the aesthetic standards of this ornamental tradition. Not

surprisingly, no examples of this poorly proportioned pattern

are known from the historical record. However, this basic

conceptual arrangement, but with symmetrically regular

six-pointed stars and regular octagons, can result in an

acceptable design. Figure 70c is just such an idealized ver-

sion of this otherwise unsatisfactory design, and the

incorporation of regular octagons and six-pointed stars

completely solves the visual imbalance of the design created

from the multiple constructions in Interlocking Figures. This
improved version is very easily created by using the exterior

angles of a regular octagon to produce the angular

proportions of the six-pointed stars. In light of the geometric

complexity of designs produced during the period of

Interlocking Figures estimated origin, this idealized version

would have posed no intellectual challenge to a competent

geometric artist of the period. While no examples of this

idealized version are known in the ornamental arts of the

Seljuks or the direct inheritors of their geometric traditions,

this particular combination of octagons, six-pointed stars,

and irregular hexagonal interstice regions was used as a

generative tessellation for a design on the back wall of the

previously mentioned niche in the Mamluk entry portal of the

Sultan al-Nasir Hasan funerary complex in Cairo (1356-63)

[Fig. 413] [Photograph 58]. Unlike almost all other geometric

patterns within the architectural record, this example employs

both the generative tessellation and the design itself, and is an

important source of evidence for the historicity of the polygo-

nal technique. While this unusual arrangement of octagons

and six-pointed stars is responsible for the very lovely design

at the Sultan al-Nasir Hasan funerary complex, it does not

appear to have been used otherwise as ornament. The sim-

plicity of construction for the idealized version in Fig. 70c is

in marked contrast to the complexity of the seven

constructions in Interlocking Figures. Had these seven

constructions indeed been intended for artistic application,

it is reasonable to assume that the originators of these

constructions, be they mathematicians working either with

or without artists, would have known that the resulting

octagons and six-pointed stars would not have had regular

eightfold and sixfold symmetry. It can also be assumed that

if the objective had been to create an aesthetically acceptable

design, a construction sequence that provided for regularity

of the octagons and six-pointed stars would have been

provided—especially considering the relative simplicity of

such a construction. As with the previous examples of four-

fold rotational kite motifs from this treatise, it would appear

that the interest in this construction was less for the purpose

of informing artists of a construction sequence for producing

a satisfactory geometric pattern, and more as a series of

geometric exercises in their own right.

The greatest reason for calling into question the view that

Interlocking Figures is an exposition of the primary design

methodology employed during this developmental period of

the geometric idiom is in the prescribed instructions for each

included pattern. Many of the step-by-step constructions are

rife with inaccuracies that lead to distortions, and the

resulting designs are not indicative of the geometric accu-

racy within the vast canon of historical geometric ornament.

For this reason, several of the patterns from Interlocking

Figures fall short of their potential for creating designs that

are aesthetically acceptable to this ornamental tradition. A

case in point is a construction that places seven-pointed stars

on the edges and near the vertices of a square repeat unit.102

As with previous examples, this design utilizes the geometry

of a fourfold rotating kite motif to structure the design upon.

As clearly observed in the compilers’ illustration, rather than
their placement on each vertex of the square repeat, the

points of each of the 4 seven-pointed stars extend beyond

the vertices of the square repeat. Another failing is particu-

larly problematic in that historical examples of geometric

patterns based upon a structure of fourfold rotating kites

invariably have bilateral symmetry within the kite element

[Figs. 28], whereas the dotted lines that make up the kites in

this example do not. What is more, some of the pattern lines

that extend from the points of the seven-pointed stars are not

collinear with the star, and change direction at the point of

intersection. These problems are generally not in keeping

with the aesthetics of this design tradition, and the inclusion

of this construction in the manuscript indicates a certain

naı̈veté on the part of the creator of this example. This design

is similar in principle to an orthogonal pattern found at both

the Mirjaniyya madrasa in Baghdad (1357), and the Amir

Qijmas al-Ishaqi mosque in Cairo (1479-81) [Fig. 25c]. This

also places seven-pointed stars on the edges of a square

repeat unit, but has well-balanced proportions throughout.

