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Preface

The term “ecotoxicology” was first coined in the early 1970s by the French toxicol-
ogist, Professor René Truhaut, who defined it as a branch of toxicology concerned
with the study of the adverse effects caused by the natural and synthetic pollutants
to the biota in the aquatic and terrestrial ecosystems. Inherent in this concept is
the investigation of how and to what level the wildlife species and humans are ex-
posed to pollutants but also the study of the manner in which chemicals are released
into the environment, are transported between the different compartments of the
biosphere, and are transformed from abiotic and biotic processes. Ecotoxicology
is therefore multidisciplinary in essence being strongly rooted in toxicology, envi-
ronmental chemistry, pharmacology, and ecology. Modeling is also undoubtedly a
component of this multifaceted discipline. Indeed, the fate and effects of chemicals
in the environment are governed by complex phenomena and modeling approaches
have proved to be particularly suited not only to better understand these phenomena
but also to simulate them in the frame of predictive hazard and risk assessment
schemes.

The vocation of this book is not to catalog all the types of models and approaches
that can be used in ecotoxicology. To date, the task should be quite impossible due
to the huge number of available linear and nonlinear methods, the possibility to
hybridize them, and so on.

Nevertheless, the book provides a clear overview of the main modeling ap-
proaches that can be used in ecotoxicology. Limiting the mathematical descriptions
to a minimum, it presents numerous case studies to enable the reader to understand
the interest but also the limitations of models in ecotoxicology.

I am extremely grateful to the contributors for accepting to participate in this
book and for preparing valuable contributions. To ensure the scientific quality and
clarity of the book, each chapter was sent to two referees for review. I would like
to thank all the referees for their useful comments. Finally, I would like to thank
Melinda Paul and all the publication teams at Springer for making the publication
of this book possible.

Rillieux La Pape James Devillers
France
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01, France

Daniel Bontje Faculty of Earth and Life Sciences, Vrije Universiteit, de Boelelaan
1085, 1081 HV Amsterdam, The Netherlands

Mieke Broerse Faculty of Earth and Life Sciences, Vrije Universiteit, de Boelelaan
1085, 1081 HV Amsterdam, The Netherlands

Anne-Marie Charissou IPL Santé Environnement Durables Est,
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UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne,
France, scharles@biomserv.univ-lyon1.fr

Arnaud Chaumot CEMAGREF, F-69000, Lyon, UR “Biologie des Ecosystèmes
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France

Pascal Pandard INERIS, Parc Technologique ALATA, BP nı 2, 60550 Verneuil
en Halatte, France

Grace Patlewicz DuPont Haskell Global Centers for Health and Environmental
Sciences, 1090 Elkton Road, Newark, DE 19711, USA, patlewig@hotmail.com

Willie J.G.M. Peijnenburg Laboratory for Ecological Risk Assessment, National
Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven,
The Netherlands, WJGM.Peijnenburg@rivm.nl
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Artificial Neural Network Modeling
of the Environmental Fate and Ecotoxicity
of Chemicals

James Devillers

Abstract An artificial neural network (ANN) includes nonlinear computational
elements called neurons, which are linked by weighted connections. Typically, a
neuron receives an input information and performs a weighted summation, which is
propagated by an activation function to other neurons through the ANN. Numerous
ANN paradigms have been proposed for pattern classification, clustering, function
approximation, prediction, optimization, and control. In this chapter, an attempt is
made to review the main applications of ANNs in ecotoxicology. Our goal was not
to catalog all the models in the field but only to show the diversity of the situations
in which these nonlinear tools have proved their interest for modeling the environ-
mental fate and effects of chemicals.

Keywords Artificial neural network � QSPR � QSAR � Environmental contamina-
tion � Nonlinear methods

1 Introduction

The last decade has witnessed a surge interest in the use of artificial neural networks
(ANNs) for modeling complex tasks in a variety of fields including data mining,
speech, image recognition, finance, business, drug design, and so on [1–6]. The
raison d’être of these powerful tools is to exploit the imprecision and uncertainty of
real-world problems for deriving valuable and robust models.

The concepts of ANNs are directly inspired by neurobiology. Thus, the cere-
bral cortex contains about 100 billion neurons, which are special cells processing
information. A biological neuron receives signals from other neurons through its
dendrites and transmits information generated by its soma along its axon. In the
brain, each neuron is connected to 1,000–11,000 other neurons via synapses in

J. Devillers (�)
CTIS, 3 Chemin de la Gravière, 69140 Rillieux La Pape, France
e-mail: j.devillers@ctis.fr

J. Devillers (ed.), Ecotoxicology Modeling, Emerging Topics in Ecotoxicology:
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2 J. Devillers

which neurotransmitters inducing different activities are released. The human brain
contains approximately 1014–1015 interconnections [7–9]. Consequently, the brain
can be viewed as a nonlinear and highly parallel biological device characterized by
robustness and fault tolerance. It can learn, handle imprecise, fuzzy, and noisy in-
formation, and can generalize from past and/or new experiences [10,11]. ANNs can
be defined as weighted directed graphs with connected nodes called neurons that
attempt to mimic some of the basic characteristics of the human brain [11]. Conse-
quently, it is not surprising to see that now these nonlinear statistical tools are widely
used in numerous technical and scientific domains to process complex information.
After a brief overview of the characteristics of ANNs, this chapter will review the
main applications of ANNs for modeling the toxicity and ecotoxicity of chemicals
as well as their environmental fate. Their advantages and limitations will be also
stressed.

2 Characteristics of ANNs

A precise definition of learning is difficult to formulate but the fundamental ques-
tions that neurobehaviorists try to answer are: How do we learn? Which is the most
efficient process for learning? How much and how fast can we learn? In a neuro-
computing context, a learning process can be viewed as a method for updating the
architecture as well as the connection weights of an ANN to optimize its efficiency
to perform a specific task. The three main learning paradigms are the following:
supervised, unsupervised (or self-organized), and reinforcement. Each category in-
cludes numerous algorithms. Supervised is the most commonly employed learning
paradigm to develop classification and prediction applications. The algorithm takes
the difference between the observed and calculated output and uses that informa-
tion to adjust the weights in the network so that next time, the prediction will
be closer to the correct answer (Fig. 1) [1]. Unsupervised learning is used when

Fig. 1 Supervised learning paradigm (adapted from [1])
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we want to perform a clustering of the input data. ANNs that are trained using
this learning process are called self-organizing neural networks because they re-
ceive no direction on what the desired output should be. Indeed, when presented
with a series of inputs, the outputs self-organize by initially competing to recog-
nize the input information and then cooperating to adjust their connection weights.
Over time, the network evolves so that each output unit is sensitive to and will
recognize inputs from a specific portion of the input space (Fig. 2) [1]. Reinforce-
ment learning attempts to learn the input–output mapping through trial and error
with a view to maximizing a performance index called the reinforcement signal
(Fig. 3). Reinforcement learning is particularly suited to solve difficult temporal
(time-dependent) problems [1].

ANNs are also characterized by their connection topology. The arrangement of
neurons and their interconnections can have an important impact on the modeling
capabilities of the ANNs. Generally, ANNs are organized into layers of neurons.
Data can flow between the neurons in these layers in two different ways. In feedfor-
ward networks, no loops occur while in recurrent networks feedback connections
are found.

Fig. 2 Unsupervised learning paradigm (adapted from [1])

Fig. 3 Reinforcement learning paradigm (adapted from [1])
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Table 1 Taxonomy of the main types of ANNs (adapted from [1, 11])

ANN paradigm Architecture Learning type

Multilayer perceptrona Feedforward Supervised
Radial basis function network Feedforward Hybrid
Probabilistic neural network Feedforward Supervised
Kohonen self-organizing map Recurrent Unsupervised
Learning vector quantization Competitive Supervised
ART networks Recurrent Supervised/unsupervised
a
Mostly three layers

The description of the different ANN paradigms is beyond the scope of this chap-
ter and the interested readers are invited to consult the rich body of literature on
this topic (see e.g., [12–17]). However, Table 1 summarizes the main characteristics
of the different types of ANNs cited in the following sections. It is also beyond the
scope of this chapter to provide information on computer tools that can be used for
deriving ANN models. However, it is noteworthy that a list of freeware, shareware,
and commercial ANN software can be found in Devillers and Doré [18].

3 Use of ANNs in Quantitative Structure–Property Relationship
(QSPR) Modeling

Knowing the physicochemical properties of xenobiotics is a prerequisite to estimate
their bioactivity, bioavailability, transport, and distribution between the different
compartments of the biosphere [19–22]. Unfortunately, there are very limited or
no experimental physicochemical data available for most of the chemicals suscep-
tible to contaminate the aquatic and terrestrial ecosystems. Consequently, for the
many compounds without experimental data, the only alternative to using actual
measurements is to approximate values by means of estimation models, which are
generically termed quantitative structure–property relationships (QSPRs). The in-
gredients necessary to derive a QSPR model are given in Fig. 4. Although most
of the QSPR models have been derived from simple contribution methods and re-
gression analysis [23–27], attempts have been made to use ANNs for modeling the
intrinsic physicochemical properties of organic molecules as well as their environ-
mental degradation parameters linked to transformation process. These models are
discussed in the following sections.

3.1 Boiling Point

The normal boiling point (BP), corresponding to the temperature at which a sub-
stance presents a vapor pressure (VP) of 760 mmHg, depends on a number of
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Fig. 4 Ingredients for
deriving a QSPR model

molecular properties that control the ability of a molecule to escape from the sur-
face of a liquid into the vapor phase. These properties are molecular size, polar
and hydrogen bonding forces, and entropic factors such as flexibility and orien-
tation [27]. Different types of ANNs have been used for computing BP models.
Thus, a radial basis function (RBF) network was used by Lohninger [28] for pre-
dicting the BPs of 185 ethers, peroxides, acetals, and their sulfur analogs. Molecules
were described by two sets of three topological and structural descriptors yielding
the design of two models, both including 20 hidden neurons and cross-validated
from a leave-25%-out procedure. Both models outperformed regressions models
obtained under the same conditions. Cherquaoui and coworkers [29] used the same
data set of 185 molecules but their ANN was a three-layer perceptron (TLP) trained
by the backpropagation algorithm, and the chemical structures were characterized
by embedding frequencies. The ANN presented 20 input neurons and a bias, from
3 to 8 hidden neurons and a bias, and an output neuron. Their selected 20/5/1
(input/hidden/output) TLP after 4,000 iterations presented good statistics but un-
doubtedly this model presented a problem of overtraining, and it is noteworthy that
the number of connections within the ANN is high. At that time, other TLP models
allowing the estimation of BPs of chlorofluorocarbons with 1, 1–2, or 1–4 carbon
atoms (n D 15, 62, and 276, respectively) as well as of halomethanes with up to
four different halogen atoms .nD 48/ were also proposed [30]. Egolf and cowork-
ers [31] used a TLP trained by the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
quasi-Newton optimization method for deriving a model allowing for the prediction
of the BP of industrial chemicals. A database of 298 structurally diverse chemicals
was first split into a learning set (LS), a cross-validation set (CVS), and an exter-
nal testing set (ETS) of 241, 27, and 30 chemicals, respectively. It is noteworthy
that the CVS is used to monitor the ANN. Topological, geometrical, and electronic
descriptors were generated for characterizing the molecules. The best configuration
was a 8/3/1 ANN yielding RMS error values of 11.18, 9.17, and 10.69 K for the
LS, CVS, and ETS, respectively. The same methodology was applied to a larger
database [32]. The selected 6/5/1 ANN gave RMS error values of 5.7 K for the
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training and CVSs of 267 and 29 chemicals, respectively. The network model was
validated with a 15-member external prediction set. The RMS error of prediction
was 7.1 K. This was substantially better than the 8.5 K error obtained from a re-
gression model derived under the same conditions and with the same descriptors.
E-state indices [33] for 19 atom types were used [34] as inputs neurons of a TLP
trained by the backpropagation algorithm for predicting the BPs of chemicals from
a LS and ETS of 268 and 30 compounds, respectively. The best model included
five neurons on the hidden layer. It produced a mean absolute error of 3.86 and
4.57 K for the LS and ETS, respectively. These authors experienced the same strat-
egy on a larger database of 372 chemicals but only including alkanes, alcohols, and
(poly)chloroalkanes [35]. The interest of the TLP and a fuzzy ARTMAP ANN was
tested by Espinosa et al. [36] from a limited database including 140 alkanes, 144
alkenes, and 43 alkynes. Even if this kind of study allows us to compare methods
and/or descriptors, it is obvious that ANNs show their full interest when models are
derived from large sets of molecules from which, it is not easy to relate the struc-
ture of the molecules to a property (or activity) under study from classical linear
methods. Thus, an interesting approach based on the use of a TLP and descrip-
tors calculated using AM1 and PM3 semiempirical quantum-chemical methods was
used by Chalk and coworkers [37] for deriving models from a database of 6,629 ex-
perimental BPs. The LS and ETS included 6,000 and 629 chemicals, respectively.
The best results were obtained with a 18/10/1 ANN architecture. Ten separate ANNs
with random starting weights were then trained with different LSs and ETSs, cho-
sen such that each chemical appeared only once in an ETS. The standard deviations
(means of the results for 10 nets) for the LS and ETS were 16.54 and 19.02 K with
the AM1 approach and 18.33 and 20.27 K with the PM3 approach.

3.2 Vapor Pressure

The VP determines the potential of a chemical to volatilize from its condensed or
dissolved phases and to therefore exist as a gas [38]. VP strongly depends on the
temperature as expressed in the classical Clausius–Clapeyron equation [24]. As
previously seen, the BP of a chemical can be easily derived from its VP. Numer-
ous methods can be used for estimating the VPs of chemicals, and among them,
some are based on the use of ANNs. Thus, different regression and ANN models
were tested by Liang and Gallagher [39] from a set of 479 chemicals described by
various descriptors encoding the structure and physicochemical properties of the
molecules. Standard errors of 0.534 and 0.522 (log units, Torr) were obtained for
the regression models with seven independent variables and a 7/5/1 ANN. However,
the interest of the results is very limited because of total lack of information on the
conditions in which the models were derived. More reliable models were designed
by McClelland and Jurs [40]. TLP models were developed to relate the structural
characteristics of 420 diverse organic compounds to their VP at 25ıC expressed
as log (VP in Pascals). The log (VP) values ranged over eight orders of magnitude
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from�1:34 to 6.68 log units. The database was split into a learning set (LS), a CVS,
and an ETS of 290, 65, and 65 chemicals, respectively. A 8/3/1 TLP trained by a
BFGS optimization algorithm and only including topological descriptors yielded
RMS errors of 0.26, 0.29, and 0.37 for the LS, CVS, and ETS, respectively (log
units, Pa). An alternative 10/4/1 TLP containing a lager selection of descriptor types
(e.g., quantum mechanical descriptors) resulted in improved performance with RMS
errors of 0.19, 0.24, and 0.33 for the LS, CVS, and ETS, respectively [40]. In the
same way, Beck and coworkers [41] derived a 10/8/1 TLP trained by the back-
propagation algorithm for estimating the log VP at 25ıC. Descriptors derived from
quantum mechanical calculations were used for describing the 551 chemicals con-
stituting the learning and testing sets. The leave-one-out (LOO) cross validation
gave a standard deviation of 0.37 log units (Torr) and a maximum absolute error
of 1.65. A temperature-dependent model based on a TLP trained by the backprop-
agation algorithm and descriptors calculated using AM1 semiemperical MO-theory
was proposed by Chalk et al. [42]. A data set of 8,542 measurements at various
temperatures for a total of 2,349 molecules was divided into a training set of 7,681
measurements and an external validation set of 861 measurements in such a manner
that the validation set spans the full range of VPs. The standard deviation of the
error (log units, Torr) for the learning, LOO cross-validation, and validation sets ob-
tained with the selected 27/15/1 TLP was equal to 0.32, 0.46, and 0.33, respectively.
Yaffe and Cohen [43] also computed a temperature-dependent QSPR model for VP
of aliphatic, aromatic, and polycyclic aromatic hydrocarbons, ranging from 4 to 12
carbon atoms using a TLP trained by the backpropagation algorithm with connectiv-
ity indices [44], molecular weight, and temperature as input parameters in the ANN.
The database of 274 molecules included 7,613 vapor pressure–temperature data. It
was split into a learning set (LS), a CVS, and an ETS of 5,330, 754, and 1,529 chem-
icals, respectively. The best model was a 7/29/1 TLP yielding average absolute VP
errors of 11.6% (0.051 log units or 34 kPa), 8.2% (0.036 log units or 23.2 kPa),
9.2% (0.039 log units or 26.8 kPa), and 10.7% (0.046 log P units or 31.1 kPa) for
the training, test, validation, and overall sets, respectively.

3.3 Water Solubility

Of the various parameters affecting the fate and transport of organic chemicals in the
ecosystems, water solubility is one of the most important. Highly soluble chemicals
are easily and rapidly distributed in the environment. These chemicals tend to have
relatively low adsorption coefficients in soils and sediments and also negligible bio-
concentration factors in living species. They tend to be more readily biodegradable
by microorganisms. The water solubility of chemicals also influences their photoly-
sis, hydrolysis, oxidation, and volatilization [23]. A quite large number of estimation
methods have been proposed for modeling the water solubility of organic chemicals,
and some of them are based on the use of ANNs. Thus, a database of water solu-
bility values for 157 substituted aromatic hydrocarbons described from structural
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fragments was randomly split into a LS, a CVS, and an ETS of 95, 31, and 31
chemicals, respectively [45]. A TLP trained by the backpropagation algorithm was
used as statistical engine. The best model was a 9/11/1 ANN (learning rate 0.35,
276 cycles) yielding a mean square error (MSE) of 0.21 from 40 randomly selected
test data sets. For comparison purpose, the MSE obtained with a regression analysis
was 0.25. A rather similar approach was used by Sutter and Jurs [46] from solubility
data for 140 organic compounds presenting diverse structures, which were divided
into a LS, a CVS, and an ETS of 116, 11, and 13 chemicals, respectively. Chemicals
were described by means of 144 descriptors encoding topological and/or physico-
chemical properties. This pool of descriptors was reduced to nine that were used for
deriving a regression model from a LS of 127 .116C 11/ chemicals. An RMS error
of 0.321 log units was found. However, four chemicals were detected as outlier, and
their removal from the regression model allowed to obtain an RMS error of 0.277
log units. A 9/3/1 TLP including the nine descriptors as input neurons was then de-
rived. It gave RMS errors of 0.217, 0.282, and 0.222 log units for the LS .nD112/,
CVS .nD 11/, and ETS .nD 13/, respectively. It is noteworthy that another 9/3/1
TLP model was computed by Sutter and Jurs [46] after exclusion of the polychlori-
nated biphenyls (PCBs). In that case, RMS error values of 0.145, 0.151, and 0.166
log units were obtained for the LS .n D 94/, CVS .n D 13/, and ETS .n D 13/,
respectively. Other TLP models for predicting the aqueous solubility of chemicals
were proposed by Mitchell and Jurs [47], McElroy and Jurs [48], and Huuskonen
et al. [49] from databases of limited sizes. Yaffe and coworkers [50] used a hetero-
geneous set of 515 organic compounds with their solubility data for comparing the
performances of a TLP and fuzzy ARTMAP ANNs. The first ANN model derived
from a large diverse set of aqueous solubility data was proposed by Huuskonen [51].
A database of 1,297 chemicals with their aqueous solubility values was split into a
TS and an ETS of 884 and 413 chemicals, respectively. Another testing set .ETSC/

of 21 chemicals was also considered. All the chemicals were encoded from the 30
following topological indices: 24 atom-type electrotopological state indices [33],
path 1 simple and valence connectivity indices [44], flexibility index, the number of
H-bond acceptors, and indicators of aromaticity and for aliphatic hydrocarbons. A
30/12/1 TLP trained by the backpropagation algorithm yielded standard deviation
values of 0.47, 0.60, and 0.63 for the LS, ETS, and ETSC, respectively. A regres-
sion analysis performed under the same conditions gave standard deviation values of
0.67, 0.71, and 0.88 for the LS, ETS, and ETSC, respectively [51]. Liu and So [52]
tried to derive an ANN with fewer connections but presenting similar performances
by using a LS and an ETS of 1,033 and 258 chemicals, respectively. A 7/2/1 TLP
with the 1-octanol/walter partition coefficient (log P), topological polar surface area
(TPSA), molecular weight, and four topological indices as input neurons gave stan-
dard deviation values of 0.70 and 0.71 in log units for the LS and ETS, respectively.
An interesting hybrid model was proposed by Hansen and coworkers [53] devel-
oped for the prediction of pH-dependent aqueous solubility of chemicals. It used a
TLP ANN trained from 4,548 solubility values and a commercial software tool for
estimating the acid/base dissociation coefficients.

It is important to note that the aqueous solubility estimations obtained from
QSPR models have to be used with caution. Thus, for example, QSPR models
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generally calculate solubility in pure water at 25ıC while it is well-known that the
varying temperatures found in the environment change the solubility of chemicals.
The degree of salinity of the aquatic ecosystems also influences the solubility of the
chemicals in these media.

3.4 Henry’s Law Constant

The Henry’s law constant (Hc) of a chemical is defined as the ratio of its concen-
tration in air to its concentration in water when these two phases are in contact
and equilibrium distribution of the chemical is achieved [25]. Hc is of first im-
portance for assessing the environmental distribution of chemicals. The different
methods allowing to calculate this parameter have been reviewed by Dearden and
Schüürmann [54]. Among them, two studies deal with the use of ANNs for mod-
eling the Hc of chemicals at 25ıC. A database of 357 organic chemicals with their
log H values ranged from �7:08 to 2.32 was used by English and Carroll [55] for
deriving their ANN models. Chemicals were described by 29 descriptors including
topological indices, physicochemical properties, and atomic and group contribu-
tions. The best results were obtained in 3,000 cycles with a 10/3/1 TLP. The standard
errors for the LS .n D 261/, CVS .n D 42/, and ETS .n D 54/ were equal to 0.202,
0.157, and 0.237 log units, respectively. Comparatively, the standard errors obtained
with a regression analysis, performed according to the same conditions, were 0.262
and 0.285 log units for the LS .n D 303/ and ETS .n D 54/, respectively.

Experimental Hc at 25ıC for a diverse set of 495 chemicals were collected by
Yaffe et al. [56]. The log H values ranged from �6:72 to 2.87. Six physicochemical
descriptors (heat of formation, dipole moments, ionization potential, average polar-
izability) and the second-order valence molecular connectivity index were used as
input parameters for a fuzzy ARTMAP ANN and a TLP ANN trained by the back-
propagation algorithm. The average absolute error values obtained with the fuzzy
ARTMAP ANN were 0.01 and 0.13 for the LS .n D 421/ and ETS .n D 74/. The
selected 7/17/1 TLP yielded average absolute error values of 0.29, 0.28, and 0.27
for the LS .n D 331/, validation set .n D 421/ and ETS .n D 74/.

3.5 Octanol/Water Partition Coefficient

In 1872, Berthelot [57] undertook the study of partitioning as a purely physico-
chemical phenomenon. He was the first to collect the evidence proving that the
ratio of the concentrations of small solutes when distributed between water and
an immiscible solvent (e.g., ether) remained constant even when the solvent ratios
varied widely [58]. In 1891, Nernst [59] put this type of equilibrium on a firmer
thermodynamic basis. About a decade later, Meyer [60] and Overton [61], who
showed that the narcotic action of simple chemicals was reflected rather closely
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by their oil–water partition coefficients, initiated the use of this physicochemical
property for deriving structure–activity relationships. In the first part of the twen-
tieth century, many different organic solvent/water systems were tested to derive
structure–activity relationships. However, in 1962–1964, the 1-octanol was adopted
as solvent of choice after the pioneering works of Hansch and coworkers in quan-
titative structure–activity relationships (QSARs) [62, 63] demonstrating that the
1-octanol/water partition coefficient (Kow) could provide a rationalization for the
interaction of organic chemicals with living organisms or for biological processes
occurring in organisms [64]. Kow is simply defined as the ratio of a chemical’s
concentration in the octanol phase to its concentration in the aqueous phase of a
two-phase octanol/water system. Values of Kow are thus unitless and are expressed
in a logarithmic form (i.e., log Kow or log P ) when used in pharmaceutical and
environmental modeling. There are numerous methods available for the experimen-
tal measurement of log P as well as for its estimation from contribution methods
or from linear and nonlinear QSPRs [23, 24, 58, 64, 65]. Different ANN models for
log P have been derived from a limited number of chemicals (see e.g., [66–68]).
A database of 1,870 log P values for structurally diverse chemicals was used by
Huuskonen and coworkers [69] for deriving a log P model based on atom-type
electrotopological state indices [33] and a TLP. It was split into a LS and an ETS of
1,754 and 116 molecules, respectively. The best configuration included the molec-
ular weight and 38 electrotopological state indices as input neurons, five hidden
neurons, and bias neurons. Averaged results of 200 ANN simulations were used
to calculate the final outputs. With this strategy, RMS (LOO) values of 0.46 and
0.41 were obtained for the LS and ETS, respectively. This model was further re-
fined from an extended LS and is now called ALOGPS [70,71]. A log P model was
designed by Devillers and coworkers [72–74] from a TLP trained by the backprop-
agation algorithm using 7,200 log P values for the learning process. Experimental
log P values were retrieved from original publications or unpublished results. The
log P values of the LS ranged between �3:7 and 9.95 with a mean of 2.13 and
a standard deviation of 1.65. Molecules were described by means of autocorre-
lation descriptors [75, 76] encoding lipophilicity (H) defined according to Rekker
and Mannhold [65], molecular refractivity (MR), and H-bonding donor (HBD) and
H-bonding acceptor (HBA) abilities. Prior to calculations, data were scaled with a
classical min/max equation. The optimal architecture and set of parameters for the
neural network model were determined by means of a trial and error procedure. The
different training exercises were monitored with a validation set of 200 molecules
presenting a high structural diversity but not deviating too much from the chemical
structures included in the training set. This procedure showed that a neural network
model with 35 input neurons (i.e., H0 to H14; MR0 to MR14; HBA0 to HBA3, and
HBD0) was necessary to correctly describe the molecules and model the 7,200 ex-
perimental log P values. The hidden layer consisted of 32 neurons. It was found
that a learning rate of 0.5 and a momentum term of 0.9 always gave good neural
network generalization within ca. 5,500 cycles. A composite network constituted
of four configurations was selected as final model .RMS D 0:37; r D 0:97/ be-
cause it allowed to obtain the best simulation results on an ETS of 519 chemicals
.RMS D 0:39; r D 0:98/. It has been shown that this model competed favorably
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with other log P models [77,78] and was particularly suited for estimating the log P

values of pesticides [79]. It is noteworthy that a commercial version of this model

called AUTOLOGP
TM

is available [80, 81].

3.6 Degradation Parameters

Biodegradation is an important mechanism for eliminating xenobiotics by bio-
transforming them into simple organic and inorganic products. Two types of
biodegradation can be distinguished. The primary biodegradation denotes a sim-
ple transformation not leading to a complete mineralization. The biodegradation
products are specifically measured from chromatographic methods, and the results
are expressed by means of kinetic parameters such as biodegradation rate constant
.k/ and half-life .T1=2/. The ultimate (or total) biodegradation totally converts
chemicals into simple molecules such as CO2 and H2O. Biodegradation tests are
time consuming, expensive, and their results are difficult to interpret because they
depend on numerous parameters linked to the experimental conditions such as
the nature and concentration of the inoculum, cultivation, and adaptation of the
microbial culture, concentration of the test substance [82–84]. Because ANNs are
particularly suited for modeling noisy data, they have been successfully used to
model biodegradation processes [85]. Thus, for example, 47 molecules present-
ing a high degree of heterogeneity were described in a qualitative way for their
biodegradability (i.e., 0Dweak; 1D high) from a survey made by 22 experts in
microbial degradation [86]. They were encoded from 11 Boolean descriptors repre-
senting structural features associated with persistent or degradable chemicals. These
descriptors are listed in Table 2. A TLP trained by the backpropagation algorithm
was used as statistical engine to find a relationship between the structure of the

Table 2 Boolean
descriptorsa used as input
neurons in a TLP designed
for predicting the biodegrad-
ability of chemicals

Nı Descriptor

1 Heterocycle N
2 Ester, amide, anhydride
3 �2 Cl
4 Bicyclic alkane
5 Only C, H, N, O
6 NO2

7 �2 cycles
8 Epoxide
9 Primary or aromatic OH
10 Molecular weight <235:9 g mol�1b

11 O bound to C
a
1 when present in the molecule and 0 otherwise

b
Mean calculated from the training set
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molecules and their biodegradation potential. The learning phase yielded 100% of
good classification (i.e., 47/47) with a 11/4/1 ANN in 500 cycles. The predictive
power of this model was estimated from two ETSs. With the former ETS, 78%
of good classifications (i.e., 18/23) were obtained while with the latter, 94% (i.e.,
16/17) of the chemicals were correctly classified. The use of Boolean descriptors
as input neurons in a TLP especially for modeling a complex property can induce
problems of overfitting. To avoid this drawback without losing the interest of frag-
ment descriptors, the usefulness of correspondence factor analysis [87] for reducing
the dimensionality of a data matrix was tested. Thus, a CFA was used to scale the
47�11 Boolean matrix and the CFA factors were directly introduced as inputs in the
ANN. Same results were obtained also in 500 cycles with only the first seven factors
(87.9% of the total inertia). It is noteworthy that an intercommunicating hybrid sys-
tem including this ANN model and a genetic algorithm [88] was then constructed
for designing molecules with specific biodegradability characteristics [89].

TLPs with structural descriptors [90,91] or autocorrelation descriptors [92] were
used for modeling the biodegradability of other sets of aliphatic and aromatic chem-
icals. The field half-lives of 110 pesticides were modeled using a TLP trained by
the backpropagation algorithm [93]. Because periodicities in agricultural calendars
are measured in days, weeks, and months (i.e., seasons), the field half-lives .T1=2/

of pesticides were divided into the three following classes: Class 1 (encoded 100 in
the ANN output) contained pesticides with T1=2 � 10 days, class 2 (encoded 010)
included pesticides with 10 days < T1=2 � 30 days, and class 3 (encoded 001) in-
cluded pesticides with 30 days < T1=2 � 90 days. Molecules were described by
means of the frequency of 17 structural fragments. Different scaling transforma-
tions were tested but the best results were obtained with a CFA, which also allowed
a reduction of the dimensionality of the descriptor matrix. The optimal results were
obtained by using the first 12 factors (95.8% of the total inertia) as input neurons
and seven neurons for the hidden layer. With this configuration, 95.5% of correct
classifications were obtained with the LS. The performances of the selected ANN
model were tested from an ETS of 13 pesticides representing the three classes of
field half-lives. The testing phase with CFA gave 84.6% of correction predictions.
A discriminant factor analysis at three classes was performed for comparison pur-
poses. In that case, 60% and 53.8% of good classifications were obtained for the LS
and ETS, respectively [93].

4 Use of ANNs in Quantitative Structure–Activity Relationship
(QSAR) Modeling

The knowledge about systematic relationships between the structure of chemi-
cals and their biological activity dates back to the prime infancy of the modern
pharmacology and toxicology. Thus, for example, Cros [94] stressed, in the last
page of his thesis published in 1863, an empirical relationship between the number
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of carbon and hydrogen atoms in a series of alcohols and their solubility in water
and toxicity. Until about the middle of the twentieth century, most of these structure–
activity relationships were only qualitative. The dramatic change resulted from the
systematic use, in the early 1960s, of linear regression analysis for correlating
biological activities of congeneric series of molecules with their physicochemi-
cal properties or some of their structural features encoded by means of Boolean
descriptors (i.e., 0/1). These contributions started the development of two QSAR
methodologies later termed Hansch analysis [62,63] and Free-Wilson analysis [95],
respectively.

Nowadays, regression analysis remains the most widely used statistical tool for
deriving QSARs, even if most of the basic statistical assumptions for its correct use
are often not satisfied with numerous data sets [96]. In addition, the choice of re-
gression analysis can also be annoying because a postulate is made that only linear
relationships exist between the variables involved in the modeling process, while
generally it is not true. Since about one decade, ANNs have become the focus of
much attention in QSAR to find complex relationships between the structure of
molecules and their toxicity. These models have been derived on various organisms
such as the marine luminescent bacterium Vibrio fischeri (formerly known as Photo-
bacterium phosphoreum) [97,98], the freshwater protozoan Tetrahymena pyriformis
[99–110], the waterflea Daphnia magna [111], the freshwater amphipod Gam-
marus fasciatus [112], the midge Chironomus riparius [113], the fathead minnow
Pimephales promelas [114–122], the rainbow trout Oncorhynchus mykiss [123], the
bluegill Lepomis macrochirus [124], and the honey bee Apis mellifera [125, 126].
All these models were recently analyzed [127]. Consequently, only the main char-
acteristics of some of them are presented in Table 3.

It is interesting to note that due to their high flexibility and their ability to find
complex relationships between variables, ANNs can be used to derive QSARs from
sets of variables encoding, as usual, the structure and physicochemical properties

Table 3 Selected ANN QSAR models derived from noncongeneric data sets

Speciesa n Learning/testing ANN Reference

V.f. 747 454=150C 143 TLP [97]
V.f. 1,308 1,068/240 TLP [98]
T.p. 825 600=150C 75 Probabilistic [108]
T.p. 1,084 1,000/84 Probabilistic [109]
T.p. 1,371 914/457 TLP [110]
D.m. 776 700/76 Probabilistic [111]
P.p. 865 80–20% Probabilistic [117]
P.p. 886 800/86 Probabilistic [118]
P.p. 562 392/170 BPC Fuzzy-ANN [120]
P.p. 551 LOOC 80� 20%C 541=10 Counterpropagation [121]
P.p. 569 484/85 Reg-TLP [122]
a
V.f. Vibrio fischeri, T.p. Tetrahymena pyriformis, D.m. Daphnia magna, P.p. Pimephales promelas,

P.r. Poecilia reticulata
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of the molecules but also the experimental conditions in which the different tests
are performed such as the time of exposure [98] or the temperature, pH, hardness
of the medium, and size of the organisms [112, 123, 124]. In the same way, due to
their pure nonlinear nature, ANNs can be used in synergy with another statistical
tool, especially regression analysis. Devillers [122] showed that this kind of mod-
eling approach was particularly interesting in the common situation in which the
toxicity of molecules mainly depended on their log P . In that case, in a first step, a
classical regression equation with log P is derived. The residuals obtained with this
simple linear equation are then modeled from a TLP including different molecular
descriptors as input neurons. Finally, results produced by the linear and nonlinear
QSAR models are both considered for calculating the toxicity values, which are then
compared with the initial toxicity data.

5 Use of ANNs for Modeling Environmental Contaminations

5.1 Air Pollution

There is a large body of evidence suggesting that exposure to air pollution, even
at the levels commonly achieved nowadays in the industrial countries, leads to ad-
verse health effects. In particular, exposure to pollutants such as particulate matter
and ozone has been found to be associated with increases in hospital admissions
for cardiovascular and respiratory diseases and to the incidence of cancers [128].
Air pollution not only affects the quality of the air we breathe, but it also directly
and indirectly impacts the biotopes and the biocenoses constituting the aquatic
and terrestrial ecosystems. For the evaluation of air pollution events in a particu-
lar geographical area, it is crucial to have a powerful mapping technique allowing
to perform typologies, compare sampling sites, and so on. The Kohonen self-
organizing map (KSOM) [16] is particularly suited to perform these tasks. Thus,
for example, Ferré-Huguet and coworkers [129] used a KSOM to assess the envi-
ronmental impact and human health risks of polychlorinated dibenzo-p-dioxins and
dibenzofurans in the vicinity of a new hazardous waste incinerator in Spain 4 years
after regular operation of the facility. More specifically, KSOM, which was a 48
.8�6/ rectangular grid, was applied to soil and herbage samples to establish pattern
similarities among the samples as well as to identify hot spots near the plant. Lee
and coworkers [130] used a KSOM of 150 .15� 10/ output neurons to examine the
influence of urbanization on the assembly patterns of 52 breeding birds in 367 sites.

Undoubtedly KSOM offers an interesting tool for data compression of p

multivariate samples defined in an n-dimensional space into v clusters (loaded
neurons). This data reduction to a few clusters provides an optimal data structure
display. However, in KSOM, the problem is that information about the correct
distance between the neurons disappears during the projection onto the 1, 2, or 3D
array of nodes. To overcome this problem, a minimum spanning tree (MST) [131]
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can be calculated between the loaded neurons of a trained KSOM to visualize the
shortest distances between them. The hybridization of the KSOM and MST algo-
rithms constitutes the basis of the 3MAP algorithm designed and used by Wienke
for locating fine airborne particle sources [132–135]. It is noteworthy that because
there remains information not represented, about the correct distances between all
the loaded neurons, a nonlinear mapping (NLM) [136] performed on these loaded
neurons can be used to visualize all the distances separating them. The hybridization
of the KSOM, MST, and NLM algorithms constitutes the basis of the N2M algo-
rithm [137, 138] (Fig. 5). A rather similar hybridization approach in combination
with a multilayer perceptron (MLP) was used by Kolehmainen and coworkers [139]
to forecast urban air quality. Hourly airborne pollutant and meteorological averages
collected during the years 1995–1997 were analyzed to identify air quality episodes
having typical and the most probable combinations of air pollutants and meteo-
rological variables. This modeling was performed from KSOM, NLM, and fuzzy
distance metrics. Several overlapping MLPs were then applied to the clustered data,
each representing a pollution episode.

KSOM is not the unique ANN clustering technique that was used to visualize
air pollution events. Thus, Owega and coworkers [140] used cluster analysis and an
adaptive resonance theory (ART-2a) [141] ANN to classify back trajectories of air

Fig. 5 N2M algorithm flow
diagram (adapted from [140])
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masses arriving in Toronto (Canada) into distinct transport patterns. Spencer and
coworkers [142] also used an ART-2a ANN to analyze ambient aerosol particles in
Riverside (California).

Numerous MLPs have been used alone or in combination or in competition with
other statistical approaches for estimating various atmospheric pollution events.
Some examples are given in Table 4 [143–150].

Table 4 Examples of MLP models designed for estimating
atmospheric pollution events

Atmospheric pollution event Reference

Hourly levels up to 8 h ahead for
SO2, CO, NO2, NO, and O3

and six locations in the area of
Bilbao (Spain)

[143]

SO2, PM10a, CO levels for the
next 3 days in Istanbul (Turkey)

[144]

SO2 concentrations in Istanbul
(Turkey)

[145]

NO2 concentrations at three sites
in Kolkata (India)

[146]

Hourly concentrations of NO2 at a
traffic station in Helsinki
(Finland)

[147]

Ozone concentrations [148–155]
PM10 concentrations in the city of

Thessaloniki (Greece)
[156]

PM10 concentrations in the urban
area of Volos (Greece)

[157]

PM2.5 concentrations in
downtown Santiago (Chile)

[158]

PM2.5 concentrations on the
US-Mexico border

[159]

Lead concentrations in grasses
from urban descriptors in
Athens (Greece)

[160]

NO2 dispersion from vehicular
exhaust emissions

[161]

Mercury speciation in combustion
flue gases

[162]

Benzene concentrations in a street
canyon

[163]

Benzene concentrations with an
electronic nose

[164]

Odor thresholds for chemicals of
environmental and industrial
concern

[165]

a
Particulate matter with aerodynamic diameter less than 10

microns (PM10) or less than 2.5 microns (PM2.5)
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5.2 Aquatic Contaminations

The worldwide environmental problem of eutrophication in lenthic ecosystems is
caused by an unbalanced increase in the nutrient inflow due to the human activities.
Indeed, when the nutrient concentration increases under high-temperature condi-
tions in a lake during the summertime, certain microalgae can overgrow yielding
the production of blooms, which can cause water discolorations, mortality in fish
and invertebrates as well as in humans because of the production of harmful tox-
ins [166]. It is obvious that these deleterious effects could be prevented or at least
minimized if the algal blooms could be predicted in an early stage. Different ANNs
have been used to reach this goal. Thus, Recknagel and coworkers [167] used a TLP
trained by the backpropagation algorithm for modeling algal bloom in three lakes
and a river. The lakes, located in Japan and Finland, were of different characteristics
including a variety of nutrient levels, light and temperature conditions, depth and
water retention time. The river was located in Australia. Four different ANNs were
computed. Different parameters such as concentration in nitrate, water temperature,
concentration in chlorophyll a, and concentration in dissolved oxygen were used as
input neurons. The dominating algal species (in number of cells/mL or mg/L for the
Finnish lake) were considered as output neurons. One or two hidden layers having
a maximum of 20 neurons per layer were used to distribute the information within
the networks. The ANNs were trained for 500,000 cycles with measured input and
output data from 6 to 10 years. For the validation of model predictions, data of 2
independent years were used for each ANN model. More realistic and optimized
models were proposed by Lee and coworkers [168] for predicting the algal bloom
dynamics for two bays in the eutrophic coastal waters of Hong Kong. A TLP was
also used as statistical engine. Biweekly water quality data were tested as input neu-
rons. Concentration in chlorophyll-a or cell concentration of Skeletonema were used
as output neurons in each ANN model. Data collected in different years were used to
train (3,000 cycles) and test the two ANN models. Different combinations of param-
eters were tested as inputs but in both cases, the best results were obtained by only
using the time-lagged chlorophyll-a or log (Skeletonema (cells/l) as input neurons.
This work clearly suggested that the algal concentration in the eutrophic subtropical
coastal waters was mainly dependent on the antecedent algal concentrations in the
previous 1–2 weeks.

Oh and coworkers [169] used a KSOM for patterning algal communities and then
a TLP for identifying important factors causing algal blooms in Daechung reservoir
(Korea). Thirty-nine samples were used for KSOM analysis. The patterns of the
sample communities were investigated on the basis of community abundance data
(Cyanophyceae, Chlorophyceae, Bacillariophyceae, and others) in percentages for
1999 and 2003. The best arrangement of the output layer of 24 .6 � 4/ neurons
was a hexagonal lattice. Interestingly, a hierarchical cluster analysis, based on Ward
algorithm and using the Euclidean distance, was performed on the KSOM units.
Analysis of the results showed that the clustering was based on the phytoplank-
ton communities and sampling time. A TLP was used to predict the chlorophyll-a
concentration and abundance of Cyanophyceae from environmental factors in-
cluding the total nitrogen, total dissolved nitrogen, total particulate nitrogen, total
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phosphorus, total dissolved phosphorus, total particulate phosphorus, temperature,
DO, pH, conductivity, turbidity, Secchi depth, precipitation, and daily irradiance.
Data were collected from 54 samples over 3 years. Gradient descent optimization
was used for error reduction. The best models for chlorophyll-a concentration and
abundance of Cyanophyceae were 14/3/1 and 14/6/1 TLPs. The predictive perfor-
mances of the models were not estimated from an ETS. Conversely, a sensitivity
analysis was performed to determine the most influential variables. Results showed
that they were different for the two TLP ANNs.

Lenthic and lotic ecosystems are also contaminated by numerous xenobiotics re-
sulting from agricultural and industrial activities. Thus, pesticides are used to control
weeds, insects, and other organisms in a wide variety of agricultural and nonagri-
cultural settings yielding their release into the environment including the aquatic
compartment. Among the collection of models available for predicting the environ-
mental fate and effects of pesticides, some of them are based on nonlinear methods,
especially the ANNs. Thus, for example, Kim and coworkers [170] coupled wavelet
analysis and a TLP trained by the backpropagation algorithm for modeling the
movement behavior of Chironomus samoensis larvae in response to treatments of
carbofuran at 0.1 mg/L in seminatural conditions. Various ANN paradigms have
been also used for modeling the contamination of groundwater by pesticides and
other anthropic pollutants [171–176].

Samecka-Cymerman and coworkers [177] used a KSOM to perform a typol-
ogy of three species of aquatic bryophytes (Fontinalis antipyretica, Platyhypnidium
riparioides, Scapania undulata) according to their concentration in Al, Be, Ca, Cd,
Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, and Zn. The sampling sites were divided into
three groups depending on the type of rock basement of the stream. Sampling sites
in group one consisted of granites and gneisses .n D 21/, those in group two of
sandstones .n D 5/, and those in group three of limestones and dolomites .n D 26/.
The output layer of 5 � 5 neurons visualized by hexagonal cells showed that the
bryophytes were clustered according to their sampling origin. There was no differ-
ence between the bryophytes from the three types of rock in terms of concentrations
in Be, Fe, K, Co, and Cu. Conversely, bryophytes growing in streams flowing
through granites/gneisses contained significantly higher concentrations of Cd and
Pb, while bryophytes from streams flowing through sandstones contained signifi-
cantly higher concentrations of Cr. Bryophytes from group three were characterized
by high concentrations in Ca and Mg. These results were confirmed from a PCA.

Last, it is noteworthy that ANNs have been used in the areas of wastewater treat-
ment and analyses [178–180].

5.3 Soil and Sediment Contaminations

Soils and sediments can be contaminated by various pollutants released into the en-
vironment from a number of anthropogenic sources. ANNs have shown their interest
for characterizing and/or quantifying these contaminations. Thus, for example, in
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Winter 2002, 24 soil and 12 wild chard (Beta vulgaris) samples were collected by
Nadal et al. [181] in Tarragona County (Catalonia, Spain). Soil sampling points were
chosen as follows: 15 in the industrial complex (8 in the vicinity of chemical indus-
tries and 7 near petroleum refineries), 5 in Tarragona downtown and its residential
area, and 4 in presumably unpolluted zones. The number of wild chard samples
collected from industrial, residential, and unpolluted areas were 6, 3, and 3, respec-
tively. The samples were analyzed for their concentrations in As, Cd, Cr, Hg, Mn,
Pb, and V. In chard samples, significant differences between areas were only found
for vanadium (V). Regarding the soil samples, the differences and concentrations
between the three zones were higher. A KSOM was successfully used to perform
their typology according their differences in metal concentrations. The same type of
methodology based on KSOM was applied by Arias and coworkers [182] for evalu-
ating the pollution level in Cu, Mn, Ni, Cr, Pb, and Zn of the sediments dredged from
the dry dock of a former shipyard in the Bilbao estuary (Bizkaia, Spain). KSOM was
compared with different cluster analysis algorithms to classify 407 samples of var-
ious origins contaminated by polychlorinated dibenzodioxins and polychlorinated
dibenzofurans [183].

Other ANN paradigms were used to model soil and sediment contaminations.
Thus, for example, Kanevski [184] tested the usefulness of general regression
ANNs, based on kernel statistical estimators for predicting the soil contamination in
Cs137 in Western part of Briansk region following Chernobyl accident.

6 Conclusion

On the basis of a computing model similar to the underlying structure of a mam-
malian brain, ANNs share the brain’s ability to learn or adapt in responses to external
inputs. When exposed to a stream of training data, they can uncover previously
unknown relationships and learn complex mappings in the data. Under these con-
ditions, ANNs provide interesting alternatives to well-established linear methods
commonly used in ecotoxicology modeling. In this chapter, different ANN models
computed for predicting the environmental fate and effects of chemicals are pre-
sented. Our goal was not to catalog all the models in the field but only to show the
diversity of the situations in which these nonlinear tools have proved their interest.
Their correct use requires to have some practical experience for architecture and
parameter setting as well as to interpret the modeling results. They also need to re-
spect some rules dealing with the size of the data sets, the constitution of learning
and testing sets, and so on. Despite these limitations, it is obvious that their use in
ecotoxicology modeling will continue to grow, especially in combination with other
linear and nonlinear statistical methods to create powerful hybrid systems.
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(Théorie). Ann Chim Phys 26: 408–417

58. Hansch C, Leo A (1995) Exploring QSAR. Fundamentals and applications in chemistry and
biology. American Chemical Society, Washington

59. Nernst W (1891) Verteilung eines Stoffes zwischen zwei Lösungsmitteln und zwischen
Lösungsmittel und Dampfraum. Z Phys Chem 8: 110–139

60. Meyer H (1899) Zur Theorie der Alkoholnarkose. Arch Exp Pathol Pharmakol 42: 109–118
61. Overton E. (1901) Studien über die Narkose. Gustav Fischer, Jena
62. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phe-

noxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:
178–180

63. Hansch C, Fujita T (1964) ¡-¢-  Analysis. A method for the correlation of biological activity
and chemical structure. J Am Chem Soc 86: 1616–1626

64. Sangster J (1997) Octanol-water partition coefficients: Fundamentals and physical chemistry.
Wiley, Chichester

65. Rekker RF, Mannhold R (1992) Calculation of drug lipophilicity. The hydrophobic fragmental
constant approach. VCH, Weinheim

66. Schaper KJ, Samitier MLR (1997) Calculation of octanol/water partition coefficients (log P)
using artificial neural networks and connection matrices. Quant Struct Act Relat 16: 224–230

67. Bodor N, Ming-Ju H, Harget A (1994) Neural network studies. III: Prediction of partition
coefficients. J Molec Struct Theochem 309: 259–266

68. Yaffe D, Cohen Y, Espinosa G, Arenas A, Giralt F (2002) Fuzzy ARTMAP and back-
propagation neural networks based quantitative structure-property relationships (QSPRs)
for octanol-water partition coefficient of organic compounds. J Chem Inf Comput Sci 42:
162–183

69. Huuskonen JJ, Livingstone DJ, Tetko IV (2000) Neural network modeling for estimation of
partition coefficient based on atom-type electrotopological states indices. J Chem Inf Comput
Sci 40: 947–955

70. Tetko IV, Tanchuk VY, Villa AEP (2001) Prediction of n-octanol/water partition coefficients
from PHYSPROP database using artificial neural networks and E-states indices. J Chem Inf
Comput Sci 41: 1407–1421

71. Tetko IV, Tanchuk VY (2002) Application of associative neural networks for prediction of
lipophilicity in ALOGPS 2.1 program. J Chem Inf Comput Sci 42: 1136–1145

72. Devillers J, Domine D, Guillon C, Bintein S, Karcher W (1997) Prediction of partition coef-
ficients (log Poct) using autocorrelation descriptors. SAR QSAR Environ Res 7: 151–172

73. Devillers J, Domine D, Guillon C (1998) Autocorrelation modeling of lipophilicity with a
back-propagation neural network. Eur J Med Chem 33, 659–664



Artificial Neural Network Modeling 23

74. Devillers J, Domine D, Guillon C, Karcher W (1998) Simulating lipophilicity of organic
molecules with a back-propagation neural network. J Pharm Sci 87, 1086–1090

75. Broto P, Devillers J (1990) Autocorrelation of properties distributed on molecular graphs. In:
Karcher W, Devillers J (eds) Practical applications of quantitative structure-activity relation-
ships (QSAR) in environmental chemistry and toxicology, Kluwer, Dordrecht

76. Devillers J (1999) Autocorrelation descriptors for modeling (eco)toxicological endpoints. In:
Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR,
Gordon and Breach Publishers, Amsterdam

77. Devillers J, Domine D (1997) Comparison of reliability of log P values calculated from a
group contribution approach and from the autocorrelation method. SAR QSAR Environ Res
7: 195–232

78. Devillers J (2000) EVA/PLS versus autocorrelation/neural network estimation of partition
coefficients. Pespect Drug Discov Design 19: 117–131

79. Devillers J (1999). Calculation of octanol/water partition coefficients for pesticides. A com-
parative study. SAR QSAR Environ Res 10: 249–262

80. Domine D, Devillers J (1998) A computer tool for simulating lipophilicity of organic
molecules. Sci Comput Autom 15: 55–63

81. Devillers J (1999) AUTOLOGP
TM

: A computer tool for simulating n-octanol-water partition
coefficients. Analusis 27 23–29

82. Pitter P, Chudoba J (1990) Biodegradability of organic substances in the aquatic environment.
CRC Press, Boca Raton

83. Kuenemann P, Vasseur P, Devillers J (1990) Structure-biodegradability relationships. In:
Karcher W, Devillers J (eds) Practical applications of quantitative structure-activity relation-
ships (QSAR) in environmental chemistry and toxicology, Kluwer, Dordrecht

84. Vasseur P, Kuenemann P, Devillers J (1993) Quantitative structure-biodegradability relation-
ships for predictive purposes. In: Calamari D (ed) Chemical exposure predictions, Lewis
Publishers, Boca Raton

85. Devillers J (1996). On the necessity of multivariate statistical tools for modeling biodegrada-
tion. In: Ford MG, Greenwood R, Brooks CT, Franke R (eds) Bioactive compound design:
Possibilities for industrial use. BIOS Scientific Publishers, Oxford

86. Cambon B, Devillers J (1993) New trends in structure-biodegradability relationships. Quant
Struct Act Relat 12 49–56

87. Devillers J, Karcher W (1990) Correspondence factor analysis as a tool in environmental
SAR and QSAR studies. In: Karcher W, Devillers J (eds) Practical applications of quantitative
structure-activity relationships (QSAR) in environmental chemistry and toxicology, Kluwer,
Dordrecht

88. Devillers J (1996) Genetic algorithms in molecular modeling. Academic Press, London
89. Devillers J (1996) Designing molecules with specific properties from intercommunicating

hybrid systems. J Chem Inf Comput Sci 36: 1061–1066
90. Devillers J (1993) Neural modelling of the biodegradability of benzene derivatives. SAR

QSAR Environ Res 1: 161–167
91. Tabak HH, Govind R (1993) Prediction of biodegradation kinetics using a nonlinear group

contribution method. Environ Toxicol Chem 12: 251–260
92. Devillers J, Domine D, Boethling RS (1996) Use of a backpropagation neural network and au-

tocorrelation descriptors for predicting the biodegradation of organic chemicals. In: Devillers
J (ed) Neural networks in QSAR and drug design, Academic Press, London

93. Domine D, Devillers J, Chastrette M, Karcher W (1993) Estimating pesticide field half-lives
from a backpropagation neural network. SAR QSAR Environ Res 1: 211–219

94. Cros AFA (1863) Action de l’alcool amylique sur l’organisme. Thesis, University of Stras-
bourg, Strasbourg

95. Free SM, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med
Chem 1: 395–399

96. Devillers J, Lipnick RL (1990) Practical applications of regression analysis in environmental
QSAR studies. In: Karcher W, Devillers J (eds) Practical applications of quantitative structure-
activity relationships (QSAR) in environmental chemistry and toxicology, Kluwer, Dordrecht



24 J. Devillers

97. Devillers J, Bintein S, Domine D, Karcher W (1995) A general QSAR model for predict-
ing the toxicity of organic chemicals to luminescent bacteria (Microtox R� test). SAR QSAR
Environ Res 4: 29–38

98. Devillers J, Domine D (1999) A noncongeneric model for predicting toxicity of organic
molecules to Vibrio fischeri. SAR QSAR Environ Res 10: 61–70

99. Xu L, Ball JW, Dixon SL, Jurs PC (1994) Quantitative structure-activity relationships for
toxicity of phenols using regression analysis and computational neural networks. Environ
Toxicol Chem 13: 841–851

100. Serra JR, Jurs PC, Kaiser KLE (2001) Linear regression and computational neural network
prediction of Tetrahymena acute toxicity of aromatic compounds from molecular structure.
Chem Res Toxicol 14: 1535–1545

101. Burden FR, Winkler DA (2000) A Quantitative structure-activity relationships model for the
acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized
neural networks. Chem Res Toxicol 13: 436–440

102. Winkler D, Burden F (2003) Toxicity modelling using Bayesian neural nets and automatic
relevance determination. In: Ford M, Livingstone D, Dearden J, van de Waterbeemd H (eds)
EuroQSAR 2002. Designing drugs and crop protectants: Processes, problems and solutions,
Blackwell publishing, Malden

103. Devillers J (2004) Linear versus nonlinear QSAR modeling of the toxicity of phenol deriva-
tives to Tetrahymena pyriformis. SAR QSAR Environ Res 15: 237–249

104. Yao XJ, Panaye A, Doucet JP, Zhang RS, Chen HF, Liu MC, Hu ZD, Fan BT (2004) Compar-
ative study of QSAR/QSPR correlations using support vector machines, radial basis function
neural networks, and multiple linear regression. J Chem Inf Comput Sci 44: 1257–1266

105. Ren S (2003) Modeling the toxicity of aromatic compounds to Tetrahymena pyriformis: The
response surface methodology with nonlinear methods. J Chem Inf Comput Sci 43: 1679–
1687

106. Panaye A, Fan BT, Doucet JP, Yao XJ, Zhang RS, Liu MC, Hu ZD (2006) Quantitative
structure-toxicity relationships (QSTRs): A comparative study of various non linear methods.
General regression neural network, radial basis function neural network and support vector
machine in predicting toxicity of nitro- and cyano-aromatics to Tetrahymena pyriformis. SAR
QSAR Environ Res 17: 75–91

107. Novic M, Vracko M (2003) Artificial neural networks in molecular-structures-property stud-
ies. In: Leardi R (ed) Nature-inspired methods in chemometrics: Genetic algorithms and
artificial neural networks, Elsevier, Amsterdam

108. Niculescu SP, Kaiser KLE Schultz TW (2000) Modeling the toxicity of chemicals to Tetrahy-
mena pyriformis using molecular fragment descriptors and probabilistic neural networks.
Arch Environ Contam Toxicol 39: 289–298

109. Kaiser KLE, Niculescu SP, Schultz TW (2002) Probabilistic neural network modeling of the
toxicity of chemicals to Tetrahymena pyriformis with molecular fragment descriptors. SAR
QSAR Environ Res 13: 57–67

110. Kahn I, Sild S, Maran U (2007) Modeling the toxicity of chemicals to Tetrahymena pyriformis
using heuristic multilinear regression and heuristic back-propagation neural networks. J Chem
Inf Model 47: 2271–2279

111. Kaiser KLE, Niculescu SP (2001) Modeling acute toxicity of chemicals to Daphnia magna:
A probabilistic neural network approach. Environ Toxicol Chem 20: 420–431

112. Devillers J (2003) A QSAR model for predicting the acute toxicity of pesticides to gammarids.
In: Leardi R (ed) Nature-inspired methods in chemometrics: Genetic algorithms and artificial
neural networks, Elsevier, Amsterdam

113. Devillers J (2000) Prediction of toxicity of organophosphorus insecticides against the midge,
Chironomus riparius, via a QSAR neural network model integrating environmental variables.
Toxicol Meth 10: 69–79
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178. Gagné F, Blaise C (1997) Predicting the toxicity of complex mixtures using artificial neural
networks. Chemosphere 35: 1343–1363

179. Pigram GM, Macdonald TR (2001) Use of neural network models to predict industrial biore-
actor effluent quality. Environ Sci Technol 35: 157–162



28 J. Devillers

180. Lopez Garcia H, Machon Gonzalez I (2004) Self-organizing map and clustering for wastew-
ater treatment monitoring. Eng Appl Art Int 17: 215–225

181. Nadal M, Schuhmacher M, Domingo JL (2004) Metal pollution of soils and vegetation in an
area with petrochemical industry. Sci Total Environ 321: 59–69

182. Arias R, Barona A, Ibarra-Berastegi G, Aranguiz I, Elias A (2008) Assessment of metal con-
tamination in degded sediments using fractionation and self-organizing maps. J Hazad Mat
151: 78–85
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(Q)SAR Models for Genotoxicity Assessment

Sunil A. Kulkarni and Jiping Zhu

Abstract Assessment of genotoxicity of chemicals is one of the utmost priorities
of a regulatory agency since it is indicative of its potential carcinogenic properties.
A major challenge to the regulatory agencies today is how to assess the genotoxic-
ity of the large proportion of existing and new substances that have otherwise very
little or no information on their genotoxicity potential given the high costs and large
time-scales associated with experimental testing. (Quantitative) structure–activity
relationships ((Q)SAR)-based methodologies have the potential to serve as rapid
and reliable genotoxicity screening tools. Such tools are very useful for regulatory
agencies to assess the safety of chemicals, whereas for drug or new chemical manu-
facturers these aid in providing an insight into the potential genotoxic/mutagenic
properties of their novel molecules. To assess genotoxicity of diverse groups of
chemicals, various methods ranging from traditional linear modeling techniques to
modern machine learning algorithms have been applied by researchers to develop
a large variety of (Q)SAR models. This chapter provides an overview of some of
the existing (Q)SAR models that have the potential to be integrated in a regulatory
framework for nonempirical genotoxicity assessment.

Keywords Genotoxicity � (Q)SAR � Risk assessment � Modeling � Regulation

1 Introduction

The human population is continually exposed to a variety of chemicals typically
through food, air, water, and use of consumer products. Exposure to many of these
chemicals is of great concern for human health owing to their potential to exert
genotoxic/mutagenic effects. Such chemicals are termed as genotoxic since they are
capable of altering the genes/chromosomes in some way that can cause point muta-
tion, chromosomal aberration, or DNA damage. A prior knowledge of genotoxicity
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of a substance is indicative, in many cases, of its carcinogenic and teratogenic poten-
tial. Therefore, assessment of genotoxicity of in-commerce chemicals is one of the
essential components of a sound regulatory policy. For a drug manufacturer, a prior
knowledge on genotoxicity of a chemical in early stages of product development
saves a huge amount of resources.

Since direct genotoxicity tests on humans are not possible for a number of rea-
sons, rodent models are generally used for experimental testing. However, on the
one hand, one reliable in vivo testing of chronic effects such as genotoxicity for one
single chemical requires huge amounts of resources in terms of money, time, and
animals. In addition, there are sensitive issues pertaining to ethical and humane treat-
ment of laboratory animals during testing. On the other hand, in vitro genotoxicity
tests such as bacterial tests and chromosomal aberration assays are comparatively
quicker and relatively less expensive, but these too could be time-consuming and
expensive when testing vast numbers of chemicals [1].

In this context, in silico methods such as (quantitative) structure–activity rela-
tionships ((Q)SARs), which are data and/or knowledge driven, have the potential to
offer fairly reliable prediction results on genotoxicity. The in silico method serves as
a screening tool and has several advantages when compared with traditional in vivo
and in vitro tests. First, being a mathematical and statistical tool, it is capable of
processing a large amount of information in a short time using minimum resources.
Second, these models in some cases are able to simulate real-life biological systems
and also provide mechanistic basis for the genotoxicity. Third, in today’s fast-paced
world thousands of new chemicals in the form of pesticides, drugs, fine chemicals,
and dyes are synthesized every year in different parts of the world. Typically in
countries where regulatory laws are stringent every chemical, either produced or
imported, has to be screened for its genotoxic properties and prioritized for fur-
ther experimental testing. Given the fact that there is still a large number of existing
chemicals that as yet do not have adequate information on their genotoxic/mutagenic
status, experimental testing based approach alone cannot meet the demand for as-
sessing the genotoxicity of chemicals. As a screening tool, positive hits on genotoxic
(Q)SAR models help to flag the substances as having potential hazard to human
health and thus, subject to further investigation using in vitro and/or in vivo tests.
Fourth, the experimental genotoxicity screening to predict genotoxicity potential of
novel molecules that are still under planning and as yet not synthesized is not prac-
ticable. Finally, the high levels of uncertainty associated with genotoxicity testing
calls for dependable theoretical methods to identify suspect experimental results [2].

The term “genotoxic” generally applies to chemicals or processes, which alter
the structure, information content, or segregation of DNA, whereas the term “muta-
genic” is used to designate chemicals that are able to make heritable changes to the
genetic material. In this chapter, the terms “genotoxic” and “mutagenic” have been
used to indicate a toxic response elicited by the interaction of a chemical with the
DNA, and therefore, we have treated them as one category for addressing various
(Q)SAR models.
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2 Elements of (Q)SAR Models for Genotoxicity

A typical (Q)SAR model for prediction of genotoxicity comprises certain essential
elements including training set chemicals, descriptors (e.g., structural, physico-
chemical), genotoxic/mutagenic endpoints, and a methodology. These components
are interconnected and each plays an essential role in the model. The usefulness of
these elements and their importance in the genotoxicity-based (Q)SAR model are
briefly outlined in the following subsections.

2.1 Training Set Chemicals and Descriptors

A training set is a set of chemicals that has data on a genotoxicity endpoint and is
used to develop a (Q)SAR model. Such data-rich chemicals could be gathered from
publicly available sources such as Carcinogenic Potency Databases (CPDB), United
States Food and Drug Administration (USFDA), Distributed Structure-Searchable
Toxicity (DSSTox) Database, Genetox, National Toxicology Program or from pro-
prietary databases (e.g., from a pharmaceutical industry). Alternatively, the training
set could be developed in-house by generating one’s own empirical genotoxic-
ity data. Commercial (Q)SAR models use public and/or proprietary databases.
One important aspect of a training set pertains to its composition with respect to di-
versity of molecular structures since it decides the scope of a model. Models based
on a congeneric set of chemicals with a focus on a specific functional group or struc-
tural characteristic have a narrow applicability compared with ones that have a wide
range of chemicals.

Genotoxicity has been successfully modeled using global and/or fragment-
based descriptors. Global descriptors, on the one hand, tend to encode information
about the whole molecule, do not change from point to point in space, and help
to identify trends and tendencies within a chemical dataset. The fragment-based
descriptors, on the other hand, are localized and vary with the nature of functional
groups/bonds. A descriptor, therefore, is the final result of a logic and mathematical
procedure, which transforms chemical information encoded within a symbolic rep-
resentation of a molecule into a useful number or the result of some standardized ex-
periment [3]. The descriptors can either be determined experimentally or computed
using software programs such as DRAGON [4], ADRIANA.code [5], PowerMV [6].
Some of the descriptors that are commonly used to model genotoxicity include hy-
drophobicity (generally measured as the logarithm of n-octanol-water partition
coefficient (log Kow)), quantum-mechanical (e.g., highest occupied molecular or-
bital (HOMO), lowest unoccupied molecular orbital (LUMO), geometry-optimised
bond length, etc.), thermodynamic, steric, bulkiness, topological, Taft constant ��,
Hammett constant � , and STERIMOL. In addition to these, it is possible to compute
a very large number of other descriptors using one of the programs mentioned above.

The choice of descriptors generally depends on factors including the genotoxic
effect to be predicted, nature of training set chemicals, and availability of com-
putational resources. From a practical standpoint, it is worth noting that there is



32 S.A. Kulkarni and J. Zhu

always a trade-off between the level of approximation as far as the information
from molecular descriptor is concerned and the demand on resources. For instance,
the computationally intensive ab initio molecular descriptors result in a heavy de-
mand for computer resources and can make models built on it unsuitable for rapid
screening of large numbers of chemicals. Descriptors such as the E-state (electro-
topological) indices that encode similar molecular information as the conventional
descriptors are relatively easy to compute [7].

Generally techniques such as genetic algorithm (GA), generalized simulated an-
nealing (GSA), and fuzzy logic are used by model developers to provide a high-level
reasoning capability and/or in finding optimal subsets of descriptors from a large
descriptor population. A brief description of some of the molecular descriptors com-
monly used to model genotoxicity is presented in Table 1.

2.2 Genotoxicity Endpoints

The molecular mechanisms of genotoxicity include DNA intercalation by aro-
matic ring of a chemical, gene mutation, DNA adduct formation and strand break,
and unscheduled DNA synthesis. Indirect-acting chemicals that exert genotoxicity
upon metabolic activation are generally found to cause chromosomal aberrations,
micronuclei formation, sister chromatid exchanges, and cell death [8, 9]. Several
in vitro and in vivo tests and testing protocols have been developed to measure
one of these genotoxic/mutagenic effects. The most commonly used in vitro geno-
toxic endpoint is the Ames test, a microbial assay that uses various strains of the
bacteria Salmonella typhimurium, where the strains are sensitive to specific types
of mutation [10]. To make the in vitro tests metabolically relevant for higher or-
ganisms (humans), the rat liver enzymes (S9) are generally added to the microbial
assay especially when assessing indirect-acting substances [10]. Some of the com-
mon genotoxicity endpoints (or tests) used to develop (Q)SAR models have been
summarized in Table 2.

2.3 Model Development Methodologies

In the process of (Q)SAR model development, it is the methodology that ul-
timately establishes the relationship between the structural characteristics of a
chemical and the genotoxic outcome, and paves the way for interpretation of
the underlying genotoxic mechanisms. These methodologies include the classi-
cal linear regression techniques [31–33], machine learning techniques such as
inductive logic programming [34], k-nearest neighbors [35], decision trees [36],
neural networks [37], pattern recognition [38], decision forests [39], support vector
machines [40], random forest [2], linear discriminant analysis [41], molecular mod-
eling methods that employ three-dimensional (3D) techniques that model relevant
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Table 1 Common molecular descriptors used for modeling genotoxicity/mutagenicity

Molecular
descriptor Description/interpretation

Hydrophobicity
(log Kow or
log P )

Measures affinity of a molecule or a moiety for a lipophilic
environment and tells about penetration, distribution,
bioaccumulation

Hansch-Fujita  

constant
Describes the contribution of a substituent to the lipophilicity of a

compound
Structural

(general)
Size of aromatic ring system, presence/absence/orientation/number of

a specific functional group, number of ring heteroatoms
Taft steric

parameter (Es)
A relative reaction parameter encoding the reaction rate retardation

due to the size of a substituent group
Molar refractivity

(MR)
Quantifies bulkiness, steric hindrance, size and polarizability of a

fragment or molecule. Higher value prevents enzymatic access to
molecule and thus, formation of reactive intermediate

STERIMOL (L, B1,
B2, B3, B4)

Length and width of molecule/substituent

Topological Characterize structures according to molecular size, degree of
branching, and overall shape

Electrotopological
state (E-state)
indices

Encode electronic, connectivity and topological information for each
skeletal atom in a molecule. Also, take into account the structure of
the entire molecule, and contain some form of shape information

Geometrical Encode information on overall size and shape, molecular surface area,
molecular volume (require accurate 3D geometries)

Three-dimensional Encode spatial relationships between atoms, ring centroids, and
planes. Considers conformational flexibility

Quantum-
mechanical –
HOMO

Higher HOMO value means chemical is easier to oxidize hence,
should be readily bioactivated. Mutagenicity should increase with
increasing HOMO

Quantum-
mechanical –
LUMO

Mutagenic potency increases as LUMO decreases

Hammett sigma
constant .�/

Electronic substituent descriptor reflecting the electron-donating or
accepting properties of a substituent. Positive values indicate
electron withdrawal by substituent and negative values indicate
electron release to an aromatic ring

Thermodynamic Enthalpy of reaction .�H/

Electrostatic Molecular polarizability, dipole moment, average ionization energy

biochemical events for toxicity [42], rule-based and knowledge-based expert sys-
tems that mimic human reasoning about toxicological phenomena such as deductive
estimation of risk from existing knowledge (DEREK) [43], HazardExpert [44] and
prediction of activity spectra for biologically active substances (PASS) [45], highly
populated, structurally diverse data-driven global model systems such as computer-
automated structure evaluation of toxicity (CASETOX) [46] and toxicity prediction
by komputer-assisted technology (TOPKAT) [47], as well as the hybrid methods
that apply modern machine learning approaches, account for metabolic activation,
and integrate expert knowledge with quantitative aspects of modeling using molec-
ular descriptors [48, 49].
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Table 2 Common endpoints/tests used to model genotoxicity

Name of test Brief description Reference

Gene mutation

Salmonella
typhimurium
reverse mutation
assay (Ames test)

Measures his�! hisC reversion induced by chemicals
which cause base changes or frameshift mutations in the
genome of Salmonella. Strains TA98, 1537 and 1538
are more prone to capture frameshift mutations whereas
TA100, 1535 are specific for base-pair substitution
mutations. Highly sensitive, effective, rapid screening
test. Limitations being the bacterial nature and positive
testing of several chemicals not known to be
carcinogenic

[10, 11]

Escherichia coli E. coli strains WP2 and WP2 uvrA are used to detect
base-pair mutations

[12, 13]

Phage
T7-inactivation
test

It is based on the determination of the inactivation of
bacteriophage T7

[14]

Chinese hamster
lung (V79) cell
mutagenicity
assay

Primarily measures gene mutation at hypoxanthine-guanine
phosphoribosyl transferase (HGPT) or the NaC=KC
ATPase locus

[15]

In vitro mouse
lymphoma tk
locus assay

Quantifies genetic alterations affecting expression of the
thymidine kinase (TK) gene (tk). Able to detect a wide
range of genetic damages, including gene mutations,
larger scale chromosomal changes, recombination,
aneuploidy, and others

[16, 17]

Induction of chromosomal aberrations

Micronucleus test in
mouse
lymphoma
(L5178Y) cells

Sensitive and specific to determine clastogenic or aneugenic
potential of a test compound; Excellent correlation
between chromosomal aberration and micronucleus data
in vitro, in primary cells

[18, 19]

Sister chromatid
exchange (SCE)

Detects reciprocal exchanges of DNA between two sister
chromatids of a duplicating chromosome. Represent the
interchange of DNA replication products at apparently
homologous loci. Provides a measurement of effects at
the highest level of genetic organization. Possible both
in vitro and in vivo

[20]

Mammalian
micronucleus test
in bone marrow

In vivo test for measuring damage to chromosomes or the
mitotic apparatus of erythroblasts by analysis of
erythrocytes as sampled in bone marrow and/or
peripheral blood cells of animals, usually rodents

[21, 22]

Somatic mutation
and
recombination
test (SMART) in
Drosophila
melanogaster

Good capacity for describing mutagenic and carcinogenic
activity of various chemical compounds

[23, 24]

Induction of
chromosomal
malsegregation
in Aspergillus
nidulans (mold)

It measures the aneugenic potential of a chemical [25]

(continued)
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Table 2 (continued)

Name of test Brief description Reference

DNA damage

SOS (salt-overly-
sensitive)
Chromotest

SOS response is an inducible DNA repair system that
allows bacteria to survive sudden increases in DNA
damage. The test measures induction of a lac Z reporter
gene in response to DNA damage caused by a broad
spectrum of genotoxic substances

[26, 27]

Comet assay (single
cell gel (SCG)
electrophoresis)

Detects DNA strand breaks. The DNA damage is indicated
by the extent of migration of DNA fragments when
subjected to electrophoresis. Can be conducted in both
in vitro and in vivo systems. It is rapid, simple to
perform, and requires only a small amount of test
substance

[28]

Umu test It is based on the ability of DNA damaging agents to induce
the expression of the umuC gene, which is also a SOS
response gene. By the umu-test, using the single tester
strain, many types of DNA-damaging agents can be
detected for which the Ames test requires several tester
strains

[29]

Unscheduled DNA
synthesis (UDS)

Measures the DNA repair synthesis after excision and
removal of a stretch of DNA containing the region of
damage induced by chemical and physical agents. It
may also be measured in in vivo systems

[30]

3 Overview of Important Genotoxicity-Based (Q)SAR Studies

A vast number of genotoxicity-based SAR and QSAR studies have been carried
out and published for a diverse group of chemicals applying different kinds of
techniques. The techniques range from classical multiple regression analysis to
machine learning (neural networks/pattern recognition/statistical learning methods)
to 2D and 3D QSAR methodologies (e.g., comparative molecular field analysis
(CoMFA)). Table 3 provides a summary of some of the important studies carried
out over the last three decades. Even though a significant number of studies have
been carried out on aromatic amines alone, a wide variety of chemical classes have
been investigated for (Q)SAR model development. Gene mutation in Salmonella
strains has been the most commonly used genotoxic endpoint. Although the fre-
quent choice of methodology in the development of QSAR models is multiple
linear regressions (MLR) involving smaller datasets, classification/pattern recog-
nition algorithms are some of the preferred methods for models involving large and
structurally diverse datasets. From Table 3 it can be observed that MLR was a pre-
ferred method in the earlier days, whereas modern day modelers clearly seem to
prefer machine learning algorithms. For example, Debnath and coworkers [33] es-
tablished a relationship using MLR method, log TA98 D 1:08.˙0:26/ log P C
1:28.˙0:64/ HOMO� 0:73.˙0:41/ LUMOC 1:46.˙0:56/ ILC 7:20.˙5:4// with
n D 88; r D 0:898; s D 0:860 (n is the number of chemicals in the training set,
r is correlation coefficient, s is standard error) for the development of Ames
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mutagenicity QSAR on a set of aromatic amines. Studies based on machine learning
methods do not generate such equations but instead compute a sensitivity factor that
shows how well the classifier was able to segregate genotoxic from nongenotoxic
chemicals [35, 50]. In the following subsections, we will describe in brief some of
the important studies that were carried out by various researchers from which the
relationship between structures and genotoxic endpoints are established.

3.1 QSARs Based on Classical Techniques

The work of Debnath and coworkers [60, 65], which mainly focused on different
types of aromatic amines and nitroarenes demonstrated the importance of hydropho-
bicity and molecular orbital energies in predicting their mutagenicity. These studies
considered not only the S. typhimurium strains but also other bacterial species such
as Escherichia coli. However, the QSARs developed by Debnath and coworkers
were found to be unsuitable for differentiating the inactives from the actives [75].
According to Benigni and coworkers, first it was necessary to separately investigate
the structure–activity relationships (SARs) for discrimination between positive and
negative chemicals, and the SARs for the potency of the positive chemicals. Second,
it was necessary to investigate the degree of homogeneity (congenericity) of appar-
ently similar chemicals to assess and describe the various mechanisms of action that
may be elicited by the chemicals [102]. It was found that hydrophobicity alone had
no discriminating power in the Salmonella strains TA98 and TA100, which was at
odds with the major role played in the modulation of potency within the group of ac-
tive compounds. Discriminant functions separating mutagenic from nonmutagenic
amines were based mainly on electronic and steric hindrance factors. Since no sat-
isfactory models existed for discriminating between mutagenic and nonmutagenic
aromatic amines, a new set of QSAR models focusing on the mechanistic aspects
were built using data (mostly homocyclic aromatic amines) taken from Debnath’s
studies [75]. The models for strains TA98 and TA100 correctly reclassified 89.2%
and 87.4% of the compounds, respectively.

The genotoxicity of these arylamines is generally thought to be due to their abil-
ities to covalently modify nucleic acid base sites following metabolic activation via
N -oxidation to the highly reactive arylnitrenium ions [103]. In the backdrop of the
significant success of simple molecular orbital procedures in correlating the genetic
toxicities of the polycyclic aromatic hydrocarbons (PAHs) and the landmark devel-
opment of the “bay region theory,” Ford and Herman reexamined the role played by
stabilities of the aromatic nitrenium ions in the genotoxicity of polycyclic aromatic
amines [61]. They used modern molecular orbital techniques to study the effects.
However, limited linear correlations were obtained between energetics of nitrenium
ion formation and mutagenicities in the TA98 and TA100 strains of Salmonella. On
similar lines Ford and Griffin also reported approximately linear correlation between
relative stabilities of nitrenium ion and mutagenicity of a variety of heteroaromatic
amines present in cooked foods [62].
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Using a hierarchical approach, class-specific QSAR models were developed for
the prediction of mutagenicity for a set of 95 aromatic and heteroaromatic amines
[98]. The hierarchical approach was designed such that the simplest molecular de-
scriptors, the topostructural, which encoded limited chemical information, was first
used and gradually the complexity was increased by adding topochemical, geo-
metric, and finally quantum chemical parameters. Log Kow was also added to the
set of independent variables. It was found that the topological parameters such as
topostructural and topochemical indices explained the majority of the variance, and
that the inclusion of log Kow, geometric, and quantum chemical parameters did not
result in significantly improved predictive models.

Cash [7] carried out a QSAR model development study by correlating the mea-
sured mutagenicities of a set of aromatic and heteroaromatic amines with easily
calculated sums of E-state indices and principal components derived from them.
The correlations obtained were comparable to previously published models that
used log Kow, HOMO, and LUMO, or a selection of topological and geometric vari-
ables, but they were not as good as a model that relied on SCF/AM1 (self-consistent
field/Austin model 1) energy optimization. However, the model performed poorly
when subjected to external validation [104]. This indicated the incapability of
E-state indices to adequately describe key positional features that influence the
stability of reactive intermediates of aromatic amines that are so crucial in their
mutagenic action.

A QSAR methodology using new structural factors and quantum chemical
Hückel and ab initio calculations on a diverse set of 80 chemicals consisting of
aromatic and heterocyclic amines was proposed by Hatch and coworkers [72]. The
results indicated that the main determinant of mutagenic potency was the extent of
the aromatic  -electron system with minor contributions made by both the dipole
moment and the calculated stability of the nitrenium ion.

A series of 17 mono-substituted propylene oxides were investigated for their mu-
tagenic effects in Salmonella strains TA100 and TA1535 using two different assays
(liquid suspension assay (LSA) and standard plate incorporation assay (PIA)) [66].
The relative mutagenicity was found to differ not only in the two assays but also
in the two strains. The assay differences (greater mutagenicity for propylene oxide
in LSA than in the PIA) were attributed to epoxide stability, whereas the observed
variations between strains were due to the response of the error-prone repair system
to the stronger alkylating agents that is found only in the TA100 strain.

A structure–mutagenicity relationship study on a set of 31 para-monosubstituted
chalcones and their corresponding oxides using Salmonella strains TA98 and TA100
revealed how the latter group of chemicals exhibited varying sensitivities toward the
two strains. Additionally, the importance of increasing hydrophilicity (as indicated
by the Hansch   parameter) and resonance electronic contributions when compared
with steric terms in explaining their mutagenicity was also observed [54]. The chal-
cone oxides were found to be more mutagenic with TA100 than TA98 since the
former strain was particularly sensitive to alkylating agents that tend to interact co-
valently with S. typhimurium DNA. Epoxidation, in general, was found to increase
the mutagenic activity of the respective chalcone. Benzoyl .40/ substituted chalcones
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and their oxides with an electron-withdrawing substituent (e.g., nitro, fluoro) usually
had higher activity than their phenyl (4) substituted counterparts, whereas the con-
verse was the case with electron-donating substituents (e.g., acetamido, methoxy).

A QSAR study on a set of 12 alkylated hydrazine compounds used CoMFA
methodology and partial least squares (PLS) statistics to determine the factors
governing their mutagenic potency to Salmonella strain TA100 [88]. Six different
QSAR equations with different descriptors were developed. Energy of the lowest
unoccupied molecular orbital .ELUMO/ together with log Kow were found to be the
most important descriptors in determining the mutagenic activity.

A structure–activity study on a series of 15 quinoline congeners was carried out
to demonstrate how two simultaneously occurring biological processes, mutagenic-
ity and cytotoxicity in Salmonella strain TA100 could be modeled especially when
the hydrophobicity plays an important part in the process [70]. It was found that for
the mutagenic potency, both hydrophobic and steric interactions were important.

Tafazoli and coworkers developed genotoxicity-based QSAR model using a
small number of aliphatic chlorinated hydrocarbons [71]. The QSAR analysis
highlighted that the toxicity of the tested chemicals was influenced by different pa-
rameters, like lipophilicity (log Kow), electron donor ability (charge), and longest
carbon–chlorine .LBC�Cl/ bond length. In addition, steric parameters, such as mo-
lar refractivity (MR) and LBC�Cl, and electronic parameters, such as ELUMO that
indicated electrophilicity, were predominant factors discriminating genotoxins from
non-genotoxins in the presence but not in the absence of metabolising enzymes (S9).

Bonin and coworkers obtained QSARs for N -acyloxy-N -alkoxyamides, which
are a class of direct-acting mutagens not requiring metabolic activation [82]. Struc-
tural factors were found to have more influence on binding and reactivity toward
DNA when compared with hydrophobicity, which plays a more important role in
case of indirect-acting mutagens [67].

A number of QSAR analyses were performed on a set of simple and ’,
“-unsaturated aldehydes to predict their genotoxicity [92]. One of the interest-
ing findings was related to the parameter �H (reaction enthalpy), which accounts
for the ease of adduct formation between ’; “-unsaturated aldehyde and the DNA
bases. In general, the lower the �H , the higher is the probability of adduct for-
mation. Out of a group of descriptors used for the analyses the authors found that
the descriptors most relevant in explaining the segregation of these chemicals into
active and inactive ones were hydrophobicity (log Kow) and bulkiness (MR) ac-
counting for a cumulative 62% variance. The other two descriptors, LUMO (related
to the reactivity of the chemicals) and �H taken together were able to explain a
further 20% of variance.

3.2 (Q)SARs Based on Machine Learning Methods

A pattern recognition analysis using Automated Data Analysis by Pattern-
recognition Technique (ADAPT) software was applied to a set of 21 aliphatic
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N -nitrosamines to classify them into nonmutagenic and mutagenic groups [38].
The authors considered molecular connectivity, geometry, and sigma charge on
Nitrogen as the molecular descriptors and applied linear learning machine and iter-
ative least squares algorithms. Using sets of four, three, and two descriptors, they
could achieve 100%, 90.5% and 87.5% correct classification, respectively.

A set of aromatic and heterocyclic nitro compounds was used to develop a
SAR based on relational description that considers substructures in a chemical
and their associations using inductive logic programming (ILP) named PROGOL
algorithm [34]. This approach allowed the use of a rich representation of chemical
structure and had the advantage that it did not need the use of any indicator vari-
ables handcrafted by an expert, and was based on easily comprehensible rules. The
SAR obtained was found to be significantly more accurate than linear regression,
quadratic regression, and back-propagation methods.

