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An Outlook on Further Topics

Probability theory is, of course, much more than what one will find in this
book (so far). In this chapter we provide an outlook on some extensions and
further areas and concepts in probability theory. For more we refer to the
more advanced literature cited in Appendix A.

We begin, in the first section, by presenting some extensions of the clas-
sical limit theorems, that is, the law of large numbers and the central limit
theorem, to cases where one relaxes the assumptions of independence and
equidistribution.

Another question in this context is whether there exist (other) limit dis-
tributions if the variance of the summands does not exist (is infinite). This
leads, in the case of i.i.d. summands, to the class of stable distributions and
their, what is called, domains of attraction. Sections 2 and 3 are devoted to
this problem.

In connection with the convergence concepts in Section 6.3, it was men-
tioned that convergence in r-mean was, in general, not implied by the other
convergence concepts. In Section 4 we define uniform integrability, which is
the precise condition one needs in order to assure that moments converge
whenever convergence almost surely, in probability, or in distribution holds.
As a pleasant illustration we prove Stirling’s formula with the aid of the ex-
ponential distribution.

There exists an abundance of situations where extremes rather than sums
are relevant; earthquakes, floods, storms, and many others. Analogous to
“limit theory for sums” there exists a “limit theory for extremes,” that is
for Yn = max{X1, X2, . . . , Xn}, n ≥ 1, where (in our case) X1, X2, . . . , Xn

are i.i.d. random variables. Section 5 provides an introduction to the what is
called extreme value theory. We also mention the closely related records, which
are extremes at first appearance.

Section 7 introduces the Borel–Cantelli lemmas, which are a useful tool for
studying the limit superior and limit inferior of sequences of events, and, as an
extension, in order to decide whether some special event will occur infinitely
many times or not. As a toy example we prove the intuitively obvious fact that
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188 7 An Outlook on Further Topics

if one tosses a coin an infinite number of times there will appear infinitely many
heads and infinitely many tails. For a fair coin this is trivial due to symmetry,
but what about an unfair coin? We also revisit Examples 6.3.1 and 6.3.2, and
introduce the concept of complete convergence.

The final section, preceding some problems for solution, serves as an intro-
duction to one of the most central tools in probability theory and the theory
of stochastic processes, namely the theory of martingales, which, as a very
rough definition, may be thought of as an extension of the theory of sums of
independent random variables with mean zero and of fair games. In order to
fully appreciate the theory one needs to base it on measure theory. Neverthe-
less, the basic flavor of the topic can be understood with our more elementary
approach.

1 Extensions of the Main Limit Theorems

Several generalizations of the central limit theorem seem natural, such as:

1. the summands have (somewhat) different distributions;
2. the summands are not independent ;
3. the variance does not exist.

In the first two subsections we provide some hints on the law of large
numbers and the central limit theorem for the case of independent but not
identically distributed summands. In the third subsection a few comments
are given in the case of dependent summands. Possible (other) limit theorems
when the variance is infinite (does not exist) is a separate issue, to which we
return in Sections 2 and 3 for a short introduction.

1.1 The Law of Large Numbers: The Non-i-i.d. Case

It is intuitively reasonable to expect that the law of large numbers remains
valid if the summands have different distributions—within limits.

We begin by presenting two extensions of this result.

Theorem 1.1. Let X1, X2, . . . be independent random variables with EXk =
µk and VarXk = σ2

k, and suppose that

1
n

n∑
k=1

µk → µ and that
1
n

n∑
k=1

σ2
k → σ2 as n→∞,

(where |µ| <∞ and σ2 <∞). Then

1
n

n∑
k=1

Xk
p→ µ as n→∞.
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Proof. Set Sn =
∑n

k=1Xk, mn =
∑n

k=1 µk, and s2n =
∑n

k=1 σ
2
k, and let ε > 0.

By Chebyshev’s inequality we then have

P
(∣∣∣Sn −mn

n

∣∣∣ > ε
)
≤ s2n
n2ε2

→ 0 as n→∞ ,

which tells us that
Sn −mn

n

p→ 0 as n→∞,

which implies that

Sn

n
=
Sn −mn

n
+
mn

n

p→ 0 + µ = µ as n→∞

via Theorem 6.6.2. 2

The next result is an example of the law of large numbers for weighted
sums.

Theorem 1.2. Let X1, X2, . . . be i.i.d. random variables with finite mean µ,
and let {(ank, 1 ≤ k ≤ n), n ≥ 1} be “weights,” that is, suppose that ank ≥ 0
and

∑n
k=1 ank = 1 for n = 1, 2, . . .. Suppose, in addition, that

max
1≤k≤n

ank ≤
C

n
for all n,

for some positive constant C, and set

Sn =
n∑

k=1

ankXk , n = 1, 2, . . . .

Then
Sn

p→ µ as n→∞.

Proof. The proof follows very much the lines of the previous one. We first
note that

E Sn = µ
n∑

k=1

ank = µ and that VarSn = σ2
n∑

k=1

a2
nk = σ2An ,

where thus

An =
n∑

k=1

a2
nk ≤ max

1≤k≤n
ank

n∑
k=1

ank ≤
C

n
· 1 =

C

n
.

By Chebyshev’s inequality we now obtain

P
(
|Sn − µ| > ε

)
≤ VarSn

ε2
=
σ2An

ε2
≤ σ2C

n
→ 0 as n→∞ ,

and the conclusion follows. 2
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1.2 The Central Limit Theorem: The Non-i-i.d. Case

An important criterion pertaining to the central limit theorem is the Lya-
pounov condition. It should be said, however, that more than finite variance
is necessary in order for the condition to apply. This is the price one pays
for relaxing the assumption of equidistribution. For the proof we refer to the
literature cited in Appendix A.

Theorem 1.3. Suppose that X1, X2, . . . are independent random variables,
set, for k ≥ 1, µk = EXk and σ2

k = VarXk, and suppose that E|Xk|r < ∞
for all k and some r > 2. If

β(n, r) =
∑n

k=1E|Xk − µk|r(∑n
k=1 σ

2
k

)r/2
→ 0 as n→∞, (1.1)

then ∑n
k=1(Xk − µk)√∑n

k=1 σ
2
k

d→ N(0, 1) as n→∞. 2

If, in particular, X1, X2, . . . are identically distributed and, for simplicity,
with mean zero, then Lyapounov’s condition turns into

β(n, r) =
nE|X1|r

(nσ2)r/2
=
E|X1|r

σr
· 1
n1−r/2

→ 0 as n→∞, (1.2)

which proves the central limit theorem under this slightly stronger assumption.

1.3 Sums of Dependent Random Variables

There exist many notions of dependence. One of the first things one learns
in probability theory is that the outcomes of repeated drawings of balls with
replacement from an urn of balls with different colors are independent, whereas
the drawings without replacement are not. Markov dependence means, vaguely
speaking, that the future of a process depends on the past only through the
present. Another important dependence concept is martingale dependence,
which is the topic of Section 8. Generally speaking, a typical dependence
concept is defined via some kind of decay, in the sense that the further two
elements are apart in time or index, the weaker is the dependence.

A simple such concept is m-dependence.

Definition 1.1. The sequence X1, X2, . . . is m-dependent if Xi and Xj are
independent whenever |i− j| > m. 2

Remark 1.1. Independence is the same as 0-dependence.1

1 In Swedish this looks fancier: “Oberoende” is the same as “0-beroende.”
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Example 1.1. Y1, Y2, . . . be i.i.d. random variables, and set

X1 = Y1 · Y2, X2 = Y2 · Y3, . . . , Xk = Yk · Yk+1, . . . .

The sequence X1, X2, . . . clearly is a 1-dependent sequence; neighboring X
variables are dependent, but Xi and Xj with |i− j| > 1 are independent. 2

A common example of m-dependent sequences are the so-called (m + 1)-
block factors defined by

Xn = g(Yn, Yn+1, . . . , Yn+m−1, Yn+m), n ≥ 1,

where Y1, Y2, . . . are independent random variables, and g : Rm+1 → R. Note
that our example is a 2-block factor with g(y1, y2) = y1 · y2.

The law of large numbers and the central limit theorem are both valid in
this setting. Following is the law of large numbers.

Theorem 1.4. Suppose that X1, X2, . . . is a sequence of m-dependent ran-
dom variables with finite mean µ and set Sn =

∑n
k=1Xk, n ≥ 1. Then

Sn

n

p→ µ as n→∞.

