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Transforms

1 Introduction

In Chapter 1 we learned how to handle transformations in order to find the dis-
tribution of new (constructed) random variables. Since the arithmetic mean
or average of a set of (independent) random variables is a very important
object in probability theory as well as in statistics, we focus in this chap-
ter on sums of independent random variables (from which one easily finds
corresponding results for the average). We know from earlier work that the
convolution formula may be used but also that the sums or integrals involved
may be difficult or even impossible to compute. In particular, this is the case
if the number of summands is “large.” In that case, however, the central limit
theorem is (frequently) applicable. This result will be proved in the chapter
on convergence; see Theorem 6.5.2.

Exercise 1.1. Let X1, X2, . . . be independent U(0, 1)-distributed random
variables.

(a) Find the distribution of X1 +X2.
(b) Find the distribution of X1 +X2 +X3.
(c) Show that the distribution of Sn = X1 +X2 + · · ·+Xn is given by

FSn
(x) =

1
n!

n−1∑
k=0

(−1)k

(
n

k

)
(x− k)n

+, 0 ≤ x ≤ n,

where x+ = max{x, 0}. 2

Even if, in theory, we have solved this problem, we face new problems if we
actually wish to compute P (Sn ≤ x) for some given x already for moderately
sized values of n; for example, what is P (S5 ≤ π)?

In this chapter we shall learn how such problems can be transformed into
new problems, how the new (simpler) problems are solved, and finally that
these solutions can be retransformed or inverted to provide a solution to the
original problems.
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58 3 Transforms

Remark 1.1. In order to determine the distribution of sums of independent
random variables we mentioned the convolution formula. From analysis we
recall that the problem of convolving functions can be transformed to the
problem of multiplying their Laplace transforms or Fourier transforms (which
is a simpler task). 2

We begin, however, with an example from a different area.

Example 1.1. Let a1, a2, . . . , an be positive reals. We want to know their
product.

This is a “difficult” problem. We therefore find the logarithms of the num-
bers, add them to yield

∑n
k=1 log ak, and then invert. 2

Figure 1.1 illustrates the procedure.

{ak} −−−−−−−−−−−−−−−−−−−−−−−→ {log ak}

↓
↓
↓

↓
Π ak ←−−−−−−−−−−−−−−−−−−−−−−− Σ log ak

Figure 1.1

We obtained the correct answer since exp{
∑n

k=1 log ak} =
∏n

k=1 ak.
The central ideas of the solution thus are

(a) addition is easier to perform than multiplication;
(b) the logarithm has a unique inverse (i.e., if log x = log y, then x = y),

namely, the exponential function.

As for sums of independent random variables, the topic of this chapter, we
shall introduce three transforms: the (probability) generating function, the
moment generating function, and the characteristic function. Two common
features of these transforms are that

(a) summation of independent random variables (convolution) corresponds to
multiplication of the transforms;

(b) the transformation is 1-to-1, namely, there is a uniqueness theorem to the
effect that if two random variables have the same transform then they
also have the same distribution.

Notation: The notation
X

d= Y

means that the random variables X and Y are equidistributed. 2
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Remark 1.2. It is worth pointing out that two random variables, X and Y ,
may well have the property X d= Y and yet X(ω) 6= Y (ω) for all ω. A very
simple example is the following: Toss a fair coin once and set

X =

{
1, if the outcome is heads,
0, if the outcome is tails,

and

Y =

{
1, if the outcome is tails,
0, if the outcome is heads.

Clearly, X ∈ Be(1/2) and Y ∈ Be(1/2), in particular, X d= Y . But X(ω) and
Y (ω) differ for every ω. 2

2 The Probability Generating Function

Definition 2.1. Let X be a nonnegative, integer-valued random variable. The
(probability) generating function of X is

gX(t) = E tX =
∞∑

n=0

tn · P (X = n). 2

Remark 2.1. The generating function is defined at least for |t| ≤ 1, since it is
a power series with coefficients in [0, 1]. Note also that gX(1) =

∑∞
n=0 P (X =

n) = 1. 2

Theorem 2.1. Let X and Y be nonnegative, integer-valued random variables.
If gX = gY , then pX = pY . 2

The theorem states that if two nonnegative, integer-valued random vari-
ables have the same generating function then they follow the same probability
law. It is thus the uniqueness theorem mentioned in the previous section. The
result is a special case of the uniqueness theorem for power series. We refer
to the literature cited in Appendix A for a complete proof.

Theorem 2.2. Let X1, X2, . . . , Xn be independent, nonnegative, integer-
valued random variables, and set Sn = X1 +X2 + · · ·+Xn. Then

gSn(t) =
n∏

k=1

gXk
(t).

Proof. Since X1, X2, . . . , Xn are independent, the same is true for tX1 , tX2 ,
. . . , tXn , which yields

gSn
(t) = E tX1+X2+···+Xn = E

n∏
k=1

tXk =
n∏

k=1

E tXk =
n∏

k=1

gXk
(t). 2
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This result asserts that adding independent, nonnegative, integer-valued ran-
dom variables corresponds to multiplying their generating functions (recall
Example 1.1(a)).

A case of particular importance is given next.