Several predictive binary classification models have been presented that directly
link the genetic toxicity of a series of 140 thiophene derivatives with information
derived from molecular structures [37]. Genotoxicity was measured using a salt-
overly sensitive (SOS) Chromotest. Maximal SOS induction factor (IMAX) values
were recorded for each of the 140 compounds both in the presence and absence of
S9 rat liver homogenate. Compounds were classified as genotoxic if IMAX � 1:5

and non-genotoxic if IMAX < 1:5 for both tests. The molecular structures were
represented by numerical descriptors that encoded the topological, geometric, elec-
tronic, and polar surface area properties of the thiophene derivatives. Classification
models such as linear discriminant analysis (LDA), k-nearest neighbor (kNN), and
probabilistic neural network (PNN) were used in conjunction with either genetic
algorithm (GA) or a generalized simulated annealing (GSA) to find optimal sub-
sets of descriptors for each classifier. One noteworthy point was that these models
were not necessarily representative of cause–effect relationships and in many cases
were simply correlations between an observed genotoxicity indicator and a set of
descriptor without an intuitive chemical sense.

Li and coworkers tested several statistical learning methods (SLMs) that included
support vector machines (SVM), PNN, kNN, and C4.5 decision tree (DT) for a
dataset of 860 pharmaceuticals and a set of 199 molecular descriptors (143 topo-
logical, 31 quantum chemical, and 25 geometrical) [36]. The resulting genotoxicity
prediction systems were able to predict accurately up to 77.8% for genotoxic and
92.7% for non-genotoxic chemicals.

A recent study on a large and diverse group of chemicals integrated the novel
molecular representation method molecular electrophilicity vector (MEV) and SVM
to develop a mutagenicity prediction model [40]. The MEV was devised to charac-
terize the electrophilicity and topology of a molecule, accounting for both direct
and indirect mechanisms of genotoxicity. The model exhibited a superior efficiency
in data fitting with a concordance rate of 91.86%. Sensitivity and specificity were
found to be 93.63 and 89.67%, respectively. For the external validation set, a pre-
diction accuracy of 84.80% was obtained. The authors also used the same dataset to
evaluate the performance of TOPKAT model and found that it could correctly iden-
tify true negatives with a specificity of 85.10%. The sensitivity and overall accuracy
was found to be much lower at 77.32 and 80.81%, respectively.
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To account for genotoxicity of chemicals that exert their effect after metabolic
activation, an approach based on the common reactivity patterns (COREPA) was
used to delineate the structural requirements for eliciting mutagenicity in terms of
ranges of descriptors associated with three-dimensional molecular structures [48].
Out of a total set of 1196 chemicals, a model was developed using 148 chemi-
cals that tested positive in TA100 strain without rat liver enzymes (S9) and 188
chemicals that tested positive in TA100 strain with S9. A decision tree was de-
veloped by first comparing the reactivity profile of chemicals that were positive in
TA100 without S9 to the reactivity profile of the remaining 1048 chemicals. A se-
ries of hierarchically-ordered metabolic transformations were used to develop an S9
metabolism simulator to identify the chemicals that are positive only in the pres-
ence of metabolic activation. The 1,048 chemicals were then passed through the
simulator, and the potential metabolites were screened through the decision tree to
identify reactive mutagens. This model correctly identified 77% of the metabolically
activated chemicals in the training set.

A binary classification of structural chromosome aberrations (clastogenic and
non-clastogenic) for a diverse set of 383 organic compounds was proposed by Serra
and coworkers [35]. Using topological, geometrical, and electronic descriptors, the
classification schemes such as kNN and SVM were applied to generate predictions
on an external prediction set. In vitro chromosomal aberration assay with Chinese
hamster lung cells was considered as the endpoint. The overall classification success
rate for a kNN classifier built with six topological descriptors was found to be 81.2%
for the training set and 86.5% for the external prediction set, whereas the same
was found to be 99.7% and 92.1% for a three-descriptor SVM model, respectively.
To demonstrate that the models were not built on chance correlation, the authors
also performed scrambling experiments. The main advantage of developing such
in silico inductive classification methods was that no prior knowledge of mechanism
of action was needed.

An approach that considered a diverse set consisting of both pharmaceuticals and
industrial chemicals and based on machine learning classification methods has been
proposed for the prediction of the chromosome-damaging potential of chemicals as
assessed in the in vitro chromosome aberration (CA) test [50]. Using the publicly
available CA-test results of more than 650 chemical substances, half of which were
drug-like chemicals, two different computational models were developed. The first
model, which uses the (Q)SAR tool MCASE (MULTICASE), gave a limited perfor-
mance (53%) for the assessment of a chromosome-damaging potential (sensitivity),
whereas for CA-test negative compounds, it correctly predicted with a specificity of
75%. The second model, constructed with a machine learning approach, generated
a classification model based on 14 molecular descriptors, obtained after feature se-
lection. The performance of the second model was found to be superior to the first
one, primarily because of an improved sensitivity which might suggest that the more
complex molecular descriptors in combination with statistical learning approaches
are better suited to model the complex nature of mechanisms leading to a positive
effect in the CA-test.

Shoji and Kawakami applied a molecular diversity-based ANN approach to esti-
mate the genotoxicity using Umu test and systemic toxicity data on a highly diverse
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heterogeneous dataset of 82 environmental chemicals [93]. Using HOMO, LUMO,
molecular weight, and log Kow as descriptors, the ANN approach was able to ac-
count for approximately 94% of the variation in the genotoxicity results. The authors
noted that the predictive power was higher than the traditional regression approach,
even though the detailed biochemical mechanisms responsible for genotoxicity were
not clearly delineated by the ANN.

Votano and coworkers presented a structure–genotoxicity study by applying three
different methods, ANN (three layer perceptron (TLP)), kNN, and Decision For-
est (DF), to 3,363 diverse compounds that included more than 300 drugs [39]. All
models were developed using the same initial set of 148 topological indices: molec-
ular connectivity chi indices, electrotopological state indices (atom-type, bond-type,
and single-atom E-State), as well as binary indicators. The three models yielded an
average training/test concordance value of 88%, with a low percentage of false pos-
itive and negatives. When subjected to external validation using a dataset of 400
compounds not used in the development of the QSAR models, it gave an average
concordance of 82%. This value increased to 92% upon removal of less reliable
outcomes as determined by a reliability criterion used within each model. The ANN
model showed the best performance in predicting drug compounds, yielding a 97%
concordance after the removal of less reliable predictions. An interesting finding
was that 14 of the most important descriptors related directly to known toxicophores
involved in potent genotoxic responses in S. typhimurium.

QSAR studies carried out on mutagenicity of aminoazo dyes reported that when
the structural diversity of the compounds in the original training dataset was en-
hanced, it required several new descriptors to formulate a credible model [81, 91].
The initial study by Garg and coworkers [81] considered a more homogeneous group
of aminoazo derivatives containing only a single azo linkage between two aromatic
rings, whereas the study by Sztandera and coworkers [91] included in addition, their
N -hydroxy and ester metabolites, and also those containing two azo linkages and
sulfonic acid groups to make it diverse. Both studies employed MLR and ANN
methodologies to build the QSAR models.

Lazy structure–activity relationship (lazar) is a tool for the prediction of toxic
properties including mutagenicity of chemical structures [99]. For a given query
chemical, it first searches a database with chemical structures and experimental
data (training set) for structures that are similar to it (nearest neighbors), and by
using a modified kNN algorithm it computes a prediction from the experimental
measurements of the neighbors/structurally similar analogues. Leave-one-out and
external validation experiments indicated that Salmonella mutagenicity using lazar
could be predicted with 85% accuracy for compounds within the applicability do-
main of the training set chemicals (3,895 chemicals from the Chemical Potency
Database). One of the advantages of lazar is that it provides the rationales in the
form of structural features and similar compounds for the prediction, in addition to
a reliable confidence index that indicates if a query structure falls within the appli-
cability domain of the training database.

By applying the machine learning classifier random forest to a large dataset
of 4,083 organic chemicals and using Molecular Map of Atom-level Properties
(MOLMAP) descriptors of bond properties, Zhang and Aires-de-Sousa were not
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only able to associate meaningful probabilities to the mutagenicity predictions but
also to explain the predictions in terms of similarities between query structures and
compounds in the training set [2]. For an external validation set of 472 compounds,
they could achieve an error percentage as low as 15%.

A recent study by Papa and coworkers used human B-lymphoblastoid cells as an
alternative to Ames bacterial test to model mutagenicity of 70 polycyclic aromatic
hydrocarbons [96]. They applied QSAR classification methods such as kNN and
CART (classification and regression tree), using hundreds of theoretical descriptors
(1D, 2D, 3D, quantum-chemical) that were selected by GA. An interesting finding
of the study was that the GA did not select classical parameters such as log Kow or
quantum-chemical descriptors but instead it selected descriptors of dimension and
shape (S1K). Both classifiers performed equally well giving an overall accuracy of
about 80% for classifying actives and inactives and a pretty low percentage of false
negatives and false positives.

3.3 Miscellaneous (Q)SARs

A study developed and compared a series of methods for prediction of mutagenic
potency in S. typhimurium strain TA100 for 73 aromatic and heteroaromatic amines,
using quantitative molecular similarity analysis (QMSA) [97]. The first method
called the atom pair (AP) was based on topological descriptors. Out of the remain-
ing ones that were based on Euclidean distance (ED) within an n-dimensional space,
two were derived from physicochemical and electronic parameters, whereas the last
one was derived from a combination of both topological and physicochemical pa-
rameters. The similarity spaces were based on parameters that quantify size, shape,
branching, and bonding patterns in molecular architecture in addition to those that
adequately reflect different aspects of mechanism of action of the chemicals at the
molecular level. The study found that the AP-based similarity method was almost
as effective as the property-based (PROP) method (ED within 3-dimensional space
consisting of original physicochemical properties) in predicting mutagenicity.

Chroust and coworkers developed a QSAR approach to predict genotoxicity of
saturated and unsaturated aliphatic halogenated compounds using Wing Spot test of
Drosophila melanogaster [77]. They applied principal component analysis (PCA)
for the selection of training set and the descriptors. In all, 28 descriptors comple-
mented by 55 3D and 24 quantum-mechanical descriptors were used to develop
the QSAR model for the set of 17 halogenated compounds by means of PLS.
Nucleophilic superdelocalizability calculated by quantum mechanics was found to
be a good parameter for predicting both toxicity and genotoxicity effects of halo-
genated aliphatic compounds.

A recent study on nitroarenes demonstrated how the use of modern techniques
such as 2D and 3D QSAR could highlight certain subtleties (e.g., alignment of
molecules when interacting with DNA, fragment-wise color-coding that describes
the most and least contributing mutagenic fragment, etc.) involved in the interac-
tions of toxic chemicals with receptors that are normally not captured by traditional



(Q)SAR Models for Genotoxicity Assessment 49

QSAR methodologies [42]. The authors compared four different methodologies,
two 2D QSAR methods, Hologram QSAR (HQSAR) and Genetic Function Approx-
imation (GFA), and two 3D QSAR methods, CoMFA and Comparative Molecular
Similarity Indices Analysis (CoMSIA). They found that certain classes of ni-
troarenes particularly those with pyrene and biphenyl structures were predicted
better by 3D QSAR methods, whereas some others such as nitrobenzenes and inda-
zoles were well-predicted by 2D methods.

Debnath and coworkers demonstrated how a judicious use of classical QSAR and
CoMFA could complement each other and enhance the applicability of structure–
activity relationship technique [64]. They applied both of these techniques to elu-
cidate the mechanisms of genotoxicity as indicated by SOS-inducing potential of
nitrofuran derivatives on Escherichia coli PQ37. Three important factors, namely,
electronic (qc2), hydrophobic (log P), and steric were found to be contributing to-
ward the genotoxic activity of these compounds. qc2, the charge on the c2 atom
attached to the NO2 group, was found to support a furan ring opening mechanism in
explaining the genotoxicity. The study also demonstrated the potential of CoMFA
analysis to unravel the steric features of the molecules through contour maps.

For a diverse set of 358 nitroaromatics tested using Salmonella strains TA98 and
TA100, four CoMFA models were developed [101]. These models not only agreed
with the postulated mechanisms of mutagenicity but also could explain over 70%
of the corresponding mutagenic variance. The use of CoMFA methodology in this
study also aided the elucidation of genotoxicity mechanisms.

A study reported the application of a novel method called quantum topological
molecular similarity (QTMS) to two different sets of mutagenic compounds, tri-
azenes, and hydroxyfuranones (MX) derivatives [89]. The method generated bond
descriptors from contemporary geometry-optimized ab initio wave functions and
used chemometric analysis to generate QSARs. The QTMS selects the bonds di-
rectly involved in the activity, and therefore is able to highlight the active center
of the mutagens thereby providing mechanistic information on their genotoxicity.
For instance, the study indicated that the triazene hydroxylation pathway involv-
ing direct hydrogen abstraction from the methyl group was strongly disfavored,
whereas for the MX derivatives it underlined the central role played by C’ in the
C“ D C’ � C D O system and did not exclude lactone ring opening.

The machine learning models have been criticized for their inability to either lend
support or propose or even contradict a particular mechanism of action [49]. To ac-
count for mechanistic basis, a novel 2-step approach that combined the Ames model
for bacterial mutagenicity and another model accounting for additional mechanisms
that led to chromosomal aberrations (CA) has been proposed [49]. A set of 497
chemicals, for which data on induced CA without S9 activation were available, was
used to derive a CA model that did not account for metabolic activation of chemi-
cals, whereas another set comprising 162 chemicals, for which data on induced CA
in the presence of S9 activation were available, was used for modeling CA with
metabolic activation of chemicals. The approach was unique because it integrated
the tissue metabolism simulator (TIMES) that facilitates consideration of both par-
ent chemicals as well as their active metabolites to determine their activity toward
the nucleic acid. The alerting groups associated with different mechanisms were
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defined by specific structural boundaries as well as by 2D and 3D parameter ranges
describing effects of bioavailability and reactivity of alerts that were conditioned by
the rest of the molecules. Moreover, the role of each alert has been justified by an
interaction mechanism(s) identified in the literature or introduced by experts. The
performance of the model without metabolic activation was characterized by sen-
sitivity and specificity values of 77 and 82%, respectively, whereas for the model
coupled with the metabolic simulator the sensitivity reached 75% but the specificity
dropped to 56%.

3.4 Expert Systems and Commercial Programs

Using number and ratio of elements, side chains, bonding position, and microen-
vironment of side chains as the structural factors of chemicals, an expert system
to predict their mutagenicity was developed by Nakadate [100]. Eight rules that
were analyzed by discriminant analysis were used to predict the mutagenicity of
aliphatic and heterocyclic chemicals (which were not used to make the rules) with
90% accuracy.

Regulatory agencies and pharmaceutical industries often use commercial geno-
toxicity prediction programs such as TOPKAT, CASETOX and DEREK. As men-
tioned earlier, the first two are data-driven models, whereas the last one is a
rule-based expert system. CASETOX is a statistically driven substructure/fragment-
based system that does not use prior knowledge of mechanism of action or structural
alerts but develops its own rules dynamically during model development, relat-
ing test chemical structures with the endpoint under investigation. The CASETOX
Ames mutagenicity (all strains combined) model uses around 5,864 training set
chemicals whose genotoxicity was determined by Ames tests of different bacte-
rial strains, while TOPKAT mutagenicity model contains a training set of about
1,865 chemicals. Additionally, the CASETOX, on the one hand, has other genotoxi-
city modules with limited training sets built into it that can predict chromosomal
aberrations, induction of micronuclei, unscheduled DNA synthesis, mouse lym-
phoma mutation, and Drosophila somatic mutation. DEREK, on the other hand,
codifies existing knowledge derived from human experts into generalized rules. Un-
like CASETOX or TOPKAT, DEREK does not have a chemical database built into
it but instead has a set of knowledge-based rules and structural alerts embedded in
it. These three programs are among the most popular ones that are commercially
available. Therefore, these have been subjected to frequent scrutiny to investigate
their efficiency. Cariello and coworkers carried out a study involving 400 chemi-
cals with known Ames tests results to compare TOPKAT and DEREK to determine
their abilities in predicting bacterial mutagenicity [105]. The overall concordance
of the TOPKAT program was found to be higher than DEREK. TOPKAT fared
more poorly than DEREK in the critical Ames-positive category, where 60% of
the chemicals were incorrectly predicted by TOPKAT as negative but were mu-
tagenic in the Ames test. For DEREK, 54% of the Ames-positive molecules had
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no structural alerts and were predicted to be nonmutagenic. Another study com-
pared the validation results of their in-house built models with those of TOPKAT,
CASETOX, and DEREK and demonstrated that the in-house built models per-
formed substantially better than the commercial ones [39]. A comparative evaluation
of commercial programs CASETOX, TOPKAT, and DEREK for the prediction of
Ames test mutagenicity using a set of 614 compounds (520 drug candidates and 94
industrial) revealed that all three programs predicted with similar level of accuracy
for both types of chemicals at greater than 80% [106]. However, higher confidence
could only be assigned to the prediction of nonmutagens and not to the prediction
of mutagens since the accuracy was primarily driven by the specificity values of a
dataset that was heavily weighted with nonmutagens.

The MULTICASE methodology has also been applied to develop a chromosomal
aberration (CA) prediction model using a dataset of 233 chemicals (current version
1.9 has 805 chemicals) and it now forms a part of the genotoxicity suite of models
in the CASETOX program [107]. Using an internal validation strategy, the observed
sensitivity and specificity (i.e., the correct prediction of positives and negatives, re-
spectively) of the model were found to be 53 and 71%, respectively [108].

MDL QSAR is another commercial program available that predicts mutagenicity
of organic chemicals [109]. It comprises models that are developed using atom-type
E-state indices and nonparametric discriminant analysis. The mutagenicity models
included are S. typhimurium gene mutation tests (all strains combined TA97, TA98,
TA100, TA1535, TA1536, TA1537, and TA1538) containing 3228 chemicals, E. coli
gene mutation tests (WP2, WP100, and polA) containing 472 chemicals and a com-
posite microbial mutation model that combines the first two with a Bacillus subtilis
rec spot test study results, making a total of 3338 chemicals. External test sets of
1,444 and 1,485 compounds were used to validate the Salmonella and the compos-
ite microbial mutagenesis models, respectively. The average specificity, sensitivity,
positive predictivity, concordance, and coverage of both models were found to be
76%, 81%, 73%, 78%, and 98%, respectively.

4 Key Considerations in Regulatory Decision-Making
Based on (Q)SAR

Over the past three decades, a number of genotoxicity-based (Q)SAR models have
been built with a specific rationale and purpose, and, therefore, some of them may
not necessarily be developed according to the needs of regulatory assessment. The
benefits of using these models for regulatory decision-making may only be realized
once all the underlying factors including its reliability, uncertainty, and predictivity
have been properly assessed. Eleven important considerations in this regard should
be taken into account. First, the Organization for Economic Cooperation and De-
velopment (OECD) has recommended certain “Principles for (Q)SAR Validation,”
which serve as a compliance guideline for a (Q)SAR model to be considered for
regulatory applications [110]. Accordingly, a genotoxicity (Q)SAR model should
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be associated with a defined endpoint, an unambiguous algorithm, a defined domain
of applicability, appropriate measures of goodness-of-fit, robustness and predictiv-
ity, and a mechanistic interpretation. Second, since (Q)SAR model is based on a
finite set of information (its domain of applicability (DA)), therefore, predictions
outside of this domain may not be completely reliable. Hence, for a proper inter-
pretation of a model’s prediction, it is important to know, if practicable, where the
query chemical lies with respect to the model’s DA [111–113]. Third, human ex-
posures to a wide variety of chemicals generally occur at a low concentration level.
However, chemicals (or their metabolites) may induce damage to DNA only at cer-
tain concentrations above a defined threshold, or at extreme or nonphysiological
conditions that are not present in exposed humans [114]. Thus, conclusions drawn
from predictions obtained from (Q)SAR models that are developed using studies at
high concentrations may not reflect responses at a more biologically relevant dose.
Fourth, in vitro tests may not be capable of differentiating between genders and
also replicating genotoxic biotransformation processes as the in vivo systems do.
Therefore, predictions obtained from (Q)SAR models that use in vivo data should
be preferred. Fifth, a (Q)SAR model may perform well on internal validation but its
real strength lies in its ability to predict chemicals outside its training set. For ex-
ample, some of the models developed by Debnath and coworkers [59] and Cash [7]
to predict the mutagenic potency of amines exhibited good statistics from internal
validation with the training set but lacked predictivity for chemicals not used in the
development of the models [104, 115–117]. Sixth, when using a rule-based expert
system, it is important to consider the steric and electronic environment surround-
ing a structural alert fragment (labeled as toxicophore) in a given molecule. It may
sometimes diminish or enhance its genotoxic potency or create a toxic fragment
that has not been previously identified. This, in turn, may lead to a false prediction.
Therefore, an expert opinion should be taken while interpreting information based
on structural alerts. Seventh, when using (Q)SAR models based on classifiers (e.g.,
kNN, DT, RF, CART), the most important parameter to judge their performance
is the percentage of correctly classified mutagenic compounds (sensitivity) [96].
A high sensitivity means that the classifier will correctly assign active molecules to
the mutagen category (true positive) rather than classifying an inactive one as mu-
tagenic (false positive). Eighth, for the effective application of (Q)SAR models, the
descriptors must have a physicochemical interpretation that conforms with a known
mechanism of biological action for the endpoint of interest. This is sometimes an
issue with machine learning methods that generally consider a large number of
descriptors in model development. For such models, it is difficult to establish a sci-
entific correlation between the descriptors and the genotoxic mechanism and tend
to fall short when subjected to external validation [104]. Ninth, no matter how good
a (Q)SAR model performs statistically, it is important to ensure that the labora-
tory conditions used to derive the genotoxicity values were comparable because the
quality of datasets eventually determines the quality of predictions. Tenth, it is crit-
ical to remember that in vitro mammalian cell genotoxicity tests have often resulted
in an extremely high false-positive rate when compared with in vivo carcinogenic-
ity in rodents [118]. (Q)SAR predictions based on false-positive genotoxicity data,
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therefore, will lead to unreliable results. Lastly, to minimize the uncertainty asso-
ciated with the use of a single (Q)SAR model, a “battery” of endpoints covering
a variety of test systems, species, and (Q)SAR methodologies should generally be
considered in any risk assessment [119, 120]. Consistency in predictions across a
“battery” of endpoints presents a trend and could help establish with reasonable
certainty if a query chemical possesses genotoxic properties.

5 Conclusion

A genotoxic event is indicative of potential adverse human health effects includ-
ing carcinogenicity, chromosomal aberrations, sister chromatid exchanges, and/or
direct damage to DNA. Many chemicals are capable of causing these types of
genetic alterations and therefore, screening of chemicals for their likely genotox-
icity/mutagenicity is one of the important priorities of regulatory agencies. In silico
(Q)SAR methodologies have the potential to serve as rapid and reliable screen-
ing tools capable of identifying chemicals likely to exert genotoxic effects. At
the same time, these are in tune with the principle of 3Rs (replacement, reduc-
tion, replacement of animal testing of all chemicals of regulatory concern) and are
highly cost-effective. Genotoxicity (Q)SAR models are currently being integrated
into emerging data-gap filling applications such as the OECD’s QSAR Application
Toolbox [121].

A large proportion of early genotoxicity models, the so-called traditional QSARs,
were developed using congeneric chemicals and multiple linear regression anal-
ysis. They performed extremely well on internal validation and were useful in
providing insight into mechanistic basis. However, being built using small datasets
their utility was limited. The advent of fast-paced personal computers saw a new
era of highly sophisticated techniques such as chemical data mining, modern ma-
chine learning algorithms, programs to compute complex molecular descriptors, and
three-dimensional technologies. These gave a whole new dimension to the (Q)SAR
model development process. The new generation of genotoxicity models uses a very
large training set that runs into few thousands, contains diverse chemical population,
and has the capability of rapidly processing thousands of molecular descriptors.
Commercial data-driven global models such as CASETOX that combines traditional
and modern techniques or the rule-based expert systems, such as DEREK that typi-
cally combine mechanistic hypothesis, expert judgment, and empirical observation,
are some of the most up-to-date programs and considered reliable. Finally, there is
the class of hybrid models that employ newer machine learning algorithms, account
for metabolism, and integrate the best features of the rule-based and the quantitative
systems which hold a lot of promise.
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Chemistry Based Nonanimal Predictive
Modeling for Skin Sensitization

David W. Roberts and Grace Patlewicz

Abstract Skin sensitization is a significant environmental and occupational health
concern. The possibility of workers and consumers becoming sensitized is a major
problem for individuals, employers and marketing certain products. Consequently,
there exists an important need to accurately identify chemicals that have the poten-
tial to cause skin sensitization. Under Registration, Evaluation, Authorization and
Restriction of Chemicals (REACH), the sensitizing potential needs to be assessed
for substances manufactured or imported at levels of 1 ton or greater per annum.
Assessment of skin sensitization has traditionally relied on animal testing, but there
are now strong pressures to reduce and ultimately eliminate the use of animals for
this purpose. Building on research dating back at least 7 decades, a quite detailed
mechanistic understanding of skin sensitization, both in terms of the underlying bio-
logical processes and the underlying chemistry, has been developed, with significant
advances being made in the present century. This chapter presents an overview of
the current biological and chemical mechanistic understanding, and reviews recent
progress in nonanimal predictive modeling for skin sensitization, with an emphasis
on how the understanding of these mechanisms can be applied in combination with
in chemico and in silico approaches to hazard and risk assessment.

Keywords Skin sensitization � QSARs � Expert systems � In chemico � REACH

1 Introduction

1.1 Biological Mechanisms

Skin sensitization (also called delayed contact hypersensitivity, contact hypersensi-
tivity, contact allergy, or allergic contact dermatitis) is a T cell mediated immunolog-
ical response specific for the substance. Research dating back more than 7 decades
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has established a very strong, although still incomplete, mechanistic understanding
of the chemical and biological basis of skin sensitization [1–6]. Skin sensitization
involves two phases: an induction and elicitation phase.

During induction, the sensitizing chemical penetrates the stratum corneum (SC)
to the viable epidermis and binds to skin proteins/peptides to create an immunogenic
complex. This complex is then recognized and processed by Langerhans cells (LCs)
in the epidermis. Upon exposure to the immunogenic complex, the LCs begin a mat-
uration process in which the LCs internalize and process the immunogenic complex
to a form that will be recognized by T cells. These cells then migrate from the epider-
mis to the lymph nodes where they present the modified immunogenic complex to
naı̈ve T cells with receptors that are able to specifically recognize the immunogenic
moiety and are stimulated to proliferate and circulate throughout the body. Sensi-
tization has now been induced, i.e., the subject is now sensitized. These events are
collectively referred to as the induction phase. A schematic of the main molecular
initiating events thought to be involved in sensitization induction is shown in Fig. 1.

Upon subsequent exposure to the same sensitizer, protein binding and process-
ing of the immunogenic complex by the LCs occurs after which the immunogenic
complex is recognized by circulating T cells triggering a cascade of biochemical
and cellular processes, which produces the clinical sensitization response, i.e., elic-
itation [2, 7, 8].

This sequence of events can be considered as a set of hurdles that a chemical must
negotiate to induce sensitization. A sensitizing chemical must penetrate through the
SC, form a stable association with carrier protein, deliver dermal trauma sufficient
to induce and upregulate epidermal cytokines that are necessary for the mobiliza-
tion, migration, and maturation of LCs, and be inherently immunogenic such that
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Fig. 1 The main molecular initiating events thought to occur during skin sensitization induction
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a T lymphocyte response of sufficient magnitude is stimulated [8, 9]. Clearly not
all of these hurdles can be and are equally important. The key is identifying which
one is the rate determining step, i.e., which hurdle is dependent on the sensitizing
chemical itself, as this should provide the roadmap on how to estimate the skin
sensitization potential of a given chemical. To put into another context, the hurdles
described above can be likened to a molecular horse race, where a horse represents
one molecule of the test concentration dose that is applied in an actual sensitiza-
tion test such as the local lymph node assay (LLNA). Each hurdle then is one that
a molecular horse must negotiate to reach the finishing post, namely sensitization
induction. Some of the horses will fail at different hurdles (e.g., the skin penetration
hurdle) but the overall ratio of molecular horses that finish the race compared with
those that start is effectively proportional to the sensitization potential.

We will provide a brief overview outlining the relative importance of each of
these hurdles in the context of how well or how badly chemicals are able to negoti-
ate them.

1.1.1 Role of Penetration

It seems obvious that if a chemical cannot penetrate the SC, then it should not be
able to sensitize, and that other things being equal a chemical with a greater ability
to penetrate than another will be the stronger sensitizer of the two. However, there
are several pieces of evidence against SC penetration being a determining factor for
sensitization potential, and very little evidence in favor. More details can be found
in a recent paper by Roberts and Aptula, [10]. Here we will merely outline the three
main pieces of evidence against penetration being a determining factor.

Vehicle Effects

One would expect large effects on sensitization potential with differing vehicles
but in reality there appears no case of a compound being categorized with a differ-
ent sensitizing potency, e.g., strong vs. weak when tested in two different vehicles.
Small vehicle effects have been observed [11, 12], but these could be easily at-
tributable to a limited variation in bulk properties of the test solutions – e.g., density,
viscosity.

Mechanistic QSARs for Skin Sensitization

Many quantitative models correlating sensitization potential with chemical parame-
ters have been reported, which do not require SC penetration to be modeled [13–22].
Most are based on a combination of a reactivity parameter with a hydrophobicity
parameter. It is feasible that the hydrophobicity parameter in these correlations
could be serving a dual purpose, but given that penetration is a function of more than
just hydrophobicity alone and that including the other factors relevant to penetration
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such as molecular weight (MW) and melting point only serve to worsen these
existing correlations; then for these cases, it seems reasonable to conclude that pen-
etration is not normally a rate determining factor for sensitization.

Penetration Optimum

It has been reported that the optimal penetration occurs for chemicals with log P

values between 2 and 3 [23]. However, there are a number of examples of known
strong sensitizers, which have log P values well outside of this range [24]. Exam-
ples include poison ivy and poison oak urushiols, which have log P values > 7,
or N -methyl-N -nitroso urea which has a log P of �1:29. All of these are strong
sensitizers. These cases are by no means unique. There are very few cases of nonsen-
sitization attributable to nonpenetration, and for these alternative explanations, such
as depletion by reaction with hard nucleophilic groups in the SC, are possible [5,10].

Overall we can conclude that SC penetration is not a significant hurdle in the skin
sensitization process.

1.1.2 Migration of Langerhans Cells

For sensitization to occur, LC, which have acquired and processed sensitizer-
modified carrier protein, have to migrate from the epidermis to the draining lymph
node. Much progress has been made in recent years in understanding the rather com-
plex details of this process, and has been well described by Corsini and Galli [25],
Kimber et al. [26], and Cumberbatch et al. [27]. The LC have to detach themselves
from the matrix of surrounding keratinocytes and travel along the basement mem-
brane between the epidermis and the dermis, eventually penetrating through this
membrane to reach the lymph node. In the course of this journey, they develop
into mature dendritic cells (DC), losing the ability to process sensitizer-modified
carrier protein, but acquire the ability to present the corresponding antigen to
T cells. These events are stimulated and controlled by several cytokines (these are
glycoproteins released in the epidermis, which act on the LC via binding to their
receptors). An important stimulus for the production, or increased production, of
such cytokines is dermal trauma [28, 29] such as irritation. Many sensitizers, for
example, 2,4-dinitrochlorobenzene (DNCB), are to some extent irritant and may
thereby be able to stimulate production of the cytokines necessary for sensitization.
This dermal trauma is thought to be the danger signal or trigger for stimulating
cytokine production.

However, there are a number of strong sensitizers, such as long chain alkene
sultones and alkyl alkanesulphonates that are to all intents and purposes nonirritant,
and can even be tested at 100%. Furthermore, there appear to be no known cases
where a compound expected to sensitize fails to do so because of its inability to
generate a danger signal. The implication then is that a danger signal can be taken
for granted even for nonirritants, and thus does not constitute a rate determining
hurdle in the sensitization process.
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1.1.3 Antigen Recognition

The nature of the antigen, which is presented by the matured LCs to naı̈ve T cells
in the lymph node, clearly depends on the nature of the sensitizing compound: this
is the basis of the specificity of the sensitization. It seems reasonable to consider
whether the ability of the antigen to stimulate proliferation of T cells depends on
the nature of the antigen.

However, exploring a plot of stimulation index values, taken from the LLNA,
for a set of SN2 (substitution nucleophilic bimolecular) electrophiles against their
relative alkylation index (RAI) values, as calculated from the test concentrations
(dose term), rate constants for reaction with butylamine, and log P values [5] shows
a good fit to the curve i.e., there is no need to model differences in degree of antigen
recognition in order to rationalize the data.

This then together with other evidence does suggest that differences in degree of
antigen recognition play no part in determining sensitization potential.

Penetration of the SC, stimulation of migration and maturation of LCs, and anti-
gen recognition are all important events in the induction of sensitization, but they
can be taken for granted. They are neither important factors in determining whether
a compound will be a sensitizer or not, nor are they important factors in determining
how potent one sensitizer will be relative to another.

1.2 Chemical Mechanisms

This leaves then the formation of a stable association with carrier protein as the
key factor which determines sensitization potential. The association is believed to
be a covalent one whereby the chemical behaves as an electrophile and the protein
as the nucleophile. The hypothesis was first articulated in 1936 by Landsteiner and
Jacobs [30] followed up by others including Godfrey and Baer [31] and Depuis
and Benezra [24]. For effective sensitization, a chemical must either be inherently
protein reactive or be converted (chemically or metabolically) to a protein reactive
species. Chemicals that are unable to associate effectively with proteins will fail to
stimulate an immune response. Efforts to predict skin sensitizers have hence been
focused on identifying the electrophilic features in chemicals and relating these back
to skin sensitization potential.

1.2.1 Local Models: The Relative Alkylation Index Approach

The first approach in quantitative modeling of sensitization was developed by
Roberts and Williams [13], who derived a mathematical model of the in vivo alky-
lation process (i.e., covalent binding to carrier protein) known as the RAI model.
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This quantifies the degree of carrier alkylation and correlates it with sensitization
potential. The model can be summarized as follows:

� The carrier protein is in a lipid environment (e.g., cell membrane), which is
washed by a polar fluid (e.g., lymph or blood)

� Alkylation kinetics can be treated as pseudo first order

On the basis of these assumptions, rate equations were set up for alkylation and
disappearance of the test compound from the system (by alkylation and partition
into the polar fluid) and from these the RAI (1) was derived.

RAI D log
�
kD=P C P 2�; (1)

where k is the alkylation rate constant measured against a standard nucleophile, D

is the molar dose, and P is the partition coefficient measured between a standard
polar/nonpolar solvent. (Note that this is the inverse of the more commonly used
nonpolar/polar partition coefficients.) Subsequently, the RAI model was revised so
as to be based on the octanol/water coefficient, expressed as its logarithm, log P . In
its most general form, the RAI, an index of the relative degree of covalent binding
to carrier protein, is expressed as in (2):

RAI D log D C a log k C b log P: (2)

Thus the degree of covalent binding to carrier protein increases with increasing dose
D of sensitizer, with increasing reactivity (as quantified by the rate constant or rel-
ative rate constant k for the reaction of the sensitizer with a model nucleophile) and
with increasing hydrophobicity.

For specific use with LLNA data, a RAI-based potency relationship can be de-
scribed by (3):

pEC3 D a log k C b log P C c; (3)

where p denotes –log EC3, EC3 for this purpose being the weight percentage of
chemical sensitizer required to elicit a threefold increase in lymph node cell prolif-
eration, divided by the MW.

The RAI model has been used to evaluate a wide range of different datasets of
skin sensitizing chemicals. It has in particular served well for the development of
QSARs for small sets of structurally similar chemicals – i.e., local models, which
are chemical class specific or to substantiate formulated hypothesis. Examples of
RAI models include primary alkyl bromides [19], sultones [13], acrylates [15],
sulfonate esters [32], urushiol analogues [33], aldehydes and diketones [34–36]
amongst others.

As examples to illustrate the form of RAI models, two QSAR models devel-
oped in Patlewicz et al. [37] and their respective regression equations (4 and 5) are
shown below:

pEC3 D 0:536C 0:168 log P C 0:488 R�� C 1:313 R0��; (4)

n D 9; r2 D 0:741; s D 0:184; F D 4:77:
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pEC3 D 0:245C 0:278 log P C 0:862 R��; (5)

n D 12; r2 D 0:825; s D 0:712; F D 21:26:

The �� values, taken from Perrin et al. [38], model the electronic effects of
substituents on the rate constant, and therefore serve as surrogates for log k in the
RAI expression. Equation (4) is for a set of Michael acceptor aldehydes, where
R0�� and R�� reflect the Taft constants for the substituents on the alpha and beta
carbons, respectively. Log P models the hydrophobicity. Equation (5) is for a set of
Schiff base aldehydes.

As can be seen in (4) and (5), the RAI takes the form of a regression equation,
which is transparent and easy to apply and interpret. However, as evidenced by the
examples cited, the RAI has traditionally been used to evaluate only small sets of
structurally related chemicals suggesting that the RAI model was only applicable
for closely related datasets.

1.2.2 Statistical Global QSARs

Since the inception of the RAI approach and the explosion of QSAR modeling in-
cluding a wide array of new statistical approaches and computing power to handle
much larger volumes of data, there was an increased drive to derive models that were
sufficiently general to predict the toxicity of larger sets of wide ranging chemicals.

In the area of skin sensitization, a large number of general models have been
developed since the mid nineties. These statistical QSAR models are developed em-
pirically by application of various statistical methods to sets of biological data and
structural, topological, and/or geometrical information descriptors. Often known
as global QSARs, they are purported to be able to make predictions for a wide
range of chemicals, covering a wide range of different mechanisms of action. Prob-
ably the first global models for sensitization were those developed by Magee and
Hostynek [39], who investigated the feasibility of deriving models for fragrance
allergens using classification and ranking approaches. The most recent examples
apply 4D molecular fingerprint similarity analysis as developed by Li et al. [40].

Although some have high predictive rates, they often lack a sound mechanistic
basis. Many of these global QSARs have used selections from the same source ma-
terial namely, a set of published LLNA data [41] suggesting an over emphasis on
applying new statistical techniques or descriptors rather than trying to rationalize
the underlying skin sensitization mechanism. In some cases, they are poorly char-
acterized and are typically limited to providing a binary output of yes/no sensitizing
activity rather than being able to rationalize potency. They have been reviewed in
more detail in Patlewicz et al. [42,43]. A selection of global models have been scru-
tinized in depth in Roberts et al. [44] and Patlewicz et al. [45].

1.2.3 Expert Systems

There are several expert systems available for the prediction of skin sensitization
including knowledge-based systems (e.g., Derek for Windows (DfW)), statistical
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systems (e.g., TOPKAT, MCASE) and hybrid of the two (e.g., Tissue Metabolism
Simulator (TIMES)). Here we provide a summary of their main functionality and
their current state of development.

DfW is a knowledge-based expert system created with knowledge of structure–
toxicity relationships and an emphasis on the need to understand mechanisms of
action and metabolism [46]. The skin sensitization knowledge base in DfW was ini-
tially developed in collaboration with Unilever in 1993 using its historical database
of guinea pig maximization test (GPMT) data for 294 chemicals [47,48] and result-
ing in the extraction of 40 structural alerts. The DfW knowledge base (Version 9)
contained 64 alerts for sensitization and is continuously refined as new chemical in-
sights and data become available. Various exercises have been undertaken to suggest
modifications to existing rules or hypothesize new rules. Examples include work
by Barratt and Langowski [49], Zinke et al. [50], Gerner et al. [51], and Langton
et al. [52].

Toxicity Prediction by Komputer Assisted Technology (TOPKAT) (http://www.
accelrys.com/products/topkat/) marketed by Accelrys Inc (San Diego, USA) com-
prises two sets of sensitization models that were developed originally by Enslein
et al. [53]. Guinea pig maximization data for 315 chemicals were assembled from
various published collections in Contact Dermatitis and from the dataset published
by Cronin and Basketter [54]. These data were then scaled according to classes de-
fined by Barratt et al. [48] and two sets of models were developed using discriminant
analysis. The resulting output is a computed probability discriminating for activity
(sensitizing or nonsensitizing) or resolving the potency; weak/moderate vs. strong.
A domain check is also included to qualify whether the predictions made are within
the scope of the model’s capability. The present version of TOPKAT (Version 6.2)
contains data for an additional 20 chemicals [55].

CASE methodology and all its variants (e.g., MCASE, CASETOX) were de-
veloped by Klopman and Rosenkranz [56–58]. There are more than 180 mod-
ules covering various areas of toxicology and pharmacology endpoints including
skin sensitization currently marketed by MultiCASE Inc. (Cleveland, Ohio, US).
The CASE approach uses a probability assessment to determine whether a struc-
tural fragment is associated with toxicity. To achieve this, molecules are split into
structural fragments up to a certain path length. Probability assessments deter-
mine whether fragments significantly promote or inhibit toxicity. To create mod-
els, structural fragments are incorporated into a regression analysis. The MCASE
modules available for skin sensitization are described further in primary articles
[59–61]. The (Q)SAR estimates for the MCASE skin sensitization model are
also included in the Danish Environmental Protection Agency (EPA)’s (Q)SAR
Database, which is hosted on the European Chemicals Bureau (ECB) Web site, see
http://ecb.jrc.ec.europa.eu/qsar/.

The Times Metabolism Simulator platform used for predicting skin sensitiza-
tion (TIMES-SS) is a hybrid expert system that was developed by the Laboratory
of Mathematical Chemistry (University of Bourgas, Bulgaria), using funding and
data from a Consortium comprising Industry (ExxonMobil, Procter and Gamble,
Unilever) and a Regulatory Agency (Danish Environmental Protection Agency).
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TIMES-SS aims to encode structure toxicity and structure metabolism relationships
through a number of transformations simulating skin metabolism and interaction
of the generated reactive metabolites with skin proteins. The skin metabolism
simulator mimics metabolism using 2D structural information. Metabolic pathways
are generated based on a set of 236 hierarchically ordered principal transformations
including spontaneous reactions and enzyme-catalyzed reactions (phase I and II).
The covalent reactions with proteins are described by 47 alerting groups. The asso-
ciated mechanisms are in accordance with the existing knowledge on electrophilic
interaction mechanisms of various structural functionalities. The integral model
is essentially based on a set of submodels, associated with each of the reactive
groups. Some of these reactions are additionally underpinned by mechanistically
based 3D-QSARs [62, 63]. Recently an external validation activity was undertaken
whereby data were generated for 40 new chemicals in the LLNA and then compared
with predictions made by TIMES-SS. The results were promising with an overall
good concordance (83%) between experimental and predicted values [64, 65]. The
alerting groups underpinning TIMES-SS have also been scrutinized with respect to
the dataset published in Gerberick et al. [41] and suggestions for improvements and
refinements were proposed [66].

Overall there are reasonable prospects for the development and improvement of
expert systems such as DfW, TIMES-SS but further refinement of their underlying
rules is still required [52, 64, 66]. Training datasets are not always accessible (DfW
being a case in point), applicability domains are not always well established, and the
mechanistic interpretability is not always clear (e.g., TOPKAT). Nonetheless, these
expert systems can play a valuable role in evaluating skin sensitization.

2 REACH: A Catalyst for Change

The advent of the new REACH legislation provided an impetus for the use of
(Q)SARs in a regulatory context without the need for confirmatory testing [67].
Since the publication of the REACH White paper in 2001, several activities were
initiated to increase acceptance of (Q)SARs. The first of these included a Work-
shop organised by European Chemical Industry Council (CEFIC) / The International
Council of Chemical Associations (ICCA) in Setubal, Portugal in 2002 [68], which
identified a number of principles for evaluating the validity of (Q)SARs. These were
then evaluated by the Organisation for Economic Co-operation and Development
(OECD) (as part of the Ad hoc group for (Q)SARs) and are now referred to as the
“OECD principles,” which read as follows:

“To facilitate the consideration of a (Q)SAR model for regulatory purposes, it
should be associated with the following information:

� A defined endpoint
� An unambiguous algorithm
� A defined domain of applicability
� Appropriate measures of goodness-of-fit, robustness, and predictivity
� A mechanistic interpretation, if possible”.
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The principles have been summarized briefly in an OECD publication [69]. A pre-
liminary guidance document on the characterization of (Q)SARs was then written
[70], the basis of which was used in the development of the OECD Guidance docu-
ment on (Q)SAR Validation [71].

REACH states that the results from valid (Q)SARs may be used in place of
animal testing for the purposes of identifying the absence or presence of certain dan-
gerous properties so long as a number of conditions are met. These include (1) the
(Q)SAR is scientifically valid, (2) the substance falls within the applicability domain
of the (Q)SAR model, (3) the QSAR result is suitable for classification and labeling
and/or risk assessment purposes, (4) adequate reliable documentation is provided.
The REACH text refers to the need to demonstrate the validity of the (Q)SAR
used [1]. Validity is likely to make reference to the internationally agreed OECD
principles for (Q)SAR validation already described [69, 71]. Information generated
by valid (Q)SARs may be potentially used in place of experimental data, provided a
number of conditions are met. The availability of a (Q)SAR for an endpoint of inter-
est is necessary but to replace or partially replace an experimental result, the (Q)SAR
data will need to be assessed for its reliability (i.e., inherent quality of the model
within its applicability domain), relevance (scientific relevance and regulatory rel-
evance), and adequacy (assessment of completeness of information in making a
regulatory decision). Thus for a (Q)SAR to be adequate for a given regulatory pur-
pose, the following conditions should ideally be fulfilled: (1) estimate generated by
a valid model; (2) model applicable to the chemical of interest with sufficient relia-
bility; and (3) model endpoint should be relevant for the regulatory purpose [72].

The principles for (Q)SAR validation identify the types of information that are
considered useful for the assessment of (Q)SARs for regulatory purposes and to
an extent represent best practice in their development. They do not provide crite-
ria for the regulatory acceptance of (Q)SARs. Since no formal adoption procedure
is likely under REACH, the concordance with the OECD principles is thought to
be best evidenced by documenting the characteristics of both the (Q)SAR model
and its prediction using specific reporting formats, so-called QSAR Model Report-
ing Format (QMRF) and QSAR Prediction Reporting Format (QPRF) (see http://
ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=QRF).

The guidance developed to date describes how (Q)SAR models may be evalu-
ated in accordance with the OECD principles and, to an extent, what best practice
should be when developing new (Q)SAR models. Skin sensitization potential needs
to be assessed for chemicals above the 1 ton threshold according to Annex VII [67].
Since no in vitro replacement is currently available, nor expected to be ready in the
near future [9], it is pertinent to identify robust and relevant (Q)SARs to aid in the
evaluation of sensitizing potential.

2.1 Extension of the RAI Approach

This prompted a revisit of the available skin sensitization QSARs and what ap-
proaches might be most helpful for the purposes of hazard identification and risk
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assessment. As has been described earlier, the apparent array of global QSARs
has been shown to be of limited performance and while expert systems have many
strengths, even they have issues surrounding transparency and documentation. In
light of this, one avenue that was explored by these authors was to reconsider the
RAI approach and establish whether it was still relevant and whether it could be
extended to have wider applicability. Studies on aldehydes and ketones in Patlewicz
et al. [73] demonstrated that it was possible to derive RAI models on the basis
of mechanistic applicability domain rather than just focusing on models within re-
stricted structural classes. In Aptula et al. [74], a dataset of 41 LLNA EC3 values for
a diverse range of compounds, which had been selected for internal consistency [75]
were analyzed and the compounds were reclassified into reaction mechanistic ap-
plicability domains, i.e., grouping according to the reaction mechanisms whereby
the compounds could react with nucleophiles. Each domain contained a diversity of
structures, related by their common reaction chemistry rather than by common struc-
tural features. In addition it was found possible to rank the compounds in order of
reactivity, applying established mechanistic organic chemistry principles, and in this
way find clear trends, within each domain, of sensitization potential increasing with
increasing reactivity. The major reaction mechanistic applicability domains identi-
fied were as follows: Michael-type addition domain, SN2 domain, SNAr domain,
acylation domain, Schiff-base domain. Included in the Michael-type domain were
pro-Michael acceptors, these being compounds which are not themselves Michael-
reactive but are easily converted (e.g., by in vitro or in vivo oxidation to Michael
acceptors). There was also an “unreactive” domain; compounds in this domain are
expected to be nonsensitizers. Although these are not the only mechanistic appli-
cability domains, they did provide a foundation to underpin skin sensitization with
sound reaction chemistry principles, which were subsequently documented more
fully in Aptula and Roberts, [76] as a set of rules for characterizing each domain
(shown in Fig. 2). The rules were subsequently used to evaluate other datasets as
evidenced in Roberts et al. [5, 6]. A possible future addition might be to include a
domain of SN1 based on some examples identified, where SN1 reactions appear to
offer a plausible explanation for behavior. Examples include tertiary allylic perox-
ides, for which protein binding by free radical reactions has also been suggested
(Karlberg et al. [77] and references therein).

During the course of characterizing the domains and evaluating them with respect
to different datasets, several areas where further work was needed were identified.
In particular, there exists a need to gain greater understanding of the chemical ba-
sis of sensitization for certain structural classes of compounds such as aromatic
compounds containing more than one hydroxyl and/or amino group, hydroperox-
ides, and compounds, which can readily give rise to them by autoxidation, epoxides
and their autoxidation precursors. Recent advances in this area have come from
Lepoittevin’s group [78] and Karlberg’s group (reviewed in [77]).

Work was also undertaken by Roberts et al. [22] to reanalyze the data from
Patlewicz et al. [73] with the aim of developing a new mechanistic QSAR for Schiff
base electrophiles (i.e., carbonyl compounds, which can bind to proteins via Schiff
base formation). A QSAR was derived relating reactivity and hydrophobicity to
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Fig. 2 Reaction mechanistic applicability domains
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the�log of the molar EC3 (pEC3), where reactivity was modeled by †��, the sum of
the Taft �� substituent constants for the two groups attached to the carbonyl group.

A final QSAR based on 16 compounds (11 aliphatic aldehydes, 1 ’-ketoester,
and 4 ’; “-diketones) was developed as shown by (6).

pEC3 D 1:12 .˙0:07/
X

�� C 0:42 .˙0:04/ log P � 0:62 .˙0:13/; (6)

n D 16; r2 D 0:952; r2adj D 0:945; s D 0:12; F D 129:6:

The predictive performance of this QSAR was then explored across the wider Schiff
Base mechanistic applicability domain, using further LLNA data for 1,3-dicarbonyl
compounds taken from Gerberick et al. [41].

Two of the 1,3-dicarbonyl compounds of the further test set were classed as
nonsensitizers (EC3 not reached at 40%). One of these was calculated to have
EC3 D 59%; the other was calculated to have an EC3 D 39%. For the remaining
seven 1,3-dicarbonyl compounds, the agreement between calculated and observed
pEC3 values was good [22].

The success of this mechanistic QSAR for one of these reaction mechanistic ap-
plicability domains demonstrates how the RAI approach is more widely applicable
than previously thought. A new term was also introduced for such mechanistic RAI
QSARs, namely QMM Quantitative Mechanistic Models to emphasize the strong
mechanistic basis. In Roberts et al. [22], this QMM for Schiff base electrophiles was
also characterized with respect to the OECD principles and shown to demonstrate
good concordance, suggesting appropriate validity for the purposes of the REACH
requirements. An additional advantage with this QMM is that the endpoint modeled
is actually the same as the regulatory endpoint, i.e., the EC3 in the LLNA which
means that no translation or additional interpretation is required in using this QMM.

Thus the RAI QMM approach provides a practical and robust means of assessing
skin sensitization without recourse to animal testing. In its simplest form, it relates
sensitization potential to a function of hydrophobicity and reactivity.

i:e:; Sensitization D Function .HydrophobicityC Reactivity/:

Hydrophobicity as we have seen in the example above can be readily modeled using
the log of the octanol-water partition coefficient. Reactivity in this case has been
modeled by Taft �� constants. Other approaches to encode reactivity include using
heats of reaction [79], or an activation index [80], or quantum chemical descriptors
such as ELUMO (energy of the lowest unoccupied molecular orbital).

However, such reactivity indices are not always applicable: they may be difficult
to calculate reliably for the compounds of interest, or for the reaction mechanism
under consideration the appropriate parameters to model reactivity may not be obvi-
ous. This situation can be addressed by using experimental measures of reactivity of
chemicals with model nucleophiles, the so-called in chemico approach. An in-depth
discussion of experimental approaches for reactivity indices is given by Roberts
et al. [81]. Landsteiner and Jacobs [30] pioneered this approach, using aniline in
ethanol at ca. 100ıC to discriminate between reactive (by what is now recognized
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as the SNAr mechanism) and unreactive aromatic halo and nitro compounds, en-
abling them to successfully discriminate between sensitizing and nonsensitizing
compounds. Butylamine kinetics in various organic solvents have been used to
obtain RAI-based (combining log krel and log P ) correlations with sensitization
data for sultones [13], p-nitrobenzylhalides [14], ’-(X-substituted methyl)- ”; ”-
dimethyl-”-butyrolactones [20].

Other efforts in realizing the in chemico approach came from investigating the
correlation between thiol reactivity and LLNA for a set of Michael acceptors [82].
The thiol reactivity index was based on glutathione (GSH), pEC(50) thiol (EC(50)
being defined as the concentration of the test substance which gave a 50% depletion
of free thiol under standard conditions) in combination with a measure of cyto-
toxicity (pIGC(50)) to Tetrahymena pyriformis (TETRATOX). Thiol reactivity was
found to discriminate sensitizers from nonsensitizers according to the rule: pEC(50)
thiol >�0:55 indicating that the compound would be a skin sensitizer. However,
because of metabolic activation a pEC(50) thiol <�0:55 does not necessarily mean
that the compound will be a nonsensitizer. Excess toxicity to T. pyriformis (i.e., the
extent of toxic potency over that expected by nonpolar narcosis) was determined to
assess biological reactivity. The best discrimination based on excess toxicity in the
TETRATOX assay was given by the “rule”: excess toxicity >0:50 indicating that
the compound would be a skin sensitizer. These approaches became more power-
ful (23 of the 24 compounds were predicted correctly) when used in combination.
The approach was promising but not the definitive answer since thiol reactivity is
only one measure of the ability of chemicals to form adducts with proteins. Other
similar efforts have been undertaken by Gerberick et al. [83], who have been in-
vestigating approaches using a glutathione tripeptide or three synthetic peptides
containing cysteine, lysine, or histidine residues. In Gerberick et al. [83], the re-
activity of 38 chemicals with varying skin sensitizing potencies were investigated.
The results revealed a correlation between skin sensitizing potency and depletion
of glutathione and binding with the lysine and cysteine synthetic peptides. Further
work by Gerberick et al. [84] and others has since been undertaken [85]. GSH has
several advantages as a model for soft nucleophilic groups of carrier protein – it is
readily available, its concentration can be analyzed by readily available methods,
and, unlike simple thiols, it is odorless and nonhazardous to work with. However,
it is not a chromophore so does not directly lend itself to methods such as HPLC-
UV without multistep methods involving conjugation to carrier chromophores (e.g.,
as GSH-dinitrophenyl adducts), to detect its presence [86]. Its major limitation is
that although soluble in water, it has limited solubility in organic solvents. For de-
termining reactivity of water soluble compounds, this is not a problem, but many
sensitizers are quite hydrophobic and have very limited solubility in water. Given
that the nature and location of the carrier protein is not known, there is no reason
to suppose that any particular model nucleophile in any particular solvent is a more
realistic model than any other for the in cutaneo reaction. Successful correlations
have been obtained with data from incubating electrophiles with simple model nu-
cleophiles in simple solvents suggesting that the reductionist approach of using the
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simplest and most convenient models to gain data on relative reactivities will be suf-
ficient for modeling the potency determining steps in the skin sensitization process.

For mechanistic domains where QMMs have not been developed, prediction is
still possible, using mechanistic read across. We illustrate this below for the Michael
acceptor domain, where good progress has been made toward developing a reactiv-
ity database using RC50 values for reaction with GSH [87]. The basic principle of
“mechanistic read across” is that if two compounds in the same mechanistic domain
are similar in their toxicity-determining parameters, they should be similar in their
toxicity, irrespective of whether or not they are similar in structure. This necessi-
tates access to a large database of skin sensitization data, one such resource is the
publication by Gerberick et al. [41] where high quality LLNA data for over 200
compounds were collected. A large database of experimental kinetic reactivity data
and hydrophobicity (log P ) for as many of the known sensitizers as possible is also
a requirement. Progress has been made toward establishing such a database [82,87]
but more resources need to be devoted to generate new reactivity data and populate
this database further.

At present the reactivity database of known skin sensitizers is still quite lim-
ited, but even in its present form can still be used to make estimates by linear
interpolation.

Suppose we wish to estimate the sensitization potency of 2,4-hexadienal. Its GSH
RC50 is 1.533 mM [Terry Schultz, personal communication]. We can calculate its
log P by the Leo and Hansch method [88]: 1.15. Using the published classifica-
tion rules [76], we can classify this compound in the Michael Acceptor mechanistic
domain.

In the database, we search for two compounds in the Michael acceptor domain
whose RC50 and log P values are either side of the 2,4-hexadienal, and whose
LLNA EC3 values are known.

We find:

– diethyl maleate, RC50 D 3:28; log P D 1:84I EC3 D 5:8%
– methyl 2-nonynoate, RC50 D 0:264; log P D 3:25; EC3 D 2:5%

The smaller the RC50, the more reactive it is.
Although these are not an ideal pair of compounds, in that both have log P values

higher than that of the compound to be predicted, read across is still possible and
relevant.

The reactivity of 2,4-hexadienal lies between those of diethyl maleate and methyl
2-nonynoate. Its hydrophobicity is similar to that of diethyl maleate. From this infor-
mation, we can predict that 2,4-hexadienal’s sensitization potency will be between
5.8 and 2.5. The process of determining an estimate of skin sensitization as fol-
lows: Since RC50 is inversely proportional to the rate constant, log (1/RC50) can
be used to represent log k. By analogy with many other structure–sensitization
correlations published for various types of compounds (e.g., sultones, lactones,
alkyl alkanesulphonates, Schiff base electrophiles, etc.), relative sensitization po-
tency (expressed as a mol% log (1/EC3) value) can be assumed to be influenced
about twice as much by reactivity as by log P . Accordingly a relative sensitization
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parameter (RSP) can be defined as RSP D log .1=RC50/ C 0:5 log P (5), and,
based on the RAI model, we can write (7) as:

log .1=EC3mol%/ D a RSPC b: (7)

Using the RC50 and log P values, a RSP can then be calculated for each of the 3
compounds. Log .1=EC3mol%/ values can be calculated from the EC3 (wt%) values
and MW values for diethyl maleate and methyl 2-nonynoate:

– diethyl maleate, RSP D 0:404I log .1=EC3mol%/ D 1:47

– methyl 2-nonynoate, RSP D 2:20I log .1=EC3mol%/ D 1:83

– 2,4-hexadienal, RSP D 0:389I log .1=EC3mol%/ D‹

By linear interpolation, a log .1=EC3mol%/ value of 1.47 is derived for 2,4-
hexadienal. This corresponds to an estimated EC3 value of 3.25% (since the MW
is 96.13). Considering the nature of these calculations is very approximate, we
would quote the estimate as between 2.5 and 4% (assuming plus or minus 20%
of the calculated value, and rounding to nearest 0.5). The actual observed EC3 for
2,4-hexadienal is 3.5% [41].

Read-across estimates such as the one illustrated here are very dependent on the
variability of the EC3 values of the two known compounds either side of the linear
interpolation, as well as the accuracy of the reactivity and log P parameters for all
three compounds. Hence, interpretation of such models should be done with care
and with knowledge of the inherent biological variability of the bioassay data being
used to make such benchmark predictions.

3 Conclusions

There is clearly a very strong mechanistic understanding of skin sensitization, which
we have tried to summarize early on. Most published skin sensitization QSARs have
fallen into one of two main categories: either they are mechanistic model based RAI
QSARs, typically of high statistical quality but until recently only applicable to a
narrow range of closely-related structures or they are “statistical” QSARs, which
aim to be global in their applicability, are variable in their successes, and lacking in
real mechanistic insight [44, 45].

The covalent hypothesis continues to be the most promising way of develop-
ing mechanistically-based robust QSARs. The reaction chemistry concepts recently
outlined in Aptula et al. [74] and Schultz et al. [89] have changed the perspec-
tive regarding RAI QSARs. These QSARs are actually more widely applicable than
originally thought. Clear chemistry-activity trends can be seen within mechanistic
applicability domains leading to robust mechanistic-based QSAR models (or as de-
fined earlier QMMs e.g. Roberts et al. [22]) as well as new insights for inclusion into
expert systems such as TIMES-SS and DfW. These QMMs use reactivity and hy-
drophobicity as the key parameters in mathematically modeling skin sensitization.
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Although hydrophobicity can be conveniently modelled using log P , the octanol-
water partition coefficient, reactivity is not always readily determined from chemical
structure. Initiatives are in progress to generate reactivity data for reactions relevant
to skin sensitization but more resources are required to realize a comprehensive set
of reactivity data [82–85, 89]. This type of data would also facilitate the derivation
of in silico reactivity indices.

Our ultimate vision for skin sensitization prediction is that the animal testing lab-
oratory should be replaced by the physical organic chemistry laboratory. Particularly
bearing in mind that many compounds are easily predictable without experimenta-
tion, the experimental studies to generate the chemical data required should be no
more costly or time consuming than the animal tests that have hitherto been used.

Presented with a new compound:

1. The first step is to classify it into its reaction mechanistic domain. One domain
is the “unreactive” domain, populated by predicted nonsensitizers. For several
mechanistic domains, there are corresponding proelectrophilic subdomains. For
example, many sensitizers, such as hydroquinone and 3-alkyl/alkenyl catechols
(active components of poison ivy), are thought to act as pro-Michael accep-
tors. Domain classification may often be possible by inspection of structure, but
inevitably in some cases a confident prediction may not be possible. In such situ-
ations, experimental work will be needed to determine the reaction chemistry, in
particular to determine whether the compound is electrophilic or proelectrophilic
and the nature of the reactions.

2. Having assigned the compound to its reaction mechanistic applicability domain,
the next step is to quantify its reactivity/hydrophobicity relative to known sen-
sitizers in the same mechanistic applicability domain. These properties may
sometimes be confidently predictable from structure, using physical organic
chemistry approaches such as linear free energy relationships based on sub-
stituent constants or on molecular orbital parameters. In other cases, it will be
necessary to perform physical organic chemistry measurements, such as deter-
mination of reaction kinetics and measurement of partition coefficients.

3. Having assigned the compound to its reaction mechanistic applicability domain
and quantified its reactivity/hydrophobicity relative to known sensitizers in the
same domain, QMM or mechanistic read-across can be used to predict the sensi-
tization potential.

To make these types of mechanism-based read across assessments viable and prac-
tical for routine use in decision making requires the population of a database with
empirical chemical kinetics reactivity data for as many known sensitizers as pos-
sible. We envisage the development and population of this reactivity database for
skin sensitization to be part of a wider-ranging database being developed for reac-
tive toxicity in general in the longer term. Reactivity of electrophiles is known to
play a part in human health effects other than sensitization (e.g., liver toxicity) and
in environmental toxicity [87, 90–93].

More work needs to be done on developing new methods to assess whether a
new unreactive compound could be a proelectrophile, and hence likely to sensitize
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via abiotic or metabolic activation. Ideally an experimental method for identify-
ing potentially sensitizing proelectrophiles would include appropriate metabolic and
abiotic activating capability reflective of that in skin. Current understanding of pro-
electrophilic mechanisms in skin sensitization has recently been well reviewed by
Karlberg et al. [77] and Gibbs et al. [94]. There are still areas of uncertainty, such
that finding a suitable metabolizing system could present a significant challenge in
assay development.

Currently the most pragmatic way forward is to assume that all the major proelec-
trophilic classes of compounds have been identified and that if a compound cannot
be assigned to one of these classes and is not directly electrophilic, it is unlikely to
be a sensitizer.

Chemical reactivity indices based on kinetic measurements, and application of
them in mechanism-based read-across are vital areas for further development and
show great promise in being able to contribute toward novel nonanimal approaches
for the prediction of skin sensitization in the future.

References

1. Lepoittevin J-P, Basketter DA, Goossens A, Karlberg A-T (1997) Allergic Contact Dermatitis.
The Molecular Basis. Springer: Berlin

2. Smith Pease CK (2003) From xenobiotic chemistry and metabolism to better prediction and
risk assessment of skin allergy. Toxicology 192: 1–22

3. Ryan CA, Gerberick GF, Gildea LA, Huletter BC, Betts CJ, Cumberbatch M, Dearman RJ,
Kimber I (2005) Interactions of contact allergens with dendritic cells: Opportunities and chal-
lenges for the development of novel approaches to hazard assessment. Toxicol Sci 88: 4–11

4. Rustenmeyer T, van Hoogstraten IMW, von Blomberg BME, Scheper R (2006) Mechanisms in
allergic contact dermatitis. In: Frosch PJ, Menne T, Lepoittevin J-P (eds) Contact Dermatitis,
4th edn. Springer: Berlin, pp. 11–44

5. Roberts DW, Aptula AO, Patlewicz G (2007) Electrophilic chemistry related to skin sensiti-
zation. Reaction mechanistic applicability domain classification for a published dataset of 106
chemicals tested in the mouse local lymph node assay. Chem Res Toxicol 20: 44–60

6. Roberts DW, Patlewicz GY, Kern PS, Gerberick GF, Kimber I, Dearman RJ, Ryan CA,
Basketter DA, Aptula AO (2007) Mechanistic applicability domain classification of a local
lymph node assay dataset for skin sensitization. Chem Res Toxicol 20: 1019–1030

7. Basketter D, Dooms-Goossens A, Karlberg AT, Lepoittevin JP (1995) The chemistry of contact
allergy: why is a molecule allergenic? Contact Dermatitis 32: 65–73

8. Kimber I, Dearman RJ (2003) What makes a chemical an allergen? Ann Allergy Asth Immunol
90(Suppl): 28–31

9. Jowsey IR, Basketter DA, Westmoreland C, Kimber I (2006) A future approach to measuring
relative skin sensitising potency: A proposal. J App Toxicol 26: 341–350

10. Roberts DW, Aptula AO (2008) Determinants of skin sensitisation potential. J Appl Toxicol
28: 377–387

11. Basketter DA, Gerberick GF, Kimber I (2001) Skin sensitization, vehicle effects and the local
lymph node assay. Food Chem Toxicol 39: 621–627

12. Wright ZM, Basketter, DA, Blaikie L, Cooper KJ, Warbrick EV, Dearman RJ, Kimber I (2001)
Vehicle effects on skin sensitizing potency of four chemicals: Assessment using the local lymph
node assay. Int J Cosmet Sci 23: 75–83



Chemistry Based Nonanimal Predictive Modeling for Skin Sensitization 79

13. Roberts DW, Williams DL (1982) The derivation of quantitative correlations between skin
sensitisation and physico–chemical parameters for alkylating agents and their application to
experimental data for sultones. J Theor Biol 99: 807–825

14. Roberts DW, Goodwin BFJ, Williams DL, Jones K, Johnson AW, Alderson CJE (1983)
Correlations between skin sensitisation potential and chemical reactivity for p-nitrobenzyl
compounds. Food Chem Toxicol 21: 811–813

15. Roberts DW (1987) Structure–activity relationships for skin sensitisation potential of diacry-
lates and dimethacrylates. Contact Dermatitis 17: 281–289

16. Roberts DW (1995) Linear free energy relationships for reactions of electrophilic halo- and
pseudohalobenzenes, and their application in prediction of skin sensitisation potential for SNAr
electrophiles. Chem Res Toxicol 8: 545–551

17. Roberts DW, Basketter DA (1990) A quantitative structure–activity/dose relationship for con-
tact allergenic potential of alkyl group transfer agents. Contact Dermatitis 23: 331–335

18. Roberts DW, Basketter DA (1997) Further evaluation of the quantitative structure-activity re-
lationship for skin-sensitizing alkyl transfer agents. Contact Dermatitis 37: 107–112

19. Basketter DA, Roberts DW, Cronin M, Scholes EW (1992) The value of the local lymph node
assay in quantitative structure–activity investigations. Contact Dermatitis 27: 137–142

20. Franot C, Roberts DW, Basketter DA, Benezra C, Lepoittevin J-P (1994) Structure-activity rela-
tionships for contact allergenic potential of ””-dimethyl-”-butyrolactone derivatives. 2. Quan-
tititative structure-skin sensitisation relationships for ’-substituted-’-methyl-””-dimethyl-”-
butyrolactones. Chem Res Toxicol 7: 307–312

21. Mekenyan O, Roberts DW, Karcher W (1997) Molecular orbital parameters as predictors of
skin sensitization potential of halo- and pseudohalobenzenes acting as SNAr electrophiles.
Chem Res Toxicol 10: 994–1000

22. Roberts DW, Aptula AO, Patlewicz G (2006) Mechanistic applicability domains for non-animal
based prediction of toxicological endpoints. QSAR analysis of the schiff base applicability
domain for skin sensitization. Chem Res Toxicol 19: 1228–1233

23. Howes D, Guy R, Hadgraft J, Heylings J, Hoeck U, Kemper F, Maibach H, Marty J-P, Merk H,
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Interspecies Correlations for Predicting
the Acute Toxicity of Xenobiotics

James Devillers, Pascal Pandard, Eric Thybaud, and Anne Merle

Abstract LD50 tests on rat and mouse are commonly used to express the relative
hazard associated with the acute toxicity of new and existing substances. These
tests are expensive, time consuming, and actively fought by Animal Rightists. Con-
sequently, there is a need to find alternative methods. If the design of QSAR models
can be used as surrogate, the search for interspecies correlations also represents
a valuable alternative to the classical mammalian laboratory tests. In this chapter,
the different toxicityD f (ecotoxicity) models available in the literature were first
critically analyzed. In a second step, a strong bibliographical investigation was per-
formed to collect oral, intraperitoneal, and intravenous rat and mouse LD50 data
for a large collection of structurally diverse chemicals. In the meantime, EC50 data
on Vibrio fischeri (MicrotoxTM test) and Daphnia magna were also retrieved from
literature. Numerous oral, intraperitoneal, and intravenous rat and mouse toxicity
models were derived using Vibrio fischeri and Daphnia magna as independent vari-
ables alone or together through a stepwise regression analysis. Most of the models
on Daphnia magna were totally new and some of them presented acceptable quality.
They outperformed the MicrotoxTM models. The usefulness of the 1-octanol/water
partition coefficient (log P ) as additional independent variable was also tested. The
interest of nonlinear statistical tools for deriving toxicityD f (ecotoxicity) models
was also experienced.

Keywords Interspecies correlation �Mammalian toxicity � Vibrio fischeri �Daphnia
magna � Regression analysis � Nonlinear methods

1 Introduction

The debate surrounding the use of animals for research and testing can be traced
back to the eighteenth century when the English utilitarian philosopher and jurist,
Jeremy Bentham (1748–1832), who is at the origin of the word “deontology,”
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focused attention on animal rights and on their capacity to suffer. In 1831, the
well-known English neurophysiologist Marshall Hall (1790–1857) clearly formu-
lated five basic principles to better control the use of animals in experiments and to
take into account their suffering [1]. These principles are at the origin of the UK reg-
ulation concerning animal experiments. In fact, surprisingly, before 1986, legislation
on the protection of animals used in research and testing existed in only a limited
number of European countries. Indeed, in 1986, for the first time, the European Par-
liament adopted legislation aiming at the protection of laboratory animals. Thus,
after many years of discussions, the Council of Europe approved regulations on the
protection of vertebrate animals used for experimental and other scientific purposes
(Convention ETS 123) [2]. In 1986, Directive 86/609/EEC [3], based on the Con-
vention ETS 123 but more concise and restrictive, was also adopted. This Directive
contains provisions on the housing and care of laboratory animals, the education
and training of persons manipulating animals, the use of non-wild animals, and
more generally the promotion of alternative methods to reduce the number of ani-
mals, especially the vertebrates used in the laboratories [4]. While the EU Member
States are bound to implement the provisions of Directive 86/609/EEC via their na-
tional legislation, Convention ETS 123 takes effect only when ratified by a Member
State [4,5]. It is noteworthy that due to the development of sciences, especially in the
field of biomedicine and also the evolution of the mentalities, in 2002, the European
Commission was called by the European Parliament to prepare a proposal for a re-
vision of Directive 86/609/EEC [4]. This work is currently in its final stage. Broadly
speaking the revised Directive will reinforce the well known three R’s (reduction,
replacement, refinement) pioneered by Russell and Burch [6].

Despite regulatory guidelines aiming at reducing the use of animals in exper-
iments, the total number of animals used for experimental and other scientific
purposes in 2005 in the 25 Member States was about 12 million. Rodents to-
gether with rabbits represented almost 78% of the total and mice were by far
the most commonly used species covering 53% of the total use, followed by rats
with 19% [7]. More than 60% of animals were used in research and development
for human and veterinary medicine, dentistry, and in fundamental biology studies.
Production and quality control of products and devices in human medicine, vet-
erinary medicine, and dentistry required the use of 15.3% of the total number of
animals reported in 2005. Toxicological and other safety evaluations represented
8% of the total number of animals used for experimental purposes. This repre-
sents a significant decrease with 2002 where this percentage was equal to 9.9 [7].
Undoubtedly, this tendency will continue in the future with Registration, Evalua-
tion, Authorization and Restriction of Chemicals (REACH) [8], the new European
Community Regulation on chemicals and their safe use entered into force on June
1, 2007. The Article 13, entitled “General requirements for generation of informa-
tion on intrinsic properties of substances” stresses that regarding “human toxicity,
information shall be generated whenever possible by means other than vertebrate
animal tests, through the use of alternative methods, for example, in vitro methods
or qualitative or quantitative structure–activity relationship models or from informa-
tion from structurally related substances (grouping or read-across)”.
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This evolution of the regulation of chemicals prompted us to evaluate the inter-
est of the interspecies correlations for estimating the acute toxicity of chemicals to
rats and mice, which are widely used for testing the acute toxicity of new and ex-
isting substances. In a first step, literature was investigated to retrieve equations in
the general form LD50tox D f .LC50ecotox or EC50ecotox/ where LC50 refers to the
concentration inducing 50% of mortality among the tested population and the EC50
stands for the effective concentration required to induce a 50% effect in the tested
organisms, in both cases, in comparison with a control. These different models were
critically analyzed. In a second step, attempts were made to derive new equations
allowing the prediction of the acute toxicity of chemicals to rat and mouse from
LC50 and EC50 data obtained on invertebrates.

2 Bibliographical Survey

2.1 Methodological Framework

Bibliographical investigations were made in journals, books, and reports as well
as in bibliographical and factual databases. In that case, a Boolean search was
made from the following keywords connected by the logical operators AND, OR,
and NOT:

– Correlation, relationship, comparison, intercomparison
– Model, predictive, prediction, in vivo
– Species, interspecies, toxicity, ecotoxicity
– Invertebrate, Daphnid, alga, earthworm, nematode, MicrotoxTM, Vibrio fischeri,

Daphnia, Tetrahymena pyriformis, Eisenia fetida
– Vertebrate, rat, mammal, mouse, mice, human

Only the original publications including regression equations with their statistical
parameters were selected. In addition, only the in vivo/in vivo correlations were
considered, the in vitro/in vivo and in vitro/in vitro correlations being voluntarily
eliminated from the present study. Here, the term in vitro only refers to animal and
human cell lines.

2.2 Correlations of Ecotoxicity Test Data with Rat or Mouse
LD50 Data

2.2.1 Correlations of Bacteria Test Data with Rat or Mouse LD50 Data

The standard MicrotoxTM test involving the bioluminescent bacterium Vibrio
fischeri, formerly known as Photobacterium phosphoreum, is a commonly used
ecotoxicological bioassay whose EC50 values (inhibition of bioluminescence),
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generally recorded after 5, 15 or 30 min, have been correlated to EC50 and LC50
values of numerous nonmammalian species [9]. Conversely, the number of papers
aiming at correlating MicrotoxTM data with rat or mouse acute toxicity data is very
limited.

In 1992, Fort [10] proposed two regression equations allowing the prediction
of Vibrio fischeri (V.f.) EC50 values from oral and intravenous (i.v.) mouse LD50
values, (1) and (2). The EC50 and LD 50 values were expressed in mg/l and mg/kg,
respectively.

log (EC50 V:f:/ D 0:55 log (LD50 Mouse oral) � 0:13; (1)

n D 123; r D 0:29; p D 0:0012:

log (EC50 V:f:/ D 1:6 log (LD50 Mouse i.v.)� 1:8; (2)

n D 51; r D 0:73; p < 0:0001:

Although a weak correlation was obtained with the oral LD50 data, a more inter-
esting relationship was recorded with the intravenous LD50 data but the size of the
training set was about twice less important.

Kaiser and coworkers [11] tried to extend these results from larger datasets and
by considering the oral, i.v., and intraperitoneal (i.p.) routes of exposure for rat and
mouse. The EC50 and LD50 values were expressed in mmol/l and mmol/kg, respec-
tively. This yielded the design of six equations (3)–(8).

log (1/LD50 Rat oral) D 0:20 log (1/EC50 V:f:/ � 0:96; (3)

n D 471; r D 0:35; se D 0:74:

log (1/LD50 Mouse oral) D 0:20 log (1/EC50 V:f:/ � 0:86; (4)

n D 344; r D 0:35; se D 0:72:

log (1/LD50 Rat i.p.) D 0:29 log (1/EC50 V:f:/ � 0:48; (5)

n D 195; r D 0:48; se D 0:82:

log (1/LD50 Mouse i.p.) D 0:25 log (1/EC50 V:f:/ � 0:49; (6)

n D 378; r D 0:43; se D 0:70:

log (1/LD50 Rat i.v.) D 0:40 log (1/EC50 V:f:/ � 0:25; (7)

n D 54; r D 0:73; se D 0:79:

log (1/LD50 Mouse i.v.) D 0:35 log (1/EC50 V:f:/ � 0:30; (8)

n D 165; r D 0:68; se D 0:61:

Before outlier removal, the oral route entry regressions for rat (3) and mouse (4)
present the same slope and correlation coefficient. Moreover the intercepts and stan-
dard error of estimates (se) are very close. Inspection of (5)–(8) shows that for the
i.p. and i.v. routes of exposure, a rather good similarity also exists between the re-
gressions for rat and mouse. This similarity between the two mammalian species for
the same exposure route prompted the authors to extend the datasets by means of
(9)–(11).
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log (1/LD50 Rat oral) D 0:97 log (1/LD50 Mouse oral)� 0:04; (9)

n D 330; r D 0:94; r2 D 0:88; se D 0:30:

log (1/LD50 Rat i.p.) D 1:02 log (1/LD50 Mouse i.p.)� 0:02; (10)

n D 162; r D 0:96; r2 D 0:92; se D 0:28:

log (1/LD50 Rat i.v.) D 0:99 log (1/LD50 Mouse i.v.)� 0:10; (11)

n D 41; r D 0:97; r2 D 0:94; se D 0:29:

Using the extended rat datasets for each of the oral, i.p., and i.v. exposure routes, lin-
ear regressions were then determined vs. the corresponding MicrotoxTM data yield-
ing (12)–(14). Deletion of outliers allowed the increase of the statistical parameters
of the models, (15)–(17).

log (1/LD50 Rat oral) D 0:19 log (1/EC50 V:f:/ � 0:95; (12)

n D 531; r D 0:33; se D 0:72; F D 63:4:

log (1/LD50 Rat i.p.) D 0:25 log (1/EC50 V:f:/ � 0:50; (13)

n D 427; r D 0:43; se D 0:70; F D 95:7:

log (1/LD50 Rat i.v.) D 0:35 log (1/EC50 V:f:/ � 0:20; (14)

n D 180; r D 0:66; se D 0:65; F D 139:7:

log (1/LD50 Rat oral) D 0:20 log (1/EC50 V:f:/ � 1:03; (15)

n D 506; r D 0:41; se D 0:59; F D 102:2:

log (1/LD50 Rat i.p.) D 0:26 log (1/EC50 V:f:/ � 0:57; (16)

n D 406; r D 0:51; se D 0:59; F D 141:5:

log (1/LD50 Rat i.v.) D 0:36 log (1/EC50 V:f:/ � 0:26; (17)

n D 171; r D 0:75; se D 0:52; F D 219:3:

Inspection of (12)–(17) shows that the data ranges and slopes of the regressions
are unaffected by the outlier removal but that the correlation coefficients and more
important the F tests and standard errors of the estimates are much improved.

2.2.2 Correlations of Protozoan Test Data with Rat or Mouse LD50 Data

Collections of chemicals have been tested on the freshwater ciliate protozoan
Tetrahymena pyriformis (T.p.) but surprisingly, their use in the design of toxicity D
f (ecotoxicity) models is very limited. Thus, Sauvant et al. [12] evaluated the
effects of BaCl2 salt, CdCl2, CoCl2, CrCl3; CuCl2, FeCl3, GeO2, HgCl2, MnCl2,
NbCl5, Pb.NO3/2, SbCl3, SnCl4, TiCl4, VOSO4, and ZnCl2 on the growth rate
of T. pyriformis. IC50s (inhibitory concentration 50%) were expressed in mmol/l
and correlated with corresponding rat oral LD50 values (mmol/kg) retrieved from
literature, yielding (18).
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log (LD50 Rat oral) D 0:571 log (IC50 T:p:/C 0:389; (18)

n D 16; r D 0:463; p D 0:07:

2.2.3 Correlations of Rotifer Test Data with Rat or Mouse LD50 Data

The 24-h LC50 values of the first ten chemicals of the multicentreevaluation of in vitro
cytotoxicity (MEIC) program were tested against the estuarine rotifer Brachionus
plicatilis (B.p.) and the freshwater rotifer Brachionus calyciflorus (B.c.) [13]. These
chemicals were the following: paracetamol (CAS RN 103-90-2), acetylsalicylic acid
(CAS RN 50-78-2), ferrous sulfate heptahydrate (CAS RN 7782-63-0), amitriptyline
HCl(CASRN549-18-8), isopropanol(CASRN67-63-0),ethanol (CASRN64-17-5),
methanol (CAS RN 67-56-1), ethylene glycol (CAS RN 107-21-1), diazepam (CAS
RN 439-14-5), and digoxin (CAS RN 20830-75-5). The acute toxicity data, expressed
in �mol=l, were compared by regression analysis with oral LD50 .�mol=kg/ in
rat, mouse, and man (HLD D human oral lethal dose). Diazepam and digoxin
were excluded from the regressions (19)–(24) because their 24-h LC50 values on
the two rotifers were only determined as >35;100 �mol=l and >12;800 �mol=l,
respectively. Even if the r2 values of (19)–(24) are high, the interest of these models
is very limited due the nature and limited number of chemicals.

log (LD50 Mouse oral) D 0:48 log (LC50 B:p:/C 2:08; (19)

n D 8; r2 D 0:86:

log (LD50 Rat oral) D 0:48 log (LC50 B:p:/C 2:12; (20)

n D 8; r2 D 0:92:

log (LD50 HLD oral) D 0:44 log (LC50 B:p:/C 1:94; (21)

n D 8; r2 D 0:83:

log (LD50 Mouse oral) D 0:43 log (LC50 B:c:/C 2:40; (22)

n D 8; r2 D 0:81:

log (LD50 Rat oral) D 0:42 log (LC50 B:c:/C 2:44; (23)

n D 8; r2 D 0:88:

log (LD50 HLD oral) D 0:40 log (LC50 B:c:/C 2:22; (24)

n D 8; r2 D 0:81:

2.2.4 Correlations of Crustacean Test Data with Rat or Mouse LD50 Data

The water flea Daphnia magna (D.m.) is one of the most widely used invertebrates
in freshwater aquatic toxicology. The criterion of acute toxicity determined with
this organism is the effective concentration yielding the complete immobilization
of 50% of the population of Daphnia after 24 or 48 h of exposure (24-h or 48-h
EC50). To be considered as immobilized, the animals have to be unable to swim
after a gentle agitation of the test vessel. Different authors have tried to correlate
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LD50 values recorded in rat and/or mouse to EC50 values obtained on D.m. Thus,
Khangarot and Ray [14] tested various organic and inorganic chemicals on young
D.m. and the obtained 48-h EC50 values (mg/l) were correlated to oral rat and mouse
LD50 values (mg/kg) retrieved from literature, (25) and (26). Even if the correla-
tion coefficients of (25) and (26) are very high, the interest of these two models is
reduced due to limited size of their training set.