Proof. For simplicity we confine ourselves to proving the theorem for m =
1. We then separate Sn into the sums over the odd and even summands,
respectively.

Since the even as well as the odd summands are independent, the law of
large numbers for independent summands, Theorem 6.5.1 tells us that∑m

k=1X2k

m

p→ µ and
∑m

k=1X2k−1

m

p→ µ as m→∞,

so that an application of Theorem 6.6.2 yields

S2m

2m
=

1
2

∑m
k=1X2k−1

m
+

1
2

∑m
k=1X2k

m

p→ 1
2
µ+

1
2
µ = µ as m→∞,

when n = 2m is even. For n = 2m+ 1 odd we similarly obtain

S2m+1

2m+ 1
=

m+ 1
2m+ 1

·
∑m+1

k=1 X2k−1

m+ 1
+

m

2m+ 1
·
∑m

k=1X2k

m

p→ 1
2
µ+

1
2
µ = µ as m→∞ ,

which finishes the proof. 2

Exercise 1.1. Complete the proof of the theorem for general m. 2

In the m-dependent case the dependence stops abruptly. A natural gener-
alization would be to allow the dependence to drop gradually. This introduces
the concept of mixing. There are variations with different names. We refer to
the more advanced literature for details.
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2 Stable Distributions

Let X, X1, X2, . . . be i.i.d. random variables with partial sums Sn, n ≥ 1.
The law of large numbers states that Sn/n

p→ µ as n → ∞ if the mean µ is
finite. The central limit theorem states that (Sn − nµ)/(σ

√
n) d→ N(0, 1) as

n → ∞, provided the mean µ and the variance σ2 exist. A natural question
is whether there exists something “in between,” that is, can we obtain some
(other) limit by normalizing with n to some other power than 1 or 1/2? In
this section and the next one we provide a glimpse into more general limit
theorems for sums of i.i.d. random variables.

Before addressing the question just raised, here is another observation. If,
in particular, we assume that the random variables are C(0, 1)-distributed,
then we recall from Remark 6.5.2 that, for any n ≥ 1,

ϕSn
n

(t) =
(
ϕX

( t
n

))n

=
(
e−|t/n|

)n

= e−|t| = ϕX(t),

that
Sn

n

d= X for all n,

and, hence, that law of large numbers does not hold, which was no contradic-
tion, because the mean does not exist.

Now, if, instead the random variables are N(0, σ2)-distributed, then the
analogous computation shows that

ϕ Sn√
n
(t) =

(
ϕX

( t√
n

))n

=
(

exp
{
− 1

2

( t√
n

)2})n

= e−t2/2 = ϕX(t),

that is,
Sn√
n

d= X for all n,

in view of the uniqueness theorem for characteristic functions.
Returning to our question above it seems, with this in mind, reasonable to

try a distribution whose characteristic function equals exp{−|t|α} for α > 0
(provided this is really a characteristic function also when α 6= 1 and 6= 2).
By modifying the computations above we similarly find that

Sn

n1/α

d= X for all n, (2.1)

where, thus, α = 1 corresponds to the Cauchy distribution and α = 2 to the
normal distribution.

Distributions with a characteristic function of the form

ϕ(t) = e−c|t|α , where 0 < α ≤ 2 and c > 0, (2.2)

are called symmetric stable. However, ϕ as defined in (2.2) is not a character-
istic function for any α > 2.

The general definition of stable distributions, stated in terms of random
variables is as follows.
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Definition 2.1. Let X1, X2, . . . be i.i.d. random variables, and set Sn =
X1 +X2 + · · ·+Xn. The distribution of the random variables is stable (in the
broad sense) if there exist sequences an > 0 and bn such that

Sn
d= anX + bn.

The distribution is strictly stable if bn = 0 for all n. 2

Remark 2.1. The stability pertains to the fact that the sum of any number
of random variables has the same distribution as the individual summands
themselves (after scaling and translation).

Remark 2.2. One can show that if X has a stable distribution, then, neces-
sarily, an = n1/α for some α > 0, which means that our first attempt to
investigate possible characteristic functions was exhaustive (except for sym-
metry) and that, once again, only the case 0 < α ≤ 2 is possible. Moreover,
α is called the index.

Exercise 2.1. Another fact is that if X has a stable distribution with index
α, 0 < α < 2, then

E|X|r
{
<∞, for 0 < r < α,

=∞, for r ≥ α.

This implies, in particular, that the law of large numbers must hold for stable
distributions with α > 1. Prove directly via characteristic functions that this
is the case. Recall also, from above, that the case α = 1 corresponds to the
Cauchy distribution for which the law of large numbers does not hold.

We close this section by mentioning that there exist characterizations in
terms of characteristic functions for the general class of stable distributions
(not just the symmetric ones), but that is beyond the present outlook.

3 Domains of Attraction

We now return to the question posed in the introduction of Section 2, namely
whether there exist limit theorems “in between” the law of large numbers and
the central limit theorem. With the previous section in mind it is natural to
guess that the result is positive, that such results would be connected with
the stable distributions, and that the variance is not necessarily assumed to
exist.

In order to discuss this problem we introduce the notion of domains of
attraction.
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Definition 3.1. Let X, X1, X2, . . . be i.i.d. random variables with partial
sums Sn, n ≥ 1. We say that X, or, equivalently, the distribution FX , be-
longs to the domain of attraction of the (non-degenerate) distribution G if
there exist normalizing sequences {an > 0, n ≥ 1} and {bn, n ≥ 1} such that

Sn − bn
an

d→ G as n→∞.

The notation is FX ∈ D(G); alternatively, X ∈ D(Z) if Z ∈ G. 2

If VarX < ∞, the central limit theorem tells us that X belongs to the
domain of attraction of the normal distribution; choose bn = nE X, and an =√
nVarX. In particular, the normal distribution belongs to its own domain

of attraction. Recalling Section 2 we also note that the stable distributions
belong to their own domain of attraction.

In fact, the stable distributions are the only possible limit distributions.

Theorem 3.1. Only the stable distributions or random variables possess a
domain of attraction.

With this information the next problem of interest would be to exhibit
criteria for a distribution to belong to the domain of attraction of some given
(stable) distribution. In order to state such results we need some facts about
what is called regular and slow variation.

Definition 3.2. Let a > 0. A positive measurable function u on [a,∞) varies
regularly at infinity with exponent ρ, −∞ < ρ <∞, denoted u ∈ RV (ρ), iff

u(tx)
u(t)

→ xρ as t→∞ for all x > 0.

If ρ = 0 the function is slowly varying at infinity; u ∈ SV. 2

Typical examples of regularly varying functions are

xρ, xρ log+ x, xρ log+ log+ x, xρ log+ x

log+ log+ x
, and so on.

Typical slowly varying functions are the above when ρ = 0. Every positive
function with a positive finite limit as x→∞ is slowly varying.

Exercise 3.1. Check that the typical functions behave as claimed.

Here is now the main theorem.

Theorem 3.2. A random variable X with distribution function F belongs to
the domain of attraction of a stable distribution iff there exists L ∈ SV such
that

U(x) = EX2I{|X| ≤ x} ∼ x2−αL(x) as x→∞, (3.1)
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and, moreover, for α ∈ (0, 2), that

P (X > x)
P (|X| > x)

→ p and
P (X < −x)
P (|X| > x)

→ 1− p as x→∞. (3.2)

By partial integration and properties of regularly varying functions one
can show that (3.1) is equivalent to

x2P (|X| > x)
U(x)

→ 2− α
α

as x→∞, for 0 < α ≤ 2, (3.3)

P (|X| > x) ∼ 2− α
α
· L(x)
xα

as x→∞, for 0 < α < 2, (3.4)

which, in view of Theorem 3.1 yields the following alternative formulation of
Theorem 3.2.

Theorem 3.3. A random variable X with distribution function F belongs to
the domain of attraction of
(a) the normal distribution iff U ∈ SV;
(b) a stable distribution with index α ∈ (0, 2) iff (3.4) and (3.2) hold.

Let us, as a first illustration, look at the simplest example.

Example 3.1. Let X, X1, X2, . . . be independent random variables with com-
mon density

f(x) =


1

2x2
, for |x| > 1,

0, otherwise.

Note that the distribution is symmetric and that the mean is infinite.
Now, for x > 1,

P (X > x) =
1
2x
, P (X < −x) =

1
2|x|

, P (|X| > x) =
1
x
, U(x) = x− 1,

so that (3.1)–(3.4) are satisfied (p = 1/2 and L(x) = 1).