The first of the above-referenced designs with 10- and

12-pointed stars103 is particularly revealing of the

inconsistencies that result from the flawed point-joining

101 Figure 70a illustrates the repetitive application of this construction,

and, except for color, is identical to the prior representation by Alpay

Özdural. See Özdural (1996), Fig. 7.

102MS Persan 169, fol. 194b.
103MS Persan 169, fol. 195b.
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construction sequence. This example in Interlocking Figures
is in marked contrast to the successful use of this design at

the Great Mosque at Aksaray, Turkey (1150-53). As per the

example of this pattern in the Topkapi Scroll, this is easily

and accurately created using the polygonal technique

[Fig. 414]. However, a quick study of the anonymous

author’s point-joining construction reveals the design to be

incomplete, with a series of false starts, overdrawing, and

poor angles in the unresolved region. In point of fact, the

written instructions do not produce a successful design. This

is a stark example of the inadequacy of the point-joining

technique to accurately provide an easily followed construc-

tion for complex patterns with multiple centers of local

symmetry: especially when these centers have seemingly

disparate rotational symmetries such as the 10-fold and

12-fold regions within this design. The failings of this con-

struction appear to indicate the limited scope of the author’s
knowledge and technical mastery of the more complex

designs that were already a feature of this tradition at the

likely time of the manuscript’s preparation.
Other than the fivefold swastika design at the end of the

treatise that was likely a Timurid addition, the only pattern

with fivefold symmetry from Interlocking Figures is a

median field pattern.104 This is surprising in that fivefold

patterns are an immensely important feature of this geomet-

ric art form, and were widely employed by its estimated date

of origin. As with so many of the designs in this treatise, this

fivefold example also fails to achieve the stylistic aesthetic

to which it aspires. The greatest visual failing is in the lack of

collinearity in the crossing pattern lines. With adjustments,

this pattern could be made successful, and its portrayal in

Interlocking Figures appears to be the product of someone

lacking a refined understanding of the aesthetic requisites of

this design tradition generally, and of the fivefold design

discipline specifically.

An interesting, but ultimately disappointing, geometric

pattern from Interlocking Figures is made up of six-, seven-,

and eight-pointed stars placed into a rectangular repeat

unit.105 A cursory examination of this figure reveals several

problems, most notable being the points of the seven-pointed

stars not intersecting with the edges of the rectangular

repeat. The lack of collinearity in the crossing pattern lines

that connect the seven-pointed star with both the six- and

eight-pointed stars is also problematic. A number of

examples of geometric designs with sequential numbers of

star types are known to the historical record: for example, a

very-well-conceived pattern with five-, six-, seven-, and

eight-pointed stars from the mihrab of the Friday Mosque

at Barsian (1105) [Fig. 332]. However, the arrangement of

the sequential star forms in the example from Interlocking

Figures appears arbitrary and contrived by comparison, and

falls far short of achieving the already well-established aes-

thetic standards of this ornamental tradition.

Despite the presence of problematic designs in

Interlocking Figures, there are several that are very success-

ful, with accurate and useful point-joining instructions.

Without a doubt, the most successful and remarkable design

from this manuscript is the above-mentioned heptagonal

design represented in Fig. 57. The design illustrated in Fig.

71a is another successful, if considerably less remarkable,

pattern from Interlocking Figures.106 This places six-pointed

stars upon the vertices of an orthogonal grid with 90�

alternating orientations much in the fashion of the historical

designs in Fig. 28. Coinciding with four of the points of these

4 six-pointed stars are four of the points of an eight-pointed

star centered within the square repeat unit. This central

eight-pointed star is, by force, rotated out of an orthogonal

alignment by 11.4254. . .�. Except for the fact that the 120�

exterior angles of the eight-pointed stars that match those of

the six-pointed stars must be inferred (no written instructions

are provided), the point-joining construction for this design

is complete and accurate. The oscillating orientation of the

eight-pointed stars, and rotating concave octagonal shield

elements of the repetitive structure (red), shares geometric

properties with typical oscillating square and rotating kite

designs. However, rather than the angle of declination being

governed by a single polygonal element, it is the direct

product of the six-pointed stars in 90� rotation. This design
is a pleasing juxtaposition of six- and eightfold rotational