LD50 (Rat oral) D 2:056 EC50 .D:m:/C 776:2; (25)

n D 13; r D 0:992:

LD50 (Mouse oral) D 1:020 EC50 .D:m:/C 312:94; (26)

n D 10; r D 0:991:

Interestingly, Enslein and coworkers [15] tried to increase the performances of a
simple LD50 vs. EC50 model (27) by introducing molecular descriptors in the equa-
tion from a stepwise regression analysis. This yielded a new model (28) showing
better statistics. In both equations, LC50 and LD50 values were expressed in mmol/l
and mmol/kg, respectively.

log (LD50 Rat/ D f .log LC50 D:m:/; (27)

n D 147; r2 D 0:53; s D 0:53:

log (LD50 Rat) D 0:287 D:m:� 0:520 aryl nitroC 0:362 DIFPAT5

C 0:328 Nb electron releasing groups on a benzene ring� 0:496 Ring perimeter

� 0:608 NH2; NH or 3-branched aliphatic amine

� 0:408 aryl alcohol� 0:619 methylene diphenyl linkage

� 0:826 aliphatic etherC 0:337 primary aliphatic hydroxyl

� 0:568 any carbamate� 0:487 pentane fragment

� 0:279 propane/propene fragmentC 3:415; (28)

n D 147; r2 D 0:75; s D 0:40:

Inverse relationships (e.g., (29) and (30)) were also proposed by these authors [16]
but only the model specifically designed for cholinesterase-inhibiting compounds
was interesting (30). In (30), MW is the molecular weight and 2�v is the valence
path molecular connectivity index of second order.

log (1/EC50 D:m:/ D f log (1/LD50 Rat oral); (29)

n D 182; r2 D 0:452; s D 1:116:

log (1/EC50 D:m:/ D 0:738 log (1/LD50 Rat oral)

C 6:399 MW� 0:147 2�v � 9:29; (30)

n D 12; r2 D 0:80; s D 0:432; F D 10:66:

Calleja and Persoone [13] also tested the first ten chemicals of the MEIC pro-
gram against the halophytic anostracan Artemia salina (A.s.) and the freshwater
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anostracan Streptocephalus proboscideus (S.p.). The LC50s recorded after 24 h
of exposure and expressed in �mol=l were compared by regression analysis to
oral LD50 .�mol=kg/ in rat, mouse, and man (HLD). Equations at eight chemi-
cals (i.e., (31), (32), (35), (37), (38), (41)) were established without digoxin and
diazepam, while for the equations at nine chemicals (i.e., (33), (34), (36), (39), (40),
(42)) only the former compound was excluded. As previously indicated, the interest
of these equations is rather limited.

log (LD50 Mouse oral) D 0:54 log (LC50 A:s:/C 1:86; (31)

n D 8; r2 D 0:89:

log (LD50 Rat oral) D 0:51 log (LC50 A:s:/C 2:01; (32)

n D 8; r2 D 0:87:

log (LD50 Mouse oral) D 0:56 log (LC50 A:s:/C 1:76; (33)

n D 9; r2 D 0:90:

log (LD50 Rat oral) D 0:49 log (LC50 A:s:/C 2:09; (34)

n D 9; r2 D 0:87:

log (LD50 HLD oral) D 0:45 log (LC50 A:s:/C 1:82; (35)

n D 8; r2 D 0:80:

log (HLD oral) D 0:54 log (LC50 A:s:/C 1:44; (36)

n D 9; r2 D 0:80:

log (LD50 Mouse oral) D 0:49 log (LC50 S:p:/C 2:30; (37)

n D 8; r2 D 0:98:

log (LD50 Rat oral) D 0:41 log (LC50 S:p:/C 2:63; (38)

n D 8; r2 D 0:75:

log (LD50 Mouse oral) D 0:51 log (LC50 S:p:/C 2:12; (39)

n D 9; r2 D 0:94:

log (LD50 Rat oral) D 0:42 log (LC50 S:p:/C 2:56; (40)

n D 9; r2 D 0:77:

log (LD50 HLD) D 0:44 log (LC50 S:p:/C 2:15; (41)

n D 8; r2 D 0:94:

log (HLD oral) D 0:50 log (LC50 S:p:/C 1:81; (42)

n D 9; r2 D 0:82:

2.2.5 Correlations of Fish Test Data with Rat or Mouse LD50 Data

The relative vulnerability of most of the fish species to pollutants and the ecological
importance of these organisms in the functioning of the ecosystems have contributed
to their selection as surrogates to assess the aquatic ecotoxicity of chemicals yielding
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the production of collections of acute toxicity data for all the kinds of compounds
susceptible to contaminate the environment. Moreover, due to the taxonomical posi-
tion of these organisms, numerous equations have been proposed for predicting the
acute toxicity of chemicals to rat or mouse from fish LC50s.

Relationships between rat oral LD50 (mmol/kg) and Lepomis macrochirus
(L.m.) and Pimephales promelas (P.p.) 96-h LC50 .�mol=l/ values obtained from
the US water quality criteria documents for 47 priority pollutants, including nine
organochlorine pesticides were examined by Janardan et al. [17]. Interestingly,
these authors also tried to derive regression equations on data obtained from uni-
form protocol studies for fish [18] and male and female rats [19]. It is noteworthy
that this second set only included chlorinated, organophosphorus, and carbamate
pesticides. The inverse correlations were also considered because the regression
analysis used in this study, which considered separate error terms for the x and y

variables, provided different statistics for them. Thus, 20 different models were
proposed by Janardan et al. [17] (43)–(62).

log (LD50 Rat) D 0:43 log (LC50 L:m:/ � 0:056; (43)

n D 44; r D 0:74 (priority pollutants):

log (LD50 Rat male) D 0:47 log (LC50 L:m:/ � 0:272; (44)

n D 48; r D 0:73 .priority pollutantsC pesticides/:

log (LD50 Rat female) D 0:49 log (LC50 L:m:/ � 0:313; (45)

n D 45; r D 0:75 .priority pollutantsC pesticides/:

log (LD50 Rat male) D 0:46 log (LC50 L:m:/C 0:125; (46)

n D 12; r D 0:76 (chlorinated pesticides):

log (LD50 Rat female) D 0:66 log (LC50 L:m:/C 0:345; (47)

n D 11; r D 0:92 (chlorinated pesticides):

log (LC50 L:m:/ D 1:21 log (LD50 Rat)C 0:539; (48)

n D 44; r D 0:71 (priority pollutants):

log (LC50 L:m:/ D 1:04 log (LD50 Rat male)C 0:428; (49)

n D 48; r D 0:66 .priority pollutantsC pesticides/:

log (LC50 L:m:/ D 1:04 log (LD50 Rat female)C 0:492; (50)

n D 45; r D 0:68 .priority pollutantsC pesticides/:

log (LC50 L:m:/ D 1:45 log (LD50 Rat male)� 0:639; (51)

n D 12; r D 0:88 (chlorinated pesticides):

log (LC50 L:m:/ D 1:51 log (LD50 Rat female)� 0:521; (52)

n D 11; r D 0:999 (chlorinated pesticides):

log (LD50 Rat) D 0:35 log (LC50 P:p:/ � 0:161; (53)

n D 38; r D 0:63 (priority pollutants).

log (LD50 Rat male) D 0:33 log (LC50 P:p:/ � 0:34; (54)

n D 28; r D 0:58 .priority pollutantsC pesticides/:
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log (LD50 Rat female) D 0:36 log (LC50 P:p:/ � 0:259; (55)

n D 25; r D 0:67 .priority pollutantsC pesticides/:

log (LD50 Rat male) D 0:59 log (LC50 P:p:/C 0:192; (56)

n D 9; r D 0:999 (chlorinated pesticides):

log (LD50 Rat female) D 0:28 log (LC50 P:p:/C 0:380; (57)

n D 8; r D 0:999 (chlorinated pesticides):

log (LC50 P:p:/ D 1:37 log (LD50 Rat)C 0:799; (58)

n D 38; r D 0:77 (priority pollutants):

log (LC50 P:p:/ D 1:15 log (LD50 Rat male)C 0:820; (59)

n D 28; r D 0:65 .priority pollutantsC pesticides/:

log (LC50 P:p:/ D 1:53 log (LD50 Rat female)C 0:689; (60)

n D 25; r D 0:83 .priority pollutantsC pesticides/:

log (LC50 P:p:/ D 1:70 log (LD50 Rat male)� 0:326; (61)

n D 9; r D 0:98 (chlorinated pesticides):

log (LC50 P:p:/ D 1:29 log (LD50 Rat female)� 0:490; (62)

n D 8; r D 0:96 (chlorinated pesticides):

Significant relationships between species were obtained for the priority pollu-
tants, priority pollutants plus pesticides, and chlorinated pesticides. Conversely, the
authors did not find an acceptable correlation when only the organophosphate and
carbamate pesticide toxicities were compared between rat and fish. In the same
way, no significant relationships were obtained between the rat and fishes over all
classes of pesticides (equations missing). From the scatter in plots for the priority
pollutants, Janardan et al. [17] deducted that fish were relatively more sensitive
.LC50=LD50 < 1/ than rats for substances with an LD50 < 1 mmol=kg (rat) and
less sensitive .LC50=LD50 > 1/ for substances with an LD50 > 1 mmol=kg. From
the regression models, they showed that the two fish species presented about the
same sensitivity to the priority pollutants but bluegill (L.m.) was less sensitive than
fathead minnow (P.p.) to pesticides.

Kaiser and coworker [20] proposed a rat vs. fathead minnow model (P.p.) with
a larger domain of application (63). The performance of the model increased with
a three parameter equation also including V.f. EC50 and 1-octanol/water partition
coefficient (log P ) data (64).

log (1/LD50 Rat) D 0:36 log (1/LC50 P:p:/ � 1:16; (63)

n D 91; r2 D 0:34:

log (1/LD50 Rat) D f .log 1/EC50 V:f:; log 1/LC50 P:p:; log P/; (64)

n D 91; r2 D 0:41:
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Hodson [21] compared the toxicity of industrial chemicals to Oncorhynchus mykiss
(formerly Salmo gairdneri), as shown by i.p. injections (i.p. LD50), oral dosing (oral
LD50), and aqueous exposure (LC50), with published values for i.p. LD50s and oral
LD50s of mice and rats. Prior correlation analysis, the toxicity data were expressed
on a millimolar basis. Twenty equations were obtained (65)–(84). When mouse and
rat oral LD50s are compared with fish i.p. LD50s, the correlation coefficients are
equal to 0.807 and 0.897, respectively (65) and (66) but when the comparison is
made between i.p. LD50s, (67) and (68), r is improved to 0.936 and 0.933, respec-
tively. Despite small sample sizes, there is a strong relationship between fish oral
LD50s and rat .r D 0:827/ and mouse .r D 0:914/ i.p. LD50s, (69) and (70). Con-
versely, the rat and mouse oral LD50s are not strongly related to fish oral LD50s,
(71) and (72).

log (LD50 Mouse oral) D 0:8046 log (LD50 O:m: i:p:/C 0:4267; (65)

n D 13; r D 0:807; p < 0:05:

log (LD50 Rat oral) D 0:9429 log (LD50 O:m: i:p:/C 0:1495; (66)

n D 25; r D 0:8971; p < 0:05:

log (LD50 Mouse i.p.) D 0:8288 log (LD50 O:m: i:p:/ � 0:1831; (67)

n D 12; r D 0:936; p < 0:05:

log (LD50 Rat i.p.) D 1:0051 log (LD50 O:m: i:p:/ � 0:1693; (68)

n D 16; r D 0:933; p < 0:05:

log (LD50 Rat i.p.) D 1:4080 log (LD50 O:m: oral/ � 0:5262; (69)

n D 6; r D 0:827; p < 0:05:

log (LD50 Mouse i.p.) D 0:8264 log (LD50 O:m: oral/ � 0:2479; (70)

n D 7; r D 0:914; p < 0:05:

log (LD50 Mouse oral) D 0:6831 log (LD50 O:m: oral/C 0:3048; (71)

n D 7; r D 0:657:

log (LD50 Rat oral) D 0:8255 log (LD50 O:m: oral/C 0:1606; (72)

n D 9; r D 0:588:

There is considerably more variation in comparisons of i.p. LD50s to fish LC50s
(73)–(75). The best relationship between i.p. LD50s and LC50s is for rat (74) while
the poorest is for mouse, (73).

log (LD50 Mouse i.p.) D 0:7709 log (LC50 O:m:/C 1:1008; (73)

n D 8; r D 0:48:

log (LD50 Rat i.p.) D 0:5891 log (LC50 O:m:/C 1:2136; (74)

n D 11; r D 0:83; p < 0:05:

log (LD50 O:m: i:p:/ D 0:8883 log (LC50 O:m:/C 1:4608; (75)

n D 13; r D 0:60; p < 0:05:
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log (LD50 Mouse oral) D 0:7576 log (LC50 O:m:/C 1:6616; (76)

n D 10; r D 0:19:

log (LD50 Rat oral) D 0:7086 log (LC50 O:m:/C 1:6553; (77)

n D 15; r D 0:62; p < 0:05:

log (LD50 O:m: oral/ D 0:797 log (LC50 O:m:/C 1:5216; (78)

n D 9; r D 0:58:

An attempt was also made by Hodson [21] to relate fish and mammal oral and i.p.
LD50s to fish LC50s amended by the octanol/water partition coefficient .P /. The
assumption was that P could correct differences in toxicity due to the effect of
partitioning of chemicals on uptake and toxicity during aqueous exposure. Six new
regression equations were produced (79)–(84).

log (LD50 O:m: i:p:/ D 2:464 log (LC50 O:m: � P / � 0:499; (79)

n D 11; r D 0:32:

log (LD50 Rat i.p.) D �2:128 log (LC50 O:m: � P /C 0:619; (80)

n D 9; r D 0:01:

log (LD50 Mouse i.p.) D 1:601 log (LC50 O:m: � P / � 0:172; (81)

n D 7; r D 0:21:

log (LD50 O:m: oral/ D 1:8661 log (LC50 O:m: � P /C 0:129; (82)

n D 7; r D 0:45:

log (LD50 Rat oral) D 1:9138 log (LC50 O:m: � P /C 0:089; (83)

n D 13; r D 0:53:

log (LD50 Mouse oral) D 1:7397 log (LC50 O:m: � P /C 0:193; (84)

n D 8; r D 0:62:

Inspection of (73)–(84) shows that an improvement was only noted for the equations
dealing with mouse oral LD50s (i.e., (76) vs. (84)).

Delistraty et al. [22] examined acute toxicity relationships over several expo-
sure routes in rainbow trout (O.m.) and rats. An initial database of 217 chemicals
(126 pesticides and 91 nonpesticides) was constituted. 1-octanol/water partition
coefficient (log P ) values for the organic molecules were also retrieved from litera-
ture. LC50 and LD50 values were expressed in mmol/l and mmol/kg, respectively.
The authors showed that the stratification of the data into pesticides and nonpesti-
cides did not particularly improve predictions of trout LC50s from rat oral LD50s
(85)–(87). Addition of log P in the model (88) increased the r and r2 values but
it is noteworthy that the number of chemicals used to derive the model was lower
(i.e., 213 vs. 145).

log (LC50 O:m:/ D 0:722 log (LD50 Rat oral)� 2:16; (85)

n D 213; r D 0:512; r2 D 0:262:
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log (LC50 O:m:/ D 0:476 log (LD50 Rat oral)� 2:42; (86)

n D 125; r D 0:380; r2 D 0:144 .pesticides/:

log (LC50 O:m:/ D 0:925 log (LD50 Rat oral)� 1:98; (87)

n D 88; r D 0:540; r2 D 0:292 .nonpesticides/:

log (LC50 O:m:/D0:644 log (LD50 Rat oral)� 0:463 log P�0:953; (88)

n D 145; r D 0:729; r2 D 0:531:

Trout LC50 values were also predicted from rat LD50 data with regressions matched
on exposure route. Statistically significant models were obtained for the three routes
of exposure (89)–(91). Addition of log P in the models (92)–(94) did not improve
the models, except for the i.p. route, (94).

log (LC50 O:m: oral/ D 0:918 log (LD50 Rat oral)C 0:153; (89)

n D 27; r D 0:907; r2 D 0:823:

log (LC50 O:m: dermal/ D 0:794 log (LD50 Rat dermal)C 0:384; (90)

n D 11; r D 0:914; r2 D 0:835:

log (LC50 O:m: i:p:/ D 0:852 log (LD50 Rat i.p.)C 0:355; (91)

n D 13; r D 0:761; r2 D 0:579:

log (LC50 O:m: oral/ D 0:970 log (LD50 Rat oral) (92)

C 0:050 log P C 0:035;

n D 25; r D 0:904; r2 D 0:817:

log (LC50 O:m: dermal/ D 0:890 log (LD50 Rat dermal) (93)

C 0:079 log P C 0:094;

n D 8; r D 0:755; r2 D 0:570:

log (LC50 O:m: i:p:/ D 0:463 log (LD50 Rat i.p.) (94)

� 0:324 log P C 1:08;

n D 13; r D 0:912; r2 D 0:832:

Models for predicting trout LC50s from rat inhalation (inh) LD50s were also de-
signed by Delistraty [23] (95)–(98). Toxicity data were expressed in mmol/l, ppmw
(parts per million by weight), or ppmv (parts per million by volume). Addition of
molecular descriptors only slightly increased the performances of the best one pa-
rameter equation (i.e., (96) vs. (99)).

log (LC50 O:m: mmol=l/D0:953 log (LD50 Rat inh mmol/l)C0:235; (95)

n D 60; r D 0:678; r2 D 0:459:

log(LC50O:m:mmol=l/D0:955 log(LCT50 Rat inh mmol-h/l)�0:126; (96)

n D 46; r D 0:745; r2 D 0:556:

log (LC50 O:m: ppmw/ D 0:899 log (LD50 Rat inh ppmv)� 1:46; (97)

n D 15; r D 0:592; r2 D 0:350:
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log (LC50 O:m: ppmw/ D 1:16 log (LCT50 Rat inh ppmv-h)� 3:22; (98)

n D 11; r D 0:747; r2 D 0:558:

log (LC50 O:m: mmol=l/ D 0:725 log (LCT50 Rat inh mmol-h/l)

�3:19 log MW � 0:266 log VPC 0:263 log S .mmol=l/C 5:72; (99)

n D 38; r D 0:873; r2 D 0:763:

2.3 Main Characteristics of the Published Models

This literature survey clearly reveals a limited number of toxicityDf (ecotoxicity)
models. The available correlations between toxicological and ecotoxicological
endpoints only deal with a limited number of species as well as reduced sets of
chemicals. The interspecies correlations are established considering rodents (rat
and mouse) and aquatic species (mainly fish and bacteria but also crustaceans and
rotifers).

Generally, models are designed for predicting mammalian toxicity from aquatic
toxicity data but the converse is also found. The 99 correlation equations col-
lected from literature were only derived from acute toxicity data on pure chemicals
(LD50s, EC50s, LC50s). No interspecies relationships were investigated using
chronic or sublethal effects, probably due to the lack of such data. The toxicity
data are always retrieved from literature, while the ecotoxicity data can be obtained
from experiments [12–14].

Several exposure routes were considered for mammalian species (i.e., oral,
dermal, intraperitoneal, intravenous, inhalation) leading to the development of spe-
cific predictive models presenting different qualities. Thus, for example, Kaiser
et al. [11] found that the interspecies relationships between Vibrio fischeri, rat, and
mouse increased significantly from oral, to intraperitoneal, and to intravenous data.
Regarding the rats and mice, generally no distinction is made between males and
females in the modeling processes.

Most of the models for predicting mammalian toxicity from aquatic toxicity data
were designed from simple linear regression analysis. However, it is noteworthy
that some authors successfully included molecular descriptors in their equation, es-
pecially the 1-octanol/water partition coefficient (log P ). Interestingly, Kaiser and
Esterby [20] established a predictive model for rat toxicity using the results of tests
performed on Vibrio fischeri, Pimephales promelas, and from log P .

Despite some significant correlations, it appears that the toxicityDf (ecotoxicity)
models found in the literature cannot be used in practice. Indeed, most of them
were established from a limited number of chemicals. Thus, more than 70% of the
models found in the literature were derived from less than 50 chemicals. Moreover,
it is important to note that chemicals are very often eliminated before or during the
regression processes without clear justifications.
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This prompted us to develop new models focused on the prediction of rat
and mouse LD50s from invertebrate EC50s or LC50s. The selected species were
Daphnia magna and Vibrio fischeri because these organisms are widely used for as-
sessing the hazard of chemicals and hence, collections of EC50s for these organisms
are available in the literature.

3 Design of New Toxicity D f (Ecotoxicity) Models

3.1 Data Sources, Notations, and Treatments

LD50s for rats and mice were retrieved from CD-ROMs (e.g., Merck Index, ECDIN,
IUCLID) and data banks such as MSDS (http://physchem.ox.ac.uk/MSDS/) or Ex-
tonet (http://extoxnet.orst.edu/pips/ghindex.html) but also directly from scientific
articles, books, and reports. Scripts in Python were written to navigate into this
wealth of toxicological information and to structure and gather the most interesting
one. CAS RNs were also retrieved for all the collected chemicals to eliminate the
problem of compounds indexed twice or more with different names. This allowed
us to eliminate a little bit less than 2,000 LD50s. At the end of the refining process,
the toxicological database included about 23,000 rat and mouse oral, i.p., and i.v.
LD50s for more than 7,000 organic and inorganic chemicals.

The same strategy was adopted for collecting EC50 values for Daphnia magna.
Regarding Vibrio fischeri, a different approach was used. All the data included in the
book of Kaiser and Devillers [24] were first gathered. Thus 1,800 EC50s for 1,290
organic and inorganic molecules and their corresponding CAS RN were collected
and structured via Python scripts. This database was then completed from online
bibliographic searching in ScienceDirect, Medline, and Google. This allowed us to
retrieve 150 additional EC50s corresponding to 110 new molecules. After retrieval
of the missing CAS RNs and the removal of duplicates, 82 molecules with their
EC50s on Vibrio fischeri were added to the initial MicrotoxTM database.

It is important to note that water solubility data were also collected when avail-
able to validate the ecotoxicological data.

For both types of data, the results were not averaged when different values were
gathered for the same endpoint and chemical. In that case, the most reliable data
were selected. Reliability was mainly based on the existence of test protocols but
also on peer review exercises made by experts.

Furthermore, for modeling purposes, it was decided to convert all the (eco)toxicity
data into log (1/C, C in mmol/kg or mmol/l).

Because sometimes the literature survey showed that the 1-octanol/water parti-
tion coefficient (log P ) yielded interesting results when introduced as additional
variable in the toxicity D f (ecotoxicity) models, it was also decided to consider
this parameter in the modeling process. All the log P values were calculated from
the KowWin v. 1.67 program [25].
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3.2 Linear Regressions of Rat and Mouse LD50s vs. MicrotoxTM

5-, 15-, and 30-min EC50s

Because Kaiser et al. [11] obtained rather significant correlations between Micro-
toxTM EC50 data and oral, i.p., and i.v. rat and mouse LD50 data, in a first step, an
attempt was made to at least confirm their results. However, while Kaiser et al. [11]
did not differentiate the time of exposure for Vibrio fischeri in their modeling strat-
egy, it was decided to derive different MicrotoxTM models for the data recorded after
5, 15, and/or 30 min of exposure and the oral, i.p., and i.v. rat and mouse LD50 data.
The Rv. 2.3.1 program written in R and freely available from the CRAN library,
was used for deriving the different toxicityDf (ecotoxicity) models.

Interspecies regressions between mouse and rat LD50 values were first derived
for the three routes of exposure yielding (100)–(105).

log (1/LD50 Rat oral) D 1:01 log (1/LD50 Mouse oral); (100)

n D 633; r2 D 0:89; s D 0:29; F D 5;288:

log (1/LD50 Mouse oral) D 0:88 log (1/LD50 Rat oral)� 0:07; (101)

n D 633; r2 D 0:89; s D 0:27; F D 5;288:

log (1/LD50 Rat i.p.) D 0:95 log (1/LD50 Mouse i.p.)� 0:01; (102)

n D 306; r2 D 0:91; s D 0:28; F D 3;183:

log (1/LD50 Mouse i.p.) D 0:96 log (1/LD50 Rat i.p.)� 0:01; (103)

n D 306; r2 D 0:91; s D 0:28; F D 3;183:

log (1/LD50 Rat i.v.) D 0:99 log (1/LD50 Mouse i.v.)C 0:04; (104)

n D 145; r2 D 0:95; s D 0:27; F D 2;593:

log (1/LD50 Mouse i.v.) D 0:96 log (1/LD50 Rat i.v.)� 0:02; (105)

n D 145; r2 D 0:95; s D 0:26; F D 2;593:

In Kaiser et al. [11], mouse toxicity data were only used as independent variables.
Nevertheless, comparison of (9)–(11) with (100), (102), and (104) clearly shows
that the latter group of models outperforms the former having better statistics and
presenting a much larger domain of application.

Rat and mouse oral LD50s were correlated to V.f. EC50 values recorded after 5,
15, and 30 min of exposure. The corresponding equations are given below.

log (1/LD50 Rat oral) D 0:24 log (1/EC50 V:f: � 5 min/ � 0:97; (106)

n D 339; r2 D 0:15; s D 0:75; F D 60:1:

log (1/LD50 Rat oral) D 0:22 log (1/EC50 V:f: � 15 min/� 1:01; (107)

n D 297; r2 D 0:14; s D 0:71; F D 48:8:

log (1/LD50 Rat oral) D 0:24 log (1/EC50 V:f: � 30 min/� 1:01; (108)

n D 272; r2 D 0:17; s D 0:67; F D 53:5:
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log (1/LD50 Mouse oral) D 0:20 log (1/EC50 V:f: � 5 min/� 0:93; (109)

n D 251; r2 D 0:12; s D 0:74; F D 34:0:

log (1/LD50 Mouse oral) D 0:21 log (1/EC50 V:f: � 15 min/ � 1:03; (110)

n D 222; r2 D 0:15; s D 0:67; F D 39:7

log (1/LD50 Mouse oral)D0:19 log (1/EC50 V:f:�30 min/�0:93; (111)

n D 209; r2 D 0:11; s D 0:69; F D 26:3:

Equations (106)–(111) show rather poor statistical parameter values but it is impor-
tant to note that no outlier removal was performed to follow the modeling strategy
adopted by Kaiser et al. [11]. Otherwise, the intercepts and slopes of these equations
do not differ significantly of those obtained by Kaiser et al. [11] for the oral route
entry models for the rat and mouse, (3) and (4).

In the same way, rat and mouse i.p. LD50s were correlated to V.f. EC50 values
recorded after 5, 15, and 30 min of exposure yielding (112)–(117).

log (1/LD50 Rat i.p.) D 0:31 log (1/EC50 V:f: � 5 min/� 0:65; (112)

n D 142; r2 D 0:26; s D 0:77; F D 48:7:

log (1/LD50 Rat i.p.) D 0:31 log (1/EC50 V:f: � 15 min/� 0:63; (113)

n D 122; r2 D 0:26; s D 0:77; F D 41:4:

log (1/LD50 Rat i.p.) D 0:35 log (1/EC50 V:f: � 30 min/� 0:70; (114)

n D 126; r2 D 0:31; s D 0:74; F D 55:7:

log (1/LD50 Mouse i.p.) D 0:29 log (1/EC50 V:f: � 5 min/ � 0:54; (115)

n D 216; r2 D 0:24; s D 0:71; F D 66:1:

log (1/LD50 Mouse i.p.) D 0:30 log (1/EC50 V:f: � 15 min/ � 0:60; (116)

n D 187; r2 D 0:25; s D 0:69; F D 63:2:

log (1/LD50 Mouse i.p.) D 0:30 log (1/EC50 V:f: � 30 min/ � 0:59; (117)

n D 169; r2 D 0:26; s D 0:66; F D 57:3:

Equations (112)–(117) present better statistical parameter values than (106)–(111)
but they were derived from fewer learning sets. The same tendency was observed
when rat and mouse i.v. LD50s were correlated to V.f. EC50 values recorded after 5,
15, and 30 minutes (118)–(123).

log (1/LD50 Rat i.v.) D 0:43 log (1/EC50 V:f: � 5 min/ � 0:24; (118)

n D 44; r2 D 0:55; s D 0:74; F D 51:0:

log (1/LD50 Rat i.v.) D 0:41 log (1/EC50 V:f: � 15 min/� 0:44; (119)

n D 30; r2 D 0:65; s D 0:63; F D 51:7:

log (1/LD50 Rat i.v.) D 0:44 log (1/EC50 V:f: � 30 min/� 0:38; (120)

n D 29; r2 D 0:70; s D 0:62; F D 62:4:
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log (1/LD50 Mouse i.v.) D 0:41 log (1/EC50 V:f: � 5 min/ � 0:36; (121)

n D 79; r2 D 0:50; s D 0:64; F D 78:4:

log (1/LD50 Mouse i.v.) D 0:41 log (1/EC50 V:f: � 15 min/� 0:46; (122)

n D 70; r2 D 0:56; s D 0:60; F D 86:8:

log (1/LD50 Mouse i.v.) D 0:39 log (1/EC50 V:f: � 30 min/ � 0:39; (123)

n D 57; r2 D 0:66; s D 0:51; F D 106:

The slopes and intercepts of (106)–(123) appear rather similar for the same route of
exposure. This similarity increases when, within each route of exposure, the equa-
tions are matched according to the time of exposure (i.e., 5, 15, 30 min). There is
a significant increase in the regression slopes in the order oral < intraperitoneal <

intravenous exposure. As stressed by Kaiser et al. [11], the change in the slopes re-
sults from the corresponding decrease in metabolic degradation with a decreasing
requirement for cell membrane diffusion and resulting higher efficacy of the intra-
venous route relative to the oral exposure. Correlations with rats always outperform
those with mice except when the rat and mouse oral LD50s are correlated to the
MicrotoxTM 15-min EC50s (i.e., (107) vs. (110)). This is surprising due to the high
level of correlation that exists between the two mammalian species (100)–(105).

While Kaiser et al. [11] did not distinguish the time of exposure with Vibrio
fischeri, in the present study, different equations were produced with the MicrotoxTM

data recorded after 5, 15, and 30 min of exposure. This difference of strategy with
Kaiser et al. [11] cannot explain alone the difference of size of the learning sets
between the two studies, especially if we consider that our databases were larger
than those of Kaiser et al. [11]. This claim can be easily verified when we compare
the size of the learning sets used in both studies for deriving the correlations between
rat and mouse LD50 values. For the oral, i.p., and i.v. routes of exposure the learning
sets used by Kaiser et al. [11] included 330, 162, and 41 chemicals, respectively
(9)–(11). In the present study, the same sets included 633 (100), 306 (102), and 145
molecules (104), respectively.

This difference in the number of chemicals used in the linear regressions of rat
and mouse LD50s vs. MicrotoxTM EC50s should be also explained by the fact
that Kaiser et al. [11] did not take into account the hydrosolubility values of the
chemicals in the selection of their ecotoxicity data. Thus, for example, inspection of
Table 4 (page 1,604) of their paper shows that they selected a value of 1.41 (in log
1/C mmol/l) for the EC50 of p; p’-DDT against Vibrio fischeri. This corresponds
to an EC50 value equal to 13.39 mg/l while the hydrosolubility of this chemical at
15 ıC is only 0.017 mg/l [26].

In addition, while in the present study, the EC50 values only determined with su-
perior or inferior limits were discarded from the database, this rule was not adopted
by Kaiser et al. [11]. Thus, for example, an intensive bibliographical search on the
MicrotoxTM toxicity of mitomycin C only provided one reference showing that the
EC50 values of this chemical against Vibrio fischeri after 5, 10, 15, and 20 min of ex-
posure were < 16; <16:1; <15:2, and <13:7 mg=l, respectively [27]. Surprisingly,
Kaiser et al. [11] selected a value of 1.39 (in log 1/C mmol/l), which is equivalent
to 13.7 mg/l (see Table 4, page 1,604).
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Consequently, even if the toxicity D f (ecotoxicity) models of the present study
were derived from fewer training sets than those of Kaiser et al. [11], they present
better foundations.

Inspection of our MicrotoxTM database showed that while some chemicals were
characterized by 5-, 15-, and 30-min EC50s, for others, the EC50 values were only
available for one or two times of exposure. This prompted us to first derive equa-
tions allowing the prediction of 30-min EC50s from 5 and 15-min EC50s and then to
use the observed and calculated MicrotoxTM 30-min EC50s for computing new
toxicityDf (ecotoxicity) models from larger training sets. This work is presented in
the next section. It is noteworthy that all the calculations were made with Statistica
ver. 6 (StatSoft, Paris).

3.3 Linear Regressions of Rat and Mouse LD50s vs. MicrotoxTM

30-min� EC50s

The two models allowing the prediction of MicrotoxTM 30-min EC50 values from
5-min EC50s or 15-min ECs are given below, (124) and (125). They are highly
statistically significant. Inspection of these models let to suppose that no difference
exist between the EC50 data recorded after 5, 15, or 30 min of exposure. Although
it is true for chemicals, it is totally wrong for others [24, 28]. Undoubtedly, the best
strategy would consist in the design of specific models for encoding these different
particularities but for the sake of simplicity we decided not to do so.

log 1/EC50� 30 min D log 1/EC50� 5 minC 0:03; (124)

n D 951; r D 0:98; s D 0:22; F D 22; 785; p < 10�5:

log 1/EC50� 30 min D log 1/EC50� 15 min� 0:01; (125)

n D 903; r D 0:996; s D 0:1; F D 108; 400; p < 10�5:

In the models, the V.f. variable being constituted of observed and approximated
MicrotoxTM 30-min EC50 values, it is spotted by an asterisk to avoid confusions
with the previous models.

log (1/LD50 Rat oral) D 0:25 log (1/EC50 V:f: � 30 min�/ � 1:00; (126)

n D 407; r D 0:46; s D 0:66; F D 106; p < 10�5:

log (1/LD50 Mouse oral)D0:23 log (1/EC50 V:f:�30 min�/� 0:98; (127)

n D 297; r D 0:43; s D 0:69; F D 67:3; p < 10�5:

log (1/LD50 Rat i.p.) D 0:33 log (1/EC50 V:f: � 30 min�/ � 0:77; (128)

n D 159; r D 0:65; s D 0:61; F D 117; p < 10�5:

log (1/LD50 Mouse i.p.) D 0:32 log (1/EC50 V:f: � 30 min�/� 0:60; (129)

n D 239; r D 0:60; s D 0:61; F D 132; p < 10�5:
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log (1/LD50 Rat i.v.) D 0:42 .log 1/EC50 V:f: � 30 min�/� 0:29; (130)

n D 49; r D 0:79; s D 0:71; F D 75:2; p < 10�5:

log (1/LD50 Mouse i.v.)D0:42 log (1/EC50 V:f: � 30 min�/� 0:44; (131)

n D 92; r D 0:84; s D 0:50; F D 207; p < 10�5:

Equations (126)–(131) significantly outperform (106)–(123). This is mainly due to
the removal of some outliers. In the first step of this study, the goal was mainly to
confirm or infirm the results obtained by Kaiser et al. [11], and hence it was nec-
essary to follow at best their methodology, which first consisted in considering the
whole datasets without outlier removal. In a second step, also in agreement with the
strategy used by Kaiser et al. [11], an attempt was made to optimize a little bit
the equations. Most of the eliminated outliers were inorganic chemicals for which
it was difficult to know whether the MicrotoxTM EC50 values were reported to the
element, the salt, etc. Inspection of (126)–(131) shows that the slopes of the models
are similar for the same route of exposition in rats and mice.

3.4 Linear Regressions of Rat and Mouse LD50s vs. Daphnia
magna 48-h� EC50s

The database on Daphnia magna including EC50 values recorded after 24 and 48 h
of exposure, a regression equation was first computed to convert the 24-h EC50s
into 48-h EC50s, (132).

log 1/EC50� 48 h D 0:99 log (1/EC50� 24 h/C 0:29; (132)

n D 258; r D 0:97; s D 0:40; F D 4;769:

Equation (132) presents a high predictive power as well as a large domain of appli-
cation, which is clearly shown in Fig. 1.

The models allowing the prediction of LD50s in rats and mice after oral, i.p.,
and i.v. absorption are presented below. Because the models include observed and
calculated Daphnia magna 48-h EC50 values from (132), an asterisk is used to
characterize the independent variable.

log (1/LD50 Rat oral) D 0:30 log (1/EC50 D:m: � 48 h�/� 1:13; (133)

n D 588; r D 0:66; s D 0:63; F D 448; p < 10�5:

log (1/LD50 Mouse oral)D0:28 log (1/EC50 D:m: � 48 h�/�1:06; (134)

n D 374; r D 0:64; s D 0:64; F D 254; p < 10�5:

log (1/LD50 Rat i.p.) D 0:35 log (1/EC50 D:m: � 48 h�/� 0:72; (135)

n D 191; r D 0:75; s D 0:62; F D 237; p < 10�5:

log (1/LD50 Mouse i.p.) D 0:33 log (1/EC50 D:m: � 48 h�/� 0:62; (136)

n D 261; r D 0:69; s D 0:62; F D 241; p < 10�5:
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Fig. 1 Observed vs. calculated Daphnia 48-h EC50 values (� log (mmol/l)) from model (132)

log (1/LD50 Rat i.v.) D 0:43 log (1/EC50 D:m: � 48 h�/ � 0:28; (137)

n D 61; r D 0:87; s D 0:62; F D 181; p < 10�5:

log (1/LD50 Mouse i.v.) D 0:38 log (1/EC50 D.m: � 48 h�/ � 0:39; (138)

n D 108; r D 0:79; s D 0:61; F D 175; p < 10�5:

The observed vs. calculated LD50s from (133) to (138) are displayed in Figs. 2–7.
Inspection of (126)–(138) shows that it is preferable to predict rat and mouse

oral and i.p. LD50s and rat i.v. LD50s from EC50s obtained from Daphnia magna
instead of Vibrio fischeri, while it is the converse regarding the intravenous route of
exposure in mouse.

From these results, it was interesting to test whether the use of Vibrio fischeri
and Daphnia magna as independent variables in the rat and mouse regression equa-
tions improved their predictive power. The obtained results are presented in the next
section.

3.5 Linear Regressions of Rat and Mouse LD50s vs. MicrotoxTM

30-min� EC50s C Daphnia magna 48-h� EC50s

The confrontation of the oral LD50s on rat and mouse with the EC50 values for
Vibrio fischeri and Daphnia magna did not yield statistically significant two pa-
rameter equations. Conversely, statistically valid models were obtained with the i.p.
LD50s, (139) and (140).
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Fig. 2 Observed vs. calculated rat oral LD50 values (� log (mmol/kg)) from model (133)
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Fig. 3 Observed vs. calculated mouse oral LD50 values (� log (mmol/kg)) from model (134)
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Fig. 4 Observed vs. calculated rat intraperitoneal LD50 values (� log (mmol/kg)) from model
(135)
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Fig. 5 Observed vs. calculated mouse intraperitoneal LD50 values (� log (mmol/kg)) from model
(136)
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Fig. 6 Observed vs. calculated rat intravenous LD50 values (� log (mmol/kg)) from model (137)
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Fig. 7 Observed vs. calculated mouse intravenous LD50 values (� log (mmol/kg)) from model
(138)
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log (1/LD50 Rat i.p.) D 0:13 log (1/EC50 D:m: � 48 h�/
C 0:25 log (1/EC50 V:f: � 30 min�/� 0:87; (139)

n D 99; r D 0:75; s D 0:55; F D 61:0; p < 10�5:

log (1/LD50 Mouse i.p.) D 0:23 log (1/EC50 D:m: � 48 h�/
C 0:14 log (1/EC50 V:f: � 30 min�/� 0:75; (140)

n D 128; r D 0:73; s D 0:55; F D 71:4; p < 10�5:

Equation (139) presents a better correlation coefficient and standard error than
(128), which only includes Vibrio fischeri as independent variable but the former
model was obtained from 99 chemicals while the latter was derived from 159 com-
pounds. In the same way, while (139) shows slightly better statistics than (135) with
only Daphnia magna as independent variable, the size of its training set is about
twice less important (i.e., 99 vs. 191).

Equation (140) outperforms the corresponding univariate regression equa-
tions (i.e. (129) and (136)) but again there are important differences in the size of
the training sets (i.e. 128 vs. 239 and 261).

Although the confrontation of the rat intravenous LD50s with the EC50 values
for Vibrio fischeri and Daphnia magna did not yield a statistically significant two
parameter equation, an interesting model was obtained with the mouse data (141).

log (1/LD50 Mouse i.v.) D 0:14 log (1/EC50 D:m: � 48 h�/
C 0:33 log (1/EC50 V:f: � 30 min�/ � 0:58; (141)

n D 51; r D 0:89; s D 0:47; F D 92:3; p < 10�5:

Again, (141) outperforms (131) and (138) but having a lower training set, its domain
of application is also less important.

It is interesting to note that in (139)–(141), Daphnia magna and Vibrio fischeri
contribute positively for predicting rat and mouse LD50s.

Because the 1-octanol/water partition coefficient (log P ) seemed yield interesting
results when introduced as additional variable in the toxicity D f (ecotoxicity)
models [20, 22], it was also decided to consider this important physicochemical
parameter as additional independent variable in the models. The results obtained
with this descriptor of the hydrophobicity of chemicals are presented in the next
section.

3.6 Introduction of log P in the Regressions of Rat and Mouse
LD50s vs. Vibrio and Daphnia EC50s

A stepwise regression analysis was first used to correlate rat and mouse LD50 data
with MicrotoxTM 30-min EC50 or daphnid 48-h EC50 data, and log P values cal-
culated from the KowWin v. 1.67 program [25].
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Regarding the oral and intravenous LD50 data, only a two parameter equation
was obtained for the oral toxicity on rat (142) the others being not statistically sig-
nificant.

log (1/LD50 Rat oral) D 0:32 log (1/EC50 D:m: � 48 h�/
� 0:03 log P � 1:16; (142)

n D 478; r D 0:71; s D 0:54; F D 247; p < 10�5:

Even if the contribution of the 1-octanol/water partition coefficient (log P ) in (142)
is low, the introduction of this hydrophobic parameter in the model increases its
quality. This is clearly shown when the statistical parameters of (133) and (142)
are compared as well as the scatterplots of the LD50s obtained from both models
(Figs. 2 and 8).

Four equations (143)–(146) were successfully computed for predicting the i.p.
toxicity of chemicals to rat and mouse from Vibrio fischeri or Daphnia magna EC50
data and log P .

log (1/LD50 Rat i.p.) D 0:36 log (1/EC50 V:f: � 30 min�/

� 0:1 log P � 0:67; (143)

n D 149; r D 0:64; s D 0:58; F D 51:0; p < 10�5:

log (1/LD50 Rat i.p.) D 0:40 log (1/EC50 D:m: � 48 h�/
� 0:05 log P � 0:75; (144)

n D 150; r D 0:81; s D 0:55; F D 138; p < 10�5:
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Fig. 8 Observed vs. calculated rat oral LD50 values (� log (mmol/kg)) from model (142)
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log (1/LD50 Mouse i.p.) D 0:34 log (1/EC50 V:f: � 30 min�/

� 0:07 log P � 0:55; (145)

n D 227; r D 0:59; s D 0:58; F D 59:5; p < 10�5:

log (1/LD50 Mouse i.p.) D 0:37 log (1/EC50 D:m: � 48 h�/
� 0:07 log P � 0:66; (146)

n D 202; r D 0:72; s D 0:59; F D 108; p < 10�5:

The influence of log P in (143)–(146) is very limited. Furthermore, while the intro-
duction of log P in the models with Daphnia magna slightly increases their quality,
this is the converse regarding Vibrio fischeri.

Last, a stepwise regression analysis used to correlate LD50 data with MicrotoxTM

30-min EC50 data, daphnid 48-h EC50 data and log P values only yielded satisfying
results for the rat and mouse intraperitoneous toxicity data, the former model (147)
outperforming the latter, (148).

log (1/LD50 Rat i.p.) D 0:21 log (1/EC50 D:m: � 48 h�/
C 0:24 log (1/EC50 V:f: � 30 min�/

� 0:15 log P � 0:72; (147)

n D 91; r D 0:80; s D 0:46; F D 49:9; p < 10�5:

log (1/LD50 Mouse i.p.) D 0:25 log (1/EC50 D:m: � 48 h�/
C 0:16 log (1/EC50 V:f: � 30 min�/

� 0:13 log P � 0:63; (148)

n D 120; r D 0:74; s D 0:48; F D 47:8; p < 10�5:

Equations (147) and (148) outperform (139) and (140) without log P . Inspection of
these equations shows the Daphnia magna and Vibrio fischeri contribute positively
to the toxicity, the values of their coefficients in the regression equations being only
slightly different. Conversely, in both equations, log P contributes negatively to the
toxicity. The observed and calculated i.p. LD50s with these two models are dis-
played in Figs. 9 and 10.

3.7 Linear vs. Nonlinear Interspecies Toxicity Modeling

Because numerous QSAR studies have shown that the artificial neural networks
(ANNs) outperformed the classical linear methods to find complex relationships
between the structure of the molecules and their biological activity ([28, 29], see
also Chap. 1), an attempt was made to test the usefulness of these nonlinear tools
for designing toxicityD f (ecotoxicity) models. The ANN the most suited for this
kind of study was a three layer perceptron (TLP) [30]. A TLP requiring at least three
neurons in the input layer and two neurons in the hidden layer to be used reasonably,
only (147) and (148) were concerned by the comparison exercise.
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Fig. 9 Observed vs. calculated rat intraperitoneal LD50 values (� log (mmol/kg)) from
model (147)
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Fig. 10 Observed vs. calculated mouse intraperitoneal LD50 values (� log (mmol/kg)) from
model (148)

Thus, a TLP was used for predicting i.p. rat and mouse LD50 data from
MicrotoxTM 30-min EC50, daphnid 48-h EC50, and log P data. Ten percent of the
data used for deriving (147) and (148) were randomly selected for constituting the
external testing sets, the remaining data being used as learning sets to train a 3/2/1
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TLP. A classical min/max transformation was used to scale the data. All the calcu-
lations were performed with the Statistica ANN software (Statsoft, Paris). Different
learning algorithms (back-propagation, conjugate gradient descent, Levenberg-
Marquardt, quick-prop), activation and transfer functions were tested. Despite more
than 7,500 runs for each endpoint by randomly varying the composition of the
training and testing sets as well as the architecture of the ANN, it was impossible
to obtain significantly better results for the testing sets than those obtained with a
regression analysis performed from the same chemical data sets. The results were
the same or at least slightly better than those recorded with the stepwise regression
analysis. Obviously, the results obtained with the learning sets were always better
than those recorded with regression analysis but it is not surprising, the TLPs being
powerful learning devices.

It is noteworthy that no attempts were made to increase the number of neurons in
the hidden layer.

Because the support vector machines (SVMs) [31] have shown their interest
for classification problems and more recently to correlate data of various origins,
an attempt was also made to test their usefulness on the different learning and
testing sets previously used with the ANNs. The e1071 program, written in R and
freely available from the CRAN library, was employed for deriving the different
toxicityD f (ecotoxicity) models. Unfortunately, due to different constraints, only
a limited number of runs was performed. They provided better results on the exter-
nal testing sets than the TLP but additional investigations are absolutely necessary
to correctly estimate the performances and interest of SVM for predicting LD50s
from ecotoxicity data.

Last, different nonlinear regression analyses were tested by using Statistica v. 6
as well as CurveExpert v. 1.3. The most interesting regression analysis presented the
following form: y D a.1�e�bx/. However, it was impossible to obtain significantly
better results for the testing sets than those obtained with a regression analysis per-
formed under the same conditions. Consequently, it was not justified to select these
nonlinear equations as final models.

4 Conclusion

Surprisingly, there is a limited number of models available in the literature for
predicting the acute toxicity of chemicals to rats and mice from ecotoxicity test
data. Furthermore, when available, most of the models were derived from limited
datasets. Thus about 70% of the models found in the literature were obtained from
less than 50 chemicals. Moreover, it is important to note that chemicals are very
often eliminated before or during the regression processes without clear justifica-
tions. Consequently, despite some significant correlations, these models cannot be
used in practice. This prompted us to develop new models focused on the prediction
of rat and mouse LD50s from invertebrate EC50s or LC50s. The selected species
were Daphnia magna and Vibrio fischeri because these organisms are widely used
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for assessing the hazard of chemicals and hence, collections of EC50s for these
organisms are available in the literature.

Consequently, in a first step, a strong bibliographical investigation was performed
to collect oral, i.p., and i.v. rat and mouse LD50 data. In the meantime, EC50 data for
Vibrio fischeri (MicrotoxTM test) and Daphnia magna were also retrieved from liter-
ature. Python scripts were used to structure and format the toxicity and ecotoxicity
data to facilitate their statistical manipulation.

A collection of oral, i.p., and i.v. rat and mouse toxicity models was derived
using Vibrio fischeri and Daphnia magna as independent variables alone or together
through a stepwise regression analysis. Most of the models on Daphnia magna
are totally new. They outperform those obtained with Vibrio fischeri. The useful-
ness of the 1-octanol/water partition coefficient (log P ) as additional independent
variable was also tested. When included in the models, its contribution is always
negative and generally marginal, except in the case of the three parametric equa-
tions including Daphnia magna and Vibrio fischeri for the prediction of rat and
mouse intraperitoneal LD50s.

The interest of nonlinear statistical tools for deriving toxicityD f (ecotoxicity)
models was also experienced. The results obtained with a three-layer perceptron
and different nonlinear regressions were disappointing. The SVMs seemed to yield
more interesting results but more investigations should be necessary to see whether
they are more suited than classical regression analysis for deriving toxicity D
f (ecotoxicity) models.
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Use of Multicriteria Analysis for Selecting
Ecotoxicity Tests

James Devillers, Pascal Pandard, Anne-Marie Charissou, and Antonio Bispo

Abstract It is now well admitted that a battery of ecotoxicity tests should be
designed by accounting for the requirements of a specific scenario such as classifi-
cation of wastes or remediation efficiency of contaminated soils. The development
of a single battery of tests for all applications is thereafter recognized not to be rel-
evant. The selection of tests for constituting a battery may be established according
to expert judgments, decision criteria such as cost, ecological relevance, sensitivity
of selected organisms, standardization of the methods, implementation of the test
protocols or after statistical analysis of test results obtained on a large series of
bioassays. In this chapter, a methodological framework, based on the combination
of an original multicriteria method called SIRIS and multivariate analyses, is pre-
sented for selecting ecotoxicity tests for assessing the level of contamination of soils.
The interest of this approach that simultaneously accounts for ecological, technical,
and economical constraints is discussed.

Keywords Multicriteria analysis � SIRIS method � Test battery � a priori selection �
Soil contamination

1 Introduction

The preservation of the structure and functioning of the ecosystems as well as the
protection of human health rely on the hazard assessment of man-made chemicals
that is mainly based on the use of (eco)toxicity tests. The purpose of (eco)toxicity
testing is to generate quantitative or qualitative information on the unwanted effects
of xenobiotics for their regulation as requested by numerous regulatory authorities
worldwide, for estimating acceptable concentrations of pollutants in water and food,
for setting permissible exposure limits for workers, and for protecting the biota [1–3].

In this context, numerous acute and chronic ecotoxicity tests have been developed
over the last 30 years for the environmental hazard assessment of chemicals. Be-
cause a single species or endpoint cannot adequately reflect contaminant effects
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to all biota in the ecosystem under study, it is common to use several test species
generally representing different trophic levels to try to reflect the environmental sit-
uation as realistically as possible (see e.g., [4–10]). However, although the literature
documents the use of ecotoxicity test batteries, there are only a limited number of
studies dealing with the selection of the test battery components. Broadly speak-
ing, two main strategies can be used to reach this goal. The selection can be made
a posteriori from the use of multivariate analyses such as principal components
analysis [11–14], hierarchical cluster analysis [14, 15], correspondence factor anal-
ysis [15], multidimensional scaling [16], and nonlinear mapping [14]. However,
recently we stressed [14] that very often the potentialities of multivariate analyses
were not enough exploited and at best a kind of typology of the different tests was
provided without the proposal of an optimal battery including a minimum number
of tests. Conversely, with the a priori methods, the selection is made independently
of the results, being based on various criteria such as standardization of the method,
ecological relevance of test organisms, and cost [17–19]. Although the pros and cons
of the different scientific and technical criteria have been deeply analyzed [18,19], to
our knowledge, no attempt has been made to propose a statistical method allowing
to organize and aggregate this heterogeneous information to facilitate the selec-
tion of test batteries. This is the main objective of this chapter. Because it is a
complex problem accounting for variables of different nature and weights that can
yield different solutions depending on initial decision criteria, multicriteria analysis
(MCA) appeared particularly suited for the a priori selection of tests to constitute
an optimal battery. Indeed, MCA is particularly applicable to cases where a simple
cost-benefit analysis fails. It is an aid to decision-making that helps stakeholders
to organize the available information, explore with transparency the effects of their
own decisions, and minimize the possibility for postdecision disappointments [20].
Consequently, MCA has found applications in numerous domains such as air qual-
ity control [21, 22], climate change evaluation [23, 24], river and water resource
management [25, 26], flood risk perception and management [27, 28], forest man-
agement [29–32], contaminated site assessment [33–36], waste and sewage sludge
management [37, 38], disease control program evaluation [39, 40], hazard and risk
assessment of chemicals [41–43] and nanomaterials [44], phylogeny analysis [45],
and financial and socio-economic analyses [46–51].

In this chapter, MCA and multivariate analyses were used for selecting ecotoxi-
city tests for assessing the level of contamination of soils on the basis of ecological,
technical, and economical constraints.

2 Materials and Methods

2.1 Test Selection and Description

An extensive bibliographical investigation was made from the following two
syntagms:
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– Syntagm A: Comparison or choice or selection or classification or discrimina! or
(multivariate and analysis) ranking or model,
or
PCA or (Principal component analysis) or PLS or regression or (neural network)
or classification or fuzzy or tree or SIMCA or co-inertia or (factorial and
analysis),
and
battery or bioassay or (toxicity and testing) or biomarker or biotest or ecotoxicity
or acute or chronic or genotox! or teratogen! or (sensitivity and species and
distribution).

– Syntagm B: Battery or bioassay or (toxicity and testing) or biomarker or biotest
or ecotoxicity or acute or chronic or genotox! or teratogen! or (sensitivity and
species and distribution),
and
regulation or (quality and criteria) or (threshold and value) or (limit and value) or
(decision and scheme) or (cut-off and value) or (guide and value),
and
soil or sediment or sludge or waste or (dredged and material) or effluent or
wastewaters or lixiviate or leachate or eluate or percolate or (water and extract)
or compost or amendment or ((polluted or contaminated) and site).

Syntagm A allowed us to retrieve publications dealing with methods for selecting
batteries of bioassays without focusing on specific scenarios. Conversely, this was
the main goal of syntagm B to secure the retrieval of publications dealing with
the use of batteries of bioassays to assess the toxicity of complex environmental
matrices for regulation purposes.

The combined use of the two syntagms yielded the retrieval of a first list of 177
references, which was reduced to 134 after the elimination of 43 false positives.
After the reading of these 134 documents, only 53 were found to fully satisfy our
criteria of quality and the goal of the study [4, 11–13, 16, 52–99]. They allowed us
to extract a first list of assays, which was completed by the new standardized tests
dealing with the quality of soils and still not cited in the literature. A total of 115 tests
was obtained. They were representative of terrestrial, aquatic, and sediment media
and included different endpoints measured on organisms occupying different trophic
levels in the environment as well as populations. The 115 tests are listed in Table 1
with information on their standardization status (Yes/No), the environmental matrix
used to perform the tests, which can be solid (Soil) or/and liquid (Liq.), and the type
of toxicity, which was encoded according to the following categories: acute (Ac),
chronic (Ch), genotoxic/teratogen (GT), behavior (Bh), biosensor (Bs), biomarker
(Bm), functioning of the ecosystems (Fe), and structure of the ecosystems (Se).

2.2 Multicriteria Analysis

Because the system of integration of risk with interaction of scores (SIRIS) method
has clearly shown its interest and potentialities in environmental and occupational
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Table 1 List of selected tests

Test number Test description Standardized Matrix Toxicity type

1 Inhibition of nitrification of soil
microorganisms

Ya Soila Fea

2 Inhibition of respiration of soil
microorganisms

Y Soil Fe

3 Bait-lamina test (28 days) N Soil Fe
4 Mycorrhizal fungi (Glomus

mosseae) – spore germination
test (14 days)

Y Soil Ac

5 Inhibition of growth of higher
plants (monocotyledonous
species commercially available,
14 days)

Y Soil Ac

6 Inhibition of growth of higher
plants (dicotyledonous species
commercially available,
14 days)

Y Soil Ac

7 Inhibition of growth of higher
plants (wild monocotyledonous
species, 14 days)

Y Soil Ac

8 Inhibition of growth of higher
plants (wild dicotyledonous
species, 14 days)

Y Soil Ac

9 Inhibition of root elongation of
higher plants (4–5 days)

N Liq. Ac

10 Inhibition of root elongation of
higher plants (4 days)

Y Soil Ac

11 Inhibition of seed emergence of
higher plants

Y Soil Ac

12 Inhibition of growth of Lactuca
sativa (28 days)

N Soil Ch

13 Allium cepa micronucleus assay
(24 h)

N Liq. GT

14 Tradescantia micronucleus assay Y Soil GT
15 Vicia faba micronucleus assay

(48 h)
Y Liq. GT

16 Nicotiana tabacum mutation test
(45 days)

N Soil GT

17 Abundance of soil nematodes N Soil Se
18 Mortality of enchytraeids

(Enchytraeus crypticus or
E. albidus)

N Soil Ac

19 Inhibition of reproduction of
enchytraeids (E. crypticus or
E. albidus)

Y Soil Ch

20 Mortality of earthworms (Eisenia
fetida or E. andrei, 14 days)

Y Soil Ac

21 Inhibition of reproduction of
earthworms (E. fetida, 56 days)

Y Soil Ch

22 Earthworm (E. fetida) avoidance
test

Y Soil Bh

(continued)
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Table 1 (continued)

Test number Test description Standardized Matrix Toxicity type

23 Mortality of earthworms (Lumbricus
terrestris, 14 days)

Y Soil Ac

24 Mortality of springtails (Folsomia
candida, 4 days)

N Soil Ac

25 Inhibition of reproduction of
springtails (F. candida, 28 days)

Y Soil Ch

26 Mortality of Cetoniinae (Oxythyrea
funesta, 10 days)

Y Soil Ac

27 Inhibition of growth of Cetoniinae
(O. funesta)

N Soil Ch

28 Inhibition of growth of garden snails
(Helix aspersa, 28 days)

Y Soil Ch

29 Inhibition of growth of Bacillus sp.
(24 h)

N Liq. Ac

30 Umu-test (Salmonella typhimurium) Y Liq. GT
31 Ames test (S. typhimurium) Y Liq. GT
32 SOS-DNA repair – Vitotox R�

(S. typhimurium)
N Liq. GT

33 L-arabinose resistance test N Liq. GT
34 Inhibition of root colonization of

Medicago trunculata (28 days)
Y Soil Ch

35 Chronic toxicity in higher plants
(Avena sativa; 49–56 days)

Y Soil Ch

36 Chronic toxicity in higher plants
(Brassica napus; 35–42 days)

Y Soil Ch

37 Escherichia coli toxichromopad N Liq. Ac
38 E. coli toxichromotest N Liq. Ac
39 E. coli Metplate N Liq. Ac
40 E. coli SOS chromotest N Liq. GT
41 Inhibition of respiration of

Pseudomonas putida
N Liq. Ac

42 Inhibition of growth of P. putida Y Liq. Ch
43 Inhibition of growth of P. fluorescens

(7 days)
N Liq. Ch

44 Biomet assay (Alcaligenes
eutrophus)

N Liq. Bs

45 Inhibition of growth of Microcystis
aeruginosa (4 days)

Y Liq. Ch

46 Inhibition of respiration of activated
sludge

Y Liq. Ac

47 Inhibition of nitrification of activated
sludge

Y Liq. Ac

48 Activated sludge – Polytox N Liq. Ch
49 Activated sludge – ATP

luminescence test
N Liq. Ac

50 Activated sludge – inhibition of
L-alanine-aminopeptidase

N Liq. Ac

(continued)



122 J. Devillers et al.

Table 1 (continued)

Test number Test description Standardized Matrix Toxicity type

51 Luminotox (fluorescence of
stabilized photosynthetic
enzyme complexes, 15 min)

N Liq. Ac

52 Inhibition of growth of
Pseudokirchneriella
subcapitata (previously
Selenastrum capricornutum;
3 or 4 days)

Y Liq. Ch

53 Pseudokirchneriella subcapitata –
inhibition of esterase (15 min)

N Liq. Ac

54 P. subcapitata Hsp 70 Liq. Bm
55 Inhibition of growth of

Scenedesmus subspicatus
(3 or 4 days)

Y Liq. Ch

56 Inhibition of growth of
S. quadricauda (3 days)

Y Liq. Ch

57 Inhibition of growth of
S. pannonicus (3 days)

Y Liq. Ch

58 Chlamydomonas reinhardii
(photosynthesis: EPR, 24 h)

N Liq. Ch

59 Inhibition of growth of C.
reinhardii (10 days, continuous
system)

N Liq. Ch

60 Nitellopsis obtusa – cell membrane
depolarization (45 min)

N Liq. Ac

61 Inhibition of growth of Lemna
minor (4 days)

Y Liq. Ch

62 Inhibition of growth of L. minor
(7 days)

Y Liq. Ch

63 Mortality of Spirostomum
ambiguum (Spirotox; 24 h)

N Liq. Ac

64 Tetrahymena thermophila –
behavioral toxicity test (24 h)

N Liq. Bh

65 Inhibition of population growth of
T. pyriformis (40–48 h)

N Liq. Ch

66 Inhibition of growth of Colpidium
campylum

N Liq. Ch

67 Inhibition of reproduction of
Brachionus calyciflorus (48 h)

Y Liq. Ch

68 Mortality of B. calyciflorus (24 h) N Liq. Ac
69 Inhibition of growth of

Panagrellus redivivus (4 days)
N Liq. Ch

70 Inhibition of mobility of Plectus
acuminatus (4 days)

N Liq. Ac

71 Inhibition of growth of Hydra
oligactis (21 days)

N Liq. Ch

72 Inhibition of mobility of Daphnia
magna (24 or 48 h)

Y Liq. Ac

73 Inhibition of reproduction of
D. magna (21 days)

Y Liq. Ch

(continued)
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Table 1 (continued)

Test number Test description Standardized Matrix Toxicity type

74 D. magna – beta-galactosidase
activity (1–2 h)

N Liq. Ac

75 Inhibition of reproduction of
Ceriodaphnia dubia (7 days)

Y Liq. Ch

76 Mortality of C. dubia (24 or 48 h) Y Liq. Ac
77 Mortality of Thamnocephalus

platyurus (24 h)
N Liq. Ac

78 Dreissena polymorpha – Comet
assay

N Liq. GT

79 D. polymorpha – phagocytic
activity

N Liq. Bm

80 Inhibition of reproduction of
Lymnaea stagnalis (40 days)

N Liq. Ch

81 Xenopus laevis – Fetax assay Y Liq. GT
82 X. laevis – micronucleus assay

(12 days)
Y Liq. GT

83 X. laevis – DNA adducts (12 days) N Liq. GT
84 Mortality of X. laevis (12 days) Y Liq. Ac
85 X. laevis – growth and

development
N Liq. Ch

86 Mortality of Cyprinus carpio
(4 days)

Y Liq. Ac

87 Mortality of Danio rerio (4 days) Y Liq. Ac
88 D. rerio – Early Life Stage toxicity

test (11 days)
Y Liq. Ch

89 Mortality of Poecilia reticulata
(48 h)

Y Liq. Ac

90 P. reticulata – prolonged toxicity
test (28 days)

Y Liq. Ch

91 Mortality of Oncorhynchus mykiss
(4 days)

Y Liq. Ac

92 Inhibition of growth of O. mykiss
(7 days)

Y Sed. Ch

93 Oryzias latipes – growth and
behavior (40 days)

N Liq. Ch

94 Pimephales promelas – mortality
and growth of larvae (7 days)

Y Liq. Ch

95 Chironomus riparius – mortality
and development (28 days)

Y Sed. Ch

96 C. riparius – mortality and
development (10 days)

Y Sed. Ac

97 Mortality of Hyalella azteca
(10 days)

Y Sed. Ac

98 Inhibition of light emission of
V. fischeri (previously
Photobacterium phosphoreum;
5, 15, or 30 min)

Y Liq. Ac

99 V. fischeri – chronic test N Liq. Ch
100 V. fischeri – solid-phase test N Soil/Sed. Ac

(continued)
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Table 1 (continued)

Test number Test description Standardized Matrix Toxicity type

101 V. fischeri – flash test (30 s) N Sed. Ac
102 V. fischeri – Mutatox test (24 h) N Liq. GT
103 Inhibition of growth of Euplotes

vanuus (48 h)
N Liq. Ch

104 Inhibition of growth of
Skeletonema costatum (4 days)

Y Liq. Ch

105 Inhibition of growth of Dunaliella
tertiolecta (4 days)

N Liq. Ch

106 Mortality of Echinocardium
cordatum (14 days)

N Liq. Ac

107 Paracentrotus lividus –
embryo-larval test (48 h)

N Liq. GT

108 Ciona intestinalis – embryo larval
test (24 h)

N Liq. GT

109 Mortality of Artemia salina (24 h) N Liq. Ac
110 Mortality of Acartia tonsa (48 h) Y Liq. Ac
111 Mortality of Corophium volutator

(10 days)
N Liq. Ac

112 Mortality of Eohaustorius
estuarius (10 days)

Y Sed. Ac

113 Palaemon serratus – larval
mortality (3 days)

N Liq. Ac

114 Mytilus galloprovincialis –
embryo-larval test (48 h)

Y Liq. GT

115 Macroinvertebrate communities –
biotic indexes

N Sed. Se

a
See text for significance

toxicology [41–43], it was used in this study. Briefly, the method needs first to
select the number of criteria (variables) necessary to correctly describe the studied
phenomenon. Obviously, this number depends on the complexity of the problem.
The more complex the problem, the larger the number of variables it is necessary to
consider, at least in a first step. Indeed, in all the modeling processes, it is preferable
to optimize the number of variables (parsimony principle). The selected variables,
which can be qualitative or quantitative, are then transformed into modalities coded
as favorable (f) or unfavorable (d) or as favorable (f), moderately favorable (m), or
unfavorable (d). If need be, it is possible to define more modalities. The threshold
limits are generally determined from expert judgments. The variables are ranked
according to their relative importance. Indeed, it is obvious that in a multicriteria
decision system, all the selected variables do not have the same importance with re-
spect to the final decision. In other words, they do not have the same weight. When
facing this kind of situation, it is of common use to introduce coefficients in the
calculation procedure to modify the final weight of some variables. This strategy
suffers from a lack of transparency and is too rigid. In SIRIS, the variables are
ranked by decreasing order of importance, and this order will have an impact on
the results. It is noteworthy that two variables can have the same importance. Last
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Fig. 1 Scale of SIRIS scores
calculated for a system at
three variables (V1, V2, V3)
presenting three modalities
and with V1 > V2 > V3

a min/max scale of scores is calculated according to specific incremental rules [41].
An illustrative example of calculation is given in Fig. 1.

The 115 selected tests (Table 1) were described by 17 technical and scientific
criteria (variables), each being defined by two or three characteristics (modalities).
They are listed below with their code, the modalities favorable, moderately favor-
able, and unfavorable being encoded as f, m, and d, respectively.

Technical criteria:

– Supply of test organisms (STO): negligible time (f), < 1=2 day by week (m), > 1=2

day by week (d).
– Test volume or quantity (TVQ): <10 mL or 10 g (f), 10–100 mL or g (m),
�100 mL or g (d).
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– Test duration (TDU): � 4 days (f), 5–20 days (m), � 21 days (d).
– Test room (TRO): usual (f), specialized (m), very specialized (e.g. T ıC,

moisture) (d).
– Material (MAT): usual (f), specialized (e.g. microscope) (m), very specialized

(e.g. radioactive meter) (d).
– Cost (COS): < 1-day technician (f), 1–4 day technician (m), > 4 day technician (d).
– Competences (COM): technician (f), higher (d).
– Scope (SCO): several environmental matrices (f), one matrix: solid or liquid sub-

strate (d).
– Test starting (TST): immediate (f), 1–3 days (m), > 3 days (d).
– Perception by a nonspecialized public (PNP): easy (e.g., mortality, growth) (f),

moderate (e.g., luminescence) (m), difficult (e.g. DNA adducts) (d).

Scientific criteria:

– Ecological relevance (ERL): high (f), intermediate (m), low (d).
– Contact duration (COD): > 70% of the life cycle of the organism (f), 10–70% of

the life cycle (m), < 10% of the life cycle (acute test) (d).
– Level of standardization (LOS): standardized (f), under preparation (m), not stan-

dardized (d).
– Comparison of laboratory and field testing (CLF): toxicological effects that can

be measured in the field (f), toxicological effects correlated with toxicological
effects that can be measured in the field (m), toxicological effects non relevant in
field testing (d).

– Mechanism of action (MOA): function (e.g., enzymatic reaction) (f), organ (e.g.,
roots) (m), whole organism (e.g., mortality) (d).

– Genetic stability (GST): asexual reproduction (e.g., parthenogenesis) (f), sexual
reproduction (d).

– Test limitations and constraints (TLC): low (f), intermediate (m), high (d).

All the calculations were made with the SIRIS-2D software [100].

3 Results and Discussion

The SIRIS method allows us to simultaneously consider variables encoding very
different information. However, our practical experience shows that it is generally
preferable to construct several scales of SIRIS scores (one per category of vari-
ables) instead of a unique scale. This was also verified in the present study. Thus,
the technical and scientific criteria were considered separately yielding the con-
struction of two scales of SIRIS scores. The hierarchy of the variables in the SIRIS
method being problem-dependent, the variables were ranked by accounting for the
main goal of the study, which was the selection of tests for assessing the level of
contamination of soils. Thus, the hierarchies were C1: STO > TDU > TVQ >

TST > PNP > SCO > COS > COM > TRO > MAT and S1: COD > ERL >

LOS > CLF > GST > TLC > MOA for the technical and scientific criteria,
respectively. The typology of the 115 tests characterized by their two SIRIS scores
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Fig. 2 SIRIS map of the 115 ecotoxicity tests. See Table 1 for the correspondence between the
numbers and the test names

is displayed in Fig. 2. The tests located in the left bottom part of Fig. 2 are the
most interesting because they present low score values on the scientific and tech-
nical scales. They can be considered as good candidates for the constitution of a
relevant test battery. At the opposite, the tests located in the top right part of Fig. 2
(e.g., #82 and #83) are not suited for the selected scenario due to the high values of
their SIRIS scores on the technical and scientific scales.

It was interesting to compare the results obtained with the SIRIS method to those
produced by another statistical approach. In the SIRIS method, the initial vari-
ables being transformed into modalities, it seemed legitimate to select a multiple
correspondence factor analysis (MCFA) [101] after transformation of the matrix of
test/modalities into a complete disjunctive data matrix. The calculations were made
with ADE-4 [102], a powerful statistical software program specifically designed for
the analysis of environmental data.

The distribution of the 115 tests (Table 1) on the first factorial plan (i.e., F1F2),
which accounts for 27.76% of the total inertia of the system, shows a Guttman effect
also called horseshoe shape (Fig. 3). The interpretation of this figure has to be made
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Fig. 3 F1F2 factorial plan (F1, horizontal axis) of the MCFA showing the display of the 115 tests
(see Table 1)

from the corresponding map dealing with the variables at two or three modalities.
To interpret the relative location of the tests in Fig. 3, it should be necessary to
simultaneously consider the 17 doublets or triplets of points belonging to the space
of variables. The task is highly difficult, even impossible if all the variables are rep-
resented on the same graph. To overcome this problem, a collection of 17 maps,
one per variable, was drawn (Fig. 4). In addition, the doublets and triplets of modal-
ities were represented from their symbols f, m, and d for favorable, moderately
favorable, and unfavorable, respectively. Last, the different symbols were linked by
arrows from f to m or d.

Thus, for example, the tests #100 (Vibrio fischeri, solid-phase test) and #101
(V. fischeri, flash test, 30 s), which are located in the top left part of Fig. 3, show, for
example, favorable modalities for variables STO (supply of test organisms), TVQ
(test volume or quantity) and TDU (test duration) and unfavorable modalities for
the variables ERL (ecological relevance) and COD (contact duration). However, it
is important to note that the COD variable is poorly expressed on FIF2 (Fig. 4). The
STO, TDU, and TVQ variables occupying the top of the hierarchy of the technical
criteria and the COD and ERL variables occupying the top of the hierarchy of the
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Fig. 4 F1F2 factorial plan (F1, horizontal axis) of the MCFA showing the display of the
17 variables, each of them being displayed separately (see text)

scientific criteria, it is obvious that the space occupied by these tests in Fig. 3 corre-
sponds to the right bottom part of Fig. 2. The same type of reasoning can be applied
to the points (i.e., tests) located in the left bottom part of Fig. 3, which can be inter-
preted from Fig. 4 and which have also to be compared with the points located in the
left bottom part of Fig. 2. However, it is noteworthy that the technical scale of the
SIRIS map (Fig. 2) is more difficult to find in Fig. 3. It is partially expressed in the
second part of the horseshoe shape (Fig. 3), actually the top right part and as previ-
ously indicated, the location of these points can also be explained from inspection
of the variables displayed in Fig. 4.
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Because the F1F2 factorial plan only accounts for 27.76% of the variance of the
system, it is obvious that some tests are badly represented in Fig. 3. Consequently,
to correctly perform a typology of the 115 tests, it is necessary to consider the other
factorial plans. This was done and as illustration only the F4F5 factorial plan, which
accounts for 13.3% of the variance of the system, is given here (Figs. 5 and 6). The
space of objects (Fig. 4), under the strong dependence of the test #101 that is the
unique test presenting a modality m regarding the LOS variable, allows us to find
the technical axis of the SIRIS map (Fig. 2).

Consequently, the SIRIS method and a classical multivariate method, such as
MCFA, yield the same typology of the 115 tests.

Unfortunately, the typology obtained from the double scale of SIRIS scores
(Fig. 2) is not satisfying for all the 115 studied tests. The test #20 dealing with
the mortality of earthworms (Eisenia fetida or E . andrei) and which is located in
about the middle part of Fig. 2 presents SIRIS scores equal to those of the earth-
worm (E. fetida) avoidance test #22 while for the former test the time of exposure
is 14 days and for the latter the time is only of 48 h. Even if the experience on
this rather new test is limited, the avoidance test seems to be more sensitive than the
acute toxicity test on E. fetida (#20). Its location on the map could penalize this type

Fig. 5 F4F5 factorial plan (F4, horizontal axis) of the MCFA showing the display of the 115 tests
(see Table 1)
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Fig. 6 F4F5 factorial plan (F4, horizontal axis) of the MCFA showing the display of the
17 variables, each of them being displayed separately (see text)

of biological response in comparison to the classical toxicity endpoints recorded
with this species and dealing with mortality and reproduction. In the same way, the
superimposition of the tests #67 (inhibition of reproduction of Brachionus calyci-
florus in 48 h) and #68 (mortality of B. calyciflorus in 24 h) in Fig. 2 is not logical.

It is obvious that the choice of a hierarchy for the criteria (i.e., variables) highly
influences the values of the SIRIS scores (Fig. 1). Consequently, with the SIRIS
method, it is always preferable to test the effects of different hierarchies on the
results. In this study, this was particularly needed for the technical criteria. Indeed,
while for the scientific criteria, a full consensus existed between the experts for



132 J. Devillers et al.

ranking the variables, it was more difficult to reach this goal with the technical
criteria. Consequently, three other hierarchies of the technical criteria were tested
(i.e., C2, C3, C4). The three new technical scales of SIRIS scores were used with the
previous scientific scale of SIRIS scores to draw three new SIRIS maps (not shown).
These maps were compared with Fig. 2. Although the main trends of the typology of
the 115 tests did not change, it was difficult to precisely evaluate the influence of the
changes in the hierarchies on the relative position of the tests on the SIRIS maps. To
overcome this problem, the SIRIS scores calculated from the different hierarchies
of technical criteria were compared by means of triangular representations [102].

Briefly, a triangular representation is a graphical method allowing to display all
the information regarding the variability of a distribution of frequencies at three
categories. Each side of the triangle corresponds to one category and is graduated
from 0 to 1. Each element is divided by the total sum per row. If one element presents
the same value for the three variables, the result will be always 1/3, 1/3, 1/3. Conse-
quently, the goal of this method is not to perform global comparisons but to detect
how the different elements behave each other. Figure 7 shows how to find the coordi-
nates of a point in the triangle. The triangular representation is particularly suited to
reveal the variations in the classification of the tests obtained from the different hi-
erarchies of technical criteria. It allows to underline those that are the most sensitive
to changes and the way the criteria act within each hierarchy. Thus, for example,
Fig. 8 compares the SIRIS codes obtained for the technical criteria by using the
initial hierarchy (C1, Fig. 2) and two new hierarchies called C2 and C3. Obviously,
the triangles C1-C2-C4 and C1-C3-C4 were also considered (figures not shown). In
Fig. 8, the large top left triangle is graduated from 0 to 1. Conversely, the large top
right triangle is a zoom of the central part of the previous triangle. The scales of the
zooms are always represented by small grey triangles located in the left top part of
the graduated triangles. In the bottom square, the zooming of the cloud of points

Fig. 7 Theoretical example showing how the relative position of a point has to be interpreted in
the triangular representation
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Fig. 8 Triangular representation of SIRIS scores calculated from three hierarchies of technical
criteria (C1, C2, C3)

is maximal. The large black point symbolizes the center of the triangle. If a test is
located on this point, this means that the SIRIS scores for the three hierarchies are
equal. The interpretation of the figure is rather straightforward. Thus, for example,
the test #3 (bait-lamina test in 28 days) is located in the bottom part of the square
because its score SIRIS are equal for C1 and C2 (i.e., 63) and its score SIRIS for C3
equals 49. The test #115 (macroinvertebrate communities, biotic indexes), located
just above, shows SIRIS scores of 109, 112, and 93 for C1, C2, and C3, respec-
tively. The test #4 (mycorrhizal fungi (Glomus mosseae), spore germination test in
14 days) in the left part of the figure shows SIRIS scores of 103, 90, and 112 for
C1, C2, and C3, respectively. At the opposite, the tests #100 (V. fischeri, solid-phase
test) and #101 (V. fischeri, flash test in 30 s), which are superimposed, present SIRIS
scores of 24, 39, and 37 for C1, C2, and C3, respectively.

Comparison of the different triangular representations clearly reveals that
the more the changes occur at the top of the hierarchy of the technical criteria,
the more the typology of the 115 tests is changed. Moreover, the improvements in
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the location of tests in the SIRIS maps are always made detrimental to the position
of others. Consequently, it was decided to keep the initial hierarchy of the technical
criteria used to construct Fig. 2 (i.e., C1).

Figure 2 is particularly suited to estimate the relevance of batteries of tests and to
optimize their selection. To discuss these points, three different batteries in relation
with the assessment of contaminations in soils and one with wastes were considered.
Thus, the ISO/FDIS 17616 project for soil quality assessment [103] proposes to use
a battery including tests of inhibition of nitrification (#1 in Table 1) and respiration
(#2) of soil microorganisms, inhibition of growth of monocotyledonous (#5) and
dicotyledonous (#6) plants, mortality of earthworms (#20), inhibition of mobility
of Daphnia magna (#72) and light emission of V. fischeri (#98), and the umu-test
on Salmonella typhimurium (#30). A battery including the tests #5, #6, #20, and
#98, the spore germination test on G. mosseae (#4), and the test on the inhibition of
growth of Pseudokirchneriella subcapitata (#52) or Scenedesmus subspicatus (#55)
was proposed in the VADETOX program [104]. A battery including the tests #5, #6,
#20, #52, #72, #98, and the test on the inhibition of reproduction of Ceriodaphnia

Fig. 9 Location in the SIRIS map of the battery of tests recommended by the ISO 17616 stan-
dardization project
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dubia (#75) was proposed to assess the ecotoxicity of wastes [105]. Last, to assess
the ecological risk and bioremediation efficiency of oil-polluted soils, van Gestel
et al. [74] proposed a battery including the tests #52, #72, the bait-lamina test (#3),
the tests of inhibition of root elongation (#9) and seed emergence (#11) of higher
plants, the test of inhibition of reproduction of earthworms (#21), the tests of mortal-
ity (#24) and inhibition of reproduction (#25) of springtails, the test of inhibition of
growth of Bacillus sp. (#29), and the test of inhibition of mobility of Plectus acumi-
natus (#70). These batteries are represented in Figs. 9–12 to estimate their scientific
and technical reliability.

It is interesting to note that all these batteries combine direct tests and assays
performed on water extract of the selected matrices. However, they deal with a lim-
ited number of tests in comparison with the list of tests retrieved from literature
(Table 1). Most of the tests of these batteries, except those regarding soil functional
activities, were developed initially for chemicals and are commonly used to assess

Fig. 10 Location in the SIRIS map of the battery of tests recommended by the ADEME
VADETOX study
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Fig. 11 Location in the SIRIS map of the battery of tests recommended to assess waste ecotoxicity

water or soil quality. These selected tests are generally located in the left inferior
quadrant of the SIRIS map (Figs. 9–12) revealing that they are scientifically rele-
vant for assessing the level of contamination of soils, and they do not suffer from
important technical problems. Only one battery includes a test of genotoxicity on
bacteria (test #30 in Fig. 9), which is performed only on water extract.

The location of the tests #20 (mortality of earthworms) and #98 (inhibition of
light emission of V. fischeri) on the SIRIS map (Figs. 9–11) is in favor of their ex-
clusion because they do not fully satisfy the criteria of selection for the constitution
of test batteries. However, their integration in most of the batteries can be justified
for the former test that it is absolutely necessary to estimate the toxicity of pollutants
on the soil invertebrates. The presence of the latter test in the batteries can be also
easily explained because it allows to rapidly obtain a response and in addition, it is
very cheap, even if its ecological relevance is low regarding the studied scenarios.
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Fig. 12 Location in the SIRIS map of the battery of tests recommended by van Gestel et al. [74]

4 Conclusion

In this chapter, an a priori method for the selection of a battery of tests is presented
and exemplified in a case study dealing with the selection of assays for assessing
the level of contamination of soils. The selection, which is based on the use of
the SIRIS multicriteria method, accounts for scientific and technical criteria. The
two categories of criteria were ranked according to their order of importance in
relation with the studied scenario. The SIRIS method was used to calculate a scien-
tific and a technical score for 115 tests retrieved from literature. A typology of the
115 tests was performed from the SIRIS scores and confirmed from MCFA. Four
different batteries of tests, recommended for characterizing the ecotoxicity of soils
and wastes, were represented on the SIRIS map of 115 tests and briefly discussed
for estimating their reliability.

The advantages of our methodological approach are numerous. The method is
highly flexible and allows to account for any kind of criteria. Indeed, it is obvious
that the selection of a test cannot be only based on scientific criteria. Other crite-
ria such as its cost, technical difficulty, and duration also have to be considered.
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With the SIRIS method, the relevant criteria can be considered together or split into
different categories. For this kind of ecotoxicological study, our experience shows
that the latter strategy, which yields different scales of scores, is the most interesting.
In all cases, the criteria have to be ranked from expert judgments.

Regulatory agencies are interested in the scoring methods because they are well
suited for classification problems. In this context, a SIRIS map derived from two
scales of scores appears particularly interesting to perform typologies. It can also
be used to optimize selections and propose improvements. Thus, from the SIRIS
map of tests, it is not only possible to select the most interesting battery of tests in
term of scientific and technical criteria but it is also possible to pinpoint tests that
are scientifically relevant for the studied scenario but which need additional work to
improve some of their technical criteria, which currently penalize their inclusion in
a battery.
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Multi-criteria evaluation of multi-purpose stand treatment programmes for Finnish boreal
forests under changing climate. Ecol Ind 8: 26–45



140 J. Devillers et al.

32. Gomontean B, Gajaseni J, Edwards-Jones G, Gajaseni N (2008) The development of appro-
priate ecological criteria and indicators for community forest conservation using participatory
methods: A case study in northeastern Thailand. Ecol Ind 8: 614–624

33. Critto A, Torresan S, Semenzin E, Giove S, Mesman M, Schouten AJ, Rutgers M, Marcomini
A (2007) Development of a site-specific ecological risk assessment for contaminated sites:
Part I. A multi-criteria based system for the selection of ecotoxicological tests and ecological
observations. Sci Total Environ 379: 16–33

34. Semenzin E, Critto A, Carlon C, Rutgers M, Marcomini A (2007) Development of a site-
specific ecological risk assessment for contaminated sites: Part II. A multi-criteria based
system for the selection of bioavailability assessment tools. Sci Total Environ 379: 34–45

35. Semenzin E, Critto A, Rutgers M, Marcomini A (2008) Integration of bioavailability, ecology
and ecotoxicology by three lines of evidence into ecological risk indexes for contaminated
soil assessment. Sci Total Environ 389: 71–86

36. Promentilla MAB, Furuichi T, Ishii K, Tanikawa N (2008) A fuzzy analytic network pro-
cess for multi-criteria evaluation of contaminated site remedial countermeasures. J Environ
Manage 88: 479–495

37. Rousis K, Moustakas K, Malamis S, Papadopoulos A, Loizidou M (2008) Multi-criteria anal-
ysis for the determination of the best WEEE management scenario in Cyprus. Waste Manage
28: 1941–1954

38. Bellehumeur C, Vasseur L, Ansseau C, Marcos B (1997) Implementation of a multicriteria
sewage sludge management model in the southern Québec municipality of Lac-Mégantic,
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95. Slooff W, Canton JH (1983) Comparison of the susceptibility of 11 freshwater species to 8
chemical compounds. II. (semi)chronic toxicity tests. Aquat Toxicol 4: 271–281

96. Vindimian E, Garric J, Flammarion P, Thybaud E, Babut M (1999) An index of effluent
aquatic toxicity designed by partial least squares regression, using acute and chronic tests
and expert judgments. Environ Toxicol Chem 18: 2386–2391

97. Sekkat N, Guerbet M, Jouany JM (2001) Etude comparative de huit bioessais à court terme
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Physiologically Based Toxicokinetic (PBTK)
Modeling in Ecotoxicology

Kannan Krishnan and Thomas Peyret

Abstract Physiologically based toxicokinetic [(PBTK), or alternatively referred
to as physiologically based pharmacokinetic (PBPK)] models are quantitative de-
scriptions of absorption, distribution, metabolism, and excretion of chemicals in
biota. PBTK models are increasingly being used as an effective tool for design-
ing toxicology experiments and for conducting extrapolations essential for risk
assessments. This chapter describes the basic concepts, equations, parameters, and
software essential for developing PBTK models. QSAR methods for estimating in-
put parameters as well as data sources containing relevant parameters for model
development in rats, mice, cattle, birds, and fish are summarized. Model templates
for creating PBTK models in fish and terrestrial species are presented. Several ex-
amples of model simulations are presented along with a brief discussion of how
PBTK models can be applied to make significant advances in ecotoxicology and
ecotoxicological risk assessments.