Our second example is a boundary case in that the variance does not exist,
but the asymptotic distribution is still the normal one.

Example 3.2. Suppose that X, X1, X2, . . . are independent random variables
with common density

f(x) =


1
|x|3

, for |x| > 1,

0, otherwise.

The distribution is symmetric again, the mean is finite and the variance is
infinite —

∫∞
1

(x2/x3) dx = +∞. As for (3.1) we find that
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U(x) =
∫
|y|≤x

y2f(y) dy = 2
∫ x

1

dy

y
= 2 log x,

so that U ∈ SV as x→∞, that is, X belongs to the domain of attraction of
the normal distribution.

This means that, for a suitable choice of normalizing constants {an, n ≥ 1}
(no centering because of symmetry), we have

Sn

an

d→ N(0, 1) as n→∞.

More precisely, omitting all details, we just mention that one can show that,
in fact,

Sn√
n log n

d→ N(0, 1) as n→∞.

Remark 3.1. The object of Problem 6.8.50 was to prove this result with the
aid of characteristic functions, that is, directly, without using the theory of
domains of attraction.

4 Uniform Integrability

We found in Section 6.3 that convergence in probability does not necessarily
imply convergence of moments. A natural question is whether there exists
some condition that guarantees that a sequence that converges in probability
(or almost surely or in distribution) also converges in r-mean. It turns out
that uniform integrability is the adequate concept for this problem.

Definition 4.1. A sequence X1, X2, . . . is called uniformly integrable if

E|Xn|I{|Xn| > a} → 0 as a→∞ uniformly in n. 2

Remark 4.1. If, for example, all distributions involved are continuous, this is
the same as∫

|x|>a

|x|fXn
(x) dx→ 0 as a→∞ uniformly in n. 2

The following result shows why uniform integrability is the correct concept.
For a proof and much more on uniform integrability, we refer to the literature
cited in Appendix A.

Theorem 4.1. Let X, X1, X2, . . . be random variables such that Xn
p→ X

as n→∞. Let r > 0, and suppose that E|Xn|r <∞ for all n. The following
are equivalent:

(a) {|Xn|r, n ≥ 1} is uniformly integrable;
(b)Xn

r→ X as n→∞;
(c) E|Xn|r → E|X|r as n→∞. 2
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The immediate application of the theorem is manifested in the following
exercise.

Exercise 4.1. Show that if Xn
p→ X as n→∞ and X1, X2, . . . is uniformly

integrable, then EXn → EX as n→∞. 2

Example 4.1. A uniformly bounded sequence of random variables is uniformly
integrable. Technically, if the random variables X1, X2, . . . are uniformly
bounded, there exists some constant A > 0 such that P (|Xn| ≤ A) = 1
for all n. This implies that the expectation in the definition, in fact, equals
zero as soon as a > A.

Example 4.2. In Example 6.3.1 we found that Xn converges in probability as
n→∞ and that Xn converges in r-mean as n→∞ when r < 1 but not when
r ≥ 1. In view of Theorem 4.1 it must follow that {|Xn|r, n ≥ 1} is uniformly
integrable when r < 1 but not when r ≥ 1.

Indeed, it follows from the definition that (for a > 1)

E|Xn|rI{|Xn| > a} = nr · 1
n
· I{a < n} → 0 as a→∞

uniformly in n iff r < 1, which verifies the desired conclusion. 2

Exercise 4.2. State and prove an analogous statement for Example 6.3.2.

Exercise 4.3. Consider the following modification of Example 6.3.1. Let
X1, X2, . . . be random variables such that

P (Xn = 1) = 1− 1
n

and P (Xn = 1000) =
1
n
, n ≥ 2.

Show that Xn
p→ 1 as n→∞, that {|Xn|r, n ≥ 1} is uniformly integrable for

all r > 0, and hence that Xn
r→ 1 as n→∞ for all r > 0. 2

Remark 4.2. Since X1, X2, . . . are uniformly bounded, the latter part follows
immediately from Example 4.1, but it is instructive to verify the conclusion
directly via the definition.

Note also that the difference between Exercise 4.3 and Example 6.3.1 is
that there the “rare” value n drifts off to infinity, whereas here it is a fixed
constant (1000). 2

It is frequently difficult to verify uniform integrability of a sequence di-
rectly. The following result provides a convenient sufficient criterion.

Theorem 4.2. Let X1, X2, . . . be random variables, and suppose that

sup
n
E|Xn|r <∞ for some r > 1.

Then {Xn, n ≥ 1} is uniformly integrable. In particular, this is the case if
{|Xn|r, n ≥ 1} is uniformly integrable for some r > 1.
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Proof. We have

E|Xn|I{|Xn| > a} ≤ a1−rE|Xn|rI{|Xn| > a} ≤ a1−rE|Xn|r

≤ a1−r sup
n
E|Xn|r → 0 as a→∞,

independently, hence uniformly, in n.
The particular case is immediate since more is assumed. 2

Remark 4.3. The typical case is when one wishes to prove convergence of the
sequence of expected values and knows that the sequence of variances is uni-
formly bounded. 2

We close this section with an illustration of how one can prove Stirling’s
formula via the central limit theorem with the aid of the exponential distri-
bution and Theorems 4.1 and 4.2.

Example 4.3. Let X1, X2, . . . be independent Exp(1)-distributed random
variables, and set Sn =

∑n
k=1Xk, n ≥ 1. From the central limit theorem

we know that
Sn − n√

n

d→ N(0, 1) as n→∞,

and, since, for example, the variances of the normalized partial sums are equal
to 1 for all n (so that the second moments are uniformly bounded), it follows
from Theorems 4.2 and 4.1 that

lim
n→∞

E
∣∣∣Sn − n√

n

∣∣∣ = E|N(0, 1)| =
√

2
π
. (4.1)

Since we know that Sn ∈ Γ(n, 1) the expectation can be spelled out exactly
and we can rewrite (4.1) as∫ ∞

0

∣∣∣x− n√
n

∣∣∣ 1
Γ(n)

xn−1e−x dx→
√

2
π

as n→∞. (4.2)

By splitting the integral at x = n, and making the change of variable u = x/n
one arrives after some additional computations at the relation

lim
n→∞

(
n
e

)n√2nπ
n!

= 1 ,

which is—Stirling’s formula. 2

Exercise 4.4. Carry out the details of the program. 2
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5 An Introduction to Extreme Value Theory

Suppose that X1, X2, . . . is a sequence of i.i.d. distributed random variables.
What are the possible limit distributions of the normalized partial sums? If the
variance is finite the answer is the normal distribution in view of the central
limit theorem. In the general case, we found in Section 3 that the possible
limit distributions are the stable distributions.

This section is devoted to the analogous problem for extremes. Thus, let,
for n ≥ 1,

Yn = max{X1, X2, . . . , Xn}.

What are the possible limit distributions of Yn, after suitable normalization,
as n→∞?

The following definition is the analog of Definition 3.1 (which concerned
sums) for extremes.

Definition 5.1. Let X, X1, X2, . . . be i.i.d. random variables, and set Yn =
max1≤k≤nXk, n ≥ 1. We say that X, or, equivalently, the distribution func-
tion FX , belongs to the domain of attraction of the extremal distribution G
if there exist normalizing sequences {an > 0, n ≥ 1} and {bn, n ≥ 1}, such
that

Yn − bn
an

d→ G as n→∞. 2

Example 5.1. Let X1, X2, . . . be independent Exp(1)-distributed random
variables, and set Yn = max{X1, X2, . . . , Xn}, n ≥ 1. Then,

F (x) = 1− e−x for x > 0,

(and 0 otherwise), so that

P (Yn ≤ x) =
(
1− e−x

)n
.

Aiming at something like (1 − u/n)n → eu as n → ∞ suggests that we try
an = 1 and bn = log n to obtain

FYn−log n(x) = P (Yn ≤ x+ log n) =
(
1− e−x−log n

)n
=
(
1− e−x

n

)n

→ e−e−x

as n→∞ ,

for all x ∈ R.

Example 5.2. Let X1, X2, . . . be independent Pa(β, α)-distributed random
variables, and set Yn = max{X1, X2, . . . , Xn}, n ≥ 1. Then,

F (x) =
∫ x

β

αβα

yα+1
dy = 1−

(β
x

)α

for x > β,

(and 0 otherwise), so that
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P (Yn ≤ x) =
(
1−

(β
x

)α)n

.