Corollary 2.2.1. If, in addition, X1, X2, . . . , Xn are equidistributed, then

gSn(t) =
(
gX(t)

)n
. 2

Termwise differentiation of the generating function (this is permitted (at
least) for |t| < 1) yields

g′X(t) =
∞∑

n=1

ntn−1P (X = n), (2.1)

g′′X(t) =
∞∑

n=2

n(n− 1)tn−2P (X = n), (2.2)

and, in general, for k = 1, 2, . . . ,

g
(k)
X (t) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)tn−kP (X = n) . (2.3)

By putting t = 0 in (2.1)–(2.3), we obtain g(n)
X (0) = n! · P (X = n), that is,

P (X = n) =
g
(n)
X (0)
n!

. (2.4)

The probability generating function thus generates the probabilities; hence
the name of the transform.

By letting t ↗ 1 in (2.1)–(2.3) (this requires a little more care), the fol-
lowing result is obtained.

Theorem 2.3. Let X be a nonnegative, integer-valued random variable, and
suppose that E |X|k <∞ for some k = 1, 2, . . . . Then

EX(X − 1) · · · (X − k + 1) = g
(k)
X (1). 2

Remark 2.2. Derivatives at t = 1 are throughout to be interpreted as limits
as t ↗ 1. For simplicity, however, we use the simpler notation g′(1), g′′(1),
and so on. 2

The following example illustrates the relevance of this remark.
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Example 2.1. Suppose that X has the probability function

p(k) =
C

k2
, k = 1, 2, 3, . . . ,

(where, to be precise, C−1 =
∑∞

k=1 1/k2 = π2/6). The divergence of the
harmonic series tells us that the distribution does not have a finite mean.

Now, the generating function is

g(t) =
6
π2

∞∑
k=1

tk

k2
, for |t| ≤ 1,

so that

g′(t) =
6
π2

∞∑
k=1

tk−1

k
= − 6

π2
· log(1− t)

t
↗ +∞ as t↗ 1.

This shows that although the generating function itself exists for t = 1, the
derivative only exists for all t strictly smaller than 1, but not for the boundary
value t = 1. 2

For k = 1 and k = 2 we have, in particular, the following result:

Corollary 2.3.1 Let X be as before. Then

(a) E |X| <∞ =⇒ EX = g′X(1), and
(b) EX2 <∞ =⇒ VarX = g′′X(1) + g′X(1)−

(
g′X(1)

)2. 2

Exercise 2.1. Prove Corollary 2.3.1. 2

Next we consider some special distributions:
The Bernoulli distribution. Let X ∈ Be(p). Then

gX(t) = q · t0 + p · t1 = q + pt, for all t,

g′X(t) = p, and g′′X(t) = 0,

which yields
EX = g′X(1) = p

and

VarX = g′′X(1) + g′X(1)− (g′X(1))2 = 0 + p− p2 = p(1− p) = pq.

The binomial distribution. Let X ∈ Bin(n, p). Then

gX(t) =
n∑

k=0

tk
(
n

k

)
pkqn−k =

n∑
k=0

(
n

k

)
(pt)kqn−k = (q + pt)n,

for all t. Furthermore,
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g′X(t) = n(q + pt)n−1 · p and g′′X(t) = n(n− 1)(q + pt)n−2 · p2,

which yields

EX = np and VarX = n(n− 1)p2 + np− (np)2 = npq.

We further observe that

gBin(n,p)(t) =
(
gBe(p)(t)

)n
,

which, according to Corollary 2.2.1, shows that if Y1, Y2, . . . , Yn are inde-
pendent, Be(p)-distributed random variables, and Xn = Y1 + Y2 + · · · + Yn,
then

gXn(t) = gBin(n,p)(t).

By Theorem 2.1 (uniqueness) it follows thatXn ∈ Bin(n, p), a conclusion that,
alternatively, could be proved by the convolution formula and induction.

Similarly, if X1 ∈ Bin(n1, p) and X2 ∈ Bin(n2, p) are independent, then,
by Theorem 2.2,

gX1+X2(t) = (q + pt)n1+n2 = gBin(n1+n2,p)(t) ,

which proves that X1+X2 ∈ Bin(n1+n2, p) and hence establishes, in a simple
manner, the addition theorem for the binomial distribution.

Remark 2.3. It is instructive to reprove the last results by actually using the
convolution formula. We stress, however, that the simplicity of the method
of generating functions is illusory, since it in fact exploits various results on
generating functions and their derivatives. 2

The geometric distribution. Let X ∈ Ge(p). Then

gX(t) =
∞∑

k=0

tkpqk = p

∞∑
k=0

(tq)k =
p

1− qt
, |t| < 1

q
.

Moreover,
g′X(t) = − p

(1− qt)2
· (−q) =

pq

(1− qt)2

and

g′′X(t) = − 2pq
(1− qt)3

· (−q) =
2pq2

(1− qt)3
,

from which it follows that EX = q/p and VarX = q/p2.

Exercise 2.2. Let X1, X2, . . . , Xn be independent Ge(p)-distributed ran-
dom variables. Determine the distribution of X1 +X2 + · · ·+Xn. 2
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The Poisson distribution. Let X ∈ Po(m). Then

gX(t) =
∞∑

k=0

tke−mmk

k!
= e−m

∞∑
k=0

(mt)k

k!
= em(t−1).