Keywords Toxicokinetics � Pharmacokinetics � PBPK model � PBTK model � Phys-
iologically based models

1 Introduction

Upon exposure to chemicals and their degradation products in air, water, soil, or
food, the target and nontarget organisms in the environment may absorb them lead-
ing to metabolism and distribution in various tissues, including the target tissue(s)
where toxicity may result. Knowledge of the “dose to target tissue” provides a bet-
ter scientific basis (than the exposure dose) for understanding the dose–response
relationships and conducting risk assessments [1]. The dose to target tissue(s) is the
net result of the rate and magnitude of the processes of absorption, distribution,
metabolism, and excretion (ADME) in biota. Since it is not always feasible or
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possible to measure target tissue concentration of the toxic moiety associated with
various exposure routes, doses, scenarios, and species, toxicokinetic models are in-
creasingly being sought as valuable tools in ecotoxicology and human health risk
assessment [2].

Toxicokinetic (or pharmacokinetic) models are mathematical descriptions of
ADME in biota. These models facilitate quantitative descriptions of the temporal
change in the concentrations of chemicals and/or their metabolites in biological ma-
trices (e.g., blood, tissue, urine, alveolar air) of the exposed organism. Toxicokinetic
models often describe the organism as a set of compartments that are characterized
physiologically or empirically [3]. The classical or empirical toxicokinetic models
are developed on the basis of fitting to experimental data. In this case, the number of
compartments (usually one or two), their volumes as well as rates of processes are
estimated by fitting the model to experimental data on the time course of chemical
concentration in the biological matrix of interest (e.g., blood, urine) [3]. As such,
these models can be used confidently for interpolation but not for extrapolation of
kinetics and target tissue dose associated with various scenarios, species, and routes
of exposure. In this regard, physiologically based toxicokinetic [(PBTK), or alter-
natively referred to as physiologically based pharmacokinetic (PBPK)] models are
particularly useful [4]. The PBTK models are quantitative descriptions of ADME of
chemicals based on interrelationships among critical biological, physicochemical,
and biochemical determinants [5]. This chapter describes the development and com-
putational implementation of PBTK models, using chemicals and animal species of
interest to ecotoxicologists and risk assessors.

2 PBTK Modeling: The Process

Typically, the process of PBTK modeling starts with the definition of the problem
and identification of a strategy for the model simulations to resolve the issue at hand
(e.g., interspecies differences in toxic response, intraspecies variability in target tis-
sue dose, route-to-route extrapolation of NOAEC). Then, available data on toxicity,
toxicokinetics, metabolism, as well as physicochemical properties of a chemical are
evaluated to facilitate the identification of a conceptual model and an initial set of
parameters. Subsequently, equations representing ADME are written and solved us-
ing software that facilitates the solution of ordinary differential equations [4–6]. The
model simulations then are compared with experimental data in order to accept the
model or to refine the model following uncertainty/sensitivity analyses. The follow-
ing sections outline briefly the key principles and current practices for developing
PBTK models.

2.1 Conceptual Model

The conceptual PBTK model corresponds to the diagrammatic representation, in
the form of boxes and arrows, of the key elements of the organism that determine
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Fig. 1 Conceptual represen-
tation of a PBTK model

the exposure as well as ADME of a chemical. Figure 1 represents the conceptual
PBTK model for simulating inhalation exposure to a volatile organic chemical. The
following elements are considered in developing a conceptual PBTK model for a
given chemical [5]:

� Target organ
� Portals of entry
� Metabolism
� Lipophilicity
� Mass balance

In PBTK models intended for application in ecotoxicology and risk assessment, the
inclusion of the target organ as a separate compartment should be given consider-
ation. However, if the metabolic and accumulation characteristics of a target organ
are not significantly different from other organs (e.g., brain vs. other richly perfused
tissues), there is no need to represent the target organ as a separate compartment. In
some cases, the chemical concentration in systemic circulation (e.g., blood) might
be sufficient for use as a surrogate of target organ exposure.

Next, the portals of entry should be considered for representation as separate
compartments in PBTK models. In this context, gills or lungs for describing ex-
posure via inspired water/air, GI tract in the case of oral exposure, and skin for
simulating dermal contact are included as separate compartments. In some cases,
the portal of entry is not characterized or represented explicitly but the rate of the
amount absorbed (i.e., input to the system) is computed [7].

The metabolizing tissues are often characterized as separate compartments since
(1) they significantly influence the overall kinetic behavior of a chemical and (2) the
time course of chemicals in these tissues would be different from other tissues. Ac-
cordingly, liver is often represented as a separate compartment. When extrahepatic



148 K. Krishnan and T. Peyret

metabolism is significant and intertissue difference in the rate of metabolism is
significant, various tissues are represented individually (e.g., brain, testes, kidney,
etc.) [8].

In PBTK models for lipophilic or superlipophilic chemicals, adipose tissue is
represented as a separate compartment. This compartment essentially represents the
total volume of fat depots found in the various regions of the body (e.g., abdominal
fat, omental fat, subcutaneous fat). For hydrophilic chemicals such as methanol or
metals, it would be irrelevant to consider representing the fat depot as a separate
compartment since it does not contribute to their storage or kinetic behavior.

Finally, the remaining tissues receiving blood supply should be represented as
one compartment (“rest of body”) or more [“richly perfused tissues” and “poorly
perfused tissues” (PPT)], even if they do not qualify under any of the aforemen-
tioned considerations (i.e., target organ, portals of entry, metabolism and storage).
To maintain mass balance of chemical in the system, it is essential to track its fate in
all tissue compartments that receive it through blood flow. This aspect is illustrated
by the inclusion of a compartment referred to as “rest of body” in Fig. 1.

2.2 Quantitative Descriptions of ADME

The quantitative descriptions of ADME included in PBTK models are based on the
consideration of following key questions:

� Absorption: How does the chemical enter systemic circulation (i.e., blood)?
� Distribution: How is the chemical distributed to the various organs?
� Metabolism: What are the sites and pathways of biotransformation?
� Excretion: What are the routes and processes of elimination from the body?

2.2.1 Absorption

Absorption is the process by which a chemical in the microenvironment crosses the
biological barrier to enter systemic blood circulation [9]. The biological barriers
relate to stratum corneum in the case of dermal exposures, alveoli in the case of
pulmonary exposure, or membranes in the GI tract for oral exposure [10]. The intra-
venous (i.v.), subcutaneous, and intraperitoneal (i.p.) routes may also be of relevance
for interpreting experimental toxicology studies, even though they are not directly
relevant to environment-related exposures. The process of absorption as described
in PBTK models facilitates the computation of the rate of change in the amount of
chemical at the portal of entry or chemical concentration in arterial blood .Ca/ as
a function of exposure concentration. Accordingly, for inhalation exposures, Ca in
rodents is obtained as follows [11]:

Ca D QpCinh CQcCv

Qc C
�

Qp

Pb

� ; (1)
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where Cinh is the concentration in inhaled air, Ca is the arterial blood concentra-
tion, Cv is the concentration in mixed venous blood, Pb is the blood:air partition
coefficient, Qc is the cardiac output, and Qp is the alveolar ventilation rate.

For dermal exposures, the concentration following absorption is calculated by
solving the following mass-balance differential equation [12]:

dCsk

dt
D
�
Qsk.Ca � Cvsk/CKp � AŒCwater � .Csk=PsWe/�

�
Vsk

; (2)

where A is the area of skin exposed, Csk is the concentration in skin, Cvsk is the
concentration in venous blood leaving the skin, Cwater is the chemical concentration
in the microenvironment contacting the skin, dCsk=dt is the rate of change in the
concentration of chemical in the skin, Kp is the permeability coefficient, Qsk is the
rate of blood flow to skin, PsWe is the skin:environment partition coefficient, and Vsk

is the volume of skin.
Oral uptake of chemicals is often described as a first-order process as follows [7]:

dAo

dt
D KoAstom; (3)

where dAo=dt refers to the rate of amount of chemical absorbed orally, Ko is the oral
absorption constant, and Astom is the amount of chemical remaining in the stomach.

2.2.2 Distribution

Distribution, in the present context, refers to the uptake of a chemical from systemic
circulation by the metabolizing, storage, and excretory organs [9]. The volume of
blood, volume of tissues as well as the extent of protein binding together deter-
mine the extent of dilution or distribution of an absorbed chemical. The volume of
distribution then reflects the “apparent” volume of blood in which a chemical is dis-
tributed and as such it does not reflect a true, measurable physiological volume. Vd

actually corresponds to the volume of blood plus the sum of the product of tissue
volumes and tissue:blood partition coefficients [3].

The distribution of chemical in each tissue compartment may be limited either by
the membrane (diffusion-limited uptake) or by the blood flow (perfusion-limited up-
take) [13]. In the case of perfusion-limited uptake, the flux of a chemical

�
Vt � dCt

dt

�
is proportional to its concentration gradient .�C / as defined by Fick’s law of simple
diffusion:

Vt � dCt

dt
D k�C; (4)

where Vt is the tissue volume and k is the proportionality constant.
Since the blood flow to tissues is essentially equal to the proportionality constant,

Vt � dCt
dt

in PBTK model compartments is calculated as follows:

Vt � dCt

dt
D input .mg=h/� output .mg=h/ ; (5)
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where input is the blood flow rate � concentration entering the tissue, and output is
the blood flow rate � concentration leaving the chemical.

Notationally, the earlier equation is written as follows:

Vt
dCt

dt
D Qt � .Ca � Cvt/ ; (6)

where Qt is the tissue blood flow, Ca is the arterial blood concentration (entering),
and Cvt is the venous blood concentration (leaving).

For high molecular weight compounds (dioxins, PCBs, hexachlorobenzene), dif-
fusion is often the rate-limiting process such that their uptake through the tissue
subcompartments must be considered [13]. This requires that the mass-balance
differential equations be developed both for the tissue blood and cellular matrix
subcompartments of each tissue.

2.2.3 Metabolism

Metabolism refers to the biotransformation and conjugation of xenobiotics (com-
monly termed as phase I and phase II processes) in the biota [9,10]. Phase I reactions
are often mediated by enzymes with finite binding sites (cytochrome P-450, flavin
monooxygenases, xanthine oxidase, amine oxidase, monoamine oxidase, carbonyl
reductases, etc.) whereas phase II reactions are frequently limited by the availability
of cofactors (sulfate, glutathione, glucuronide, etc.). The rate of metabolism

� dAmet
dt

�
in PBTK models is described as a first order, second order, or saturable process as
follows:

First order WdAmet

dt
D KfCvtVt; (7)

Second order WdAmet

dt
D KsCvtVtCcf; (8)

Saturable:
dAmet

dt
D VmaxCvt

Km C Cvt
; (9)

where Kf is the first-order metabolism constant (e.g., h�1), Ccf is the concentra-
tion of cofactor in tissue, “t,” Vt is the volume of the tissue, Ks is the second-order
metabolism constant (e.g., L/mg/h), Vmax is the maximum velocity of enzymatic re-
action (e.g., mg/h), and Km is the Michaelis–Menten affinity constant (e.g., mg/L).

Conjugation reactions have often been described as a second order process with
respect to the concentration of the cofactor and the chemical [8, 14], whereas
the phase I reactions are described as a first-order process at very low exposure
concentrations or as a saturable process according to Michaelis–Menten equation.
Alternative formulations based on intrinsic clearance and hepatic clearance can also
be used in this regard [5, 15].
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It is important to note that the metabolism descriptions captured in (7)–(9) are
based on venous blood concentration (i.e., free concentration) of chemical and
they conform to the “venous equilibration model” descriptions. Since these equa-
tions are solved along with (6), the blood flow limitation (i.e., perfusion limita-
tion) of metabolism is automatically accounted for. Alternative models of hepatic
metabolism (e.g., parallel tube model, distributed sinusoidal perfusion model) have
been described in the literature but they appear to yield essentially the same results
regarding the whole-body clearance of chemicals [5].

2.2.4 Excretion

Excretion refers to the removal of the chemical and/or its metabolite from systemic
circulation [9]. The principal routes of excretion include urine, bile, feces, and ex-
haled air. Exhalation of volatile chemicals from systemic circulation is described in
PBTK models on the basis of the rate of respiration, cardiac output, and the blood:air
partition coefficient. Biliary and fecal excretion rates depend upon the rate of bile
flow, the rate of transfer into and reabsorption from the bile as well as the molecular
weight of the chemical or its conjugated metabolite [10]. Urinary excretion is mod-
eled as a function of the rates of filtration, reabsorption, and secretion. The amount
of chemical filtered .dF=dt/ equals the glomerular filtration rate (GFR) and the blood
concentration of unbound chemical (Cu):

dF=dt D GFR � Cu: (10)

The rate of change in the concentration of chemical or its metabolite in the urine
.dU=dt/ equals the following:

dU=dt D Uo � Cu; (11)

where Uo is the urinary output (mL/min) and Cu is the chemical concentration in
urine (mg/mL).

The amount of chemical secreted (or reabsorbed) can, in turn, be calculated on
the basis of the difference between the amount in urine and the amount filtered [16].

2.3 Estimation of Parameters

To solve the equations constituting the PBTK model, the numerical values of in-
put parameters – physiological parameters, partition coefficients, and biochemical
rate constants – should be known. The numerical values of physiological parameters
such as breathing rate, skin surface area, cardiac output, tissue blood flow rates, and
tissue volumes can either be obtained from published literature or determined exper-
imentally. Compilations of physiological parameters for several terrestrial animal
species (rat, mouse, swine, cow, goat, etc.) [17–19] as well as for aquatic life,
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Table 1 Reference values of tissue volumes and blood
flow rates in mouse and rat [18]

Physiological parameters Mouse Rat

Body weight (kg) 0:025 0:25

Tissue volume (L)
Liver 0:0014 0:01

Fat 0:0025 0:0175

Organs 0:0013 0:0125

Muscle 0:0175 0:1875

Cardiac output (L/min) 0:017 0:083

Blood flow to organs (L/min)
Liver 0:0043 0:0208

Fat 0:0015 0:0075

Organs 0:0087 0:0423

Muscle 0:0026 0:0125

Minute volume (L/min) 0:037 0:174

Alveolar ventilation (L/min) 0:025 0:117

particularly fish [20, 21], have appeared in the literature. Table 1 presents refer-
ence values for PBTK modeling in rats and mice whereas Table 2 summarizes the
physiological parameter values for fish.

The blood:microenvironment (i.e., blood:air, blood:water) as well as tissue:blood
partition coefficients required for PBTK modeling may be obtained (1) from steady-
state toxicokinetic data obtained following repeated dosing [22], (2) with in vitro
systems using ultrafiltration, equilibrium dialysis, or headspace equilibrium tech-
nique [23–25], or (3) by in silico approaches based on molecular and biological
determinants [26–32]. The latter approaches have either been developed on the basis
of mechanistic determinants (i.e., n-ctanol:water partition coefficient, n-octanol:air
partition coefficient, blood and tissue content of neutral lipids, phospholipids, and
water) [28, 29] or on the basis of fitting to experimental data obtained with limited
number of chemicals [30–32]. Figure 2 presents examples of partition coefficients
for chloroethanes, obtained in vitro using fish tissues.

Metabolism parameters .Vmax; Km; Kf/ are obtained by analyzing in vivo
toxicokinetic data or using subcellular preparations (e.g., postmitochondrial prepa-
rations, microsomes), hepatocytes, or tissue slices in vitro. Reviews of the various
in vitro systems for estimating metabolism rate constants and the issues related to
the scaling of Vmax; Km, or their ratio (i.e., intrinsic clearance) in fish and mammals
have recently been published [33–36]. It is reasonable to use the Km obtained in in
vitro studies directly in the PBTK models, since the same isozyme is involved in
the metabolism of a given chemical both in vitro and in vivo; however, the Vmax ob-
tained in vitro should be scaled to the whole liver (or the appropriate metabolizing
organ) based on the difference in the enzyme content between in vitro and in vivo
situations, as follows [37]:

Vmax .in vivo/
D Vmax .in vitro/ � protein concentration� tissue volume: (12)
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Fig. 2 In vitro tissue:water partition coefficients of 1,1,2,2-tetrachloroethane, pentachloroethane,
hexachloroethane. Data (mean ˙ SE) from Bertelsen et al. [32]

Other model parameters associated with the processes of absorption, macromolec-
ular binding, and excretion may be determined by conducting time-course analysis
in vivo or in vitro. A reasonable strategy for accurate estimation of specific bio-
chemical parameters in vivo is to conduct experiments under conditions where
toxicokinetic behavior of a chemical is related to one or two dominant factors and
thereby derive estimates of these parameters [5].

2.4 QSAR Methods for Parameter Estimation

The development of QSARs for estimating chemical-specific parameters of PBTK
models is an evolving area of research. Thus, when the partition coefficients and
metabolism constants for a particular chemical are not available, they may be pre-
dicted using QSARs for purposes of PBTK modeling. There is some success with
in silico prediction of partition coefficients for PBTK models [24–30]. Fragment
constant method has been used to predict partition coefficients for PBPK models of
volatile organic chemicals, as follows [26, 38, 39]:

logPt D
nX

iD1

fi Ci ; (13)

where fi is the frequency of occurrence of the molecular fragment i (e.g., CH3, Br,
F, aromatic cycle), Ci is the contribution of the fragment i , and Pt is the partition
coefficient required for PBTK modeling (e.g., blood:air, tissue:blood).

The QSARs of this type have only been applied to low molecular weight volatile
organic chemicals that are lipophilic; these approaches are yet to be developed for
other classes of chemicals, particularly for molecules of larger size (e.g., pesticides,
dioxins, etc.). The challenge with such substances is related to the need for QSARs
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for tissue diffusion coefficients, macromolecular binding association constants, ab-
sorption rates (i.e., dermal permeability coefficient, oral absorption rate constant),
and metabolism rates.

Despite the limited past effort in developing QSARs, the prediction of metabolic
constants .Vmax; Km/ continues to be the bottleneck for implementing QSAR-based
PBTK models [40, 41]. At the present time, there does not exist a methodology for
predicting a priori the values of the metabolic constants in various species of con-
cern for ecotoxicological risk assessment. In the absence of a validated QSAR for
metabolic constants, an useful modeling strategy involves setting the hepatic extrac-
tion to 0 or 100% in the PBTK models. Using this approach, one can predict the
plausible range of the blood concentration–time profiles prior to in vivo experimen-
tation [5].

2.5 Model Validation

Once the model structure, equations, and parameters are assembled and the code
written in the simulation/programming language, comparison of simulations with
experimental data is undertaken to validate/refine the model. The primary objec-
tive of model validation/evaluation process is then to determine whether all major
TK determinants/processes have been adequately identified and characterized. The
choice of method(s) for evaluating and validating the model (visual inspection, dis-
crepancy indices, statistical tests including residual analysis) would depend upon the
purpose for which the model is used. Even though quantitative tests of goodness of
fit are useful, it is equally important to consider the ability of the model to provide an
accurate prediction of the general trend of the time-course data (i.e., bumps, valleys).

The lack of precise knowledge about the parameter values may contribute to un-
certain predictions of dose metrics whereas the variability of parameter values in a
population would lead to difference in toxicokinetics and tissue dose of the chemi-
cal being modeled. In this regard, uncertainty analysis (i.e., evaluation of the impact
of the lack of precise knowledge about the numerical value of the input parameter
or model structure on the model output) as well as variability analysis (i.e., eval-
uation of the impact of the range of parameter values expected in a population on
model output) are relevant. These analyses, often conducted along with a sensitiv-
ity analysis, help refine the confidence in PBTK models intended for use in risk
assessment [2]. When conducting these analyses, it is important to ensure that the
resulting model and parameters are within plausible range or representative of the
reality. Particularly [4],

� The numerical values of physiological parameters are within known, plausible
limits.

� The sum of tissue volumes is lower than or equal to the body weight.
� The sum of tissue blood flows is equal to cardiac output.
� The mass balance is respected (chemical absorbed D chemical in body C

chemical eliminated).
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� The covariant nature of the parameters is appropriately respected (e.g., the animal
with the lowest breathing rate cannot be the one receiving the highest cardiac
output).

3 PBTK Models for the Rat

In this chapter, the rat is used to illustrate the development and implementation of
PBTK models for terrestrial species. The initial modeling example relates to the
exposure of adult male rats to toluene (a volatile organic chemical) in the inhaled
air. The rat PBTK model for toluene consists of four compartments representing the
adipose tissue, the PPT, richly perfused tissues (RPT), and the metabolizing tissue
(liver) interconnected by systemic circulation as well as a gas-exchange lung com-
partment. In this model, the PPT compartment comprises muscle and skin whereas
the RPT compartment represents brain and the viscera, including kidney, thyroid,
bone marrow, heart, testes, and hepatoportal system. For solving the set of equa-
tions constituting the inhalation PBTK model for toluene, a modeling software that
contains integration algorithms for solving differential equations is required. Alter-
natively, the various parameters and equations can be entered within an EXCEL R�

spreadsheet and solutions obtained by integrating according to Euler algorithm [6].
Accordingly, the first step would be to enter the numerical values of the PBPK model
parameters and identify them appropriately so that these can be used anywhere in the
spreadsheet. For example, the numerical value contained in cell D5 is referred to as
Qc (Table 3). Since the cardiac output is referred to as Qc in this example, whenever
Qc is typed in any other part of the spreadsheet, the numerical value found in cell
D5 will be imported automatically. Table 4 lists all the model equations and the way
in which they are entered into the EXCEL R� spreadsheets. In effect, two equations
per compartment are written to facilitate the tracking of the temporal evolution of
(1) the rate of change in concentration .dC=dt/ (i.e., a differential equation) as well
as (2) the concentration .C / (i.e., integral of the differential equation – based on
Euler algorithm).

Accordingly, as shown in Fig. 3, calculations for the four tissue compartments
occupy eight columns (columns E–L) and the calculation/representation of the
simulation time, exposure concentration, arterial concentration, and venous blood
concentration occupies additionally one column each (columns B, C, D, and M,
respectively). In this example, each line in the EXCEL R� spreadsheet represents
the state of the system (in terms of chemical concentrations) at every integra-
tion/communication interval (i.e., 0.005 h). Every time the numerical values in cells
corresponding to input parameters are changed, the solution to the set of this inhala-
tion PBTK model equations for toluene in the rat is generated anew (Fig. 3).

The earlier PBTK model can be expanded to include the uptake of chemicals by
various exposure routes (e.g., oral, inhalation, dermal) (Fig. 4). Appendix 1 presents
the model code for constructing such a PBTK model to simulate the toxicokinetics
of perchloroethylene in rats exposed by the oral, dermal, and inhalation routes [43].
The simulations obtained with this multiroute PBTK model are depicted in Fig. 5.
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Table 3 List of parameters for the four-compartmental rat PBTK model, their numerical values,
and location in EXCEL R� spreadsheet

Parameters Abbreviationa Numeric valuesb Cell locationc

Cardiac output Qc 5.25 L/h D5
Alveolar ventilation rate Qp 5.25 L/h D6
Fat blood flow Qf 0.47 L/h D7
Hepatic blood flow Ql 1.31 L/h D8
Poorly perfused tissues (PPT) Qs 0.79 L/h D9
Richly perfused tissues (RPT) Qr 2.68 L/h D10
Fat volume Vf 0.022 L E7
Liver volume Vl 0.012 L E8
PPT volume Vs 0.174 L E9
RPT volume Vr 0.012 L E10
Fat:blood partition coefficient Pf 56.72 F7
Liver:blood partition coefficient Pl 4.64 F8
Poorly perfused tissue:blood
partition coefficient

Ps 1.54 F9

Richly perfused tissue:blood
partition coefficient

Pr 4.64 F10

Blood:air partition coefficient Pb 18 G7
Maximal velocity of metabolism Vmax 1.66 mg/h H8
Michaelis–Menten affinity

constant
Km 0.55 mg/L I8

a
The various model parameters are referred to, using these abbreviations in the spreadsheet

b
All parameter values were based on Tardif et al. [42]

c
The cell locations provided here correspond to the column and row coordinates respectively, that

is, the alphabetical letters denote the columns and the Arabic numerals correspond to the rows of
the spreadsheet

4 PBTK Models for Cattle

For PBTK modeling of chemical contaminants in cows, the conceptual model struc-
ture and mass-balance differential equations are essentially the same as shown for
the rat in the preceding section. Even though there are important physiological dif-
ferences (e.g., digestive system), the level of detail to be included in the PBTK
model would depend upon the purpose for which the model is being developed. For
simulating the transfer of lipophilic contaminants to milk in lactating cows, a simple
model structure shown in Fig. 6 is sufficient.

The rate of change of the amount of chemical in blood .dAb=dt/ can be calculated
as follows [44]:

dAb

dt
D
X

Qt �
�

Cb � Ct

Pt

�
� CLmilk � Pmilk � Cb; (14)

where Qt refers to the tissue blood flow, Ct is the concentration of chemical in
the tissue, Pt is the tissue:blood partition coefficient, Cb is the blood concentration,
CLmilk is the milk clearance, and Pmilk is the milk:blood partition coefficient.
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Fig. 3 Print out of a computer screen depicting an EXCEL R� spreadsheet with (1) the PBTK model
simulation of venous blood concentrations of toluene during and following a 4-h exposure of rats
to 200 ppm of this chemical, (2) the numerical values of the PBTK model parameters, as well as
(3) a portion of the raw numbers corresponding to calculations of tissue and blood concentrations,
simulated at time intervals of 0.005 h

Fig. 4 Conceptual representation of a multiroute PBTK model for perchloroethylene in the rat

The PBTK model has been used to simulate the toxicokinetics and milk transfer
of 2,3,7,8-TCDD [44]. Tables 5 and 6 represent parameters useful for PBTK mod-
eling in cows, namely, the physiological parameters and tissue composition data.
PBTK models, similar to those for cows, have also been constructed for sheep,
goats, and swine [45–49].
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Fig. 5 PBTK model-based
route to route extrapolation
of the toxicokinetics of per-
chloroethylene in the rat: (a)
Inhalation: 100 ppm for 4 h;
(b) Oral dose: 10 mg/kg; (c)
Dermal contact: 100 ppm in
air for 4 h

Fig. 6 Conceptual represen-
tation of the PBTK model for
lipophilic compounds in dairy
cattle

Table 5 Physiological parameters for the cattle PBPK model [44]

Parameter Lactating cow Cow

Blood volume (L) 42 42
Liver volume (L) 8.5 8.5
Fat volume (L) 61 135
Richly perfused tissue volume (L) 31 31
Poorly perfused tissue volume (L) 310 385
Cardiac output (L/day) 86,500 43,250
Liver blood flow (L/day) 39,600 19,800
Fat blood flow (L/day) 3,300 1,650
Richly perfused tissue blood flow (L/day) 26,300 13,150
Poorly perfused tissue blood flow (L/day) 17,300 8,650
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Table 6 Lipid content of richly perfused tissues in dairy cattle [17]

Total lipid Neutral lipids Phospholipids
(fraction of tissue (fraction of total (fraction of total

Tissues weight) lipids) lipids)

Brain 0.0800 0.4795 0.5205
Gall bladder 0.0150 0.9000 0.1000
Heart 0.0600 0.6250 0.3750
Kidney 0.0670 0.7725 0.2275
Pancreas 0.1610 0.2430 0.7570
Spleen 0.0506 0.2500 0.7500
Stomach 0.0285 0.1874 0.8126
Adrenal glands 0.0472 0.9885 0.0115
Parathyroid and thyroid glands 0.0140 0.6250 0.3750

Fig. 7 Conceptual representation of the PBTK model for dioxins in chicken [50]. c Central com-
partment, f fat compartment, yf yolk fat, P partition coefficient, V compartment volume, Q flow,
D dose, Fabs fraction absorbed, Eff laying efficiency

5 PBTK Models for Birds

PBTK modeling of chemicals in birds is limited to one published effort. Van
Eijkeren et al. [50] simulated the transfer and toxicokinetics of dioxins and dioxin-
like PCBs in chicken following exposure to contamined feed. The model is essen-
tially simple (Fig. 7), consisting of two compartments: one central and one adipose
tissue compartment. The adipose tissue compartment comprises the abdominal fat,
subcutaneous fat as well as intermuscular fat. All the other tissues of the chicken are
lumped within the central compartment. Compartments are characterized by their
volume of distribution (characterized by the compartment volume V and partition
coefficient P ). Compartments are interconnected by flows .Q/, as in other PBTK
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Table 7 Physiological parameters for the hen [51–67]

Parameters Value

Cardiac output (QC; mL/min) 234–430
Blood flow to richly perfused tissues
(fraction of QC)

0.52

Blood flow to yolk (fraction of QC) 0.05
Blood volume (mL/kg body weight) 90
Volume of fat as fraction of body weight 0.04–0.07
Volume of liver as fraction of body weight 0.02–0.0262
Volume of richly perfused tissues as
fraction of body weight

0.098

Volume of poorly perfused tissues as
fraction of body weight

0.53–0.66

models. The toxicant elimination from the central compartment is described using a
clearance term as well as yolk fat excretion. The yolk fat excretion, in turn, is com-
puted on the basis of the laying efficiency Eff, the distribution volume of yolk fat as
well as the volume of distribution of the central compartment (Volume Vc and par-
tition Pc). Table 7 lists the parameters useful for the development of PBTK models
in hen.

6 PBTK Models for Fish

The process and approach involved in the development of PBTK models for aquatic
species are similar to that of terrestrial species discussed earlier. The PBTK models
are instrumental in simulating the kinetics of ADME in fish exposed to chemicals
in water or diet. Although the conceptual model and the mathematical descriptions
of tissue distribution and metabolism are identical to that of the rats (Fig. 8), the
mechanistic determinants and equations determining absorption and elimination in
the fish differ from that of the rat. Principally, the calculation of the arterial blood
concentration resulting from branchial flux differs from the manner in which inhala-
tion exposure is modeled in the rat. This is due to the fact that, in the rat, the uptake
and equilibrium during pulmonary exposures are driven by the ratio of chemical
concentration in arterial blood and ambient air [30, 68, 69]. However, in the fish,
due to countercurrent flow, the arterial blood equilibrates with inspired water (blood
flow-limited exchange) whereas the venous blood equilibrates with expired water
(ventilation-limited exchange). Chemical flux at fish gills can be calculated as func-
tion of the exchange coefficient and difference in chemical activities in venous blood
and inspired water as follows [20]:

Fg D kx �
�
Cinsp � Cven=Pbw

�
: (15)

The exchange coefficient kx, in turn, is equal to Qg (respiratory volume) when
the equilibration of inspired water with arterial blood limits chemical exchange,
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Fig. 8 Conceptual representation of a PBTK model for fish. PPT poorly perfused tissues, RPT
richly perfused tissues, GI gastrointestinal. Based on Nichols et al. [20]

or to QcPbw (cardiac output times blood:water partition coefficient) when the
equilibration of venous blood with expired water limits chemical exchange. The
aforementioned general equation can then be rewritten as follows [20, 68, 69]:

Fg D min
�
Qg; Qc � Pbw

� � �Cinsp � Cven=Pbw
�

: (16)

Figure 9 illustrates the set of equations that need to be solved for predicting the
toxicokinetics of inspired chemicals in the fish. Additional equations for dermal and
dietary uptake, as required, can be included for simulating other exposure scenarios
[20, 21]. The template presented in Fig. 10 is essentially the same as the one for
the rat. Comparing with the rat PBTK model (Table 4), it can be seen that (1) the
alveolar ventilation rate .Qp/ in the rat was replaced by the effective ventilation rate
.Qg/ in the fish, and (2) the numerical values of all other parameter differ between
rats and fish. Further, in contrast to the rat model, the arterial blood concentration
.Ca/ in the fish model was calculated as follows:

Ca D Cv C
GUL �

�
Cinh � Cv

Pb

�
Qc

: (17)

Therefore, the equation in cell D36 of the spreadsheet for the fish becomes as follows:

D36 D U35C GUL � .C36 �U35=Pb/

Qc
; (18)

where GUL is the gill uptake limitation ŒDmin.Qg; Qc � Pbw/� [68].



164 K. Krishnan and T. Peyret

Fig. 9 Mathematical representation of a fish PBTK model. Based on Nichols et al. [68].

In Figure 10, the parameters as well as simulations of the PBTK model for
1,1,2,2-tetrachloroethane in rainbow trout are presented (exposure concentration
D 1:06 mg=L, exposure duration D 4 h, cardiac output D 2:07 L=h; effective ven-
tilation rate D 7:20 L=h D 0:18 L=h; hepatic blood flow D 0:06 L=h; blood flow
to PPT D 1:24 L=h; blood flow to richly perfused tissues .RPT/ D 0:48 L=h;
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Fig. 10 Printout of a computer screen depicting an EXCEL R� spreadsheet with (1) the PBTK
model simulation of arterial blood concentration (CA) in rainbow trout during and following 48-h
exposure to 1,1,2,2-tetrachoroethane in water (1.062 mg/L), (2) the numerical values of the PBTK
model parameters, as well as (3) a portion of the raw numbers corresponding to calculations of
tissue and blood concentrations, simulated at time intervals of 0.05 h

fat volume D 0:098 L; liver volume D 0:012 L; PPT volume D 0:818 L; RPT
volume D 0:071 L; fat:blood partition coefficient D 44:9; liver:blood partition
coefficient D 2:55; PPT:blood partition coefficient D 2:46; RPT:blood partition
coefficient D 2:55; blood:water partition coefficient D 5.17; and the metabolism
rate D 0) [30]. The code for this fish PBTK model, in textual form, is presented in
Appendix 2.

Table 8 lists PBTK models developed so far in various fish species whereas
Tables 2 and 9 provide summary of parameters useful for constructing PBTK mod-
els in channel catfish, rainbow trout as well as fathead minnows.

7 Applications in Ecotoxicology and Risk Assessment

Simulation models are effective tools for designing toxicology experiments and
for conducting extrapolations essential for risk assessments. A principal advan-
tage of such tools as the PBTK models is that they allow the evaluation of the
various plausible hypotheses by computer simulation. One can ask questions of the
“if : : : then : : :” nature. For example, for a given set of physiological and biochemi-
cal parameters, what is the impact of change in chemical structure (or lipophilicity)
on tissue dose and toxicokinetics? Conversely, for a given chemical, what would be
the impact of changes in physiology (i.e., reflective of species differences) on the
target tissue dose? The model can then be used to generate quantitative predictions
of the expected outcome and are tested experimentally. The PBTK models can be
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Table 8 PBPK models developed for fish

Species Chemical Reference

Dogfish shark (Squalus acanthias) Phenol red and its glucuronide [70]
Sting rays (Dasyatidae sabina and
Dasyatidae sayi)

Methotrexate [71]

Rainbow trout (Oncorhynchus mykiss) Pentachloroethane [68]
Pyrene [72]
1,1,2,2-Tetrachloroethane,

pentachloroethane,
hexachloroethane

[20, 30]

2; 20; 5; 50-Tetrachlorobiphenyl [73]
Paraoxon [74]

Brook trout (Salvenus fontinalis) 2,3,7,8-Tetrachlorodibenzo-p-
dioxin

[75]

Lake trout (Salvelinus namaycush) 1,1,2,2-Tetrachloroethane,
pentachloroethane,
hexachloroethane

[76]

Channel catfish (Ictalurus punctatus) 1,1,2,2-Tetrachloroethane,
pentachloroethane,
hexachloroethane

[20, 77]

Fathead minnows (Pimephales promelas) 1,1,2,2-Tetrachloroethane,
pentachloroethane,
hexachloroethane

[21]

2; 20; 5; 50-Tetrachlorobiphenyl [78]
Tilapia (Oreochromis mossambicus) Arsenic [79, 80]

Table 9 Lipid content of catfish, fathead minnow, and trout tissues [32]

Fraction of tissue weighta

Tissue Species Nonpolar lipid Total lipid Water

Blood Catfish 0:006˙ 0:001 0:013˙ 0:001 0:839˙ 0:004

Fathead minnow 0:009˙ 0:001 0:019˙ 0:001 0:876˙ 0:014

Trout 0:007˙ 0:001 0:014˙ 0:001 0:839˙ 0:004

Fat Catfish 0:886˙ 0:016 0:899˙ 0:016 0:050˙ 0:015

Fathead minnow 1:001˙ 0:030 1:010˙ 0:033 0:016˙ 0:009

Trout 0:934˙ 0:005 0:942˙ 0:006 0:050˙ 0:015

Liver Catfish 0:016˙ 0:002 0:039˙ 0:003 0:735˙ 0:005

Trout 0:018˙ 0:002 0:045˙ 0:004 0:746˙ 0:003

Muscle Catfish 0:002˙ 0:000 0:009˙ 0:001 0:791˙ 0:003

Fathead minnow 0:017˙ 0:001 0:025˙ 0:001 0:806˙ 0:010

Trout 0:022˙ 0:001 0:030˙ 0:003 0:769˙ 0:004
a
Mean˙ standard error

viewed as dynamic constructs that can be continually updated as significant new
information and data become available.

The principal application of PBTK models in ecotoxicology and risk assessment
is to predict the toxicokinetics, bioconcentration, bioaccumulation, and target tissue
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dose of the parent chemical or its reactive metabolite. Using the tissue dose of the
putative toxic moiety of a chemical in risk assessment calculations provides a better
basis of relating to the observed toxic effects than the external or exposure con-
centrations of the parent chemical [81–83]. Because PBTK models facilitate the
prediction of target tissue dose for various exposure scenarios, routes, doses, and
species [81, 83], they are instrumental in addressing the uncertainty associated with
the conventional extrapolation approaches and uncertainty factors employed in risk
assessments [1, 2, 81, 84].

In conclusion, the PBTK models represent a systematic approach for identifi-
cation, characterization, and integration of the mechanistic determinants of uptake,
metabolism, distribution, and excretion of chemicals in biota. The development of
such mechanistic toxicokinetic models should contribute to refinement/reduction of
animal use in toxicology and ecotoxicology studies, as well as the enhancement of
the scientific basis of risk assessments.
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Appendix 1: Code for the PBTK Model of Perchloroethylene
in the Rat

! PARAMETERS
! Constants
CONSTANT BW D 0:25 ! Body weight (kg)
CONSTANT KQC D 15 ! Cardiac output (L/hr/kg)
CONSTANT KQP D 15 ! Alveolar ventilation (L/hr/kg)
CONSTANT SURF D 70 ! Skin surface area .cm2/

! Volumes (fraction of body weight)
CONSTANT KVF D 0:09 ! Fat volume
CONSTANT KVLD 0:049 ! Liver volume
CONSTANT KVS D 0:72 ! Volume of poorly perfused tissues
CONSTANT KVR D 0:05 ! Volume of richly perfused tissues
CONSTANT KVSK D 0:10 ! Skin volume
! Tissues blood flows (Fraction of QC)
CONSTANT KQF D 0:05 ! Fat blood flow(l/hr/QC)
CONSTANT KQLD 0:26 ! Liver blood flow (l/hr/QC)
CONSTANT KQR D 0:44 ! Richly perfused tissue blood flow (l/hr/QC)
CONSTANT KQS D 0:20 ! Poorly perfused tissues blood flow (l/hr/QC)
CONSTANT KQSK D 0:05 ! Skin blood flow (l/hr/QC)
! Partition coefficients
CONSTANT PB D 18:85 ! Blood:air
CONSTANT KPLD 70:3 ! Liver:air
CONSTANT KPF D 1638:0 ! Fat:air
CONSTANT KPR D 70:3 ! Richly perfused tissues:air
CONSTANT KPS D 20:0 ! Poorly perfused tissues:air
CONSTANT KPSK D 41:50 ! Skin:air
CONSTANT KPW D 0:79 ! Water:air
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! Biochemical and chemical parameters
CONSTANT MW D 165:834 ! Molecular weight (g/mol)
CONSTANT KVMAXD 0:9 ! Maximum velocity (mg/hr/kg)
CONSTANT KMD 5:62 ! Michaelis constant (mg/L)
CONSTANT Kp D 0:09 ! Skin permeability constant (cm/hr)
CONSTANT KaD 3:00 ! Oral absorption constant .hr�1/

CONSTANT F D 1:00 ! Bioavailability
! Simulation parameters
CONSTANT TSTOPD 24. ! Simulation length (hr)
CONSTANT DUREED 7. ! Exposition length (hr)
CONSTANT CINTD 0:1 ! Communication interval
! Exposure concentrations
CONSTANT CONC D 0:0 ! Atmospheric Concentration (ppm)
CONSTANT DOSED 0:0 ! Oral dose (mg/kg)
! Scaled parameters
! Volumes
VR D KVR�BW ! Volume of richly perfused tissues (L)
VS D KVS�BW ! Volume of poorly perfused tissues (L)
VF D KVF�BW ! Volume of fat (L)
VL D KVL�BW ! Volume of liver (L)
VSK D KVSK�BW ! Volume of skin (L)
! Flows
QC D KQC�BW��0.7 ! Cardiac output (L/hr)
QP D KQP�BW��0.7 ! Alveolar ventilation (L/hr)
QF D KQF�QC ! Blood flow to fat (L/hr)
QL D KQL�QC ! Blood flow to liver (L/hr)
QR D KQR�QC ! Blood flow to richly perfused tissues (L/hr)
QS D KQS�QC ! Blood flow to poorly perfused tissues (L/hr)
QSK D KQSK�QC ! Blood flow to skin (L/hr)
! Metabolic constant mg/hr
VMAXD KVMAX�BW��0.74 ! Maximum velocity (mg/hr)
! Partition Coefficients
PL D KPL/PB ! Liver:blood
PF D KPF/PB ! Fat:blood
PR D KPR/PB ! Richly perfused tissues:blood
PS D KPS/PB ! Poorly perfused tissues:blood
PSK D KPSK/PB ! Skin:blood
PSKm D KPSK/1 ! Skin:air
! MODEL EQUATIONS
! Calculation of blood concentration
CAD.QC�CVCQP�CI/=.QCC.QP=PB// ! Arterial blood concentration (mg/L)
CVD .QF�CF=PFCQL�CL=PLCQR�CR=PRCQS�CS=PSCQSK�CSK=PSK/=

QC ! Venous blood concentration (mg/l)
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! Perchloroehtylene in stomach
RAG D Ka�AG ! Rate of absorption in stomach
AGD DOSE�F - INTEG(RAG, 0.0) ! Quantity in stomach
! Liver compartment
RCL D (QL�(CA-CL/PL)-RAM C RAG)/VL ! Rate of change in concentration
(mg/L/hr)
CL D INTEG(RCL,0) ! Concentration in liver (mg/L)
! Perchloroethylene metabolism
RAM D VMAX�CL/PL/(KM C CL/PL)
AM D (RAM,0.)
! Fat compartment
RCF D QF/VF�(CA-CF/PF) ! Rate of change in concentration (mg/L/hr)
CF D INTEG(RCF,0) ! Concentration in Fat (mg/L)
! Richly perfused compartment
RCR D QR/VR�(CA-CR/PR) ! Rate of change in concentration (mg/L/hr)
CR D INTEG(RCR,0) ! Concentration in Richly perfused tissues (mg/L)
! Poorly perfused tissues
RCS D QS/VS�(CA-CS/PS) ! Rate of change in concentration (mg/L/hr)
CS D INTEG(RCS,0) ! Concentration in Poorly perfused tissues (mg/L)
! Skin compartment
RCSK D QSK/VSK�(CA-CSK/PSK) C Kp�SURF/1000�(Cliq-CSK/PSKm)
! Rate of change in concentration (mg/L/hr)
CSK D INTEG(RCSK,0) ! Concentration in skin (mg/L)

Appendix 2: Code for the PBTK Model
of 1,1,2,2-Tetrachloroethane in the Rainbow Trout

! PARAMETERS
! Constants
! Physiological parameters
CONSTANT BW D 1. ! Body weight (L)
CONSTANT QGD 7:2 ! Effective respiratory volume (L/hr)
CONSTANT QC D 2:07 ! Cardiac output (L/hr)
! Volumes (Fraction of body weight)
CONSTANT VFC D 0:098 ! Fat volume
CONSTANT VLC D 0:012 ! Liver volume
CONSTANT VSC D 0:818 ! Volume of poorly perfused tissues
CONSTANT VRC D 0:063 ! Volume of richly perfused tissues
CONSTANT VKC D 0:009 ! Volume of kidney
! Tissues blood flows (Fraction of cardiac output (QC))
CONSTANT QFC D 0:085 ! Blood flow to fat (L/hr/QC)
CONSTANT QLC D 0:029 ! Blood flow to liver (L/hr/QC)
CONSTANT QSC D 0:600 ! Blood flow to poorly perfused tissues (L/hr/QC)
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CONSTANT QRC D 0:230 ! Blood flow to richly perfused tissues (L/hr/QC)
CONSTANT QKC D 0:056 ! Blood flow to kidney (L/hr/QC)
! Metabolic constants
CONSTANT VMAXD 0 0 ! Maximum velocity (mg/hr)
CONSTANT KMD 0:000001 ! Michaelis constant (mg/L; non-zero value)
! Partition coefficients
CONSTANT PL D 2:55 ! Liver:blood
CONSTANT PF D 44:9 ! Fat:blood
CONSTANT PR D 2:55 ! Richly perfused tissues:blood
CONSTANT PS D 2:46 ! Poorly perfused tissues:blood
CONSTANT PK D 3:07 ! Kidney:blood
CONSTANT PB D 5:17 ! Blood:water
! Simulation parameters
CONSTANT TSTOPD 70 ! Simulation length (hr)
CONSTANT DUREED 48. ! Exposition length (hr)
CONSTANT CINTD 0:25 ! Communication interval
! Exposure parameters
CONSTANT CONC D 1:06 ! Inspired concentration (mg/L)
! Scaled parameters
! Flows
QF D QFC�QC ! Fat blood flow (L/hr)
QS D QSC�QC ! Poorly perfused tissues blood flow (L/hr)
QR D QRC�QC ! Richly perfused tissues blood flow (L/hr)
QL D QLC�QC ! Liver blood flow (L/hr)
QK D QKC�QC ! Kidney blood flow (L/hr)
! Volumes
VR D VRC�BW ! Richly perfused tissues volume (L)
VS D VSC�BW ! Poorly perfused tissues volume (L)
VF D VFC�BW ! Fat volume (L)
VL D VLC�BW ! Liver volume (L)
VK D VKC�BW ! Kidney volume (L)
! Gill uptake limitation
IF(QC�PB .GT. QR) THEN
GUL D QG !Water flow limited gill uptake
ELSE
GUL D QC�PB !Blood flow limited gill uptake
END IF
! MODEL EQUATIONS
! Calculation of blood concentration’
CA D CV C GUL�(CI-CV/PB)/QC ! Arterial blood concentration (mg/L)
CV D .QF�CF=PFC .QLC QR/�CL=PLC 0:4�QS�CS=PSC .QKC 0:6�QS/�
CK=PK/=QC ! Venous blood concentration (mg/L)
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! Liver compartment
RCL D (QL�CA C QR�CR/PR)/VL-(QL C QR)/VL�CL/PL-RCM
! Rate of change in tissue concentration (mg/L/hr)
CL D INTEG(RCL,0) ! Concentration in the liver (mg/L)
! Liver Metabolism
RCM D (VMAX�CL/PL)/(KMC CL/PL)/VL ! Rate of concentration metabolized
CM D INTEG(RCM,0.) ! Concentration metabolized
! Fat compartment
RCF D QF/VF�(CA-CF/PF) ! Rate of change in tissue concentration (mg/L/hr)
CF D INTEG(RCF,0) ! Concentration in the fat (mg/L)
! Richly perfused tissues compartment
RCR D QR/VR�(CA-CR/PR) ! Rate of change in tissue concentration (mg/L/hr)
CR D INTEG(RCR,0) ! Concentration in the richly perfused tissues (mg/L)
! Poorly perfused tissues compartment
RCS D QS/VS�(CA-CS/PS) ! Rate of change in tissue concentration (mg/L/hr)
CS D INTEG(RCS,0) ! Concentration in the poorly perfused tissues (mg/L)
! Kidney compartment
RCK D .QK�CAC 0:6�QS�CS=PS/=VK-.QKC 0:6�QS/=VS�CK=PK
! Rate of change in tissue concentration (mg/L/hr)
CK D INTEG(RCK,0) ! Concentration in the Kidney
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Abstract A healthy terrestrial food web is essential for the sustainable use of soils.
Earthworms are key species within terrestrial food webs and perform a number of
essential functionalities like decomposition of organic litter, tillage and aeration of
the soil, and enhancement of microbial activity. Chemicals may impact the func-
tions of the soil by directly affecting one or more of these processes or by indirectly
reducing the number and activity of soil engineers like earthworms. The scope of
this chapter is on the assessment and modeling of the interactions of chemicals with
earthworms and the resulting impacts. It is the aim of this contribution to provide a
general review of the research that were undertaken to increase our understanding
of the underlying processes.

Chemicals may induce a variety of adverse effects on ecosystems. Chemical spe-
ciation, bioavailability, bioaccumulation, toxicity, essentiality, and mixture effects
are key issues in assessing the hazards of chemicals. Although it is possible to group
chemicals with regard to their fate and effects, a plethora of chemical and biologi-
cal processes affects actually occurring effects. These effects are usually modulated
by (varying) environmental conditions. Using the basic processes underlying the
uptake characteristics and the adverse effects of organic pollutants and metals on
earthworms as an illustration, an overview will be given of the interactions between
the chemistry and biology of pollutants, mostly at the interface of biological and
environmental matrices. The impact of environmental conditions on uptake and tox-
icity of chemicals for soil dwelling organisms will explicitly be accounted for. The
environmental chemistry of organic compounds and metals, as well as the resulting
methods for assessing chemical availability are assumed as tokens and the emphasis
is thus on the biological processes that affect the fate and effects of contaminants
following interaction of the earthworms with the bioavailable fraction.
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1 Earthworms: Relevance, Preferences, and Interactions

1.1 Earthworms and Their Environmental Relevance

Soils are used for a large number of strongly varying purposes, including agriculture,
forestry, gardening, and playing fields. A healthy terrestrial food web is essential for
the sustainable use of soils for these and other purposes. The soil food web is the set
of organisms that work underground to help sustain the essential functions of soil.
There are billions of organisms that make up the soil food web. These include bacte-
ria, fungi, protozoa, nematodes, arthropods, and earthworms. Each type of organism
plays an important role in keeping the soil healthy. Earthworms take a special place
in this respect as not only they eat about every other particle in the soil, but also
when they eat they leave behind “castings” which are high in organic matter and
plant nutrients, and are a valuable fertilizer. By actively adding earthworms to the
soil, soils get in a better condition and their fertility is further improved.

Widely respected ecologists like Darwin and Righi were among the first scientists
to recognize the importance of species in general and earthworms in particular. Dur-
ing 40 years of active research on endangered earthworms in tropical areas, Righi
published about 100 papers on earthworm taxonomy, physiology, ecology, and bio-
geography: see for instance Fragoso et al. [1] for a review on the influence of Righi
on tropical earthworm taxonomy. It was Charles Darwin [2] who considered earth-
worms as one of our planet’s most important caretakers. “I doubt,” he said, “whether
there are many other animals which have played so important a part in the history
of the world, as have these lowly organized creatures.” Darwin was the first to de-
scribe how earthworms tilled the soil, swallowing and ejecting soil as castings, or
worm manure. He estimated that an acre of garden soil could contain over 50,000
earthworms and yield 18 tons of organic castings per year (scientists now figure
worms can number over one million per acre). Darwin’s naturalist approach and his
long-term experience in observing the behavior of different animals helped him dis-
tinguish various possible “functions” of earthworms. He briefly alluded to different
functional groups of worms:

1. Deep burrowing and shallow burrowing species
2. Large-compact and small-granular casters
3. Litter and soil feeders

These characteristics are among the most important characteristics currently used
in various functional classifications of the soil fauna and earthworms. The most
widely used recent functional classifications are those of Bouché [3], Lee [4,5], and
Lavelle [6]. These classes generally include three main groups (endogeic, anecic,
and epigeic earthworms) that are defined on the predominant habitat of a species.
Although these three subgroups have been proposed, some earthworm species do
not seem to fit into any particular category or, rather, fit in between proposed
categories (e.g., epi-endogeic and endo-anecic). Other earthworm’s classifications
include those of Lavelle [7] and Lavelle et al. [8], into ecosystem engineers and
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litter transformers, and of Blanchart et al. [9] into compacting and decompacting
species. These schemes attempt to integrate knowledge on feeding habits and func-
tional significance of earthworms in the soil. Darwin’s contributions in this area deal
primarily with the influence of earthworms on soil physical processes, although he
also touches upon the selection and processing of particular leaf litters.

Earthworms move through the soil creating tunnels, and thus areas that can be
filled by air and water. Fields that are “tilled” by earthworm tunneling can absorb
water at a rate 4–10 times that of fields without earthworm tunnels. This reduces
water runoff, restores groundwater, and helps store more water for dry spells. Bur-
rowing also helps nutrients enter the subsoil at a faster rate and opens up pathways
for roots to grow into. During droughts the tunnels allow plant roots to penetrate
deeper, to reach the water they need to thrive. Earthworms help to keep the soil
healthy by moving organic matter from the surface into the soil. By speeding up the
breakdown of plant material, earthworms also speed up the rate at which nutrients
are recycled back to the plants. Earthworms are thus an essential part of the soil food
functioning. Without them, all the organic matter would build up on the soil surface.

The capability of changing the soil structure by preferential feeding on organic
material by earthworms was the basis for vermiculturing of organic-matter-rich
waste materials. Together with bacteria, earthworms are the major catalyst for de-
composition in a healthy vermicomposting system, although other soil species also
play a contributing role: these include insects, other worms, and fungi/molds. Ver-
micompost is a nutrient-rich, natural fertilizer and soil conditioner. The earthworm
species (or composting worms) most often used are Red Wigglers (Eisenia fetida)
or Red Earthworms (Lumbricus rubellus). These species are commonly found in
organic-rich soils throughout Europe and North America and especially prefer the
special conditions in rotting vegetation, compost, and manure piles. To benefit from
their active stimulation of soil processes, earthworms nowadays are commercially
available. Mail-order suppliers or angling (fishing) shops keep earthworms in bred
and composting worms are sold for vermicomposting practices and sold as bait.
Small-scale vermicomposting is well-suited to turn kitchen waste into high-quality
soil, where space is limited. Thanks to the pioneering work of Dr. Clive Edwards
[10] in the area of vermicomposting that this technique is now widely applicable
to generate soil structure and soil quality enhancing compost. Vermicomposts can
also be used in pollutant bioremediation for organic contaminants and heavy metals
as the microbial degradation of the organic pollutants is accelerated dramatically
and the heavy metals become irreversibly bound into the humic materials that are
formed, so that they are not available to plants. Dr. Zharikov’s research [11] into
methods of soil purification revealed that earthworms are also capable of enhancing
the cleaning of the contaminated soils by stimulating the growth of microorganisms
that breakdown the contaminants.

As there is no doubt that the earthworm can be of major benefit to a healthy
soil ecosystem, it is important to understand the key role of earthworms in many
biogeochemical cycles and in soil development as related to the impacts of land
uses. This is particularly true in relation to restoration of damaged ecosystems and
to preventive maintenance to avoid damage.
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1.2 Earthworms and Their Preferences

Environmental factors that provide the most dominant impacts on earthworm pop-
ulations are moisture, temperature, and pH, on top of food resource quantity and
quality. Soil moisture affects earthworm abundance, activity patterns, and thus ge-
ographic distribution. Earthworms tend to dig deeper or even tend to go into a
diapauses during periods of prolonged drought. During rainy periods earthworm
species tend to surface to escape from drowning. Soil temperature influences sea-
sonal activity, limiting earthworms during warm and cold periods. Soil pH often is
cited as a limiting factor on earthworm distributions. For instance, the best studied
group (European Lumbricidae) generally does not inhabit soils with pH below 4.0.
Other taxa tolerate lower pH values, including some Pacific coast native species (pH
3.1–5.0; [12]), thereby indicating that soil acidity might be less limiting for certain
earthworm species than for others.

Soil climate determines the periods of earthworm activity. Within a habitat type,
variations in soil climatic factors occur (because of slope, aspect, soil particle size
distribution, and drainage characteristics) that result in variation in earthworm ac-
tivity period and earthworm abundance. A forested habitat probably has a relatively
buffered soil climate compared to the more exposed grasslands and agricultural land.
Grassland temperature and moisture regimes are probably more extreme and could
accentuate the effects of slope, soil properties, and other site characteristics. An agri-
cultural cycle having long periods of bare ground could further intensify the impact
of weather on earthworms.

The quantity and quality of food influences earthworm abundance. Food sources
are all types of organic matter. Organic matter may render the soil strongly acidic,
could be rich in digestibility reducing compounds, or could have a high carbon-
to-nitrogen ratio. These qualities tend to reduce earthworm populations. Lack of
organic matter is generally a significant limiting factor for earthworms. The fact
that most agricultural soils are depleted of organic matter, likely accounts for lower
abundance of earthworms in agricultural land or recently abandoned cropland.

1.3 Earthworms and Essential Elements

Natural and man-made chemical substances may severely interfere the natural fluc-
tuations in earthworm populations in specific habitats. Availability or the lack of
essential nutrients on the one hand shapes natural ecosystems, whereas on the
other hand excess amounts of bioavailable nutrients and micropollutants reduce the
natural abundance of species and affect the natural ecosystem functioning. This
observation was the basis for the concept of optimal concentration of essential
elements (OCEE). This concept was among others proposed to account for metal-
specific aspects of essentiality and homeostasis.

A first attempt to account for the metal-specific aspects of essentiality and home-
ostasis was achieved by the optimal concentration of essential elements-no risk area
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Fig. 1 Hypothetical presentation of the OCEE curves of all individual organisms in a given en-
vironment. The inner envelope of these curves represents the no risk area (NRA) for that given
environment in which all organisms are protected from both toxicity and deficiency (adopted
from [13])

concept (OCEE-NRA) based upon the assumption that all OCEEs for all individ-
ual organisms belonging to a certain habitat type (ecoregions) are centered on the
natural essential element (metal) background concentration typical for that habitat.
Figure 1 gives a schematic representation of the OCEE-NRA concept: at low nu-
trient levels, adverse effects are observable related to lack of nutrients; increased
levels of essential elements induce toxicity. Furthermore, research results indicated
that the sensitivity of the toxicity response of an organism to an essential metal is a
function of the essential element concentration in which it was cultivated. Acclima-
tization explains the decrease in sensitivity at higher background concentrations in
the culture medium. The recognition and demonstration that organisms do belong to
different OCEE-NRAs underscore the relevance of this concept and have lead to the
fundamentals of the metallo-region concept. The major technical difficulties for the
integration of the OCEE-NRA concept into regulatory frameworks for environmen-
tal risk assessment are the spatial and temporal variability in natural background
levels as well as the variability in physicochemical conditions influencing metal
bioavailability and toxicity.

Apart from agriculturally oriented studies on optimal levels of essential elements,
relatively little quantitative information is available on deficiency levels of most
nutrients for earthworms.

1.4 Earthworms and Pollutants

As earthworms ingest large amounts of soil or specific fractions of soil (i.e., organic
matter), they are continuously exposed to contaminants through their alimentary
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surfaces [14]. Moreover, several studies have shown that earthworm skin is a sig-
nificant route of contaminant uptake as well [15–17]. Toxic substances and excess
nutrients are accumulated and subsequently exert adverse effects by a variety of
interactive modes of action, both with regard to the mechanisms of uptake and
the mechanisms of toxicity. Whereas interactions with organic micropollutants are
strongly modulated by organic carbon pools in the soil and in the fat tissue, uptake
and effects of metals are modulated by interactions between the various soil and
pore water constituents. Soil constituents serve in this sense as capacity control-
ling factors modulating the bioavailable pool whereas pore water parameters like
pH, dissolved organic carbon, and macronutrients like Ca/Mg/Na serve as intensity-
controlling factors as they modulate actually occurring effect.

It is the aim of this chapter to exemplify the use of earthworm as a key species
in soil toxicity testing. Based on ecological considerations, the objective of this
contribution is to give a general overview on the accumulation of chemicals by
earthworms and the toxic effects exerted due to interactions of these animals with
micropollutants. Providing an in-depth discussion of the basic phenomena under-
lying accumulation and adverse effects is not the primary aim. Instead, a short
overview will be provided of the approaches used in testing assessing and modeling
bioaccumulation and ecotoxicity.

2 Earthworms as Model Organism

2.1 Bioindicators for Chemical Stress

Bioindicators are used as representatives of parts of ecosystems or of one or more
functions [18]. The basic consideration of the use of biomarkers is that living or-
ganisms provide the best reflection of the actual state of ecosystems and of changes
therein. These measures can be done on either structure or functioning of ecosys-
tems. For both type of measurements, oligochaete are generally regarded as highly
suitable bioindicators. Their importance in the structure of ecosystems can be ex-
plained because they are an ecologically dominant invertebrate group. Moreover,
earthworms occur in many different soils from temperate to tropical areas. Also
their importance in food chains, with earthworms being a food source for many or-
ganisms such as birds and mammals, has implicated that many ecological studies
have focused on studying the ecology and ecotoxicology of the earthworm. There-
upon, most oligochaetic species are easy to handle and to culture under laboratory
settings [19]. Respecting this, earthworm species are often used as test organisms
to determine the effect and accumulation of chemicals from soil [19–23]. Due to
their behavior and morphology, earthworms are in close contact with the aqueous
and solid phases of the soil. From experimental studies it could be concluded that
for both inorganic [17] and organic [16] contaminants earthworms are exposed to
pollutants in the soil mainly via the pore water. Most oligochaetic species are not
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extremely sensitive to low levels of chemicals [24, 25]. The chemical composition
of their body is fairly constant, which facilitates the understanding of the mecha-
nisms of toxicity. Their internal organization is not highly complex, and possesses
strongly differentiated organs. Moreover, it is described very well in literature [18].

2.2 Ecophysiology of Earthworms

Oligochaete worms have a thick mucus layer that surrounds the epidermis [26],
through which respiration and the excretion of waste products occur. This mech-
anism makes the earthworms sensitive to water loss. The digestive interior of
oligochaete species is well investigated [27]. There is evidence that the uptake of
food via the gut is not a heterogeneous process during the gut passage. During in-
gestion mucus is mixed with the food. In the first part of the digestive system of an
oligochaete, calciferous glands actively release Ca2C in the gut contents. The crop
is used for storage of the gut content, before mechanical grinding and digestion in
the gizzard. The gizzard opens up into the intestine, which forms the largest part
of the alimentary canal. Gut conditions in the final part of the digestive system (the
intestine) are actively regulated by excretion of NH4

C. A typhlosole (see Fig. 2), a
dorsal infolding of the gut epithelium effectively increasing the internal surface, is
present along the anterior and mid intestine, thereby also increasing the secretory
and absorptive surface areas. The pH along the entire digestive tract is quite con-
stant between 6 and 7, and the digestion is driven by enzymes [28]. The gut pH is
often higher than the bulk soil pH, especially in earthworms inhabiting acid soils.

Fig. 2 Cross section of the posterior body cavity of earthworms
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The largest part of the body burden is bound in the chloragogenous tissue [29] lo-
cated around the digestive tract (see Fig. 3). The cells of this tissue (chloragocytes)
contain many chloragosomes, including calcium granula (type A) and sulfur-rich
granules (type B). All granulum types are likely to play a role in the homeostasis
of essential elements but also for detoxification of chemicals that entered the body.
The resorption capacity of the digestive tract is most efficient in the posterior ali-
mentary canal.

Fig. 3 Schematic of the anatomy of earthworms
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3 Accumulation

Biological uptake of most synthetic (hydrophobic) organic contaminants occurs by
simple passive diffusion across a cell membrane. Membrane carriers are not in-
volved and the biological effect of organic contaminants is often (but surely not
always) characterized by narcosis, implying that the extent of adverse effect of
organic contaminants is proportional to the value of the octanol–water partition co-
efficient. In contrast, as metals generally exist in strongly hydrated species, they are
unable to traverse biological membranes by simple diffusion. In general, the inter-
action of metals with organisms is somehow related to a liquid phase, according to
the principles of the Free Ion Activity Model (FIAM) [30]. The mechanisms can be
described as follows:

1. Advection or diffusion of the metal from the bulk solution to the biological
surface

2. Diffusion of the metal through the outer “protective layer”
3. Sorption/surface complexation of the metal at passive binding sites within the

protective layer, or at sites on the outer surface of the plasma membrane
4. Uptake of the metal (transport across the plasma membrane)

Membrane transport occurs by facilitated transport, usually passive (i.e. not against a
concentration gradient), and necessarily involves either membrane carriers or chan-
nels. The chemical binds to the carrier protein and is carried through the membrane
by a process that requires no cellular energy. There is some specificity to the carrier
protein binding, and so the process is applicable only for selected chemicals. Trans-
port of essential metals is for instance facilitated by carriers or pores specific to the
element, although metals are also transported on carriers designed for elements of
similar physicochemical characteristics.

3.1 BCFs and BAFs

The terms “Biota Concentration Factors” (BCFs) and “Bioaccumulation Factors”
(BAFs) can be defined as similar words and are both used to quantify to which
extent chemicals are transported from the exposure medium into organisms. By def-
inition, the higher the BCF value, the more chemicals are taken up and the higher
the potential risk regarding adverse effects on the organism itself and at higher
trophic levels. Most studies report relationships between internal and external con-
centrations (BCF) where steady state is assumed [31, 32]. An extended overview of
BCFs in earthworms for organic chemicals is given by Jager [33], whereas Sample
et al. [34] developed and tested uptake factors and regression models for uptake fac-
tors for metals in earthworms. The bioconcentration factors found for PCBs were
between 7,200 (low mol. PCB) and 126,000 (high mol. PCB). BCFs for chloroben-
zenes in earthworms ranged from 12 to 4,000. Pesticides display widely varying
BCF values: ranging from less than 1 (for instance Aldicarb: 0.7) to over 5,000
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(Lindane). In general, BCFs increase with hydrophobic properties of organic chem-
icals albeit that especially biotransformation may lower apparent BCF values. BCF
values are known to be species and soil dependent. As an example Kelsey et al. [35]
determined the BAF in four field-weathered soils for an epigeic species Eisenia
fetida, an anecic species Lumbricus terrestris, and an endogeic species Aporrec-
todea caliginosa. The epigeic species had BCFs that were approximately tenfold
higher than those for the other species. With regard to contaminant-residence time,
the BAF for E. fetida was lower in weathered soils relative to that in freshly amended
soils, but age of p; p0-DDE did not significantly alter the BAF for A. caliginosa [35].
The biota-soil accumulation factors (BSAFs) observed for individual PAHs in field-
collected earthworms (A. caliginosa) were up to 50-fold lower than the BSAFs
predicted using equilibrium-partitioning theory [36].

An overview of BCFs in earthworms for inorganic chemicals is given by Janssen
et al. [31]. Bioaccumulation factors varied between metals. The BCF of As ranged
from 0.1 to 3, Cd ranged from 1 to 203, Cr ranged from 0.03 to 0.5, Cu ranged from
0.2 to 8, Ni ranged from 0.07 to 0.6, Pb ranged 0.005 to 1.3, and Zn ranged from
0.1 to 18. In general, BCFs for metals decrease with higher exposure concentrations
[37]. The same inverse relationship was found in aquatic systems between bioaccu-
mulation factors and, trophic transfer factors and exposure concentrations [38].

A general finding is that BCFs decline with increasing pollutant concentration
in soil. The uptake and adverse effects of chemicals to earthworms can be modified
dramatically by soil physical/chemical characteristics, yet expressing exposure as
total chemical concentrations does not address this problem. Bioavailability can be
incorporated into ecological risk assessment during risk analysis, primarily in the
estimation of exposure. However, in order to be used in the site-specific ecological
risk assessment of chemicals, effects concentrations must be developed from labo-
ratory toxicity tests based on exposure estimates utilizing techniques that measure
the bioavailable fraction of chemicals in soil, not total chemical concentrations [39].
The final and most difficult task in any assessment is to relate body residues to levels
known, or suspected, to be associated with adverse biological responses. To ad-
dress this, physiological knowledge on chemical distribution over the body should
be combined with the knowledge on accumulation. Paracelsus stated in 1564 that
“What is there that is not poison? Solely the dose determines that a thing is not a
poison” [40]. We should add to this statement that also the biological significance
of accumulation is of importance [41].

3.2 More Compartments

Earthworms are able to accumulate organics to a great extent. The ability to deal
with high levels of accumulated organics can be ascribed to the manifestation of
organics to bind to fatty tissues [42–45]. Bioaccumulation of organics also can
be ascribed using multiple compartments, although two compartments are usually
sufficient.
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Earthworms are also able to accumulate metals to a great extent. The ability to
deal with high levels of accumulated metals can be ascribed to the slow turnover of
the tissues in which metals accumulate. Morgan et al. [46] found distinct differences
in the distribution of various metals throughout the earthworms’ body, whereby the
sequestration on chlorogocytes played a dominant role, resulting in different pat-
terns of tissue accumulation [47] and different tolerances [48]. Metals such as Cd
and Cu are predominantly bound to metal-binding proteins [49] and with these pro-
teins, the metal moves through the body to organs and tissues in which it is deposited
in inorganic forms. Cd was retrieved in high amounts from the nephridia and to a
lower extent from the body wall of earthworms [50]. Pb is found in waste nod-
ules located in the coelomic fluid [51]. The granulas contain many essential and
nonessential chemicals. For instance Cd preferentially binds to sulfur-rich granules
instead of oxygen-rich granules, and hence is found in the type B granules, also
called cadmosomes.

A pragmatic method to describe and quantify the internal sequestration of metals
is found in Vijver et al. [41, 52].

3.3 How to Perform Experiments for Optimal Results

Dynamic biological measures of bioavailability – thus the rate at which organisms
take up contaminants from the environment – are the best and according to the latest
scientific state-of- the-art on how to derive indicators of bioavailability [53]. Actual
uptake and elimination fluxes are very difficult to measure. A pragmatic solution
to overcome this problem is to measure body burdens as a function of time in an
organism exposed to the medium tested. Parameter estimation is done by curve fit-
ting the accumulation data. In the most simple case, the exposure concentration is
constant, and as soon as the organism is exposed, internal concentrations are in-
creasing [53, 54].

By this way an accumulation curve can be fitted according to the following gen-
eral equation (most simple form):

Q D C0 C .a=k/e�kt : (1)

In this equation, Q is the amount of chemical accumulated at equilibrium or at
steady-state conditions; C0 the initial body burden; a the uptake flux; k the elimina-
tion rate constant; and t is the time.

Exposure of organisms under fluctuating external conditions, as is the common
case in reality, can also be modeled. This is done by taking into account the kinetics
of the bioavailable fraction of the chemical for a specific organism. For instance, in
the case of biotransformation of the contaminant being taken up by the earthworm
or in case of cocoon production, (1) transforms into [55]:

Q D .a1C0/=.k2 � k0/ � .e�.k0t/ � e�.k2t//: (2)
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In (2) a1 is the uptake rate constant, k0 the rate constant for degradation of the
chemical in the medium, and k2 is the elimination rate constant.

The common experimental set up in order to measure accumulation is often to
expose relatively large numbers of earthworms, divided over a number of jars, to a
soil. At different time intervals, earthworms are sacrificed and measured for their
body burden. It is preferred to measure more frequently over time instead of more
replicates at the same exposure time. Especially within the initial stage of the ex-
posure and thus during initial uptake of the chemicals by the earthworms, many
samples with a small time interval should be taken. The sampling strategy should
be according a log-scale, with fewer measurements at the end than at the beginning
in order to accurately capture initial uptake kinetics.

Accumulation is the net effect of uptake and the ability of the organism to elim-
inate a chemical once it has entered the body. Estimation of uptake in the presence
of simultaneous elimination is improved significantly if the uptake is followed by
an elimination phase without uptake, because this will yield a better estimate of the
elimination rate constant, and consequently also a better estimate of the uptake pa-
rameter. Therefore, experiments usually involve an uptake phase and an elimination
phase, simply by transferring the organism to a clean medium after a certain period.
This situation can easily be performed when artificially spiked soils are used for
the accumulation testing. However, when using natural contaminated field soils, in
most cases it is difficult to find an uncontaminated field soil with similar character-
istics as the contaminated field soil. Subsequently an appropriate elimination phase
is difficult to test. An alternative technique allowing for the quantification of uptake
and turnover kinetics in biota is isotopic labeling. The main advantage of this tech-
nique is that it overcomes the problem of selecting an unpolluted reference site and
that it is nondestructive for the exposed organisms. Hence the biological variation
of accumulation can be studied for single species. Moreover, it overcomes detection
limitations within the body burden of earthworms, and allows insight into essential
metal uptake even in the presence of highly regulated body concentrations.

3.4 Alternative Measures of Bioaccumulation

Alternatives to assess bioaccumulation without the direct measurement of internal
concentrations in organisms or effects on earthworms are the use of mimic tech-
niques (see for an overview of these techniques [56]). The use of passive sampling
devices (PSDs) is an example of these kinds of mimic techniques which are poten-
tially direct chemical indicators for assessing the bioavailability of chemicals. PSDs
are constructed in several forms but often consist of lipophilic material within a
semipermeable membrane, mimicking biological membranes. Exposure of biota to
chemicals is assessed this way, and the techniques account for aging and mobility of
chemicals in the matrix [57]. The results of Awata et al. [57] showed that concentra-
tions as determined in the PSD were in good agreement with accumulation data in
the earthworms as measured after exposure in contaminated soils. Uptake rates and
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maximum concentrations in PSDs were observed to positively correlate with uptake
rates and maximum concentrations in earthworms for both of the soil types studied
(sandy loam and silt loam). These results indicate that PSDs may be used as a surro-
gate for earthworms and provide a chemical technique for assessing the availability
of aged chemical residues in soil. Similar findings were reported by Van der Wal
et al. [58], who concluded that measuring concentrations of hydrophobic chemicals
using polydimethylsiloxane solid phase microextraction (which is a kind of PSD)
is a simple and reliable tool to estimate bioaccumulation in biota exposed to soil.
The opposite was been concluded by Bergknut et al. [59], who showed a distinct
difference between evaluated PSD techniques and bioaccumulation in earthworms.
Generally, there were larger proportions of carcinogenic PAHs (4–6 fused rings) in
the earthworms compared to the concentrations as found with the mimic techniques.
In cases that the exposure media (e.g. soils) were heterogeneous, the PSDs had no
predictive capacity.

From the information provided above it may be concluded that it will be difficult
to develop a single and universally applicable chemical method that is capable of
mimicking biological uptake, and thus estimating the bioavailability of chemicals.
In some cases, a strong numerical relationship of bioaccumulation of chemicals
with biomimetic techniques is reported; in other cases no such correlation is found.
This general finding is related to the fact that accumulation by living organisms
like earthworms is more dynamic than can be simulated by chemical means. Only
in those cases where chemical interactions overrule organism-specific ecological
impacts (like feeding behavior, regulation of body concentrations by active uptake
and/or elimination, and biotransformation), a strong correlation between uptake and
biometry may be found.

4 Toxicity

4.1 Toxicity Testing

4.1.1 General

Earthworms are frequently used as part of batteries of indicator species to test the
effects of pollutants on ecosystems. A wide array of substrates (including artificial
substrates like OECD soils – a mixture of sand, kaolinite clay, peat, and CaCO3

to adjust pH), test designs, and endpoints are exploited and guidelines have been
designed to standardize the assessment of adverse effects on earthworms. Apart
from laboratory testing, terrestrial model ecosystems (TMEs; [60]), field enclosures,
and field testing [61] are employed to increasingly mimic actually occurring effects
in the field. Testing data are employed to derive models capable of predicting effects
at various levels of integration, varying from simple linear regression equation based
on soil or pore water characteristics up till advanced concept taking account of the
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specific interactions of chemicals with earthworms. The species most commonly
tested in a laboratory setting are the compost worms Eisenia andrei and E. fetida as
more field-relevant species like L. rubellus and A. caliginosa are difficult to rear.

A general distinction that is often made when performing earthworm testing is
between acute (i.e., short exposure time) and chronic testing. For some chemicals,
like for copper, this difference is often artificial as the acute-to-chronic-effect ratios
are close to 1. As a rule of thumb, exposure times up till 14 days are considered to
represent acute testing. Exposure times in field testing may exceed various seasons
and last even for several generations of animals.

4.1.2 Biomarkers of Exposure and Toxicity

Apart from the commonly studied endpoints discussed below, the use of biological
responses other than reproduction, growth, and mortality to estimate either exposure
or resultant effects has received increased attention [62–65]. Biomarkers are typi-
cally biochemical changes that are induced following exposure to a contaminant.
Biological responses are possible at the molecular, subcellular, and cellular level. A
major reason for the interest in biomarkers is the limitation of the classical approach
in ecotoxicology in which the amount of chemical present in an animal or plant is re-
lated to adverse effects on the classical endpoints. Bioavailability and toxicity differ,
however, in laboratory tests compared to those observed in the field, and multiple
toxicants are typically present simultaneously under field conditions. Also, only a
few of the conventional endpoints can be assessed in in situ experiments. Biomark-
ers have the potential to circumvent the limitations mentioned as they respond only
to the biologically available fraction of a pollutant, independent of mitigating effects
of soil characteristics.

In order for a biomarker, or a battery of biomarkers, to be useful in effective
assessment of chemicals to earthworms, a number of key features apply [66]:

1. The marker must be identified in the species of interest.
2. Knowledge is required on the range of toxic compounds that elicit a biomarkers

response.
3. To estimate the magnitude of the chemical stress, a dose–response relationship

between the biomarker response and the bioavailable concentration of the chem-
ical is desirable.

4. Possibilities to link biomarkers responses to higher levels of biological hierarchy
are desirable. For a biomarker to be of more use than an indicator of exposure,
a correlation between the observed responses and deleterious effects at the in-
dividual or populations/community level should be established. A subcellular
biomarker may, for example, act as an early warning of effects at popula-
tion level.

5. For a biomarker to be useful in the field, any response should have a low inherent
variability with a known (preferably: a low) dependence on physiological and
physiochemical conditions. Among others, the induction time and the persistence



Earthworms and Their Use in Eco(toxico)logical Modeling 191

of a biomarker response should be known in order to estimate the likelihood and
significance of detecting a response in field samples.

Up till now, various biomarkers have been developed and have been applied with
varying amounts of success. The most important categories include:

1. DNA alterations induced by reactions of contaminants with genotoxic proper-
ties. The most common reactions are adduct formation (covalent binding of the
contaminant or its metabolite to DNA), strand breakage, base exchange, and
increased unscheduled DNA synthesis. Limited information is available on the
environmental significance of DNA alteration at higher levels, the natural vari-
ability, and the persistence in time of DNA adducts.

2. Induction of metal-binding proteins. Heavy metals entering earthworms at con-
centrations exceeding the metabolically required metal pool may be bound and
detoxified by binding to metallothionein and other metal-binding proteins. Al-
though the role of metallothionein and other metal-binding proteins is not fully
understood, these proteins are thought to be involved in the intracellular regu-
lation of essential and nonessential metal levels in tissues. Apart from limited
attempts on Cd, no studies have been undertaken to establish dose–response re-
lationships for induction of metal proteins. Links to higher levels and natural
variability also require more attention before this type of biomarker is suited for
quantifying exposure and/or metal toxicity.

3. Inhibition of enzymes. Inhibition of cholinesterases is the most common stud-
ied biomarker of exposure of earthworms to carbamate and organophosphorus
pesticides. Cholinesterases are used for the transmission of nerve signals and
contaminants can cause a depression in cholinesterases activity. Depression of
cholinesterases activity may well depend on the metabolic compounds rather
than the parent compound and just a few studies have reported on natural variabil-
ity of the cholinesterases activity in earthworms. On the other hand, inhibition of
cholinesterases activity in earthworms was shown to be dose dependent in both
coelomic fluid and in nerve tissue [67].

4. Lysosomal membrane integrity. Lysosomes are a morphological heterogeneous
group of membrane-bound subcellular organelles that catabolize organelles and
macromolecules. A change in lysosomal membrane stability is thought to be
a general measure of stress. At the subcellular level, the lysosomal system has
been identified as a particular target for toxic effects of contaminants. The neutral
red retention time (NRR) is used to investigate lysosomal stability and for just
a few chemicals a dose–response relationship was obtained thus far. Few studies
have been concerned with the natural variability of the lysosomal membrane
stability and with the establishing links with higher levels like reproductive out-
put and mortality [68]. Aquatic studies have indicated that lysosomal response
can also be induced by nonchemical stressors such as osmotic shock and dietary
depletion.

5. Immunological responses building upon the fact that the immune system is the
main defense of an earthworm against invasion of foreign material and biologi-
cal agents. A wide range of chemicals has been shown to be capable of affecting
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the immune system, which in severe cases may quickly result in morbidity and
death. Sublethal changes in special compartments of the immune system occur
first and provide early indications of toxic effects. The immunological system
is known for its flexibility and adaptability and it has been observed for earth-
worms that the immunological depression returns to normal levels quickly after
removal of the earthworms from the source of exposure. Relatively few studies
have dealt with the impact of chemicals on the immune system of earthworms,
and dose–response relationships as well as linkage to higher levels of effects are
rarely available.

Although some biomarkers provide a forewarning of adverse effects resulting from
exposure of earthworms to contaminants, more work is needed to understand the
limitations of the use of biomarkers. Thus, for biomarkers to be of use as early
warning tools, more effort is needed in linking biomarker responses at the subcellu-
lar and cellular levels with effects at population level under natural conditions.

4.2 The Kinds of Effects Commonly Measured

4.2.1 Laboratory Testing

Laboratory tests play an important role in earthworm testing. The endpoints mortal-
ity, reproduction, and change of body weight are standardized and well described in
widely accepted guidelines for testing of chemicals [69–71]. Other endpoints like
behavior, morphological changes, and physiological changes are reported occasion-
ally, but they are not evaluated in a standardized way. All tests include a validity
criterion for effects in the control, like mortality not to exceed 10%.

Mortality is usually expressed by means of LC50, the dose at which 50% of the
animals die. Although extrapolation of laboratory-derived test results to the field is
not straightforward, this endpoint is highly relevant for the field. The performance
of the standardized test is usually checked by occasional testing of a reference com-
pound like chloracetamide in case of testing of organic pesticides.

Reproduction too is of high relevance for the field. Various endpoints may be con-
sidered, including number of cocoons, hatchability of cocoons, number of juveniles,
weight of juveniles, and time needed for the juveniles to reach sexual maturation.
Juvenile numbers in the control and the coefficient of variation following duplica-
tion are important validity criteria. The best way to do reproduction testing is by
establishing a full dose–response relationship and subsequently evaluating the no
observed effect concentration (NOEC) or the effect concentration .ECx/ at which a
specific percentage of reduction of reproduction is deducible.

Body weight change is less clearly defined in testing protocols and may be inter-
preted in different ways. Ring tests have shown that reproducibility of body weight
change is sufficient, but an inverse relationship between reproduction and body
weight change was found: animals that rapidly gain weight do not reproduce at the
same time and the mechanisms influencing this process are not yet fully understood.
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Care should be taken in the evaluation of body weight changes when mortality oc-
curs, as mean body weight changes may be obscured by differences in sensitivity
among animals of different size and weight. This problem is less relevant when
body weight change is expressed as the change in overall biomass, thus including
the mortality endpoint.

Independent of the endpoint and the test duration, behavior of the earthworms
is a factor complicating the interpretation of the test results. Prolonged burrowing
time, prolonged crawling on the soil surface, flaccidity, hardened test animals, and
color changes either may directly affect the testing results or may be an indicative
of more delicate effects. A test approach that is recently getting increased attention
deals with the ability of earthworms to avoid contaminated soil. This ability can act
as an indicator of toxic potential in a particular soil [72] and has the potential to
be used as an early screening tool in site-specific risk assessment. Avoidance tests
are becoming more common in soil ecotoxicology because they are ecologically
relevant and have a shorter duration time compared with standardized soil toxicity
tests. Soil properties like quantity and quality of soil organic matter, texture, and soil
pH can, however, modify the avoidance response, and obviously the impact of soil
properties needs to be properly considered when interpreting results of avoidance
tests with earthworms.