An inspection of this relation suggests the normalization an = n1/α and bn =
0, which, for x > 0 and n large, yields

Fn−1/αYn
(x) = P (Yn ≤ xn1/α) =

(
1−

( β

xn1/α

)α)n

=
(
1− (β/x)α

n

)n

→ e−(β/x)α

as n→∞ .

Remark 5.1. For β = 1 the example reduces to Example 6.1.2.

Example 5.3. LetX1, X2, . . . be independent U(0, θ)-distributed random vari-
ables (θ > 0), and set Yn = max{X1, X2, . . . , Xn}, n ≥ 1. Thus, F (x) = x/θ
for x ∈ (0, θ) and 0 otherwise, so that,

P (Yn ≤ x) =
(x
θ

)n

.

Now, since Yn
p→ θ as n→∞ (this is intuitively “obvious,” but check Problem

6.8.1), it is more convenient to study θ − Yn, viz.,

P (θ − Yn ≤ x) = P (Yn ≥ θ − x) = 1−
(
1− x

θ

)n

.

The usual approach now suggests an = 1/n and bn = θ. Using this we obtain,
for any x < 0,

P (n(Yn − θ) ≤ x) = P
(
θ − Yn ≥

(−x)
n

)
=
(
1− (−x)

θn

)n

→ e−(−x)/θ as n→∞ . 2

Looking back at the examples we note that the limit distributions have
different expressions and that their domains vary; they are x > 0, x ∈ R,
and x < 0, respectively. It seems that the possible limits may be of at least
three kinds. The following result tells us that this is indeed the case. More
precisely, there are exactly three so-called types, meaning those mentioned in
the theorem below, together with linear transformations of them.

Theorem 5.1. There exist three types of extremal distributions:

Fréchet: Φα(x) =

{
0, for x < 0,
exp{−x−α}, for x ≥ 0,

α > 0;

Weibull: Ψα(x) =

{
exp{−(−x)α}, for x < 0,
1, for x ≥ 0,

α > 0;

Gumbel: Λ(x) = exp{−e−x}, for x ∈ R.
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The proof is beyond the scope of this book, let us just mention that the
so-called convergence of types theorem is a crucial ingredient.

Remark 5.2. Just as the normal and stable distributions belong to their own
domain of attraction (recall relation (2.1) above), it is natural to expect that
the three extreme value distributions of the theorem belong to their domain
of attraction. This is more formally spelled out in Problem 9.10 below.

6 Records

Let X, X1, X2, . . . be i.i.d. continuous random variables. The record times
are L(1) = 1 and, recursively,

L(n) = min{k : Xk > XL(n−1)}, n ≥ 2,

and the record values are
XL(n), n ≥ 1.

The associated counting process {µ(n), n ≥ 1} is defined by

µ(n) = # records among X1, X2, . . . , Xn = max{k : L(k) ≤ n}.

The reason for assuming continuity is that we wish to avoid ties.

-
n

6

Xn

0 1 2 3 4 5 6 7 8 9 10 11 12

r r
r r r r

r
r r

r
r rL(1) = 1

L(2) = 3

L(3) = 7

L(4) = 10
. . .

b b b b b b b b

Fig. 7.1. Partial maxima ◦

Whereas the sequence of partial maxima, Yn, n ≥ 1, describe “the largest
value so far,” the record values pick these values the first time they appear.
The sequence of record values thus constitutes a subsequence of the partial
maxima. Otherwise put, the sequence of record values behaves like a com-
pressed sequence of partial maxima, as is depicted in the above figure.

We begin by noticing that the record times and the number of records
are distribution independent (under our continuity assumption). This is due
to the fact that for a given random variable X with distribution function F ,
it follows that F (X) ∈ U(0, 1). This implies that there is a 1-to-1 map from
every random variable to every other one, which preserves the record times,
and therefore also the number of records—but not the record values.
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Next, set

Ik =

{
1, if Xk is a record,
0, otherwise,

so that µ(n) =
∑n

k=1 Ik, n ≥ 1.
By symmetry, all permutations betweenX1, X2, . . . , Xn are equally likely,

from which we conclude that

P (Ik = 1) = 1− P (Ik = 0) =
1
k
, k = 1, 2, . . . , n.

In addition one can show that the random variables {Ik, k ≥ 1} are indepen-
dent. We collect these facts in the following result.

Theorem 6.1. Let X1, X2, . . . , Xn, n ≥ 1, be i.i.d. continuous random vari-
ables. Then

(a) the indicators I1, I2, . . . , In are independent;
(b)P (Ik = 1) = 1/k for k = 1, 2, . . . , n.

As a corollary it is now a simple task to compute the mean and the variance
of µ(n) and their asymptotics.

Theorem 6.2. Let γ = 0.5772 . . . denote Euler’s constant. We have

mn = E µ(n) =
n∑

k=1

1
k

= log n+ γ + o(1) as n→∞;

Varµ(n) =
n∑

k=1

1
k

(
1− 1

k

)
= log n+ γ − π2

6
+ o(1) as n→∞.

Proof. That E µ(n) =
∑n

k=1
1
k , and that Varµ(n) =

∑n
k=1

1
k (1− 1

k ), is clear.
The remaining claims follow from the facts that

n∑
k=1

1
k

= log n+ γ + o(1) as n→∞ and
∞∑

n=1

1
n2

=
π2

6
.

2

Next we present the weak laws of large numbers for the counting process.

Theorem 6.3. We have

µ(n)
logn

p→ 1 as n→∞.

Proof. Chebyshev’s inequality together with Theorem 6.2 yields

P
(µ(n)− E µ(n)

Var (µ(n))
> ε
)
≤ 1
ε2Var (µ(n))

→ 0 as n→∞,
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which tells us that
µ(n)− E µ(n)

Var (µ(n))
p→ 0 as n→∞.

Finally,

µ(n)
logn

=
µ(n)− E µ(n)

Var (µ(n))
· Var (µ(n))

logn
+
E µ(n)
logn

p→ 0 · 1 + 1 = 1 as n→∞,

in view of Theorem 6.2 (and Theorem 6.6.2). 2

The central limit theorem for the counting process runs as follows.

Theorem 6.4. We have
µ(n)− logn√

logn
d→ N(0, 1) as n→∞.

Proof. We check the Lyapounov condition (1.1) with r = 3:

E|Ik − E Ik|3 =
∣∣∣0− 1

k

∣∣∣3 · (1− 1
k

)
+
∣∣∣1− 1

k

∣∣∣3 1
k

=
(
1− 1

k

)1
k
·
( 1
k2

+
(
1− 1

k

)2)
≤ 2
(
1− 1

k

)1
k
,

so that

β(n, 3) =
∑n

k=1E|Xk − µk|3(∑n
k=1 σ

2
k

)3/2
≤ 2

∑n
k=1

(
1− 1

k

)
1
k(∑n

k=1

(
1− 1

k

)
1
k

)3/2

= 2
( n∑

k=1

(
1− 1

k

)1
k

)−1/2

→ 0 as n→∞,

since
n∑

k=1

(
1− 1

k

)1
k
≥ 1

2

n∑
k=2

1
k
→∞ as n→∞. 2

Exercise 6.1. Another way to prove this is via characteristic functions or
moment generating functions; note, in particular, that |Ik− 1

k | ≤ 1 for all k.2

The analogous results for record times state that

logL(n)
n

p→ 1 as n→∞,

logL(n)− n√
n

d→ N(0, 1) as n→∞.

In the opening of this section we found that the record values, {XL(n), n ≥
1}, seemed to behave like a compressed sequence of partial maxima, which
makes it reasonable to believe that there exist three possible limit distributions
for XL(n) as n → ∞, which are somehow connected with the the three limit
theorems for extremes. The following theorem shows that this is, indeed, the
case.
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Theorem 6.5. Suppose that F is absolutely continuous. The possible types
of limit distributions for record values are

Φ(− log(− logG(x))),

where G is an extremal distribution and Φ the distribution function of the
standard normal distribution. More precisely, the three classes or types of
limit distributions are

Φ(R)
α (x) =

{
0, for x < 0,
Φ(α log x), for x ≥ 0,

α > 0;

Ψ (R)
α (x) =

{
Φ(−α log(−x)), for x < 0,
1, for x ≥ 0,

α > 0;

Λ(R)(x) = Φ(x), for x ∈ R.