symmetry, and its attractive qualities may well have led to its

use historically, although no examples are known. Figure

71b slightly changes the design so that the proportions are

determined by regular heptagons.107 The original design

suggests these heptagons within the interstices of the two

star forms. By utilizing regular heptagons, the exterior

obtuse angles of the six- and eight-pointed stars become

the product of this polygon, as do the proportions of the

concave hexagonal repetitive shield elements (red). This

change is attractive in that the eye readily recognizes and

appreciates the regular heptagon; but this is at the loss of the

sixfold rotational symmetry of the six-pointed stars.

104MS Persan 169, fol. 193b.
105MS Persan 169, fol. 190b.

106 This manuscript includes a second design (fol. 191r) that places

six-pointed stars in 90� rotation around the vertices of the square repeat
unit. However, the construction of the six-pointed stars is problematic

in that it does not provide for the desired sixfold rotational symmetry.

MS Persan 169, fol. 194a.
107 This experimental change to the original design is the work of the

author, but was inspired by an observation by Jan Hogendijk.
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One of the orthogonal designs from Interlocking Figures

is particularly successful both aesthetically and in its point-

joining construction. This is the one fourfold rotational kite

figure from Interlocking Figures that is an actual geometric

pattern, and although no examples of its use are known

within the architectural record, its aesthetic character is

fully in keeping with this ornamental tradition. Of particular

significance is the central fourfold rotational motif

comprised of a square surrounded by four rotating kites

separated by four rotating chevrons, all within a bounding

square [Fig. 112d]. This isolated motif is found in a number

of historical patterns from Persia and Khurasan to which this

example from Interlocking Figures is closely related. While

this design is a point-joining construction, it is more easily

produced using the polygonal technique. From this perspec-

tive, it is a two-point pattern that is created from the system
of regular polygons through the use of the two-uniform 33.42

–32.4.3.4 underlying tessellation of triangles and squares

[Fig. 112c]. The point-joining instructional text that

accompanies this illustration in Interlocking Figures states:

Masters perform a test of the proportion of this problem, and

Abu Bakr al-Khalil has performed the test by several methods

(wajh, lit.“face”) and has achieved it. One of those [methods] is

the following, which has been commented upon.108

Abu Bakr al-Khalil and his associates do not appear to

have been knowledgeable of the less complex approach to

constructing this pattern using underlying triangles and

squares, or if they were, they cared not to reveal it. A

comparison between the point-joining instructions in

Interlocking Figures and the derivation of this design using

the polygonal technique provides clear evidence of the supe-

riority of the polygonal technique as a design methodology.

This is especially true not just for its inherent simplicity, but

in its greater flexibility: the ability of rearranging the polyg-

onal modules of the system of regular polygons into other

tessellations, thereby producing new patterns, as well as the

ability to create additional patterns by applying alternative

pattern lines from the other historical pattern families to each

new underlying tessellation. When using the polygonal tech-

nique to create this design, the characteristic rotational motif

is produced from a central square contiguously surrounded

by four triangles. The underlying squares within this gener-

ative tessellation are provided with two perpendicular sets of

parallel pattern lines placed on each edge, thereby

identifying this as a variety of two-point pattern. These

pattern lines extend into the adjacent underlying triangles

until they meet with other extended pattern lines. An early

example of a design associated with this variety of two-point

design methodology, with the central fourfold rotational

motif, was produced by Khwarizmshahid artists for the

Zuzanmadrasa in northeastern Iran (1219) [Fig. 112b] [Pho-

tograph 38]. Being that Abu Bakr al-Khalil has not yet been

identified through other sources, the similarity between the

example from Interlocking Figures and that of the Zuzan

A B

Fig. 71

108MS Persan 169, fol. 189a. (bottom three lines of main text). Trans-

lation by Carl W. Ernst, Kenan Distinguished Professor of Religious

Studies, The University of North Carolina at Chapel Hill.
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madrasa raises the possibility first proposed by Alpay

Özdural that portions of Interlocking Figures may have

been produced during the Khwarizmshahid period.109

Another example of a successful point-joining construc-

tion from Interlocking Figures produces a very-well-known
orthogonal design that was used widely throughout the