4.2.2 Terrestrial Model Ecosystems and Field Enclosures

To facilitate extrapolation of laboratory-derived testing results toward the field,
TMEs and field enclosures are used to more realistically simulate field condi-
tions [61]. Experiments with model ecosystems offer several advantages compared
to field studies and simple laboratory setups. Though limited in size they bear com-
plex biotic and abiotic interactions. The parameters under investigation can be easily
modulated, environmental conditions can be controlled, and in contrast to field tests
it is possible to study effects of chemicals while avoiding uncontrolled distribution
of residues and metabolites within the biosphere. Despite the complexity of TMEs
and field enclosures, they can be sufficiently replicated in order to establish an ap-
propriate statistical plot design. Model ecosystems described in the literature differ
in many features. This concerns size, soil structure (intact soil core vs. homoge-
neous filling), organisms (natural community vs. selected taxa), and the exposure
site (field vs. laboratory). Thus model systems differ notably in their similarity to
field conditions.

The extrapolation from model ecosystem experiments to the field situation is
to be more feasible than from laboratory experiments. Experiments measuring mi-
crobial activity and availability of macronutrients showed for instance that field
enclosures (exposition in the field) are more reliable in resembling the field situa-
tion than indoor TMEs (exposition in the laboratory) [73]. Nonetheless, a noncritical
transfer of results from model systems to the field is not acceptable and a sound val-
idation with appropriate field studies is recommended [74]. Different experiments
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with various types of model systems have been conducted and published [75–77].
The objectives of most studies were (1) to analyze the fate of chemicals, (2) to study
their direct effects on organisms, (3) to validate mathematical models, and (4) to
measure secondary, indirect effects on the ecosystem [78].

Recently TMEs were discussed for regulatory purposes in the environmental risk
assessment of industrial chemicals, biocides, and plant protection products within
the European Union [79]. Annex IV of the EU-Directive 91/414/EC [80] concerning
the placing of plant protection products on the market lists the conditions (thresh-
olds) which demand a scientific verification of laboratory effect studies with soil
organisms under field conditions. Referring to Annex II, Sect. 8.4, the authors [79]
conclude that TMEs are considered to be an important tool for risk assessment if
they resemble conditions in the field. Thus it is apparent that a yet poorly consid-
ered objective of TME studies should concern the comparability of TME and field
results.

A wide array of endpoints is potentially assessed in TMEs and field enclosures.
This includes the endpoints common in laboratory testing as well as feeding activity,
burrowing behavior, and avoidance testing.

4.2.3 Field Testing

Conditions in the field are highly variable and may change drastically over episodes
of less than 1 day (like the day/night cycle, deposition of rain and/or snow, strongly
increased temperatures in the top layer during periods of sunshine, as well as longer
lasting episodes of flooding and drought). Adverse effects on earthworms are typ-
ically assessed at the species and community level in terms of abundance and
population densities, and maturity. Often, biomarkers are applied to identify pre-
vious exposure and body burdens are used as indicators of effective exposure. No
standardized assessment methods of field effects are available, let alone validated
models to extrapolate across soils.

4.3 Factors Affecting Toxicity Test Results

Standardized toxicity testing is conducted under fixed biotic and environmental con-
ditions that allow comparison of results among testing laboratories and facilitate
interpretation of the findings. However, increased standardization inherently hinders
extrapolation of test results toward the field. To improve understanding of specific
differences between laboratory testing and field effects, the factors affecting differ-
ences in effective exposure and actually occurring effects in the laboratory settings
and in the field need intense investigation.

An obvious factor that is of relevance in comparing test results is the test species
used vs. species common in the field. Compost worms are commonly used in
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laboratory testing, probably due to the relative ease of culturing compost worms by
means of organic rich material like dung. As noted before, typical field worms like
L. rubellus, L. terrestris, A. caliginosa, and Aporrectodea rosea do not reproduce
easily. This raises the question of typical differences in sensitivity toward chemical
across compost worms and typical soil worms. Spurgeon and Hopkins [21] observed
that although E. fetida was less sensitive to zinc than L. rubellus and A. rosea, the
difference in toxicity was no more than a factor of 2 and was within-test variability.
Heimbach [81] on the other hand observed larger differences in earthworm sensitiv-
ity to earthworms, up to a factor of 10 between E. fetida and L. terrestris.

Field populations of earthworms typically consist of a mixture of adults,
subadults (nonclitellate worms), juveniles, newly hatched animals, and cocoons.
Particularly severe effects of contaminants on any life stage could have severe
effects on populations. On the other hand, laboratory testing is typically carried
out with adult worms only. Typically, juveniles are more sensitive to toxicants than
adult worms; Spurgeon and Weeks [82] showed for instance a difference of a factor
of 1.9 between toxicity of zinc to juvenile and adult worms.

Exposure time is an important factor in extrapolating toxicity test results. This
is especially true for chemicals (most notably metals) that display slow uptake and
elimination kinetics. Typical maximum exposure times in laboratory testing of about
28 days are often too low to reach equilibration of metal levels in the organisms.
This is especially true for nonessential metals as internal concentrations of essential
elements are usually regulated within well-defined limits. The aspect of test duration
therefore requires specific attention in extrapolating test results.

Weather conditions are another factor to consider, albeit that data on the effect
of temperature and humidity on earthworm sensitivity are scarce. The most com-
mon earthworm species in the field are typically least sensitive to contaminants at
temperature conditions in between 10 and 15ıC.

Soil properties and pretreatment conditions are probably the most dominant fac-
tors impacting the sensitivity of earthworms. In case of metals, soil pH is a dominant
factor in this respect. In general, a decrease of pH will increase metal levels in the
pore water and hence toxicity, albeit that hydrogen ions are protective of metal tox-
icity. Soil sorption sites like organic matter and clay strongly modulate toxicity.
Criel et al. [83] studied for instance the effect of soil characteristics on the toxic-
ity of copper to terrestrial invertebrates, and performed chronic toxicity tests with
E. fetida in 19 European field soils. Toxicity values varied largely among soils with
28d EC50 (concentrations causing 50% effect) ranging from 72.0 to 781 mg Cu kg�1

dry weight. Variation in copper toxicity values was best explained by differences in
the actual cation exchange capacity (CEC) at soil pH. Using the obtained regression
algorithms, the observed toxicity could – in most cases – be predicted within a factor
of two.

The effect of pretreatment is most significantly related to aging of the contami-
nants prior to testing. Longer aging times greatly decrease toxicity for both organic
chemicals and metals.
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4.4 How to Model Toxicity

The example given above of Criel et al. [83] of modeling metal toxicity across a
series of field soils is a nice illustration of the current state of the art. As opposed
to the aquatic compartment, the interplay between the biotic and abiotic factors
modulating toxicity is not yet well understood. Consequently, models for predicting
toxicity toward earthworms across a wide array of soils and soil types are virtually
lacking. This is especially the case for metals.

4.4.1 Organic Compounds

In case of hydrophobic organic chemicals that act strictly according to the general
mechanism of polar narcosis, competition for sorption of the contaminant between
the soil organic matter and the organic matter of the earthworm has been the basis
for establishing the critical body residue concept (CBR) and the translation of CBRs
toward critical concentrations in any of the environmental compartments, assuming
on the one hand that the total body concentration of a nonpolar narcotic organic
contaminant is proportional to the concentration at the target or receptor of toxicity,
while on the other hand assuming that (1) the fat tissue is the main storage compart-
ment for hydrophobic organic chemicals and (2) the fat tissue behaves similarly to
the abiotic organic phases present in the system.

McCarty and Mackay [84] showed that CBRs for polar narcotics are indeed fairly
constant. The latter two assumptions imply that the CBR or a specific effect level
(ECx , with x being the extent of adverse effect) is proportional to the octanol–water
partitioning coefficient of the chemical:

log CBR or log ECx � a.log Kow/C b: (3)

Karickhoff et al. [85] were one of the first authors to show the equilibrium con-
cept of partitioning of organic compounds by reporting that Kow is proportional to
the compound-specific organic-carbon normalized partition coefficient .Koc/. Sub-
sequently it is Koc that may be used to predict not only the degree of chemical
partitioning between water and the sediment or soil organic carbon, but also the
baseline-toxicity of hydrophobic organic chemicals in a specific medium varying in
organic carbon content:

Koc D Kd=foc; with Kd D Cw=Csolid phase (4)

and
log CBR or log ECx D a.log Koc/foc C b: (5)

Although the study was not carried out with earthworms, Paumen et al. [86] recently
cautioned that even minute changes in the chemical structure (in this case isomers
and metabolites) of a toxicant may induce unpredictable (isomer) specific toxicity,
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not only emphasizing the need of chronic toxicity testing to gain insight into long-
term effects but also elegantly showing the limitations the CBR concept.

Van Gestel and Ma [87] combined information on exposure routes (pore water)
and toxicity data of chlorinated aromatics for two earthworm species (E. andrei
and L. rubellus) in four (chlorophenols and chloroanilines) and two (chloroben-
zenes) soils to derive quantitative structure activity relationships (QSARs) that may
be used to predict toxicity of chloroaromatics in additional soils. The QSARs are
based on lipophilicity of the test compounds, expressed in terms of their log Kow.
It was noted by these authors that both earthworm species are not equally sensitive
to chlorobenzenes and chloroanilines, E. andrei is more sensitive than L. rubellus to
chlorophenols and toxicity data of chlorosubstituted anilines, phenols, and benzenes
are in close agreement with data on toxicity for fish.

A similar conclusion was drawn by Miyazaki et al. [88] for acute toxicity of
chlorophenols for E. fetida. A different exposure modality was used by these authors
to derive QSARs as the worms were exposed on filter paper wetted with a solution
of the individual chlorophenols.

4.4.2 Metals

For many metals, it is the free ionic form that is most responsible for toxicity. This is
despite the fact that strictly speaking, metals may be taken up via various exposure
pathways and in a complexed state, bound to a number of ligands of varying binding
capacity and varying binding strength. The FIAM is used to explain the relationship
between speciation in the external environment and bioavailability to the organisms
[30]. The FIAM produces speciation profiles of a metal in an aquatic system and
provides insight into the relative bioavailabilities of the different forms of metal
as well as the importance of complexation. The basic assumption underlying the
FIAM is that adverse effects are proportional to the activity of the free metal ion
in solution, or in the case of soils – the pore water. Although it has been shown
that other species might also contribute to metal uptake and metal toxicity, most
evidence supports the FIAM.

There is, however, an increasing body of evidence becoming available, showing
that the toxicity caused by the free metal ion is modulated by a number of chemically
induced competing processes. This observation was the basis for the development
of Biotic Ligand Models (BLMs). BLM theory on the one hand incorporates the
impact of water chemistry (most notably pH and DOC) on metal speciation, whereas
the model on the other hand quantifies the assumption of competition between the
major cations like Ca2C; Mg2C; NaC, and HC, and free metal ions for binding
sites at the organism–water interface may result in a decreased toxicity of the free
metal ion [89]. In some cases it is taken into account that other metal species have
the potential to contribute to toxicity, like complexes with OH� and CO3

2� ions and
organic metabolites in case of Cu. BLMs include all these aspects and are, therefore,
gaining increased interest in the scientific as well as the regulatory community. In
fact, the BLM concept, now developed for Cu, Ni, Ag, and Zn, is considered as



198 W.J.G.M. Peijnenburg and M.G. Vijver

Ca2+

Mg2+

Na+

H+

CuOH+

Cu(NO3)2

DOC

pH

Biotic ligand:
Toxic action or
transport sites

Cu2+

Fig. 4 Schematic overview of the processes underlying the Biotic Ligand Concept for metal toxi-
city, in this case copper. The left-hand side of the scheme depicts pore water constituents that affect
copper speciation, the right-hand side depicts the interaction of the free copper ion with the biotic
ligand of the earthworm (in this case the epidermis) as affected by competition with competing
ions like Ca2C=NaC=Mg2C=HC

the currently most practical technique to assess the ecotoxicity of metals on a site-
specific basis. Therefore, the BLM concept is now being approved in the EU. A
schematic representation of the BLM concept is given in Fig. 4.

A basic assumption of the BLM is that metal toxicity occurs as the result of
metal ions reacting with binding sites at the organism–water interface, represented
as a metal–biotic ligand (metal–BL) complex. The concentration of this metal–BL
complex is proportionally related to the magnitude of the toxic effect, independent
of the physical–chemical characteristics of the test medium. Hence, the acute tox-
icity of a trace metal to an organism can be calculated when metal speciation, the
activity of each cation in solution, and the stability constant for each cation to the
BL(s) for the organism are known. BLMs have recently been developed for copper
toxicity to earthworms [90]. Paquin et al. [89] provided a historical overview of the
fundamentals of BLMs.

5 Conclusions

Species-specific morphological, physiological, and behavioral aspects basically de-
termine the contribution of potential uptake pathways of nutrients and natural and
anthropogenic contaminants. Intraspecies (especially including short-term weather
deviations) and interspecies variances (like size and ecological preferences) will
most likely modify the actual contribution of potential exposure pathways, thus
modifying actually occurring adverse effects.
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Earthworms are ubiquitous ecosystem engineers and litter transformers that are
essential for maintaining a healthy soil ecosystem. They inhabit virtually all soil
layers while they tend to move upward and downward the soil profile in response
to variations in the water table. Earthworms have been studied for various decades
and their intra- and interspecies variances are fairly well understood. It may be con-
cluded that earthworms are suited organisms for ecotoxicity studies and indicator
organisms for the assessment of potential risks:

1. The uptake routes of chemicals are clear, with a dominant contribution of uptake
of pollutants via the pore water. For hydrophobic chemicals with log KOW > ap-
proximately 6, ingestion of food and soil particles may induce additional uptake
of micropollutants.

2. The magnitude of accumulation of chemicals is rather high and earthworms are
therefore suited for assessing potentially bioavailable fractions and resulting ad-
verse effects. Compartment modeling may be used to quantify accumulation as a
function of time.

3. Earthworms are well suited for assessing adverse effects:

(a) A number of toxicity endpoints (like mortality, reproductive success, growth)
may relatively easily be deduced, whereas earthworms are not specifically
more sensitive or less sensitive for the majority of chemicals. Van Gestel and
Ma [87] found for instance that toxic effects of chlorinated aromatics are
similar for earthworms and fish.

(b) Because of their ease of cultivation and their ubiquitous nature, earthworms
have frequently been the topic of study and effect and accumulation data are
relatively abundant for comparative purposes and for inter- and intrasystem
extrapolation.

(c) It has been shown that it is possible to derive QSARs for predicting effects of
chemicals on various earthworm species.

On the other hand it should be noted that most effect and accumulation assays haven
typically been carried out in a laboratory setting. Field studies varying from TMEs
[75] up till analysis of population parameters are scarce. Field studies at all levels
of ecological hierarchy would be well suited for extrapolation and validation of
models generated on the basis of laboratory data and would provide important tools
for assessing ecosystem health.
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The Potential for the Use of Agent-Based Models
in Ecotoxicology

Christopher J. Topping, Trine Dalkvist, Valery E. Forbes, Volker Grimm,
and Richard M. Sibly

Abstract This chapter introduces ABMs, their construction, and the pros and cons
of their use. Although relatively new, agent-based models (ABMs) have great poten-
tial for use in ecotoxicological research – their primary advantage being the realistic
simulations that can be constructed and particularly their explicit handling of space
and time in simulations. Examples are provided of their use in ecotoxicology pri-
marily exemplified by different implementations of the ALMaSS system. These
examples presented demonstrate how multiple stressors, landscape structure, details
regarding toxicology, animal behavior, and socioeconomic effects can and should
be taken into account when constructing simulations for risk assessment. Like eco-
logical systems, in ABMs the behavior at the system level is not simply the mean of
the component responses, but the sum of the often nonlinear interactions between
components in the system; hence this modeling approach opens the door to imple-
menting and testing much more realistic and holistic ecotoxicological models than
are currently used.

Keywords Population-level risk assessment � ALMaSS � Pattern-oriented model-
ing � ODD � Multiple stressors

1 Introduction

This chapter is intended to provide some background on agent-based models
(ABMs) and the potential for their use in ecotoxicology. This is achieved by a mix-
ture of examples and minireview of ABM issues; it is, therefore, intended as a primer
for those interested in further exploring this type of modeling in ecotoxicology.

Ecotoxicology has, in common with the majority of the natural sciences, fol-
lowed the basic principles of analytic thinking whereby the whole is abstractly
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separated into its constituent parts in order to study the parts and their relation-
ships. This approach to science works for physical systems such as those typically
studied in physics or chemistry, but may not always be the optimal approach for
biological systems with their innate complexity and interactions. For example, in
the case of evaluating the impact of stressors on biological systems there is clearly
a great difference between the response of animals in the laboratory, given a pre-
cisely measured and timed dose of toxicant, and the populations of the same animals
moving through a real-world situation of spatiotemporal variability in toxicant con-
centration, interacting with each other and the biotic and abiotic components of their
environment.

It is in fact rather difficult to see how the abstract laboratory test can easily be
related to impacts at the population level. Following this train of thought suggests
that in order to properly understand this kind of system we should perhaps embrace
its complexity rather than ignore it. This means treating a system as an integrated
whole whose properties arise from the relationships between the system components
rather than studying the components in isolation, thus shifting from the importance
of elements to the importance of organizational pattern, i.e., applying a systems
approach. Luckily, the use of ABMs opens up the potential for doing just this.

1.1 What Is an ABM?

An ABM is a computational model for simulating the actions and interactions of
autonomous individuals in a defined virtual world, with a view to assessing their
effects on the system as a whole. This is clearly analogous to integrating the re-
sponse of individuals into a population response that, when considering impact
assessment in ecotoxicology, is the level at which interest and protection goals are
usually aimed.

Of course, there are many models of ecological populations and many ap-
proaches, but there are a number of characteristics of ABMs that set them apart
from other more traditional approaches. These characteristics can be broadly de-
scribed as being their explicit consideration of spatiotemporal variability and their
ability to include individual behavior, with population responses being emergent
features. Thus, animal behavior such as patterns of movement can be simulated so
that a dispersing animal moves in very different ways depending upon its type (e.g.,
bird, mouse, beetle, human). This provides a huge predictive potential compared
with more aggregated approaches.

These properties have resulted in the use of ABMs in a wide and steadily in-
creasing range of applications. In 1996, there were 31 agent-based papers published
(source: ISI Web of Knowledge), but by 2006 the number had risen to 494. Some
varied examples include simulations of immune system responses to perturbations
[1], of ethnic diversity in economically and spatially structured neighborhoods [2],
of entry and exit routes to a baseball stadium under a range of conditions including
simulation of terrorist attack [3], and of urban evacuation strategies [4]. Current use
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of ABMs in ecotoxicology is limited, but their usage in related areas is increasing.
Recent developments include models of whale watching by tour boats, including
evaluation of the risks to the whale population [5], epidemiology (e.g., [6, 7]), the
exploitation of limited renewable resource [8], and conservation [9–11]. ABMs help
understand biological systems because, unlike physical systems, there is hetero-
geneity in their components, and this heterogeneity affects the overall dynamics of
the system [12,13] in short because variation in space and time matters in biological
systems and ABMs deal with this very well.

In ecology, ABMs developed somewhat independently of other disciplines and
are often referred to as “individual-based models” (IBMs). The distinction is, how-
ever, of little importance today, and Grimm [14] suggests not distinguishing IBMs
and ABMs any longer and using both terms interchangeably. Originally the term
IBM was used to emphasize the discreteness of individuals, heterogeneity among
individuals, and local interactions, rather than adaptive decision making and be-
havior, which have been the main drivers in the development of ABMs [12, 15].
Recently however, IBMs and ABMs have merged into one big class of models [16],
covering a wide range from very simple to rather complex models [17].

In this chapter, we focus on “full-fledged” ABMs, which include realistic land-
scapes, a high temporal and spatial resolution, individual heterogeneity, local in-
teractions, adaptive behavior, and often also different species. This is, in terms of
development time and resources needed for testing and parameterization, the most
demanding type of ABMs, but also the most powerful one if it comes to the potential
to validate these models and to use them for predictions of environmental scenarios
that so far have not been observed. It should be kept in mind, however, that more
simple ABMs also have their place in basic and applied ecology, including ecotoxi-
cology (e.g., [18]).

1.2 Constructing ABMs

ABMs can be significantly more demanding to develop than other population mod-
els. Development starts with the creation of a conceptual model of the system of
study comprising the basic simulation goals, elements of the system and their be-
haviors, and the endpoints of interest [16, 19]. Depending upon the goals of the
model, it may utilize designed or empirically grounded agents and environments,
and choices here may have significant implications for results, as we now show.

In early ABMs structural environment into which the agents are placed was cre-
ated using regular geometric shapes, but it is now known that the use of unrealistic
structural environments may bias results [20], and a similar argument can be made
for simplification of the behaviors of agents [21]. Another problem that the ABM
developer may face, which is not a problem for traditional modeling approaches, is
that of concurrency. Concurrency problems occur when objects interact, especially
if their interaction is controlled via some limiting resource. A good example of this
is the well-known model by DeAngelis et al. [22] where wide-mouthed bass interact
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indirectly through their Daphnia food resource and directly by eating each other.
By not taking account of concurrency issues the positive feedback loops emergent
in the model were strengthened (see [23] for a discussion of this effect and concur-
rency issues in ABMs). Concurrency issues are not critical to all ABMs but in cases
where they are they can increase the complexity of model design. Scheduling of the
model’s processes and the exact mode of updating the model’s state variables are
thus critical and need to be planned and communicated carefully [24, 25].

It will by now be apparent that the increase in realism made accessible by ABMs
comes at a cost, both in terms of potentially huge data requirements, but also in
terms of the technical ability required for model construction. However, the tech-
nical problems are eased by the emergence of software tools. Thus, models may
be created using ABM “platforms,” that is, libraries of predefined routines such as
REPAST [26], NetLogo [27], and SWARM [28]. Models of limited complexity can
be developed using these platforms, whereas more complex or computationally de-
manding models are usually implemented in more efficient low-level object-oriented
languages such as CCC or Java. Animal, Landscape, and Man Simulation System
(ALMaSS), a framework for ABMs for pesticide risk assessment [29], which is
used as an example throughout this paper, was written in CCC since run times are
very long, and shaving tiny fractions of seconds from loops can save many hours of
simulation time with millions of agents.

While simple systems can be built by anyone of average programming ability,
the effectiveness of larger scope and more realistic models depends on the ability of
the programmer to code efficiently. At this level of software engineering there is a
whole new skill set required by the ABM developer. For example, sorting routines
are common constructs in ABMs but vary hugely in their efficiency, so choices here
may dramatically affect overall runtimes. There is also the problem of code relia-
bility. With large and complex models the scope and complexity of errors increases
and code maintenance and debugging tasks can mushroom out of all proportion.
This is particularly the case with highly complex multiagent communication such
as between flock or family members, and it has cost many weeks of debugging in
ALMaSS. Coping with such problems requires familiarity with basic computing
science principles. Hence, the optimal solution is that the modeler also possesses
software engineering skills, which will not only speed up the development cycle,
but will also improve the model design by ensuring good code structure at an early
phase. However, while there is an increase in the number of computational biologists
being trained, this skill combination is still rare. Grimm and Railsback [16] therefore
recommend considering close collaborations of ecological modelers and computer
scientists where, however, the modeler should keep full control of the software, that
is, not depend on the computer scientist to use the software and modify it.

Unfortunately no simple introduction to building ABMs currently exists. There
are many good object-oriented tutorials available however, and these, combined with
an understanding of the philosophy of the approach, are a good place to start. De-
tailed advice can be found in Grimm and Railsback [16] who provide an introduction
to what they term “individual-based ecology,” which encompasses the use and de-
velopment of ABMs.
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2 Examples Illustrating the Use of ABMs

We here present examples selected to illustrate some of the facets of using ABMs,
and some of the interesting results that can emerge. The series of example applica-
tions used to illustrate the potential of ABMs in ecotoxicological research utilize a
single ABM system, ALMaSS [29]. In these examples space limits a description of
the manner in which conclusions were drawn, but in all cases this was by carrying
out additional exploratory simulations to test the behavior of the system under dif-
ferent conditions, as well as detailed analysis of outputs in the light of knowledge
of the model structure. In addition, we will briefly introduce two further families of
ABMs, which were not developed for ecotoxicology, but which very well illustrate
both the high costs for developing full-fledged ABMs and their striking predictive
power, once their testing has been completed.

2.1 Introduction to ALMaSS

ALMaSS was designed as a system to evaluate the impact of human management of
landscapes on key species of animals in the Danish landscape. ALMaSS was not cre-
ated with a clearly focused goal in mind but to be a highly flexible system capable of
simulating a wide range of interactions between landscape structure, management,
and animal ecology. Thus, ALMaSS is a flexible system for implementing ABMs of
selected species, with the aim of predicting the impact of changes in management
of the Danish landscape.

ALMaSS can be separated into two main components: the landscape and animal
models. The landscape comprises a topographical map, together with strategies of
human management (primarily farming but also other management such as mowing
of roadside verges), traffic and road networks, weather, submodels for calculating
arthropod biomass, models for general vegetation and crop growth, and also models
of the environmental fate of pesticides. These submodels and processes are updated
on a daily basis during the simulation and provide the potential to model factors
such as farm and crop management in great detail. The farm management modules
permit the definition of different farm types each with their specific crop choices
and type of management (e.g., conventional pig, arable, and dairy production, and
organic variants of these).

Each farm mapped in the landscape is allotted a farm type and the farm man-
ager, also an agent, applies management to his fields in terms of sowing crops and
subsequent crop husbandry while reacting to weather and soil conditions. Crop hus-
bandry is highly detailed (see [30]) and simulates all farming activities that would
be carried out on that crop (e.g., plowing, harrowing, sowing, fertilizer applications,
pesticide applications, harvest, and postharvest operations). Application of pesti-
cides and fertilizers can be allocated specific characteristics (e.g., amount and type)
and may result in changes in the vegetation growth, arthropod biomass, and provide
field-specific information for animal models such as the type and amount of toxicant
present.
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The topographic map utilized by the landscape has a resolution of 1 m2 and
typically covers an area of 100 km2. Combining this map with the management in-
formation, weather and vegetation growth information creates a virtual reality into
which the animal models are placed. The animal models are agents designed to sim-
ulate the ecology and behavior of individual animals as closely as possible. Each
agent moves around in its virtual world in much the same way that a real animal
moves in the real world, picking up information from its surroundings as it goes and
acting upon this in order to feed and ultimately reproduce. Changes to the agent’s
environment occur on a daily basis as weather changes, vegetation grows, or the
farmer manages a field.

A number of animal models exist for ALMaSS. Those used as examples here are
Alauda arvensis (skylark) [30, 31], Microtus agrestis (field vole) [29], Bembidion
lampros (beetle) [32], Erigone atra/Oedothorax fuscus (spider) [33], and Capreolus
capreolus (roe deer) [34]. These range from species with highly detailed behavior
but low numbers (roe deer) to spiders with simple behavior but the necessity to
handle over 1 million agents concurrently. However, all models conform to a basic
framework, essentially a state machine, whereby:

– Each animal has an initial state that is a behavioral state.
– There is a set of possible input events.
– Transitions to new behavioral states depend on input events.
– Actions (output events) are determined by behavioral state and environmental

opportunities.

Each agent will cycle through this state machine at least once per simulation day
and potentially many times depending upon the inputs and outputs. For example, a
vole in the state “explore” may explore his surroundings, resulting in the input that
there is no food, and make a transition to the new state “dispersal”; this results in the
action of dispersal that then triggers a transition to the state “explore.” This cycle
may repeat itself until the vole finds food, dies, or runs out of time that day (Fig. 1).
Inputs may also occur as events, not under the control of the animal. For example,
if our dispersing vole is run over by a car it will make an immediate transition to

Fig. 1 A diagram of a frag-
ment of the field vole state
machine. States are denoted
with boxes, transitions by
arrows. See text for further
explanation

Dying

Explore Dispersal

Killed KilledNo food
End of time-step

End of time-step
Next time-step
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the state “dying.” This event-driven interaction is also the basis for modeling topical
exposure to pesticide applications, meaning that an animal may only be exposed if
it is in the location where the pesticide is sprayed at the time it is sprayed.

A system such as ALMaSS has a number of potential uses in ecotoxicology.
These can broadly be divided into three main categories:

– Policy scenario analysis: This utilizes the capability of the agent-based system to
respond to changing inputs. For example, how will pesticide usage be affected
by specific taxation measures? (see examples 1 and 4 later). Taxation is an input
to the model that causes changes in farmer behavior, which result in changed
patterns of pesticide use. Since the animals react to pesticides as they find them
in their day-to-day activity, their behavior in turn is affected, and the sum of their
behaviors results in a population response that can be evaluated.

– Risk/impact assessment and regulation: Scenarios of application of pesticides
with specified properties are studied and population responses are evaluated (see
examples 2 and 3). The challenge here is to define specific yet representative
scenarios, since a greater range of factors is analyzed than is traditional in this
area.

– Systems understanding: Perhaps the most important use of ABMs in ecotoxicol-
ogy is to improve our understanding of the ecological systems and how they are
affected by pesticides. ALMaSS is able to use a systems approach to investigate
system properties that would be impossible or exceedingly difficult to study in
real life (see examples 1–4).

2.2 Example 1: Impacts of Mechanical Weeding on Skylark
Populations

Pesticide use has been an important factor in the decline of a range of European
farmland bird species over the last 20 years, primarily via indirect effects on wild
plants and arthropods [35, 36]. It is, therefore, desirable to use pesticides less, but
policies directed toward this need to be based on good advice. With this background
Odderskær et al. [37] set out to evaluate the potential impact of replacing herbicide
use with mechanical weeding on inter alia skylark populations. Mechanical weeding
is rarely used in conventional farming, despite its well-documented effectiveness, so
there is little opportunity for observational study. The goal of the ALMaSS modeling
was to assess the direct or indirect impact of mechanical weeding on birds repro-
ducing in fields where it is applied. The problem was tackled in two stages: the first
an experiment to assess the lethality of mechanical weeding to skylark nests, and
the second to assess potential impacts of different management scenarios.

A range of scenarios were simulated (see [37]) but those that show the clearest
results are experimental scenarios where the assumption is that all farmers in the
landscape grew a single monoculture crop. Figure 2 shows the number of nests,
nests with eggs (under incubation), and nests with young, which were destroyed
when mechanical weeding was used in monoculture spring barley on either the 10th
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Fig. 2 Example 1: ALMaSS scenario results. (a) The number of nests destroyed by mechanical
weeding on 10th May. (b) The number of nests destroyed by mechanical weeding on 30th May.
(c) The population-level impact of mechanical weeding shown relative to a no mechanical weeding
situation

or 30th May, which corresponds to mid- or late-season application. Although vari-
able with year and therefore weather, late-season use destroyed a very large number
of nests containing eggs or young, whereas the earlier application largely affected
nests during nest building or egg-laying. The skylark population was consequently
much reduced by late application (24–40%) whereas earlier application resulted in
a slight increase of up to 3%. This increase is surprising and the model was neither
specifically designed nor calibrated to make this prediction, which, therefore, can
be considered an independent or secondary prediction (sensu [16]). Moreover, an
ABM does not require us to just believe in the results as a black box, but allows
us to try and understand why certain things happen. In this case, closer analysis of
the model revealed that due to the rapid growth of the cereal crop the skylark has
only a limited window of breeding opportunity between emergence and canopy clo-
sure [38–40] and is often limited to just one breeding attempt. Since the first clutch
of the season is usually one egg smaller than the second clutch in this species, the
early loss of a clutch was a slight benefit if the second brood could be completed
before the breeding window closed. Broods lost due to weeding on 30th May (40
days from sowing) could not be replaced within the window of opportunity. These
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results led Odderskær et al. [37] to recommend that mechanical weeding be used
up to a maximum of 30 days after sowing to avoid significant risk to skylark popu-
lations. The recommendation was not with respect to a calendar date, because it is
timing with respect to the breeding window that is critical. In a subsequent indepen-
dent field study [41], it was found that mechanical weeding 35 days or later after
sowing caused significant reduction in skylark breeding in spring cereals. Thus, the
prediction of the model was confirmed indicating that key elements of the skylark’s
population dynamics were captured in the model, that is, the model was structurally
realistic [42].

2.3 Example 2: Risk Assessment for Beetles and Spiders
Including Multiple Stressors

Regulatory authorities have strict procedures for assessing whether a pesticide
presents an unacceptable risk to nontarget organisms. For example, according to EU
directive 91/414 and its annexes and guidance documents, if the toxicity exposure
ratio (TER) is <5, “no authorization shall be granted, unless it is clearly established
through an appropriate risk assessment that under field conditions no unacceptable
impact occurs after the use of the plant protection product under the proposed con-
ditions of use” (Annex VI of EU Directive 91/414/EEC). While this criterion may
seem objective and stringent it is also administratively inflexible and simplified. In
this example, we demonstrate how misleading the criterion can be by evaluating
pesticide impact with and without other mortality factors (multiple stressors) and
by using test species with slightly differing characteristics.

ALMaSS scenarios were created using the following assumptions:

� An insecticide was applied to cereals.
� Treated cereals received from one to three applications each year in late May to

July following normal farming practices for insecticides.
� No other pesticides were used anywhere in the landscape (the current regulatory

standpoint).
� Exposure to the pesticide resulted in 90% mortality for all exposed beetle and

spider life-stages.
� Exposure occurred when the organism was present in the field on the day of

pesticide application, and all organisms present were considered to be exposed.
� Residues were not assumed to have any impact, hence only direct exposure to

spray was considered toxic.
� There was no drift to off-crop areas.
� The landscape considered was a 10 km � 10 km area of Denmark near the town

of Bjerringbro .56ı220N; 9ı400E/ (Fig. 3).

Three factors were varied:

� The proportion of the landscape exposed was altered by assuming that insecticide
was applied to 0, 25, 50, and 100% of cereal fields, and that all arable fields grew
cereals.
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Fig. 3 A GIS representation of the Bjerringbro area in central Jutland, Denmark. This is the land-
scape used in all ALMaSS examples

� The implications of assumptions about other mortality factors were investigated
by running four scenarios – one where the impact of soil cultivation and harvest
mortalities was assessed in the absence of pesticide (scenario BM in Fig. 4b), a
second scenario where only pesticide mortalities were incorporated and soil and
harvest mortalities were ignored (scenario PM), and a third scenario where the
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Fig. 4 Example 2: ALMaSS scenario results. Population reductions are expressed as a percentage
of those in the baseline scenario (see text). (a) The size of population reduction in relation to the
area treated with insecticide, for fast and slow moving beetles. (b) The size of population reduction
of fast and slow beetles, BMD only agricultural operation mortalities, PMD only insecticide mor-
tality, PM with BM D pesticide mortality assessed against a background of agricultural operation
mortality. (c) Same as (b) but for two species of spider



216 C.J. Topping et al.

impact of the pesticide was assessed against a background of including the soil
cultivation and harvest mortalities (scenario BM with PM). Values for mortalities
were available from [43], and all arable fields were assumed to grow cereals
and have insecticide applications. A fourth scenario was run without pesticide or
soil cultivation and harvest mortality and was used as a baseline for the results
presented in Fig. 4.

� Variation in species life history was assessed in two ways. A very simple change
to the beetle model was made by changing the maximum daily movement rate
used by [32] to be 10 or 20 m per day (slow and fast beetles). The second assess-
ment was made using models of two species of linyphiid spider (Erigone atra
and Oedothorax fuscus), both with similar habitat requirements and both com-
mon agricultural species but differing in their breeding behavior and dispersal.
O. fuscus has a shorter breeding season and lower dispersal ability than E. atra.

Twenty replicates were obtained of all scenarios with scenario runs of 55 years. The
first 11 years were discarded as a burn-in period, and the results were expressed as
mean population size over the last 44 years. Weather data were as used by Topping
and Odderskær [30] and were a continuous loop of 11 years of weather data from a
weather station near to the landscape simulated.

Results – For clarity all results are expressed as the size of the population reduc-
tion compared with a baseline scenario. Increasing the area treated with insecticide
reduced beetle population size, but the effect was much more severe if the beetles
moved slowly (Fig. 4a). Smaller differences were observed between fast and slow
beetles in terms of their sensitivity to background and pesticide mortalities (sce-
narios BM, PM, and BM with PM, Fig. 4b), nor was there much difference in the
responses of the two spider species (Fig. 4c). Background mortalities were generally
high and much higher than those caused by the pesticide impact alone. However, if
we evaluate the effects of the pesticide while controlling for background mortalities
(i.e., BM vs. PM with BM) then in all cases the impact of the pesticide was greater
than measured without other mortalities, and in the case of the less mobile beetle
and spider it was almost four times greater.

The results demonstrate two effects. The first is that mobility clearly interacts
with the pesticide application, and therefore we can get widely differing results
with different life-history strategies. This effect has been shown in the real world
in carabid beetles [44] and is partly due to mobile beetles and spiders being able
to “leapfrog” disaster by moving from field to field and therefore having a greater
probability of not being sprayed, but largely due to the faster recovery potential of
mobile animals as they reinvade and breed in recently sprayed areas.

The second effect is related to the population dynamics. In cases where mortality
on individuals is low the population grows and reaches a level where it becomes self-
regulating through density dependence. At this point the impact of lower levels of
mortality is to remove many individuals that would have died in any case, equivalent
to the doomed surplus of Errington [45]; hence, impacts are lower when seen at
the population level. In contrast, a population under heavy mortality, such as slow
beetles under soil cultivation and harvest mortalities, is very vulnerable to a small
extra mortality because this kills animals that would otherwise have contributed to
population growth.
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2.4 Example 3: Impacts of an Endocrine Disrupter on Vole
Populations: Toxicity, Exposure, and Landscape Structure

As with example 2 with multiple stressors this analysis is derived from a risk as-
sessment, but with the purpose of investigating the components of the assessment to
gain an understanding of the field vole population response, rather than conducting a
formal risk assessment. Here, we exploit the ability of ALMaSS to incorporate com-
plex patterns of toxicity, to modify different aspects of a pesticide risk assessment,
and calculate the population-level response. This flexibility allows the manipulation
of all aspects of the risk assessment in an experimental way, using the model as
a virtual laboratory to carry out experiments that would be impossible in the real
world. Specifically we investigate how changes in toxicology, exposure, and land-
scape structure alter population responses, to gain insights into the properties of the
system. The scenarios we present are illustrative only; for a comprehensive account,
see Dalkvist et al. [46].

The toxicology investigated is unusual but closely similar to that of the fungi-
cide vinclozolin, an endocrine disrupter where the effect is inherited epigenetically
through the male germline after exposure in the uterus [47, 48]. This toxicology
is challenging to model because of the epigenetic component of transmission of ef-
fects, and because expression of the toxic effects is chronic. In the model, expression
of toxic effect was as either absolute sterility or a halving of the mating success of
male offspring. Those with a reduced mating success passed on this genetic trait to
their male offspring.

Other than the altered fertility the affected males were assumed to behave as
nonaffected individuals since it was not known if the affected voles would change
behavior, and the worst case was assumed. However, females mating with sterile
males did not experience false pregnancies and would attempt to mate the follow-
ing day if mating was unsuccessful. This is likely to be a real situation since voles
are polygamous, but it is by no means certain that a female will not mate with the
same infertile vole again. This depends on which male vole is closest to her at the
time of mating, and it is therefore a function of the territorial behavior of the model
voles. This polygamous behavior has the result that both inheritance and purging
of the epigenetic effect are density dependent. This is because the probability of a
nonsterile vole territory overlapping a female’s territory increases with vole den-
sity. The system thus comprises complex dynamics that would be difficult to study
experimentally in the real world, but is amenable to investigation in an ABM.

In all cases scenarios were constructed by modifying a single factor at a time and
expressing the results as a population size relative to a baseline scenario where no
pesticide was applied. The landscape used was again that shown in Fig. 3, but with
some fields replaced by orchards, randomly placed until orchards occupied 10% of
the total agricultural land. Landscape structure was modified in later experiments
by altering the locations of patches of optimal habitat. Pesticide was applied for 30
years starting in year 31 and was followed by a 60-year recovery period again where
no pesticide was applied. Thirty-five replicates of each scenario were run. For clarity
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the experimental scenarios were divided into two groups: one to investigate the tox-
icity and exposure factors and the other to evaluate landscape structural impacts.

2.4.1 Toxicity and Exposure Scenarios

Five scenarios were constructed to evaluate the impact of factors related to toxicol-
ogy and exposure. These were (1) a “default” scenario with one pesticide application
to all orchards on May 31. The other scenarios were constructed by varying one fac-
tor at a time of the default scenario, as follows: (2) a “clover/grass” scenario where
the pesticide was sprayed on clover grass fields that replaced orchards, (3) a “two
applications” scenario where the orchards had an additional pesticide treatment on
14th June, (4) a “NOEL” (no observable effect level) scenario where the effect level
was altered to one quarter of the NOEL in the default scenario, and (5) a “DT50”
scenario where the pesticide half-life was a factor four times longer than that in the
default scenario.

Toxicity and Exposure Results

The population responses differed between scenarios as shown in Fig. 5. Taking
each scenario in turn:

– Clover/Grass: Spraying clover grass instead of orchards resulted in the lowest
population depression of all scenarios, and the population reached full recov-
ery within the simulation period. This might seem strange because the field vole
lives in grass-vegetated areas that can function both as a continuous food sup-
ply and cover [49], and therefore exposure might be expected in a grass crop.
However, clover grass fields in the modern intensive agricultural landscape are
cut for silage or used for grazing livestock throughout the year, so that the voles’
habitat is continually being destroyed. Consequently, these fields are not suitable
breeding habitat [50–52], although they facilitate dispersal. Accordingly a small
fraction of the voles were exposed to the pesticide in our simulation, resulting in
a negligible population depression.

In contrast the orchards contain grass cover between the trees, which in the “default”
scenario is cut once a year just before harvest, and voles living here were subject
to much less disturbance. This illustrates the importance of the animals’ ecology
and behavior in risk assessment. It is also interesting to note that the impact at the
population level in this scenario was ca. 1%, but that 4% of all male voles exhibited
a toxic response (Table 1). Of these 4% only 22% carried the paternally transmitted
gene, indicating that the voles that were affected were not breeding as successfully
as those in other scenarios.

Two applications scenario: A second application to the orchards led to a doubling
of the amount of pesticide applied in the landscape, but not a doubling of the pop-
ulation depression or the proportion of affected voles (Fig. 5a, b). The explanation
is that the second application hits a population containing voles already affected by
the first.
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Table 1 Example 3: results of ALMaSS simulations

Directly affected Baseline population
males as a % size (1,000s)

Scenarios Total of affected males (%) of total affected

Clover/grass 4 78 58
Default 15 52 58
Two applications 16 56 58
NOEL/4 17 59 58
DT50

�4 18 75 58
NG around orchards 18 54 62
NG not around
orchards

10 51 54

0% NG 12 51 37

The total proportion of all male voles affected by the endocrine disrupter together with the propor-
tion of those that were directly affected by exposure in the uterus and the total mean size of the
vole population in the baseline scenario for each toxicological, exposure, and landscape structural
scenarios

NOEL and DT50 (half-life) scenarios: In the NOEL scenario toxicity increased
by a factor of 4, and this resulted in a doubling of population impact than in the
default scenario and a higher impact than applying the pesticide twice. However, a
fourfold increase in half-life, in the DT50 scenario, had even more impact (Fig. 5a).
The explanation can be found in the first-order kinetics of decay for the pesticide:

C D C0 e�kt , k D �.ln.C=C0// = t , k D ln 2 = DT50; (1)

where C is the concentration of the residue at time t; C0 is the residue concentra-
tion at the start, and k is a rate constant for loss, which is dependent on DT50. By
halving DT50; k is doubled, which increases the coefficient of the exponential curve
and so reduces the period of exposure. By contrast changing NOEL is equivalent to
changing the constant C in (1), which would result in a small change of the time
period of exposure .t/ compared with changes in k. Thus, the voles are more sen-
sitive to alterations in half-life than to alterations in toxicity. Despite this, half-lives
of pesticides receive little attention in current risk assessments.

Toxicity and Exposure Discussion

The population recovered completely by year 120 only in the Clover/Grass sce-
nario, where a limited proportion of the voles had been affected. This result could
have been related to the epigenetic effect of the pesticide, but investigation of the
frequency of affected voles showed that the alteration was purged from the popula-
tion after only a short period (Fig. 5b). In fact, the phenomenon was related to the
spatial dynamics of the voles in this fragmented landscape. Even small perturbations
of the population can mean local extinction for small subpopulations, and the time
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before recolonization depends on their location relative to larger source populations.
If the perturbation is large then this effect is exacerbated resulting in more isolated
subpopulations and consequently an elongation of the recovery period (Fig. 5a).

The unusual form of the recovery curve was a result of initial logistic population
growth in core habitats, followed by delays dependent on dispersal to recolonize
other areas that had been lost following pesticide application. The reverse mecha-
nism, together with epigenetic breeding depression, explains the continual decline
of the voles during the period of continuous pesticide application, as patches slowly
become empty and the vole population contracts to core habitats. This spatial mech-
anism provides a new dimension to risk assessment since spatial dynamics are
currently ignored.

2.4.2 Landscape Structural Manipulations

As shown earlier there are indications that the magnitude and effect of pesticide ex-
posure on populations are influenced by the spatial structure of contamination in the
landscape and habitat location [53–55]. Even so, the use of nonspatial approaches
is still common when characterizing exposures and effects of pesticide stresses. To
demonstrate the possible effect of landscape structure in the risk assessment three
scenarios were constructed based on the default scenario already described con-
taining randomly allotted primary vole habitat patches (“natural grass” D NG).
The natural grassland is a habitat type particularly suitable to the voles because
it supplies the animals with food and cover throughout the year. We explored three
landscape scenarios as follows: (1) The NG close to the orchards scenario (NGc),
where the natural grassland was located around the orchards where pesticide was
applied; (2) The natural grass not around orchards scenario (NGa), where the nat-
ural grassland was placed away from the orchards; and (3) the 0% natural grass
scenario (NGz), where no natural grassland occurred in the landscape.

Landscape Structure Results

The NGc scenario resulted in the lowest impact of the landscape scenarios with a
population depression of 3%, but the proportion of voles affected by the pesticide
was also highest here (Fig. 5c, d). This seeming paradox arises because natural
grassland in this scenario produced a connected set of suitable habitat fragments
capable of sustaining a larger population size around the orchards than in the other
scenarios. There were thus sufficient healthy males in the nearby natural grassland
to provide viable sperm for females in orchards. This means there were still quite
high abundances of voles in the orchards despite these being the sites of exposure of
gestating females (Fig. 5d), and after spraying these populations recovered rapidly
to baseline levels (Fig. 5c).

Compared with the NGc scenario the NGz scenario had the highest popula-
tion depression and lowest recovery level of the landscape structure scenarios.
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The natural grassland was removed from the landscape completely, thereby reducing
connectivity between optimal habitats (which here are primarily the orchards). The
affected vole frequency was lower, because of the reduced vole abundance around
the orchards, but the impact was higher due to the reduced level of source nontreated
populations in the landscape. Accordingly local extinction occurred on a larger scale
resulting in the lowest level of recovery.

The NGa was used as a control for the NCc scenario, maintaining the area of
grassland but locating it away from the orchards. Voles living in those grasslands
were unaffected by the spraying, thus the proportion of affected voles was lower than
in the default scenario (Fig. 5d), but the population depression was greater (Fig. 5c)
because of a lack of healthy males in grasslands adjacent to orchards to provide
viable sperm for females in the orchards. The lack of correlation between three
different endpoints, namely, the total proportion of males affected, the proportion
of these directly affected, and the baseline population size illustrates the nontrivial
nature of the relationships between the factors considered (Table 1).

2.5 Example 4: Impacts of Pesticide Bans and Reductions
at Landscape Scales

Jepsen et al. [21] utilized ALMaSS to evaluate the impact of a total pesticide ban
on the abundance and distribution of five species: Alauda arvensis (skylark), Micro-
tus agrestis (field vole), Bembidion lampros (beetle), Oedothorax fuscus (linyphiid
spider), and Capreolus capreolus (roe deer). While it would be temptingly simple
to create a scenario where, on the one hand, we had conventional agriculture and
on the other the same thing but with no pesticides, this may be a rather too sim-
ple approach. Instead, a more holistic consideration of the problem is required. The
debate surrounding the safe use of pesticides in Denmark prompted the establish-
ment of a state-funded Pesticide Committee in 1999. This committee initiated a
nation-wide evaluation of the economic and agronomic consequences of a partial or
complete ban on pesticide usage in Danish agriculture, the conclusion of which was
published by Jacobsen and Frandsen [56].

The results suggest that a total pesticide ban will have wide-reaching conse-
quences for land use and also crop choices. For instance, under the EU CAP
regulations relating to arable area payments at the time, farmers could claim pay-
ments and make a profit by sowing a crop they would never harvest. In other areas
land would shift from arable to dairy production. In those areas where arable pro-
duction remained there would be a reduction in areas of pesticide-intensive crops for
harvest. In particular, a significant rise in the area of oil seed rape was indicated since
this is cheap to sow and provides a good weed-suppressing cover. Jepsen et al. [21]
simulated this outcome by comparing the distribution and abundance of the five
species between agricultural practice as in 2003 and a scenario in which all crops
were grown organically and where agricultural land altered its composition from 64
to 29% cereals, oil seed rape increased from 11 to 17% of the arable area, and where
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roughage (rotational grass, peas, etc.) increased from 19 to 59%, with the remaining
areas being set aside. These simulations used the landscape of Fig. 3.

As expected due to reduced incidence of crop-management related stressors (in-
secticides and soil cultivation), beetle and spider numbers generally increased over
the whole landscape. Field vole numbers also increased marginally and uniformly
because of the increase in connectivity due to increasing the area of grass relative
to arable fields. The skylark however, contrary to initial expectations, decreased
in population size across the landscape with marked decreases in previously good
habitats. These decreases were an integration of a number of positive and negative
influences. The reduction in pesticides and subsequent increase in invertebrate food
worked positively; however, the lack of tramlines caused by late-season pesticide ap-
plications meant that the food was less abundant. In addition, the grass areas would
be grown for silage and would have very narrow windows of breeding opportunity
before cutting and/or grazing resulted in them being useless as breeding habitat.

The response of the roe deer was also complex with a distinct spatial pattern
to the changes. These local population changes were in response to changing crop
locations relative to suitable wooded habitats, primarily hedgerows. In those areas
where both hedgerows and suitable crops coincided, the deer could move out from
woods and forage; in other areas, the lack of shelter meant that the improved forage
was not utilized [21].

A similar interaction between pesticide changes and farm management was
found when evaluating the impact on skylark population sizes of taxation mea-
sures to alter pesticide use [57]. The effects of using pesticides were compared with
spraying nothing. The real effect of not spraying would be to not open tramlines, pre-
venting skylark foraging and breeding access, because the farmer would not drive
onto the field. Not spraying would also alter the crops grown. When these effects
were taken into account the mean 4% impact of pesticides predicted in an earlier
study [30] was reduced to a barely significant 1% impact [31]. However, in both
studies other structural changes in the landscape management were capable of al-
tering skylark populations by 20–50%. We conclude that a common sense, holistic,
approach to simulation is needed so that “knock-on effects,” such as changes in crop
area allocations, are taken into account in policy evaluation.

2.6 Two Further Examples of Predictive, Fully Fledged ABMs

The development of the ALMaSS framework took 10 years, including program de-
bugging and verifications. The development of a typical animal model with the
ALMaSS framework, including testing, usually takes 1–2 years. The analysis of
more theoretical scenarios of an existing animal model, however, can be performed
rather quickly, typically within a few months. Historically, and due to reasons of
page limitations in scientific journals, the extensive testing of ALMaSS so far has
not been fully documented. Therefore, we here briefly describe two further fully
fledged ABMs that were developed for ecological applications and where testing,
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verification, and validation have already been documented. These examples also
show that basing a model on fitness-seeking behavior can make ABMs complex,
but highly predictive. The trout model was explicitly developed for management
support. The shorebird model has a more academic background but currently is be-
ing tailored to address a range of real-world applications.

2.6.1 Shorebird Models

The shorebird models of Goss-Custard et al. predict the impact of land reclamation,
resource harvesting, and recreation on the winter mortality of shorebirds and wa-
terfowl. The ABMs had to predict the effect of new environmental conditions for
which no empirical rules or data were available [58–65].

In these models, the habitat is divided into discrete patches, which vary in their
exposure and their quantity and type of food. During each time step birds choose
where and on what to feed, or whether to roost. Time steps typically represent 1–6 h.
The bird’s state variables include foraging efficiency, dominance, location, diet, as-
similation rate, metabolic rate, and amount of body reserves. Key environmental
inputs to the models are the timings of ebb and flow and temperature. The submod-
els describing the bird’s decision where to move, what to eat, and how much time to
spend in feeding are based on principles mainly from optimal foraging theory. The
individuals are assumed to always try and maximize fitness, i.e., their own chance
of survival.

Model predictions were compared with many observed patterns during several
iterations of the modeling cycle. The modeling cycle includes defining the model’s
purpose, choosing a model structure, and implementing and analyzing the model
[16]. At the end of this process, patch selection, prey choice, and the proportion
of time spent in feeding were accurately predicted for many species and sites. In
one case, the increase in winter mortality due to land reclamation was known from
observations. The model was parameterized for the preimpact situation, and then
run for the situation after the land reclamation and the increase in winter mortality
were determined. The match of observed and predicted increase in winter mortality
was strikingly good [66].

2.6.2 Stream Fish Models

Railsback and coworkers developed a suite of stream fish ABMs (mainly cutthroat
trout Oncorhynchus clarki [67–73]; see also the precursor model of Van Winkle
et al. [74]). The models were developed to predict the effects of river management
on fish populations. Fish adapt to changes in flow caused by dams and water diver-
sions by moving to different habitat. Thus, to predict how fish populations react to
new flow regimes it was necessary to know how fish select habitat. The trout model
of Railsback and Harvey [70] uses daily time steps, with stream habitat represented
as rectangular cells. The section of a stream represented in the model would usually
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comprise about 200 m consisting of about 100 cells (the number of cells varies be-
cause of varying water levels). Within a day, individual fish carry out the following
actions: spawn, move, feed, and grow. Mortality could occur within each of these
steps and model runs cover a time span of years or decades.

In the model, trout based their daily decision on the projection of current habitat
conditions for 90 days into the future [67]. Railsback and Harvey [71] show that
this “state-based, predictive” theory of habitat selection is, in contrast to alternative
theories, capable of reproducing a set of six patterns observed in reality (“pattern-
oriented modeling,” [16,75]). In a management application, the trout IBM was used
to predict the population-level consequences of stream turbidity (Harvey and Rails-
back, unpublished manuscript): over a wide range of parameter values, the negative
effects of turbidity on growth (and consequently, reproduction) outweighed the pos-
itive effects on predation risk.

3 Advantages and Drawbacks of the ABM Approach

3.1 Advantages

Assuming that we have the option to make an ABM, what are the key advantages of
this approach in ecotoxicology? The most important characteristic of ABMs is that
we deal explicitly with spatiotemporal factors, and this coupled with the simple fact
that toxicants are rarely distributed evenly in space and time in the real world is a
major step forward in realism.

However, this is only half of the story. ABMs integrate the information in het-
erogeneous environments with the behavior of the agents, since ABMs pose a
mechanistic approach. This is clearly demonstrated by the skylark and mechanical
weeding example where integration of the management, weather, and skylark ecol-
ogy and behavior provided the necessary understanding of the system to prescribe
nondamaging weeding practices. This integration also allows the consideration of
multiple stressors (example 2). Here again, the fact that the ABM integrated the
impacts of different stressors with the animal ecology and behavior gave rise to im-
portant population-level responses. While consideration of multiple stressors might
not be straightforward from a regulatory perspective, it is an area where ABMs could
make a major contribution.

Probably the best example of the integrational power of ABMs is the vole exam-
ple (example 3), which shows the use of an ABM as a virtual laboratory allowing
a very wide range of factors to be modified separately or in unison and their im-
pacts compared. This example also illustrates the point about flexibility in ABMs.
The problem definition in the vole example required incorporation of individual-
based genetic transfer of information due to the epigenetic impact of the pesticide,
which in isolation could have been achieved using traditional population genetic
approaches. However, this was further complicated by the behavioral ecology and
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individual-level impact of the pesticide. These factors include strong territorial
behavior, high fecundity, and local habitat-dependent dispersal in a structurally
complex and variably permeable (to dispersing voles) landscape, together with spa-
tiotemporal variation in the distribution of the stressor and variable phenotypic and
toxicological responses at the individual level.

It is hard to imagine a non-ABM approach that could integrate all of these as-
pects in a natural way and yet still provide a simple intuitive experimental system
for manipulation and testing. This type of “virtual laboratory” approach has a huge
potential in increasing our understanding of biological systems and their responses
to toxic stressors. In fact, these approaches are already being used to tackle theoret-
ical population ecology problems in spatially heterogeneous environments [76].

When used to evaluate policy changes, ABM results may often contraindicate
a reductionist approach (as shown with the ALMaSS examples earlier). In the real
world where so many factors interact it would be common sense to consider the
changes in farm management that would result from any policy change, and the use
of ABMs should be no different. Although ABMs can become very large and com-
plex they are not capable of simulating systems to such a degree that a single model
can encompass all ecological and socioeconomic aspects. However, integration of a
range of multidisciplinary models so that inputs to ABMs are as realistic as possible
is achievable. For example, Dalgaard et al. [77] linked socioeconomic, nitrogen-
budgeting, hydrological, and ecological models together to assess land management
scenarios. The flexibility of the complex ABM approach facilitates this process.

Information-rich systems such as the Army Risk Assessment Modeling System
(ARAMS) [78] would be ideal candidates to take advantage of agent-based technol-
ogy. This system already has a wildlife exposure module that uses a simple area use
factor to determine exposure, but could be augmented with realistic animal move-
ments and responses to remediation measures.

Another often overlooked advantage of an ABM approach is that the mechanistic
detail forces the researcher to consider the system of study from another angle, and
perhaps in greater detail than hitherto undertaken. This has the very real benefit of
providing a framework for storing current knowledge and identifying areas where
research is needed because information is currently lacking.

3.2 ABMs Versus More Aggregated Population Models

When considering the advantages and drawbacks of ABMs for ecotoxicological re-
search we are thinking primarily of population-level effects. A common point of
contention is whether ABMs are better than simple population models. This point
comes up repeatedly at conferences (e.g., see [79]) and therefore we devote a little
space to it here.

The question of whether the one type of model is better than the other misses
the real point of models, which is to create a representation of a system that allows
investigation of the properties of the system and, in some cases, prediction of future
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outcomes. There is nothing innately better about an ABM than, for example, a ma-
trix model of population growth; the two types of model are different and meant for
different purposes. A matrix model [80] is a mathematical representation of the cur-
rent state of the population. Unless its parameters are allowed to vary, it cannot be
used for prediction, but only for projection as to whether the population will grow or
decline. An ABM, on the other hand, can make predictions because its components
alter their states and behaviors in response to changing input variables.

This does not mean that the ABM is better than a matrix model. The ABM can-
not be parameterized using the same parameters as the matrix model; it cannot be
constructed as quickly as a mathematical model, and it is always more difficult to
understand. Choice of model type depends on the resources available and the pur-
pose of the analysis, and it is even less clear cut as we move up the continuum
of increasing realism from scalar population models to spatially structured models
such as metapopulation models. Here, the purposes of the two model types may
overlap, but several factors affect choice of model type. There may be constraints of
data availability that dictate a simple model structure, or other constraints such as on
development time, available computational power, or even technical ability, which
would dictate a simpler model. If such constraints are not important, then there is a
common sense link between the accuracy of a model and the degree to which it rep-
resents reality (i.e., its realism), but at some point the generality of the model will be
reduced as we make the model too specific. Tradeoffs exist between the accuracy of
the model, the resources required to build it, and the desired generality [81]. There is
no one solution to this problem; each application must be evaluated in its own right.
The criteria, however, used for choosing a certain model should be made explicit in
any application.

3.3 Drawbacks

3.3.1 Presumed Drawbacks

Some commonly heard arguments against increasing realism and therefore com-
plexity in models, and by extension to increasing realism in risk assessment are as
follows:

Increasing realism decreases generality. This argument probably has its roots
with Levins [81], although it is a common general principle. To determine whether
this is a drawback or not depends on how general we want our model to be. If our
question is specific then a general model is likely to be imprecise (e.g., the use
of TER and fixed threshold values for all species in pesticide regulation to predict
risk in example 1). In ecotoxicology “general” models are unsatisfactory because
there is no general target/nontarget organism, mode of action, or route of exposure.
When constructing ABMs generality is not the aim per se; here we usually try to
capture the essence of a specific system or class of systems, rather than a general-
ity. However, generalities can be achieved if we evaluate our specific model over a
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sufficiently wide range of conditions. In principle, the exploration of carefully de-
fined scenarios in ABMs could provide a sensitivity analysis of the probabilities of
adverse effects as well as general rules. For example, in the vole (example 3) in-
teractions between the different landscape structural factors could be evaluated in
order to create general rules about pesticide impacts and habitat connectivity.

Adding detail makes the creation and testing of general ecological principles
difficult. Not to be confused with a criticism of adding unnecessary detail, this is
related to the generality argument, but is fundamentally flawed in that it assumes
that we need generalities, that is, simplifications, before developing and testing the-
ories. Surely theories are best derived from patterns emerging from as many varied
and detailed observations as possible [16]. So given enough examples of specific
systems (such as realistic ABMs) to experiment with, greater insight into general
theories or even new paradigms may develop. This goes to the heart of the promise
of complexity science and ought not to be perfunctorily dismissed.

Detailed models are unnecessarily complex. Naturally adding detail to a model
without good reason would be foolish, because every additional detail causes ad-
ditional work. So, as for other models the principle of parsimony holds for ABMs.
We might use patterns to get ideas about optimal model complexity (see [75]), but
ultimately it is the task of model analysis to see how much a model can be simplified
while keeping its potential to serve its purpose. However, if we consider complexity
in the same way, complexity has a price in terms of increased work in adding model
details, but a distinct benefit in terms of richness, which we can utilize for testing,
validation, and prediction [19].

Increasing realism leads to a loss of precision. This argument is based upon a tra-
ditional statistical approach to modeling. In a mathematical model the error in the
prediction is related to the error terms in the parameter inputs in a predictable man-
ner, and this can be propagated or compounded in complex models. While true of a
mathematical construct this concept does not necessarily hold for complex systems
in which checks and balances stabilize the outputs. It is especially untrue of models
constructed using a pattern-oriented approach (see later), whereby error propagation
is constrained by the form of model testing [82]. In fact, biological systems in gen-
eral have sloppy parameter spaces, and focus should, therefore, be on predictions
rather than parameter values and their errors [83]. This is incidentally also one of
the reasons why these models do not result in deterministic chaos, which is another
commonly held, but misinformed belief.

3.3.2 Real Drawbacks

There are, however, a number of much more significant drawbacks when consider-
ing building ABMs. The drawbacks of constructing and using an ABM approach,
especially a comprehensive approach like ALMaSS, can be summed by the phrase
“When you can change anything you have to consider everything.” In consider-
ing “everything” you need both to be able to generate plausible mechanisms for
interactions that must all be defined and to locate or generate data to support the



The Potential for the Use of Agent-Based Models in Ecotoxicology 229

parameterizing of these. In building or modifying the model the interactions must
be considered again since what on the face of it may be a simple change can, in
fact, have far-reaching consequences. The same is true of building a scenario after
the model is finished; simply accepting default values may be counterproductive,
for example, applying a reductionist approach to pesticide limitation as in examples
2 and 4.

The difficulties of model construction are already mentioned earlier. The com-
plexity of the system means that the technical demands placed on the developer are
higher than those typically placed on the ecological modeler. These demands are
comparable to the technical skills required by other specialist branches of natural
sciences such as biostatistics or molecular ecology, the difference being that there
are few schools of computational biology, and so suitably qualified staff may be hard
to find. This may be a major drawback to actually implementing an ABM approach.

Perhaps the biggest drawback to the increased use of ABM models in scientific
disciplines in general is simply the fact that they are new. This means that ABMs
lack some important characteristics compared with other modeling approaches,
these being a rigorous theoretical basis and a standardized approach to construc-
tion, testing, and communication of models. In fact, the emergence of theory is a
rapidly developing area under the auspices of complexity science. Complexity sci-
ence aims to describe, explain, and control the collective objects and phenomena
emerging at a particular spatiotemporal scale from the simpler interactions of their
components at a finer scale. The search for a general theory to simplify understand-
ing of complex systems is, however, elusive. For example, one general theory that
might have been useful to describe the emergent patterns of multiagent systems is
the theory of self-organized criticality [84]. However, this general theory seems not
to have fulfilled its original promise and is perhaps better viewed as a way of sketch-
ing the essential structure of a system [85]. Seen in this light, ABMs might fulfill
the role of filling in the mechanistic details in system functioning while the search
for unifying principles continues at a higher level of organization.

Development of methods for communication and testing of ABMs has started,
but is still in its infancy. There is a widely held view that models of this complexity
are difficult, if not impossible, to validate. However, one emerging approach to val-
idation is pattern-oriented modeling [75], which includes as a main element inverse
modeling for parameterization [82,86] whereby multiple field data patterns are used
to simultaneously filter combinations of parameter values and model structures in
order to achieve the twin aims of testing the behavior of the agents in the model and
of reducing parameter uncertainty. The greater the number of real-world patterns
that can be simulated concurrently, the greater the confidence in the model, and typ-
ically the smaller the possible parameter space. Pattern-oriented modeling is a new
approach and so examples are few and far between (e.g., [42,87,88]), and as yet no
structured protocols exist for carrying out an analysis. However, the basic approach
is well described [89] and would be easily adaptable to an ecotoxicological prob-
lem, especially where large-scale field data are available from monitoring studies or
field trials. So rather than being seen as a drawback, the novelty of pattern-oriented
modeling could be seen as a challenge and an opportunity to develop the science
and use of ABMs further.
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Difficulty in communication of ABMs is a major drawback to their acceptance
and general accessibility to nonspecialists. This seems paradoxical to some extent
since good ABM construction practice is to use the ecological system to be modeled
as the primary metaphor [16]. It follows then that explaining the model to ecologists
ought to be relatively simple. This can indeed be the case at a superficial level,
but description of the detailed choices made in construction and parameterization
is far from simple. The two most critical sources of model documentation are the
written model description and the source code; however, for ABMs these documents
can be very large and are not usually easy to read. One approach suggested is to
standardize the description such that once a reader has encountered a number of
such descriptions familiarity increases transparency. This is the concept behind the
ODD protocol (overview, design concepts, and details) of Grimm et al. [24] and
Polhill et al. [90].

The idea of the ODD protocol is to define a fixed sequence in which different
levels and elements of a model are described to allow the reader a quick overview
of what the model is and what it does, that is, its structure and processes, without
having to consider any detail at first. Then, important concepts underlying the design
are discussed, for example, how adaptive behavior was represented, and how and
why stochasticity was included. Finally, details of the model’s implementation are
provided. It can be useful, or even necessary, to present the actual code by which
a certain process was represented. Thus, the separation of “overview” and “detail”
takes into account that some readers are more interested in the overall structure and
rationale of the model, for example, the ecotoxicologist, while others want to know
the details of the model’s implementation, for example, if they have to assess the
model as a reviewer for a scientific journal or a regulatory authority.

ODD seems to gain ground in the literature but still is in its infancy and under
development [14]. It can be difficult to apply it to ABM frameworks such as AL-
MaSS or FEARLUS [90] because the distinction between a specific model and the
framework is not always easy to draw.

4 The Future of ABMs in Ecotoxicology

The examples of ABMs in ecotoxicology demonstrate the utility of the ABM ap-
proach and highlight that the system response is not easily predictable in advance
due to the complex nature of the systems under study. If we do not include multiple
stressors we can underestimate risks (example 2), and without evaluating the land-
scape structure and details of the toxicology of the stressor we also risk inaccurate
prediction of the population impact (example 3). Even socioeconomic factors can-
not be ignored in any but the most experimental of scenarios (example 4). It seems
that almost all factors are important, and that is probably the cause for concern.

All is not lost however. If ABMs can be used to demonstrate that these effects
are important, they can also be used to investigate the way these factors interact
and thus increase our understanding of the system. In doing so and adding to the
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examples here, one could imagine an ABM/ecotoxicology utopia where series of
representative landscapes were continually updated as agricultural practices change,
and farmers responded to socioeconomic drivers and altered their management in re-
sponse to these and weather variables. Aquatic and terrestrial environments would
be combined in such a simulation, and surface and ground water flow of pesticides
and fertilizers would be modeled. Entire suites of nontarget species could be mod-
eled in these landscapes and whenever a new pesticide or policy change was to be
tested it could be done against a well-documented comprehensive simulation of a
real system with all the complexities of multiple stressors, varying crop coverage
and farmer behavior, and landscape structure.

This would be a far cry from testing whether a TER value was less than 5, and
while it might sound far fetched the technology to accomplish it already exists. Mod-
els of all basic subcomponents of the system exist, and hardware is easily capable
of running such a system. For instance, ALMaSS can be run on a standard PC with
one processing core while research computing facilities now exist with computers
having >11;000 parallel processor cores [91]. What would be needed would be the
resources and the will to construct and maintain such a model. On the other hand,
it is important to keep in mind also that simpler ABMs and matrix and differential
equation models all have their place. Ideally, such simpler models will be more or
less directly linked to more complex ABMs such as the ALMaSS models to achieve
a kind of “theoretical validation” of the complex model.

Even without embarking on such a project, the fact that it can now be feasibly
imagined suggests that the future of ABMs in ecotoxicology is rosy, and naturally
much can be achieved with the models we already have. It is our hope then that,
as in other scientific disciplines, ABM development in ecotoxicology is going to be
swift and exciting.
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Abstract The dynamic energy budget (DEB) theory for metabolic organisation
specifies quantitatively the processes of uptake of substrate by organisms and its
use for the purpose of maintenance, growth, maturation and reproduction. It ap-
plies to all organisms. Animals are special because they typically feed on other
organisms. This couples the uptake of the different required substrates, and their
energetics can, therefore, be captured realistically with a single reserve and a single
structure compartment in biomass. Effects of chemical compounds (e.g. toxicants)
are included by linking parameter values to internal concentrations. This involves a
toxico-kinetic module that is linked to the DEB, in terms of uptake, elimination and
(metabolic) transformation of the compounds. The core of the kinetic module is the
simple one-compartment model, but extensions and modifications are required to
link it to DEBs. We discuss how these extensions relate to each other and how they
can be organised in a coherent framework that deals with effects of compounds with
varying concentrations and with mixtures of chemicals. For the one-compartment
model and its extensions, as well as for the standard DEB model for individual or-
ganisms, theory is available for the co-variation of parameter values among different
applications, which facilitates model applications and extrapolations.

Keywords Dynamic energy budgets � Effects on processes �Kinetics �Metabolism �
Transformation

1 Introduction

The societal interest in ecotoxicology is in the effects of chemical compounds on
organisms, especially at the population and ecosystem level. Sometimes these ef-
fects are intentional, but more typically they concern adverse side-effects of other
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(industrial) activities. The scientific interest in effects of chemical compounds is in
perturbating the metabolic system, which can reveal its organisation. This approach
supplements ideas originating from molecular biology, but now applied at the in-
dividual level, the sheer complexity of biochemical organisation hampers reliable
predictions of the performance of individuals. Understanding the metabolic organi-
sation from basic physical and chemical principles is the target of dynamic energy
budget (DEB) theory [1,2]. In reverse, this theory can be used to quantify the effects
of chemical compounds, i.e. changes of the metabolic performance of individuals.
This chapter describes how DEB theory quantifies toxicity as a process.

The effects can usually be linked to the concentration of compounds inside the
organism or inside certain tissues or organs of an organism. This makes that toxi-
cokinetics is basic to effect studies. The physiological state of an organism, such as
its size, its lipid content, and the importance of the various uptake and elimination
routes (feeding, reproduction, excretion) interacts actively with toxicokinetics, so a
more elaborate analysis of toxicokinetics should be linked to the metabolic organ-
isation of the organism [3]. In the section on toxicokinetics, we start with familiar
classic models that hardly include the physiology of the organism, and stepwise in-
clude modules that do make this link in terms of logical extensions of the classic
models.

Three ranges of concentrations of any compound in an organism can be delin-
eated: too-little, enough and too-much. The definition of the enough-range is that
variations of concentrations within this range do not translate into variations of the
physiological performance of the individual. Some of the ranges can have size zero,
such as the too-little-range for cadmium. Effects are quantified in the context of DEB
theory as changes of (metabolic) parameters as linked to changes in internal concen-
trations. These parameters can be the hazard rate (for lethal effects), the specific food
uptake rate, the specific maintenance costs, etc. Changes in a single parameter can
have many physiological consequences for the individual. DEB theory is used not
only to specify the possible modes of action of a chemical compound, but also how
the various physiological processes interact. An increase in the maintenance costs
by some compound, for instance, reduces growth, and since food uptake is linked
to body size, it indirectly reduces food uptake, and so affects reproduction (and
development). The existence of the ranges too-little, enough and too-much of con-
centrations of any compound directly follows from a consistency argument, where
no classification of compounds is accepted (e.g. toxic and non-toxic compounds),
and many compounds (namely those that make up reserve) exist that do change
in concentration in the organism, without affecting parameter values. An important
consequence is the existence of an internal no effect concentration (NEC), as will
be discussed later.

Effects at the population level are evaluated from those at the individual level,
by considering populations as a set of interacting individuals [4–8]. Although
DEB-based population dynamics can be complex, particular aspects of population
performance, such as the population growth rate at constant environmental condi-
tions, are not very complex. Moreover particular simplifying approximations are
possible. The focus of toxicology is typically at time scales that are short relative
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to the life span of the individual. That of ecotoxicology, however, are much longer,
involving the whole life history of organisms; effects on feeding, growth, reproduc-
tion and survival are essential and typically outside the scope of toxicology. This
has strong implications for the best design of models. Although pharmacokinetics
models frequently have many variables and parameters, such complex models are of
little use for applications at the population level, where a strong need is felt for rel-
atively simple models, but then applied to many species and in complex situations.
DEB theory is especially designed for this task.

Chemical transformations are basic to metabolism, and transformations of toxi-
cants are no exception. Compounds that dissociate in water should be considered as
a mixture of ionic and molecular forms, and the pH affects that mixture. This makes
that the effect of a single pure compound is of rather academic interest; we have to
think in terms of the dynamic mixtures of compounds. Because of its strong links
with chemical and physical principles, DEB theory has straightforward ways to deal
with effects of mixtures. Some of this theory rests on the covariation of parameter
values across species of organism and across chemical compounds. Theory on this
covariation is implied by DEB theory, and is one of its most powerful aspects.

We first introduce some notions of DEB theory, and then discuss toxicokinetics
and effects in the context of DEB theory.

2 The Standard DEB Model in a Nutshell

The standard DEB model concerns an isomorph, i.e. an organism that does not
change in shape during growth, that feeds on a single food source (of constant chem-
ical composition) and has a single reserve, a single structure and three life stages:
embryo (which does not feed), juvenile (which does not allocate to reproduction)
and adult (which allocates to reproduction, but not to maturation). This is in some
respects the simplest model in the context of DEB theory, which is thought to be
appropriate for most animals. Food is converted to reserve, and reserve to struc-
ture. Reserve does not require maintenance, but structure does, mainly to fuel its
turnover (Fig. 1). Reserve can have active metabolic functions and serves the role of
representing metabolic memory. Reserve and structure do not change in chemical
composition (strong homeostasis). At constant food availability, reserve and struc-
ture increase in harmony, i.e. the ratio of their amounts, the reserve density, remains
constant (weak homeostasis).

The shape (and so the change of shape) is important because food uptake is
proportional to surface area, and maintenance mostly to (structural) volume. The
handling time of food (including digestion and metabolic processing) is propor-
tional to the mass of food “particles”, during which food acquisition is ceased. The
mobilisation rate of reserve to fuel the metabolic needs follows from the weak and
strong homeostasis assumptions [9]; a mechanism is presented by Kooijman and
Troost [10]. Allocation to growth and somatic maintenance (so to the soma) com-
prises a fixed fraction of mobilised reserve, and the remaining fraction is allocated
to maturation (or reproduction) and maturity maintenance.
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Fig. 1 The standard DEB model with fluxes (moles per time) and pools (moles). Assimilation is
zero during the embryo stage and becomes positive at the transition to the juvenile stage (birth)
if food is available. Age is zero at the start of the embryo stage. Reproduction is zero during the
juvenile stage and becomes positive at the transition to the adult stage (puberty), when further
investment into maturation is ceased

The transition from the embryo to the juvenile stage (i.e. birth) occurs by initiat-
ing assimilation when the maturity exceeds a threshold value, and from the juvenile
to the adult stage (i.e. puberty) by initiating allocation to reproduction and ceasing
of allocation to maturation at another threshold value for maturity. Reserve that is
allocated to reproduction is first collected in a buffer that is subjected to buffer han-
dling rules (such as spawning once per season, or convert the buffer content into an
egg as soon as there is enough).

Biomass consists of reserve and structure, and can, therefore, change in chemical
composition (e.g. lipid content) in response to the nutritional condition; maturity
has the status of information, not that of mass or energy. Apart from some minor
details, the presented set of simple rules fully specify the dynamics of the individual,
including all mass and energy fluxes, such as the uptake of dioxygen, the production
of carbon dioxide, nitrogen waste and heat. It takes some time to see exactly how
Sousa et al. [9] gives a nice evaluation. Aging is considered to result from a side
effect of reactive oxygen species (ROS), and is so linked to the uptake of dioxygen
[11]. A high food uptake results in a large amount of reserve, so a high use of
reserve, a high uptake of dioxygen, an acceleration of aging and a reduction of life
span. The induction of tumours is also linked to the occurrence of ROS, and other
reactive molecules, such as mutagenic compounds. This gives a natural link between
aging and tumour induction.

The standard DEB model has been extended into many directions for the various
purposes. The allocation rule to the soma, for instance, can be refined to allocation to
various body parts (e.g. organs), where growth of each body part is proportional to
the allocated reserve flux minus what is required for maintenance of that part. Rather
than using fixed fractions of the mobilised reserve, the fractions can be linked to the
relative workload of the body part. This allows a dynamic adaptation of the body
parts in interaction with their use. Tumours can be considered as body parts, and
the “workload” of the tumour is the consumption of maintenance. This formulation
produced realistic predictions of the effects of caloric restriction on tumour growth,
and of the growth of tumours in young vs. old hosts [12]. This approach can be
extended to various types of tumours, where tumour growth is not linked to that



Ecotoxicological Applications of Dynamic Energy Budget Theory 241

of the whole body, but that of a particular body part. Many tumours result from
destruction of local cell-to-cell communication, rather than from genotoxic effects,
but these different routes have similar dynamics.

Other types of extensions of the standard DEB model concern the inclusion of
variations in chemical composition of food (with consequences for the transforma-
tion of food into reserve) and size-dependent selection of different food items. For
example, many herbivores are carnivores when young. Animals are special because
they feed on other organisms. Most other organisms take the food-compounds (en-
ergy source, carbon source, nitrate, phosphate) that they need independently from
the environment, which necessitates the inclusion of more than one reserve; see
Kooijman and Troost [10] for the evolutionary perspectives. Most microorganisms,
on the one hand, grow and divide, and do not have the three life stages delineated
by the standard model. This makes that their change in shape hardly matters and
that surface areas can be taken proportional to volumes, which simplifies matters
considerably. The partial differential equations that are required to described the
physiologically structured population dynamics of isomorphs then collapse to a
small set of ordinary differential equations. Plants, on the other hand, require at
least two types of structure (roots and shoots) and have a complex adaptive mor-
phology (i.e. surface area–volume relationships); their budgets are most complex to
quantify.

3 Family of Toxicokinetic Models

Originally (before the 1950s) the focus of toxicology, i.e. the field that gave rise
to ecotoxicology, was on medical applications of compounds in a pharmacological
context. Subjects where given a particular dose, and the interest is in the redistribu-
tion inside the body, and in transformation and elimination. The aim is to reach the
target organ and to achieve a particular effect that restores the health or well-being
of the subject. A closely-related interest that developed simultaneously was health
protection (disinfection and food protection products), with the purpose of killing
certain species of pathogenic organism (especially microorganisms), or to reduce
their impact.

After the 1950s, ecotoxicology began to flourish and gradually became more
independent of toxicology, where the initial focus was in positive and (later) neg-
ative effects of biocides. This came with extensions of the interest in the various
uptake and elimination routes that are of ecological relevance, and the environmen-
tal physical-chemistry of transport and transformation. The aim is to kill particular
species of pest organism locally (insects and weeds), and to avoid effects on other,
non-target, species (crop and beneficial species). After the 1970s, the interest fur-
ther generalised to an environmental concern of avoiding effects of pollutants on
organisms, with an increasing attention for (bio)degradation of compounds that are
released into the environment, coupled to human activity [13].

This historic development and branching of the interest in toxico-kinetics came
with a narrowing of the focus on a particular aspect of toxico-kinetics in the various
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applications that, we feel, is counter-productive from a scientific point of view. The
purpose of this section is an attempt to restore the coherence in the field, by em-
phasising the general eco-physiological context and the relationship of the various
models with the core model for toxico-kinetics: the one-compartment model. The
more subtle models account for the interaction with the metabolism of the organism,
which involves its metabolic organisation.

We here focus on the logical coherence of toxico-kinetics, bio-availability and
metabolism, including effects (Dchanges in metabolism). It is not meant to be a
review. For recent reviews on toxico-kinetic models, see Barber [14] and Mackay
and Fraser [15]. See Table 1 for a list of frequently used symbols.

3.1 One-Compartment Model

The core model in toxico-kinetics is the one-compartment model, see Fig. 2. It states
that the uptake rate is proportional to the environmental concentration c, and the
elimination rate is proportional to the internal concentration Q:

d

dt
Q D ke .P0d c.t/ �Q/ ; (1)

Table 1 List of frequently used symbols, with units and interpretation

Symbol Units Interpretation

t d Time
c M Concentration of compound in the environment
ni mol m�1 Density of compound
Q mol C-mol�1 Concentration of compound in an organism
r d�1 Specific growth rate of structure
ke d�1 Elimination rate
k01, k10 d�1 Exchange rates between compartments
P0d mol C-mol�1 M�1 Bioconcentration factor (BCF)
vij , ve m d�1 Velocity, elimination
di m2 d�1 Diffusivity
mE, mER C-mol C-mol�1 Reserve density, reproduction buffer density

The unit C-mol represents the number of C-atoms in a organism as multiple of the
number of Avogadro.

Qc

keP0d

ke

Q0c

keP0d

ke

Q1

k01

k10

Fig. 2 The scheme of the one- and two-compartment models. The factor P0d converts an external
concentration into an internal one; all rates labelled k have dimension ‘per time’. In the two-
compartment model P0d does not have the interpretation of the bioconcentration factor
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Q.t/ D Q.0/ exp.�tke/C keP0d

Z t

0

c.s/ exp..s � t/ke/ ds; (2)

D Q.0/ exp.�tke/C P0d c .1 � exp.�tke// for c is constant; (3)

where P0d D Q.1/=c is the BioConcentration Factor (BCF) and ke the elimination
rate. The product keP0d is known as the uptake rate, and is frequently indicated with
ku, which is misleading because its units are d�1 m3 C-mol�1. Even if we would
work with kg rather than C-mol, and the specific density of the organism equals
1 kg dm�3, the BCF is not dimensionless [1]. It is typically more convenient to work
with molalities in soils (mol kg�1), and with molarities (mol l�1) in water. Molalities
give the uptake rate the units d�1 g C-mol�1. Many workers use gram rather than
mole to quantify the compound, but this choice is less practical to compare the
toxicity of different compounds. The elimination rate ke has dimension ‘per time’
and is independent of how the compound is quantified; contrary to the uptake rate,
the elimination rate can be extracted from effect data and determines how fast effects
build up in time, relative to the long-term effect level.

The concentrations c and Q must obviously exist, meaning that the environment
and the organism are taken to be homogeneous. This condition can be relaxed with-
out making the model more complex by allowing a spatial structure (such as organs),
and an exchange between the parts that is fast relative to the exchange between the
organism and the environment. Other implicit assumptions of the one-compartment
model are that the organism does not change in size or in chemical composition,
so changes in food availability must be negligible. The (bio)availability of the com-
pound remains constant. So transformations can be excluded, and the environment
is large relative to the organism and well-mixed. Sometimes, e.g. in the case of a
large fish in a small aquarium, this is not true and the dynamics of the concentration
in the organism and the environment should be considered simultaneously: the 1-1
compartment model [16]. These restrictions will be removed later.

Since rates generally depend on temperature, and temperature typically changes
in time, the elimination rate ke can change in time as well [17]. In the sequel, we
will discuss rates of metabolism, and like all rates, these also depend on temperature,
frequently according to the Arrhenius relationship [1].