Exercise 2.3. (a) Let X ∈ Po(m). Show that EX = VarX = m.
(b) Let X1 ∈ Po(m1) and X2 ∈ Po(m2) be independent random variables.

Show that X1 +X2 ∈ Po(m1 +m2). 2

3 The Moment Generating Function

In spite of their usefulness, probability generating functions are of limited use
in that they are only defined for nonnegative, integer-valued random variables.
Important distributions, such as the normal distribution and the exponential
distribution, cannot be handled with this transform. This inconvenience is
overcome as follows:

Definition 3.1. The moment generating function of a random variable X is

ψX(t) = E etX ,

provided there exists h > 0, such that the expectation exists and is finite for
|t| < h. 2

Remark 3.1. As a first observation we mention the close connection between
moment generating functions and Laplace transforms of real-valued functions.
Indeed, for a nonnegative random variable X, one may define the Laplace
transform

E e−sX for s ≥ 0,

which thus always exist (why?). Analogously, one may view the moment gen-
erating function as a two-sided Laplace transform.

Remark 3.2. Note that for nonnegative, integer-valued random variables we
have ψ(t) = g(et), for |t| < h, provided the moment generating function exists
(for |t| < h). 2

The uniqueness and multiplication theorems are presented next. The
proofs are analogous to those for the generating function.

Theorem 3.1. Let X and Y be random variables. If there exists h > 0, such
that ψX(t) = ψY (t) for |t| < h, then X

d= Y . 2

Theorem 3.2. Let X1, X2, . . . , Xn be independent random variables whose
moment generating functions exist for |t| < h for some h > 0, and set Sn =
X1 +X2 + · · ·+Xn. Then

ψSn(t) =
n∏

k=1

ψXk
(t) , |t| < h. 2
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Corollary 3.2.1. If, in addition, X1, X2, . . . , Xn are equidistributed, then

ψSn(t) =
(
ψX(t)

)n
, |t| < h. 2

For the probability generating function we found that the derivatives at
zero produced the probabilities (which motivated the name of the transform).
The derivatives at 0 of the moment generating function produce the moments
(hence the name of the transform).

Theorem 3.3. Let X be a random variable whose moment generating func-
tion ψX(t), exists for |t| < h for some h > 0. Then

(a) all moments exist, that is, E |X|r <∞ for all r > 0;
(b) EXn = ψ

(n)
X (0) for n = 1, 2, . . . .

Proof. We prove the theorem in the continuous case, leaving the completely
analogous proof in the discrete case as an exercise.

By assumption, ∫ ∞

−∞
etxfX(x) dx <∞ for |t| < h.

Let t, 0 < t < h, be given. The assumption implies that, for every x1 > 0,∫ ∞

x1

etxfX(x) dx <∞ and
∫ −x1

−∞
e−txfX(x) dx <∞. (3.1)

Since |x|r/e|tx| → 0 as x→∞ for all r > 0, we further have

|x|r ≤ e|tx| for |x| > x2. (3.2)

Now, let x0 > x2. It follows from (3.1) and (3.2) that∫ ∞

−∞
|x|rfX(x) dx

=
∫ −x0

−∞
|x|rfX(x) dx+

∫ x0

−x0

|x|rfX(x) dx+
∫ ∞

x0

|x|rfX(x) dx

≤
∫ −x0

−∞
e−txfX(x) dx+ |x0|r · P (|X| ≤ x0) +

∫ ∞

x0

etxfX(x) dx <∞.

This proves (a), from which (b) follows by differentiation:

ψ
(n)
X (t) =

∫ ∞

−∞
xnetxfX(x) dx

and, hence,

ψ
(n)
X (0) =

∫ ∞

−∞
xnfX(x) dx = EXn. 2
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Remark 3.3. The idea in part (a) is that the exponential function grows more
rapidly than every polynomial. As a consequence, |x|r ≤ e|tx| as soon as
|x| > x2 (say). On the other hand, for |x| < x2 we trivially have |x|r ≤ Ce|tx|
for some constant C. It follows that for all x

|x|r ≤ (C + 1)e|tx| ,

and hence that

E |X|r ≤ (C + 1)E e|tX| <∞ for |t| < h.

Note that this, in fact, proves Theorem 3.2(a) in the continuous case as well
as in the discrete case.

Remark 3.4. Taylor expansion of the exponential function yields

etX = 1 +
∞∑

n=1

tnXn

n!
for |t| < h.

By taking expectation termwise (this is permitted), we obtain

ψX(t) = E etX = 1 +
∞∑

n=1

tn

n!
EXn for |t| < h.

Termwise differentiation (which is also permitted) yields the result of part (b).
A special feature with the series expansion is that if the moment generating
function is given in that form we may simply read off the moments; EXn is
the coefficient of tn/n!, n = 1, 2, . . . , in the series expansion. 2

Let us now, as in the previous section, study some known distributions.
First, some discrete ones:
The Bernoulli distribution. Let X ∈ Be(p). Then ψX(t) = q + pet. Differenti-
ation yields EX = p and VarX = pq. Taylor expansion of et leads to

ψX(t) = q + p
∞∑

n=0

tn

n!
= 1 +

∞∑
n=1

tn

n!
· p ,

from which it follows that EXn = p, n = 1, 2, . . . . In particular, EX = p
and VarX = p− p2 = pq.
The binomial distribution. Let X ∈ Bin(n, p). Then

ψX(t) =
n∑

k=0

etk

(
n

k

)
pkqn−k =

n∑
k=0

(
n

k

)
(pet)kqn−k = (q + pet)n.

