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Abstract An artificial neural network (ANN) includes nonlinear computational
elements called neurons, which are linked by weighted connections. Typically, a
neuron receives an input information and performs a weighted summation, which is
propagated by an activation function to other neurons through the ANN. Numerous
ANN paradigms have been proposed for pattern classification, clustering, function
approximation, prediction, optimization, and control. In this chapter, an attempt is
made to review the main applications of ANNs in ecotoxicology. Our goal was not
to catalog all the models in the field but only to show the diversity of the situations
in which these nonlinear tools have proved their interest for modeling the environ-
mental fate and effects of chemicals.

Keywords Artificial neural network � QSPR � QSAR � Environmental contamina-
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1 Introduction

The last decade has witnessed a surge interest in the use of artificial neural networks
(ANNs) for modeling complex tasks in a variety of fields including data mining,
speech, image recognition, finance, business, drug design, and so on [1–6]. The
raison d’être of these powerful tools is to exploit the imprecision and uncertainty of
real-world problems for deriving valuable and robust models.

The concepts of ANNs are directly inspired by neurobiology. Thus, the cere-
bral cortex contains about 100 billion neurons, which are special cells processing
information. A biological neuron receives signals from other neurons through its
dendrites and transmits information generated by its soma along its axon. In the
brain, each neuron is connected to 1,000–11,000 other neurons via synapses in
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which neurotransmitters inducing different activities are released. The human brain
contains approximately 1014–1015 interconnections [7–9]. Consequently, the brain
can be viewed as a nonlinear and highly parallel biological device characterized by
robustness and fault tolerance. It can learn, handle imprecise, fuzzy, and noisy in-
formation, and can generalize from past and/or new experiences [10,11]. ANNs can
be defined as weighted directed graphs with connected nodes called neurons that
attempt to mimic some of the basic characteristics of the human brain [11]. Conse-
quently, it is not surprising to see that now these nonlinear statistical tools are widely
used in numerous technical and scientific domains to process complex information.
After a brief overview of the characteristics of ANNs, this chapter will review the
main applications of ANNs for modeling the toxicity and ecotoxicity of chemicals
as well as their environmental fate. Their advantages and limitations will be also
stressed.

2 Characteristics of ANNs

A precise definition of learning is difficult to formulate but the fundamental ques-
tions that neurobehaviorists try to answer are: How do we learn? Which is the most
efficient process for learning? How much and how fast can we learn? In a neuro-
computing context, a learning process can be viewed as a method for updating the
architecture as well as the connection weights of an ANN to optimize its efficiency
to perform a specific task. The three main learning paradigms are the following:
supervised, unsupervised (or self-organized), and reinforcement. Each category in-
cludes numerous algorithms. Supervised is the most commonly employed learning
paradigm to develop classification and prediction applications. The algorithm takes
the difference between the observed and calculated output and uses that informa-
tion to adjust the weights in the network so that next time, the prediction will
be closer to the correct answer (Fig. 1) [1]. Unsupervised learning is used when

Fig. 1 Supervised learning paradigm (adapted from [1])
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we want to perform a clustering of the input data. ANNs that are trained using
this learning process are called self-organizing neural networks because they re-
ceive no direction on what the desired output should be. Indeed, when presented
with a series of inputs, the outputs self-organize by initially competing to recog-
nize the input information and then cooperating to adjust their connection weights.
Over time, the network evolves so that each output unit is sensitive to and will
recognize inputs from a specific portion of the input space (Fig. 2) [1]. Reinforce-
ment learning attempts to learn the input–output mapping through trial and error
with a view to maximizing a performance index called the reinforcement signal
(Fig. 3). Reinforcement learning is particularly suited to solve difficult temporal
(time-dependent) problems [1].

ANNs are also characterized by their connection topology. The arrangement of
neurons and their interconnections can have an important impact on the modeling
capabilities of the ANNs. Generally, ANNs are organized into layers of neurons.
Data can flow between the neurons in these layers in two different ways. In feedfor-
ward networks, no loops occur while in recurrent networks feedback connections
are found.

Fig. 2 Unsupervised learning paradigm (adapted from [1])

Fig. 3 Reinforcement learning paradigm (adapted from [1])
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Table 1 Taxonomy of the main types of ANNs (adapted from [1, 11])

ANN paradigm Architecture Learning type

Multilayer perceptrona Feedforward Supervised
Radial basis function network Feedforward Hybrid
Probabilistic neural network Feedforward Supervised
Kohonen self-organizing map Recurrent Unsupervised
Learning vector quantization Competitive Supervised
ART networks Recurrent Supervised/unsupervised
a
Mostly three layers

The description of the different ANN paradigms is beyond the scope of this chap-
ter and the interested readers are invited to consult the rich body of literature on
this topic (see e.g., [12–17]). However, Table 1 summarizes the main characteristics
of the different types of ANNs cited in the following sections. It is also beyond the
scope of this chapter to provide information on computer tools that can be used for
deriving ANN models. However, it is noteworthy that a list of freeware, shareware,
and commercial ANN software can be found in Devillers and Doré [18].

3 Use of ANNs in Quantitative Structure–Property Relationship
(QSPR) Modeling

Knowing the physicochemical properties of xenobiotics is a prerequisite to estimate
their bioactivity, bioavailability, transport, and distribution between the different
compartments of the biosphere [19–22]. Unfortunately, there are very limited or
no experimental physicochemical data available for most of the chemicals suscep-
tible to contaminate the aquatic and terrestrial ecosystems. Consequently, for the
many compounds without experimental data, the only alternative to using actual
measurements is to approximate values by means of estimation models, which are
generically termed quantitative structure–property relationships (QSPRs). The in-
gredients necessary to derive a QSPR model are given in Fig. 4. Although most
of the QSPR models have been derived from simple contribution methods and re-
gression analysis [23–27], attempts have been made to use ANNs for modeling the
intrinsic physicochemical properties of organic molecules as well as their environ-
mental degradation parameters linked to transformation process. These models are
discussed in the following sections.