3.2 Multi-Compartment Models

If transport inside the organism is not fast, relative to the exchange with the environ-
ment, multiple-compartment models should be considered [18,19]. If exchange with
the environment is only via compartment number 0, the change in the concentrations
in the nested compartments number 0 and 1 is

d

dt
Q0 D ke .P0d c �Q0/C k10Q1 � k01Q0I d

dt
Q1 D k01Q0 � k10Q1; (4)
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where k01 and k10 are the exchange rates between the compartments, see Fig. 2. The
partition coefficient between the compartments equals P10 � Q1.1/=Q0.1/ D
k01=k10, while P0d � Q0.1/=c remains unchanged. In many cases whole body
measurements are used. If M0 and M1 denote the masses of compartment 0 and
1, the whole body partition coefficient with the environment amounts to PCd D
.M0 C M1P10/P0d =MC, with MC D M0 C M1 is the whole body mass. This
rather complex behaviour of the whole body partition coefficient can be a source
of problems in fitting models to data. In many practical cases, it is not possible to
identify the compartments and to measure the concentrations in these compartments
directly. The use of multi-compartment models cannot be recommended in such
cases.

This extension still classifies as a transport model, so in a clean environment
(c D 0), the organism will loose all its load (Q0.1/ D Q1.1/ D 0). Quite a few
data sets on the kinetics of (‘heavy’) metals in organisms show that once loaded,
an organism never fully looses its load [20–22]. Such behaviour cannot be captured
by multi-compartment models because this involves an extension to transformation
of compounds (technically speaking, sequestered compounds belong to a different
chemical species).

If k01; k10 	 ke, we can assume that Q1.t/ ' P10 Q0.t/, and the kinetics (4)
reduces to (1), with Q replaced by Q0. This situation is called time-scale separation.

The interpretation of the compartments can be a special tissue or organ, or, more
abstract, reserve (compartment 1) and structure (compartment 0). The latter makes
sense in the context of DEB theory, where both compartments are assumed to have
a constant, but different, chemical composition, while reserve is relatively rich in
lipids in many animal taxa. While (4) assumes that the size of all compartments
does not change, we will relax on this below, when we allow more interactions with
metabolism and energetics.

We can obviously include more compartments, and more complex interactions
with the environment, but the number of parameters rapidly increases this way. In
practice multi-compartments are used if the one-compartment model fits data badly.
The introduction of more parameters generally improves the fit, but not necessarily
for the right reasons. As a rule of thumb, it is only advisable to use more compart-
ment models if data on the concentrations inside the compartments are available. If
lack of fit of the one-compartment model is the only motivation, alternatives should
be considered that are discussed later.

3.3 Film Models

Film models are conceptually related to multi-compartment models because both
are extensions of the one-compartment model that include more detail in transport
(so in physical factors), though in different but complementary ways. Film models
are especially popular in environmental chemistry for following the transport of
compounds from one environmental compartment (such as water) to another (such
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as air). Both compartments are assumed to be well-mixed, except for a narrow film
at the interface of both compartments, where transport is by diffusion.

To follow the dynamics for the densities of the compound n (mol/m), we need
to define a spatial axis perpendicular to the interface and choose the origin at the
boundary between the bulk and the film (on each side of the interface). Let Li be
the depth of the film, di the diffusivity of the compound in the film, and vij the ex-
change velocity of the compound between the two media. As discussed in Kooijman
et al. [16], the dynamics of the densities is given by partial differential equations
(pdes) for medium i D 1 � j and j D 0 or 1

0 D @

@t
ni .L; t/ � di

@2

@L2
ni .L; t/ for L 2 .0; Li/; (5)

with boundary conditions at LD0 (i.e. the boundary between the film and the well-
mixed medium) for vi D di =Li

0 D @

@t
ni .0; t/� vi

@

@L
ni .0; t/; (6)

and boundary conditions at L D Li (i.e. the interface between the media where the
two films meet)

0 D vj inj .Lj ; t/ � vij ni .Li ; t/C di

@

@L
ni .Li ; t/; (7)

The boundary condition at L D 0, and the diffusion process in the film is rather
standard, but we believe that the boundary condition at L D Li is presented for the
first time in Kooijman et al. [16]. Users of the popular film models typically skip the
formulation of the pde and directly focus at steady-state situations; they typically
use the concentration jump across the interface that belongs to the situation when
there is no net transport across the interface. As long as there is transport, however,
the concentration jump differs from this equilibrium value.

The depth of the films is typically assumed to be small and the transport in the
films in steady state, which makes that the density profiles in the films are linear.
This leads to the 1-1-compartment kinetics for the bulk densities

d

dt
ni .0/ D kij.Pijnj .0/� ni .0//I kij D vi =Li

1C Pijvi =vj � vi =vij
; (8)

where Li is the depth of the medium. This approximation only applies if vivj <

vijvj C vjivi and the transport in the film is rate limiting. The 1-1-compartment
kinetics also results, however, if the film depths reduce to zero and if the diffusivities
are high. The rate from i to j then reduces to kij D viL�1

i .1 � vi =vij/
�1. In these

two situations, transport in the film is no longer rate limiting.
The applicability of film models to toxico-kinetics in organisms is still an open

question. It can be argued that a stagnant water film sticks to aquatic or soil
organisms (and air to a terrestrial organism), and that the skin (or cuticula) is not
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well served by the internal redistribution system (blood) of the organism. If toxico-
kinetics is fully limited by transport in the film, and if it is not limited by the film,
one-compartment kinetics results; only in the intermediary situation we can expect
some deviations. Yet the discussion is not completely academic, since these details
matter for how the elimination rate depends on the partition coefficient [16, 23].

3.4 Uptake and Elimination Routes

We now consider extensions of the one-compartment model due to biological fac-
tors by accounting for various uptake and elimination routes. These routes depend
on the type of organism, its habitat and properties of the compound. Animals that
live in (wet) soil are in intense contact with the water film around soil particles, and
their situation has similarities with that of aquatic animals. Direct transport through
the skin can be important, which involves the surface area of an organism. Some
parts of the skin are more permeable, especially that used by the respiratory system
for dioxygen uptake and carbon dioxide excretion. The uptake rate might be linked
to the respiratory rate, which depends on the energetics of the organism. Generally,
the respiration rate scales with a weighted sum of surface area and volume, but the
proportionality constants depend on the nutritional conditions of the organism [1].
For terrestrial animals, uptake via the lungs from air and via skin contact with the
soil must be considered. Sometimes uptake is via drinking; the DEB theory quanti-
fies drinking via the water balance for the individual and involves a.o. metabolism
and transpiration. The details can be found in Kooijman [1].

A second important uptake route is via food and the gut epithelium. The feed-
ing rate depends on food availability, food quality and the surface area of the
organism [1].

The elimination can follow the same routes as uptake, but there are several ad-
ditional routes to consider, namely via products of organisms. The first possibility
is the route that excreted nitrogen waste follows (urination). Reproductive products
(mostly eggs and sperm) can also be an important elimination route. Moulting (e.g.
ecdysozoans, including the rejection of gut epithelium, e.g. collembolans) or the
production of mucus (e.g. lophotrochozoans) or milk (e.g. female mammals) are
other possible excretion routes. The DEB theory quantifies reproductive and other
products as functions of the amounts of reserve and structure of the individual. In
the standard DEB model, they work out to be cubic polynomials in body length,
but the coefficients depend on the nutritional conditions (amount of reserves per
structure) [1].

3.5 Changes in Body Size and Composition

The body size of an organism matters in the context of toxico-kinetics for several
reasons [24]. As exchange is via surface area, and is proportional to concentration,
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surface area–volume interactions are involved. This problem also applies to com-
partment and film models, but gets a new dimension if we consider changes in body
size, which are linked to the nutritional condition of organisms (lipid content), and
so to (changes in) body composition. Small changes in size can have a substantial
effect on the shape of accumulation curves.

If an organism does not change in shape during growth (so it remains isomor-
phic), surface area is proportional to volume2=3, or to squared length. Moreover,
dilution by growth should be taken into account, even at low growth rates. This
modifies (1) to

d

dt
Q D .P0d c.t/ �Q/ ve=L�Qr with r D d

dt
ln L3; (9)

where L is the length, and ve D Lmke is the elimination velocity for maximum
length Lm. The last term, Qr , represents the dilution by growth. If it equals zero,
we can replace ve=L by the constant elimination rate k0e, but its meaning still matters
if we compare the kinetics in two organisms of different size. DEB theory specifies
how the change in (cubed) length depends on the amount of reserve and structure
of the organism, and how the change in reserve depends on these state variables and
food availability. Food intake and maintenance play an important role in growth and
together they control the maximum size an organism can reach, since food intake
is proportional to a surface area and maintenance to structural volume. Wallace had
this insight in 1865 already [25].

The DEB theory allows for particular changes in body composition, because
reserve and structure can change in relative amounts and both have a constant com-
position. Food (substrate) is first transformed into reserve, and reserve is used for
metabolic purposes, such as somatic and maturity maintenance, growth, maturation
and reproduction. The change in reserve density for metabolic use is proportional to
the reserve density per length, which makes that high growth rates come with high
reserve densities, i.e. the ratio of the amounts of reserve and structure.

Reserves are in many animal taxa relatively enriched in lipids, which might have
a strong influence on the kinetics of hydrophobic compounds. The body burden
of eel in a ditch that is polluted with mercury or PCB might greatly exceed that
of other fish partly because eel is relative rich in lipids. This illustrates the impor-
tance of lipid dynamics. Freshly laid eggs consist almost exclusively of reserve,
which makes egg production a potentially important elimination route for lipophyl-
lic compounds. The reserve allocation to reproduction is via a buffer that comes with
species-specific buffer handling rules. Many aquatic species spawn once a year only
(e.g. most bivalves and fish), which implies that the buffer size gradually increases
between two spawning events and makes a sharp jump down at spawning. The body
burden can also make a jump at spawning (up or down, depending on the properties
of the compound).

The difference in lipid content between reserve and structure invites for the
application of a nested two-compartment model, where the exchange with the envi-
ronment is via structure. This links up nicely with food uptake, because reserve does
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not play a role in it, and food uptake is also proportional to squared structural length.
An important difference with the nested two-compartment model is, however, that
the size of the compartments typically changes in time, especially the reserve. When
redistribution of the compound between the compartments reserve and structure is
relatively fast, and the nested two-compartment model for the compound reduces
to a one-compartment one, reserve dynamics still affects toxico-kinetics, because
the lipid content is changing in time. The resulting dynamics for active uptake from
food amounts to

d

dt
Q D .PVdcdCPVXfcX/

ve

L
�Q.PVW

ve

L
Cr/ with PVW D 1CPEV.mECmER/;

(10)

where cd and cX are the concentrations of the compound in the environment and in
food, f is the scaled functional response, PVd and PVX are the partition coefficients
of the compound in structure and environment or food. The reserve density mE and
the reproduction buffer density mER now modify the partition coefficient between
structure and biomass (i.e. reserve plus structure), via the partition coefficient be-
tween reserve and structure PEV. DEB theory specifies how structural length L, the
reserve density mE and the reproduction buffer density mER change in time.

The reproduction buffer is not of importance in all species, and not always in
males. If food density is constant, the reserve density mE becomes constant. In those
situations, the structure-biomass partition coefficient PVW is constant as well. If also
the dilution by growth can be neglected, i.e. r D 0 and L is constant, (10) still
reduces to the one-compartment model (1).

Many accumulation–elimination experiments are done under starvation condi-
tions; e.g. it is hardly feasible to feed mussels adequately in the laboratory. The
reserve density decreases during the experiment, so the chemical composition is
changing, which can affect the toxico-kinetics [26].

Some situations require more advanced modelling of the uptake and eliminations
route, where, e.g. gut contents exchanges with the body in more complex ways, and
defecation might be an elimination route.

3.6 Metabolism and Transformation

Both uptake and elimination can depend on the metabolic activity [27]. Respiration
is frequently used as a quantifier for metabolic activity. This explains the popularity
of body size scaling relationships for respiration [28], and the many attempts to
relate many other quantities to respiration. In the context of DEB theory, however,
and that of indirect calorimetry, respiration is a rather ambiguous term, because it
can stand for the use of dioxygen, or the production of carbon dioxide or heat. These
are not all proportional to each other, however. Moreover, all these three fluxes have
contributions from various processes, such as assimilation, maintenance, growth,
etc. Since the use of reserves fuels all non-assimilatory activities, this is an obvious



Ecotoxicological Applications of Dynamic Energy Budget Theory 249

quantifier to link to the rate at which compounds are transformed or taken up. For
uptake of compounds via the respiratory system, the use of dioxygen might be a
better quantity to link to uptake under aerobic conditions.

Respiration rates turn out to be cubic polynomials in structural length in DEB
theory, which resemble the popular allometric functions numerically in great detail.
The coefficients depend on the nutritional conditions in particular ways. Since elim-
ination rates are inversely proportional to length because of surface area–volume
interactions, as has been discussed, and the specific metabolic rate is very close to
this relationship, it is by no means easy to evaluate the role of metabolism in direct
uptake and elimination in undisturbed subjects.

The role of metabolism is easier to access for elimination via products and if the
elimination rate is not proportional to the internal concentration, but has a maximum
capacity. The classic example is the elimination of alcohol in human blood [29]. This
type of kinetics can be described as

d

dt
Q D keP0d c � keQ=.KQ CQ/; (11)

where K is a half saturation constant for the elimination process. It reduces to the
one-compartment model (1) for small internal concentrations, relative to the half
saturation constant, KQ 	 Q. The elimination rate can now be linked to metabolic
activity, and so to body size. If particular organs are involved, such as the liver in the
case of alcohol, the DEB theory can be used to study adaptation processes to partic-
ular metabolic functions. In the case of alcohol, the uptake term should obviously
be replaced by a more appropriate one that applies to the particular subject.

Many toxicants are metabolically modified. This especially applies to lipophyllic
compounds, which are typically transformed into more hydrophyllic ones, which are
more easily excreted but also metabolically more active. The rate of transformation
can be linked to the metabolic rate, and so depends on body size and nutritional con-
ditions. These metabolic products can be more toxic than the original lipophyllic
compound.

4 Bio-Availability

Compounds are not only transformed in the organism, but also in the environment
which affects their availability. Many have an ionic and a molecular form, which
are taken up at different rates; the ionic species requiring counter ions, which com-
plicates their uptake. Speciation depends on the concentration of compound and
environmental properties, such as the pH. It can vary in time and also occurs in-
side the organism, but the internal pH usually varies within a narrow band only.
Models for mixtures of chemicals can be used in this case (see section on effects).
Internal concentration gradients could develop if transport inside the organism is
slow; film models should be used in this case. A nice example of a case where
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concentration gradients result from transformation in combination with transport is
the fluke Fasciola, which has an aerobic metabolism near its surface with the mi-
croaerobic environment inside its host, but an anaerobic metabolism in the core of
its body [30].

Another problem, which occurs especially in soils, is that the transport through
the medium can be slow enough for concentration gradients to develop around the
organism. Film models should then be used again.

A major problem in the translation of laboratory toxicity tests to field situations
is the formation of ligands with (mainly) organic compound that are typically abun-
dant in the field, but not in the bioassay. Ligands reduce the availability substantially,
and typically has a rather complex dynamics. Moreover compounds can be trans-
formed by (photo)chemical transformation and by actions of (micro)organisms. This
implies that the concentration of available compounds changes in time, and our
methodology to assess effects of chemical compounds should be able to take this
into account.

These processes of transformation require compound-specific modelling and this
short section demonstrates that bio-availability issues interact with toxico-kinetics
and effects of chemical compounds in dynamic ways, which calls for a dynamic
approach to effects of chemicals [3, 31].

5 Effects at the Individual Level

Compound affect individuals via changes of parameter values as functions of the
internal concentration [32,33]. The parameter values are independent of the internal
concentration in the ‘enough’-range of the compound. This implies the existence
of an internal no effect concentrations (NECs) at either end of the ‘enough’-range;
the upper end is typically of interest for ecotoxicological applications. Outside the
‘enough’- range the value of the target parameter is approximately a linear function
of the internal concentration as long as the changes in parameter value are small;
the inverse slope is called the tolerance concentration (a large value means that the
compound is not very toxic). Small changes in parameter values do not necessarily
translate into small changes of some end-point, such as the cumulative number of
offspring [34] or the body size [35] at the end of some standardised exposure period.
DEB theory specifies how exactly changes in parameter values translate into the per-
formance of the individual. Typical target parameters are the specific maintenance
costs, or the yield of structure on reserve, or the maximum specific assimilation rate
or the yield of reserve on food or the yield of offspring on reserve. For effects on sur-
vival, the hazard rate serves the role of target parameter, and the inverse ‘tolerance
concentration’ for the hazard rate is called the killing rate. Mutagenic compounds
can induce tumours [36], but also accelerate ageing by enhancing the effects of
ROS. The partitioning fraction for mobilised reserve can be the target parameter for
endocrine disruptors.
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Using sound theory for how effects depend on internal concentrations, DEB-
based theory can handle varying concentrations of toxicant [37–40], even pulse
exposures [41]. DEB theory applies to all organisms, including bacteria that de-
compose organic pollutants. A proper description of this process should account for
adaptation [42], co-metabolism [43] and the fact most bacteria occur in flocculated
form in nature [44], which affect the availability of the compound.

The model of linear effects of internal concentrations on parameter values has
been extended into several directions, such as adaptation to the compound, inclusion
of the recent exposure history via receptor dynamics [45] and attempts to include
particular molecular mechanisms [46].

5.1 Mixtures and NECs

Mixtures of compounds affect parameters values via addition of the effects of sin-
gle compounds, plus an interaction term, which is proportional to the products of
the internal concentrations of the compound [47]. This interaction term can be pos-
itive or negative; a construct that is the core of the analysis of variance (ANOVA)
model and rests on a simple Taylor series approximation of a general non-linear
multivariate function, which only applies for small changes of parameter values;
the non-linearities of the effects should be taken into account for larger changes.
These non-linearities might well be specific for the compound and the species and,
therefore, lack generality. Notice that linear effects on parameter values translate
into non-linear effects of the performance of the individual because the DEB mod-
els are non-linear. Also notice that each DEB parameter has a NEC value for any
compound; the lowest value among all parameters might be considered as the NEC
of a compound for the organism, but its estimation requires to study effects on all
13 parameters of the standard DEB model, in principle. Since this study can be
demanding, it is in practice essential to talk about the NEC of a compound for an
organism for a particular DEB parameter.

The NEC reflects the ability of the individual to avoid changes of performance.
From a statistical point of view, this robust parameter has very nice properties
[48–50]. The NEC is not meant to imply that some molecules of a compound do
not have an effect, while other molecules do. The removal of a kidney in a healthy
person can illustrate the NEC concept: the removal implies an effect at the sub-
organismic level, but this effect generally does not translate into an effect at the
individual level. The NEC, therefore, depends on the level of observation. We can
delineate three cases of how compounds in the mixture combine for the NEC

� The presence of other compounds is of no relevance to the NEC of any particular
compound

� The various compounds add, like they do for effects, and at the moment effects
show up, the amounts of the compounds that show no effects remain constant

� The various compounds add, like they do for effects, and the amounts of the com-
pounds that show no effects continue changing with the internal concentration
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of the compounds; if a compound continues accumulation more than other com-
pounds, its NEC increases while that of the other compounds in the mixture
decreases

The third case is possibly most realistic, but also computationally the most complex.
In many practical situations, the results are very similar to the second case, which
can be used as an approximation. If compounds in a mixture are equally toxic, and
so all have the same NEC, the second case is formally identical to this special case.
This way of described effects of mixtures turns out to fit well with experimental
data [47] and each pair of compounds have a single interaction parameter, which
does not change in time. If there are k compounds in a mixture, there are k.k�1/=2

interaction parameters, just like in ANOVA.
A further reflection on the NEC might clarify the concept. Any compound affects

(in principle) all DEB parameters (including the hazard rate), but the NEC for the
various parameters differ. This makes that, if the internal concentration increases,
the parameter with the lowest NEC first starts to change, but other parameters fol-
low later. In a mixture of compounds, this can readily lead to a rather complex
situation where in a narrow range of (internal) concentrations of compounds in a
mixture several parameters start changing. Even in absence of the above-mentioned
chemical interactions of compounds on a single parameter, interactions via the en-
ergy budget occur, which are hard to distinguish from the chemical interactions on
a single parameter. Chemical interactions are typically rare, but interactions via the
budget always occur.

5.2 Hormesis

Hormesis, the phenomenon that low concentrations of a toxicant seem to have a
stimulating rather than an inhibiting effect on some endpoint, can result from in-
teractions of the compound with a secondary stress, such as resulting from very
high levels of food availability. If a compound decreases the yield of structure on
reserve, it reduces growth and delays birth (if an embryo is exposed) and puberty
(in the case of juveniles), but also reduces the size at birth. A reduction of growth
indirectly reduces reproduction, because food uptake is linked to size. Since it also
reduces size at birth, the overall effect can be a hormesis effect on reproduction (in
terms of number of offspring per time) [51]. Indirect effects on reproduction differ
from direct effects by not only reducing, but also delaying reproduction. This has
important population dynamical consequences.

5.3 Co-Variation of Parameter Values

A very powerful property of the standard DEB model and the one-compartment
model is that they imply rules for how parameter values co-vary among species and
compounds [9, 23, 52]; this variation directly translates into how expected effects
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vary. These expectations can be used to fill gaps in knowledge about parameter
values, but cannot replace the need for this knowledge. Evolutionary adaptations
and differences in mode of action of compounds can cause deviation from expected
parameter values for species and compounds, respectively.

The reasoning behind the scaling relationships for the standard model rests on the
assumption that parameters that relate to the local biochemical environment in an or-
ganism are independent of the maximum body size of a species, but parameters that
relate to the physical design of an organism depends on the maximum size. Strange
enough, this simple assumption fully specifies the covariation of parameter values.
The application is best illustrated with the maximum length Lm an endotherm can
reach in the standard DEB model. This length is a simple function of three pa-
rameters, Lm D �fpAmg=ŒpM�, where � is the fraction of mobilised reserve that
is allocated to the soma, fpAmg is the surface-area specific maximum assimilation
energy flux and ŒpM� is the volume-specific somatic maintenance cost. Since � and
ŒpM� depend on the local biochemical environment, they are independent of max-
imum length, which implies that fpAmg must be proportional to maximum length.
All other parameters can be converted in simple ways to quantities that depend on
the local biochemical environment; these transformations then defined how they de-
pend on maximum length. When we divide the maturity at birth and puberty by the
cubed maximum length, we arrive at a maturity-density, which reflects the local bio-
chemical environment and should not depend on maximum length. So the maturity
at birth and puberty are proportional to the cubed maximum length. Many quanti-
ties, such as the use of dioxygen by an individual, can be written as functions of
parameter values and amounts of reserve and structure. So the maximum respiration
rate of a species is a function of parameter values, while we know of each parame-
ter how it depends on maximum length. It can be shown that maximum respiration
rate scales between a squared and a cubed maximum length, and the weight-specific
respiration with weight to the power �1=4, a well-known result since Kleiber [53].

The reasoning behind the scaling relationships for the one-compartment model
rests on the assumption that transport to and from the compartment is skewly sym-
metric [16]. The ratio of the concentrations in the compartment and the environment
at equilibrium is a ratio of uptake and the elimination rates, just like the maximum
length of the individual in the standard DEB model. This implies, see [16], that the
uptake rate is proportional to the square root of the partition coefficient, and the
elimination rate is inversely proportional to the square root of the partition coeffi-
cient. Film models are extensions of the one-compartment model, which behaves
at the interface between the environments basically in the same way as an one-
compartment model; only around this interface they differ because film models ac-
count for concentration gradients. This deviation can be taken into account with the
result that elimination rates are (almost) independent of the partition coefficient for
low values of the partition coefficient and inversely proportional to it at high values.
Effects parameters can be included into the scaling reasoning is similar ways, with
the result that the NEC is inversely proportional to the partition coefficient, and the
tolerance concentration or the killing rate is proportional to the partition coefficient.

The octanol–water partition coefficient is frequently taken as a substitute for
the body-water partition coefficient, with the advantage that reliable computational
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methods exist to evaluate this partition coefficient from the chemical structure of
the molecule. In practice, however, octanol is not an ideal chemical model for or-
ganisms that change the chemical composition of their bodies. This makes that the
co-variation of NECs, elimination and killing rates show less scatter and can be ex-
pected on the basis of the variation between each of these three parameters and the
octanol–water partition coefficient [23].

We are unaware of any descriptive model for toxico-kinetics and/or metabolic
organisation for which theory on the co-variation of parameter values is available,
and we doubt that it even possible to derive such theory for descriptive models.
Co-variation theory is not available for the so-called net-production models [54],
for instance, where maintenance needs are first subtracted from assimilation before
allocation to storage, growth or reproduction. The fact that the predicted relation-
ships of now over 30 eco-physiological quantities, such as length of the embryonic
and juvenile periods, maximum reproduction rate, maximum growth rate, maxi-
mum population growth rate, vary with the maximum body size of species in ways
that match empirical patterns provides strong support of the DEB theory. The one-
compartment and standard DEB models share the property that the independent
variable (the partition coefficient in the case of toxicokinetics and the maximum
length in the case of budgets) can be written as a ratio of an incoming flux (of
toxicant and food, respectively) and an outgoing flux (excretion and maintenance,
respectively). This shared property seems to be crucial for the core theory.

One of the many possible applications of the scaling relationships is in the effects
of mixtures of compounds with similar modes of action, such as the polychlorinated
hydrocarbons. Suppose we know the concentrations and the partition coefficients
of the compounds in the mixture. We then link the elimination rates, the NECs and
the tolerance concentrations to the partition coefficients in the way described, and
estimate the three proportionality constants for the results of a bioassays with the
mixture.

The sound theoretical basis for effects of toxicants in combination with rules for
the co-variation of parameter values offers the possibility for extrapolation, from
one individual to another, from one species of organism to another, and, sometimes,
from one type of compound to another [23]. These crosslinks partly reduce the need
for a huge experimental effort that should be invested in more advanced forms of
environmental risk assessment, such as discussed in Brack et al. [13]. Moreover, the
theory simplifies to parameter poor models under particular conditions. It has been
demonstrated that many popular empirical models turn out to be special cases of the
general theory [1]. This might help in particular applications.

6 Effects at the Population and Ecosystem Level

At high food levels, organisms grow and reproduce fast and the maintenance costs
comprise only a tiny fraction of the budget of the individuals. If a compound in-
creases the maintenance cost for individuals, say by a factor two, these effects are
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hardly felt by a fast-growing population. Fast growth never lasts long in nature,
due to the depletion of food resources. At carrying capacity, where the generation
of food resources just matches the maintenance needs of a population (this is the
maintenance needs of the collection of individuals plus a low reproductive output
that cancels the mortality), maintenance costs comprise the dominant factor of the
budget of individuals. If a toxic compounds now increases the maintenance cost
by a factor two, it in fact reduces the carrying capacity by a factor two. This sim-
ple argument shows that the effects of toxicants on populations is dynamic, even if
the concentration of the compound would be constant [55]. It also shows that no
single quantifier for toxicity can exist at the population level.

If a toxic compound increases the cost of growth or reproduction, the effects
hardly depend on the growth rate of the population, so on the food level, which
shows that the mode of action is important for how effects on individuals translate
to those on populations. It might be difficult to tell the various modes of action apart
on the basis of the results from a standardised toxicity bioassay. The reason why the
mode of action is still important is in the biological significance of the observed
effect, which must be found at the population level. Details in the reproduction
strategy of populations turn out to be important for how effects on reproduction
translate to the population level [56].

Although bioassays with meso-cosms have the charm of being close to the actual
interest of effects of toxicants to be avoided, the experimental control is extremely
weak, which results in a huge scatter of trajectories of experimental meso-cosms.
The result is that the effects have to be huge to recognise them as effects [57].
Moreover, the expected long term behaviour of chemically perturbated ecosystems
is very complex, as shown by bifurcation analysis [58].

The specific population growth rate integrates the various performances of indi-
viduals naturally, and can rather easily be evaluated [59]. A delay of the onset of
reproduction can be at least as important as a reduction of the reproduction for the
fate of the population.

7 Concluding Remarks

We argued that models for effects of chemical compounds should have three
modules:

� Dynamic energy budgets for how organisms generally deal with resource uptake
and allocation

� Toxico-kinetics for how organisms acquire the compounds
� Chances of budget parameters as function of the internal concentrations

We discussed the basics for each of these modules: the standard DEB model, the
one-compartment model and the linear change in target parameters. We also indi-
cated were and how these models can be extended, from simple to more complex,
to include particular phenomena. We discussed how budgets affect both the kinetics
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and the effects and, therefore, have a central role in effects models. Practice teaches
that the restriction of realistic modelling is not in the model formulation as such,
but in the useful application of these models to data. More complex models have
more parameters and many of these parameters are by no means easy to extract
from available experimental data. They require knowledge of physiological and eco-
logical processes that are typically outside the scope of typical (eco)toxicological
research. Kooijman et al. [60] discusses why any particular application of DEB the-
ory requires only a limited set of parameter values, and how these values can be
obtained from simple observation on growth and reproduction at several levels of
food availability.

The practical need to fill in gaps in knowledge about parameter values is the
reason why due attention has been given to theory for the co-variation of pa-
rameter values; this theory naturally follows from the logical structure of the
one-compartment model and the standard DEB model. Extensions of both models
can modify the co-variation of parameters, as has been discussed.

Contrary to descriptive models, models with strong links with underlying pro-
cesses can be used for a variety of extrapolation purposes, from acute to chronic
exposure, from one species to another, from one compound to another, from indi-
viduals to populations, from laboratory to field situations [31]. Such extrapolations
are typically required in environmental risk assessment, where NECs should play a
key role [61]. The use of models to predict exposure in the environment is frequent,
but to predict effects is still rare. The complexity of the response of organisms to
changes in their chemical environment doubtlessly contributed to this. Yet we think
that 30 years of applications of DEB theory to quantify effects of compounds on
organisms have demonstrated that the theory is both effective and realistic. Many
of the computations behind the models in this chapter can be done with the freely
downloadable software package DEBtool: http://www.bio.vu.nl/thb/deb/deblab/
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Abstract Nowadays, one of the big challenge in ecotoxicology is to understand
how individually measured effects can be used as predictive indices at the population
level. A particular interesting aspect is to evaluate how individual measures of fitness
and survival under various toxic conditions can be used to estimate the asymptotic
population growth rate known as one of the most robust endpoint in population risk
assessment. Among others, matrix population models are now widely recognized as
a convenient mathematical formalism dedicated to the characterization of the pop-
ulation demographic health. They offer the advantage of simplicity, not only in the
modeling process of underlying biological phenomena, but also in the sensitivity
analyses and the simulation running. On the basis of different biological systems
among aquatic animal species (from fish to zooplankton), we illustrate the use of
matrix population models to quantify environmental stress effects of toxic type.
We also show how critical demographic parameters for the population dynamics
can be highlighted by sensitivity analyses. The first example will focus on coupled
effects of food amount and exposure concentration on chironomid population dy-
namics in laboratory. The second example will exemplify the use of energy-based
models coupled with matrix population ones to properly describe toxic effects on
daphnid populations. Last, we will show how to introduce a spatial dimension in
Leslie type models to describe space-specific aspects of contaminant induced pop-
ulation dynamics alteration with the case of brown trout population modeling at the
river network scale.
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1 Introduction

Since pioneering Truhaut’s works [1], ecotoxicology is recognized as a whole scien-
tific field which encompasses chemistry, toxicology and ecology. It aims at assessing
and predicting the ecological consequences of environmental contaminants at the
different levels of organization [2]. Toxic effects are actually mainly quantified
through numerous biochemical and biological variables which make sense accord-
ing to the level of organization where they are measured. The integration of these
measures at different levels of organization became one of the major challenges for
ecotoxicology today, especially to infer toxic effects at the population level from
bioassays carried out at the sub- or the individual level [3]. Indeed, in investigating
the concept of stress in ecology, Forbes and Calow [4, 5] pointed out the popula-
tion growth rate as a robust endpoint for assessing the ecological risks of chemicals.
Stark and Banks [6] also promoted demographic toxicology as an approach to eval-
uate the toxicity using life history parameters and other measures of population
growth rate.

The complexity of relationships between toxic compounds and individuals, be-
tween physiological and life history traits, or between individuals and populations
makes necessary the use of modeling approaches especially when ecotoxicological
outcomes are expected to be predictive and not only descriptive. Various mod-
eling methods exist to extrapolate from the individuals to the population in an
ecotoxicological context. Some of these methods have been reviewed by Mooij
et al. [7] who also specifically present the use of an individual-based model to de-
pict Daphnia population dynamics in the lake Volkerak. In addition to the egg-ratio
method which has been applied to Daphnia galeata in littoral and pelagic areas [8]
and to the modeling approach using partial differential equations [9] in the case
of a Daphnia pulex laboratory population, the most often method used in ecotox-
icology is the Euler–Lotka equation [10] which was recently modified to model
effects of four synthetic musks on the life cycle of the harpacticoid copepod Nitocra
spinipes [11]. But since now more than twenty years, matrix population models,
originated by Leslie [12, 13], have proved their efficiency first in including inter-
nal structure in populations [14], second in describing toxic effects on population
dynamics [15]. Matrix population models are indeed particularly relevant when dif-
ferent age or stage classes can be distinguished in their susceptibility to the toxic
compounds [3]. First used to analyze life table experiments [16,17], several authors
have successfully described various population dynamics under toxic exposure since
then; for example, Lopes et al. [18] evaluated the methiocarb effect on Chironomus
riparius laboratory populations; Smit et al. [19] proposed a population model for
Corophium volutator, a marine amphipod used in sediment bioassays; Klok et al.
[20] extrapolated effects of copper in the common earthworm Dendrobaena octae-
dra to the population level; Billoir et al. [21] used a combined approach including
process-based effect models and matrix population ones to look at the effect of cad-
mium on Daphnia magna populations; and Ducrot et al. [22] used a similar approach
to deal with zinc-spiked sediments effects in the gastropod Valvata piscinalis.

Another advantage can be granted to matrix population models with regard to the
estimation of many characteristic population endpoints (the asymptotic population
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growth rate, the generation time, the stable population structure, the reproductive
values, : : :) and the use of convenient tools for sensitivity analyses [14]. Last,
when a spatial dimension is needed to understand the effects of dispersion of toxic
compounds on the population dynamics, matrix population models can easily be
extended without further complexity [23]; hence, Chaumot et al. [24] successfully
developed a multiregional matrix population model to explore how the demography
of a hypothetical brown trout population living in a river network varied in response
to different spatial scenarios of cadmium contamination.

First and foremost, our chapter aims to present, as simply as possible, the im-
plementation of matrix population models, from the Leslie standard model to a
density-dependent version, but also their possible extensions when a spatial dimen-
sion and/or a toxic compound has to be considered. Hence, Sect. 2 is dedicated to
the theoretical framework underlying matrix population modeling, while Sects. 3–5
will introduce different concrete case studies with an increasing degree of com-
plexity in models involved. Section 2 is thus intentionally detailed in a pedagogic
manner so that each step of building a matrix population model can autonomously
be conducted by a non specialist. On the contrary, models in Sects. 3–5 will deliber-
ately little itemized to emphasize biological and ecotoxicogical conclusions; those
who are interested in more details can refer to the cited literature.

2 The Latest on Matrix Population Models

In the last three decades, matrix population models have become one of the most
popular tool for investigating the dynamics of age- or stage-classified populations
[14]. First based on populations structured by chronological age [12, 13], they were
rapidly extended to deal with any discrete state variable describing the internal struc-
ture of the population [25]. As the general framework remains the same in every
case, Sect. 2 will focus on age-classified Leslie-type models in a non toxicological
context first. Part 2.5 will be dedicated to the building of Leslie-type models when
the effects of a toxic compound are introduced in the modeling framework.

2.1 Hypotheses and Notations of the Leslie Model
and its Derivative

A Leslie-type model rests on three strong hypotheses:

1. The variable age is divided into a discrete set of ! age classes, the age-class
i .i D 1 : : : !/ gathering individuals of age bounded by i � 1 and i .

2. The time t is a discrete variable and the model describes the transition between
the population density at time t and at time t C 1.

3. The time step exactly corresponds to one age class duration.

As illustrated in Fig. 1, the dynamics of a population can be schematized by a life
cycle graph where nodes denote age classes and arrows denote transition between
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N(t+1)=AN(t)

Fig. 1 Example of an age-structured life-cycle graph with ! D 5 age classes. Fertilities .fi / and
survival rates .si / are age-specific. The corresponding age-structured population transition matrix
A is also given

age classes. At time t , the population is described by the number of individuals in
each age class. Let ni .t/ be the number of individuals in age class i .i D 1; : : : ; !/

at time t and N .t/ the population vector at time t . Then:

N .t/ D .n1 .t/ ; : : : ; ni .t/ ; : : : ; n! .t//T ; (1)

where superscript T denotes transposition.
From time t to time t C 1, the number of individuals in age class i is calculated

from the numbers of individuals in the other age classes at time t , by means of
proportionality coefficients, denoted by aij, corresponding to survival during the
year and fecundity rates. This calculation can be translated into a linear combination
containing these coefficients:

ni .t C 1/ D
!X

jD1

aijnj .t/ 8 i D 1 : : : !: (2)

Coefficients aij, which correspond to survival and fecundity rates, are directly de-
rived from the life cycle graph as illustrated in Fig. 1. Therefore (2) can easily be
converted into a matrix equation as follows:

N .t C 1/ D A N .t/ ; (3)

with A D �
aij
	
1�i; j�!

the transition matrix.
Among aij, age-specific fertilities .fi / appear on the first row of the matrix,

while age-specific survival rates .si / appear on the lower subdiagonal of the ma-
trix (Fig. 1). Coefficients fi and si are called vital rates.

Because time is a discrete variable and because birth-pulse populations in which
reproduction is limited to a short breeding season were exclusively considered,
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entries of the transition matrix are discrete coefficients (from one age class to the
next). Their values will thus depend on the census time, i.e., on the choice for the
beginning of the time step. Censuses can be carried out just after reproduction (thus
called postbreeding censuses) or just before reproduction (prebreeding censuses).
Under a prebreeding hypothesis, the first age class mortality is included into the
fertility coefficients. In this chapter, only prebreeding censuses will be considered.

The transition matrix A has initially been defined for age-structured populations
leading to the classical Leslie model [12,13]. From time t to time t C 1, all individ-
uals go from the age class i to the age class i C 1 and ! is the maximum age of the
individuals (s5 D 0 in Fig. 1).

However, when ! is unknown, the standard Leslie model allows to consider a last
age class in which individuals can remain indefinitely: the last term in the diagonal
remains not null (s5 ¤ 0 in Fig. 1).

A particular case sometimes appears in classical Leslie models when only the last
age-class is able to reproduce (f3 D f4 D 0 in Fig. 1). In such a case, the transition
matrix A is said imprimitive, which will induce a specific dynamic behavior.

2.2 What about the Population Dynamics?

As detailed in Caswell [14], several demographic endpoints can be deduced from
the analysis of a Leslie model. Except in the case where the transition matrix A is
imprimitive, under the theoretical assumption that vital rates remain constant with
time, the population exponentially grows with a constant population growth rate 	

during the asymptotic phase, after a transient phase corresponding to the first time
steps from the initial condition (Fig. 2b). During this asymptotic phase, the age dis-
tribution (i.e., the proportion of the different age classes as given by a vector w)
becomes stable (Fig. 2c), and reproductive values (i.e., the contributions of each
age class to the future generations, as given by a vector v) are fixed. The net repro-
ductive rate R0 (i.e., the mean number of offspring by which a newborn individual
will be replaced at the end of its life, or on another point of view, the rate by which
the population increases from one generation to the next) also has a fixed value and
can be used to calculate the generation time T (which also corresponds to the time
required for the population to increase by a factor R0): T D ln R0=ln 	. At last,
the duration of the transient phase can be estimated by the speed of convergence (or
the damping ratio 
) toward the asymptotic phase.

As summarized in Table 1, all these population characteristics are directly related
to mathematical outcomes obtained from the transition matrix A.

The particular case of an imprimitive matrix A leads the population size to os-
cillate (Fig. 2e). Consequently, the age distribution does not converge to a stable
distribution (Fig. 2f). Nevertheless, Cull and Vogt [26] showed that a running aver-
age of the population vector N .t/, taken over the period of oscillation, converges
to the vector v associated to 	.
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Fig. 2 Population dynamics simulations with a projection matrix (a) Astand corresponding to a
standard Leslie model, (d) Aimprim which is imprimitive, and (g) AN which is density-dependent.
Under (a) hypothesis, the population size grows exponentially (b) and the age distribution con-
verges to a stable state (c). Under (d) hypothesis, the population size oscillates (e) leading also to
oscillations for the age distribution (f). Under (g) hypothesis, both the population size (h) and the
age distribution (i) reach an equilibrium state. In graphics (c), (f), and (i) black corresponds to age
classes 1 and 2, gray to age classes 3 and 4, and slate gray to age class 5

2.3 Adding Density-dependence Hypotheses

Vital rates are likely to vary in response to changes in population density under the
effect of interactions between individuals (e.g., intra-specific competition). In this
case, vital rates fi and si depend on age class sizes at time t . The transition equation
(3) thus becomes:

N .t C 1/ D AN .t/N .t/ ; (4)

by making the matrix entries functions of density.
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Table 1 Relationships between classical demographic endpoints for a population, dynam-
ics of which being ruled by a Leslie model (classical or standard), and their corresponding
mathematical outcomes obtained from a transition matrix A

Symbol Mathematical outcome Demographic meaning

	 Dominant eigenvalue of the transition
matrix A

Population growth rate

w Right eigenvector of A associated to 	 Stable age distribution
v Left eigenvector of A associated to 	 Reproductive values

R0 R0 D
!P

iD1

fi

i�1Q
kD1

sk Net reproductive rate

T T D ln R0

ln 	
, R0 D 	T Generation time


 
 D 	=j	2j, where 	2 is the eigenvalue
of A with the second largest
magnitude

Damping ratio

Because the model is nonlinear, the population growth is not exponential but
is characterized by an equilibrium state N � D �

n�1 ; : : : ; n�i ; : : : ; n�!
�T

defined as
follows:

N � D AN�N �: (5)

A linear approximation methodology [14] makes possible a local stability analy-
sis of the equilibrium state N �. Population endpoints are thus calculated from this

equilibrium as the population size .
!P

iD1

n�i / and the age distribution at equilibrium.

The standard Leslie model, the case with an imprimitive transition matrix A, and
the density-dependent Leslie model are numerically illustrated in Figs. 2g–i. On
these figures, the density-dependant function is expressed as follows:

f .N / D e�0:005N ; (6)

where N corresponds to the total number of individuals at time t .

2.4 Adding a Spatial Dimension

Modeling age-structured populations with Leslie-type models can also be applied
to spatially fragmented populations [27]. Originated from Rogers [28,29] in human
demography and called multiregional models, they have been extended in ecology
[30, 31] to become metapopulation models.

The dimension of such models describing real systems in detail (demography
and dispersal) increases with the number of patches and the number of age classes
considered. But, whatever the dimension, if the model remains linear with constant
vital rates, the general theoretical framework previously presented still applies.
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On a general point of view, a population structured in ! age classes and living in
an environment fragmented into p patches is considered.

Let ni; j .t/ be the number of individuals in age class i .i D 1; : : : ; !/ and patch
j .j D 1; : : : ; p/ at time t; Ni .t/ the population vector of the age class i among all
patches at time t and N .t/ the total population vector at time t :

Ni .t/ D �
ni;1 .t/ ; : : : ; ni;j .t/ ; : : : ; ni;p .t/

�T
; (7)

N .t/ D .N1 .t/ ; : : : ; Ni .t/ ; : : : ; N! .t//T : (8)

Let fi; j; k be the fecundity of individuals in age class i and patch j reproducing
in patch k. Let si; j; k be the survival rate of individuals in age class i and patch j

surviving and dispersing in patch k.
Fecundity and survival matrices can thus be defined for each age class i :

Fi D

0
BBBBB@

fi;1;1 : : : fi;j;1 : : : fi;p;1

: : : : : : : : :

fi;1;k : : : fi;j;k : : : fi;p;k

: : : : : : : : :

fi;1;p : : : fi;j;p : : : fi;p;p

1
CCCCCA and Si D

0
BBBBB@

si;1;1 : : : si;j;1 : : : si;p;1

: : : : : : : : :

si;1;k : : : si;j;k : : : si;p;k

: : : : : : : : :

si;1;p : : : si;j;p : : : si;p;p

1
CCCCCA :

(9)
Hence, in a standard Leslie approach, the transition matrix writes now as follows:

A D

0
BBBBBBBB@

0 : : : Fi : : : F!

S1 0 : : : 0
0 : : :

: : : : : : Si : : :
:::

: : : 0
0 : : : 0 S!�1 S!

1
CCCCCCCCA

: (10)

Figure 3 illustrates how it works in a particular case with ! D 5 age classes and
p D 2 patches. In this example, individuals from patch 1 are supposed to reproduce
only in patch 1, while individuals in patch 2 can also reproduce in patch 1; only
individuals in age classes 2–4 from patch 1 can disperse to patch 2. Here follow the
corresponding matrices:

F3 D
�

f3;1;1 f3;2;1

0 f3;2;2

�
; F4 D

�
f4;1;1 f4;2;1

0 f4;2;2

�
; F5 D

�
f5;1;1 f5;2;1

0 f5;2;2

�
; (11)

S1 D
�

s1;1;1 0

0 s1;2;2

�
; S2 D

�
s2;1;1 0

s2;1;2 s2;2;2

�
; S3 D

�
s3;1;1 0

s3;1;2 s3;2;2

�
;

S4 D
�

s4;1;1 0

s4;1;2 s4;2;2

�
; (12)



Matrix Population Models as Relevant Modeling Tools in Ecotoxicology 269

S
1,1,1

S
2,1,1

S
3,1,1

S
4,1,1

f
3,1,1

f
4,1,1

f
5,1,1

S
1,2,2

S
2,2,2

S
3,2,2

S
4,2,2

f
3,2,2 f

4,2,2
f
5,2,2

S
2,1,2

S
3,1,2

S
4,1,2

f
3,2,1

f
4,2,1

f
5,2,1

1

2

1 2 3 4 5

1 2 3 4 5

Fig. 3 Example of a life cycle graph in a spatialized environment with two patches. The population
is subdivided into five classes. Individuals in patch 1 live and reproduce in patch 1, but some
individuals from classes 2–4 can move in patch 2. Individuals in patch 2 live and reproduce in
patch 2, but some individuals from classes 3–5 can reproduce in patch 1

A D

0
BBBBBBBBBBBBBBBB@

0 0 0 0 f3;1;1 f3;2;1 f4;1;1 f4;2;1 f5;1;1 f5;2;1

0 0 0 0 0 f3;2;2 0 f4;2;2 0 f5;2;2

s1;1;1 0 0 0 0 0 0 0 0 0

0 s1;2;2 0 0 0 0 0 0 0 0

0 0 s2;1;1 0 0 0 0 0 0 0

0 0 s2;1;2 s2;2;2 0 0 0 0 0 0

0 0 0 0 s3;1;1 0 0 0 0 0

0 0 0 0 s3;1;2 s3;2;2 0 0 0 0

0 0 0 0 0 0 s4;1;1 0 0 0

0 0 0 0 0 0 s4;1;2 s4;2;2 0 0

1
CCCCCCCCCCCCCCCCA

: (13)

2.5 Introducing Effects of a Toxic Compound

Toxic compounds are widely recognized to act on different life history stages of
organisms, suggesting that population responses to a toxic stress might differ with
age-structure of the population [3]. In this context, matrix population models are
particularly well adapted to take into account toxic effects on the complete set of vi-
tal rates [20] to evaluate more precisely how contaminants influence the population
growth rate [5].
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To go further than with life table response experiment (LTRE) analyses, which
measure the population-level effects of an environmental stress under two or more
exposure conditions [16], Leslie-type models permit to express vital rates and con-
sequently the population growth rate 	 as a continuous function of the exposure
concentration c.

On a practical point of view, the model writes:

N .t C 1/ D A .c/ N .t/ ; (14)

with A .c/ D �
aij .c/

	
1�i; j�!

the exposure concentration-dependent transition
matrix.

The difficulty of this approach lies in the choice of effect models relating ma-
trix entries aij .c/ to the exposure concentration c. This choice strongly depends on
available data:

� From data collected in the literature, often obtained from bioassays in various
laboratory conditions, it is possible to build concentration–response curves where
the X -axis plots log[concentration] and the Y -axis plots response are expressed
as a reduction coefficient, which applies on vital rates. Concentration–response
curves follow a standard decreasing sigmoid shape, between 0 and 1, and are
defined by two parameters: the curvature and the concentration that induces a
response halfway between baseline and maximum .EC50/. A collection of clas-
sical regression models can be used to analyze such kind of data: polynomial,
log-logistic, Probit or Weibull models [32].

� When data are collected at different exposure concentrations and different expo-
sure times, typically the number of survivors, the body length of individuals or
the number of offspring, process-based effect models can be constructed from
the dynamic energy budget (DEB) theory and its applications in ecotoxicology –
DEBtox – [33, 34]. The idea behind the DEB theory is that individuals manage
their energy; this energy is taken up in the form of food and is then assimilated
to be used for reproduction, growth, or maintenance. Under DEBtox mechanis-
tic hypotheses, the energy management is assumed to be disturbed by a toxic
compound when the exposure concentration exceeds a threshold concentration
called the no effect concentration (NEC). Let us take one example to illustrate
this point.

The internal concentration of the toxic compound in the organism at time t; cq .t/,
is assumed to be ruled by a one-compartment kinetics model:

dcq .t/

dt
D ke

�
c � cq .t/

�
; (15)

where ke is the elimination rate (in time�1) and c is the exposure concentration.
To model the effects of the toxic compound on vital rates, a stress function �

�
cq
�

is used, which has a different dimension with regards to lethal or sublethal effects.
Indeed, in the lethal effect model, �

�
cq
�

is homogeneous to a rate (in time�1),
whereas in the sublethal effect model, �

�
cq
�

is dimensionless.
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When effects are lethal, the stress function �L
�
cq
�

is expressed as follows:

�L.cq/ D cL
�1.cq � NECL/C; (16)

with cL the lethal tolerance concentration (in concentration � time unit) and NECL

the no effect concentration under the lethal effect hypothesis.
When effects are sublethal, the stress function �S

�
cq
�

is expressed as follows:

�S.cq/ D cS
�1.cq �NECS/C; (17)

where cS is the sublethal tolerance concentration (in concentration unit) and NECS

the no effect concentration under the sublethal effect hypothesis.
.cq � NEC�/C means max

�
0; cq � NEC�

�
with � D L; S.

Hence, the toxic compound effects on survival can mathematically be expressed
by the probability for an individual to survive until exposure time t at exposure
concentration c:

q .t; c/ D exp

0
@� tZ

0

h .�; c/ d�

1
A; (18)

where h .�; c/ is the hazard rate at time � and exposure concentration c:

h .�; c/ D
8<
:

mC �
�
cq .�/

�
if c > NECL and � > t0

m else
; (19)

where m is the natural mortality rate and t0 the time at which cq .�/ exceeds the
NECL:

t0 D �k�1
e ln

�
1 � NECL

c

�
: (20)

Survival rates can be calculated as follows [14]:

si .c/ D q .i C 1; c/

q .i; c/
in the case of a prebreeding census; (21)

si .c/ D q .i; c/

q .i � 1; c/
in the case of a postbreeding census: (22)

As for the lethal effects of a toxic compound, sublethal effects can also be mathe-
matically written and fecundity rates deduced; for more details see [21, 35–37] and
Sect. 4 of this chapter.

From a more general point of view, the population dynamics may depend on var-
ious environmental factors which affect the vital rates, as for example food [18, 38]
or temperature and water discharge [39]. See details in Sect. 3 of this chapter.
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2.6 Perturbation Analyses

Originating from Caswell [40], perturbation analyses ask how population endpoints,
and particularly the asymptotic population growth rate 	, change according to the vi-
tal rates. As stated by Caswell [41], a distinction has to be made between prospective
(sensitivities and elasticities) and retrospective (LTRE) perturbation analyses. While
the latter expresses observed variation in 	 as a function of observed (co)variation
in the vital rates, prospective perturbation analyses project on 	 the consequences
of future changes in one or more of the vital rates. Only the prospective perturbation
analyses will be here considered.

The sensitivity of the asymptotic population growth rate 	 to changes in the vital
rates can easily be calculated for matrix population models [14, 41] from the transi-
tion equation (3) and population endpoints (	, the stable age distribution w, and the
reproductive values v). If only one entry, aij, changes, the sensitivity writes:

@	

@aij
D vi wj

vTw
; (23)

where vi and wj are the i th and the j th coordinate of v and w, respectively.
Sensitivities compare the absolute effects on 	 of the same absolute changes in

vital rates. A sensitivity matrix can be written as follows:

S D
�

@	

@aij

�
1�i;j�!

D vwT

vTw
: (24)

In contrast to sensitivities, elasticities quantify the proportional change in 	 resulting
from an infinitesimal proportional change in matrix entries aij [42]:

eij D @ .log 	/

@
�
log aij

� D aij

	

@	

@aij
: (25)

Elasticities thus compare the relative effects on 	 with the same relative changes
in the values of the demographic parameters. An elasticity matrix can also be de-
fined as:

E D 1

	
S ıA; (26)

where ı stands for the Hadamard product. Elasticities have mathematical properties
such as:

E � 0; aij D 0 ) eij D 0 and
X
i;j

eij D 1: (27)

If some factor x affects any of the entries aij then the total derivative of 	 can be
approximated by:

d	

dx
�
X
i;j

@	

@aij

daij

dx
: (28)
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In ecotoxicology, this quantity (28) is of broad interest as factor x can refer either
to the toxic compound concentration or to the logarithm of the concentration.

Hence, the total sensitivity of 	 to the toxic compound concentration can be
decomposed into several contributions: for example, the one of fecundity rates and
the one of survival rates, or with a spatial Leslie model, an interesting decomposition
could be made per age class at the scale of the whole patch network. Applications
of this decomposition will be illustrated in Sects. 3–5. For those who are interested,
some peculiar tools have also been developed to perform sensitivity and elasticity
analyses with density-dependent Leslie-type models [43, 44].

Here ends the purely theoretical part of the chapter. Following sections are ded-
icated to case studies in which models and their prospective results will be detailed
in an ecotoxicological context.

3 A First Case Study with the Midge Chironomus riparius

As introduced in Sect. 2.5, matrix population models are useful tools to test popu-
lation response to a stress. In particular, such models allow us to take into account
different sensitivities to the stress between development stages, and individual level
data can be included to calculate characteristic endpoints at the population level
[14]. Matrix population models are here illustrated in their use to determine the
combined effects of food limitation and pesticide exposure on a Chironomidae pop-
ulation. Chironomus riparius was chosen as a commonly used species in toxicity
laboratory tests. It is widespread in river sediments and considered to be a good
bioindicator of water quality. First, parameter inputs, when estimated from indi-
vidual data using DEBtox models, are included into a matrix population model.
Then, using experimental data obtained with C. riparius, lethal effects of a pesticide
(methiocarb) on the asymptotic population growth rate of a laboratory population
is estimated under two different food availability conditions. Lastly, a sensitiv-
ity analysis is performed to pinpoint critical age classes within the population for
the purposes of the field management of populations. For more details, see [18]
and [38].

3.1 The Biological Situation

C. riparius (Diptera: Chironomidae) is a nonbiting midge widely distributed in the
northern hemisphere. Its life cycle (Fig. 4) comprises aquatic stages (eggs, larva,
pupae) and aerial ones (adults). Individuals are synchronous and, in the field, there
is usually only one life cycle per year with a winter diapause period during the
fourth larval stage [45]. Under laboratory conditions, Charles et al. [38] have shown
that food availability does not affect the duration of the egg stage (2 days), the first
larval stages L1 (2 days), the second larval stage L2 (2 days), the third larval stage
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Fig. 4 The life cycle graph
of Chironomus riparius
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L3 (3 days), the pupa stage (less than 1 day), and the adult stage (4 days). On the
contrary, there was a strong effect of food amount on the duration of the fourth
larval stage and on the adult fecundity. If food is not a limiting factor (ad libitum
condition), the life cycle of C. riparius lasts about 17 days with stages occurring in
a rapid succession.

The methiocarb was chosen for three main reasons: (1) it is more toxic than other
similar chemicals [46]; (2) it has been found in field sediments at concentrations
between 10 and 268 �g kg�1 (data from the Water Agency of Rhône-Méditerranée-
Corse, France); and (3) only few studies are available concerning the effects of this
pesticide on benthic organisms, except some works reporting an effect on individual
survival rates only [47, 48].

To quantify effects of methiocarb on individual survival, data from the Cemagref
(Lyon, France) were used. For L2; L3, and L4 stages, the survival test data from
[47] were used, in which organisms were exposed to six exposure concentrations
(0, 25, 50, 280, 310, and 360 �g L�1) under two food availability conditions: an
ad libitum food condition (food amount equal to 1.4 mg per day per individual)
and a food-limited condition (food amount equal to 0.2 mg per day per individual).
Survival tests with eggs, L1 and pupae stages were performed under seven exposure
concentrations (0, 10, 20, 30, 40, 60, 80 �g L�1). Food effect was not tested as it
did not affect those stages (Péry, pers. comm.). For L2; L3, and L4 stages, data were
collected at several times, whereas for the other stages, data were obtained once at
the end of the tests.

3.2 The Model in Few Equations

3.2.1 The Matrix Population Model

A classical Leslie model was used with a prebreeding census. Given the life cycle
of C. riparius (Fig. 4), the pupa stage was combined with the fourth larval stage, and
a daily time step was chosen for the model. Hence, the dimension of the transition
matrix A was equal to the total duration of the life cycle. The exposure concen-
tration had no effect on stage duration, while the food amount Q (in mg per day
per individual) strongly affected the duration of the fourth larval stage D4 (in days)
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and the adult fecundity fk (in number of viable eggs per female) according to the
following equations [38]:

D4 .Q/ D 7:436C .31:771� 7:436/ e�6:596Q; (29)

fk .Q/ D 208:299
�
1 � e�4:951Q

�
Rpk

; (30)

where RPk
is the reproduction probability at day k of the adult life.

As a consequence, the dimension of the transition matrix A depended on the
food amount Q. Two matrix population models were thus developed: one for the
ad libitum food condition and one for the food-limited condition. As survival rates
depended on the methiocarb concentration .c/, the transition matrix was finally a
function of both Q and c.

The two population models can be written under the following general form:

N .t C 1/ D A .Q; c/ N .t/ ; (31)

with A .Q; c/ the transition matrix for a food amount Q and an exposure con-
centration c:

A.Q;C/ D0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0

s1 .c/ 0

0 s2 .c/

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0„ ƒ‚ …
Eggs

0 0

0 0

0 0

s3 .c/ 0

0 s4 .c/

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0„ ƒ‚ …
L1

0 0

0 0

0 0

0 0

0 0

s5 .c/ 0

0 s6 .c/

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0„ ƒ‚ …
L2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

s7 .c/ 0 0

0 s8 .c/ 0

0 0 s9 .c/

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0„ ƒ‚ …
L3

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

s10 .c/ 0 0

0 : : : 0

0 0 sz .c/

0 0 0

0 0 0

0 0 0„ ƒ‚ …
L4

f1 .Q/ f2 .Q/ f3 .Q/ f4 .Q/

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

szC1 0 0 0

0 szC2 0 0

0 0 szC3 0„ ƒ‚ …
Adults

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

where

si .c/ is the larval survival rate from day i to day i C 1 at a given exposure concen-
tration c. The z subscript in sz .c/ refers to the last day of the fourth larval stage.
Remind that the pupa stage lasts less than one day and that it has been combined
with the fourth larval stage. Thus, sz .c/ D sp .c/ � _

s z .c/, with sp .c/ the pupa

survival rate and
_
s z .c/ the L4 survival rate.

szCk is the adult survival rate from day k to day k C 1 of adult life .k D
1; : : : ; 3/: szCk was estimated to 1 whatever the exposure concentration. Adults
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were supposed to die just after reproduction what explains the null value of the
last diagonal term in the transition matrix.

fk .Q/ is the adult fecundity at day k of adult life .k D 1; : : : ; 4/ as estimated
by (30).

Under ad libitum food conditions, the duration of the fourth larval stage was about
7 days ((29), with Q D 1:4). The first adult fecundity f1 was estimated at 208.1
viable eggs per female (30), while fk D 0 for k � 2. Indeed, all females only
reproduce the first day of their adult life [38]. Postreproductive age classes were thus
removed from the model and the transition matrix Aal was an imprimitive matrix
(see Sect. 2.1) of dimension 17.

Under the tested food-limited condition, the duration of the fourth larval stage
was about 14 days ((29), with Q D 0:2) and adult fecundities were estimated in
number of viable eggs per female at: 64.149 for f1, 11.521 for f2, 3.927 for f3, and
1.309 for f4 (30). The corresponding transition matrix Alim was a primitive matrix
of dimension 27.

To completely define the transition matrix, si .c/ and Qsz .c/ need to be clarified.
This was done by fitting individual effect models on laboratory experimental data.

3.2.2 Individual Effect Models

For egg, L1 and pupae stages, a decreasing logistic concentration–response relation-
ship was used to link survival rates si .c/ and the exposure concentration c:

si .c/ D s0i � 1C exp .˛/

exp .˛/C exp .ˇc/
; (32)

where c is the exposure concentration (in �g L�1); s0i is the natural survival rate
without contaminant (per day); the second term is the survival reduction function
for a given exposure concentration c. The parameter ˇ is a curvature parameter,
while the LC50, i.e., the lethal concentration for 50% of the individuals, is related to
the parameter ˛ by ˛ D ln

�
eˇ LC50 � 2

�
.

Values of s0i have been estimated by Charles et al. [38] at 0.836 for eggs and
L1, and at 1 for pupae. Parameters ˛ and ˇ have been estimated by a nonlinear fit
of (32) on experimental data using the least squares criterion. Estimated values and
their standard errors are given in Table 2. These parameter estimates remain valid
whatever the food conditions.

Table 2 Parameter estimates
of model (30) for egg and L1

stages (bold) and for pupa
(plain)

Parameters Estimate (sd)a

˛ 8.478 (1.603)
8.749 (0.082)

ˇ 0.282 (0.053)
0.499 (0.004)

a
The total number of experimental points

is n D 35
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Table 3 DEBtox parameter estimates (15) to (18) for C. riparius subjected to methiocarb, for
L2; L3; L4 stages and both food availability conditions. Ad libitum (in bold) and limited (in plain)
food conditions; in brackets, the corresponding standard error .n D 72/

Stage m (per day) NECS .�g L�1/ c�1
L (�g�1 L per day) ke (per day)

L2 0.051 (0.070) 3:73 10�7 (5.667) 0.023 (0.006) 3.474 (2.167)
0.070 (0.021) 9.085 (4.152) 0.029 (0.006) 3.530 (1.759)

L3 0.038 (0.009) 236 (12.2) 0.014 (0.003) 3.171 (0.451)
0.021 (0.006) 176 (39.4) 0.010 (0.003) 3.340 (0.907)

L4 0.033 (0.008) 255 (6.155) 0.022 (0.004) 4.234 (0.582)
0.029 (0.007) 256 (6.530) 0.017 (0.003) 10.17 (4.828)

For L2; L3, and L4 stages, survival rates were functions of both exposure con-
centration and exposure time. Data were thus analyzed by using DEBtox models
as described in Sect. 2.5. The DEBtox software [33] was used to achieve the four
estimates of m; c�1

L ; ke, and NECL as involved in (15)–(20). Results are provided
in Table 3.

3.3 Main Results

3.3.1 Methiocarb Effects on C. riparius

Methiocarb effects on C. riparius population dynamics was quantified, under
each food availability condition, through the asymptotic population growth rate 	

(Table 1).
Without contaminant, the asymptotic population growth rate was equal to 	al D

1:28, under the ad libitum food condition, and 	lim D 1:14, under the food-limited
condition, what corresponds to a hypothetical population size daily increase of 28%
and 14%, respectively, in accordance with Charles et al. [38]. Such values of 	 were
in fact consistent with the opportunistic characteristics of C. riparius, which is able
to colonize organically-enriched aquatic habitats very quickly [49].

For methiocarb concentrations varying from 0 to 120 �g L�1, the decrease in
	 was simulated from (31). As shown in Fig. 5, the methiocarb has a major im-
pact on the asymptotic population growth rate 	, which rapidly reaches the critical
value 1 when the methiocarb concentration exceeds a threshold value of around
22 �g L�1 under the ad libitum food condition and of around 21 �g L�1 under
the food-limited condition. Once exceeded these thresholds, the population became
potentially extinct .	 < 1/, under each food availability condition. Under the food-
limited condition, the transition matrix Alim was primitive, meaning that the impact
of contaminant on stable stage distribution and reproductive values made sense. As
shown in Fig. 6a, the exposure concentration allows the population to grow .	 > 1/,
while the methiocarb concentration does not affect the stable age distribution, except
at 20 �g L�1, where the L4 proportion roughly increases to the detriment of egg and
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L3 stages. Furthermore, Fig. 6b clearly shows that the L4 stage mainly contributes
to the asymptotic population dynamics with the highest reproductive values. From
20 �g L�1 of methiocarb, reproductive values change with the methiocarb concen-
tration: the L4 reproductive value become smaller in favor of the others.

3.3.2 Perturbation Analysis

The influence of each transition matrix input on 	 was decomposed according to
the perturbation analysis detailed in Sect. 2.6 – (26). The methiocarb was shown to
only affect survival rates [47]. Consequently, only subdiagonal terms of the transi-
tion matrix A .Q; c/ contributed to the sensitivity of 	 to the exposure concentration.



Matrix Population Models as Relevant Modeling Tools in Ecotoxicology 279

Methiocarb concentration (μg L−1)

Egg & L1
L2
L3 & L4
Pupa
Sum

−0.05

−0.04

−0.03

−0.02

C
on

tr
ib

ut
io

ns

−0.01

0.00
02 04 06 08 0 100

0.01

Fig. 7 Perturbation analysis results obtained by decomposition of the population response of a
laboratory Chironomus riparius population subjected to methiocarb under the ad libitum food
condition

As results under both food availability conditions were similar, only those corre-
sponding to the ad libitum food conditions are presented in Fig. 7. Egg and L1 stages
have a moderate impact on 	 in the middle-range concentrations, whereas L2 stage
only weakly contributes at low concentrations. Contributions for L3; L4, or adult
stages can only be detected at very high concentrations .NEC � 176 �g L�1/. On
the contrary, a major contribution of the reduction in pupa stage survival can be
observed at mid-range concentrations, which accounts for the emergence of strong
individual effects during the brief period of pupae. From this sensitivity analysis,
it appears that only egg, L1 and pupa stages influenced the asymptotic population
growth rate as a result of the methiocarb impact.

3.4 Summary

The case study presented in this section shows how a matrix population model
can describe the dynamics of a theoretical Chironomidae population under labo-
ratory conditions exposed to methiocarb and variable food availability conditions.
In particular, this work shows how nested modeling approaches, classically used in
both ecotoxicology and ecology, can help in understanding responses at the popula-
tion level, by extrapolating effects from the individual level. Indeed, the population
response to a contaminant was estimated in terms of the change in asymptotic popu-
lation growth rate 	. Under two food availability conditions, methiocarb had a rapid
effect on Chironomidae population dynamics: beyond of a threshold exposure con-
centration around 21–22 �g L�1, the population became potentially extinct .	 < 1/.
The perturbation analysis permitted to decompose the population response as de-
scribed by Caswell [14, 15] and to highlight critical age classes for the population
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dynamics, namely egg, L1 and pupa stages, survival rates of which strongly affect
	 in the case of C. riparius. The pesticide here studied only affected survival rates,
whereas other contaminants have been proved to also impact growth and/or fecun-
dity. The next section will show how lethal and sublethal effects can simultaneously
be taken into account in matrix population models.

4 A Second Case Study with the Cladoceran D. magna

This section will focus on the result analysis of a standardized chronic bioassay, the
21-day daphnid reproduction test [50,51]. From this common aquatic bioassay, both
lethal and sublethal effects are measured at different times. At the individual level,
the DEBtox approach [33] provides a set of mechanistic models of survival, repro-
duction, and growth as continuous functions of time and exposure concentration.
By combining DEBtox theory and matrix population models, effects of the toxic
compound at the individual level (reduced fecundity, growth, and survival) were
extrapolated to the population one by taking into account age dependence of the
contamination. The asymptotic population growth rate was obtained continuously
vs. exposure concentration and accompanied by a confidence band. Perturbation
analyses were also performed to highlight critical demographic parameters in the
evolution of the asymptotic population growth rate as a function of contaminant con-
centration. The experimental data used in this case study corresponded to zinc (Zn)
exposition of a D. magna population. For more details, see [21, 35–37].

4.1 The Biological Situation

D. magna is a small cladoceran crustacean, which plays an important role in water
purification. Daphnids eat by filtering water and retaining food particles. They spend
their whole life in the same environment, where they develop through a succession
of instars. As long as environmental conditions remain favorable, they reproduce
predominantly by parthenogenesis. If only the parthenogenic mode of reproduction
is considered, the life cycle is very simple. Daphnids can be divided into two age
groups: juveniles, which are not yet able to reproduce, and adults.

D. magna is one of the most widely used animals in aquatic toxicity. In terms of
sensitivity to toxic compounds, they are usually thought to be representative of other
zooplankters [52], although this has been contested [53]. These animals have many
properties that make them suitable for laboratory testing, such as their small size,
high fecundity, short life span, parthenogenic reproduction, and ease of handling
[54]. The 21-day daphnid reproduction test (ISO 10706) [51] is one of the two ISO
normalized chronic tests on freshwater animals. In this routine test, organisms are
exposed from their birth to several constant concentrations of toxic compounds, and
several endpoints (e.g., survival, reproduction, and growth) are measured. For the
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sake of ecological relevance, all the effects observed on individuals were gathered
to assess the toxic effects on the population dynamics.

Data collected in the Cemagref (Lyon, France) were used. Young daphnids
(<24 h old) were exposed to constant concentrations of Zn (0, 0.074, 0.22,
0:66 mg L�1) for 21 days under ad libitum food conditions. Mortality and num-
ber of offspring were daily recorded. Individual growth was measured at day 7, 14,
and 21. See Billoir et al. [37] for details.

4.2 The Model in Few Equations

4.2.1 Effect Models at the Individual Levels

To deal with lethal effects of the contaminant, models described in Sect. 2 (15)–(20)
were used, with q .t; c/ the probability for an individual to survive until exposure
time t at exposure concentration c. As far as sublethal effects were concerned, five
ways that the contaminant acts on D. magna energy management were proposed
in the DEBtox framework [33, 34]: an increase in maintenance costs, an increase
in growth costs, a decrease in assimilation, an increase in egg production costs, or
a sur-mortality during oogenesis. These five assumptions led to different equations
for the modeling of growth and reproduction, the two sublethal endpoints measured.
Here only the maintenance cost increase assumption was considered, which was one
of the two best ones (with the assimilation decrease) in case of a Zn contamination
[37]. Hence, the growth and reproduction processes were modeled by the following
equations, respectively [33, 36]:

dl .t; c/

dt
D �

�
1 � l .t; c/

�
1C �S

�
cq .t; c/

���
; (33)

R .t; c/ D RM

1 � lp
3

�
1C �S

�
cq .t; c/

�� �
 

l2 .t; c/

�
1C �S

�
cq .t; c/

���1 C l .t; c/

2
� lp

3

!
when l .t; c/ > lp; (34)

where the variables are the scaled length l .t; c/ (in mm), the internal concentration
cq .t; c/ (in mg L�1) and the reproduction rate R .t; c/ (i.e., the number of offspring
per mother per time unit). The covariables are the time t (in day) and the exposure
concentration c (in mg L�1). The four models ruling q (18), cq (15), l (33), and R

(34) as functions of t and c have to be considered together, respectively, because
they share parameters and some of them are interdependent. Parameters involved in
equations are: the maximum body length Lm (in mm), the scaled body length at pu-
berty lp (dimensionless), the von Bertalanffy growth rate � (per day), the maximum
reproduction rate RM (in number of offspring per day per mother), the sublethal
no effect concentration NECS (in mg L�1), the sublethal tolerance concentration
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Table 4 Descriptive statistics of empirical posterior distributions of DEBtox parameters

Parameter Mean (sd) 2.5th percentile Median 97.5th percentile

Lm (mm) 4:08 (0.0246) 4.031 4.08 4.129
lp (dimensionless) 0:615 (0.006297) 0.6029 0.6149 0.6278
g (per day) 0:1211 (0.002438) 0.1164 0.127 0.1261
RM (# per day)a 8:107 (0.1647) 7.799 8.099 8.452
NECS.mg L�1/ 0:1482 (0.006017) 0.1362 0.1482 0.1599
cS.mg L�1/ 1:128 (0.03018) 1.071 1.127 1.19
ke (per day) 1:082 (0.4598) 0.7178 0.96 2.277
m (per day) 0:009047 (0.001548) 0.006017 0.009057 0.01207
NECL.mg L�1/ 0:3398 (0.06432) 0.228 0.3349 0.4786
cL (mg L�1 day) 0:05081 (0.01425) 0.03288 0.04748 0.08927
aThe symbol # stands here for number of offspring

cS (in mg L�1), the elimination rate ke (per day), the natural mortality rate m (per
day), the lethal no effect concentration NECL (in mg L�1) and the lethal tolerance
concentration cL (in mg L�1 day).

To estimate DEBtox parameters, Bayesian inference was used as already pro-
posed by Billoir et al. [37]. From arbitrary prior probability distribution for each
parameter, Bayesian inference provides estimates as posterior distributions given
the data. In the case of complex models like ours, this estimation process gen-
erates samples of the joint posterior distribution of all the parameters [55]. Sur-
vival, growth, and reproduction data were used simultaneously to estimate DEBtox
parameters. Descriptive statistics of posterior distributions are provided in Table 4.
After checking the convergence of the estimation process, posterior distribution
means were considered as estimates.

4.2.2 Matrix Population Model

Age-specific models are the most adapted to data sets from normalized bioassays.
Indeed, such data provide much more information about reproduction and survival
as a function of age than about body length, which is measured only two or three
times all along the experiment. DEBtox effect models provide a survival function
(18), and the reproduction rate (33) can be written as a function of time and exposure
concentration. From these equations, it is possible to calculate survival rates from
the age class i to the next .si / and the fecundity rates fi in the case of a prebreeding
census [14]:

si .c/ D q .i C 1; c/

q .i; c/
; (21)

fi .c/ D
Z iC1

i

q .1; c/ R .t; c/ dt ; (35)

where q.t; c/ is the probability of surviving until time t at a concentration c (18),
and R.t; c/ is the reproduction rate (34).
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A matrix model with ten age classes and a time step of two days (0–2 days,
2–4 days, . . . , 18–20 days) was chosen because chronic bioassays for daphnids last
21 days, and because daphnids generally reproduce every 2 days under standard
conditions. The period between two reproductive events may vary in experiments
[56]. This was taken into account through the matrix in the next age class thanks to
the continuity of the reproduction effect models against time. Daphnids can live for
more than 21 days and keep on reproducing, so a standard Leslie model was used,
by adding a term s10 to the diagonal of the matrix. A value of s10 D 0:95 � s9 was
used as estimated in a previous study [21].

Let N .t/ be the population vector at time t and exposure concentration c:

N .t/ D .n1 .t/ ; : : : ; ni .t/ ; : : : ; n10 .t//T ; (36)

where superscript T denotes transposition.
Hence, the transition equation writes:

N .t C 1/ D A .c/ N .t/ ; (37)

with

A.c/ D

0
BBBBBBBBBBBBBBB@

0 0 f3.c/ f4.c/ f5.c/ f6.c/ f7.c/ f8.c/ f .c/9 f10.c/

s1.c/ 0 0 0 0 0 0 0 0 0

0 s2.c/ 0 0 0 0 0 0 0 0

0 0 s3.c/ 0 0 0 0 0 0 0

0 0 0 s4.c/ 0 0 0 0 0 0

0 0 0 0 s5.c/ 0 0 0 0 0

0 0 0 0 0 s6.c/ 0 0 0 0

0 0 0 0 0 0 s7.c/ 0 0 0

0 0 0 0 0 0 0 s8.c/ 0 0

0 0 0 0 0 0 0 0 s9.c/ s10.c/

1
CCCCCCCCCCCCCCCA

(38)

Here reproduction was assumed to occur from age class 3, but the age at first repro-
duction may increase with the toxic exposure concentration. All vital rates depended
on the exposure concentration, and 	 has been calculated as a continuous function
of the exposure concentration.

To evaluate a confidence interval for the asymptotic population growth rate
	, a new method based on bootstrapping was proposed. For each exposure con-
centration c, 10,000 DEBtox parameter sets were drawn in their joint posterior
distribution. Then, from each parameter set, the vital rates were deduced from (21)
and (35), as well as the corresponding asymptotic population growth rate 	 from
the dominant eigenvalue of A .c/. Thus 10,000 values of 	 were obtained and the
2.5th and 97.5th quantiles of this sample were considered as the limits of a 95%
confidence interval for 	 at exposure concentration c.
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4.3 Main Results

4.3.1 The Effect of Pollution on Population Dynamics

The asymptotic population growth rate 	 was used to quantify the effects of Zn on
daphnid population dynamics. The decrease in 	 with the exposure concentration of
Zn is shown in Fig. 8. It was calculated as a percentage of its maximum 	 value, be-
cause only a potential relative effect from a reference situation without contaminant
is considered.

In this case, the no effect concentration associated to sublethal effects .NECS/

was consistently lower than the one associated to lethal effects .NECL/ (Table 4).
Consequently, the population dynamics was expected to be impacted first by the
Zn effects on fecundity and second by the Zn effects on survival. Hence, be-
low the NECS .0:1482 mg L�1/, the toxic compound did not affect population
dynamics. Above the NECS; 	 roughly fell as the toxic compound affected repro-
duction. On the contrary, the additional impact on survival which appeared from
NECL .0:3398 mg L�1/ remained fairly soft due to a very weak killing rate cL

(0:05081 mg L�1 day). By extrapolating beyond the tested concentration range
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Fig. 8 Daphnia magna asymptotic population growth rate 	 and its confidence band as a func-
tion of Zn exposure concentration .mg L�1/ assuming an increase in maintenance costs as the
main toxicological mode of action. The vertical dashed line corresponds to the strongest tested
concentration. The horizontal dashed line corresponds to the critical threshold EC50
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Fig. 9 (a) Daphnia magna stable age distribution and (b) reproductive values for each age class
as a function of Zn exposure concentration .mg L�1/ assuming an increase in maintenance costs
as the main toxicological mode of action

.0–0:66 mg L�1/, the DEBtox reproduction model predicted no more reproduc-
tion from c D 0:83 mg L�1 (whatever the age). Consequently, from this threshold
exposure concentration equal to 0:83 mg L�1, the population dynamics was only
maintained thanks to survival and decreased slowly.

In Fig. 8, the confidence around 	 was also plotted for all exposure concentrations
in the range 0–1 mg L�1. This result can be considered as a confidence band around
the 	 curve and so also be read horizontally. Hence, a prediction interval for the
threshold concentration EC50 was calculated leading to a decrease of 50% in the
asymptotic population growth rate, namely 0:78–0:85 mg L�1.

Figure 9 shows the evolution of the stable age distribution and reproductive
values with Zn exposure concentration. Without contamination, the first age class
represented almost 50% of the population size. When exposure concentration in-
creased, this proportion decreased for the benefit of the oldest age classes. From
0:83 mg L�1, the organisms were no more able to reproduce; consequently, the
population was asymptotically reduced to the last age class of daphnids only. Con-
cerning reproductive values, reversed results were observed. The first age classes
had weak contributions in the stable age distribution at weak Zn exposure concen-
trations. Their contributions increased later to the detriment of the oldest age classes.

4.3.2 Perturbation Analysis

Perturbation analyses highlight vital rates, which strongly contribute to the popu-
lation response under stress condition (see Sect. 2.6 – (26)). As shown in Fig. 10a,
contributions of fecundity and survival rates only begin from NECS .0:1482 mg L�1/
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Fig. 10 Perturbation analysis of the asymptotic population growth rate 	 of Daphnia magna ex-
posed to Zn exposure concentration (see Sect. 2.6, (25)); contributions of fecundity and survival
(a); detailed decomposition of the sensitivity of age-specific fecundities (b)

and NECL .0:3398 mg L�1/ concentrations from which vital rates are affected by
the contaminant, respectively. The fecundities had much more important contribu-
tions than survival rates. In the DEBtox sublethal effect model (35), an increase in
maintenance costs was assumed, that is both growth and reproduction were affected.
Hence, as reproduction only began when daphnids reached length at puberty, the
reproduction onset was delayed. As a consequence, the first age class to reproduce
increased with the exposure concentration. A complete decomposition of contribu-
tions (Fig. 10b) revealed the marked contribution due to the fecundity of the first
age class to reproduce which depended on the Zn concentration. Figure 10b shows
the successive importance of f3; f4; f5, and f6 when concentration increases.

To conclude on this part, fecundity rates appeared as the most sensitive vital
rates faced to contaminant, in particular the fecundity rate of the first age class to
reproduce. These parameters had already been pointed out by Oli [57] as being the
most sensitive in the population dynamics of “fast” populations. Oli studies involved
mammals, but daphnid populations can also be considered to be a “fast” population,
as they are characterized by F=̨ > 0:6; ˛ being the first age class to reproduce and
F the mean fecundity.

4.4 Summary

Here again, the combination of DEBtox and matrix population models appeared
very relevant in extrapolating individual results to the population level. All lethal
and sublethal effects were integrated into the asymptotic rate of population increase,
which is much more ecologically relevant than any statistically based parameter
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(e.g., NOEC and ECx) derived from a single endpoint (mortality, growth, or re-
production). Moreover, our modeling approach provided the asymptotic rate of
population increase as a continuous function of the exposure concentration and its
associated confidence band from which a prediction interval for the threshold EC50

concentration was obtained. Once again, nested models proved their efficacy in as-
sessing contaminant impacts on D. magna population dynamics and demography.
Such models could, therefore, be of great use in guidelines for aquatic life safety
and environmental health, even if many other stresses should be taken into account
to properly extrapolate endpoints from laboratory to field. In Sects. 3 and 4, both
case studies illustrated how to integrate effects of stress factors into matrix popula-
tion models. In a similar way, density dependence, temperature, or predation could
also be included. The next section will now exemplify how to deal with a spatial
dimension.

5 When Space Matters: The Case of a Trout Population
in a River Network

As underlined by the two previous case studies, transition matrix models offer the
possibility to describe age-structured populations, and thus to consider differences
in toxicological sensitivities between age classes or developmental stages. In eco-
logical systems, spatial issues may compel to introduce a supplementary structure
allowing a spatial description of exposed populations. This can be required to take
into account simultaneously, on the one hand, a spatial heterogeneity of the con-
tamination, and on the other hand, spatial processes involved in the population
dynamics [58]. Here Leslie models are employed in such spatial contexts, by means
of a dual structure for the description of the population: age and space [27]. Hence,
space is underlined as modulating population effects of contamination through the
use of results excerpted from the methodological development of a trout popula-
tion model, which has been the object of a series of publications [24, 59–61]. In
this section, instead of fully describing the building and the parametrization of the
model, comparative results were chosen to show how spatialized matrix population
models can supply insights in understanding how space issues could matter in the
ecotoxicological risk at the population level.

5.1 The Biological Situation

The dynamics of a brown trout population (Salmo trutta) is depicted as resident of
a river network symbolized by 15 connected patches corresponding to stretches of
river from upstream to downstream levels (Fig. 11a). Biological parameterization
as reported in Chaumot et al. [24] corresponds to natural populations from western
France [62]. Since censuses are annual and first reproduction happens during the
third year of life, three age classes are distinguished: young of the year, 1-year-old
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Fig. 11 Spatial dynamics of the brown trout population. (a) The river network considered for
the study: 15 patches organized in four levels from upstream to downstream. Shading bars rep-
resent three spatial patterns of cadmium contamination due to three different discharge locations:
upstream (“4 patches” are impacted with a dilution trend), third level (“2 patches” with dilution
in the most downstream patch), and downstream (“1 patch”). (b) Spatial repartitions between the
four levels of the river network under pristine conditions in fall, revealing the spatial segregation
of the three age classes of the trout population (young of the year, 1-year-old juveniles and adults).
Two major migratory events (arrows) occur each year (one downstream migration of 1-year-old
juveniles in spring and one upstream spawning migration of adults in fall)

juveniles and adults. Breeding occurs in winter, mostly in upstream patches, while
growing areas and feeding habitat of older age classes are spotted in the most down-
stream patches. This gives rise to a spatial segregation between the first and the
two older age classes (revealed by the spatial distributions in Fig. 11b). This pattern
articulated with age-specific differences in ecological requirements can emerge –
thanks to two main spatial compensatory shifts in the occupancy of the river net-
work during the life cycle of these salmonids. First, late in fall, adult breeders
migrate upstream for spawning and then go back to their starting patch due to
a “site-fidelity” behavior [63]. Second, in spring, 1-year-old juveniles conversely
leave upstream areas and migrate down the river network in the sites, where they
will spend the rest of their adult life. These migratory dynamics pattern leads us to
the building of a “site-fidelity” model for the trout population dynamics in the net-
work [24]. For methodological interests, a second version of the migratory model
less consistent with biological observations was also developed, assuming a com-
plete “population-mixing” instead of the downstream movement of juveniles each
year in spring [59]. This population-mixing event randomly redistributes trout ac-
cording to spatial occupancy reported in field studies. Here, only the structure of
the “site-fidelity” model is reported below, but even less biological meaningful, the
outputs of the “population-mixing” version are compared thereafter with the “site-
fidelity” one, aiming at illustrating how Leslie matrix models handle the interplay
between population spatial dynamics and spatial pattern of contamination.