7 The Borel–Cantelli Lemmas

The aim of this section is to provide some additional material on a.s. con-
vergence. Although the reader cannot be expected to appreciate the concept
fully at this level, we add here some additional facts and properties to shed
somewhat light on it. The main results or tools are the Borel–Cantelli lemmas.
We begin, however, with the following definition:

Definition 7.1. Let {An, n ≥ 1} be a sequence of events (subsets of Ω). We
define

A∗ = lim inf
n→∞

An =
∞⋃

n=1

∞⋂
m=n

Am,

A∗ = lim sup
n→∞

An =
∞⋂

n=1

∞⋃
m=n

Am. 2

Thus, if ω ∈ Ω belongs to the set lim infn→∞An, then ω belongs to
⋂∞

m=nAm

for some n, that is, there exists an n such that ω ∈ Am for all m ≥ n. In
particular, if An is the event that something special occurs at “time” n, then
lim infn→∞Ac

n means that from some n onward this property never occurs.
Similarly, if ω ∈ Ω belongs to the set lim supn→∞An, then ω belongs to⋃∞

m=nAm for every n, that is, no matter how large we choosem there is always
some n ≥ m such that ω ∈ An, or, equivalently, ω ∈ An for infinitely many
values of n or, equivalently, for arbitrarily large values of n. A convenient way
to express this is

ω ∈ {An infinitely often (i.o.)} ⇐⇒ ω ∈ A∗. (7.1)
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Example 7.1. Let X1, X2, . . . be a sequence of random variables and let An =
{|Xn| > ε}, n ≥ 1, ε > 0. Then ω ∈ lim infn→∞Ac

n means that ω is such that
|Xn(ω)| ≤ ε for all sufficiently large n, and ω ∈ lim supn→∞An means that
ω is such that there exist arbitrarily large values of n such that |Xn(ω)| > ε.
In particular, every ω for which Xn(ω) → 0 as n → ∞ must be such that,
for every ε > 0, only finitely many of the real numbers Xn(ω) exceed ε in
absolute value. Hence,

Xn
a.s.→ 0 as n→∞ ⇐⇒ P (|Xn| > ε i.o.) = 0 for all ε > 0. (7.2)

We shall return to this example later. 2

Here is the first Borel–Cantelli lemma.

Theorem 7.1. Let {An, n ≥ 1} be arbitrary events. Then

∞∑
n=1

P (An) <∞ =⇒ P (An i.o.) = 0.

Proof. We have

P (An i.o.) = P (lim sup
n→∞

An) = P (
∞⋂

n=1

∞⋃
m=n

Am)

≤ P (
∞⋃

m=n

Am) ≤
∞∑

m=n

P (Am)→ 0 as n→∞.
2

The converse does not hold in general—one example is given at the very end
of this section. However, with an additional assumption of independence, the
following, second Borel–Cantelli lemma, holds true.

Theorem 7.2. Let {An, n ≥ 1} be independent events. Then

∞∑
n=1

P (An) =∞ =⇒ P (An i.o.) = 1.

Proof. By the De Morgan formula and independence we obtain

P (An i.o.) = P

( ∞⋂
n=1

∞⋃
m=n

Am

)
= 1− P

( ∞⋃
n=1

∞⋂
m=n

Ac
m

)

= 1− lim
n→∞

P

( ∞⋂
m=n

Ac
m

)
= 1− lim

n→∞
lim

N→∞
P

( N⋂
m=n

Ac
m

)

= 1− lim
n→∞

lim
N→∞

N∏
m=n

(
1− P (Am)

)
.
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Now, since for 0 < x < 1 we have e−x ≥ 1− x, it follows that

N∏
m=n

(
1− P (Am)

)
≤ exp

{
−

N∑
m=n

P (Am)
}
→ 0 as N →∞

for every n, since, by assumption,
∑∞

m=1 P (Am) =∞. 2

Remark 7.1. There exist more general versions of this result that allow for
some dependence between the events (i.e., independence is not necessary for
the converse to hold). 2

As a first application, let us reconsider Examples 6.3.1 and 6.3.2.

Example 7.2. Thus, X2, X3, . . . is a sequence of random variables such that

P (Xn = 1) = 1− 1
nα

and P (Xn = n) =
1
nα
, n ≥ 2,

where α is some positive number. Under the additional assumption that the
random variables are independent, it was claimed in Remark 6.3.5 that Xn

a.s.→
1 as n→∞ when α = 2 and proved in Example 6.3.1 that this is not the case
when α = 1.

Now, in view of the first Borel–Cantelli lemma, it follows immediately
that Xn

a.s.→ 1 as n → ∞ for all α > 1, even without any assumption about
independence! To see this we first recall Example 7.1, according to which

Xn
a.s.→ 1 as n→∞ ⇐⇒ P (|Xn − 1| > ε i.o.) = 0 for all ε > 0.

The desired conclusion now follows from Theorem 7.1 since, for α > 1,

∞∑
n=1

P (|Xn − 1| > ε) =
∞∑

n=1

1
nα

<∞ for all ε > 0.

It follows, moreover, from the second Borel–Cantelli lemma that if, in addition,
we assume that X1, X2, . . . are independent, then we do not have almost-sure
convergence for any α ≤ 1. In particular, almost-sure convergence holds if and
only if α > 1 in that case. 2

A second look at the arguments above shows (please check!) that, in fact,
the following, more general result holds true.

Theorem 7.3. Let X1, X2, . . . be a sequence of independent random vari-
ables. Then

Xn
a.s.→ 0 as n→∞ ⇐⇒

∞∑
n=1

P (|Xn| > ε) <∞ for all ε > 0. 2
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Let us now comment on formula(s) (6.3.1) (and (6.3.2)), which were presented
before without proof, and show, at least, that almost-sure convergence implies
their validity. Toward this end, let X1, X2, . . . be a sequence of random vari-
ables and A = {ω : Xn(ω)→ X(ω) as n→∞} for some random variable X.
Then (why?)

A =
∞⋂

n=1

∞⋃
m=1

∞⋂
i=m

{
|Xi −X| ≤

1
n

}
. (7.3)

Thus, assuming that almost-sure convergence holds, we have P (A) = 1, from
which it follows that

P
( ∞⋃

m=1

∞⋂
i=m

{
|Xi −X| ≤

1
n

})
= 1

for all n. Furthermore, the sets {
⋂∞

i=m{|Xi −X| ≤ 1/n}, m ≥ 1 } are mono-
tone increasing as m → ∞, which, in view of Lemma 6.3.1, implies that, for
all n,

lim
m→∞

P
( ∞⋂

i=m

{
|Xi −X| ≤

1
n

})
= P

( ∞⋃
m=1

∞⋂
i=m

{
|Xi −X| ≤

1
n

})
.

However, the latter probability was just seen to equal 1, from which it follows
that P (

⋂∞
i=m{|Xi−X| ≤ 1/n}) can be made arbitrary close to 1 by choosing

m large enough. Therefore, since n was arbitrary we have shown (why?) that
if Xn

a.s.→ X as n→∞ then, for every ε > 0 and δ, 0 < δ < 1, there exists m0

such that for all m > m0 we have

P
( ∞⋂

i=m

{|Xi −X| < ε}
)
> 1− δ,

which is exactly (6.3.1) (which was equivalent to (6.3.2)).

7.1 Patterns

We begin with an example of a different and simpler nature.

Example 7.3. Toss a regular coin repeatedly (independent tosses) and let An =
{the nth toss yields a head} for n ≥ 1. Then

P (An i.o.) = 1.

To see this we note that
∑∞

n=1 P (An) =
∑∞

n=1 1/2 = ∞, and the conclusion
follows from Theorem 7.2.

In words, if we toss a regular coin repeatedly, we obtain only finitely many
heads with probability zero. Intuitively, this is obvious since, by symmetry,
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if this were not true, the same would not be true for tails either, which is
impossible, since at least one of them must appear infinitely often.

However, for a biased coin, one could imagine that if the probability of
obtaining heads is “very small,” then it might happen that, with some “very
small” probability, only finitely many heads appear. To treat that case, sup-
pose that P (heads) = p, where 0 < p < 1. Then

∑∞
n=1 P (An) =

∑∞
n=1 p =∞.

We thus conclude, from the second Borel–Cantelli lemma, that P (An i.o.) = 1
for any coin (unless it has two heads and no tails, or vice versa). 2

The following exercise can be solved similarly, but a little more care is
required, since the corresponding events are no longer independent; recalling
Subsection 1.3 we find that the events form a 1-dependent sequence.