3.1 Boiling Point

The normal boiling point (BP), corresponding to the temperature at which a sub-
stance presents a vapor pressure (VP) of 760 mmHg, depends on a number of
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Fig. 4 Ingredients for
deriving a QSPR model

molecular properties that control the ability of a molecule to escape from the sur-
face of a liquid into the vapor phase. These properties are molecular size, polar
and hydrogen bonding forces, and entropic factors such as flexibility and orien-
tation [27]. Different types of ANNs have been used for computing BP models.
Thus, a radial basis function (RBF) network was used by Lohninger [28] for pre-
dicting the BPs of 185 ethers, peroxides, acetals, and their sulfur analogs. Molecules
were described by two sets of three topological and structural descriptors yielding
the design of two models, both including 20 hidden neurons and cross-validated
from a leave-25%-out procedure. Both models outperformed regressions models
obtained under the same conditions. Cherquaoui and coworkers [29] used the same
data set of 185 molecules but their ANN was a three-layer perceptron (TLP) trained
by the backpropagation algorithm, and the chemical structures were characterized
by embedding frequencies. The ANN presented 20 input neurons and a bias, from
3 to 8 hidden neurons and a bias, and an output neuron. Their selected 20/5/1
(input/hidden/output) TLP after 4,000 iterations presented good statistics but un-
doubtedly this model presented a problem of overtraining, and it is noteworthy that
the number of connections within the ANN is high. At that time, other TLP models
allowing the estimation of BPs of chlorofluorocarbons with 1, 1–2, or 1–4 carbon
atoms (n D 15, 62, and 276, respectively) as well as of halomethanes with up to
four different halogen atoms .n D 48/ were also proposed [30]. Egolf and cowork-
ers [31] used a TLP trained by the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
quasi-Newton optimization method for deriving a model allowing for the prediction
of the BP of industrial chemicals. A database of 298 structurally diverse chemicals
was first split into a learning set (LS), a cross-validation set (CVS), and an exter-
nal testing set (ETS) of 241, 27, and 30 chemicals, respectively. It is noteworthy
that the CVS is used to monitor the ANN. Topological, geometrical, and electronic
descriptors were generated for characterizing the molecules. The best configuration
was a 8/3/1 ANN yielding RMS error values of 11.18, 9.17, and 10.69 K for the
LS, CVS, and ETS, respectively. The same methodology was applied to a larger
database [32]. The selected 6/5/1 ANN gave RMS error values of 5.7 K for the
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training and CVSs of 267 and 29 chemicals, respectively. The network model was
validated with a 15-member external prediction set. The RMS error of prediction
was 7.1 K. This was substantially better than the 8.5 K error obtained from a re-
gression model derived under the same conditions and with the same descriptors.
E-state indices [33] for 19 atom types were used [34] as inputs neurons of a TLP
trained by the backpropagation algorithm for predicting the BPs of chemicals from
a LS and ETS of 268 and 30 compounds, respectively. The best model included
five neurons on the hidden layer. It produced a mean absolute error of 3.86 and
4.57 K for the LS and ETS, respectively. These authors experienced the same strat-
egy on a larger database of 372 chemicals but only including alkanes, alcohols, and
(poly)chloroalkanes [35]. The interest of the TLP and a fuzzy ARTMAP ANN was
tested by Espinosa et al. [36] from a limited database including 140 alkanes, 144
alkenes, and 43 alkynes. Even if this kind of study allows us to compare methods
and/or descriptors, it is obvious that ANNs show their full interest when models are
derived from large sets of molecules from which, it is not easy to relate the struc-
ture of the molecules to a property (or activity) under study from classical linear
methods. Thus, an interesting approach based on the use of a TLP and descrip-
tors calculated using AM1 and PM3 semiempirical quantum-chemical methods was
used by Chalk and coworkers [37] for deriving models from a database of 6,629 ex-
perimental BPs. The LS and ETS included 6,000 and 629 chemicals, respectively.
The best results were obtained with a 18/10/1 ANN architecture. Ten separate ANNs
with random starting weights were then trained with different LSs and ETSs, cho-
sen such that each chemical appeared only once in an ETS. The standard deviations
(means of the results for 10 nets) for the LS and ETS were 16.54 and 19.02 K with
the AM1 approach and 18.33 and 20.27 K with the PM3 approach.