Islamic world.110 This median design is easily produced

from the fourfold system A [Fig. 145], and was particularly

popular in Khurasan during the late eleventh and early

twelfth centuries. The illustration and instructions for this

design in Interlocking Figures are an accurate, if slightly

incomplete, point-joining method for its reproduction,

although it is worth noting that the illustration, as drawn in

this treatise, includes point-joining layout lines that obscure

the actual pattern to the point of being difficult to initially

identify. This presumably explains why this figure from

Interlocking Figures has not been recognized as this partic-

ularly well-known fourfold pattern in previous studies. The

inclusion of this design is significant in that it was used so

widely throughout Khurasan and eastern Persia preceding

the likely date of origin of this treatise.

By the time Interlocking Figures was written, the geo-

metric ornamental idiom was fully mature, and the need for

artists to have direct mathematical input would have been

less of an aesthetic imperative than during the earlier time of

Abu al-Wafa al-Buzjani (940-998). As stated, the many

problems with the manuscript’s constructions lead one to

question the assumption of its significance to the

methodological development of this tradition. And yet, as

demonstrated, this anonymous manuscript also has numer-

ous constructions that accurately produce geometric patterns

that are very acceptable, and even outstanding—as per the

pattern with heptagons that is also found in the northeast

dome chamber in the Friday Mosque at Isfahan.

The question of by and for whom Interlocking Figures

was produced remains intriguing. Was it written by

mathematicians for artists, or perhaps by mathematicians,

inspired by and seeking to better understand the geometric

work of artists? Or did the point-joining constructions of

geometric patterns result from artists privy to the polygonal

technique requesting assistance from mathematicians to

devise step-by-step instructions that could be provided to

artists and craftspeople more widely so that this art form

could be adopted more pervasively in a wide range of

media? These uncertainties are augmented by the lack of

cohesion throughout this treatise, by the inconsistencies of

mathematical sophistication, and disparities between naively

conceived simplistic geometric patterns on the one hand, and

well-realized construction sequences for very acceptable

designs on the other. One is led to conclude that this treatise

was the work of multiple individuals with variable levels of

mathematical and artistic proficiency, and possibly for more

than a single intent.

Recent publications that focus upon the point-joining tech-

nique include well-conceived construction sequences for

numerous orthogonal and isometric designs, as well as some

fivefold patterns. A typical example of a sequential point-

joining construction (by author) is shown in Fig. 72. This is

for a simple design that was used in a brickwork border at the

tomb of Nasr ibn Ali (1012-13), the earliest of the three

Fig. 72

109 Özdural (1996).
110MS Persan 169, fol. 196a.
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adjoining mausolea at Uzgen, Kyrgyzstan [Photograph

15]. This same design can also be created from the polygonal

technique, and indeed is one of the earliest examples of a

design that can be created from the fourfold system A. Another

relatively early example of this well-known median design is

from the mausoleum of Sultan Sanjar in Merv, Turkmenistan

(1157) [Fig. 159]. As with other designs with low or moderate

complexity that were very likely produced originally with the

polygonal technique, this illustration demonstrates how such

designs can frequently be recreated easily from point-joining

methodology.

To summarize, the point-joining technique may well have

been used historically as a means to recreate existing geo-

metric patterns among artists and craftspersons working in

the geometric idiom who were not privy to the more

specialized and highly versatile design methodologies of

the polygonal technique. While the point-joining technique

is less convenient than other generative methodologies for

designing original patterns of moderate complexity, and

especially impractical for recreating patterns with greater

complexity, it nonetheless provides a particularly useful

method of recreating existing patterns of low and moderate

complexity. The dissemination of specific point-joining

constructions to artists and craftspeople that were not other-

wise privy to some of the more esoteric design

methodologies would have allowed for the widespread and

repeated use of a wide variety of specific designs. In this

way, point-joining constructions were likely an important

contributor to the ongoing spread and consolidation of the

geometric aesthetic throughout Muslim cultures.