Differentiation yields EX = np and VarX = npq.



66 3 Transforms

Taylor expansion can also be performed in this case, but it is more cum-
bersome. If, however, we only wish to find EX and VarX it is not too hard:

ψX(t) =
(
q + pet

)n =
(
q + p

∞∑
k=0

tk

k!

)n

=
(
1 + pt+ p

t2

2!
+ · · ·

)n

= 1 + npt+
(
n

2

)
p2t2 + np

t2

2
+ · · ·

= 1 + npt+
(
n(n− 1)p2 + np

) t2
2

+ · · · .

Here the ellipses mean that the following terms contain t raised to at least
the third degree. By identifying the coefficients we find that EX = np and
that EX2 = n(n− 1)p2 + np, which yields VarX = npq.

Remark 3.5. Let us immediately point out that in this particular case this is
not a very convenient procedure for determining EX and VarX; the purpose
was merely to illustrate the method. 2

Exercise 3.1. Prove, with the aid of moment generating functions, that if
Y1, Y2, . . . , Yn are independent Be(p)-distributed random variables, then Y1+
Y2 + · · ·+ Yn ∈ Bin(n, p).

Exercise 3.2. Prove, similarly, that if X1 ∈ Bin(n1, p) and X2 ∈ Bin(n2, p)
are independent, then X1 +X2 ∈ Bin(n1 + n2, p). 2

The geometric distribution. For X ∈ Ge(p) computations like those made for
the generating function yield ψX(t) = p/(1−qet) (for qet < 1). Differentiation
yields EX and VarX.
The Poisson distribution. For X ∈ Po(m) we obtain ψX(t) = em(et−1) for all
t, and so forth.

Next we compute the moment generating function for some continuous
distributions.
The uniform (rectangular) distribution. Let X ∈ U(a, b). Then

ψX(t) =
∫ b

a

etx 1
b− a

dx =
1

b− a

[
1
t
etx

]b

a

=
etb − eta

t(b− a)

for all t. In particular,

ψU(0,1)(t) =
et − 1
t

and ψU(−1,1)(t) =
et − e−t

2t
=

sinh t
t

.

The moments can be obtained by differentiation. If, instead, we use Taylor
expansion, then
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ψX(t) =
1

t(b− a)

[
1 +

∞∑
n=1

(tb)n

n!
−
(
1 +

∞∑
n=1

(ta)n

n!

)]

=
1

t(b− a)

∞∑
n=1

( (tb)n

n!
− (ta)n

n!

)
=

1
b− a

∞∑
n=1

bn − an

n!
tn−1

= 1 +
∞∑

n=1

bn+1 − an+1

(b− a)(n+ 1)!
tn = 1 +

∞∑
n=1

bn+1 − an+1

(b− a)(n+ 1)
· t

n

n!
,

from which we conclude that

EXn =
bn+1 − an+1

(b− a)(n+ 1)
for n = 1, 2, . . . ,

and thus, in particular, the known expressions for mean and variance, via

EX =
b2 − a2

2(b− a)
=
a+ b

2
,

E X2 =
b3 − a3

3(b− a)
=
b2 + ab+ a2

3
,

VarX =
b2 + ab+ a2

3
−
(a+ b

2

)2

=
(b− a)2

12
.

The exponential distribution. Let X ∈ Exp(a). Then

ψX(t) =
∫ ∞

0

etx 1
a
e−x/a dx =

1
a

∫ ∞

0

e−x( 1
a−t) dx

=
1
a
· 1

1
a − t

=
1

1− at
for t <

1
a
.

Furthermore, ψ′X(t) = a/(1 − at)2, ψ′′X(t) = 2a2/(1 − at)3, and, in general,
ψ

(n)
X (t) = n!an/(1 − at)n+1. It follows that EXn = n!an, n = 1, 2, . . . , and,

in particular, that EX = a and VarX = a2.

Exercise 3.3. Perform a Taylor expansion of the moment generating func-
tion, and verify the expressions for the moments. 2

The gamma distribution. For X ∈ Γ(p, a), we have

ψX(t) =
∫ ∞

0

etx 1
Γ(p)

xp−1 1
ap
e−x/a dx

=
1
ap
· 1
( 1

a − t)p

∫ ∞

0

1
Γ(p)

xp−1
(1
a
− t
)p

e−x( 1
a−t) dx

=
1
ap

1
( 1

a − t)p
· 1 =

1
(1− at)p

for t <
1
a
.
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As is standard by now, the moments may be obtained via differentiation.
Note also that ψ(t) = (ψExp(a)(t))p. Thus, for p = 1, 2, . . . , we conclude
from Corollary 3.2.1 and Theorem 3.1 that if Y1, Y2, . . . , Yp are independent,
Exp(a)-distributed random variables then Y1 + Y2 + · · ·+ Yp ∈ Γ(p, a).