3.2 Vapor Pressure

The VP determines the potential of a chemical to volatilize from its condensed or
dissolved phases and to therefore exist as a gas [38]. VP strongly depends on the
temperature as expressed in the classical Clausius–Clapeyron equation [24]. As
previously seen, the BP of a chemical can be easily derived from its VP. Numer-
ous methods can be used for estimating the VPs of chemicals, and among them,
some are based on the use of ANNs. Thus, different regression and ANN models
were tested by Liang and Gallagher [39] from a set of 479 chemicals described by
various descriptors encoding the structure and physicochemical properties of the
molecules. Standard errors of 0.534 and 0.522 (log units, Torr) were obtained for
the regression models with seven independent variables and a 7/5/1 ANN. However,
the interest of the results is very limited because of total lack of information on the
conditions in which the models were derived. More reliable models were designed
by McClelland and Jurs [40]. TLP models were developed to relate the structural
characteristics of 420 diverse organic compounds to their VP at 25ıC expressed
as log (VP in Pascals). The log (VP) values ranged over eight orders of magnitude
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from �1:34 to 6.68 log units. The database was split into a learning set (LS), a CVS,
and an ETS of 290, 65, and 65 chemicals, respectively. A 8/3/1 TLP trained by a
BFGS optimization algorithm and only including topological descriptors yielded
RMS errors of 0.26, 0.29, and 0.37 for the LS, CVS, and ETS, respectively (log
units, Pa). An alternative 10/4/1 TLP containing a lager selection of descriptor types
(e.g., quantum mechanical descriptors) resulted in improved performance with RMS
errors of 0.19, 0.24, and 0.33 for the LS, CVS, and ETS, respectively [40]. In the
same way, Beck and coworkers [41] derived a 10/8/1 TLP trained by the back-
propagation algorithm for estimating the log VP at 25ıC. Descriptors derived from
quantum mechanical calculations were used for describing the 551 chemicals con-
stituting the learning and testing sets. The leave-one-out (LOO) cross validation
gave a standard deviation of 0.37 log units (Torr) and a maximum absolute error
of 1.65. A temperature-dependent model based on a TLP trained by the backprop-
agation algorithm and descriptors calculated using AM1 semiemperical MO-theory
was proposed by Chalk et al. [42]. A data set of 8,542 measurements at various
temperatures for a total of 2,349 molecules was divided into a training set of 7,681
measurements and an external validation set of 861 measurements in such a manner
that the validation set spans the full range of VPs. The standard deviation of the
error (log units, Torr) for the learning, LOO cross-validation, and validation sets ob-
tained with the selected 27/15/1 TLP was equal to 0.32, 0.46, and 0.33, respectively.
Yaffe and Cohen [43] also computed a temperature-dependent QSPR model for VP
of aliphatic, aromatic, and polycyclic aromatic hydrocarbons, ranging from 4 to 12
carbon atoms using a TLP trained by the backpropagation algorithm with connectiv-
ity indices [44], molecular weight, and temperature as input parameters in the ANN.
The database of 274 molecules included 7,613 vapor pressure–temperature data. It
was split into a learning set (LS), a CVS, and an ETS of 5,330, 754, and 1,529 chem-
icals, respectively. The best model was a 7/29/1 TLP yielding average absolute VP
errors of 11.6% (0.051 log units or 34 kPa), 8.2% (0.036 log units or 23.2 kPa),
9.2% (0.039 log units or 26.8 kPa), and 10.7% (0.046 log P units or 31.1 kPa) for
the training, test, validation, and overall sets, respectively.

3.3 Water Solubility

Of the various parameters affecting the fate and transport of organic chemicals in the
ecosystems, water solubility is one of the most important. Highly soluble chemicals
are easily and rapidly distributed in the environment. These chemicals tend to have
relatively low adsorption coefficients in soils and sediments and also negligible bio-
concentration factors in living species. They tend to be more readily biodegradable
by microorganisms. The water solubility of chemicals also influences their photoly-
sis, hydrolysis, oxidation, and volatilization [23]. A quite large number of estimation
methods have been proposed for modeling the water solubility of organic chemicals,
and some of them are based on the use of ANNs. Thus, a database of water solu-
bility values for 157 substituted aromatic hydrocarbons described from structural
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fragments was randomly split into a LS, a CVS, and an ETS of 95, 31, and 31
chemicals, respectively [45]. A TLP trained by the backpropagation algorithm was
used as statistical engine. The best model was a 9/11/1 ANN (learning rate 0.35,
276 cycles) yielding a mean square error (MSE) of 0.21 from 40 randomly selected
test data sets. For comparison purpose, the MSE obtained with a regression analysis
was 0.25. A rather similar approach was used by Sutter and Jurs [46] from solubility
data for 140 organic compounds presenting diverse structures, which were divided
into a LS, a CVS, and an ETS of 116, 11, and 13 chemicals, respectively. Chemicals
were described by means of 144 descriptors encoding topological and/or physico-
chemical properties. This pool of descriptors was reduced to nine that were used for
deriving a regression model from a LS of 127 .116 C 11/ chemicals. An RMS error
of 0.321 log units was found. However, four chemicals were detected as outlier, and
their removal from the regression model allowed to obtain an RMS error of 0.277
log units. A 9/3/1 TLP including the nine descriptors as input neurons was then de-
rived. It gave RMS errors of 0.217, 0.282, and 0.222 log units for the LS .nD112/,
CVS .n D 11/, and ETS .n D 13/, respectively. It is noteworthy that another 9/3/1
TLP model was computed by Sutter and Jurs [46] after exclusion of the polychlori-
nated biphenyls (PCBs). In that case, RMS error values of 0.145, 0.151, and 0.166
log units were obtained for the LS .n D 94/, CVS .n D 13/, and ETS .n D 13/,
respectively. Other TLP models for predicting the aqueous solubility of chemicals
were proposed by Mitchell and Jurs [47], McElroy and Jurs [48], and Huuskonen
et al. [49] from databases of limited sizes. Yaffe and coworkers [50] used a hetero-
geneous set of 515 organic compounds with their solubility data for comparing the
performances of a TLP and fuzzy ARTMAP ANNs. The first ANN model derived
from a large diverse set of aqueous solubility data was proposed by Huuskonen [51].
A database of 1,297 chemicals with their aqueous solubility values was split into a
TS and an ETS of 884 and 413 chemicals, respectively. Another testing set .ETSC/

of 21 chemicals was also considered. All the chemicals were encoded from the 30
following topological indices: 24 atom-type electrotopological state indices [33],
path 1 simple and valence connectivity indices [44], flexibility index, the number of
H-bond acceptors, and indicators of aromaticity and for aliphatic hydrocarbons. A
30/12/1 TLP trained by the backpropagation algorithm yielded standard deviation
values of 0.47, 0.60, and 0.63 for the LS, ETS, and ETSC, respectively. A regres-
sion analysis performed under the same conditions gave standard deviation values of
0.67, 0.71, and 0.88 for the LS, ETS, and ETSC, respectively [51]. Liu and So [52]
tried to derive an ANN with fewer connections but presenting similar performances
by using a LS and an ETS of 1,033 and 258 chemicals, respectively. A 7/2/1 TLP
with the 1-octanol/walter partition coefficient (log P), topological polar surface area
(TPSA), molecular weight, and four topological indices as input neurons gave stan-
dard deviation values of 0.70 and 0.71 in log units for the LS and ETS, respectively.
An interesting hybrid model was proposed by Hansen and coworkers [53] devel-
oped for the prediction of pH-dependent aqueous solubility of chemicals. It used a
TLP ANN trained from 4,548 solubility values and a commercial software tool for
estimating the acid/base dissociation coefficients.