2.5.3 The Grid Method

Some of the less complex threefold patterns can be created

directly from the isometric grid. Through simple trial and

error, repetitive interlocking and overlapping figures can be

found that make very acceptable designs. Most of the

patterns created from the isometric grid will have pattern

lines that are congruent with the grid itself. More complex

isometric grid designs will have pattern lines in six

directions: three with the grid, and three perpendicular to

the grid. Figure 73 illustrates three isometric grid designs.

The first of these, Fig. 73a, is an interlocking design with

three- and sixfold centers of rotational symmetry that is

typical of the p6 plane symmetry group. All of the pattern

lines in this design are congruent with the grid. An example

of this design is found at the G€okmadrasa in Amasay (1266-

67). The parallel pattern lines in Fig. 73b are also congruent

with the grid, but interweave with one another to produce a

more conventional Islamic geometric aesthetic effect. This

design can also be produced very readily using the system of

regular polygons, and a fine example was used at the Shah-i

Mashhad in Gargistan, Afghanistan (1176) [Fig. 104c]. The

design in Fig. 73c employs lines that are both congruent with

the grid and perpendicular to the grid. This design can also

be produced from the system of regular polygons, and the

imbalance between the large and small background elements

can be improved by widening the pattern lines in one direc-

tion rather than both directions. This design was used on the

façade of the Mu’mine Khatun mausoleum in Nakhichevan,

Azerbaijan (1186) [Fig. 101d].

The orthogonal grid can also be used to create geometric

designs. At the most basic level, designs produced on this

grid will maintain congruency with the orthogonal grid.

Designs of this variety include the many swastika and key

patterns, as well as square Kufi calligraphic motifs. The

orthogonal nature of this variety of design made them espe-

cially relevant to the brickwork ornament championed by the

Ghaznavids, Qarakhanids, Ghurids, and Seljuks. Later

expressions included Timurid polychrome cut-tile mosaic.

Diagonal lines were also introduced to patterns created from

B CA
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the orthogonal grid, adding two more directions of pattern

line. Figure 74 illustrates a border design from the minaret of

Uzgen in Kyrgyzstan (twelfth century) that combines two

directions of lines that are congruent with the orthogonal

grid, and two directions with 45� diagonal lines. This type of
design can be used to create designs with eight-pointed stars,

and Fig. 75 illustrates the use of the orthogonal grid to

construct the well-known star-and-cross design. Figure 75a

demonstrates the problem with constructing designs with

eight-pointed stars using the grid method. Because four of

the points for each star are congruent with the grid, and the

other four are diagonals, there are two sizes of points. The

finished star does not have eightfold rotational symmetry.

Examples of the star-and-cross pattern with this distortion

are occasionally found in the architectural record, but almost

always from a much later date after this ornamental tradition

had begun to decline. Figure 75b illustrates the correct

proportion for the eight-pointed stars. More complex designs

produced from the orthogonal grid frequently have the char-

acter of the fourfold system A. Figure 76 illustrates the

orthogonal grid derivation of a widely used design, along

with the same design with the correct proportions as

generated from the fourfold system A [Fig. 145]. As men-

tioned above, point-joining instructions for this design were

included in Interlocking Figures, and several examples (with

correct proportions) are found in the early brickwork

ornament of Khurasan, including the minaret of the

Friday Mosque at Damghan, Iran (1080); the mihrab of the

Friday Mosque at Golpayegan, Iran (1105-18); and the min-

aret of Daulatabad in Afghanistan (1108-09) [Photograph

B

A

Fig. 74
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Fig. 75
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20]. Working with the orthogonal grid in Fig. 76a can be a

fast way of testing ideas and exploring design options. How-

ever, these designs will always have distortions that result

from the difference between the length and diameter of

each square cell of the orthogonal grid. As demonstrated in

Fig. 76b, when using the orthogonal grid, once a design has

been arrived at, it is necessary to draw it anew so that the

distortions are eliminated.