Exercise 7.1. Toss a coin repeatedly as before and let An = {the (n− 1)th
and the nth toss both yield a head} for n ≥ 2. Then

P (An i.o.) = 1.

In other words, the event “two heads in a row” will occur infinitely often with
probability 1.

Exercise 7.2. Toss another coin as above. Show that any finite pattern occurs
infinitely often with probability 1. 2

Remark 7.2. There exists a theorem, called Kolmogorov’s 0-1 law, according
to which, for independent events {An, n ≥ 1}, the probability P (An i.o.) can
only assume the values 0 or 1. Example 7.3 above is of this kind, and, by
exploiting the fact that the events {A2n, n ≥ 1} are independent, one can
show that the law also applies to Exercise 7.1. The problem is, of course, to
decide which of the values is the true one for the problem at hand. 2

The previous problem may serve as an introduction to patterns. In some
vague sense we may formulate this by stating that given a finite alphabet,
any finite sequence of letters, such that the letters are selected uniformly at
random, will appear infinitely often with probability 1. A natural question
is to ask how long one has to wait for the appearance of a given sequence.
That this problem is more sophisticated than one might think at first glance
is illustrated by the following example.

Example 7.4. Let X, X1, X2, . . . be i.i.d. random variables, such that P (X =
0) = P (X = 1) = 1/2.

(a) Let N1 be the number of 0’s and 1’s until the first appearance of the
pattern 10. Find EN1.

(b) Let N2 be the number of 0’s and 1’s until the first appearance of the
pattern 11. Find EN2.
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Before we try to solve this problem it seems pretty obvious that the answers
are the same for (a) and (b). However, this is not true!
(a) Let N1 be the required number. A realization of the game would run as
follows: We start off with a random number of 0’s (possibly none) which at
some point are followed by a 1, after which we are done as soon as a 0 appears.
Technically, the pattern 10 appears after the following sequence

000 . . . 0001︸ ︷︷ ︸
M1

111 . . . 1110︸ ︷︷ ︸
M2

,

where thusM1 andM2 are independent Fs(1/2)-distributed random variables,
which implies that

EN1 = E(M1 +M2) = EM1 + EM2 = 2 + 2 = 4.

(b) Let N2 be the required number. This case is different, because when the
first 1 has appeared we are done only if the next digit equals 1. If this is not the
case we start over again. This means that there will be a geometric number of
M1 blocks followed by 0, after which the sequence is finished off with another
M1 block followed by 1:

000 . . . 0001︸ ︷︷ ︸
M1(1)

0 000 . . . 0001︸ ︷︷ ︸
M1(2)

0 . . . 000 . . . 0001︸ ︷︷ ︸
M1(Y )

0 000 . . . 0001︸ ︷︷ ︸
M∗

1

1 ,

that is,

N2 =
Y∑

k=1

(M1(k) + 1) + (M∗
1 + 1),

where, thus Y ∈ Ge(1/2), M1(k), and M∗
1 all are distributed as M1 and all

random variables are independent. Thus,

EN2 = E (Y + 1) · E(M1 + 1) = (1 + 1) · (2 + 1) = 6.

Alternatively, and as the mathematics reveals, we may consider the experi-
ment as consisting of Z (= Y + 1) blocks of size M1 + 1, where the last block
is a success and the previous ones are failures. With this viewpoint we obtain

N2 =
Z∑

k=1

(M1(k) + 1),

and the expected value turns out the same as before, since Z ∈ Fs(1/2).
Another solution that we include because of its beauty is to condition on

the outcome of the first digit(s) and see how the process evolves after that
using the law of total probability. A similar kind of argument was used in
the early part of the proof of Theorem 3.7.3 concerning the probability of
extinction in a branching process.
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There are three ways to start off:

1. the first digit is a 0, after which we start from scratch;
2. the first two digits are 10, after which we start from scratch;
3. the first two digits are 11, after which we are done.

It follows that
N2 =

1
2
(1 +N ′

2) +
1
4
(2 +N ′′

2 ) +
1
4
· 2,

where N ′
2 and N ′′

2 are distributed as N2. Taking expectation yields

EN2 =
1
2
· (1 + EN2) +

1
4
· (2 + EN2) +

1
4
· 2 =

3
2

+
3
4
EN2,

from which we conclude that EN2 = 6.
To summarize, for the sequence “10” the expected number was 4 and for

the sequence “11” it was 6. By symmetry it follows that for “01” and “00”
the answers must also be 4 and 6, respectively.

The reason for the different answers is that beginning and end are over-
lapping in 11 and 00, but not in 10 and 01. The overlapping makes it harder
to obtain the desired sequence. This may also be observed in the different
solutions. Whereas in (a) once the first 1 has appeared we simply have to wait
for a 0, in (b) the 0 must appear immediately after the 1, otherwise we start
from scratch again. Note how this is reflected in the last solution of (b).

7.2 Records Revisited

For another application of the Borel–Cantelli lemmas we recall the records
from Section 6. For a sequence X1, X2, . . . of i.i.d. continuous random vari-
ables the record times were L(1) = 1 and L(n) = min{k : Xk > XL(n−1)} for
n ≥ 2. We also introduced the indicator variables {Ik, k ≥ 1}, which equal 1 if
a record is observed and 0 otherwise, and the counting process {µ(n), n ≥ 1}
is defined by

µ(n) =
n∑

k=1

Ik = # records among X1, X2, . . . , Xn = max{k : L(k) ≤ n}.

Since P (Ik = 1) = 1/k for all k we conclude that

∞∑
n=1

P (Ik = 1) =∞,

so that, because of the independence of the indicators, the second Borel–
Cantelli lemma tells us that there will be infinitely many records with prob-
ability 1. This is not surprising, since, intuitively, there is always room for a
new observation that is bigger than all others so far.
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After this it is tempting to introduce double records, which appear when-
ever there are two records immediately following each other. Intuition this
time might suggest once more that there is always room for two records in a
row. So, let us check this.

Let Dn = 1 if Xn produces a double record, that is, if Xn−1 and Xn both
are records, and let Dn = 0 otherwise. Then, for n ≥ 2,

P (Dn = 1) = P (In = 1, In−1 = 1) = P (In = 1) · P (In−1 = 1) =
1
n
· 1
n− 1

.

We also note that the random variables {Dn, n ≥ 2} are not independent
(more precisely, they are 1-dependent), which causes no problem. Namely,

∞∑
n=2

P (Dn = 1) =
∞∑

n=2

1
n(n− 1)

= lim
m→∞

m∑
n=2

( 1
n− 1

− 1
n

)
= lim

m→∞
(1− 1

m
) = 1,

so that by the first Borel–Cantelli lemma—which does not require inde-
pendence—we conclude that

P (Dn = 1 i.o.) = 0,

that is, the probability of infinitely many double records is equal to zero.
Moreover, the expected number of double records is

E
∞∑

n=2

Dn =
∞∑

n=2

EDn =
∞∑

n=2

P (Dn = 1) = 1;

in other words, we can expect one double record. A detailed analysis shows
that, in fact, the total number of double records is

∞∑
n=2

Dn ∈ Po(1).

7.3 Complete Convergence

We close this section by introducing another convergence concept, which, as
will be seen, is closely related to the Borel–Cantelli lemmas.

Definition 7.2. A sequence {Xn, n ≥ 1} of random variables converges com-
pletely to the constant θ if

∞∑
n=1

P (|Xn − θ| > ε) <∞ for all ε > 0. 2

Two immediate observations are that complete convergence always implies
a.s. convergence in view of the first Borel–Cantelli lemma and that complete
convergence and almost-sure convergence are equivalent for sequences of in-
dependent random variables.
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Theorem 7.4. Let X1, X2, . . . be random variables and θ be some constant.
The following implications hold as n→∞:

Xn → θ completely =⇒ Xn
a.s.→ θ.