It is important to note that the aqueous solubility estimations obtained from
QSPR models have to be used with caution. Thus, for example, QSPR models
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generally calculate solubility in pure water at 25ıC while it is well-known that the
varying temperatures found in the environment change the solubility of chemicals.
The degree of salinity of the aquatic ecosystems also influences the solubility of the
chemicals in these media.

3.4 Henry’s Law Constant

The Henry’s law constant (Hc) of a chemical is defined as the ratio of its concen-
tration in air to its concentration in water when these two phases are in contact
and equilibrium distribution of the chemical is achieved [25]. Hc is of first im-
portance for assessing the environmental distribution of chemicals. The different
methods allowing to calculate this parameter have been reviewed by Dearden and
Schüürmann [54]. Among them, two studies deal with the use of ANNs for mod-
eling the Hc of chemicals at 25ıC. A database of 357 organic chemicals with their
log H values ranged from �7:08 to 2.32 was used by English and Carroll [55] for
deriving their ANN models. Chemicals were described by 29 descriptors including
topological indices, physicochemical properties, and atomic and group contribu-
tions. The best results were obtained in 3,000 cycles with a 10/3/1 TLP. The standard
errors for the LS .n D 261/, CVS .n D 42/, and ETS .n D 54/ were equal to 0.202,
0.157, and 0.237 log units, respectively. Comparatively, the standard errors obtained
with a regression analysis, performed according to the same conditions, were 0.262
and 0.285 log units for the LS .n D 303/ and ETS .n D 54/, respectively.

Experimental Hc at 25ıC for a diverse set of 495 chemicals were collected by
Yaffe et al. [56]. The log H values ranged from �6:72 to 2.87. Six physicochemical
descriptors (heat of formation, dipole moments, ionization potential, average polar-
izability) and the second-order valence molecular connectivity index were used as
input parameters for a fuzzy ARTMAP ANN and a TLP ANN trained by the back-
propagation algorithm. The average absolute error values obtained with the fuzzy
ARTMAP ANN were 0.01 and 0.13 for the LS .n D 421/ and ETS .n D 74/. The
selected 7/17/1 TLP yielded average absolute error values of 0.29, 0.28, and 0.27
for the LS .n D 331/, validation set .n D 421/ and ETS .n D 74/.

3.5 Octanol/Water Partition Coefficient

In 1872, Berthelot [57] undertook the study of partitioning as a purely physico-
chemical phenomenon. He was the first to collect the evidence proving that the
ratio of the concentrations of small solutes when distributed between water and
an immiscible solvent (e.g., ether) remained constant even when the solvent ratios
varied widely [58]. In 1891, Nernst [59] put this type of equilibrium on a firmer
thermodynamic basis. About a decade later, Meyer [60] and Overton [61], who
showed that the narcotic action of simple chemicals was reflected rather closely
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by their oil–water partition coefficients, initiated the use of this physicochemical
property for deriving structure–activity relationships. In the first part of the twen-
tieth century, many different organic solvent/water systems were tested to derive
structure–activity relationships. However, in 1962–1964, the 1-octanol was adopted
as solvent of choice after the pioneering works of Hansch and coworkers in quan-
titative structure–activity relationships (QSARs) [62, 63] demonstrating that the
1-octanol/water partition coefficient (Kow) could provide a rationalization for the
interaction of organic chemicals with living organisms or for biological processes
occurring in organisms [64]. Kow is simply defined as the ratio of a chemical’s
concentration in the octanol phase to its concentration in the aqueous phase of a
two-phase octanol/water system. Values of Kow are thus unitless and are expressed
in a logarithmic form (i.e., log Kow or log P ) when used in pharmaceutical and
environmental modeling. There are numerous methods available for the experimen-
tal measurement of log P as well as for its estimation from contribution methods
or from linear and nonlinear QSPRs [23, 24, 58, 64, 65]. Different ANN models for
log P have been derived from a limited number of chemicals (see e.g., [66–68]).
A database of 1,870 log P values for structurally diverse chemicals was used by
Huuskonen and coworkers [69] for deriving a log P model based on atom-type
electrotopological state indices [33] and a TLP. It was split into a LS and an ETS of
1,754 and 116 molecules, respectively. The best configuration included the molec-
ular weight and 38 electrotopological state indices as input neurons, five hidden
neurons, and bias neurons. Averaged results of 200 ANN simulations were used
to calculate the final outputs. With this strategy, RMS (LOO) values of 0.46 and
0.41 were obtained for the LS and ETS, respectively. This model was further re-
fined from an extended LS and is now called ALOGPS [70,71]. A log P model was
designed by Devillers and coworkers [72–74] from a TLP trained by the backprop-
agation algorithm using 7,200 log P values for the learning process. Experimental
log P values were retrieved from original publications or unpublished results. The
log P values of the LS ranged between �3:7 and 9.95 with a mean of 2.13 and
a standard deviation of 1.65. Molecules were described by means of autocorre-
lation descriptors [75, 76] encoding lipophilicity (H) defined according to Rekker
and Mannhold [65], molecular refractivity (MR), and H-bonding donor (HBD) and
H-bonding acceptor (HBA) abilities. Prior to calculations, data were scaled with a
classical min/max equation. The optimal architecture and set of parameters for the
neural network model were determined by means of a trial and error procedure. The
different training exercises were monitored with a validation set of 200 molecules
presenting a high structural diversity but not deviating too much from the chemical
structures included in the training set. This procedure showed that a neural network
model with 35 input neurons (i.e., H0 to H14; MR0 to MR14; HBA0 to HBA3, and
HBD0) was necessary to correctly describe the molecules and model the 7,200 ex-
perimental log P values. The hidden layer consisted of 32 neurons. It was found
that a learning rate of 0.5 and a momentum term of 0.9 always gave good neural
network generalization within ca. 5,500 cycles. A composite network constituted
of four configurations was selected as final model .RMS D 0:37; r D 0:97/ be-
cause it allowed to obtain the best simulation results on an ETS of 519 chemicals
.RMS D 0:39; r D 0:98/. It has been shown that this model competed favorably
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with other log P models [77,78] and was particularly suited for estimating the log P