As stated, there are multiple options for designing the less

complex patterns in this geometric art form, and with less

complex designs it is impossible to say with certainty

exactly how a particular example was constructed. The

same design may have been constructed one way at a

given location, and another way elsewhere. Figure 77

illustrates construction solutions for a very simple fourfold

design in all three of the methods discussed herein. Figure

77a demonstrates the orthogonal grid method; Fig. 77b

provides a simple construction sequence for the point-

joining technique; and Fig. 77c shows the generation of

this pattern from an underlying tessellation associated with

the polygonal technique. The benefit of the grid method is

that it is a fast way to explore design options, but requires

correction. The benefit of point-joining is that it is an

accurate way of recreating existing designs, but lacks flexi-

bility as a means of creating original designs. By contrast,

the polygonal technique is accurate and extremely flexible,

and, as pertains to the polygonal systems, very fast. What is

more, the polygonal technique also provides for the genera-

tion of at least four distinctly different patterns from each

underlying tessellation. By way of example, Fig. 78

illustrates designs in each of the four pattern families for

the tessellation shown in Fig. 77c.

In the hands of an experienced practitioner, the orthogo-

nal grid can be used to generate increasingly complex geo-

metric patterns with fourfold repetitive symmetry. This

especially pertains to the distinctive geometric style of

Morocco and al-Andalus, and can be applied to patterns

with higher order n-pointed stars that are multiples of 8—

even up to and including 64-pointed stars. Jean-Marc

Castéra has deftly demonstrated the versatility of this

advanced orthogonal grid technique,111 which he refers to

as the “freehand method.” His methodology takes into

A B

Fig. 76

A CB

Fig. 77

111 Castéra (1996).
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account the disparity between the orthogonal and diagonal

coordinates, and the need to correct these approximations:

Since we are aware of the errors brought about by these

approximations, it is quite simple for us to correct them when

necessary, if, for example, we wish to make an actual mosaic. In

this manner, each time we create a new piece, it adopts the

correct proportions, which have been geometrically deducted

from those of the pieces that have been already made.112

Figure 79 is an example of this more complex Maghrebi

form of grid method construction requiring approximate

coordinates of the orthogonal grid.113 While this method of

constructing patterns is currently used in Morocco, the

extent to which Maghrebi artists of the past employed this

methodology is unclear. Certainly the preponderance of

geometric patterns from Morocco and southern Spain is of

a geometric nature that would allow for their creation in this

manner. However, no ancient pattern books or scrolls from

the Western regions have confirmed the historicity of this

methodology, and the patterns created from the more

advanced grid method can, almost always, also be created

using the polygonal technique with relative ease.

2.5.4 Extended Parallel Radii

There is a category of geometric pattern that is rarely

encountered, but sufficiently unusual, and indeed beautiful,

as to justify methodological analysis. While no examples of

extended parallel radii designs appear in historical scrolls or

design reference books such as the Topkapi Scroll or

A C DB

Fig. 78

Fig. 79

112 Castéra (1996), 99. (note: this quotation is from the English edition

of 1999).
113 This photograph shows the hand of Jean-Marc Castéra using the

orthogonal grid to construct the design by drawing freehand.
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Interlocking Figures, the method for constructing these

patterns can be intuited by their geometric character. The

essential feature of this methodology offsets the lines of a

radii matrix in both directions, eliminates the original radii,

and extends these parallel offsets until they meet with other

extended offset lines. In its most simple form, the lines of a

common grid are offset on both sides by an amount that will

create a visually acceptable pattern. The very simple design

in Fig. 32 can be produced in this manner, although this

replicates the most basic two-point functionality of the

polygonal technique [Fig. 96d]. As with this example, a

number of early and uncomplicated geometric patterns that

are easily created from the system of regular polygons have
these parallel grid line characteristics, including a Ghurid

brickwork panel from the façade of the western mausoleum

at Chisht, Afghanistan (1167) [Fig. 105a]. This design is

characterized by parallel offsets of the hexagonal grid and

its triangular dual. An example from the synagogue in

Cordoba, Spain (1316), constructed during the Nasrid

period, achieves greater complexity through additional par-

allel offsets of lines that connect the vertices of the hexago-

nal and triangular grids [Fig. 105h]. When created from the

polygonal technique, the distance between the parallel lines

in each of these examples is determined geometrically

through the lines being located at determined points within

the underlying generative tessellation. By contrast, with the

extended parallel radii technique the distance between the

parallel lines is generally an arbitrary determination based

upon the aesthetic predilections of the artist. Though less

formal than other design methodologies, through trial and

error, this alternative technique will nonetheless create very

beautiful designs.