If, in addition, X1, X2, . . . are independent, then

Xn → θ completely ⇐⇒ Xn
a.s.→ θ. 2

Example 7.5. Another inspection of Example 6.3.1 tells us that it follows im-
mediately from the definition of complete convergence that Xn → 1 com-
pletely as n → ∞ when α > 1 and that complete convergence does not hold
if X1, X2, . . . are independent and α ≤ 1. 2

The concept was introduced in the late 1940s in connection with the following
result:

Theorem 7.5. Let X1, X2, . . . be a sequence of i.i.d. random variables, and
set Sn =

∑n
k=1Xk, n ≥ 1. Then

Sn

n
→ 0 completely as n→∞ ⇐⇒ EX = 0 and EX2 <∞ ,

or, equivalently,

∞∑
n=1

P (|Sn| > nε) <∞ for all ε > 0 ⇐⇒ EX = 0 and EX2 <∞ . 2

Remark 7.3. A first naive attempt to prove the sufficiency would be to use
Chebyshev’s inequality. The attack fails, however, since the harmonic series
diverges; more sophisticated tools are required. 2

We mentioned in Remark 6.5.1 that the so-called strong law of large num-
bers, which states that Sn/n converges almost surely as n→∞, is equivalent
to the existence of the mean, EX. Consequently, if the mean exists and/but
the variance (or any moment of higher order than the first one) does not exist,
then almost-sure convergence holds. In particular, if the mean equals 0, then

P (|Sn| > nε i.o.) = 0 for all ε > 0 ,

whereas Theorem 7.5 tells us that the corresponding Borel–Cantelli sum di-
verges in this case. This is the example we promised just before stating The-
orem 7.2. Note also that the events {|Sn| > nε, n ≥ 1} are definitely not
independent.



8 Martingales 213

8 Martingales

One of the most important modern concepts in probability is the concept
of martingales. A rigorous treatment is beyond the scope of this book. The
purpose of this section is to give the reader a flavor of martingale theory in a
slightly simplified way.

Definition 8.1. Let X1, X2, . . . be a sequence of random variables with finite
expectations. We call X1, X2, . . . a martingale if

E(Xn+1 | X1, X2, . . . , Xn) = Xn for all n ≥ 1. 2

The term martingale originates in gambling theory. The famous game
double or nothing, in which the gambling strategy is to double one’s stake as
long as one loses and leave as soon as one wins, is called a “martingale.” That
it is, indeed, a martingale in the sense of our definition will be seen below.

Exercise 8.1. Use Theorem 2.2.1 to show that X1, X2, . . . is a martingale if
and only if

E(Xn | X1, X2, . . . , Xm) = Xm for all n ≥ m ≥ 1. 2

In general, consider a game such that Xn is the gambler’s fortune after
n plays, n ≥ 1. If the game satisfies the martingale property, it means that
the expected fortune of the player, given the history of the game, equals the
current fortune. Such games may be considered to be fair, since on average
neither the player nor the bank loses any money.

Example 8.1. The canonical example of a martingale is a sequence of partial
sums of independent random variables with mean zero. Namely, let Y1, Y2, . . .
be independent random variables with mean zero, and set

Xn = Y1 + Y2 + · · ·+ Yn, n ≥ 1.

Then

E(Xn+1 | X1, X2, . . . , Xn) = E(Xn + Yn+1 | X1, X2, . . . , Xn)
= Xn + E(Yn+1 | X1, X2, . . . , Xn)
= Xn + E(Yn+1 | Y1, Y2, . . . , Yn)
= Xn + 0 = Xn,

as claimed. For the second equality we used Theorem 2.2.2(a), and for the
third one we used the fact that knowledge of X1, X2, . . . , Xn is equivalent to
knowledge of Y1, Y2, . . . , Yn. The last equality follows from the independence
of the summands; recall Theorem 2.2.2(b). 2
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Another example is a sequence of products of independent random vari-
ables with mean 1.

Example 8.2. Suppose that Y1, Y2, . . . are independent random variables with
mean 1, and set Xn =

∏n
k=1 Yk, n ≥ 1 (with Y0 = X0 = 1). Then

E(Xn+1 | X1, X2, . . . , Xn) = E(Xn · Yn+1 | X1, X2, . . . , Xn)
= Xn · E(Yn+1 | X1, X2, . . . , Xn)
= Xn · 1 = Xn,

which verifies the martingale property of {Xn, n ≥ 1}.

One application of this example is the game “double or nothing” mentioned
above. To see this, set X0 = 1 and, recursively,

Xn+1 =

{
2Xn, with probability 1

2 ,

0, with probability 1
2 ,

or, equivalently,

P (Xn = 2n) =
1
2n
, P (Xn = 0) = 1− 1

2n
for n ≥ 1.

Since

Xn =
n∏

k=1

Yk,

where Y1, Y2, . . . are i.i.d. random variables such that P (Yk = 0) = P (Yk =
2) = 1/2 for all k ≥ 1, it follows that Xn equals a product of i.i.d. random
variables with mean 1, so that {Xn, n ≥ 1} is a martingale.

A problem with this game is that the expected money spent when the
game is over is infinite. Namely, suppose that the initial stake is 1 euro. If the
gambler wins at the nth game, she or he has spent 1+2+4+· · ·+2n−1 = 2n−1
euros and won 2n euros, for a total net of 1 euro. The total number of games is
Fs(1/2)-distributed. This implies on the one hand that, on average, a success
or win occurs after two games, and on the other hand that, on average, the
gambler will have spent an amount of

∞∑
n=1

1
2n
·
(
2n − 1

)
=∞

euros in order to achieve this. In practice this is therefore an impossible game.
A truncated version would be to use the same strategy but to leave the game
no matter what happens after (at most) a fixed number of games (to be
decided before the game starts).

Another example is related to the likelihood ratio test. Let Y1, Y2, . . . , Yn

be independent random variables with common density f and some character-
izing parameter θ of interest. In order to test the null hypothesis H0 : θ = θ0
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against the alternative H1 : θ = θ1, the Neyman–Pearson lemma in statistics
tells us that such a test should be based on the likelihood ratio statistic

Ln =
n∏

k=1

f(Xk; θ1)
f(Xk; θ0)

,

where fθ0 and fθ1 are the densities under the null and alternative hypotheses,
respectively.

Now, the factors f(Xk; θ1)/f(Xk; θ0) are i.i.d. random variables, and, un-
der the null hypothesis, the mean equals

E0

(f(Xk; θ1)
f(Xk; θ0)

)
=
∫ ∞

−∞

f(x; θ1)
f(x; θ0)

f(x; θ0) dx =
∫ ∞

−∞
f(x; θ1) dx = 1,

that is, Ln is made up as a product of i.i.d. random variables with mean 1,
from which we immediately conclude that {Ln, n ≥ 1} is a martingale.

We also remark that if = in the definition is replaced by≥ thenX1, X2, . . .
is called a submartingale, and if it is replaced by ≤ it is called a supermartin-
gale. As a typical example one can show that if {Xn, n ≥ 1} is a martingale
and E|Xn|r < ∞ for all n ≥ 1 and some r ≥ 1, then {|Xn|r, n ≥ 1} is a
submartingale.

Applying this to the martingale in Example 8.1 tells us that whereas the
sums {Xn, n ≥ 1} of independent random variables with mean zero consti-
tute a martingale, such is not the case with the sequence of sums of squares
{X2

n, n ≥ 1} (provided the variances are finite); that sequence is a submartin-
gale. However by centering the sequence one obtains a martingale. This is the
topic of Problems 9.11 and 9.12.

There also exist so-called reversed martingales. If we interpret n as time,
then “reversing” means reversing time. Traditionally one defines reversed mar-
tingales via the relation

Xn = E(Xm | Xn+1, Xn+2, Xn+3, . . .) for all m < n ,

which means that one conditions on “the future.” The more modern way is
to let the index set be the negative integers as follows.

Definition 8.2. Let . . . , X−3, X−2, X−1 be a sequence of random variables
with finite expectations. We call . . . , X−3, X−2, X−1 a reversed martingale if

E(Xn+1 | . . . , Xn−3, Xn−2, Xn−1, Xn) = Xn for all n ≤ −1. 2

The obvious parallel to Exercise 8.1 is next.

Exercise 8.2. Use Theorem 2.2.1 to show that . . . , X−3, X−2, X−1 is a re-
versed martingale if and only if

E(Xn | . . . , Xm−3, Xm−2, Xm−1, Xm) = Xm for all m ≤ n ≤ 0.

In particular, . . . , X−3, X−2, X−1 is a reversed martingale if and only if,

E(X−1 | . . . , Xm−3, Xm−2, Xm−1, Xm) = Xm for all m ≤ −1. 2
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Just as the sequence of sums of independent random variables with mean
zero constitutes the generic example of a martingale it turns out that the
sequence of arithmetic means of i.i.d. random variables with finite mean (not
necessarily equal to zero) constitutes the generic example of a reversed mar-
tingale.

To see this, suppose that Y1, Y2, . . . are i.i.d. random variables with finite
mean µ, set Sn =

∑n
k=1 Yk, n ≥ 1, and

X−n =
Sn

n
for n ≥ 1.