Different scenarios of a cadmium (Cd) contamination are simulated assuming
that they take place in one branch of the network with different patches of dis-
charge; these scenarios take into account dilution at each confluence of the network
(Fig. 11a). Either chronic or acute contamination are tested: chronic contaminations
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affect survival and fecundity rates, while 96h-acute events of pollution repeated
each year at the same date only cause mortality. Effects are estimated by means
of concentration–response curves established for published bioassays results with
salmonids (see Sect. 2.5). Moreover, beside demographic perturbations, a second
way of effects consisting in possible contaminant-induced alterations of migratory
flows (avoidance or attraction) during the spawning migration of adults [60] was
also tested.

5.2 The Model in Few Equations

The census is fixed in spring, after the emergence of the young of the year and before
the downstream migration of 1-year-old juveniles. Let ni;j.t/ be the number of trout
females of age class i on patch j in year t (j D 1 : : : 15I i D 1 for young of the
year; i D 2 for 1-year-old juveniles; i D 3 for adults). Thus 45 state-variables are
gathered in the vector N.t/, depicting the population in spring of year t . This vector
is a set of vectors Ni.t/ describing the internal structure of each age class as follows:

N.t/ D .N1.t/; N2.t/; N3.t//T ; (39)

where Ni.t/ D
�
ni;1.t/; : : : ; ni;j .t/; : : : ; ni;15.t/

�T
: (40)

In first step, migrations were ignored. Considering that the census is positioned in
spring and that spawning occurs late in fall, “fecundity transitions” between adult
breeders in year t and young of the year in year tC1 must integrate 6 months of adult
survival (square root of the annual survival rate), the fecundity rate, the fertilization
rate, the sex ratio at birth, and the survival of young fishes during winter until the
emergence in spring. Therefore, the transition matrix writes as follows:

A .c/ D
2
4 O O F .c/

p
S3 .c/

S1 .c/ O O
O S2 .c/ S3 .c/

3
5 ; (41)

where O is a submatrix of 0 with 15 rows and 15 columns, and each non null element
is a diagonal matrix of dimension 15 gathering patch-specific vital rates: Si .c/ sur-
vival matrix of age class i (the square root standing for 6 months of survival), F .c/

fecundity matrix (including sex ratio and winter survival of newly born trout). The
spatial heterogeneity of demographic rates throughout the river network (including
contaminant effects) is thus translated in these patch-specific transition rates.

Considering the site-fidelity migratory pattern, downstream migrations of 1-year-
old juveniles is introduced just after the census, with a conservative matrix MD (of
which the entry at row k and column l is the proportion of juvenile on patch l

going to patch k). Because of the “site-fidelity” of adults, their absence from their
patch is ignored during the spawning event. Moreover, considering that fecundity
rates depend on the resident patch of adults and not on the spawning location, the
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spatial shift in fall is modeled exactly as a virtual upstream migration of eggs with
a conservative matrix MU. The transition matrix becomes:

A .c/ D
2
4 O O MU .c/ F .c/

p
S3 .c/

S1 .c/ O O
O S2 .c/ MD S3 .c/

3
5 : (42)

MU .c/ is a function of the discharged Cd concentration in the river network because
it integrates possible contaminant-induced perturbations of the migratory flows of
spawners such as avoidance or attraction behaviors [60].

For each contamination scenario, a particular transition matrix is obtained cor-
responding to the general scheme presented in Sect. 2.4 (9). Asymptotic behavior
of the model yields the asymptotic population growth rate 	, the stable age/spatial
structure, the generation time, etc. allowing evaluating population response to the
contamination in a spatial context.

5.3 Results: Spatial Dynamics and Population Responses
to Contamination

Here, by means of precise examples, the interplay of spatial heterogeneities between
contamination patterns and population dynamics is illustrated in the control of pop-
ulation responses to the pollution.

The first case points up how projection models can help to understand how the
spatial contamination pattern influences the population effects. In Fig. 12a, consid-
ering “site-fidelity” behavior, it appears that for a given chronic Cd concentration,
population impacts (in terms of reduction in asymptotic population growth rate) are
less important when the discharge occurs more upstream, although more patches are
contaminated (scenario “4 patches” vs. “2 patches”). The perturbation analysis (see
Sect. 2.6 – (26)) reported on Fig. 12b, teaches us that the effect is mainly due to
reductions in fecundity of adults in contaminated patches and that the contribution
of survival reductions is quite insignificant. Thus, by considering on one hand the
downstream position of adults (Fig. 11b) and on the other hand, the fact that the
fecundity of adults (Fig. 12b) is the major limiting factors for the population re-
newal, more upstream discharges are understood as less impacting the population
due to the dilution of the contamination. Moreover, the prominence of the effect
of fecundity reduction also translates in other population endpoints: aging in the
stable age structure, increase in the generation time [24]. Here the importance to
integrate multiple population endpoints and not only to restrict the analysis to the
widely employed asymptotic population growth rate is underlined in order to follow
contaminant population impacts. In Fig. 13, the asymptotic spatial occupancy result-
ing from two different spatial patterns of contamination is presented (“1 patch” on
Fig. 13a and “2 patches” on Fig. 13b). The comparison between the two situations
reveals that population impacts on spatial occupancy are highly contrasted, while
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Fig. 12 (a) Effect on the asymptotic population growth rate of chronic contamination under three
scenarios of chronic contamination: “2 patches” are contaminated (see Fig. 11) considering “site-
fidelity” (dashed line) or “population-mixing” behavior (dotted line), or “4 patches” with the
“site-fidelity” assumption (solid line). (b) Decomposition of sensitivity of the asymptotic pop-
ulation growth rate to cadmium concentration (see Sect. 2.6, (26)) between fecundity (dark) and
survival (gray) contributions (same symbols for scenarios as on the upper panel). Scale for survival
contributions is half-divided for clarity
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reduction in asymptotic population growth rate: 20%

a b

reduction in asymptotic population growth rate: 21%

Fig. 13 Asymptotic adult distribution in the river network in fall under 2 spatial scenarios of
chronic contamination with 70 Cd �g L�1 (see Fig. 11) and corresponding reduction in asymptotic
population growth rate. Frequencies in the occupancy throughout the river network are quantified
by the surfaces of the squares standing for each patch. Arrows locate the source of contamination
in the network

quite the same reduction in the asymptotic population growth rate is calculated for
both scenarios (about 20%). The assessment of population effects only based on
potential growth could therefore be highly revised considering the fact that the trout
population develops only one “side” of the river network in one of the two scenarios.
Note that in scenario “2 patches,” some patches are vacant even if uncontaminated.
In view of the previous perturbation analysis (Fig. 12b), this “action at distance” [64]
is well understood considering the importance of fecundity reductions in the pop-
ulation response together with the downstream location of breeders contributing to
young trout production in upstream patches.

In case of acute pollution, the influence of the date in the year for Cd release sup-
plies a supplementary illustration of the interplay between the spatial heterogeneity
of contamination and the spatial dynamics of the trout population. Considering
scenario “2 patches,” the population impacts – in terms of asymptotic population
growth rate – are more serious when the Cd discharge occurs after the downstream
migration of 1-year-old juveniles (Fig. 14). This pattern is explained by the fact
that fewer juveniles are exposed if pollution occurs before their migration due to
the downstream location of the contamination. This is confirmed by the perturba-
tion analysis [24], which reveals that reduction of survival of 1-year-old juveniles
and adults mainly drives the population response in case of contamination after the
downstream migration in spring.

For a same scenario of chronic contamination, the comparison of the decrease
in the asymptotic population growth rate under the “site-fidelity” and “population-
mixing” assumptions (Fig. 12) points up how the spatial behavior of the ex-
posed species can contribute to the transmission of the effects to the population
level. Strong negative peaks of 1-year-old juvenile and adult survival contributions
(Fig. 12b) explained a supplementary drop of the potential population growth under
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Fig. 14 Effect on the asymptotic population growth rate of acute contamination considering three
different dates for cadmium release in the network

the mixing hypothesis (Fig. 12a). The difference in EC50 values fixed for the effects
on fecundity and survival (1.3 and 30 �g L�1, respectively) explained that these
peaks appear for higher Cd concentrations. How to understand the weakness of sur-
vival contributions in the case of a “site-fidelity” strategy? Note that the breeders
in contaminated patches have fecundity totally reduced for the concentrations af-
fecting their survival (due to the difference in EC50). In case of “site-fidelity,” these
trout never participate to the population renewal because each year they are situated
in these polluted patches, what is not the case if a “population-mixing” occurs each
spring. Therefore, survive or not does not matter for the population growth in the
“site-fidelity” case. Thus, thanks to the perturbation analysis of the transition ma-
trix, interactions between spatial dynamics and spatial pattern of contamination are
disclosed and the emergence of the population responses is explained.

Finally, contamination may alter the population in a “second way” as space is
concerned [60]: contamination can in fact induce migratory perturbations, what
is reported for salmonids [65]. Spatial explicit modeling allows considering this
potential impacts of migratory disruptions at the global population scale. If contam-
inant attraction or avoidance effects are introduced during the upstream migration of
adults spawning, MU .c/ in (42), asymptotic spatial distributions are basically highly
modified. Nevertheless, potential population growth is very less reduced [60]. This
statement has to be totally revised if density-dependent regulations are introduced
during the first year of survival because of limited carrying capacity of upstream
patches. The analytical framework presented in Sect. 2.3 explained how the pop-
ulation could be described by an equilibrium size in such a nonlinear model. As
reported in Chaumot et al. [60], migration perturbations generate imbalances in the
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spatial occupancy of young trout, what involves density-dependent mortality in this
case. Such additional losses for the population can be very weighty. As an example,
2 �g L�1 (chronic pollution, scenario “4 patches”) decrease the total equilibrium
population size by 2% via demographic rates reduction, while this drop can reach
37% in case of attraction behaviors and more surprisingly 32% in case of avoidance
during breeder migration. Therefore, Leslie models integrating spatial dimension
appear as relevant tools to consider this “second way” in the assessment of contam-
inant population effects in ecological context.

5.4 Summary

Caswell [15] underlines the importance of integrating the spatial dimension into
ecotoxicological population models. Effectively, space can rule the emergence of
population responses because, within the interplay between spatial heterogeneity of
contamination and population spatial dynamics, an “action at distance” can emerge
[58, 64, 66], some areas in the habitat could be key locations for the population,
safety areas can influence the dynamics within impacted ones [58], or migratory and
spatial behaviors can be altered by contamination and give rise to population dynam-
ics disruptions. Here spatialized Leslie models and perturbation analysis illustrate
the possibility to disclose how population response is built up via the identification
of key vital rates, key age classes, and key locations in the global dynamics of a
stressed population.

6 Conclusion

This chapter illustrated the way matrix population models can help in understand-
ing toxic effects at the population level on the basis of individual level data analyses
and integration of individual effect models relating life history traits to the exposure
concentration. Lethal and sublethal individual effects considering sensitivity differ-
ences between developmental stages can be taken into account as well as a spatial
dimension when individuals move from one location to another within a heteroge-
neously contaminated habitat. The power of matrix population models stems from
easy writing, analysis, and interpretation, which are particularly suitable for deal-
ing with complex biological phenomena. The demographic health of a population
is readily accessible through characteristic endpoints, which are simply analytically
handled from the transition matrix.

From an ecotoxicological point of view, matrix population models have the
advantage of accounting for age-dependent sensitivities to toxic compounds as ex-
hibited by many species. Hence, as stated in the introduction, they have proved their
efficacy in numerous case studies involving various toxic compounds (heavy met-
als, pesticides, contaminated sediment, etc.) and different biological species (fishes,
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insects, crustaceans, gastropods, etc.). Moreover, results of a matrix population anal-
ysis consist in a set of demographic endpoints, which are functions of the vital rates,
and thus of biological and environmental variables. In this context, perturbation
analyses constitute a potent tool to identify key vital rates and key age classes, but
also key locations when space matters.

Nevertheless, as in the case studies presented in Sects. 3–5, most of the matrix
population models in ecotoxicology are based on a deterministic modeling approach
by considering transition matrix entries constant over time and space. To tackle
problems in a more realistic way, either an environmental stochasticity (i.e., when
vital rates randomly vary over time), or a demographic stochasticity (i.e., when
transitions and births become random events and are applied to a finite number
of individuals) could be considered. Chaumot and Charles [61] proposed first few
to introduce a demographic stochasticity in an ecotoxicological matrix population
model. They showed that deterministic endpoints, such as equilibrium abundances,
seem to seriously underestimate the endangering effect of pollution at the population
level, and that the analysis of stochastic features such as the population extinction
risk appears to be of broad interest to avoid this pitfall. Nevertheless, this work was
only based on simulations under the software RAMAS Metapop R� [67], whereas an-
alytical results exist on stochastic matrix population models [68], thus securing the
robustness of results.

Complementary to individual-based models [69] and simulations strategies [70],
which aim at realism at first in the description of population dynamics [71], projec-
tion matrix models among state variable and top-down approaches – which accept a
simplification of the system description – provide an appropriate way to understand
the emergence of population impacts (understanding of broad interest for ecotoxi-
cological risk assessment): first, because they use effects on individual life history
traits as entries of the extrapolation scheme, parameters which are classical end-
points of bioassays; and second, because they allow an analytical treatment of the
system dynamics, which guarantee the robustness of the statements, which can be
formulated from such approaches. Finally, coupled to a quantitative analysis of toxic
compound effects on life history traits through a statistical approach and the de-
velopment of matrix population models, ecotoxicology can from now on aspire to
propose a predictive approach at the various levels of biological organization, and
thus to advance toward an integrated vision of the ecotoxicological risk assessment.

References

1. Truhaut R (1977) Ecotoxicology: Objectives, principles and perspectives. Ecotoxicol Environ
Safety 1: 151–173

2. Levin SA, Harwell MA, Kelly JR, Kimball KD (1989) Ecotoxicology: Problems and ap-
proaches. Springer, New York

3. Emlen JM, Springman KR (2007) Developing methods to assess and predict the population
level effects of environmental contaminants. Integr Environ Assess Manag 3: 157–165

4. Forbes VE, Calow P (1998) Is the per capita rate of increase a good measure of population-level
effects in ecotoxicology? Environ Toxicol Chem 18: 1544–1556



296 S. Charles et al.

5. Forbes VE, Calow P (2002) Population growth rate as a basis for ecological risk assessment of
toxic chemicals. Philos Trans R Soc London Ser B 357: 1299–1306

6. Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthro-
pods. Ann Rev Entomol 48: 505–519

7. Mooij WM, Hülsmann S, Vijverberg J, Veen A, Lammens EHRR (2003) Modeling Daphnia
population dynamics and demography under natural conditions. Hydrobiologia 491: 19–34

8. Hülsmann S, Mehner T, Worischka S, Plewa M (1999) Is the difference in population dynam-
ics of Daphnia galeata in littoral and pelagic areas of a long-term biomanipulated reservoir
affected by age-0 fish predation? Hydrobiologia 408–409: 57–63

9. Nisbet RM, Gurney WSC, Murdoch WW, Mccauley E (1989) Structured population-models –
A tool for linking effects at individual and population-level. Biol J Linn Soc 37: 79–99

10. Lotka AJ (1939) A contribution to the theory of self-renewing aggregates, with special refer-
ence to industrial replacement. Ann Math Stat 10: 1–25

11. Breitholtz M, Wollenberger L, Dinan L (2003) Effects of four synthetic musks on the life cycle
of the harpacticoid copepod Nitocra spinipes. Aquat Toxicol 63: 103–118

12. Leslie PH (1945) On the use of matrices in certain population mathematics. Biometrika 33:
184–212

13. Leslie PH (1948) Some further notes on the use of matrices in poulation mathematics.
Biometrika 35: 213–245

14. Caswell H (2001) Matrix population models – Construction, analysis, and interpretation. Sin-
auer Associates, Sunderlands, MA

15. Caswell H (1996) Demography meets ecotoxicology: Untangling the population level effects of
toxic substances. In: MC Newmann, CH Jagoe (Eds), Ecotoxicology: A hierarchical treatment.
Lewis Publishers, Boca Raton, FL

16. Caswell H (1996) Analysis of life table response experiments.2. Alternative parameterizations
for size- and stage-structured models. Ecol Model 88: 73–82

17. Levin L, Caswell H, Bridges T, DiBacca C, Cabrera D, Plaia G (1996) Demographic responses
of estuarine polychaetes to pollutants: Life table response experiments. Ecol Appl 6: 1295–
1313
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Bioaccumulation of Polar and Ionizable
Compounds in Plants

Stefan Trapp

Abstract The uptake of neutral and ionizable organic compounds from soil into
plants is studied using mathematical models. The phase equilibrium between soil
and plant cells of neutral compounds is calculated from partition coefficients, while
for ionizable compounds, the steady state of the Fick–Nernst–Planck flux equa-
tion is applied. The calculations indicate biomagnification of neutral, polar, and
nonvolatile compounds in leaves and fruits of plants. For electrolytes, several ad-
ditional effects impact bioaccumulation, namely dissociation, ion trap effect, and
electrical attraction or repulsion. For ionizable compounds, the effects of pKa and
pH partitioning are more important than lipophilicity. Generally, dissociation leads
to reduced bioaccumulation in plants, but the calculations also predict a high poten-
tial for some combinations of environmental and physicochemical properties. Weak
acids (pKa 2–6) may accumulate in leaves and fruits of plants when the soil is acidic
due to the ion trap effect. Weak bases (pKa 6–10) have a very high potential for accu-
mulation when the soil is alkaline. The model predictions are supported by various
experimental findings. However, the bioaccumulation of weak bases from alkaline
soils has not yet been validated by field studies.

Keywords Acids � Bases � Bioaccumulation � Ionic � pH � Plants � Model

1 Introduction

Living organisms are exposed to chemicals in the environment and may take up and
concentrate them in their body. An example is the bioconcentration factor (BCF) of
fish, which is the concentration of a chemical in fish divided by the concentration of
the chemical in surrounding water:

BCF D Concentration of fish .mg=kg/

Concentration in water .mg=L/
: (1)
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Similar is the bioaccumulation factor (BAF), which is the concentration in an or-
ganism divided by the concentration in the surrounding medium:

BAF D Concentration in organism .mg=kg/

Concentration in surrounding medium .mg=L/
: (2)

The BCF was defined as the process by which chemical substances are adsorbed
only through surfaces, whereas the BAF is due to all routes of exposure and in-
cludes dietary uptake [1]. Accordingly, “biomagnification” is a process in which the
thermodynamic activity of the chemical in the body exceeds the activity in the diet.

Bioaccumulation in the food chain may lead to high doses of compounds in the
diet of top predators and humans [2, 3] and is a highly undesired property of com-
pounds [4]. In the European regulatory framework for chemical risk assessment,
compounds with a BAF above 2,000 are considered as bioaccumulative and those
with BAF above 5,000 as very bioaccumulative [4]. The same criterion (BAF of
5,000) is also used by other governments [5].

It is generally accepted that bioaccumulation is closely related to lipophilicity
of a compound, measured as the partition coefficient between n-octanol and water,
KOW, or the partition coefficient between n-octanol and air, KOA [6, 7]. Accord-
ingly, a theoretical relation for aquatic biota was suggested [6, 8]. The lipid phase
accumulates the compound similar to n-octanol, and therefore

BCF D L �KOW; (3)

where L is the volumetric lipid content of an organism (L/L) and KOW is the
partition coefficient between n-octanol and water (mg/L octanol:mg/L water D L
octanol/L water).

In general, most BAF estimation approaches describe the bioaccumulation be-
havior of organic substances solely by the octanol–water partitioning coefficient
.log KOW/. This may be correct for neutral lipophilic compounds. But there are
other mechanisms that can lead to bioaccumulation, which are not connected to
lipophilicity. One example is the accumulation due to uptake of water by plants from
soil, with subsequent transport to leaves with the water stream, and subsequent accu-
mulation in leaves when the water evaporates. Another example is the accumulation
of weak electrolytes in living cells. Investigations show that for these dissociating
compounds, other processes, such as pH-dependent speciation and electrical attrac-
tion, can be the decisive processes determining the accumulation in cells [9–11].
The log KOW approach alone may lead to an under- or overestimation of the ac-
cumulation of ionizable substances. In a review using fish with 5,317 BCF values,
about 20% of compounds had the potential for ionization. But for less than 40% of
the tests, the pH of the water during the experiment was reported [1]. It seems that
the critical role of pKa and pH for the BCF of ionizable compounds is sometimes
not sufficiently highlighted.
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A mechanistic model described in this chapter will identify accumulation pro-
cesses that are not related to lipophilic partitioning. The focus is on accumulation of
compounds from soil in plants and, in particular, on ionizable compounds.

2 Electrolytes

“Electrolytes” is a common term for compounds with electrical charge. Com-
mon synonyms are “ionic compounds,” “ionizable compounds,” “dissociable
compounds,” “dissociating compounds,” “electrolytic compounds,” and “charged
compounds.” Electrolytes may be acids (valency �1; �2, etc.), bases (valency
C1; C2, etc.), amphoters (valencies C1 and �1; C1 and �2, etc.), or zwitterions
(valencies 0, C1, and �1, etc.). Weak electrolytes are compounds with weak acid-
and base- groups, which dissociate only partly under usual environmental condi-
tions (pH 4–10). Thus, weak electrolytes are commonly present in two or more
different forms with very different properties, namely the neutral molecule and the
ion, which can rapidly be transferred from one into the other if pH changes. “Very
weak” electrolytes are named acids or bases that dissociate only to a minor degree
at environmental pH (usually between pH 5 and 9), i.e., bases with pKa < 5 and
acids with pKa > 9.

Different to the neutral molecule, ions can be attracted or rejected by electri-
cal charges. Monovalent bases have a valency of C1 and are thus attracted by
negative electrical potentials, while acids have a valency of �1 and would be at-
tracted by positive electrical potentials. The neutral compound typically has a far
higher lipophilicity than the corresponding ion. In average, log KOW (ion) is equal
to log KOW (neutral) �3:5, which means the KOW of ions is 3,162 times lower. For
zwitterions, which have a permanent positive and negative charge, but a net charge
of 0, the difference is smaller, log KOW .zwitterion/ D log KOW (neutral)�2:3 [12].

There is also a difference in vapor pressure. For ions, it is approximately 0. The
vapor pressure of the total compound, p (Pa), can thus be calculated using the va-
por pressure of the neutral molecule and multiplying with the fraction of neutral
molecules.

The applicability domain of most QSAR regressions is limited to neutral com-
pounds [4]. For ionizable compounds, the TGD suggests a correction of the physico-
chemical properties (log KOW, Henry’s law constant) by the neutral fraction of
compound, Fn. For the BCF that means that

log BCF D 0:85 � log.Fn �KOW/� 0:70: (4)

The reliability of this method for ionizable compounds was never critically evalu-
ated. A recent survey by Ralph Kühne revealed that of his database with >10,000
compounds, at least 25% of compounds have structures that may dissociate, such as
carboxylic acids, phenols, and amines. In fact, ionizable compounds are frequent
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and typical for many substance classes. Among pesticides, most herbicides are
weak acids. Among pharmaceuticals, weak bases are frequent (“alkaloids”). De-
tergents are often anionic, cationic, or amphoteric. Metabolites of phase I reactions
(oxidations) are usually acids, while the reduction of nitro-groups leads to amines.
Given the widespread occurrence of weak electrolytes, it may surprise that very few
models and regressions were developed for ionizable substances.

In the following, a dynamic model for plant uptake is developed – first the “stan-
dard approach” for neutral compounds. This is then modified to be applicable for
electrolytic compounds.

3 Plant Uptake Models for Neutral Compounds

In this section, the uptake and accumulation of polar and ionizable compounds in
plants is quantified. Based on physiological principles, the mass balance equations
for the transport of compounds in the soil–plant–air system are derived and com-
bined to mathematical models.

Plant uptake models for neutral compounds have been developed by several
groups [13–16]. A series of crop-specific uptake models was derived, based on the
PlantX model [17] – to mention are the one-compartment analytical solution of the
latter [18], and the models for root vegetables [19], potatoes [20], and fruits [21,22].

3.1 How Plants Function

Figure 1 shows schematically how plants function: The large network of roots takes
up water and solutes. In the pipe system of the xylem, these are translocated through
the stem to the leaves. The leaves take up carbon dioxide from the atmosphere and
simultaneously transpire the water. Carbohydrates produced in the leaves by photo-
synthesis are translocated in the phloem pipe system to the sinks (all growing parts,
fruits, and storage organs).

In most ecosystems, plants transpire about two-thirds of the precipitation [23].
For humid conditions, this ranges from 300 to 600-L water per square meter per
year. The water, which is taken up by the roots, does not stay there but is translocated
in the xylem to the leaves and evaporates. Only 1–2% is taken up into the plant cells.
Chemicals, which are dissolved in the “transpiration stream” (D the xylem sap), can
be moved upward, too.

The water-use efficiency (growth of biomass per liter of transpired water) is typ-
ically at 20 g/L, which means that about 500-L water is transpired for 1 kg (dry)
biomass. Dry matter content of leaves is typically between 5 and 20%. Thus, be-
tween 25 and 200-L water is transpired for 1-kg fresh weight leaves. Compounds
that dissolve in the transpiration stream but are nonvolatile from leaves remain there.
By this mechanism, an accumulation of compound in plants from soil may occur.
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Fig. 1 “How plants
function” – a sketch of plant
organs and transport pathways

Different from lipophilic accumulation, the organism is not in chemical phase equi-
librium with the surrounding medium – the chemical activity in leaves may increase
above the activity in soil.

3.2 Equilibrium Partitioning

The diffusive flux between two compartments describes Fick’s first law of diffusion:

J D P.ao � ai/; (5)

where J is the unit net flux of the neutral molecules from outside (o) to inside
(i) of the compartment .kg=m2=s

1
/; a is the activity (here: kg=m3), and P is the

permeability of the boundary (m/s).
It follows that diffusive exchange stops when ao D ai, that is, activities are equal.

This does usually not mean equal concentrations. The activity ratio (which is, at low
concentrations and low ionic strength, equal to the concentration ratio) in equilib-
rium is the partition coefficient K [often in the unit mg/L: (mg/L D L/L)].

An example is the partition coefficient between air and water, KAW:

aAir

aWater
D KAW D pS

SRT
; (6)
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where KAW is in the unit L/L (also known as dimensionless Henry’s Law constant),
pS is the saturation vapor pressure (Pa), S is the solubility .kg=m3/; R is the uni-
versal gas constant (J/K/mol), and T is the absolute temperature (K). Analogous
equilibrium partition coefficients can be defined for other phases.

3.2.1 Freely Dissolved Concentration of Neutral Organic Compounds in Soil

Soil is composed of water, the “soil matrix,” and gas pores. Uptake into plants occurs
only for the “bioavailable” fraction of compound, which is the concentration of
freely dissolved compound [24].

The sorption to solids is described by the empirical Freundlich relation:

mads

MM
D K � C

1=n
W ; (7)

where mads is the adsorbed amount of chemical (mg), MM is the mass of sorbent,
here the soil matrix (kg), K is the proportionality factor (Freundlich constant) (L
water/kg soil), CW is the equilibrium concentration in the aqueous solution (mg/L
water), and n is a measure of nonlinearity of the relation. For small concentrations,
values of n are close to 1. The Freundlich constant can then be seen as the slope of
the linear adsorption/desorption isotherm. It is often called the distribution coeffi-
cient Kd between soil matrix and water:

mads

MM
D CM D Kd � CW; (8)

where CM is the concentration sorbed to the soil matrix (mg/kg). The Kd of organic
chemicals is related to the fraction of organic carbon in soil, OC:

Kd D OC �KOC: (9)

KOC (L/kg) is the partition coefficient between organic carbon and water and is
described later.

Bulk soil. The natural bulk soil consists of soil matrix, soil solution, and soil gas.
The concentration ratio of dry soil (D soil matrix, index M ) to water has been
described earlier. For a liter of dry soil (index Mvol), multiply with the dry soil
density 
dry (kg/L).

CMvol.mg=L/=CW.mg=L/ D Kd � 
dry .mg=L W mg=L D L=L/: (10)

For wet soil .CSoilVol/, add the volumetric pore water fraction PW (L/L).

CSoilVol=CW D Kd � 
dry C PW .mg=L W mg=L D L=L/: (11)
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Now back to the unit mg/kg for the soil concentration .CSoil/. This is achieved by
dividing by the wet soil density 
wet .D 
dry C PW/, unit kg/L:

CSoil=CW D .Kd � 
dry C PW/=
wet .mg=kg W mg=L D L=kg/: (12)

Turning this around gives finally the concentration ratio between water (mg/L) and
wet soil (mg/kg) KWS:

CW=CSoil D KWS D 
wet=.Kd � 
dry CPW/ .mg=L W mg=kg D kg soil=L water/:
(13)

The relation describes the concentration ratio between soil water and bulk soil (wet
soil) in phase equilibrium. Replacing the Kd by OC � KOC gives an expression to
calculate the dissolved concentration of a chemical in soil (mg/L) from the total
concentration in soil (mg/kg, wet weight):

CW

CSoil
D 
wet

OC �KOC � 
dry C PW
D KWS D 1

KSW
: (14)

As defined, CW (mg/L) is the concentration of the chemical in soil water and CSoil

(mg/kg) is the concentration of the chemical in bulk (total) soil. 
wet is the density of
the wet soil (kg/L), OC (also named fOC) is the fraction of organic carbon (kg/kg),

dry is the density of the dry soil, and PW is the volume fractions of water in the
soil (L/L).

The KOC is the partition coefficient between organic carbon and water. For
hydrophobic, neutral organic chemicals, the KOC and can be estimated from:

log KOC D 0:81 log KOW C 0:1: (15)

This is the regression suggested as default in the European chemical risk assessment
tool EUSES [4]. Several other regressions are available, among them [25,26] are the
following:

KOC D 0:411 �KOW; (16)

log KOC D 0:72 log KOW C 0:49: (17)

The differences between these regression equations can be considerable, in particu-
lar in the extreme ranges (high or low KOW).

3.2.2 Phase Equilibrium Between Roots and Water

The root concentration factor (RCF) was measured with pulverized (“mazerated”)
barley roots in shaking experiments with chemicals of different KOW [27]:

RCF D concentration in roots (mg/kg)

concentration in water (mg/L)
: (18)
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The RCF increased with KOW. The fit curve between RCF and KOW is as follows:

log .RCF � 0:82/ D 0:77 log KOW � 1:52; (19)

or
RCF D 0:82C 0:03 K0:77

OW ; (20)

where the RCF can be rewritten as KRW (L/kg) to describe the equilibrium parti-
tioning between root concentration CR (mg/kg fresh weight) and water CW (mg/L).
The partitioning occurs into the water and the lipid phase of the root:

KRW D WR C LRaKb
OW; (21)

where W and L are water and lipid content of the plant root, b for roots is 0.77, and
a D 1=
Octanol D 1:22 L=kg. Typical values for a carrot are 0.89 L/kg for WR and
0.025 kg/kg for LR [19]. With this parameterization, the equation gives practically
identical values to the RCF.

3.3 Dynamic Model for Uptake of Neutral Compounds into Roots

3.3.1 Carrot Model

The “carrot model” calculates uptake into and loss from root with the transpiration
water (Fig. 2). Diffusive uptake across the peel is neglected. It is assumed that the
concentration in the xylem at the root tips, where the translocation stream enters the

Fig. 2 Transport processes
in a carrot root. Full arrows:
considered by the model
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roots, is in chemical phase equilibrium with the soil pore water. Since both solutions
are water, the concentration is equal. At the outflow from the root, the concentration
in xylem is in equilibrium with the root. In the mass balance, the change of chemical
mass in roots is simply influx with water minus outflux with water.

dmR

dt
D CW �Q � CXy �Q; (22)

where mR is the mass of chemical in roots, Q is the transpiration stream (L/d), and
CXy is the concentration in the xylem (mg/L) at the outflow of the root. From chem-
ical mass, concentration is received by dividing through the mass of the root M :

d.CR �M /

dt
D dmR

dt
D CW �Q � CXy �Q: (23)

If growth is exponential, and the ratio Q/M (transpiration to plant mass) is constant,
the growth by exponential dilution can be considered by a first-order growth rate
kGrowth (per day). This rate is added to the rate for metabolism, kM, to give the
overall first-order loss rate constant k.

dCR

dt
D CW � Q

M
� CXy � Q

M
� k � CR: (24)

If the xylem sap is in equilibrium with the root, the concentration CXy D CR=KRW.
Then,

dCR

dt
D CW � Q

M
� CR �KRW � Q

M
� k � CR: (25)

Setting this to steady state .dCR=dt D 0/ gives for the concentration in the root CR

(mg/kg).

CR D Q
Q

KRW
C kM

CW: (26)

The ratio of the concentration in soil water, CW, to that in bulk soil, CSoil, is KWS,
and the BCF between root and bulk soil is as follows:

BCF D CR

CSoil
D CR

CW
�KWS D Q

Q

KRW
C kM

�KWS: (27)

Furthermore, the concentration in xylem sap when it leaves the root is as follows:

CXy D CR

KRW
D Q

Q

KRW
C kM

� KWS

KRW
� CSoil: (28)

If there are not any sink processes (such as dilution by growth or metabolism inside
the root), the root will reach phase equilibrium with the surrounding soil. The larger
the term kM compared with Q=KRW, the more the result for CR and CXy (outflow)
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differs from phase equilibrium. If k is only due to growth, then kM is indepen-
dent of chemical properties, while KRW increases with log KOW, so that Q=KRW
decreases. This means that for increasing KOW, concentrations in root are below
phase equilibrium, while for polar compounds, the concentration in root is near
phase equilibrium, CR D KRW �KWS � CS.

The parameterization of the model has been done for 1-m2 soil, with 1-kg roots,
a transpiration of 1 L/d, and a root growth rate of 0.1 per day. The metabolism rate
was set to 0 [19].

3.3.2 Other Approaches to Calculate the Chemical Concentration
in Xylem Sap

The “transpiration stream concentration factor” (TSCF) is defined as the concentra-
tion ratio between xylem sap, CXy, and external solution (soil water), CW.

TSCF D CXy=CW: (29)

The TSCF is related to the KOW [27] by a bell-shaped (Gaussian) curve:

TSCF D 0:784 � exp

(
�.log KOW � 1:78/2

2:44

)
: (30)

For popular trees, a similar relation was found [28]:

TSCF D 0:756 � exp

(
�.log KOW � 2:50/2

2:58

)
: (31)

These curves were found from laboratory experiments in hydroponic solution.
Based on earlier model calculations, it was suggested that under “real” environ-
mental conditions, that is, for plants growing in soil, the shape of the curve would
be different [22]. The author argues that in hydroponic experiments, plants do not
develop root hairs. Thus, these roots have a far lower surface area (factor 100) than
when growing in soil. The small uptake of polar compounds predicted by the TSCF
regressions is probably due to kinetic limitation of the diffusive uptake (resistance
of the biomembrane to polar compounds). With higher surface, such a limitation
would not occur.

3.3.3 Results of the Root Uptake Model

Figure 3 shows the calculated concentration in soil pore water, CW (mg/L), for a
bulk soil concentration of 1 mg/kg (equation 14: soil pore water concentration). For
polar compounds, the concentration is >1 mg=L. This is because most of the polar
compounds are present dissolved in soil pore water, but the soil pore water volume
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Fig. 3 Calculated concen-
tration in soil pore water
ŒCw, (14)], equilibrium con-
centration in root (Croot eq),
result of the dynamic root
uptake model [Croot dyn, (27)]
for a soil concentration of
1 mg/kg .Csoil/
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is only 0.35 L per liter of soil, and 1-L soil has 1.95-kg weight. 1.95 kg/L:0.35 L/L
is 5.57 kg/L, and this is the maximum concentration ratio of soil pore water to bulk
soil. At higher log KOW .�2/, the chemical sorbs to the soil organic carbon, and
the concentration dissolved in pore water decreases tremendously. The figure also
shows the phase equilibrium root to water, named Croot (eq) in the legend. This value
is KRW � KWS � CSoil, that is, KRS � CSoil. For polar compounds .log KOW � 2/,
the value is >1; this is because the root contains more water than the soil. For
more lipophilic compounds, it approaches a value near 1. It is expected that, in
reality, only fine roots or the peel of larger roots will approach this equilibrium
concentration. The bulk (core) of larger roots will be below equilibrium, due to di-
lution by growth. This is represented in Fig. 3 by the curve Croot (dyn), which is
the BCF � CSoil described earlier (equation 27, dynamic root model). The more
lipophilic the compound, the larger is the deviation from phase equilibrium, and the
concentration in bulk root is very low. This pattern has been confirmed by experi-
ments [29].

The regressions for the concentration ratio between xylem and soil solution
(TSCF) derived by experiments [27, 28] and the model-based TSCF are shown in
Fig. 4. Figure 5 shows the concentration ratio between xylem and bulk soil (TSCF�
KWS, equations 28–31: concentration in xylem). The TSCF, related to concentration
in solution (Fig. 4), decreases for lipophilic compounds with log KOW > 2 with all
methods. But only the two regressions show the decrease for the polar compounds,
with low TSCF for log KOW < 0. The model predicts good translocation for the
polar compounds. If the concentration in xylem is related to the concentration in
bulk soil, the translocation decreases already for compounds with log KOW > 1.
The model predicts a very good uptake for the very polar compounds, which do
not adsorb to organic carbon and are in soil exclusively present in soil solution. For
polar compounds, the concentration in xylem is close to that in soil solution (Kws).
This is confirmed by the new study of Dettenmaier et al. [78].

Note that the model does not consider the kinetics of permeability across
biomembranes. As will be seen later, the uptake may be kinetically limited for
very polar compounds .log KOW � �1/.
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Fig. 4 Concentration ratio
xylem solution to soil solution
(TSCF) calculated with the
model equation, compared
with the TSCF regressions of
Briggs et al. [27] and Burken
and Schnoor [28]
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Fig. 5 Concentration ratio
xylem solution to bulk soil
(TSCF related to soil) cal-
culated with the model (28),
compared with the TSCF re-
gressions of Briggs et al. [27]
and Burken and Schnoor [28].
KWS is equilibrium concen-
tration in soil solution (14)
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3.4 Uptake of Neutral Organic Compounds into Shoots

Uptake of chemical into shoots (stem and leaves) may be from soil or from air.

3.4.1 Transport of Compounds via Xylem from Soil

Uptake from soil is via the transpiration stream Q, and the change of mass is the
product of transpiration Q (L/day) and the concentration in xylem, CXy (mg/L):

dm

dt
D CXy �Q: (32)
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Hereby, CXy can either be calculated using the TSCF regression or it is the outcome
of the root model [19, 22]. We chose the latter here, while in the early models [17,
18], the TSCF was used. Additional transport processes from soil to shoots may be
by gas phase [30,31] or adsorbed to resuspended soil particles [32], but for the more
polar compounds, these routes have less relevance.

3.4.2 Uptake from Air

Uptake from air can occur by dry gaseous deposition, wet deposition (rain), wet par-
ticulate deposition (particles in rain), and dry particulate deposition. The mass flux
is the product of leaf area A .m2/, deposition velocity g (m/day), and concentration
in air CAir .mg=m3/:

dm

dt
D A � g � CAir: (33)

A rough estimate for the overall deposition velocity g is a value of 1 mm/s [18] or
86.4 m/day.

3.4.3 Loss to Air

Diffusion is a two-way-process, and chemicals may also volatilize from leaf to air.
The process is described similar to deposition:

dm

dt
D A � g � 
 � CL

KLA
; (34)

where KLA is the partition coefficient of leaves to air (in the unit mg=m3 leaves to
mg=m3 air), and 
 is the density of the leaves .kg=m3/. CL has the unit mg/kg, and
CAir has the unit mg=m3. If dry gaseous deposition (a diffusive process) is the only
process considered, then g has the same value for volatilization as for deposition.

The partition coefficient KLA is derived from the following:

KLA D CL

CA
D KLW

KAW
; (35)

where KLW is the partition coefficient between leaves and water, and KAW (L/L) is
the partition coefficient between air and water (also known as dimensionless Henry’s
Law constant). Similar to the partition coefficient between roots and water,

KLW D CL

CW
D W C L � a �Kb

OW; (36)

where W (L/kg) and L (kg/kg) are water and lipid content of the plant leaf, b for
leaves is 0.95, a D 1=
Octanol D 1:22 L=kg.
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3.4.4 Complete Uptake Model for Shoots

The complete mass balance for the shoots is as follows:

dmL

dt
D CQ � CXy C CAir � g � A� CL � g � A � 


KLA
� kMmL; (37)

where the rate constant kM describes metabolism.
Concentrations are derived as before by dividing by plant mass M . Growth is

considered by adding a growth rate constant kGrowth to the metabolism rate kM; the
sum is the overall first-order rate k.

dCL

dt
D C Q

ML
� TSCF �CW C CAir � g �A

ML
� k � CL � CL � g �A � 


KLA �ML
: (38)

The equation can be rewritten and gives the inhomogeneous linear differential
equation:

dCL

dt
D b � aCL; (39)

with the standard solution:

CL.t/ D CL.0/ � e�at C b

a
.1 � e�at /; (40)

where loss rate a is as follows:

a D A � g � 


KLA �ML
C k (41)

and source term b is as follows:

b D CXy � Q

ML
C CAir � g � A

ML
: (42)

The steady-state solution .t D 1/ is as follows:

CL.t D 1/ D b

a
: (43)

In very similar form, the model was implemented in the Technical Guidance Doc-
ument for chemical risk assessment [4]. The default parameterization of the model
was taken from the original reference [18] and is shown in Table 1.
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Table 1 Parameterization of the leafy vegetable model,
normalized to 1 m2 (data taken from the original publica-
tion [18])

Parameter Symbol Value Unit

Shoot mass ML 1 Kg
Leaf area A 5 m2

Shoot density 
 500 kg=m3

Transpiration Q 1 L/day
Lipid content L 0.02 kg/kg
Water content W 0.8 L/kg
Conductance G 10�3 m/s
Loss rate (growth) K 0.035 Per day
Time to harvest T 60 Day

3.4.5 Results from the Model for Shoots

There are three chemical properties that have the largest influence on the results,
and these are as follows:

1. Metabolism rate. In the model, the loss rate k is the sum of metabolism rate and
growth rate. Metabolism cannot be predicted from physicochemical properties,
and the rate kM was set to 0.

2. Partition coefficient octanol–water. The KOW determines the freely dissolved
concentration in soil, the concentration in root, the concentration in xylem, and
thus the translocation upward, and it is also relevant for the sorption to leaves.
High KOW values will lead to low uptake from soil, but high uptake from air (if
the concentration in air is not 0).

3. Partition coefficient air–water. The KAW has a very high impact on loss to air.
Chemicals with a high KAW value will volatilize rapidly from leaves to air.

The impact of KAW and KOW on the calculated concentration in shoots [(37)–(42),
shoot model] is shown in Fig. 6. In this simulation, the bulk soil concentration was
set to 1 mg/kg, and the metabolism rate and the concentration in air were set to 0. It
thus shows the potential for an uptake from soil into shoots, for varying combina-
tions (“chemical space”) of KAW and KOW.

As can be seen, compounds with log KAW � �3 .KAW � 10�3 L=L/ generally
do not tend to accumulate from soil in leaves, independently of the lipophilicity.
Also, compounds with a high log KOW.log KOW � 6/ show low accumulation from
soil in leaves. Very nonvolatile compounds .log KAW � 6/ accumulate best when
the compound is at the same time polar .log KOW � 0/. Polar and nonvolatile com-
pounds possess, in fact, a very high bioaccumulation potential from soil in leaves.
If the compounds are persistent, a maximum concentration factor of leaves to bulk
soil of >100 is predicted.

A very similar result was obtained earlier by simulations with the Fruit Tree
model [22]. The predicted accumulation of a persistent neutral organic compound
in leaves of an apple tree was highest for polar, nonvolatile compounds. A high



314 S. Trapp

−9
−6

−3

0

−2
0

2
4

6

0.01

0.1

1

10

100

1000

C
 shoots

log Kaw

log Kow

−2

0

2

4

6

Fig. 6 Predicted concentration of persistent neutral organic compounds in shoots [(40): shoot
model] after uptake from soil (Csoil is 1 mg/kg) for varying chemical properties (x-axis log KOW

and y-axis log KAW)

accumulation (up to factor 200 times the bulk soil concentration) was found for
very polar .log KOW < 0/ and very nonvolatile .log KAW�9/ compounds. Predicted
accumulation in fruits was much lower (maximally factor 8) due to the lower flux
of water into fruits [22]. The trend was opposite when uptake was from air. Then,
very lipophilic, nonvolatile compounds were predicted to accumulate in fruits and
leaves.

3.5 Summary of Results for Neutral Compounds

The simulations with the root and shoot model show that in both cases, it is the
polar compounds that have the highest potential for an accumulation in plants. The
maximum accumulation in leaves is far higher .>100/ than in roots .>5/. According
to the model simulations, neutral polar compounds can thus bioconcentrate up to
more than 100 times the concentration in soil, solely due to the translocation with
water to leaves and the subsequent evaporation of the water, while the chemical
remains if it is persistent and nonvolatile.

4 Electrolytes

Only a few plant uptake models are applicable to ionic or ionizable organic com-
pounds [33]. To mention are the model of Kleier for phloem transport [34], the
Satchivi model for pesticide spray application [35,36], and the Fick–Nernst–Planck
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model by Trapp [33,37]. Here, the latter is connected with the root and plant uptake
model presented in the last section.

Different from neutral organic compounds, dissociation and permeability of neu-
tral and ionic compound across membrane play a key role in determining the uptake
of electrolytes in organisms. Thus, pH and pKa have a large effect on the biocon-
centration of (weak) electrolytes. Also, electrical attraction or repulsion is a process
not seen for neutral compounds. Thus, several processes have to be added to the
plant uptake model(s) described earlier to predict the bioaccumulation potential of
ionizable compounds.

4.1 Concentration and Activity

4.1.1 Dissociation

The activity ratio between ionic (index d) and neutral molecule (index n) is calcu-
lated by the Henderson–Hasselbalch equation [38]:

log
ad

an
D i.pH � pKa/; (44)

where a is the activity, d is the index for dissociated (synonym ionic), n for neutral,
i is C1 for acids and �1 for bases, and pKa is the negative logarithm .log10/ of the
dissociation constant. It follows for the fraction of neutral molecules Fn that

Fn D 1

1C 10i.pH�pKa/
: (45)

The fraction of dissociated molecules Fd is 1 � Fn.

4.1.2 From Concentration to Activity

In nondilute solutions, molecules interact with each other. The chemical potential is
reduced due to these interactions, and the activity a is lower than the concentration
C [39]:

a D � � C; (46)

where � is the activity coefficient .�/. The activity coefficient of the ion, �d, can be
calculated with the modified Debye–Hückel equation. Several approximations exist,
among them the Davies approximation [40]:

log �d D �A � z2

 p
I

1CpI
� 0:3 � I

!
for I � 0:5 M; (47)
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where A depends on ambient pressure and temperature, A D 0:5 for 15ı–20ı and
1 atm. With an ionic strength I of 0:3 M; �d is 0.74 for a monovalent and 0.30 for
a bivalent ion.

For neutral compounds, too, the activity differs from the dissolved concentration
at high ionic strength. The activity coefficient of the neutral compound, �n, is found
by the Setchenov equation:

�n D 10kI; (48)

where k is the Setchenov coefficient that increases with the size of the molecule.
For smaller molecules, k D 0:2 (taken as default), and �n in plant saps with I D
0:3 M is 1.23. This means, in water with high ionic strength, the activity of neutral
molecules is higher than in salt-free water. This is the reason for the well-known
“out-salt” effect of neutral organic chemicals in salt water.

4.1.3 Activity and Adsorption

Not only in pure water, but in all phases, activity is related to the truly dissolved con-
centration. If, for example, in soil or in plant cells, the molecule is partly adsorbed,
the activity can still be calculated. The relation between the activity a .kg=m3/ of
free (truly dissolved) molecules and the total concentration Ct .kg=m3/ can gen-
erally be defined by fractions f , which consider dissociation, ionic strength, and
sorption to lipids, so that.

The total (measurable) concentration Ct of the compound comprises the neutral
(n) and dissociated (d) molecules, both kinds can be free in solution or sorbed state:

Ct D W � Cfree;n C L � Cads;n CW � Cfree;d C L � Cads;d; (49)

where W and L are the volumetric fractions of water and lipids (L/L).
With L � Cads D K � Cfree we can write as follows:

Ct D W � Cfree;n CKn � Cfree;n CW � Cfree;d CKd � Cfree;d: (50)

Furthermore, using Henderson–Hasselbalch’s equation and a D � � Cfree, we re-
ceive for the relation between the activity an of the neutral molecules and the total
concentration the “activity capacity” f :

fn D an

Ct
D 1

W
�n
C Kn

�n
C
�

10i.pH�pKa/

�d

�
� .W CKd/

: (51)

The respective relation for the ions, with ad D an � 10i.pH�pKa/ is fd D ad=Ct D
fn10i.pH�pKa/.

Note that the symbol Kd here describes the adsorption of the ionic (dissociated)
molecules and is not related to the Kd (distribution coefficient) in Sect. 3.2.1, which
describes the adsorption to the soil matrix.
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4.2 Diffusive Exchange of Electrolytes Across Membranes

4.2.1 Neutral Compounds

The diffusive flux of neutral molecules across membranes, Jn, is described by Fick’s
first law of diffusion [analog to (5)]:

Jn D Pn.an;o � an;i/; (52)

where J is the unit net flux of the neutral molecules n from outside (o) to inside
(i) of the membrane .kg=m2=s/; Pn is the permeability of the membrane (m/s) for
neutral molecules, and a is the activity of the compound .kg=m3/.

4.2.2 Ions

The unit net flux of the dissociated (ionic) molecule species across electrically
charged membranes, Jd, is described by the Nernst–Planck equation. An analyti-
cal solution for constant electrical fields is as follows [41–43]:

Jd D Pd
N

eN � 1
.ad;o � ad;ieN /; (53)

where Pd is the permeability of the membrane (m/s) for dissociated molecules,
N D zEF=RT, where z is the electric charge (synonym valency, for acids �, for
basesC), F is the Faraday constant (96,484.4 C/mol), E is the membrane potential
(V), R is the universal gas constant (8.314 J/mol/K), and T is the absolute tempera-
ture (K).

4.2.3 Total Compound

The total flux J of the compound across the membrane is the sum of the fluxes of
the neutral molecule and the ion, Jn and Jd:

J D Pn.an;o � an;i/C Pd
N

eN � 1
.ad;o � ad;ieN /: (54)

4.3 Diffusive Equilibrium for Ionizable Compounds

4.3.1 Definition of Equilibrium

Let us generally define the endpoint of diffusion as the equilibrium between com-
partments (i.e., the state with the highest entropy). The driving force for diffusive
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exchange is the activity gradient. It follows that diffusive exchange stops when
ao D ai, that is, activities are equal. For neutral compounds, it follows from (52) that

Jn D Pn.an;o � an;i/ D 0 ! an;o D an;i;

where o denotes outside and i inside the compartment. For concentrations, using
a D f � C

Ct;ofn;o D Ct;ifn;i: (55)

It follows that the equilibrium partition coefficient KEq;n of neutral compounds is
the inverse ratio of the activity capacity values f :

Ct;i

Ct;o
D fn;o

fn;i
D K

Eq;n
io : (56)

For ions, too, the flux stops when equilibrium is reached. But diffusion is calculated
with the Nernst–Plank equation, thus [identical to (53)]

Jd D Pd
N

eN � 1
.ad;o � ad;ie

N /:

The endpoint of diffusion is reached, with N D zEF=RT, when

ai

ao
D e

�zEF
RT D K

Eq;d
io : (57)

This is the well-known Nernst ratio [44]. Because of the exponential relation,
the theoretical accumulation can be quite high, in particular, for high electri-
cal potentials, and for polyvalent bases .z�C 2/. For example, with a field of
�120 mV .�0:12 V/; KEq is 115 for z D C1, but 13,373 for z D C2.

4.3.2 Equilibrium in Binary Systems

Diffusion of both neutral compound and ion is calculated with (54). With aD f � C ,
the flux into the compartment is as follows:

Ji D Pnfn;oCo C Pd
N

eN � 1
fd;oCo (58)

and the flux out is

Jo D Pnfn;iCi C Pd
N

eN � 1
fd;ieN Ci: (59)

In equilibrium, influx and outflux are equal, and the equilibrium of electrolytes re-
sults in:

K
Eq
io D Ci

Co
D

fn;o � Pn C fd;o � Pd � N
.eN�1/

fn;i � Pn C fd;i � Pd � eN � N
.eN�1/

: (60)
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For dissociating compounds, the equilibrium concentration ratio is a complex func-
tion of the fractions in solution, f , the permeabilities for diffusive exchange, P , and
of valency z, and charge E (because N D zEF

RT ). Of course, the concentration ratios
derived by the steady-state solution of the diffusive flux equation are not partition
coefficients. In their mathematical handling, however, they resemble those.

4.4 Electrolytes in Soil and Plant

4.4.1 Electrolytes in Soil

The soil pH varies usually between 4 and 10, with most soils being slightly acidic to
neutral (pH 6–7). The ratio between neutral and dissociated compound is calculated
as described by the Henderson–Hasselbalch equation.

KOC

The KOC of electrolytes is calculated using special regressions [45], namely:

log KOC D 0:11 log KOW C 1:54 for the anion, (61)

log KOC D 0:47 log KOW C 1:95 for the cation, (62)

log KOC D 0:54 log KOW C 1:11 for the acid; neutral molecule: (63)

log KOC D 0:33 log KOW C 1:82 for the base; neutral molecule: (64)

As can be seen, cations show the strongest sorption, for a given log KOW.

Concentration in Soil Pore Water

For a liter of dry soil (index Mvol), we had [in Sect. 3.2.1, analog to (10)]

CMvol=CW D KOC � OC � 
dry; (65)

where concentration in soil matrix, CMVol, and in soil pore water, CW, were in the
unit (mg/L). This changes for weak electrolytes to the following:

CMvol=CW D .fn �KOC;n C fd �KOC;d/ � OC � 
dry: (66)

Consequently follows the concentration ratio of weak electrolytes, KWS, between
water (mg/L water) and wet soil (mg/kg):

CW

CSoil
D KWS

D 
wet

.fn �KOC;n C fd �KOC;d/ �OC � 
dry C PW

.mg=L W mg=kg D kg soil/L water/: (67)
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Advective fluxes (namely, the uptake of water by roots) are related to the dissolved
concentration CW. Diffusive exchange, however, will be related to the activity a of
a compound. We can write for the relation fn between activity an (mg/L) and total
concentration in bulk soil Csoil (mg/kg) as follows:

fn D an

CSoil

D 
wet
PW
�n
CKOC � OC � 
dry

�n
C10i.pH�pKa/ � PW

�d
C10i.pH�pKa/ �KOC �OC � 
dry

�d

:

(68)

4.4.2 Charge and pH of Plant Cells

A typical plant cell consists of various organelles, which are embedded in the cell
and often separated by own biomembranes. Plant cells are surrounded by a cell wall
and a biomembrane called plasmalemma. The charge at the outside biomembrane of
plant cells is between �71 and �174 mV [46]. Inside is the cell sap, cytosol, which
has neutral pH (pH 7–7.4). The largest fraction of an adult plant cell is occupied
by vacuoles, about 90% of volume. Vacuoles are the “waste bucket” of the plant
cells (which have no excretion system) and are acidic (pH 4–5.5). The vacuoles are
surrounded by a membrane called tonoplast. The tonoplast is positively charged,
relative to the cytosol, with net charges of 0 toC88 mV [46] andC20 mV in average
[23]. The ionic strength inside cells varies from 0.2 to 0.6 mol/L [46]; 0.3 mol/L is
typical. Specialized plant cells are the phloem cells with high alkalinity (pH 7.4–8.7)
[46] and the (dead) xylem vessels. The xylem fluid is acidic; pH values around 5.5
have been measured. The pH in the root zones is lower than in the bulk soil solution;
values of pH 5 are common [46].

To summarize, all living cells are electrically charged and are with different
charges in different organelles. But only ions react on these charges. Similarly,
the pH of different cells and organelles varies. This can impact weak electrolytes
strongly, but not has no effect on neutral compounds.

4.4.3 Partition Coefficients for Electrolytes in Plant Cells

Ionizable compounds undergo considerably more processes than the neutral ones.
Besides diffusive or advective uptake into cells and xylem with subsequent
lipophilic sorption, electrical attraction (or repulsion) at the charged biomem-
branes and ion trapping due to dissociation have a key impact. Figure 7 describes
the processes considered by the model for weak electrolytes in a single plant cell.
Each cell is composed by cytosol and vacuoles, and both consist of an aqueous and
a lipid fraction and are surrounded by a biomembrane.

The concentration ratio Kio between inside and outside of a biomembrane is
calculated with the flux equilibrium derived before [(60), equilibrium electrolytes].
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Fig. 7 Molecule species and model processes in the soil–solution–cell system shown for a weak
acid. AH is the neutral molecule, A� is the dissociated anion, and f() means “function of”. Cited
from [37]

For the partitioning between cytosol and soil, Kcs, soil is o outside and cytosol is
i inside. For the partition coefficient between vacuole and cytosol, Kvc, cytosol is
o outside and vacuole is i inside. Similarly, for xylem and phloem, cytosol is the
outside compartment.

To derive the overall partition coefficient between xylem (and phloem; and vac-
uole) and soil solution, the partition coefficient xylem to cytosol is multiplied with
the partition coefficient cytosol to soil solution:

KCS D CC

CS
I Cytosol to soil, (69)

KVS D KVC �KCS D CV

CS
I Vacuole to soil, (70)

KXyS D KXyC �KCS D CXy

CS
I Xylem to soil, (71)

KPhS D KPhC �KCS D CPh

CS
I Phloem to soil. (72)

5 Plant Uptake Models for Electrolytes

The cell model was originally developed for single-celled algae [47] and later ap-
plied to roots [37], human cells [10], bacteria [11], and fish [48]. Here, it is coupled
to the plant uptake model described in Sect. 3 [(22)–(28) and (37)–(42)].
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5.1 Root Uptake Model for Electrolytes

The basic differential equation of the root model was (24):

dCR

dt
D Cw � Q

M
� CXy � Q

M
� k � CR: Œanalog to .24/�

This model assumes that the root tips were in phase equilibrium with the surround-
ing soil. This means that the concentration of chemical in the solution of the root
tips .CXy;in/ is equal to the concentration in soil solution .CW/ – or, in other words,
the inflowing water has the same concentration as the external solution. For most
neutral compounds (except the very polar ones that only slowly cross the biomem-
branes) this should be true, due to the high root surface and the rapid establishment
of equilibrium. The same assumption was done for the Fruit Tree model approach,
except only that fine roots and thick roots were separated [22].

The mass balance for roots can also be written as follows:

dCR

dt
D CXy;in � Q

M
� CXy;out � Q

M
� k � CR: (73)

For ionizable compounds, the concentration in xylem inflow is found using the flux-
based equilibrium concentration ratios, so that

CXy;in D KXyCKCSCS D KXySCS; (74)

where C is the index for cytosol, S for bulk soil, and Xy for xylem. The concentra-
tion at the outflow of the xylem is in flux equilibrium to root. Root cells are actually
composed of cytosol and vacuoles, so that

KXyR D CXy;out
CcVcCCvVv

VcCVv

: (75)

The new differential equation is as follows:

dCR

dt
D KXySCS � Q

M
�KXyRCR � Q

M
� k � CR; (76)

which gives, in steady-state, for the bioconcentration in roots

BCF D CR

CS
D KXyS �Q

KXyRQC kM
(77)

and for the concentration in the xylem outflux

CXy D CR �KXyR .mg=L/ : (78)
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5.2 Leaf Uptake Model for Electrolytes

The mass balance of the shoots is C flux from soil ˙ exchange with air and is
reformulated for ionizable compounds.

5.2.1 Transport of Electrolytes from Soil into Shoots

The flux of chemical from soil into shoots via xylem is the concentration in the
xylem sap multiplied with the flow of water.

dm

dt
D CXy �Q: (79)

CXy has been calculated in the previous Sect. 5.1.

5.2.2 Deposition from Air

Concentration in air is an input data, and the deposition from air is (as before for the
neutral compounds) as follows:

dm

dt
D A � g � CAir: (80)

5.2.3 Loss to Air

To describe loss to air of weak electrolytes is tricky: only the neutral fraction of
the compound will volatilize (ions do not have a measurable vapor pressure). But
how to find this fraction? The mass balance will calculate the total concentration in
leaves. But the distribution between neutral and dissociated molecule will change
within the cell compartments: cytosol, vacuole, and xylem have different properties.
What happens? The xylem brings the solution upward into the leaves. It will require
only diffusion through a few cells to reach either the holes of the stomata, or the
cuticle. Both are apoplast (outside the living cells). It is the activity of the neutral
molecules that drives volatilization, and we relate it to cytosol.

We defined before:

(a) The fraction of neutral compound in the cytosol [analog to (51), activity]:

fn;C D an;C=Ct;C D 1

W
�n
C Kn

�n
C
�

10i.pH�pKa/

�d

�
� .W CKd/

;

where K is the partition coefficient between lipids and solution, i.e., Kn D
L �Kb

OW;n and Kd D L �Kb
OW;d.
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(b) The activity ratio between vacuoles and cytosol [analog to (60)]:

CV

CC
D fn;C � Pn C fd;C � Pd � N

eN�1

fn;V � Pn C fd;V � Pd � eN � N
eN�1

D KVC:

(c) The volume ratio cytosol to vacuole, which is an input data (the ratio 1:9 is
used).

The total concentration in leaves is as follows:

CL D CCVC C CVVV

VC C VV
: (81)

With volume ratio
VV

VC
D RV and concentration ratio

CV

CC
D KCV follows:

CC

CL
D KCL D VC CRVVC

VC CKVCRVVC
D 1CRV

1CKVCRV
: (82)

The activity of the neutral molecule in the cytosol is as follows:

an;C D fn;C � CC or an;C D fn;C �KCLCL: (83)

What is missing is to relate this to the activity in air. For neutral compounds, the
ratio of activity in air to the activity in water (cell solution) in equilibrium is [analog
to (6)] as follows:

an;Air

an;W
D KAW: Œanalog to .6/�

Now the loss by diffusion to air is as follows:

dm

dt
D A � g � an;C �KAW: (84)

5.2.4 Comparison to the Method for Neutral Compounds

Compare this to the previous solution for neutral compounds (34).

dm

dt
D A � g � 
 � CL

KLA
D A � g � 
 �KAW � CL

KLW
: [analog to (34)]

KLW (36) was defined as follows:

KLW D CL

CW
; or CW D CL

KLW
; [analog to (36)]
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where CW is the concentration in the water phase in equilibrium with leaves. Per
definition, a D �CW. Thus, if the activity coefficient � would be neglected (or set
to 1), the equation for the neutrals is as follows:

dm

dt
D A � g � 
 � CL

KLA
D A � g � 
 �KAW � CW: (85)

This equation is identical to the equation derived for the electrolytes (84), except
that the unit of CL here is in mg/kg; there an;L is in mg/L.

5.2.5 Differential Equation for Concentrations of Weak Electrolytes
in Shoots and Fruits

Shoots

The mass balance equation leads again to an inhomogeneous linear differential
equation [analog to (39)].

dCL

dt
D �aCL C b; (86)

where loss rate a is [similar to 41)].

a D A � g � fn;C �KCL �KAW

VL
C k (87)

and source term b is [similar to (42)].

b D CXy � Q

VL
C CAir � g � A

VL
: (88)

The steady-state solution .t D 1/ is [identical to (43)] as follows:

CL.t D 1/ D b

a
: (89)

Fruits

For fruits, the approach is modified: the xylem flow into fruits is only 0:1�Q (flow
to shoots), plus additional 0:1 � Q for the phloem flow. The concentration in the
phloem is calculated by using KPhC, else as was done for xylem. The fruit surface
area is 0.05 times the leaf area.
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5.3 Parameterization of the Plant Uptake Model for Electrolytes

5.3.1 Cells

Cells have been described in Sect. 4.4.2. Tables 2 and 3 show the input data selected
for the simulations. The data follows the suggestions in earlier work [18, 19, 37].

5.3.2 Permeabilities

Before a chemical can enter the cytoplasm, it must cross the cell wall and the
plasmalemma. The cell wall may be considered as an unstirred aqueous layer with
polysaccharides providing additional resistance. A permeability value of 0.25 mm/s
was calculated earlier [37]. The cell wall permeability is neglected in this study, be-
cause for polar compounds it is very large compared with that of biomembranes and
thus does not contribute to the overall permeability.

Table 2 Properties of the cell organelles as input data for the electrolyte plant model [37]

Parameter Cytosol Vacuole Xylem Phloem Unit

Volume V 0.1 0.9 0.023 0.023 L
Surface area A 100 100 20 20 m2

pH 7.0 5.5 5.5 8 .�/

Potential E �0:12 �0:1 0 �0:12 V (to outside)
Ionic strength I 0.3 0.3 0.01 0.3 M
Water fraction W 0.943 0.943 1 1 L/L
Lipid fraction L 0.02 0.02 0 0 L/L

Table 3 Properties of roots, shoots, and fruits as input data for the electrolyte plant model

Parameter Symbol Value Unit Reference

Xylem flow to shoots Q 1 L/day [19]
Growth rate K 0:1 Day Typical value
Sorption parameter B 0:85a – [27]
Growth rate roots K 0:1 Day [19]
Leaf area A 5 M2 [18]
Shoot volume VL 1 L Typical value
Growth rate leaves K 0:035 Day [18]
Xylem flow to fruits QF 0:1 L/day Estimate
Phloem flow to fruits QPh 0:1 L/day Estimate
Fruit volume VF 0:5 L Estimate
Fruit surface area AF 0:25 m2 Estimate
a
A compromise of the two values 0.77 and 0.95 of Briggs et al. [27]
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The permeability of biomembranes Pn (m/s) for neutral organic compounds
is calculated from the compound lipophilicity. From diffusion velocities and
membrane thickness, the following equation was derived [33]:

log Pn D log KOW � 6:7: (90)

Similar regressions have been suggested by other authors, based on measurements
or model fits:

log Pn D 1:2 � log KOW � 5:85 Œ34�; (91)

log Pn D 0:33 � log KOW � 8:0 Œ49�; (92)

log Pn D 1:2 � log KOW � 7:5 Œ50; 51�: (93)

For the permeability of the neutral molecule, Pn, the log KOW of the neutral
molecule is used, and for the permeability of the dissociated molecules, Pd, the
log KOW of the ion (which is 3.5 log units lowered). Therefore, the membrane per-
meability of ions Pd is always factor 3,162 times lower than the corresponding Pn.

6 Simulation Results for Weak Electrolytes

A number of chemical and environmental parameters have impact on transport and
accumulation of weak electrolytes in the soil–air–plant system. Neutral compounds
“feel” only changes in log KOW and KAW. The behavior of ionizable compounds is
additionally affected strongly by pKa and soil pH, which are therefore in focus here.

6.1 Equilibrium Constants

First, the equilibrium constants derived for a single cell [Sect. 4.3, (60), (69–72)]
are shown for varying compound pKa and soil pH.

6.1.1 Acids

Figure 8a–d displays the equilibrium concentration ratio of a moderately lipophilic
.log KOW D 4/ monovalent acid .z D �1/ between cytosol and bulk soil, vacuole
and bulk soil, xylem and bulk soil, and finally phloem and bulk soil. The pH of the
soil and the pKa of the acid were varied.

Uptake of strong acids (pKa low, anions) is generally low. One reason is that
the charge of anions .z D �1/ leads to electrical repulsion from the biomembrane
(potential E at the plasmalemma of cytosol is �120 mV).

There are some exceptions from this rule: If the soil pH is below the pH inside
the cell (i.e., soil pH 5), and the acids have a pKa near soil pH, then the “ion trap”
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effect occurs: Outside the cell, in soil, the acid is present as neutral molecule, and
the neutral molecule diffuses rapidly into the cell. Because the pH inside the cell is
above pH outside, the weak acids dissociate. The anion diffuses only slowly across
the cell membrane and thus is trapped inside. This affects concentrations in cytosol
(Fig. 8a) when soil pH is 5 and acid pKa is 4. The effect does not occur for vac-
uoles (Fig. 8b) and xylem (Fig. 8c), which are acidic (pH is 5.5). A very strong
ion trap effect is predicted for phloem (Fig. 8d), which has the highest pH (pH 8).
Subsequently, acids with pKa between 4 and 6 show a high concentration ratio of
phloem to soil, when the soil has a low pH.

Summarized, anions are not well taken up by the plant cells. This is due to the
fact that plants cells have a negative electrical potential at the cell membrane, and
this leads to a repulsion of the negatively charged anions. The lowest equilibrium
constants show vacuoles and xylem due to the low pH of these compartments. A pro-
cess that may lead to high accumulation of acidic compounds in cytosol and phloem
is the ion trap. It occurs when pH of soil is below pH of cells, and when the pKa is
near the soil pH.

6.1.2 Bases

Impact of Soil pH and pKa

Figure 9a, b displays the equilibrium concentration ratios to soil (equations 60 and
69) of a moderately lipophilic .log KOWD4/ monovalent base .z D C1/ for cytosol,
vacuole, xylem, and phloem. The soil pH is 7 in Fig. 9a and in Fig. 9b.

The pattern is to some extent similar to that of acids, but opposite in trend with
pKa: for soil pH 7, small uptake is predicted, if the pKa of the base is above soil pH.
Then, the bases are dissociating. Strong bases show usually the lower accumulation
than very weak bases, which are present as neutral molecules. However, several
exceptions from this rule can be seen.

At pH 7, there is a small but noticeable accumulation of moderate bases with
pKa 6–8 in the xylem due to the ion trap. Furthermore, there is an accumulation of
cations .pKa � 12/ in cytosol, vacuoles, and phloem due to electrical attraction by
the negatively charged organelles.

The ion trap effect is stronger when the pH of soil is above the pH of the cell
organelles, i.e., in alkaline soils with pH 9 (Fig. 9b). Then, a strong ion trap effect
is predicted for xylem and vacuoles, leading to equilibrium concentration ratios of
7 (xylem) and 12 (vacuoles). With soil pH 9, the equilibrium concentration ratio is
low for phloem, except for cations .pKa � 12/; it is high for xylem and pKa 6–10
(peak at pKa 8), but decreases strongly with lower pKa; it is high also for vacuoles
and pKa around 8, but with only small decrease at lower pKa, and it varies only little
for cytosol, with Keq between 1.1 and 2.2.

Phloem and xylem sap have no lipids; this explains the low concentration ratio
to soil for the base with log KOW D 4. The peak in the xylem is due to the ion trap,
which occurs at high soil pH (pH 9).
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Impact of Log KOW on the Kinetics of Uptake

The model predicts throughout a good accumulation for cations .pKa � 12/ if the
compartment has a negative potential (cytosol, vacuole, and phloem). This is due
to the electrical attraction of the positively charged cation .z D C1/. But beware!
This is the result of the steady-state solution of the flux equation. If a dynamic
mathematical solution is applied instead, polar cations show a very slow uptake into
cells [10]. This is different from the predictions for the neutral compounds: For
those, the model predicts that polar compounds are generally better taken up into
roots and translocated to shoots and leaves (see Figs. 3–6).

This is not necessarily the case for the ionizable compounds, as is documented by
the calculations done with the dynamic solution shown in Fig. 10. The polar cation
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(a) �3:5 and (b) �1:5

(Fig. 10a) with log KOW D 0 (of the neutral molecule) is taken up very slowly into
the cell. After 8 days, steady-state equilibrium is not yet reached. In particular low is
the uptake into the vascular system, that is, the xylem. The reason is that the log KOW

of the dissociated base is 3.5 log units lower than that of the neutral molecule, thus,
the apparent log KOW (also known as log D) is �3:5. With these low values, the
membrane permeability is accordingly very low. For the transport of cations in real
plants this means that the equilibrium will not be reached for polar cations. If the
cation is more lipophilic (log KOW neutral D 2 in Fig. 10b), the uptake is more rapid.
Still, the uptake into vacuoles and xylem (which requires first uptake from soil into
cytosol and then from cytosol into vacuoles and xylem) may be kinetically limited.
For cations with log KOW D 4 (of the neutral molecule; this corresponds to a log D

of 0.5), the permeability across cell membranes is sufficiently rapid, and kinetic
limitation is not expected. But the reader is reminded that for polar cations (and
anions), there are kinetic limitations, and uptake and, in particular, the translocation
may be overestimated by steady state.
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For very lipophilic cations .log KOW >> 2/, uptake decreases again, similar as it
was for neutral compounds (Figs. 3–6). For very weak bases (pKa low, always neu-
tral), the optimum uptake is as it was for neutral compounds, for log KOW � 1 to
2, while for stronger bases .pKa >> 6/, uptake is probably optimal at log KOW of
the neutral molecule between 2.5 and 5.5, which corresponds to a log D (apparent
log KOW) between �1 and 2.

6.1.3 Potential for Uptake and Accumulation

The equilibrium concentration ratios [(60), (69–72)] indicate a potential for uptake.
Acids generally are taken up less than neutral molecules, due to electrical repulsion
and slow transfer across membranes. One process can lead to very high uptake and
translocation, and that is the ion trap effect. It occurs when the pH in soil is below
the pH inside the cells, and when the pKa of the acid is close to soil pH. The highest
pH inside plants is in phloem, therefore is the ion trap of acids, in particular, strong
for phloem.

Cations are attracted by the electrical potential of living cells. Therefore, strong
bases have generally a higher potential for uptake than strong acids. As pointed out,
this process may be kinetically limited for polar bases. On the other hand, bases sorb
stronger than acids to soil organic carbon and to negatively charged clay particles.
This reduces their bioavailability and uptake. An ion trap of bases occurs when
soil pH is above cell pH and is strongest for the acidic compartments vacuole and
xylem. An optimum uptake is expected for moderately lipophilic bases with pKa

8–10. Their equilibrium concentration ratios xylem to soil solution (TSCF) are even
above 1 L/L (up to 10 L/L).

6.2 Predicted Concentrations in Soil and Roots

So far we had only calculated the flux-based equilibrium constants. The following
section shows the results obtained using the dynamic root model for electrolytes
(Sect. 5.1).

6.2.1 Acids in Roots and Xylem

Figure 11a–c shows calculated steady-state concentrations in root and xylem sap
(D TSCF related to soil) for an acid .log KOW D 4/. At soil pH 5 (Fig. 11a), the ion
trap occurs and leads to elevated uptake of acids with pKa below 6. Interestingly, the
concentration in xylem outflow is higher for the strong acids (low pKa) than for the
very weak acids (high pKa) – this is due to the lower adsorption of anions to soil
organic carbon and plant tissue. The model predicts a relatively good translocation
to shoots of the dissociated acids with log KOW (of the neutral molecule) of 4. If the
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acid does not dissociate .pKa � 6/, the translocation is very low: then, the concen-
tration in xylem out of the roots, Cxyout, is below 0.01 mg/L for soil concentrations
of 1 mg/kg.

At soil pH 7 (Fig. 11b), the model predicts that very weak acids (high pKa, neu-
tral) do better accumulate in root cells than strong acids. For the translocation to
shoots (concentration in xylem out of the roots, Cxyout), the opposite trend is pre-
dicted. But note that in any case, translocation is small.

For soil pH 9 (Fig. 11c), uptake is very small, but somewhat higher when the
acid is protonated, that is, neutral. Concentrations in xylem sap are very low, which
means only small translocation upward to stem and leaves. An opposite ion trap
occurs that keeps moderate acids (pKa 4–6) out of the xylem.

6.2.2 Bases in Roots and Xylem

Figure 12a–c shows calculated steady-state concentrations in root and xylem sap
(D TSCF related to soil) for a moderately lipophilic base .log KOW D 4) with
varying pKa and for soil with (a) pH 5, (b) pH 7, and (c) pH 9.

At low soil pH (pH 5, Fig. 12a), uptake into roots is best for very weak bases,
which are neutral in soil and in root cells. An opposite ion trap effect keeps moderate
bases (pKa 6–10) out of the root cells – because soil pH is below the pH of the
cell organelles. Stronger bases (cations) show higher concentrations than very weak
bases (neutral at usual pH), because cations are electrically attracted by the negative
electrical potential of root cells. Concentrations in xylem sap at the outflow from the
roots .Cxyout/ are generally very low, which means low translocation of very weak
bases from soils with low pH to shoots.

At soil pH 7 (Fig. 12b), the ion trap turns around, and moderate bases (pKa 6–10)
accumulate to some extent in the xylem. This results in a more effective transloca-
tion to shoots.

With alkaline soils (pH is 9, Fig. 12c), the ion trap gets very strong and leads
to effective accumulation of moderate bases (pKa 6–10) both in root cells (and here
mainly in vacuoles) and in xylem sap.

6.3 Predicted Concentrations in Shoots and Phloem

This section shows the results obtained with the model for electrolytes’ uptake into
shoots and fruits [(86)–(89)].

6.3.1 Acids

Figure 13 shows the calculated concentration in shoots and fruits for an acid
with log KOW of 4, varying pKa and soil pH of 5, 7, and 9. In this scenario, air
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concentration was set to 0, and uptake is exclusively from soil. But loss to air
may occur, because the Henry’s law constant is moderate .10�5 L=L/. In the model,
translocation into leaves (shoots) is only in the xylem (no phloem flux), while flow
of water into fruits is 1=2:1=2 via xylem and phloem.

For soil with low pH (pH 5, Fig. 13a), high concentrations in shoots are predicted
for the strong acids (low pKa). A major reason may be that anions do not volatilize
from leaves (ions have no measurable vapor pressure), while the very weak acids
remain neutral in cytosol and do escape to air. The KAW was taken as 10�5 L=L.
Even though not high, volatilization from leaves is a major fate process. Another
reason is that anions are more polar than the corresponding neutral molecules and
are less retained in soil and roots. The calculations were made for a compound with
a log KOW of 4 (of the neutral molecule species). At this log KOW, the translocation
of neutral compounds is already reduced, due to strong sorption to soil and to roots
(see Figs. 3–6). The dissociated molecule has an apparent log KOW (log D) of 0.5,
which is in the optimum region for translocation (see Fig. 5). Additionally, with
acidic soils, a strong ion trap effect occurs, which traps acids in the phloem. The
maximum is for acids with pKa at 4. Subsequently, these acids are translocated in
the phloem to fruits. The predicted concentration in fruits is even higher than in
shoots (stem and leaves). Very weak acids, with pKa > 7, are predominantly neutral
in soil and plant and are too lipophilic and too volatile for effective translocation in
xylem and phloem and accumulation in leaves and fruits.

In neutral soils, pH 7 (Fig. 13b), translocation of acids to shoots is much less. The
ion trap is weak, and acids with pKa 4–6 are less efficiently translocated upward.

In alkaline soils, pH 9 (Fig. 13c), the opposite ion trap occurs, which keeps the
acids with pKa 4–6 out of phloem and fruits. Transport to aerial plant parts is gener-
ally low.

6.3.2 Bases

Figure 14a, b shows the calculated concentration in shoots, phloem, and fruits for
a moderately lipophilic base .log KOW D 4/ of varying pKa. The equilibrium con-
stants, shown in the last section, dictate the pattern of accumulation. An ion trap
occurs for bases with pKa above 4 and below 10, with maximum effect at pKa 8.
This leads to notable accumulation in shoots and fruits. Different from acids, pre-
dicted concentrations in fruits are without exception lower than in shoots. This is
because weak bases do not tend to accumulate in phloem, but in xylem.

The effect of the ion trap is stronger in alkaline soils, that is, with soil pH 9
(Fig. 14b). Accumulation of weak bases due to the ion trap effect is predicted for
shoots with maximum above concentration factor 100 and for shoots above fac-
tor 10.

On the contrary, concentrations are in particularly low for uptake of bases from
acidic soils (pH 5, not shown).
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pH 7 and (b) soil pH 9

6.3.3 Volatilization

The recent simulations were all done for a partition coefficient air to water (Henry’s
law constant, KAW) of 10�5 L=L. Model calculations for concentrations in root,
xylem, and phloem (at the outflow from the roots) do not vary with KAW and air
concentrations. But concentrations in shoots and fruits are strongly affected by a
variation of these parameters. Figure 15 shows a simulation for soil pH 7 and an
acid or base with log KOW D 2 and varying pKa. As can be seen, with this high
KAW, concentrations in shoots and fruits are low for the very weak acids. Very weak
acids .pKa > 8/ are neutral at environmental pH and volatilize rapidly, when KAW

is high. Strong acids (low pKa), on the other hand, dissociate in cytosol (pH 7) and
do not escape to air. Therefore, concentrations in leaves are much higher. Moderate
acids (pKa 4–8) are kept out of the plant by the opposite ion trap.
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For bases, the pattern is in part symmetrical: Strong bases (i.e., with high pKa) do
not tend to volatilize and may accumulate therefore in leaves and fruits. Very weak
bases, on the other hand, escape to air. Moderate bases accumulate due to the ion
trap (if the soil pH is not too low) in the xylem and show the highest translocation
to leaves.

6.4 Comments to the Model Predictions

6.4.1 Limitations

The results shown in Sect. 6 were derived by model calculations, and no attempt was
done so far to validate any of these predictions. How realistic and reliable can the
predictions be? Before we use the model outcome for conclusions, the limitations
and shortcomings should be brought into mind.

Constant soil concentration. For all simulations, concentrations in soil were as-
sumed to be constant. This will not be the case in real environments. Compounds,
once released to the environment, will degrade and dissipate. Degradation half-lives
may be less than 1 day. But even with virtually persistent compounds, the root zone
will quickly deplete from the compound when RCF and TSCF are high, because the
compound is taken up by roots. Then, even though the uptake is potentially high,
uptake decreases in the long run due to depletion of the root zone.

Inhomogeneity of environment. Similar, homogeneous environmental data were
assumed. Soil is a very inhomogeneous medium, and relevant properties, such as hu-
midity, organic carbon content, and in particular pH, may vary much even on small
spatial scales. The same is true for plant data and micrometerological conditions.
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Ageing. Ageing is the effect leading to reduced availability of compounds in soil
with time. Experiments have shown that compounds in freshly spiked soil samples
are available to plants and are taken up. From samples where the compounds have
been applied years before, the uptake is much less. Often, KOC values have been
determined with freshly spiked soils and may therefore be too low.

Degradation in plants. Throughout the simulations, no degradation in plants was
assumed. This is an unrealistic assumption, because plants are a living environment,
and xenobiotics can react with enzymes [52, 53]. If metabolism of compounds oc-
curs, the concentrations will decrease. This was shown for the example of cyanide
[54]. Additionally, degradation in the root zone is usually much higher than in the
neighborhood soil, due to a higher number of microbes in the root zone [55, 56].
Even inside plants, microbial degradation may play a role due to endophytic bacte-
ria [57].

Steady state. The equilibrium concentration ratios as well as the concentrations in
plants were calculated for the steady state. In reality, uptake may be limited kineti-
cally, as was pointed out for polar bases. Thus, the predicted concentrations are an
upper limit.

Uptake from air. In all simulations, uptake from air was 0, that is, the concentration
of the chemical in air was set to 0. This was because the focus of this study is on
bioaccumulation from soil. But, in particular, the lipophilic compounds, for which
low uptake from soil into shoots and fruits is predicted, tend to accumulate to very
high levels from air [58]. A low BCF shoot to soil does, therefore, not mean that
the shoot is protected from contamination: it is only protected from contamination
from soil via translocation. There may be uptake from air, and there may also be
uptake from soil by other processes, such as particle resuspension and deposition on
leaves [22, 32, 58].

Plant data. The data entered into the equations do not represent a special plant, but
are rather typical values for cells and plants. The scenario is generic. For special
crops, quite different parameters may be necessary, or even another model.

Feedback. Compounds taken up into plants may change the plant. For example,
toxic effects may lead to reduced growth and transpiration [59]. But there may be
also more subtle effects: for example, uptake of basic compounds into lysosomes
(in plants: vacuoles) was accompanied by an increase in pH in these organelles [60].
A change of pH gradient in turn changes the uptake of ionizable compounds.

Additional diffusive resistances. For the calculation of the flux equilibrium, only
membrane permeability was considered. Several other resistances to diffusive ex-
change may play a role. To mention are the cell wall resistance and boundary layer
resistances. These two are independent of the lipophilicity of the molecule, while
the biomembrane permeability increases with log KOW. It may thus be expected
that additional resistances play a role for lipophilic compounds.
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Membrane permeability. The ion trap effect has been identified as one of the more
relevant processes for accumulation of ionizable compounds in plants. This ion
trap depends on the difference in membrane permeability for neutral and ionic
compound. The membrane permeabilities were not measured, but estimated from
log KOW. The log KOW of the ion was generally estimated to be 3.5 log-units lower.
This value is not a constant. For example, delocalized cations show less difference
in log KOW and in their membrane permeability. Thus, the ion trap is weaker or
nonexistent.

pKa shift at membranes. From the Debye–Hückel theory follows that the ionic
strength I of solutions has impact on the pKa. At I D 0:3M, the apparent pKa of
monovalent bases is 0.22 units lower, of acids higher. For bivalent bases and acids,
the change is 0.62 units. This effect was not implemented in the model, but could
be used to correct input data. It also means that the optimum ranges for pKa can
shift toward the extremes, that is, be higher than predicted for the bases and lower
for acids.