Exercise 3.4. (a) Check the details of the last statement.
(b) Show that if X1 ∈ Γ(p1, a) and X2 ∈ Γ(p2, a) are independent random

variables then X1 +X2 ∈ Γ(p1 + p2, a). 2

The standard normal distribution. Suppose that X ∈ N(0, 1). Then

ψX(t) =
∫ ∞

−∞
etx 1√

2π
exp{−x2/2} dx

= et2/2

∫ ∞

−∞

1√
2π

exp{−(x− t)2/2} dx = et2/2, −∞ < t <∞.

The general normal (Gaussian) distribution. Suppose that X ∈ N(µ, σ2).
Then

ψX(t) =
∫ ∞

−∞
etx 1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
dx

= etµ+σ2t2/2

∫ ∞

−∞

1
σ
√

2π
exp

{
− (x− µ− σ2t)2

2σ2

}
dx

= etµ+σ2t2/2, −∞ < t <∞.

The computations in the special case and the general case are essentially
the same; it is a matter of completing squares. However, this is a bit more
technical in the general case.

This leads to the following useful result, which shows how to derive the
moment generating function of a linear transformation of a random variable.

Theorem 3.4. Let X be a random variable and a and b be real numbers. Then

ψaX+b(t) = etbψX(at).

Proof. ψaX+b(t) = E et(aX+b) = etb · E e(at)X = etb · ψX(at). 2

As an illustration we show how the moment generating function for a gen-
eral normal distribution can be derived from the moment generating function
of the standard normal one.

Thus, suppose that X ∈ N(µ, σ2). We then know that X d= σY +µ, where
Y ∈ N(0, 1). An application of Theorem 3.4 thus tells us that

ψX(t) = etµψY (σt) = etµ+σ2t2/2,

as expected.



3 The Moment Generating Function 69

Exercise 3.5. (a) Show that if X ∈ N(µ, σ2) then EX = µ and VarX = σ2.
(b) LetX1 ∈ N(µ1, σ

2
1) andX2 ∈ N(µ2, σ

2
2) be independent random variables.

Show that X1 +X2 is normally distributed, and find the parameters.
(c) Let X ∈ N(0, σ2). Show that EX2n+1 = 0 for n = 0, 1, 2, . . ., and that

EX2n = [(2n)!/2nn!] · σ2n = (2n − 1)!!σ2n = 1 · 3 · · · (2n − 1)σ2n for
n = 1, 2, . . . .

Exercise 3.6. (a) Show that if X ∈ N(0, 1) then X2 ∈ χ2(1) by computing
the moment generating function of X2, that is, by showing that

ψX2(t) = E exp{tX2} =
1√

1− 2t
for t <

1
2
.

(b) Show that if X1 ∈ N(0, 1) and X2 ∈ N(0, 1) are independent then X2
1 +

X2
2 ∈ χ2(2) (= Exp(2)). 2

For two-dimensional analogs to Exercise 3.6, see Problems 5.10.36 and 37.
The Cauchy distribution. The moment generating function does not exist for
the Cauchy distribution, since

∫
[etx/(1 + x2)] dx is divergent for all t 6= 0.

Note also that the nonexistence of the moment generating function follows
from Theorem 3.3(a), since no moments of order 1 and above exist.

According to Theorem 3.3(a), it is conceivable that there might exist distri-
butions with moments of all orders and, yet, the moment generating function
does not exist in any neighborhood around zero. In fact, the log-normal dis-
tribution is one such example. To see this we first note that if X ∈ LN(µ, σ2),
then X d= eY , where Y ∈ N(µ, σ2), which implies that

fX(x) =


1

σx
√

2π
exp{− (log x−µ)2

2σ2 }, for x > 0,

0, otherwise.

It follows that

EXr = E erY = ψY (r) = exp{rµ+ 1
2σ

2r2},

for any r > 0, that is, all moments exist.
However, since ex ≥ xn/n! for any n, it follows that, for any t > 0,

E exp{tX} = E exp{teY } ≥ E (teY )n

n!
=
tn

n!
E enY

=
tn

n!
ψY (n) =

tn

n!
exp{nµ+ 1

2σ
2n2}

=
1
n!

exp{n(log t+ µ+ 1
2σ

2n)} ,

which can be made arbitrarily large by choosing n sufficiently large, since
log t+µ+ 1

2σ
2n ≥ 1

4σ
2n for any fixed t > 0 as n→∞ and exp{cn2}/n!→∞
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as n→∞ for any positive constant c. The moment generating function thus
does not exist for any positive t.

Another class of distributions that possesses moments of all orders but not
a moment generating function is the class of generalized gamma distributions
whose densities are

f(x) = Cxβ−1e−xα

, x > 0,

where β > −1, 0 < α < 1, and C is a normalizing constant (that is chosen
such that the total mass equals 1).

It is clear that all moments exist, but, since α < 1, we have∫ ∞

−∞
etxxβ−1e−xα

dx = +∞

for all t > 0, so that the moment generating function does not exist.