values of pesticides [79]. It is noteworthy that a commercial version of this model

called AUTOLOGP
TM

is available [80, 81].

3.6 Degradation Parameters

Biodegradation is an important mechanism for eliminating xenobiotics by bio-
transforming them into simple organic and inorganic products. Two types of
biodegradation can be distinguished. The primary biodegradation denotes a sim-
ple transformation not leading to a complete mineralization. The biodegradation
products are specifically measured from chromatographic methods, and the results
are expressed by means of kinetic parameters such as biodegradation rate constant
.k/ and half-life .T1=2/. The ultimate (or total) biodegradation totally converts
chemicals into simple molecules such as CO2 and H2O. Biodegradation tests are
time consuming, expensive, and their results are difficult to interpret because they
depend on numerous parameters linked to the experimental conditions such as
the nature and concentration of the inoculum, cultivation, and adaptation of the
microbial culture, concentration of the test substance [82–84]. Because ANNs are
particularly suited for modeling noisy data, they have been successfully used to
model biodegradation processes [85]. Thus, for example, 47 molecules present-
ing a high degree of heterogeneity were described in a qualitative way for their
biodegradability (i.e., 0 D weak; 1 D high) from a survey made by 22 experts in
microbial degradation [86]. They were encoded from 11 Boolean descriptors repre-
senting structural features associated with persistent or degradable chemicals. These
descriptors are listed in Table 2. A TLP trained by the backpropagation algorithm
was used as statistical engine to find a relationship between the structure of the

Table 2 Boolean
descriptorsa used as input
neurons in a TLP designed
for predicting the biodegrad-
ability of chemicals

Nı Descriptor

1 Heterocycle N
2 Ester, amide, anhydride
3 �2 Cl
4 Bicyclic alkane
5 Only C, H, N, O
6 NO2

7 �2 cycles
8 Epoxide
9 Primary or aromatic OH
10 Molecular weight <235:9 g mol�1b

11 O bound to C
a
1 when present in the molecule and 0 otherwise

b
Mean calculated from the training set
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molecules and their biodegradation potential. The learning phase yielded 100% of
good classification (i.e., 47/47) with a 11/4/1 ANN in 500 cycles. The predictive
power of this model was estimated from two ETSs. With the former ETS, 78%
of good classifications (i.e., 18/23) were obtained while with the latter, 94% (i.e.,
16/17) of the chemicals were correctly classified. The use of Boolean descriptors
as input neurons in a TLP especially for modeling a complex property can induce
problems of overfitting. To avoid this drawback without losing the interest of frag-
ment descriptors, the usefulness of correspondence factor analysis [87] for reducing
the dimensionality of a data matrix was tested. Thus, a CFA was used to scale the
47�11 Boolean matrix and the CFA factors were directly introduced as inputs in the
ANN. Same results were obtained also in 500 cycles with only the first seven factors
(87.9% of the total inertia). It is noteworthy that an intercommunicating hybrid sys-
tem including this ANN model and a genetic algorithm [88] was then constructed
for designing molecules with specific biodegradability characteristics [89].

TLPs with structural descriptors [90,91] or autocorrelation descriptors [92] were
used for modeling the biodegradability of other sets of aliphatic and aromatic chem-
icals. The field half-lives of 110 pesticides were modeled using a TLP trained by
the backpropagation algorithm [93]. Because periodicities in agricultural calendars
are measured in days, weeks, and months (i.e., seasons), the field half-lives .T1=2/

of pesticides were divided into the three following classes: Class 1 (encoded 100 in
the ANN output) contained pesticides with T1=2 � 10 days, class 2 (encoded 010)
included pesticides with 10 days < T1=2 � 30 days, and class 3 (encoded 001) in-
cluded pesticides with 30 days < T1=2 � 90 days. Molecules were described by
means of the frequency of 17 structural fragments. Different scaling transforma-
tions were tested but the best results were obtained with a CFA, which also allowed
a reduction of the dimensionality of the descriptor matrix. The optimal results were
obtained by using the first 12 factors (95.8% of the total inertia) as input neurons
and seven neurons for the hidden layer. With this configuration, 95.5% of correct
classifications were obtained with the LS. The performances of the selected ANN
model were tested from an ETS of 13 pesticides representing the three classes of
field half-lives. The testing phase with CFA gave 84.6% of correction predictions.
A discriminant factor analysis at three classes was performed for comparison pur-
poses. In that case, 60% and 53.8% of good classifications were obtained for the LS
and ETS, respectively [93].