We wish to show that

{Xn, n ≤ −1} is a martingale. (8.1)

Now, knowing the arithmetic means when k ≥ n is the same as knowing Sn

and Yk, k > n, so that, due to independence,

E
(
X−n | Xk, k ≤ n− 1

)
= E

(Sn

n
| Sn+1, Yn+2, Yn+3 , . . .

)
= E

(Sn

n
| Sn+1

)
=

1
n

n∑
k=1

E(Yk | Sn+1)

=
1
n

n∑
k=1

Sn+1

n+ 1
=
Sn+1

n+ 1
= X−n−1,

where, in the third to last equality we exploited the symmetry, which in turn,
is due to the equidistribution.

We have thus established relation (8.1) as desired.

Remark 8.1. Reversed submartingales and reversed supermartingales may be
defined “the obvious way.” 2

Exercise 8.3. Define them! 2

We close this introduction to the theory of martingales by stating (without
proof) the main convergence results. Analogous, although slightly different,
results also hold for submartingales and supermartingales.

Theorem 8.1. Suppose that {Xn, n ≥ 1} is a martingale. If

sup
n
Emax{Xn, 0} <∞,

then Xn converges almost surely as n → ∞. Moreover, the following are
equivalent:

(a) {Xn, n ≥ 1} is uniformly integrable;
(b)Xn converges in 1-mean;
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(c) Xn
a.s.→ X∞ as n→∞, where E|X∞| <∞, and X∞ closes the sequence,

that is, {Xn, n = 1, 2, . . . ,∞} is a martingale;
(d) there exists a random variable Y with finite mean such that

Xn = E(Y | X1, X2, . . . , Xn) for all n ≥ 1. 2

The analog for reversed martingales runs as follows.

Theorem 8.2. Suppose that {Xn, n ≤ −1} is a reversed martingale. Then

(a) {Xn, n ≤ −1} is uniformly integrable;
(b)Xn → X−∞ a.s. and in 1-mean as n→ −∞;
(c) {Xn, −∞ ≤ n ≤ −1} is a martingale. 2

Note that the results differ somewhat. This is due to the fact that whereas
ordinary, forward martingales always have a first element, but not necessarily
a last element (which would correspond to X∞), reversed martingales always
have a last element, namely X−1, but not necessarily a first element (which
would correspond to X−∞). This, in turn, has the effect that reversed mar-
tingales “automatically” are uniformly integrable, as a consequence of which
conclusions (a)–(c) are “automatic” for reversed martingales, but only hold
under somewhat stronger assumptions for (forward) martingales.

Note also that the generic martingale, the sum of independent random
variables with mean zero, need not be convergent at all. This is, in particular,
the case if the summands are equidistributed with finite variance σ2, in which
case the sum Sn behaves, asymptotically, like σ

√
n ·N(0, 1), where N(0, 1) is

a standard normal random variable.

9 Problems

1. Let X1, X2, . . . be independent, equidistributed random variables, and set
Sn = X1 + · · ·+Xn, n ≥ 1. The sequence {Sn, n ≥ 0} (where S0 = 0) is
called a random walk. Consider the following “perturbed” random walk.
Let {εn, n ≥ 1} be a sequence of random variables such that, for some
fixed A > 0, we have P (|εn| ≤ A) = 1 for all n, and set

Tn = Sn + εn, n = 1, 2, . . . .

Suppose that EX1 = µ exists. Show that the law of large numbers holds
for the perturbed random walk {Tn, n ≥ 1}.

2. In a game of dice one wishes to use one of two dice A and B. A has two
white and four red faces and B has two red and four white faces. A coin is
tossed in order to decide which die is to be used and that die is then used
throughout. Let {Xk, k ≥ 1} be a sequence of random variables defined
as follows:
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Xk =

{
1, if red is obtained,
0, if white is obtained

at the kth roll of the die. Show that the law of large numbers does not
hold for the sequence {Xk, k ≥ 1}. Why is this the case?

3. Suppose that X1, X2, . . . are independent random variables such that
Xk ∈ Be(pk), k ≥ 1, and set Sn =

∑n
k=1Xk, mn =

∑n
k=1 pk, and s2n =∑n

k=1 pk(1− pk), n ≥ 1. Show that if

∞∑
k=1

pk(1− pk) = +∞, (9.1)

then
Sn −mn

sn

d→ N(0, 1) as n→∞.

Remark 1. The case pk = 1/k, k ≥ 1, corresponds to the record times,
and we rediscover Theorem 6.4.
Remark 2. One can show that the assumption (9.1) is necessary for the
conclusion to hold.

4. Prove the following central limit theorem for a sum of independent (not
identically distributed) random variables: Suppose that X1, X2, . . . are
independent random variables such that Xk ∈ U(−k, k), and set Sn =∑n

k=1Xk, n ≥ 1. Show that

Sn

n3/2

d→ N(µ, σ2) as n→∞,

and determine µ and σ2.
Remark. Note that the normalization is not proportional to

√
n; rather,

it is asymptotically proportional to
√

VarSn.
5. Let X1, X2, . . . be independent, U(0, 1)-distributed random variables. We

say that there is a peak at Xk if Xk−1 and Xk+1 are both smaller than
Xk, k ≥ 2. What is the probability of a peak at
(a)X2?
(b)X3?
(c) X2 and X3?
(d)X2 and X4?
(e) X2 and X5?
(f) Xi and Xj , i, j ≥ 2?
Remark. Letting Ik = 1 if there is a peak at Xk and 0 otherwise, the
sequence {Ik, k ≥ 1} forms a 2-dependent sequence of random variables.

6. Verify formula (2.1), i.e., that if X, X1, X2, . . . are i.i.d. symmetric stable
random variables, then

Sn

n1/α

d= X for all n.
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7. Prove that the law of large numbers holds for symmetric, stable distribu-
tions with index α, 1 < α ≤ 2.

8. Let 0 < α < 2 and suppose that X, X1, X2, . . . are independent random
variables with common (two-sided Pareto) density

f(x) =


α

2|x|α+1
, for |x| > 1,

0, otherwise.

Show that the distribution belongs to the domain of attraction of a sym-
metric stable distribution with index α; in other words, that the sums
Sn =

∑n
k=1Xk, suitably normalized, converge in distribution to a sym-

metric stable distribution with index α.
Remark 1. More precisely, one can show that Sn/n

1/α converges in distri-
bution to a symmetric stable law with index α.
Remark 2. This problem generalizes Examples 3.1 and 3.2.

9. The same problem as the previous one, but for the density

f(x) =


c log |x|
|x|α+1

, for |x| > 1,

0, otherwise,

where c is an appropriate normalizing constant.
Remark. In this case one can show that Sn/(n log n)1/α converges in dis-
tribution to a symmetric stable law with index α.

10. Show that the extremal distributions belong to their own domain of at-
traction. More precisely, let X, X1, X2, . . . be i.i.d. random variables, and
set

Yn = max{X1, X2, . . . , Xn}, n ≥ 1.

Show that,
(a) if X has a Fréchet distribution, then

Yn

n1/α

d= X;

(b) if X has a Weibull distribution, then

n1/αYn
d= X;

(c) if X has a Gumbel distribution, then

Yn − logn d= X.

11. Let Y1, Y2, . . . be independent random variables with mean zero and finite
variances VarYk = σ2

k. Set

Xn =
( n∑

k=1

Yk

)2

−
n∑

k=1

σ2
k , n ≥ 1.

Show that X1, X2, . . . is a martingale.
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12. Let Y1, Y2, . . . be i.i.d. random variables with finite mean µ, and finite
variance σ2, and let Sn, n ≥ 1, denote their partial sums. Set

Xn = (Sn − nµ)2 − nσ2 , n ≥ 1.

Show that X1, X2, . . . is a martingale.
13. LetX(n) be the number of individuals in the nth generation of a branching

process (X(0) = 1) with reproduction mean m (= EX(1)). Set

Un =
X(n)
mn

, n ≥ 1.

Show that U1, U2, . . . is a martingale.
14. Let Y1, Y2, . . . are i.i.d. random variables with a finite moment generating

function ψ, set Sn =
∑n

k=1 Yk, n ≥ 1, with S0 = 0, and

Xn =
etSn

(ψ(t))n
, n ≥ 1.

(a) Show that {Xn, n ≥ 1} is a martingale (which is frequently called the
exponential martingale).

(b) Find the relevant martingale if the common distribution is the stan-
dard normal one.