Remark 3.6. The fact that the integral is finite for all t < 0 is no contradiction,
since for a moment generating function to exist we require finiteness of the
integral in a neighborhood of zero, that is, for |t| < h for some h > 0. 2

We close this section by defining the moment generating function for ran-
dom vectors.

Definition 3.2. Let X = (X1, X2, . . . , Xn)′ be a random vector. The mo-
ment generating function of X is

ψX1,...,Xn
(t1, . . . , tn) = E et1X1+···+tnXn ,

provided there exist h1, h2, . . . , hn > 0 such that the expectation exists for
|tk| < hk, k = 1, 2, . . . , n. 2

Remark 3.7. In vector notation (where, thus, X, t, and h are column vectors)
the definition may be rewritten in the more compact form

ψX(t) = E et
′X ,

provided there exists h > 0, such that the expectation exists for |t| < h (the
inequalities being interpreted componentwise). 2

4 The Characteristic Function

So far we have introduced two transforms: the generating function and the
moment generating function. The advantage of moment generating functions
over generating functions is that they can be defined for all kinds of ran-
dom variables. However, the moment generating function does not exist for
all distributions; the Cauchy and the log-normal distributions are two such
examples. In this section we introduce a third transform, the characteristic
function, which exists for all distributions. A minor technical complication,
however, is that this transform is complex-valued and therefore requires some-
what more sophisticated mathematics in order to be dealt with stringently.
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Definition 4.1. The characteristic function of a random variable X is

ϕX(t) = E eitX = E(cos tX + i sin tX). 2

As mentioned above, the characteristic function is complex-valued. Since

|E eitX | ≤ E |eitX | = E 1 = 1, (4.1)

it follows that the characteristic function exists for all t and for all random
variables.

Remark 4.1. Apart from a minus sign in the exponent (and, possibly, a fac-
tor

√
1/2π), characteristic functions coincide with Fourier transforms in the

continuous case and with Fourier series in the discrete case. 2

We begin with some basic facts and properties.

Theorem 4.1. Let X be a random variable. Then

(a) |ϕX(t)| ≤ ϕX(0) = 1;
(b) ϕX(t) = ϕX(−t);
(c) ϕX(t) is (uniformly) continuous.

Proof. (a) ϕX(0) = E ei·0·X = 1. This, together with (4.1), proves (a).
(b) We have

ϕX(t) = E(cos tX − i sin tX) = E(cos(−t)X + i sin(−t)X)

= E ei(−t)X = ϕX(−t).

(c) Let t be arbitrary and h > 0 (a similar argument works for h < 0). Then

|ϕX(t+ h)− ϕX(t)| = |E ei(t+h)X − E eitX |
= |E eitX(eihX − 1)| ≤ E|eitX(eihX − 1)|
= E |eihX − 1|. (4.2)

Now, suppose thatX has a continuous distribution; the discrete case is treated
analogously.

For the function eix we have the trivial estimate |eix−1| ≤ 2, but also the
more delicate one |eix − 1| ≤ |x|. With the aid of these estimates we obtain,
for A > 0,

E |eihX − 1| =
∫ −A

−∞
|eihx − 1|fX(x) dx+

∫ A

−A

|eihx − 1|fX(x) dx

+
∫ ∞

A

|eihx − 1|fX(x) dx

≤
∫ −A

−∞
2fX(x) dx+

∫ A

−A

|hx|fX(x) dx+
∫ ∞

A

2fX(x) dx

≤ 2P (|X| ≥ A) + hAP (|X| ≤ A)

≤ 2P (|X| ≥ A) + hA. (4.3)
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Let ε > 0 be arbitrarily small. It follows from (4.2) and (4.3) that

|ϕX(t+ h)− ϕX(t)| ≤ 2P (|X| ≥ A) + hA < ε, (4.4)

provided we first choose A so large that 2P (|X| ≥ A) < ε/2, and then h so
small that hA < ε/2. This proves the continuity of ϕX . Since the estimate
in (4.4) does not depend on t, we have, in fact, shown that ϕX is uniformly
continuous. 2

Theorem 4.2. Let X and Y be random variables. If ϕX = ϕY , then X d= Y .2

This is the uniqueness theorem for characteristic functions. Next we
present, without proof, some inversion theorems.

Theorem 4.3. Let X be a random variable with distribution function F and
characteristic function ϕ. If F is continuous at a and b, then

F (b)− F (a) = lim
T→∞

1
2π

∫ T

−T

e−itb − e−ita

−it
· ϕ(t) dt. 2

Remark 4.2. Observe that Theorem 4.2 is an immediate corollary of Theorem
4.3. This is due to the fact that the former theorem is an existence result
(only), whereas the latter provides a formula for explicitly computing the
distribution function in terms of the characteristic function. 2

Theorem 4.4. If, in addition,
∫∞
−∞ |ϕ(t)| dt < ∞, then X has a continuous

distribution with density

f(x) =
1
2π

∫ ∞

−∞
e−itx · ϕ(t) dt. 2

Theorem 4.5. If the distribution of X is discrete, then

P (X = x) = lim
T→∞

1
2T

∫ T

−T

e−itx · ϕ(t) dt. 2

As for the name of the transform, we have just seen that every random
variable possesses a unique characteristic function; the characteristic function
characterizes the distribution uniquely.