4 Use of ANNs in Quantitative Structure–Activity Relationship
(QSAR) Modeling

The knowledge about systematic relationships between the structure of chemi-
cals and their biological activity dates back to the prime infancy of the modern
pharmacology and toxicology. Thus, for example, Cros [94] stressed, in the last
page of his thesis published in 1863, an empirical relationship between the number
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of carbon and hydrogen atoms in a series of alcohols and their solubility in water
and toxicity. Until about the middle of the twentieth century, most of these structure–
activity relationships were only qualitative. The dramatic change resulted from the
systematic use, in the early 1960s, of linear regression analysis for correlating
biological activities of congeneric series of molecules with their physicochemi-
cal properties or some of their structural features encoded by means of Boolean
descriptors (i.e., 0/1). These contributions started the development of two QSAR
methodologies later termed Hansch analysis [62,63] and Free-Wilson analysis [95],
respectively.

Nowadays, regression analysis remains the most widely used statistical tool for
deriving QSARs, even if most of the basic statistical assumptions for its correct use
are often not satisfied with numerous data sets [96]. In addition, the choice of re-
gression analysis can also be annoying because a postulate is made that only linear
relationships exist between the variables involved in the modeling process, while
generally it is not true. Since about one decade, ANNs have become the focus of
much attention in QSAR to find complex relationships between the structure of
molecules and their toxicity. These models have been derived on various organisms
such as the marine luminescent bacterium Vibrio fischeri (formerly known as Photo-
bacterium phosphoreum) [97,98], the freshwater protozoan Tetrahymena pyriformis
[99–110], the waterflea Daphnia magna [111], the freshwater amphipod Gam-
marus fasciatus [112], the midge Chironomus riparius [113], the fathead minnow
Pimephales promelas [114–122], the rainbow trout Oncorhynchus mykiss [123], the
bluegill Lepomis macrochirus [124], and the honey bee Apis mellifera [125, 126].
All these models were recently analyzed [127]. Consequently, only the main char-
acteristics of some of them are presented in Table 3.

It is interesting to note that due to their high flexibility and their ability to find
complex relationships between variables, ANNs can be used to derive QSARs from
sets of variables encoding, as usual, the structure and physicochemical properties

Table 3 Selected ANN QSAR models derived from noncongeneric data sets

Speciesa n Learning/testing ANN Reference

V.f. 747 454=150 C 143 TLP [97]
V.f. 1,308 1,068/240 TLP [98]
T.p. 825 600=150 C 75 Probabilistic [108]
T.p. 1,084 1,000/84 Probabilistic [109]
T.p. 1,371 914/457 TLP [110]
D.m. 776 700/76 Probabilistic [111]
P.p. 865 80–20% Probabilistic [117]
P.p. 886 800/86 Probabilistic [118]
P.p. 562 392/170 BP C Fuzzy-ANN [120]
P.p. 551 LOO C 80 � 20% C 541=10 Counterpropagation [121]
P.p. 569 484/85 Reg-TLP [122]
a
V.f. Vibrio fischeri, T.p. Tetrahymena pyriformis, D.m. Daphnia magna, P.p. Pimephales promelas,

P.r. Poecilia reticulata
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of the molecules but also the experimental conditions in which the different tests
are performed such as the time of exposure [98] or the temperature, pH, hardness
of the medium, and size of the organisms [112, 123, 124]. In the same way, due to
their pure nonlinear nature, ANNs can be used in synergy with another statistical
tool, especially regression analysis. Devillers [122] showed that this kind of mod-
eling approach was particularly interesting in the common situation in which the
toxicity of molecules mainly depended on their log P . In that case, in a first step, a
classical regression equation with log P is derived. The residuals obtained with this
simple linear equation are then modeled from a TLP including different molecular
descriptors as input neurons. Finally, results produced by the linear and nonlinear
QSAR models are both considered for calculating the toxicity values, which are then
compared with the initial toxicity data.

5 Use of ANNs for Modeling Environmental Contaminations

5.1 Air Pollution

There is a large body of evidence suggesting that exposure to air pollution, even
at the levels commonly achieved nowadays in the industrial countries, leads to ad-
verse health effects. In particular, exposure to pollutants such as particulate matter
and ozone has been found to be associated with increases in hospital admissions
for cardiovascular and respiratory diseases and to the incidence of cancers [128].
Air pollution not only affects the quality of the air we breathe, but it also directly
and indirectly impacts the biotopes and the biocenoses constituting the aquatic
and terrestrial ecosystems. For the evaluation of air pollution events in a particu-
lar geographical area, it is crucial to have a powerful mapping technique allowing
to perform typologies, compare sampling sites, and so on. The Kohonen self-
organizing map (KSOM) [16] is particularly suited to perform these tasks. Thus,
for example, Ferré-Huguet and coworkers [129] used a KSOM to assess the envi-
ronmental impact and human health risks of polychlorinated dibenzo-p-dioxins and
dibenzofurans in the vicinity of a new hazardous waste incinerator in Spain 4 years
after regular operation of the facility. More specifically, KSOM, which was a 48
.8�6/ rectangular grid, was applied to soil and herbage samples to establish pattern
similarities among the samples as well as to identify hot spots near the plant. Lee
and coworkers [130] used a KSOM of 150 .15 � 10/ output neurons to examine the
influence of urbanization on the assembly patterns of 52 breeding birds in 367 sites.