The more interesting extended parallel radii designs

employ more complex radii matrices. As an example, Fig.

80 illustrates a design (by author) that utilizes a radii matrix

with ninefold symmetry at each vertex of the regular hexag-

onal grid. A close inspection of this design reveals each line

of the pattern to be an equally distanced parallel offset to the

generative radii matrix. This is not a historical design,

although it falls within the acceptable aesthetics of this

ornamental tradition. Radii matrices are a fundamental

methodological component of the polygonal technique.

They provide the structure upon which the generative polyg-

onal tessellations are created. This is especially relevant to

nonsystematic patterns with compound regions of n-fold

rotational symmetries. The historical use of radii matrices

is confirmed in the Topkapi Scroll, where they appear as

incised reference lines produced with a steel stylus. Figure

81a shows a radii matrix with local regions of 8-, 10-, 12-,

and 16-fold rotational symmetry set within a square repeat

unit. Figure 81b illustrates an acute pattern produced from

an underlying tessellation that can be made from this radii

matrix [Figs. 404 and 405]. This acute pattern was used in

the iwan of the Kemaliya madrasa in Konya, Turkey (1249).

This same radii matrix, with its very particular combination

of local symmetries, was used to create two extended paral-

lel radii designs that date to the same approximate time and

place during the Seljuk Sultanate of Rum. Figure 81c

represents the extended parallel radii design from the

Kaykavus hospital in Sivas, Turkey114 (1217-18), and Fig.

81d illustrates the closely related design from the Sultan Han

near Aksaray, Turkey115 (1229). These three designs with

identical symmetrical structure, but distinctly different

aesthetics, all come from central Anatolia and were pro-

duced within 32 years of one another: conceivably by the

same artist or artistic lineage.

2.5.5 Compass Work

The process of laying out a design with a compass or

dividers was inherited by Muslim artists from their Christian

counterparts who were actively engaged in the Hellenistic

aesthetic that survived well into the Late Antique period.

Fig. 80

114 Schneider (1980), pattern no. 426.
115 Schneider (1980), pattern no. 425.
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The earliest examples of Islamic compass-work ornament

are associated with several surviving Umayyad buildings:

the most notable examples being several pierced stone win-

dow grilles from the Great Mosque of Damascus (706-15).

While geometrically undemanding, these are significant in

their application of what had previously been an ornamental

device used primarily for mosaic pavements to a new

expression in pierced stonework. What is more, the visual

quality of these windows helped to establish interweaving

geometric designs as a primary feature of Muslim aesthetics.

Compass-work ornament has its own visual character and

curvilinear appeal, and it is not surprising that this artistic

practice continued among succeeding Muslim cultures, even

if reduced to a role of relatively minor significance. In

addition to repetitive patterns, these later expressions

included nonrepetitive, stand-alone, ornamental panels pri-

marily composed from circles within a rectangular frame.

Such compass-work constructions were occasionally used as

Quranic illuminations, including in the Quran produced by

ibn al-Bawwab in 1001. However, this study is concerned

expressly with geometric compass-work creations that have

repetitive characteristics. The methodology behind these

compass-work patterns is overtly apparent upon examina-

tion, and involves the drawing of circles at set points of a
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given geometric grid.116 These circles can be uninterrupted

or trimmed where they intersect with other circles.

Compass-work designs will sometimes incorporate

s-curves within their overall matrix. Unlike patterns created

from the polygonal technique, compass-work patterns will

often include the generative grid along with the circular

elements, thereby creating designs that include both an

angular and a curvilinear quality. Figure 82a illustrates a

very basic compass-work pattern made up of interweaving

circles set upon the vertices of the isometric grid. The

proportions of this design are easily determined by locating

the center of each circle upon the vertices of the isometric

grid and the radius at a point that is past the midpoint of each

edge of the triangular cells that make up the isometric grid.