The proof of the following result, the multiplication theorem for charac-
teristic functions, is similar to those for the other transforms and is therefore
omitted.

Theorem 4.6. Let X1, X2, . . . , Xn be independent random variables, and set
Sn = X1 +X2 + · · ·+Xn. Then

ϕSn
(t) =

n∏
k=1

ϕXk
(t).

2
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Corollary 4.6.1. If, in addition, X1, X2, . . . , Xn are equidistributed, then

ϕSn(t) =
(
ϕX(t)

)n
. 2

Since we have derived the transform of several known distributions in the
two previous sections, we leave some of them as exercises in this section.

Exercise 4.1. Show that ϕBe(p)(t) = q + peit, ϕBin(n,p)(t) = (q + peit)n,
ϕGe(p)(t) = p/(1− qeit), and ϕPo(m)(t) = exp{m(eit − 1)}. 2

Note that for the computation of these characteristic functions one seems
to perform the same work as for the computation of the corresponding moment
generating function, the only difference being that t is replaced by it. In fact, in
the discrete cases we considered in the previous sections, the computations are
really completely analogous. The binomial theorem, convergence of geometric
series, and Taylor expansion of the exponential function hold unchanged in
the complex case.

The situation is somewhat more complicated for continuous distributions.
The uniform (rectangular) distribution. Let X ∈ U(a, b). Then

ϕX(t) =
∫ b

a

eitx 1
b− a

dx =
1

b− a

∫ b

a

(cos tx+ i sin tx) dx

=
1

b− a
·
[
1
t

sin tx− i1
t

cos tx
]b

a

=
1

b− a
· 1
t
(sin bt− sin at− i cos bt+ i cos at)

=
1

it(b− a)
(i sin bt− i sin at+ cos bt− cos at)

=
eitb − eita

it(b− a)
(
= ψX(it)

)
.

In particular,

ϕU(0,1)(t) =
eit − 1
it

and ϕU(−1,1)(t) =
eit − e−it

2it
=

sin t
t
. (4.5)

The (mathematical) complication is that we cannot integrate as easily as we
could before. However, in this case we observe that the derivative of eix equals
ieix, which justifies the integration and hence implies that the computations
here are “the same” as for the moment generating function.

For the exponential and gamma distributions, the complication arises in
the following manner:
The exponential distribution. Let X ∈ Exp(a). Then
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ϕX(t) =
∫ ∞

0

eitx 1
a
e−x/a dx =

1
a

∫ ∞

0

e−x( 1
a−it) dx

=
1
a
· 1

1
a − it

=
1

1− ait
.

The gamma distribution. Let X ∈ Γ(p, a). We are faced with the same prob-
lems as for the exponential distribution. The conclusion is that ϕΓ(p,a)(t) =
(1− ait)−p.
The standard normal (Gaussian) distribution. Let X ∈ N(0, 1). Then

ϕX(t) =
∫ ∞

−∞
eitx 1√

2π
e−

1
2 x2

dx

= e−t2/2

∫ ∞

−∞

1√
2π
e−

1
2 (x−it)2 dx = e−t2/2.

In this case one cannot argue as before, since there is no primitive function.
Instead we observe that the moment generating function can be extended into
a function that is analytic in the complex plane. The characteristic function
equals the thus extended function along the imaginary axis, from which we
conclude that ϕX(t) = ψX(it) (= e(it)

2/2 = e−t2/2).

It is now possible to prove the addition theorems for the various distribu-
tions just as for generating functions and moment generating functions.

Exercise 4.2. Prove the addition theorems for the binomial, Poisson, and
gamma distributions. 2

In Remark 3.4 we gave a series expansion of the moment generating func-
tion. Following is the counterpart for characteristic functions:

Theorem 4.7. Let X be a random variable. If E |X|n < ∞ for some n =
1, 2, . . . , then

(a) ϕ(k)
X (0) = ik · EXk for k = 1, 2, . . . , n;

(b) ϕX(t) = 1 +
∑n

k=1EX
k · (it)k/k! + o(|t|n) as t→ 0. 2

Remark 4.3. For n = 2 we obtain, in particular,

ϕX(t) = 1 + itE X − t2

2
EX2 + o(t2) as t→ 0.

If, moreover, EX = 0 and VarX = σ2, then

ϕX(t) = 1− 1
2 t

2σ2 + o(t2) as t→ 0. 2

Exercise 4.3. Find the mean and variance of the binomial, Poisson, uniform,
exponential, and standard normal distributions. 2
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The conclusion of Theorem 4.7 is rather natural in view of Theorem 3.3 and
Remark 3.4. Note, however, that a random variable whose moment generating
function exists has moments of all orders (Theorem 3.3(a)), which implies that
the series expansion can be carried out as an infinite sum. Since, however,
all random variables (in particular, those without (higher order) moments)
possess a characteristic function, it is reasonable to expect that the expansion
here can only be carried out as long as moments exist. The order of magnitude
of the remainder follows from estimating the difference of eix and the first part
of its (complex) Taylor expansion.