Undoubtedly KSOM offers an interesting tool for data compression of p

multivariate samples defined in an n-dimensional space into v clusters (loaded
neurons). This data reduction to a few clusters provides an optimal data structure
display. However, in KSOM, the problem is that information about the correct
distance between the neurons disappears during the projection onto the 1, 2, or 3D
array of nodes. To overcome this problem, a minimum spanning tree (MST) [131]
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can be calculated between the loaded neurons of a trained KSOM to visualize the
shortest distances between them. The hybridization of the KSOM and MST algo-
rithms constitutes the basis of the 3MAP algorithm designed and used by Wienke
for locating fine airborne particle sources [132–135]. It is noteworthy that because
there remains information not represented, about the correct distances between all
the loaded neurons, a nonlinear mapping (NLM) [136] performed on these loaded
neurons can be used to visualize all the distances separating them. The hybridization
of the KSOM, MST, and NLM algorithms constitutes the basis of the N2M algo-
rithm [137, 138] (Fig. 5). A rather similar hybridization approach in combination
with a multilayer perceptron (MLP) was used by Kolehmainen and coworkers [139]
to forecast urban air quality. Hourly airborne pollutant and meteorological averages
collected during the years 1995–1997 were analyzed to identify air quality episodes
having typical and the most probable combinations of air pollutants and meteo-
rological variables. This modeling was performed from KSOM, NLM, and fuzzy
distance metrics. Several overlapping MLPs were then applied to the clustered data,
each representing a pollution episode.

KSOM is not the unique ANN clustering technique that was used to visualize
air pollution events. Thus, Owega and coworkers [140] used cluster analysis and an
adaptive resonance theory (ART-2a) [141] ANN to classify back trajectories of air

Fig. 5 N2M algorithm flow
diagram (adapted from [140])
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masses arriving in Toronto (Canada) into distinct transport patterns. Spencer and
coworkers [142] also used an ART-2a ANN to analyze ambient aerosol particles in
Riverside (California).

Numerous MLPs have been used alone or in combination or in competition with
other statistical approaches for estimating various atmospheric pollution events.
Some examples are given in Table 4 [143–150].

Table 4 Examples of MLP models designed for estimating
atmospheric pollution events

Atmospheric pollution event Reference

Hourly levels up to 8 h ahead for
SO2, CO, NO2, NO, and O3

and six locations in the area of
Bilbao (Spain)

[143]

SO2, PM10a, CO levels for the
next 3 days in Istanbul (Turkey)

[144]

SO2 concentrations in Istanbul
(Turkey)

[145]

NO2 concentrations at three sites
in Kolkata (India)

[146]

Hourly concentrations of NO2 at a
traffic station in Helsinki
(Finland)

[147]

Ozone concentrations [148–155]
PM10 concentrations in the city of

Thessaloniki (Greece)
[156]

PM10 concentrations in the urban
area of Volos (Greece)

[157]

PM2.5 concentrations in
downtown Santiago (Chile)

[158]

PM2.5 concentrations on the
US-Mexico border

[159]

Lead concentrations in grasses
from urban descriptors in
Athens (Greece)

[160]

NO2 dispersion from vehicular
exhaust emissions

[161]

Mercury speciation in combustion
flue gases

[162]

Benzene concentrations in a street
canyon

[163]

Benzene concentrations with an
electronic nose

[164]

Odor thresholds for chemicals of
environmental and industrial
concern

[165]

a
Particulate matter with aerodynamic diameter less than 10

microns (PM10) or less than 2.5 microns (PM2.5)
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5.2 Aquatic Contaminations

The worldwide environmental problem of eutrophication in lenthic ecosystems is
caused by an unbalanced increase in the nutrient inflow due to the human activities.
Indeed, when the nutrient concentration increases under high-temperature condi-
tions in a lake during the summertime, certain microalgae can overgrow yielding
the production of blooms, which can cause water discolorations, mortality in fish
and invertebrates as well as in humans because of the production of harmful tox-
ins [166]. It is obvious that these deleterious effects could be prevented or at least
minimized if the algal blooms could be predicted in an early stage. Different ANNs
have been used to reach this goal. Thus, Recknagel and coworkers [167] used a TLP
trained by the backpropagation algorithm for modeling algal bloom in three lakes
and a river. The lakes, located in Japan and Finland, were of different characteristics
including a variety of nutrient levels, light and temperature conditions, depth and
water retention time. The river was located in Australia. Four different ANNs were
computed. Different parameters such as concentration in nitrate, water temperature,
concentration in chlorophyll a, and concentration in dissolved oxygen were used as
input neurons. The dominating algal species (in number of cells/mL or mg/L for the
Finnish lake) were considered as output neurons. One or two hidden layers having
a maximum of 20 neurons per layer were used to distribute the information within
the networks. The ANNs were trained for 500,000 cycles with measured input and
output data from 6 to 10 years. For the validation of model predictions, data of 2
independent years were used for each ANN model. More realistic and optimized
models were proposed by Lee and coworkers [168] for predicting the algal bloom
dynamics for two bays in the eutrophic coastal waters of Hong Kong. A TLP was
also used as statistical engine. Biweekly water quality data were tested as input neu-
rons. Concentration in chlorophyll-a or cell concentration of Skeletonema were used
as output neurons in each ANN model. Data collected in different years were used to
train (3,000 cycles) and test the two ANN models. Different combinations of param-
eters were tested as inputs but in both cases, the best results were obtained by only
using the time-lagged chlorophyll-a or log (Skeletonema (cells/l) as input neurons.
This work clearly suggested that the algal concentration in the eutrophic subtropical
coastal waters was mainly dependent on the antecedent algal concentrations in the
previous 1–2 weeks.