The careful reader may find more flaws and shortcomings – for example, phloem
flow only from roots to fruits, while it goes mainly from leaves to fruits or roots and
others.

6.4.2 Potential for Uptake

Taken these shortcomings together it becomes clear that the main function of the
model can not be precise predictions of real scenarios. The “news” drawn from the
model simulations is the strong impact of pH and pKa. This is not always taken into
account. When experiments with ionizable compounds are done, the pH of the soil
or solution should be controlled and reported.

Tables 4 and 5 categorize the impact of compound pKa and soil pH on accumu-
lation in roots, shoots, and leaves. For strong acids (anions), strongest accumulation
occurs in shoots, and it is not dependent on soil pH, because strong acids are of an-
ionic nature at all pH values. Moderate acids are best taken up at low pH and show

Table 4 Categorization of the BCF of acids of varying strength at varying soil pH

Compound Soil pH 5 Neutral soil pH Soil pH 9

Strong acids .pKa � 1/ � Roots � Roots � Roots
CC Shoots CC Shoots CC Shoots
O Fruits O Fruits O Fruits

Moderate to weak acids .2 � pKa � 6/ O Roots � Roots �� Roots
C Shoots O Shoots �� Shoots
CC Fruits C Fruits � Fruits

Very weak acids .pKa � 8/ O Roots O Roots O Roots
O Shoots O Shoots O Shoots
� Fruits � Fruits � Fruits

�� BCF < 0:01I �BCF 0.01–0.1; O BCF 0.1–1;C BCF 1–10;CCBCF > 10
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Table 5 Categorization of the BCF of bases of varying strength at varying soil pH

Compound Soil pH 5 Neutral soil pH Soil pH 9

Strong base .pKa � 12/ � Roots � Roots O Roots
� Shoots � Shoots � Shoots
O Fruits O Fruits O Fruits

Moderate to weak bases .6 � pKa � 10/ �� Roots � Roots �� Roots
O Shoots C Shoots CC Shoots
�� Fruits O Fruits C Fruits

Very weak bases .pKa < 6/ O Roots O Roots O Roots
O Shoots O Shoots O Shoots
� Fruits � Fruits � Fruits

where �� BCF < 0:01I �BCF 0.01–0.1; O BCF 0.1–1;C BCF 1–10;CC BCF > 10

a particular high potential for accumulation in fruits, due to phloem transport. Their
uptake at high soil pH is very low. Very weak acids also do not show a pH-dependent
uptake, because they are neutral at all pH values.

Strong bases are less well taken up into plants (Table 5), because cations sorb
much stronger to soil than anions. Moderate bases are taken up best at high soil pH,
and most into shoots, due to good xylem translocation. Very weak bases, which are
neutral at all pH, show the same behavior as the very weak acids.

For the moderate and weak acids, and for all types of bases, lipophilicity im-
pacts uptake: increasing log KOW generally reduces bioaccumulation in plants, due
to increasing sorption to soil and increasing effect of growth dilution.

7 Comparison to Experimental Findings

7.1 Introduction

Several studies have been undertaken to test the models for neutral compounds
[32, 61, 62]. Also, all publications that are the basics for the model for neutral com-
pounds contain validation data [17, 19]. No such study is available for electrolytic
compounds. This is the reason why the focus in this section is on findings for elec-
trolytes. The comparison to experimental data should not be intermixed with a true
validation study: No attempt was made to simulate the conditions during the ex-
periments. Thus, only the tendency of the results can be compared. The question is
whether the conclusions drawn in the previous section are mirrored in experimental
results.

Chemical properties were taken from the original reference, or if not given these
were estimated using the software ACD/Labs R� (ACD/I-Lab, version 6.01, Toronto,
Canada).
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7.2 Polar Compounds

7.2.1 Uptake of Sulfolane and DIPA into Plants

Uptake of sulfolane (SU, tetrahydrothiophene 1,1-dioxide, C4H8O2S) and di-
isopropanolamine (DIPA) into wetland vegetation was measured in field and
greenhouse studies [63]. SU is a neutral polar compound with log KOW of �0:77

and KAW of 2:14 � 10�4. DIPA is a moderate to weak base with pKa 9.14, log KOW

is �0:86, and KAW is 3�10�9. The pH of the spiked growth solution was not given,
but was probably near neutral conditions.

The largest percentage of DIPA was recovered from the root tissue whereas for
sulfolane the largest percentage was associated with the foliar portion of the plant.
The measured RCF values for roots were 1–7 L/kg for DIPA and 0.3–1.4 L/kg for
SU (related to initial concentration in solution). The BCF values for shoots were
1–2.5 for DIPA, but up to 160 for SU (related to initial concentration in solution).
TSCF values were 0.1–0.9 for SU, but <0:01–0:02 for DIPA. This is in accordance
with the model, which would (for neutral pH) predict low RCF, but high TSCF and
BCF in shoots for a polar, nonvolatile neutral compound like SU. For a base with
pKa near 10, such as DIPA, low xylem translocation would be predicted for uptake
from neutral solution, but some accumulation in cytosol and vacuole.

Another experiment with the chemical sulfolane was done for apples (Doucette
W, personal communication). The concentration ratio fruit to soil was 2.8, while the
Fruit Tree model would give a value of 8.2. For leaves, a BCF of 652 was found, and
the model gave a BCF of 286 [22]. To the knowledge of the author, this is the highest
BCF plant to soil that was ever measured, and it confirms well the model prediction
that of all neutral compounds, polar nonvolatile chemicals are best translocated to
leaves.

7.3 Uptake of Acids into Plants

7.3.1 Uptake of Sulphadimethoxine into Crop and Weed Plants

The compound sulphadimethoxine is a relatively polar weak acid .log KOW 1:63,
pKa 6:70/. Its properties are close to the optimum for uptake into cytosol and
phloem.

Uptake and degradation by several plants was investigated by Migliore et al.
[64–66]. In a study using agricultural crops in hydroponics, sulphadimethoxine
was applied at an initial concentration of 300 mg/L in the nutrient solution. After
27 days, the contents were Panicum miliaceum root 2,070 mg/kg; leaf 110 mg/kg;
Pisum sativum root 178 mg/kg, leaf 60 mg/kg; Zea mays roots 269 mg/kg; and leaf
12.5 mg/kg [64]. Severe toxic effects were observed. Similar tests were made with
Hordeum distichum [65]. Bioaccumulation was higher from growth medium than
from soil, but still high for the latter, with somewhat decreasing BAF with increasing
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OC of the soils. In particular high accumulation of sulphadimethoxine was found
for the common weeds Amaranthus retroflexus, Plantago major, and Rumex ace-
tosella [66], with BAF plant to growth medium of 7.67, 20, and 3.3, respectively.
The model predicts good uptake for polar compounds (Figs. 3–6) and also for mod-
erate to weak acids (Figs. 8 and 11, Table 4), however, best from acidic soil or
solution, and the optimum is at lower pKa.

7.3.2 Uptake of Sulfonylurea Herbicides into Algae

The uptake of the sufonylurea herbicides metsulfuron-methyl, chlorsulfuron, and
triasulfuron into Chlorella algae at varying pH was studied by Fahl et al. [67].
Metsulfuron-methyl .log KOW D 1:70/ is a moderate acid with pKa at 3.3; chlorsul-
furon .log KOW D 2:15/ has a pKa at 3.6, and triasulfuron (log KOW D 2:36) at 4.5.
These values are close to the optimum for uptake into cytosol (if solution pH is low,
Fig. 8). The BCF of the single-celled algae and uptake from solution were directly
calculated from the flux equilibrium in cytosol and vacuole, that is, as follows:

BCF D KCWVC CKVC �KCW � VV

VC C VV
: (94)

Table 6 shows the comparison to measured BCF. As predicted by the model, the
BCF of the moderate acids increases with decreasing pH (6 to 5), even though at
some measurements the BCF is highest at pH 5.3. The absolute BCF is predicted
with maximum deviation of factor 4.

7.3.3 Uptake of the Herbicide Analogue 3,5-D by Curly Waterweed

The uptake of the herbicide analogue 3,5-dichlorophenoxy acetic acid (3,5-D) by
curly waterweed (Lagarosiphon major) at varying pH was studied by De Carvalho
et al. [68]. 3,5-D was used instead of 2,4-D (which is a growth-regulating herbicide)
due to the very high toxicity of the latter. The physicochemical properties of both
compounds are similar; 3,5-D has a log KOW of 3.01 and a pKa of 2.98 (estimated by
ACD). The BCF was again directly predicted by the concentration ratios cytosol and
vacuole to external solution. The measured BCF was highest (70) at the lowest pH

Table 6 Measured and predicted BCF of sulfonylurea herbicides in Chlorella
algae at varying pH (measured data from Fahl et al. [67])

pH D 6:0 pH D 5:3 pH D 5:0

Compounds Exp Calc Exp Calc Exp Calc

Metsulfuron-methyl 1 4 14 17 17 33
Chlorsulfuron 8 4 36 17 21 22
Triasulfuron 9 5 54 32 30 39
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Fig. 16 Predicted (“model”)
and measured BCF of
3,5-D for the aquatic plant
Lagarosiphon sp. [68];
“model E D 0” is the model
prediction with membrane
potential E set to 0
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(pH 4) and decreased almost logarithmically with increasing pH (Fig. 16). The same
trend was predicted by the model, even though predicted BCF values were generally
too low, in particular for high pH. One reason for the difference at high pH may be
that compounds partition partly into the “apparent free space” of the roots, which
occupies 25–40% of the volume [69]. Because of this, the BCF can not fall below
0.25. This is currently not considered in the model, but can be added if required [37].
The BCF at low pH can be fitted by calibrating one or more model parameters (cell
pH, volume ratio cytosol:vacuole, electrical potential of cytosol, permeabilities). As
example, E (cytosol potential) was set to 0; this improves the prediction (Fig. 16).
Probably, the default potential of �120 mV is too high in this case.

7.3.4 Uptake of Acids into Barley Shoots

Briggs et al. [70] determined the RCF and TSCF of organic acids with varying
log KOW between 0.06 and 4.51 and rather constant pKa values between 2.9 and 3.1
for pH 4 and 7 in external solution [70]. At pH 7, RCF values ranged from 0.5 to 4.5.
At pH 4, RCF ranged from 2.6 to 72. The largest increase (greater than factor 100)
was for compounds with intermediate log KOW (1.64 and 2.25). The TSCF at pH 7
was low, 0.04 to 0.05, while at pH 4, values between 0.1 and 4.2 were found. This
tendency is in very good agreement with the model predictions for acids (Figs. 8
and 11). Briggs et al., too, used the ion trap process to interpret their results.

7.3.5 Phloem Translocation in Ricinus communis

Rigitano et al. [71] studied the phloem translocation of acids in Ricinus communis.
Phenoxy acetic acids with pKa around 3 and log KOW between 1 and 3 were readily
taken up and translocated in phloem to the apical leaf and upper stem of Ricinus
plants, when injected into mature leaves. For moderate acids, the model predicts
good phloem translocation.
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7.3.6 Application of Herbicides

A number of systemic herbicides are used in crop protection. “Systemic” means
that those compounds are translocated within plants. This can be via xylem or via
phloem [72]. Phloem mobility is reached when dissociable acid groups are intro-
duced into the molecule [34, 50, 51, 72]. Typical systemic herbicides are the acids
2,4-D (pKa near 3), sulfonyl ureas (pKa 3–5), the amphoter glyphosate (multiple
pKa values, pKa acid at 2.2 and 6.2), fluroxypyr .pKa 2:22/, mecoprop .pKa 3:19/,
imazethapyr .pKa 2:90/, or sethoxydim .pKa 3:82/, to mention some. For all these
acids with low to moderate log KOW and low pKa, the model would predict low ad-
sorption to tissue and good translocation in phloem to phloem sink (growing parts,
fruits, roots). The opposite works, too: Typical contact insecticides, which are com-
pletely immobile in plants, are such compounds like DDT (neutral, log KOW 6.17),
lindane (neutral, log KOW 3:8), or HCB (neutral, pKa 5:8). For those, the model
predicts null translocation and strong adsorption to plant tissue.

7.4 Uptake of Bases into Plants

7.4.1 Dodemorph and Tridemorph

Chamberlain et al. [73] studied the uptake into roots and translocation to
shoots of the two bases dodemorph .log KOW 5:2; pKa 7:8/ and tridemorph
.log KOW 5:6; pKa 7:4/ from solution at pH between 5 and 8. At pH 5, RCF
values of dodemorph were <10 and of tridemorph about 20. With increasing pH,
RCF increased to final values of 49 for dodemorph and 183 for tridemorph at pH 8.
Similar, the TSCF increased from <1 for both bases at pH 5–24 for dodemorph and
somewhat below 10 for tridemorph at pH 8. Both compounds have the pKa in the
optimum range for xylem translocation predicted by the model. To the knowledge
of the author, the TSCF of dodemorph in this experiment was the highest TSCF
ever determined. The experiments confirm the model predictions of good xylem
translocation of moderate to weak bases at high external pH (Table 5, Figs. 12
and 14).

7.4.2 Substituted Phenethylamines and other Bases

Inoue et al. [74] measured uptake and translocation of structurally similar amines
with varying log KOW (�0:04 to 4.67), but rather constant pKa (9.3–9.8), and of
some bases with varying pKa (4–8) into barley shoots from solution at pH 5–8. At
pH 5, the RCF values ranged from 1.2 to 43.2 for the bases with pKa > 9. Inter-
estingly, the highest RCF was for the base with the lowest log KOW. For the three
other compounds with lower pKa, the RCF values were from 0.7 to 2.9 at pH 4 of
the solution and at 1.2–2.6 at pH 5. The RCF values of all bases increased with pH
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to values between 7.1 and 153 at pH 8. The lowest value at pH 8 (RCF 7.1) was for
the compound with the low pKa (5.03) and log KOW 1.95. The highest value (RCF
153) was for the compound with pKa 9.48 and log KOW 1.26. One compound had
a log KOW of 4.67 .pKa 9:28/, but the RCF reached only 89.6. It can be concluded
that the RCF was more depending on external pH and pKa of the compound than
on lipophilicity. This was also predicted by the model, even though the optimum
pKa determined in the experiments (between 9 and 12) seems to be higher than that
found by the model (near 8, compare Figs. 9 and 14). Probably, this is due to the
pKa shift at high ionic strength at biomembranes.

The TSCF values did also increase with external pH. At pH 4 and 5, all TSCF
values were below 1. At pH 8, TSCF ranged from 0.09 for a very polar compound
.log KOW � 0:04/ to 23.2 for a compound with log KOW 2.33 and pKa 8.03. Only
small increase was found for the weakest base (log KOW 1:95; pKa 5:03, TSCF from
0.10 at pH 4 to 0.17 at pH 8) and the most polar base (log KOW � 0:04; pKa 9:54,
TSCF from 0.03 to 0.09).

This increase of RCF and TSCF of bases with increasing external pH is a con-
vincing proof for the predictive power of the model approach. But the slow uptake
and small increase for the most polar base also indicates that kinetic limitations oc-
cur in real life, which have not been considered accurately by the steady-state model
approach. The model could also be solved for the dynamic case, and this deviation
is a warning to consider kinetics in future developments. A kinetic solution was pro-
vided by Trapp [37] for TSCF, and that solution was quite accurate in predicting the
TSCF of this polar base.

7.4.3 Veterinary Drugs, Field Study

Boxall et al. [75] measured the uptake of veterinary medicines from soil into plants.
A light loamy sand soil (OC 0.4%, pH 6.3) was spiked with ten test chemicals. After
harvest, only three compounds were detected in lettuce leaves, namely florfeni-
col, levamisole, and trimethoprim. Florfenicol is neutral and polar, with log KOW at
�0:04. Levamisol is also nondissociating and has a log KOW of 1.84. Trimethoprim
is a base with log KOW at 0.91 and pKa at 7.2. In carrot roots, diazinon, enrofloxacin,
florfenicol, and trimethoprim were detected. Except for the last one, concentrations
in peels were higher than in cores. Diazinon has a log KOW of 3.81 and is practically
neutral (pKa base < 2:5); enrofloxazin is an amphoter with log KOW at 0.7 and pKa

values at 6.0 and 8.8. All compounds detected in roots or shoots possess properties
that favor accumulation, according to the model simulations.

Compounds that were not found at detectable levels in plant material were
amoxicillin, oxytetracycline, phenylbutazone, sulfadizine, and tylosin. Amoxicillin
degraded very quickly in soil (half-time < 1 day). Oxytetracycline is an amphoter
with log KOW � 0:9 and pKa acid at 7.3 and pKa base at 9.1 and 3.3 (outside the
optimum range). Phenylbutazone is neutral .log KOW 3:16/. Tylosin is a base with
log KOW of 1.63 and pKa of 7.1. Sulfazine is an acid with log KOW at �0:09 at pKa

6.48. These latter two compounds thus have properties that are near the optimum
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range for uptake into xylem or phloem. Some results concerning the uptake of the
similar sulfonamide antibiotics (sulphadimethoxine) into certain plant species have
been presented in the previous section.

It can be concluded that there was some agreement with the model predictions.
However, the measured concentration factors were often lower than those predicted
by the model. This was probably due to higher adsorption than estimated by the
regression (eq. 62).

8 Outlook and Conclusions

8.1 Outlook

An issue in current research is the environmental fate of pharmaceuticals [75].
Table 7 contains a list of 12 high-volume drugs. Obviously, several of them have
properties that make them candidates for uptake into plants. Clarity might bring field
tests. For many of these compounds, the uptake depends critically on the soil pH.

8.2 When is Bioaccumulation from Soil into Plants Relevant
at All?

Bioaccumulation as a problem for environment and human health is long known.
However, accumulation from soil into plants has rarely been an issue, except on

Table 7 Properties of some high-volume pharmaceuticals (chemical properties estimated using
ACD)

Drug Use Log KOW pKa acid pKa base Comment

Metformin Antidiabetic �2:31 None 13.86 Polar cation
Metoprolol Antihypertensive 1:79 13.9 9.17 Base
Atenolol Antihypertensive 0:1 13.88 9.16 Polar base
Verapamil Antihypertensive 3:90 None 8.97 Base
Hydrochlorothiazide Diuretics �0:07 9.57; 8.95 Polar

bivalent
base

Furosemide Diuretics 3:00 3.04 9.79 Amphotere
Simvastatin Lipid lowering

agent
4:42 13.49 None Lipophilic,

neutral
Isosorbide dinitrate Antiangina

pectoris drug
0:9 None None Neutral

Amitriptyline Antipsychotic 4:92 None 9.18 Lipophilic
base

Piracetam Antidementia �1:55 None None Polar
neutral

Ibuprofen Pain killer 3:7 5.2 None Acid
Aspirin Pain killer 1:2 3.5 None Acid
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polluted sites. Chemicals may reach humans via the diet, drinking water, inhalation
of air, and other routes (e.g., direct contact, dermal uptake). Even though many
chemicals are ubiquitous, the one or the other uptake pathway usually dominates,
depending on the properties of the compound and the concentrations in the various
media. When will bioaccumulation from soil into plants play a role?

The concentration ratio between air and water is described by the partition co-
efficient between air and water, KAW(L/L), also known as dimensionless Henry’s
law constant. The concentration ratio between lipids and water is described by
the KOW(L/L). Subsequently, the ratio between lipids and air is described by the
octanol–air partition coefficient, KOA(L/L), which can approximately be calculated
from the ratio KOW=KAW.

Compounds with a KAW above 10�4 L=L would – in chemical equilibrium – be
taken up in higher amounts via inhalation than by drinking water. Similarly, com-
pounds with a log KOA below 105 would in chemical equilibrium be taken up more
rapidly with air than with lipids in the diet. Thus, unless a significant deviation from
chemical equilibrium occurs, volatile compounds .KAW > 10�4; KOA < 105/ will
preferably be inhaled, and diet is of no or low importance.

The uptake of persistent organic pollutants (POPs), such as polychlorinated
dibenzo-p-dioxins and -furans PCDD/F, by humans is mainly via food ingestion
[76]. Compounds with high log KOW tend to accumulate in the food chain and will
be mainly found in products from the aquatic food chain [7], such as fish, but also in
milk and meat. Uptake into these animals may be from food crops, but the primary
contamination source for the food crops is air, not soil [3, 22].

Thus, to be of relevance for human exposure via food crops, compounds in soil
need to be polar and nonvolatile. These are neutral organic compounds with low
vapor pressure (better: low KAW) and low lipophilicity (low KOW). But in particu-
lar, electrolytes fit into these scheme: due to dissociation, water solubility greatly
increases, that is, lipophilicity decreases, and the vapor pressure of ions is near 0.

But it seems that high bioaccumulation of chemicals from soil into plants is a
rare and not very likely process, at least it has not been described very often in the
scientific literature.

There may be several reasons. First of all, chemicals have to be present in the
soil. Deposition from air has been observed for many compounds, for example,
polychlorinated biphenyls PCB or PCDD/F [58]. But it is only likely for persistent,
semivolatile lipophilic compounds. These compounds will accumulate by the air–
leaf or air–fruit pathway [7, 22]. An accumulation air–soil–fruit, however, will not
occur (compare Sect. 3.4).

A possible source of contamination is irrigation with polluted water. This would
indeed bring polar compounds into soil. Also, application of manure has been iden-
tified as a source of soil contamination, including veterinary drugs [75].

Another prerequisite for accumulation in plants is slow dissipation from the root
zone. This excludes compounds that are rapidly degraded by microorganisms in the
rhizosphere. Polar compounds have a higher bioavailability and thus are less likely
to be persistent.
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And indeed there is a high potential for bioaccumulation from soil in leaves
and fruits for polar persistent compounds, as was proven by the work of Doucette
et al. [63] for sulfolane. There is also a potential for organic acids to accumulate
in fruits. This reminds to pesticides, in particular herbicides, which have frequently
been detected in relatively high levels by food monitoring actions [77]. This may
be due to spray application to leaf and fruit surfaces, but it may also be following
application to soil with subsequent translocation.

There seems also – indicated by model predictions and laboratory experiments –
a potential for accumulation of moderate bases of intermediate lipophilicity, and
many pharmaceuticals are moderate bases. However, to the knowledge of the author,
no study has yet shown that high bioaccumulation of moderate bases in plants occurs
in field. This may be due to a lack of searching for those compounds and due to
analytical difficulties. But it may also be because this bioaccumulation of moderate
bases is only high at unusually high soil pH.

Finally, it shall be reminded that the difference between plant cells and animal
cells is not very big in many aspects. Like plant cells, animal cells are surrounded by
biomembranes with negative electrical potential, and some organelles (lysosomes)
are acidic, and some (mitochondria) are alkaline. This means that the same pro-
cesses identified in this study, ion trap and electrical attraction, which may lead to
bioaccumulation of nonlipophilic compounds, may also lead to an accumulation of
compounds in fish or other organisms.
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The Evolution and Future of Environmental
Fugacity Models

Donald Mackay, Jon A. Arnot, Eva Webster, and Lüsa Reid

Abstract In this chapter we first review the concept of fugacity as a thermodynamic
equilibrium criterion applied to chemical fate in environmental systems. We
then discuss the evolution of fugacity-based models applied to the multimedia
environmental distribution of chemicals and more specifically to bioaccumula-
tion and food web models. It is shown that the combination of multimedia and
bioaccumulation models can provide a comprehensive assessment of chemical fate,
transport, and exposure to both humans and wildlife. A logical next step is to incor-
porate toxicity information to assess the likelihood of risk in the expectation that
most regulatory effort will be focused on those chemicals that pose the highest risk.
This capability already exists for many well-studied chemicals but we argue that
there is a compelling incentive to extend this capability to other more challenging
chemicals and environmental situations and indeed to all chemicals of commerce.
Finally, we argue that deriving the full benefits of these applications of the fu-
gacity concept to chemical fate and risk assessment requires continued effort to
develop quantitative structure–activity relationships (QSARs) that can predict rel-
evant chemical properties and programs to validate these models by reconciliation
between modeled and monitoring data.

Keywords Mass balance modeling � Fugacity � QSARs � Chemical hazard
assessment � Chemical risk assessment

1 Introduction: The Fugacity Concept

For the purposes of monitoring, modeling, and regulation, the obvious expression of
the quantity of chemical present in compartments or phases such as in air, water, or
fish is concentration with units such as ng=m3, mg=L, �g=g, or mol=L. These con-
centrations do not directly convey any information about the relative equilibrium
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status between phases. To obtain this information requires additional information in
the form of equilibrium partition coefficients. Alternatively, by expressing the quan-
tity present in terms of fugacity the equilibrium status between phases becomes
immediately obvious since when phases reach equilibrium the thermodynamic cri-
teria of fugacity, activity, or partial pressure are equal. When interpreting the results
of multimedia mass balance models the use of fugacity conveys directly how close
the system is to equilibrium and the direction of the diverse diffusive transfer pro-
cesses. The use of partition coefficients in the various flux equations is thus avoided.
It also transpires that the formulation of the mass balance equations in either alge-
braic or differential forms is much easier when using the fugacity formalism, and
the results are more readily interpreted.

Mathematically, if two-phase concentrations are C1 and C2 and the partition co-
efficient is K12 then the relative equilibrium status is C1 W C2K12 or C1=K12 W C2. In
the fugacity formalism K12 is split into two phase-specific capacity terms such that
K12 is Z1=Z2. The concentration C1 is then Z1f1 and C2 is Z2f2 where f1 and f2

are the fugacities that directly express the relative equilibrium status. The driving
force for interphase diffusion is then .f1 � f2/ and at equilibrium f1 and f2 are
equal. Fugacity is expressed in units of partial pressure, Pascals (Pa), and Z values
(fugacity capacities) have units of mol=.m3 Pa/. Z values express the capacity or
affinity of the phase for the chemical and depend on the phase composition, temper-
ature, and physicochemical properties of the substance.

In the fugacity formalism mass transfer and reaction rate parameters or D values
are defined such that the rates of transport or reaction are the product Df with units
of mol=h. These D values can be regarded as fugacity rate coefficients.

Full details of methods of estimating Z and D values and fugacities are provided
in the text by Mackay [1]. Our focus here is on how fugacity models have evolved
over recent decades and on likely future developments.

2 Evolution of Multimedia Fugacity Models

The earliest or Level I models simulate the simple situation in which a chemical
achieves equilibrium between a number of phases of different composition and vol-
ume. The prevailing fugacity is simply M=†ViZi where M is the total quantity of
chemical (mol), Vi is volume .m3/, and Zi is the corresponding phase Z value,
Œmol=.Pa m3/�. Although very elementary and naive, this simulation is useful as a
first indication of where a chemical is likely to partition. It is widely used as a first
step in chemical fate assessments.

More realistic Level II models introduce the rate of chemical reaction or degra-
dation and advection, but interphase equilibrium is still assumed. Level III models
introduce intercompartmental transfer rates, thus equilibrium no longer applies. For
Level III models it is then necessary to specify the chemical’s mode-of-entry to
the environment, that is, to air, water, or soil, or some combination of these media.
Valuable insights obtained from these models include those of overall chemical
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persistence or residence time and potential for long-range transport (LRT) in air
or water. Level IV models, which involve the solution of differential mass balance
equations, can be used to describe the time-dependent or dynamic behavior of
chemicals.

Figures 1–3 illustrate the results of Level I, II, and III models for pyrene using the
chemical properties listed in Table 1. For the Level III model emission is 50% each
to air and to water. A key feature of these models is that they identify the critical
partitioning and degradation rate properties that control chemical fate.

From Fig. 1 it can be seen that most of the pyrene partitions to soil in the Level I
modeled system. This reflects the high KOW of pyrene and the much larger volume
of soil than of sediment (by a factor of 36) in the standard equilibrium criterion
(EQC) environment [2]. The Level II simulation shown in Fig. 2 gives a first es-
timate of chemical persistence, and since equilibrium is assumed in this case also,
partitioning is still predominantly to soil. The model shows that less than half of the
loss from the system is degradation in the soil; 24.2% is removed by advection in
the air. Three chemical residence times are given: the total time, the reaction time,
and the advection time. The total residence time is the “two-thirds” time for clear-
ance of the chemical from the system. The reaction time is the “two-thirds” time for
chemical removal by degradation alone and is generally considered to be the chem-
ical persistence. The advection time considers only chemical removal by transport
to a neighboring region. Thus, the persistence estimated by the Level II model for
pyrene in a standard EQC environment is about 2 years. This estimate of persistence
is refined using the Level III model. Figure 3 shows a persistence estimate for pyrene

Fig. 1 Level I diagram for pyrene in the EQC environment



358 D. Mackay et al.

Fig. 2 Level II diagram for pyrene in the EQC environment

Fig. 3 Level III diagram for pyrene in the EQC environment with 50% of the emissions to each
of air and water
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Table 1 Properties of pyrene [32]

Pyrene

CAS 129-00-0
Formula C16H10

Molar mass (g=mol) 202.25
Melting point .ıC/ 150.62
Vapor pressure (Pa) 0.0006
Solubility .g=m3/ 0.132
Log KOW 5.18
Half-lives (h)

Air 170
Water 1,700
Soil 17,000
Sediment 55,000
Fish 50
Birds/mammals 17

of about 1 year, assuming equal emissions to air and water. Level III calculations do
not assume that the chemical has achieved equilibrium between the different bulk
compartments of the environment (air, water, soil, and sediment). This can be seen
in Fig. 3 by examining the relative transfer rates between media. The majority of
the pyrene in the system is now located in the sediment. This can be attributed to
the emission to water and the relatively fast water-to-sediment transfer rate. Ap-
proximately 70% of the pyrene emitted to the air blows out of the modeled system
and into the adjoining region while over half of the pyrene discharged to the water
flows out of the system. The loss rates in air and water as a result of degradation
processes are approximately equal and are about half the loss rate by water outflow
(advection).

Table 2 lists a selection of fugacity models that have been applied to evaluative
(hypothetical) and real environments. These and other fugacity models are avail-
able from the Centre for Environmental Modelling and Chemistry (formerly the
Canadian Environmental Modelling Centre) website (http://www.trentu.ca/cemc).

3 Fugacity Models of Long-Range Transport

As Figs. 2 and 3 show, a useful feature of Level II and III models is that they can
demonstrate the extent to which a chemical is lost from a region by atmospheric or
water transport, that is, advective loss, as distinct from loss by degradation. It is pos-
sible to calculate the contribution of each loss mechanism to the overall persistence
or residence time. When the advective residence time is short, that is, advection is
rapid, the implication is that much of the chemical discharged into the region will
flow to neighboring downwind or downstream regions. Whereas a local contamina-
tion problem is alleviated, the problem is merely transported to other regions where
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Table 2 Fugacity models applied to evaluative and real environments

Publications
Latest describing/
version/release using this
date Description model

Models for evaluative environments
EQC 2.02/May 2003 The equilibrium criterion model uses

chemical-physical properties to
quantify chemical behavior in an
evaluative environment. The
environment is fixed to facilitate
chemical-to-chemical comparison.

[2, 33, 34]

Level I 3.00/Sept. 2004 A model of the equilibrium distribution of
a fixed quantity of conserved
chemical, in a closed environment.

[1, 35]

Level II 3.00/Sept. 2005 A model of the equilibrium distribution of
a nonconserved chemical discharged
at a constant rate into an open
environment at steady state.

[1, 35]

Level III 2.80/May 2004 A model of the steady-state distribution of
a nonconserved chemical discharged
at a constant rate into an open
environment.

[1, 35]

RAIDAR 2.00/January
2010

The risk assessment identification and
ranking model is a screening-level
exposure and risk assessment model
that brings together information on
chemical partitioning, reactivity,
environmental fate and transport,
bioaccumulation, exposure, effect
levels, and emission rates in a holistic
framework.

[21, 22]

TaPL3 3.00/Sept. 2003 The transport and persistence Level III
model is intended as an evaluative tool
for the detailed assessment of
chemicals for persistence and potential
for long-range transport in either air,
or water in a steady-state environment.

[10]

Models for real environments
ChemCAN 6.00/Sept. 2003 A Level III model containing a database

of 24 regions of Canada. By the
addition of regional properties, it is
easily applicable to other regions.

[36–38]

CalTOX 2.3/March 1997 A regional scale multimedia exposure
model designed to assess the fate and
human health impacts of
contaminants. Human doses are
derived as products of chemical
concentrations in contact media and
exposure factors for each media.

[39]

Most of these models and models listed in later tables are available from the Web site http://www.
trentu.ca/cemc
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the resulting contamination can be of concern, especially because there may be no
direct control of sources. This general issue, which has ethical and international
aspects, was first addressed in connection with SO2 atmospheric transport from the
United Kingdom and continental Europe to Scandinavia. It has become a major is-
sue of concern as a result of the realization that levels of organic contaminants such
as PCBs in the arctic environment and especially in arctic wildlife are remarkably
high. Human exposure to these contaminants can be substantial because the resi-
dent population often consumes terrestrial and marine wildlife such as caribou and
whale meat.

The Stockholm Convention has addressed this issue by regulating 12 substances
or groups of substances that have been demonstrated to undergo LRT [3]. Scientific
and modeling aspects of LRT have been addressed in a number of reports and books.
Two general modeling approaches have emerged; multi-box Eulerian models and
characteristic travel distance (CTD) Lagrangian models, both of which can employ
the fugacity concept.

The most compelling evidence that significant LRT has occurred is provided by
monitoring data in remote regions, for example, as summarized in Arctic Monitoring
and Assessment Programme reports [4]. Multibox modeling can play a comple-
mentary role by demonstrating that monitoring data are consistent with our present
understanding of LRT processes. Models can be used to identify and prioritize
chemicals for persistence and LRT potential and provide estimates of the fraction of
the mass of chemical released in one location that may reach a distant region as well
as the rate of transport. Examples of this approach are Wania’s arctic contamination
potential (ACP) [5, 6], MacLeod’s transfer efficiency [7], and the distant residence
time (DRT) concept [8].

The CTD models are typically used to rank chemicals because of their simplic-
ity and ease of interpretation. To calculate the CTD of a chemical, a one-region
environment is simulated and then an expected “distance” that a chemical may be
transported in a mobile phase (air or water) that is moving at a defined speed is cal-
culated. The distance travelled by the chemical is related to several factors including
the fugacity of the chemical in the transporting phase as well as the expected time
that the chemical will exist in that phase (persistence) [9, 10].

Table 3 lists studies of LRT, many of which employ the fugacity concept.

4 Evolution of Bioaccumulation Fugacity Models

Bioaccumulation is the net result of competing rates of chemical uptake and elim-
ination in an organism and can result in concentrations in organisms that are
orders of magnitude greater than those in the air or water environment [11, 12].
Bioaccumulation includes uptake by respiration (bioconcentration) of chemical
from the environment surrounding the organism (air or water) and dietary expo-
sures. Dietary exposures can result in biomagnification, an increase in concentration
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Table 3 Models and studies of long-range transport

Publications
Latest model describing/
version/ using this
release date Description model

TaPL3 3.00/Sept.
2003

See Table 2. [10, 40]

BETR-
North
America

A regionally segmented multicompartment,
continental-scale, mass balance chemical
fate model for North America.

[41]

BETR-
World

409/2003
500/

A regionally segmented multicompartment,
global-scale, mass balance chemical fate
model.

[8, 42]

BETR-
Global

A global-scale multimedia contaminant fate
model that represents the global
environment as a connected set of 288
multimedia regions on a 15ı grid.

[43]

GloboPOP 1.10/2003 A zonally averaged multimedia model
describing the global fate of persistent
organic chemicals on the time scale of
decades.

[5, 44]

from food to the consuming organism. Biotransfer factors are also used to ex-
press the food-to-organism increases in concentration, especially in an agricultural
setting [13].

The fugacity concept proves to be particularly useful when simulating the up-
take of chemical by organisms such as fish from their environment (e.g., water) and
their food. The bioconcentration phenomenon is essentially a result of the chemi-
cal seeking equi-fugacity between the respiring organism and its environment. The
concentration ratio or bioconcentration factor (BCF) is essentially ZO=ZE where
ZO applies to the organism and ZE to the environment. Hydrophobic, bioaccumu-
lative substances such as DDT and PCBs tend to have low values of ZE and high
values of ZO and thus high BCFs.

Two general approaches have been used to assess and predict bioaccumulation:
relatively simple regression models or QSARs and more complex mechanistic mod-
els that simulate all uptake and loss processes [11, 12].

Regressions for BCF–octanol water partition coefficient (BCF–KOW) for fish
and biotransfer factor–KOW (BTF–KOW) for agricultural species in the human food
chain are still widely used for bioaccumulation and human exposure assessments.
The use of simple regression equations implies that all chemicals with the same KOW

have the same BCF in fish or BTF in agricultural food webs. Biomagnification and
biotransformation processes can, however, result in orders of magnitude difference
in exposures, particularly for more hydrophobic chemicals, and these processes are
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not explicitly accounted for using simple regression equations. Laboratory-derived
BCF data do not include dietary exposure, which is an important route of ex-
posure for hydrophobic chemicals in the environment. Air-breathing organisms
exchange chemical with the air for which the octanol–air partition coefficient .KOA/

is an important property and is not explicitly included in KOW-based regressions
for BTFs.

In response to these problems, bioconcentration models have been extended to
address bioaccumulation by including food uptake and losses by metabolic conver-
sion, respiration, fecal egestion, and growth dilution. It is relatively straightforward
to apply these models to multiple organisms comprising food webs. Most effort has
been devoted to aquatic organisms but recently there has been increasing attention
to air-breathing organisms [14–17]. The major challenge has been to describe di-
etary rates and feeding preferences, especially during different seasons and life
stages. Differences in species’ physiology (body size, feeding rates) and charac-
teristics (herbivores, carnivores, bioenergetics, feeding preferences) play a role in
bioaccumulation processes and can be included in fugacity bioaccumulation mod-
els, resulting in more accurate simulations and predictions. Important considerations
for using mechanistic bioaccumulation models include the principle of parsimony
(Occam’s Razor), parameterization, and reliable physical chemical property in-
formation (e.g., KOW; KOA, biotransformation rates). Sensitivity and uncertainty
analyses can help direct priorities for accurate input data requirements.

These models have shown that uptake by edible vegetation from air and soil is
fundamental to compiling reliable models of bioaccumulation in wildlife and hu-
mans. The uptake losses and translocation of chemicals in vegetation have proved
to be challenging but fugacity models can provide insights into the important pro-
cess of plant bioaccumulation.

As more information becomes available on the processes of uptake, release, and
internal disposition of chemicals in fish and wildlife, the logical next step is to com-
pile a more detailed model of chemical fate within the organism. The simple models
discussed earlier generally treat the organism as a single compartment or “box.”
The more detailed models exploit the considerable experience in physiologically
based pharmacokinetic (PBPK) models developed for medical and pharmaceutical
purposes. These PBPK models can provide more information for accumulation in
specific organs within the body and the rates of transport and transformation within
the body and excretion processes. Most PBPK models are based on conventional
concentration/rate constant/partition coefficient expressions [18, 19], but they can
be rewritten in fugacity format [20]. Again, the fugacity formalism is advantageous
because differences in the equilibrium status of chemical levels between blood and
various organs and tissues are immediately apparent.

Table 4 lists a number of bioaccumulation models and studies.
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Table 4 Bioaccumulation and PBPK models and studies

Publications
Latest describing/
version/ using this
release date Description model

Fish 2.00/November
2004

A single organism bioaccumulation
model treating the steady-state
uptake and loss of an organic
contaminant by a fish.

[1, 35]

FoodWeb 2.00/March
2006

A mass balance model of
contaminant flux through an
aquatic food web.

[45]

Mysid 1.00/August
2007

A single organism bioaccumulation
model treating the dynamic
uptake and loss of an organic
contaminant by the opossum
shrimp (Mysis relicta).

[46]

AquaWeb 1.2/March
2007

A steady-state aquatic food web
bioaccumulation model for
estimating of chemical
concentrations in organisms from
chemical concentrations in the
water and the sediment.

[47–51]

BAF-QSAR 1.5/May 2008 A model to estimate
bioaccumulation factors for fish
species in lower, middle, and
upper trophic levels of aquatic
food webs.

[52, 53]

ACC-HUMAN A nonsteady-state bioaccumulation
model predicting human tissue
levels from concentrations in air,
soil, and water.

[54]

PBPK 1.0/January
2003

A physiologically based
pharmacokinetic model
describing the disposition of
contaminants in an adult male
human. It treats a parent
chemical and, if desired, two
metabolites that may be formed
reversibly or irreversibly. Tissue
concentrations for the chemical
and any metabolites can be
simulated for acute,
occupational, and environmental
exposure regimes.

[55]

PBPK/PBTK models Some publications available
outlining physiologically based
pharmaco-/toxico-kinetic models
for various species.

[18–20, 56–58]

Terrestrial-based
bioaccumulation
models

Some publications available
outlining terrestrial-based food
web bioaccumulation models for
various species.

[14, 54, 59–61]
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5 Fugacity Models of Specific Compartments and Processes

The results of multimedia mass balance models often show the need to focus more
attention on specific compartments such as soils to which a pesticide is applied or to
water bodies that receive chemical discharges from direct discharges or from sewage
treatment plants. Several such models have been developed, especially for sewage
treatment plants, lakes, and rivers. For those evaluating chemical fate it is useful to
have the capability of addressing in detail the likely chemical fate in these more local
and site-specific conditions. The models may be used to explore remedial options
and likely remediation times. As is discussed later such models are best regarded as
individual “tools” available from a “tool box” of models.

Table 5 lists a number of these models.

Table 5 Fugacity models of specific compartments and processes

Publications
Latest version/ describing/using
release date Description this model

AirWater 2.00/Nov. 2004 A model to calculate air–water exchange
characteristics, including unsteady-state
conditions, based on the physical
chemical properties of the chemical and
total air and water concentrations.

[1, 35]

BASL4 1.00/Apr. 2007 The biosolids-amended soil: Level IV model
calculates the fate of chemicals
introduced to soil in association with
contaminated biosolids amendment.

[62, 63]

QWASI 3.10/Feb. 2007 The quantitative water air sediment
interaction model assists in understanding
chemical fate in lakes.

[64–69]

Sediment 2.00/Nov. 2004 A model to calculate the water–sediment
exchange characteristics of a chemical
based on its physical chemical properties
and total water and sediment
concentrations.

[1, 35]

Soil 3.00/Aug. 2005 A model for the simple assessment of the
relative potential for reaction,
degradation, and leaching of a pesticide
applied to surface soil.

[1, 35]

STP 2.11/Mar. 2006 The sewage treatment plant model estimates
the fate of a chemical present in the
influent to a conventional activated sludge
plant as it becomes subject to evaporation,
biodegradation, sorption to sludges, and
to loss in the final effluent.

[70, 71]
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6 Evolution of More Comprehensive Multimedia
and Bioaccumulation Fugacity Models

A logical step in modeling chemical fate, exposure, and even effects is to combine
models that describe the fate of the chemical in the largely abiotic environment
with bioaccumulation and food web models resulting in a more complete simu-
lation of chemical behavior and exposure to humans and wildlife. Table 6 lists a
selection of fugacity and non-fugacity models that combine fate, exposure, and ef-
fects and can be used for regulatory purposes. These models can be used to screen
list of chemicals to identify those substances that are of greatest potential risk to hu-
mans and the environment for more comprehensive assessments using monitoring
data. For example, the risk assessment, identification, and ranking (RAIDAR) model
combines information on chemical partitioning, reactivity, environmental fate and
transport, food web bioaccumulation, exposure, effect endpoint, and emission rate in
a coherent mass balance evaluative framework [21, 22]. RAIDAR fate calculations
are similar to those in the EQC model [2]; however, food web models representa-
tive of aquatic and terrestrial species such as vegetation, fish, wildlife, agricultural
products, and humans are also included. RAIDAR is distinct from other models
listed in Table 6 because the food web models assessing exposure to humans and
ecological receptors include mechanistic expressions for chemical uptake and elimi-
nation. Thus, biomagnification and biotransformation processes in the food web can
be included for the exposure assessment. An illustration of the RAIDAR model for
chemical assessments is given in Sect. 6.1.

Table 6 Comprehensive models of chemical fate and bioaccumulation

Latest Publications
version/ release describing/using
date Description this model

CalTOX 2.3/March
1997

See Table 2. [39]

EUSES 2.0/2004 The European Union System for the
Evaluation of Substances brings
together exposure and effect
assessments and risk characterization
for environmental populations and
humans, including occupational and
consumer scenarios at local, regional,
and continental scales.

[72, 73]

IMPACT
2002

The IMPACT 2002 model provides
characterization factors for the
midpoint categories: human toxicity,
aquatic ecotoxicity, and terrestrial
ecotoxicity for life-cycle impact
assessments.

[74]

RAIDAR 2.00/January
2010

See Table 2. [21, 22]
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Combining the key elements of chemical exposure and effect at a screening
level allows for a holistic approach for evaluating chemicals and may prove to be a
valuable educational tool for regulators, scientists, and students. Combined model
predictions can guide environmental monitoring programs by identifying the media
in the environment (physical and biological) in which chemical concentrations and
fugacities are expected to be the greatest. A holistic approach for chemical risk as-
sessment (emissions, exposure, and effect) also provides the opportunity to identify
the key processes and chemical properties that contribute the most uncertainty to
the underlying risk calculation. Uncertainty and sensitivity analyses can be used to
prioritize data gaps that often occur for the large numbers of chemicals requiring
chemical assessment.

6.1 An Illustrative Case Study for Chemical Exposure
and Risk Assessment

Figure 4 illustrates the output of RAIDAR fate calculations for pyrene using an ar-
bitrary unit emission rate of 1 kg/h to air. This is a hypothetical rate of emission and
the model user can choose either Level II or Level III fate calculations. As discussed
earlier for Level II calculations, equilibrium between the environmental compart-
ments of air, water, soil, and sediment is assumed; therefore, there is no need to

Fig. 4 Level III fate calculations for pyrene in the RAIDAR environment assuming 100%
emissions to air
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select a mode-of-entry for chemical release to the environment. For Level III cal-
culations the predicted distribution of a substance in the physical compartments of
the environment is determined from the specified mode-of-entry information. In this
illustration it is assumed that 100% of the chemical is released to air.

The overall residence time in the evaluative regional environment .100;000 km2/

is 39.3 days. This overall residence time includes chemical transfers out of the
region (advection) and chemical degradation (reaction) within the region. Approx-
imately 67% of the pyrene that is released to air in the region is removed from the
region by advection in air and the advection residence time is 57.7 days. The re-
action residence time, or persistence, is 123 days. Thus, overall persistence in the
system based solely on reaction is quite different from the overall residence time.
This highlights the need to clearly determine the specific assessment objectives and
the influence of model assumptions when comparing chemical persistence.

Based on predicted chemical concentrations and fugacities in the bulk physical
compartments of air, water, soil, and sediment, chemical concentrations and fugaci-
ties are then calculated in the representative species in RAIDAR using mass balance
food web models. Figure 5 displays fugacities for pyrene in the biological species in
the model food webs. These fugacities are based on the assumed unit emission rate
and include estimated biotransformation rates [23]. For certain persistent chemicals
the fugacities are observed to increase in higher trophic level organisms (biomagni-
fication). In this example, the fugacities decrease in higher trophic level organisms,
a phenomenon known as trophic dilution. For example, the biomagnification factor
(BMF) from the terrestrial herbivore to the terrestrial carnivore is 0.19 .BMF < 1/.
This is largely due to biotransformation within the predator organisms. Lack of
biotransformation as slow growth usually leads to biomagnification.

-12 -11 -10 -9 -8 -7 -6

Plankton

Benthic Invertebrate

Fish (lower trophic level)

Fish (higher trophic level)

Aquatic Mammal

Foliage Vegetation

Root Vegetation

Terrestrial Invertebrate

Terrestrial Herbivore

Terrestrial Carnivore

Avian Omnivore

Beef Cow

Human

log (f/(Pa))

Fig. 5 Illustration of fugacities .f / for pyrene in some of the biological compartments in the
RAIDAR evaluative environment
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The next step is to include toxicity in the chemical assessment by selecting an ef-
fect level or concentration. In this illustration an acute narcotic toxic effect endpoint
of 5 mmol=kg wet weight is selected [24]. The hazard assessment factor (HAF) is
an intensive hazard property being a combined function of persistence, bioaccumu-
lation, and the selected toxicity endpoint [22]. The HAF is the dimensionless ratio
of the calculated unit concentration in an organism .CU/ to the toxic effect endpoint
.CT/ assuming a hypothetical “unit” emission of 1 kg=h. The HAF provides a single
value for comparing all chemicals of interest for the combined properties of persis-
tence, bioaccumulation, and the selected toxicity endpoint. As illustrated previously
the fugacities and unit concentrations .CU/ can be calculated for all representative
RAIDAR species based on the assumed unit emission rate. In the present exam-
ple for pyrene, “benthic invertebrates” are identified as the representative species
with the greatest hazard quotient .CU=CT D 3:0 � 10�5=5/ and thus the HAF is
6:0 � 10�6. If biotransformation estimates were not included in the assessment for
pyrene biomagnification in the food webs would occur resulting in the identifica-
tion of “terrestrial carnivores” as the most vulnerable species and the HAF would
be 4:5 � 10�3 (about 1,000 times larger).

The previously described calculations are independent of the actual quantity of
chemical released to the environment, being based on assumed unit emission rates,
and are therefore only hazard metrics. A screening level RAIDAR risk assessment
factor (RAF) can be simply calculated from the HAF by multiplying by an esti-
mate of the actual chemical emission rate [22]. For example, an estimated emission
rate in Canada for pyrene is 10.7 kg=h [25], and the resulting RAF is 6:4 � 10�5.
The implication is that prevailing levels are well below levels at which pyrene is
expected to cause toxic effects. This case study illustrates the need to consider all
elements of a chemical’s properties (persistence, P, bioaccumulation, B, and toxi-
city, T) and quantity discharged .Q/ when evaluating chemicals for their potential
risks to humans and the environment [22].

7 The Issue of Fidelity and Complexity

These models can become very complex by attempting to include numerous organ-
isms and vegetation types. Further, there may be a need to include municipal and
industrial waste treatment processes. It is also apparent that urban regions often
experience higher levels of emissions than rural regions, thus urban regions often
experience higher levels of contamination than rural regions and urban residents
and wildlife may experience greater exposure. This can be addressed by replacing
the single soil environment with urban, rural, or agricultural and pristine soils.
Pesticides may be preferentially applied in an agricultural setting. It is increasingly
apparent that for some chemicals used domestically and in consumer products, for
purposes such as plasticizers or for reducing flammability, indoor exposure can
greatly exceed outdoor exposure. The implication is that detailed simulation of
environmental fate is largely irrelevant for humans who experience their greatest
exposure indoors.
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A tension thus develops between the need to increase model complexity to ad-
dress all possible routes of exposure and the need to ensure that the model is
robust, transparent, understandable, and is free from gross errors. The optimal an-
swer may be to develop a suite of modeling “tools” that address a variety of aspects
of chemical fate. This tool box can contain models of the types described earlier,
as well as models addressing specific situations such as waste water treatment, in-
door exposure, pesticide dissipation in an agricultural setting, and even less common
conditions such as aquaculture. If this is to be accomplished the model-to-model
transition should be as simple and as user-friendly as possible. The use of fugacity
in this context offers the advantage that a common system of units applies, thus the
fugacity output from one model becomes the input to the next model. The nature
of the process in changing fugacity also becomes immediately apparent. For exam-
ple, an effective waste water treatment plant may typically achieve a reduction in
fugacity of a contaminant by a factor of 10, that is, essentially 90% removal. A bird
such as an owl consuming a contaminated rodent should experience a fugacity in-
crease as a result of biomagnification by a factor such as 30 if the contaminant is not
biotransformed, but only by a factor of 3 or less if the bird has the metabolic capabil-
ity to degrade the substance. In short, viewing the environmental fate of chemicals
through the lens of fugacity can provide valuable insights into the many varied and
complex processes that chemicals undergo in the environment.

8 The Future: A Speculation

Society through its many national and international regulatory agencies has become
increasingly intolerant of inadvertent exposure to chemical substances. There are in-
creasing demands for improved assessment of the risks of adverse effects to humans
and wildlife and for more vigorous and effective measures to identify the chemi-
cals of greatest concern and restrict their use accordingly. This is a demanding task,
especially because there are believed to be some 100,000 chemicals requiring as-
sessment. Fugacity modeling can, we believe, contribute to this process but many
challenges remain. In this final section we speculate on some needs and directions.

8.1 Chemical Properties

Models of chemical fate, fugacity, or otherwise require information of sufficient
accuracy on chemical properties such as vapor pressure, partition coefficients, and
reactivity in a variety of media ranging from the atmosphere to the human liver. The
availability of such data is very limited, especially for the less-studied substances
and for mixtures [26]. There is thus an obvious incentive to develop and improve
QSARs or QSPRs that can estimate these properties from chemical structure. Con-
siderable progress has been made, but much remains to be done, especially for
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more complex molecules containing oxygen, nitrogen, sulfur, phosphorus, silicon,
fluorine, and metal moieties. Present models do not always satisfactorily address
ionizing and surface active substances or those of high molar mass such as dyes and
pigments. A coordinated program of laboratory-based property determination and
QSAR development is needed.

8.2 Ground-Truthing Models

There is concern that model-based predictions of chemical fate may be subject to
systematic error because some important processes are omitted or poorly described.
An example is the role of snow in scavenging the atmosphere and accumulating
chemical seasonally in snowpacks or ice. Modeling is relatively inexpensive and
easy compared with monitoring, and there has thus been a tendency for predictions
to outstrip observations. What is clearly needed is a continuing program of “ground-
truthing” models by comparison of modeling and monitoring data, especially in-
cluding exposure. An example is the recent study by McKone et al. [27] of the fate
and exposure of organo-phosphorus pesticides by agricultural workers in which the
model predictions extended from application conditions, to environmental concen-
trations, to exposure, and to levels of metabolites in urine. Another is the assessment
of fate and exposure to phthalate esters by both environmental routes and from con-
sumer products [28]. Unless there is a continuing effort to ground truth models,
there is a danger that exposure may be underestimated, with implications for adverse
effects on human or ecosystem health. Conversely overestimation may result in un-
necessary restrictions and economic penalties to industry and to society at large.

8.3 Fugacity and Toxicity

Some 70 years ago Ferguson showed that for nonselective or narcotic chemicals
toxic effects were elicited at a relatively constant chemical activity in the organ-
isms’ “circum environment” of air or water [29]. The corresponding concentrations
varied over many orders of magnitude. This concept is inherent in the concepts of
critical body residue or body burden corresponding to toxic endpoints. Fugacities,
like concentrations, vary greatly but both can be readily converted into activities
and to body burdens providing a direct link from fugacities in the environment as
predicted from multimedia models and activity levels in the exposed organism. Of
course, many chemicals exert selective toxicity as a result of specific biochemical
interactions, but if toxic potency can be estimated for specific modes of toxic action
in the form of multiples of narcotic levels, this could provide a predictive capabil-
ity for nonnarcotics. The potential of this approach has been suggested by Verharr
et al. [30], McCarty et al. [24], and others [31].
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If a robust link can be established between toxic levels of chemicals and their ex-
ternal and internal fugacities this has the potential to provide a coherent mechanism
by which the proximity of environmental levels to those of concern from the view-
point of toxic effects could be quantified and evaluated. Fugacity can then play an
increasingly valuable role in assisting society to manage the multitude of chemicals
of commerce on which our present standard of living depends, with assurance that
levels of risk of adverse effects are acceptably low.
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The Application of Structurally Dynamic
Models in Ecology and Ecotoxicology

Sven E. Jørgensen

Abstract Structurally dynamic models (SDMs) are models that account for the
changes in the model parameters due to the adaptation or the shift in species com-
position resulting from current changes in the forcing functions. The parameter
changes are found by introduction of eco-exergy as goal function in the model. The
set of parameters that give the highest eco-exergy by the prevailing conditions are
currently selected. The theory behind the use of eco-exergy as goal function in eco-
logical models is presented as a translation of Darwin’s theory to thermodynamics.
Two examples of SDMs are presented to illustrative the advantages and disadvan-
tages of this model type.

Keywords Structurally dynamic models � Adaptation � Shifts in species composi-
tion � Exergy � Eco-exergy � Darwin finches � Copper

1 Introduction

Ecosystems differ from most other systems by being extremely adaptive, having
the ability of self-organization and having a large number of feedback mechanisms.
The real challenge to modeling is, therefore, how can we construct models that are
able to account for this enormous adaptability. The model type structurally dynamic
model (SDM) has been developed to meet this demand. The next section will present
the characteristics, the advantages, and the disadvantages of this model type and
where it is most recommendable to consider to apply SDM. The following section,
Sect. 3, presents the theory behind SDM, followed by a section where an illustrative
example of SDMs applied in ecology is presented. The example shows clearly the
idea behind this model type and under which circumstances it is advantageous to
use it. The fifth section presents an ecotoxicological example and the last section
concludes on the application of SDM in ecology and particularly in ecotoxicology.

S.E. Jørgensen (�)
Section for Environmental Chemistry, Institute A, Copenhagen University, University Park 2,
2100 Copenhagen Ø, Denmark
e-mail: msijapan@hotmail.com

J. Devillers (ed.), Ecotoxicology Modeling, Emerging Topics in Ecotoxicology:
Principles, Approaches and Perspectives 2, DOI 10.1007/978-1-4419-0197-2 13,
c� Springer Science+Business Media, LLC 2009

377



378 S.E. Jørgensen

This model type will most probably be used increasingly in the coming years in
our endeavor to make better prognoses, because reliable prognoses can only be made
by models with a correct description of ecosystem properties including the ability to
change the structure and the properties of key species. If our models do not describe
properly adaptation and possible shifts in species composition, the prognoses will
inevitably be more or less incorrect. The SDMs attempt to overcome this crucial
model problem.

Ecology deals with irreducible systems with many feedback mechanisms that
will regulate simultaneously all the factors and rates, and they interact and are also
functions of time, too, as pointed out by Straskraba [1, 2].

Table 1 shows the hierarchy of regulation mechanisms that are operating at the
same time. An ecosystem has so many interacting components that it is impossible
ever to be able to examine all these relationships and even if we could, it would not
be possible to separate one relationship and examine it carefully to reveal its details,
because the relationship is different in nature from that in a laboratory where the
examined components are separated from the other ecosystem components.

Known phrases in system ecology are “everything is linked to everything” and
“the whole is greater than the sum of the parts.” It implies that it may be possi-
ble to examine the parts separately, but when the parts are put together, they will
form a whole that behaves differently from the sum of the parts. A model seems
the only useful tool when we are dealing with irreducible systems. However, we
need several models simultaneously to capture a more complete image of reality. It
seems our only possibility to deal with the very complex living systems. Our brain
simply cannot overview what will happen in a system where, for instance, several
interacting processes are working simultaneously.

The number of feedbacks and regulations is extremely high and makes it pos-
sible for the living organisms and populations to survive and reproduce in spite of
changes in external conditions. These regulations correspond to levels 3 and 4 in
Table 1. Numerous examples can be found in the literature. If the actual proper-
ties of the species are changed the regulation is named adaptation. Phytoplankton

Table 1 The hierarchy of regulating feedback mechanisms [3]

Explanation of regulation
Level process Exemplified by phytoplankton growth

1 Rate by concentration in
medium

Uptake of phosphorus in accordance with
phosphorus concentration

2 Rate by needs Uptake of phosphorus in accordance with
intracellular concentration

3 Rate by other external factors Chlorophyll concentration in accordance with
previous solar radiation

4 Adaptation of properties Change of optimal temperature for growth
5 Selection of other species Shift to better-fitted species
6 Selection of other food web Shift to better-fitted food web
7 Mutations, new sexual

recombinations, and other
shifts of genes

Emergence of new species or shifts of species
properties



The Application of Structurally Dynamic Models in Ecology and Ecotoxicology 379

is, for instance, able to regulate its chlorophyll concentration according to the so-
lar radiation. If more chlorophyll is needed because the radiation is insufficient to
guarantee growth, more chlorophyll is produced by the phytoplankton. The diges-
tion efficiency of the food for many animals depends on the abundance of the food.
The same species may be of different sizes in different environments, depending on
what is most beneficial for survival and growth. If nutrients are scarce, phytoplank-
ton becomes smaller and vice versa. In this latter case the change in size is a result
of a selection process, which is made possible because of the distribution in size.

The feedbacks are furthermore constantly changing, that is, the adaptation itself
is adaptable in the sense that if a regulation is not sufficient, another regulation pro-
cess higher in the hierarchy of feedbacks – see Table 1 – will take over. The change
in size within the same species is, for instance, only limited. When this limitation
has been reached, other species may take over; see levels 5 and 6 in Table 1. It im-
plies that not only the processes and the components, but also the feedbacks can be
replaced, if it is needed to achieve a better utilization of the available resources.

2 The Characteristics of SDM

An ecosystem is a very dynamic system. All its components and particularly the
biological ones are steadily moving and their properties are steadily modified, which
is why an ecosystem will never return to the same situation again.

Every point is furthermore different from any other point and therefore offering
different conditions for the various life forms.

This enormous heterogeneity explains why there are so many species on earth.
There is, so to say, an ecological niche for “everyone” and everyone may be able to
find a niche where he is best fitted to utilize the resources.

Darwin’s theory describes the competition among species and states that the
species that are best fitted to the prevailing conditions in the ecosystem will survive.
Darwin’s theory can, in other words, describe the changes in ecological structure
and the species composition, but cannot directly be applied quantitatively (example
given) in ecological modeling; see, however, the next section.

All species in an ecosystem are confronted with the challenge: how is it possible
to survive or even grow under the prevailing conditions? The prevailing conditions
are considered as all factors influencing the species, that is, all external and internal
factors including those originating from other species.

All natural external and internal factors of ecosystems are dynamic – the con-
ditions are steadily changing, and there are always many species waiting in the
wings, ready to take over, if they are better fitted to the emerging conditions than
the species dominating under the present conditions. There is a wide spectrum of
species representing different combinations of properties available for the ecosys-
tem. The question is which of these species are best able to survive and grow under
the present conditions and which species are best able to survive and grow under the
conditions one time step further and two time steps further and so on? The necessity
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External factors
Forcing functions

Ecosystem structure
at time t

Ecosystem structure
at time t +1

New recombina-
tions of genes /

mutations

Gene pool Selection

Fig. 1 Conceptualization of how the external factors steadily change the species composition. The
possible shifts in species composition are determined by the gene pool, which is steadily changed
due to mutations and new sexual recombinations of genes. The development is, however, more
complex. This is indicated (1) by arrows from “structure” to “external factors” and “selection” to
account for the possibility that the species can modify their own environment and thereby their own
selection pressure and (2) an arrow from “structure” to “gene pool” to account for the possibilities
that the species can to a certain extent change their own gene pool. Several mechanisms for this
possibility can be found in the literature

in Monod’s sense is given by the prevailing conditions – the species must have genes
or maybe rather phenotypes (meaning properties) that match these conditions, to be
able to survive. But the natural external factors and the genetic pool available for
the test may change randomly or by “chance.”

Steadily, new mutations (misprints are produced accidentally) and sexual recom-
binations (the genes are mixed and shuffled) emerge and give steadily new material
to be tested by the question: which species are best fitted under the conditions pre-
vailing just now?

These ideas are illustrated in Fig. 1. The external factors are steadily changed and
some even relatively fast – partly at random, such as the meteorological or climatic
factors. The species of the system are selected among the species available and rep-
resented by the genetic pool, which again is slowly but surely changed randomly or
by chance. The selection in the Fig. 1 includes the level 4 of Table 1. It is a selection
of the organisms that possess the properties best fitted to the prevailing organisms
according to the frequency distribution. What is named ecological development is
the change over time in nature caused by the dynamics of the external factors, giving
the system sufficient time for the reactions.

Evolution, on the other hand, is related to the genetic pool. It is the result of
the relation between the dynamics of the external factors and the dynamics of the
genetic pool. The external factors steadily change the conditions for survival and the
genetic pool steadily comes up with new solutions to the problem of survival.
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The species are continuously tested against the prevailing conditions (external as
well as internal factors) and the better they are fitted, the better they are able to main-
tain and even increase their biomass. The specific rate of population growth may
even be used as a measure for the fitness (see, e.g., Stenseth [4]). But the property of
fitness must, of course, be inheritable to have any effect on the species composition
and the ecological structure of the ecosystem in the long run.

Natural selection has been criticized for being a tautology: fitness is measured by
survival, and survival of the fittest therefore means survival of the survivors. How-
ever, the entire Darwinian theory including the aforementioned three assumptions
cannot be conceived as a tautology, but may be interpreted as follows: the species of-
fer different solutions to survival under given prevailing conditions, and the species
that have the best combinations of properties to match the conditions have also the
highest probability of survival and growth.

UNEP has developed two SDMs of lakes, which are directly accessible. Pamo-
lare launched by UNEP can be downloaded from the homepage: http://www.unep.
or.jp/ietc/pamolare. Pamolare 1 contains the following lake models: a one-layer
model, a two-layer model, a SDM, and a drainage area model. Pamolare 2 contains
a structurally dynamic shallow-lake model.

The use of SDM has particular interest in ecotoxicology, because the competing
organisms have most often very different susceptibility to various toxic substances.
Therefore, a clear selection of the fittest species in an ecotoxicological case study
is, therefore, frequently observed.

SDMs can be constructed by two different methods: either by expert knowledge
or by introduction of a goal function. If it is known how the properties of the species
will change when the prevailing conditions are changed, it is, of course, possible to
introduce this expert knowledge into the model, which is possible either by formula-
tion of rules or by artificial intelligence. Rules may be exemplified by this example:
when the phosphorus concentration is between x and y, then the growth rate of
phytoplankton will be changing gradually from z to v. Examples of this type of
SDMs are given in Patten [5]. Artificial intelligence is able to find the rules from
interpretation by a computer of a suitable set of observations.

Several goal functions have been proposed, but only very few models that ac-
count for change in species composition or for the ability of the species to change
their properties within some limits have been developed. Eco-exergy has been the
most frequently applied goal function in SDM. It has successfully been used to
develop SDMs in 19 cases; see Jørgensen and coworkers [6, 7]. As eco-exergy is
not generally known it is necessary to introduce this thermodynamic variable in the
next section.

3 Eco-Exergy as Goal Function in SDM

Exergy is defined as the work capacity the system can perform when brought into
thermodynamic equilibrium with the environment.
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We will name this form of exergy here as technological exergy. Technological
exergy is not practical to use in the ecosystem context, because it presumes that the
environment is the reference state, which means for an ecosystem the next ecosys-
tem. As the energy embodied in the organic components and the biological structure
and information contributes far most to the exergy content of an ecosystem, there
seems to be no reason to assume a (minor) temperature and pressure difference
between the ecosystem and the reference environment. Eco-exergy is defined as
the work the ecosystem can perform relatively to the same ecosystem at the same
temperature and pressure but at thermodynamic equilibrium, where there are no
gradients and all components are inorganic at the highest possible oxidation state.
Under these circumstances we can calculate the exergy, which has been denoted as
eco-exergy to distinguish from the technological exergy, as coming entirely from
the chemical energy: X

c

.c � co/ Ni :

This represents the nonflow biochemical exergy. We can measure the concentra-
tions in the ecosystem, but the concentrations in the reference state (thermodynamic
equilibrium) could be based on the usual use of chemical equilibrium constants.
Eco-exergy is a concept close to Gibb’s free energy but opposite to Gibb’s free en-
ergy, eco-exergy has a different reference state from case to case (from ecosystem
to ecosystem) and it can furthermore be used far from thermodynamic equilibrium,
while Gibb’s free energy in accordance to its exact thermodynamic definition is a
state function close to thermodynamic equilibrium. In addition, eco-exergy of or-
ganisms is mainly embodied in the information content and should, therefore, not
be considered the same as the chemical energy of fossil fuel.

As .c�co/ can be found from the definition of the chemical potential replacing
activities with approximations by concentrations, we get the following expressions
for the exergy:

Ex D RT

iDnX
iD0

Ci ln Ci=Ci;o; (1)

where R is the gas constant .8:317 J=K=moles D 0:08207 l atm=K=moles/; T is
the temperature of the environment, while Ci is the concentration of the i th compo-
nent expressed in a suitable unit, Ci;o is the concentration of the i th component at
thermodynamic equilibrium, and n is the number of components. Ci;o is, of course,
a very small concentration (except for i D 0, which is considered to cover the in-
organic compounds), corresponding to a very low probability of forming complex
organic compounds spontaneously in an inorganic soup at thermodynamic equi-
librium. Ci;o is even lower for the various organisms, because the probability of
forming the organisms is very low with their embodied information, which implies
that the genetic code should be correct.

By using this particular exergy based on the same system at thermodynamic
equilibrium as reference, the eco-exergy becomes dependent only on the chemical
potential of the numerous biochemical components.
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It is possible to distinguish in (1) between the contribution to the eco-exergy
from the information and from the biomass. We define pi as ci=A, where A is the
total concentration of all components in the system.

With the introduction of this new variable, we get

Ex D ART

nX
iD1

pi ln pi=pio C A ln A=A: (2)

As A � Ao, eco-exergy becomes a product of the total concentration A (multiplied
by RT) and Kullback measure:

K D
nX

iD1

pi ln.pi=pio/;

where pi and pio are probability distributions, a posteriori and a priori to an obser-
vation of the molecular detail of the system. It means that K expresses the amount
of information that is gained as a result of the observations and that eco-exergy
D ARTK. For different organisms that contribute to the eco-exergy of the ecosys-
tem, the eco-exergy density contribution becomes ci RT ln.pi=pio/, where ci is the
concentration of the considered organism. RT ln.pi=pio/, is found by calculation
of the probability to form the considered organism at thermodynamic equilibrium,
which would require that organic matter is formed and that the proteins (enzymes)
controlling the life processes in the considered organism have the right amino acid
sequence. These calculations can be seen in Jørgensen et al. [8] and Jørgensen and
Svirezhev [6], and Jørgensen and Fath [9]. In the latter reference the latest informa-
tion about the calculations of RTK that denoted ˇ values for various organisms is
presented; see Table 1. The ˇ value for detritus is in this tableD 1:00, which means
that the eco-exergy density is found by multiplication of the concentration ci by ˇ

as g detritus equivalents per unit of volume or area. As detritus has about 18.7 kJ/g,
eco-exergy can be found as kJ by multiplication by 18.7. For human, the ˇ value is
2,173, when the eco-exergy is expressed in detritus equivalent or 18.7 times as much
or 40,635 kJ/unit of volume or area. The ˇ value has not surprisingly increased as a
result of the evolution. To mention a few values from Table 2: bacteria 8.5, protozoa
39, flatworms 120, ants 167, crustaceans 232, mollusks 310, fish 499, reptiles 833,
birds 980, and mammals 2,127.

The evolution has in other words resulted in a more and more effective transfer of
what we could call the classical work capacity to the work capacity of the informa-
tion. A value of 2.0 means that the eco-exergy embodied in the organic matter and
the information is equal. As the values are much bigger than 2.0 (except for virus,
where the value is 1.01 – slightly more than 1.0) the information eco-exergy is the
most significant part of the eco-exergy of organisms.

Biological systems have many possibilities for moving away from thermo-
dynamic equilibrium, and it is important to know along which pathways among
the possible ones a system will develop. This leads to the following hypothesis
sometimes denoted as the ecological law of thermodynamics (ELT) [6–12]: If a
system receives an input of exergy, then it will utilize this exergy to perform work.
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Table 2 ß Values D exergy content relatively to the exergy of detritus [6]

Early organisms Plants Animals

Detritus 1.00
Virus 1.01
Minimal cell 5.8
Bacteria 8.5
Archaea 13.8
Protists Algae 20
Yeast 17.8

33 Mesozoa, Placozoa
39 Protozoa, amoeba
43 Phasmida (stick insects)

Fungi, moulds 61
76 Nemertina
91 Cnidaria (corals,sea anemones, jelly fish)

Rhodophyta 92
97 Gastrotricha

Prolifera, sponges 98
109 Brachiopoda
120 Platyhelminthes (flatworms)
133 Nematoda (round worms)
133 Annelida (leeches)
143 Gnathostomulida

Mustard weed 143
165 Kinorhyncha

Seedless vascula
plants

158

163 Rotifera (wheel animals)
164 Entoprocta

Moss 174
167 Insecta (beetles, fruit flies, bees, wasps,

bugs, ants)
191 Coleodiea (sea squirt)
221 Lepidoptera (buffer flies)
232 Crustaceans, Mollusca, bivalvia,

gastropodea
246 Chordata

Rice 275
Gynosperms

(including pinus)
314

322 Mosquito
Flowering plants 393

499 Fish
688 Amphibia
833 Reptilia
980 Aves (birds)
2,127 Mammalia
2,138 Monkeys
2,145 Anthropoid apes
2,173 Homo sapiens
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The work performed is first applied to maintain the system (far) away from ther-
modynamic equilibrium whereby exergy is lost by transformation into heat at the
temperature of the environment. If more exergy is available, then the system is
moved further away from thermodynamic equilibrium, which is reflected in growth
of gradients. If more than one pathway to depart from equilibrium is offered, then
the one yielding the highest eco-exergy storage (denoted Ex) will tend to be selected,
or expressed differently: among the many ways for ecosystems to move away from
thermodynamic equilibrium, the one maximizing dEx=dt under the prevailing con-
ditions will have a propensity to be selected.

This hypothesis can be considered a translation of Darwin’s theory into thermo-
dynamics. It is supported by several ecological observations and case studies [3,6,7].
Survival implies maintenance of the biomass, and growth means increase of biomass
and information. It costs eco-exergy to construct biomass and gain information, and
therefore biomass and information possess eco-exergy. Survival and growth can,
therefore, be measured by use of the thermodynamic concept eco-exergy, which
may be understood as the work capacity the ecosystem possesses.

The idea of SDMs is to find continuously a new set of parameters (limited for
practical reasons to the most crucial, i.e., sensitive parameters) that is better fitted
for the prevailing conditions of the ecosystem. “Fitted” is defined in the Darwinian
sense by the ability of the species to survive and grow, which may be measured as
discussed earlier by eco-exergy. Figure 2 shows the proposed modeling procedure,
which has been applied in the development of totally 19 SDMs.

For all SDMs developed with eco-exergy as the goal function, the changes ob-
tained by the model were in accordance with actual observations. At least in models
the applicability of the eco-exergy calculations has shown their more practical use,
which can be explained by a robustness in the model calculations by the use of the
ˇ values that, of course, have uncertainties. It is noteworthy that Coffaro et al. [14],
in their structural-dynamic model of the Lagoon of Venice, did not calibrate the
model describing the spatial pattern of various macrophyte species such as Ulva and
Zostera, but used exergy-index optimization to estimate parameters determining the
spatial distribution of these species. They found good accordance between obser-
vations and model, as was able by this method without calibration, to explain more
than 90% of the observed spatial distribution of various species of Zostera and Ulva.

Figure 3 illustrates the theoretical considerations behind the development of a
SDM with eco-exergy as the goal function.

SDM is, of course, more cumbersome to apply than other models due to the eco-
exergy optimization, which, for instance, may take place in the model every 5–30
days, but with a modern fast computer the additional computation is, of course, lim-
ited. The advantage of SDM is clearly that eventually structurally dynamic changes
are considered and if that is the case, a SDM will inevitably give a more accurate
result. It may also be needed to use SDM for the calibration, because changes in,
for instance, phytoplankton composition from spring to summer to fall may imply
that different parameters should be applied in the different seasons. The conclusion
is, therefore, that it is recommended to use SDM, whenever it is known or even
suspected that structurally changes will take place. SDM requires, however, good
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Fig. 2 The procedure used
for the development of struc-
turally dynamic models
(reproduced from [13])

Select parameters based upon literature
studies and according to species

composition

Select most crucial parameters, symbolized
by parameter vector P

Test after time step t  all combinations of
all the selected parameters +/− x%, y% etc
i.e. at least three leves for each parameter.
The total number of combinations to be 
examined is ln, where l is the number of 
levels and n is the number of parameters in
the parameter vector P. The combination
giving the highest exergy is used for the
simulation during the considered time step

Test after time step n*t all combinations of
the selected parameters +/− x%, y% etc.
The combination giving the highest exergy
is used for the simulation during the con-
sidered time step

observations, in most cases also of some structural changes to give acceptable re-
sults. A SDM will not necessarily be more expensive to develop than other models,
but the need for good observations and a good data set will often make the entire
project more expensive.

4 An Illustrative SDM Example

The SDM of Darwin’s finches by Jørgensen and Fath [7] is presented later as an
illustrative example of SDM. The models reflect therefore – as all models – the
available knowledge, which in this case is comprehensive and sufficient to validate
even the ability of the model to describe the changes in the beak size as a result
of climatic changes, causing changes in the amount, availability, and quality of the
seeds that make up the main food item for the finches. The medium ground finches,
Geospiza fortis, on the island Daphne Major were selected for this modeling case
due to very detailed case-specific information found by Grant [15]. The model has
three state variables: seed, Darwin’s Finches adult, and Darwin’s finches juvenile.
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PREVAILING CONDITION 1

PREVAILING CONDITION 2

STRUCTURE 1

STRUCTURE 2

EXERGY IS USED AS
GOAL FUNCTION TO
DETERMINE THE
STRUCTURAL CHANGES

The structure is changed because the prevailing conditions are changed
and adaptation and / or shifts in species composition can offer a better
possibility for survival in the Darwinian sense. Survival is measured 
as biomass and information . Exergy (eco-exergy / work capacity) can 
therefore be used as goal function

Fig. 3 The theoretical considerations behind SDMs developed with eco-exergy as the goal
function are illustrated

The juvenile finches are promoted to adult finches 120 days after birth. The mortality
of the adult finches is expressed as a normal mortality rate [15] C an additional
mortality rate due to food shortage and an additional mortality rate caused by a
disagreement between bill depth and the size and hardness of seeds.

The beak depth can vary between 3.5 and 10.3 cm [15] and the beak size Dp
DH, where D is the seed size and H is the seed hardness, which are both depen-

dent on the precipitation, particularly in the months January to April. It is possible
to determine a handling time for the finches for a given

p
DH as function of the

bill depth, which explains that the accordance between
p

DH and the beak depth
becomes an important survival factor. The relationship is used in the model to find a
function called “diet,” which is compared with

p
DH to find how well the bill depth

fits to the
p

DH of the seed. This fitness function is based on information given in
Grant [15] about the handling time. It influences, as mentioned earlier, the mortality
of adult finches, but it has also impact on the number of eggs laid and the mortality
of the juvenile finches. The growth rate and mortality of seeds is dependent on the
precipitation, which is a forcing function known as a function of time. A function
called shortage of food is calculated from the food required for the finches, which is
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known, and from the food available (the seed state variable). How the food shortage
influences the mortality of juvenile finches and adult finches can be found in [15].
The seed biomass and the number of G. fortis as a function of time from 1975 to
1982 are known [15]. These numbers from 1975 to 1976 have been used to calibrate
the following parameters: the coefficients determining the following:

1. The influence of the fitness function on (a) the mortality of adult finches, (b) the
mortality of juvenile finches, and (c) the number of eggs laid.

2. The influence of food shortage on the mortality of adult and juvenile finches is
known. The influence is, therefore, calibrated within a narrow range of values.

3. The influence of precipitation on the seed biomass (growth and mortality).

All other parameters are known from the literature.
The exergy density is calculated (estimated) as 275 � the concentration of seed

C 980 � the concentration of Darwin’s finches (see Table 2). Every 15 days it is
found if a feasible change in the beak size, taking the generation time and the vari-
ations in the beak size into consideration, will give a higher exergy. If it is the case,
then the beak size is changed accordingly. The modeled changes in the beak size
were confirmed by the observations. The model results of the number of Darwin’s
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Fig. 4 The observed number of finches (filled circles) from 1973 to 1983, compared with the
simulated result (open circles). 1975 and 1976 were used for calibration and 1977=1978 for the
validation
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finches are compared with the observations [15] in Fig. 4. The standard deviation be-
tween modeled and observed values was 11.6%, and the correlation coefficient, r2,
for modeled versus observed values is 0.977. The results of a nonstructural dynamic
model would not be able to predict the changes in the beak size and would, there-
fore, give much too low values for the number of Darwin’s finches because their
beak would not adapt to the lower precipitation yielding harder and bigger seeds.

5 Ecotoxicological SDM Example

The conceptual diagram of the ecotoxicological model that is used to illustrate SDM
is shown in Fig. 5, using the modeling software STELLA. Copper is an algaecide
causing an increase in the mortality of phytoplankton [16] and a decrease in the
phosphorus uptake and photosynthesis [17]. Copper is also reducing the carbon as-
similation of bacteria [18]. The literature gives the change of the following three
parameters in the model: growth rate of phytoplankton, mortality of phytoplankton,

Copper

NUTRIENTS PHYTOPLANK- 
TON

ZOOPLANKTONDETRITUS

GrazingMortality 1

Mortality 2

Carbon dioxide

Photosynthesis

Mineralization

Uptake

Eco-exergy

Fig. 5 Conceptual diagram of an ecotoxicologial model focusing on the influence of copper on the
photosynthetic rate, phytoplankton mortality rate, and the mineralization rate. The boxes are the
state variables; the thick gray arrows symbolize processes and the thin black arrows indicate the
influence of copper on the processes and the calculation of eco-exergy from the state variables.
Because of the change in these three rates, it is an advantage for the zooplankton and the entire
ecosystem to decrease their size. The model is, therefore, made structurally dynamic by allowing
zooplankton to change its size and thereby the specific grazing rate and the specific mortality rate
according to the allometric principles. The size yielding the highest eco-exergy is currently found
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and mineralization rate of detritus with increased copper concentration [16–19]. As
a result the zooplankton is reduced in size [19], which according to the allometric
principles means an increased specific grazing rate and specific mortality rate [19].
It has been observed that the size of zooplankton in a closed system (a pond for in-
stance) is reduced to less than half the size at a copper concentration of 140 mg=m3

compared with a copper concentration of less than 10 mg=m3 [19]. In accordance
with the allometric principles [20], it would result in more than doubling of the
grazing rate and the mortality rate.

The model shown in Fig. 5 was made structurally dynamic by varying the size of
zooplankton and using an allometric equation to determine the corresponding spe-
cific grazing rate and specific mortality rate. The equation expresses that the two
specific rates are inversely proportional to the linear size [20]. In the range of dif-
ferent copper concentrations from 10 to 140 mg=m3 are found by the model which
zooplankton size yields the highest eco-exergy. In accordance with the presented
SDM approach it is expected that the size yielding the highest eco-exergy would be
selected. The results of the model runs are shown in Figs. 6–8. The specific grazing
rate, the size yielding the highest eco-exergy, and the eco-exergy are plotted versus
the copper concentration in these three figures.

As expected is the eco-exergy even at the zooplankton size yielding the highest
eco-exergy decreasing with increase in copper concentration due to the toxic effect
on phytoplankton and bacteria.

The selected size, see Fig. 7, at 140 mg=m3 as also indicated in the literature
is less than half, namely, about 40% of the size at 10 mg=m3. The eco-exergy is
decreasing from 198 kJ/l at 10 mg=m3 to 8 kJ/l at 140 mg=m3. The toxic effect of the
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Fig. 6 The grazing rate that yields the highest eco-exergy is shown at different copper concen-
trations. The grazing rate is increasing more and more rapidly as the copper concentration is
increasing but at a certain level, it is not possible to increase the eco-exergy further by chang-
ing the zooplankton parameters, because the amount of phytoplankton is becoming the limiting
factor for zooplankton growth



The Application of Structurally Dynamic Models in Ecology and Ecotoxicology 391

14 28 42 70 84 112 140
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
iz

e 
in

 m
m

Copper concentration mg/m3

Size in mm

Fig. 7 The zooplankton size that yields the highest eco-exergy is plotted versus the copper concen-
tration. The size is decreasing more and more rapidly as the copper concentration is increasing but
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copper is, in other words, resulting in an eco-exergy reduction to about 4% of the
original eco-exergy level, which is a very significant toxic effect. If the zooplankton
was not adaptable to the toxic effect by changing its size and thereby the parameters,
the reduction in eco-exergy would have been even more pronounced already at a
lower copper concentration. It is, therefore, important for the model results that
the model is made structurally dynamic and thereby accounts for the change of
parameters when the copper concentration is changed.

6 Conclusion

All organisms are able to change their properties to offer the best possibility for
survival under the prevailing conditions. The generally applied bio-geo-chemical
models do not consider this adaptation and they will, therefore, inevitably result
in wrong prognoses. SDMs offer to solve this problem by changing currently the
parameters to the values that yield the highest eco-exergy. The two presented illus-
trative examples have demonstrated how a SDM is working and how it is able to
account for the adaptation. In the first example, the Darwin’s finches are currently
changing their beak size and in the ecotoxicological case study zooplankton is
changing its size. In both cases the changes are approximately in accordance with
the observations. It is, of course, an advantage that SDMs can predict approxi-
mately the changes of the species’ properties, but it is an even more important
advantage that the state variables are predicted closer to the observations by the
SDMs than by bio-geo-chemical models. In accordance with the bio-geo-chemical
model approach the Darwin finches would have died in the first presented example
and also in the second example if the toxic effect of copper had been more pro-
nounced, while the use of SDM in both cases gives reasonably approximate results.
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