In this illustration, the size of the circles is determined by

their circumference being placed upon the vertices of the

3.4.6.4 semi-regular tessellation of triangle, squares, and

hexagons. Figure 82b shows essentially the same design,

but with a double-line treatment. The radii and width of the

parallel circles are carefully contrived to create the distinc-

tive network of similarly sized background elements. This

compass-work design was used in the Ottoman inlaid stone

ornament of the Sehzade Mehmet complex in Istanbul

(1544-48), and is an excellent example of the continued

use of compass-work patterns among later Muslim cultures.

Figure 82c is a representation of one of the many compass-

work patterns used in the stone window grilles found in the

Great Mosque of Damascus (715). This early example

maintains the 3.6.3.6 semi-regular grid as part of the finished

design, and the circles are located at the vertices of this grid.

The circles have been trimmed where they intersect with one

another, thereby opening up the design in an aesthetically

pleasing fashion that also allows for greater light penetra-

tion. The trimming of these circles produces the distinctive

trilobed motif at the centers of each triangular cell of

the 3.6.3.6 grid. Figure 82d illustrates a slightly later Umay-

yad window grille from palace of Khirbat al-Mafjar in

Jordon (c.743). This is identical to the previous example

except for two added features: the replacement of the arcs

with s-curves that create distinctive six-pointed stars at the

vertices of the isometric repeat, and the small interwoven

circles that surround these six-pointed stars. Given their

geometric similarity, and the fact that they were produced

within 30 years of one another, it is very likely that the

design of the window grille from Khirbat al-Mafjar was

directly influenced by the earlier example at the Great

Mosque of Damascus.

Figure 83 shows an example of Tulunid compass-work

ornament set on a square grid. This pattern was used on one

of the arch soffits of the ibn Tulun mosque in Cairo (876-79).

The circles in this example are set upon the vertices of the
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Fig. 82

116 Creswell (1969), 75–80, Figs. 12 and 15.
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orthogonal grid, which is not incorporated into the

completed design. Each circle connects with a four-lobed

motif that is also placed at the vertices of the repetitive grid.

Figure 83b is from the Great Mosque of Damascus, and is

also comprised of circles set upon the orthogonal grid [Pho-

tograph 5]. A close examination of this design reveals an

unexpected similarity with the design from the ibn Tulun.

Included in the orthogonal design from the Great Mosque of

Damascus are circles of the same relative size and location

as those from the ibn Tulun, except that the earlier Umayyad

example has double the number of circles and incorporates

diagonal s-curve elements within its overall structure—

thereby creating a design with far greater density. However,

unlike the patterns in Figs. 82c and d, given the distance over

time and territory, it is unlikely that the similarity in circular

layout is the product of any direct causal influence.

2.6 Classification by Line Treatment

This final form of classification is perhaps the most obvious

in that each category is readily apparent when first viewing

any given design. Categorization by line treatment falls into

three basic forms: (1) the basic line without widening that is

almost always provided with differentiated background

colors for a tiling treatment; (2) widened lines; and

(3) interweaving lines. The thickness of the widened and

interweaving lines is variable and determined by several

criteria, including the constraints of the artistic medium;

cultural conventions; geometric concordance; and aesthetic

preferences of the artist [Figs. 85–88]. Differences in line

treatment can greatly alter the overall appearance of a pat-

tern, sometimes to the point of obscuring similitude between

examples of the same design. While line treatment is a very

basic and obvious classification, it is nonetheless important

as it greatly impacts the aesthetic quality of each historical

example, and as such becomes part of the descriptive analy-

sis that accompanies any in-depth examination of this tradi-

tion, just as it is a fundamental concern to any artist engaged

in working with these geometric patterns.

To conclude this discussion of classifications within

Islamic geometric patterns, the wide range of diverse criteria

within this tradition requires a high degree of description to

fully differentiate a given example, and place it into context

with the tradition as a whole. That said, the formal identifi-

cation of specific and critically important aspects of this

tradition allows for greater clarity and understanding of

both the bold and subtle features that permeate this remark-

able art form. Such formal classifications include repetitive

schema; design methodology; specific pattern family;

whether a pattern is nonsystematic or systematic, and if

systematic, which generative system; and when relevant,

the type of dual-level design. More nuanced considerations

include stylistic variables such as arbitrary additive or sub-

tractive features.
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