Oh and coworkers [169] used a KSOM for patterning algal communities and then
a TLP for identifying important factors causing algal blooms in Daechung reservoir
(Korea). Thirty-nine samples were used for KSOM analysis. The patterns of the
sample communities were investigated on the basis of community abundance data
(Cyanophyceae, Chlorophyceae, Bacillariophyceae, and others) in percentages for
1999 and 2003. The best arrangement of the output layer of 24 .6 � 4/ neurons
was a hexagonal lattice. Interestingly, a hierarchical cluster analysis, based on Ward
algorithm and using the Euclidean distance, was performed on the KSOM units.
Analysis of the results showed that the clustering was based on the phytoplank-
ton communities and sampling time. A TLP was used to predict the chlorophyll-a
concentration and abundance of Cyanophyceae from environmental factors in-
cluding the total nitrogen, total dissolved nitrogen, total particulate nitrogen, total



18 J. Devillers

phosphorus, total dissolved phosphorus, total particulate phosphorus, temperature,
DO, pH, conductivity, turbidity, Secchi depth, precipitation, and daily irradiance.
Data were collected from 54 samples over 3 years. Gradient descent optimization
was used for error reduction. The best models for chlorophyll-a concentration and
abundance of Cyanophyceae were 14/3/1 and 14/6/1 TLPs. The predictive perfor-
mances of the models were not estimated from an ETS. Conversely, a sensitivity
analysis was performed to determine the most influential variables. Results showed
that they were different for the two TLP ANNs.

Lenthic and lotic ecosystems are also contaminated by numerous xenobiotics re-
sulting from agricultural and industrial activities. Thus, pesticides are used to control
weeds, insects, and other organisms in a wide variety of agricultural and nonagri-
cultural settings yielding their release into the environment including the aquatic
compartment. Among the collection of models available for predicting the environ-
mental fate and effects of pesticides, some of them are based on nonlinear methods,
especially the ANNs. Thus, for example, Kim and coworkers [170] coupled wavelet
analysis and a TLP trained by the backpropagation algorithm for modeling the
movement behavior of Chironomus samoensis larvae in response to treatments of
carbofuran at 0.1 mg/L in seminatural conditions. Various ANN paradigms have
been also used for modeling the contamination of groundwater by pesticides and
other anthropic pollutants [171–176].

Samecka-Cymerman and coworkers [177] used a KSOM to perform a typol-
ogy of three species of aquatic bryophytes (Fontinalis antipyretica, Platyhypnidium
riparioides, Scapania undulata) according to their concentration in Al, Be, Ca, Cd,
Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, and Zn. The sampling sites were divided into
three groups depending on the type of rock basement of the stream. Sampling sites
in group one consisted of granites and gneisses .n D 21/, those in group two of
sandstones .n D 5/, and those in group three of limestones and dolomites .n D 26/.
The output layer of 5 � 5 neurons visualized by hexagonal cells showed that the
bryophytes were clustered according to their sampling origin. There was no differ-
ence between the bryophytes from the three types of rock in terms of concentrations
in Be, Fe, K, Co, and Cu. Conversely, bryophytes growing in streams flowing
through granites/gneisses contained significantly higher concentrations of Cd and
Pb, while bryophytes from streams flowing through sandstones contained signifi-
cantly higher concentrations of Cr. Bryophytes from group three were characterized
by high concentrations in Ca and Mg. These results were confirmed from a PCA.

Last, it is noteworthy that ANNs have been used in the areas of wastewater treat-
ment and analyses [178–180].

5.3 Soil and Sediment Contaminations

Soils and sediments can be contaminated by various pollutants released into the en-
vironment from a number of anthropogenic sources. ANNs have shown their interest
for characterizing and/or quantifying these contaminations. Thus, for example, in
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Winter 2002, 24 soil and 12 wild chard (Beta vulgaris) samples were collected by
Nadal et al. [181] in Tarragona County (Catalonia, Spain). Soil sampling points were
chosen as follows: 15 in the industrial complex (8 in the vicinity of chemical indus-
tries and 7 near petroleum refineries), 5 in Tarragona downtown and its residential
area, and 4 in presumably unpolluted zones. The number of wild chard samples
collected from industrial, residential, and unpolluted areas were 6, 3, and 3, respec-
tively. The samples were analyzed for their concentrations in As, Cd, Cr, Hg, Mn,
Pb, and V. In chard samples, significant differences between areas were only found
for vanadium (V). Regarding the soil samples, the differences and concentrations
between the three zones were higher. A KSOM was successfully used to perform
their typology according their differences in metal concentrations. The same type of
methodology based on KSOM was applied by Arias and coworkers [182] for evalu-
ating the pollution level in Cu, Mn, Ni, Cr, Pb, and Zn of the sediments dredged from
the dry dock of a former shipyard in the Bilbao estuary (Bizkaia, Spain). KSOM was
compared with different cluster analysis algorithms to classify 407 samples of var-
ious origins contaminated by polychlorinated dibenzodioxins and polychlorinated
dibenzofurans [183].

Other ANN paradigms were used to model soil and sediment contaminations.
Thus, for example, Kanevski [184] tested the usefulness of general regression
ANNs, based on kernel statistical estimators for predicting the soil contamination in
Cs137 in Western part of Briansk region following Chernobyl accident.

6 Conclusion

On the basis of a computing model similar to the underlying structure of a mam-
malian brain, ANNs share the brain’s ability to learn or adapt in responses to external
inputs. When exposed to a stream of training data, they can uncover previously
unknown relationships and learn complex mappings in the data. Under these con-
ditions, ANNs provide interesting alternatives to well-established linear methods
commonly used in ecotoxicology modeling. In this chapter, different ANN models
computed for predicting the environmental fate and effects of chemicals are pre-
sented. Our goal was not to catalog all the models in the field but only to show the
diversity of the situations in which these nonlinear tools have proved their interest.
Their correct use requires to have some practical experience for architecture and
parameter setting as well as to interpret the modeling results. They also need to re-
spect some rules dealing with the size of the data sets, the constitution of learning
and testing sets, and so on. Despite these limitations, it is obvious that their use in
ecotoxicology modeling will continue to grow, especially in combination with other
linear and nonlinear statistical methods to create powerful hybrid systems.
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