Furthermore, a comparison between Theorems 3.3(b) and 4.7(a) tempts
one to guess that these results could be derived from one another; once again
the relation ϕX(t) = ψX(it) seems plausible. This relation is, however, not
true in general—recall that there are random variables, such as the Cauchy dis-
tribution, for which the moment generating function does not exist. In short,
the validity of the relation depends on to what extent (if at all) the function
E eizX , where z is complex-valued, is an analytic function of z, a problem
that will not be considered here (recall, however, the earlier arguments for
the standard normal distribution).

Theorem 4.7 states that if the moment of a given order exists, then the
characteristic function is differentiable, and the moments up to that order can
be computed via the derivatives of the characteristic function as stated in the
theorem. A natural question is whether a converse holds. The answer is yes,
but only for moments of even order.

Theorem 4.8. Let X be a random variable. If, for some n = 0, 1, 2, . . ., the
characteristic function ϕ has a finite derivative of order 2n at t = 0, then
E|X|2n <∞ (and the conclusions of Theorem 4.7 hold).

The “problem” with the converse is that if we want to apply Theorem 4.8
to show that the mean is finite we must first show that the second derivative
of the characteristic function exists. Since there exist distributions with finite
mean whose characteristic functions are not twice differentiable (such as the
so-called stable distributions with index between 1 and 2), the theorem is not
always applicable.

Next we present the analog of Theorem 3.4 on how to find the transform
of a linearly transformed random variable.

Theorem 4.9. Let X be a random variable and a and b be real numbers. Then

ϕaX+b(t) = eibt · ϕX(at).

Proof. ϕaX+b(t) = E eit(aX+b) = eitb · E ei(at)X = eitb · ϕX(at). 2

Exercise 4.4. Let X ∈ N(µ, σ2). Use the expression above for the character-
istic function of the standard normal distribution and Theorem 4.9 to show
that ϕX(t) = eitµ−σ2t2/2.
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Exercise 4.5. Prove the addition theorem for the normal distribution. 2

The Cauchy distribution. For X ∈ C(0, 1), one can show that

ϕX(t) =
∫ ∞

−∞
eitx · 1

π

1
1 + x2

dx = e−|t|.

A device for doing this is the following: If we “already happen to know” that
the difference between two independent, Exp(1)-distributed random variables
is L(1)-distributed, then we know that

ϕL(1)(t) =
1

1− it
· 1
1 + it

=
1

1 + t2

(use Theorem 4.6 and Theorem 4.9 (with a = −1 and b = 0)). We thus have

1
1 + t2

=
∫ ∞

−∞
eitx 1

2e
−|x| dx.

A change of variables, such that x→ t and t→ x, yields

1
1 + x2

=
∫ ∞

−∞
eitx 1

2e
−|t| dt,

and, by symmetry,
1

1 + x2
=
∫ ∞

−∞
e−itx 1

2e
−|t| dt,

which can be rewritten as

1
π
· 1
1 + x2

=
1
2π

∫ ∞

−∞
e−itxe−|t| dt. (4.6)

A comparison with the inversion formula given in Theorem 4.4 shows that
since the left-hand side of (4.6) is the density of the C(0, 1)-distribution, it
necessarily follows that e−|t| is the characteristic function of this distribution.

Exercise 4.6. Use Theorem 4.9 to show that ϕC(m,a)(t) = eitmϕX(at) =
eitm−a|t|. 2

Our final result in this section is a consequence of Theorems 4.9 and 4.1(b).

Theorem 4.10. Let X be a random variable. Then

ϕX is real ⇐⇒ X
d= −X

(i.e., iff the distribution of X is symmetric).
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Proof. Theorem 4.9 (with a = −1 and b = 0) and Theorem 4.1(b) together
yield

ϕ−X(t) = ϕX(−t) = ϕX(t). (4.7)

First suppose that ϕX is real-valued, that is, that ϕX(t) = ϕX(t). It fol-
lows that ϕ−X(t) = ϕX(t), or that X and −X have the same characteristic
function. By the uniqueness theorem they are equidistributed.

Now suppose that X d= −X. Then ϕX(t) = ϕ−X(t), which, together with
(4.7), yields ϕX(t) = ϕX(t), that is, ϕX is real-valued. 2

Exercise 4.7. Show that if X and Y are i.i.d. random variables then X − Y
has a symmetric distribution.

Exercise 4.8. Show that one cannot find i.i.d. random variables X and Y
such that X − Y ∈ U(−1, 1). 2

We conclude by defining the characteristic function for random vectors.

Definition 4.2. Let X = (X1, X2 . . . , Xn)′ be a random vector. The charac-
teristic function of X is

ϕX1,...,Xn
(t1, . . . , tn) = E ei(t1X1+···+tnXn).

In the more compact vector notation (cf. Remark 3.7) this may be rewritten
as

ϕX(t) = E eit′X . 2

In particular, the following special formulas, which are useful at times, can be
obtained:

ϕX1,...,Xn
(t, t, . . . , t) = E eit(X1+···+Xn) = ϕX1+···+Xn

(t)

and
ϕX1,...,Xn

(t, 0, . . . , 0) = ϕX1(t).

Characteristic functions of random vectors are an important tool in the treat-
ment of the multivariate normal distribution in Chapter 5.

5 Distributions with Random Parameters

This topic was treated in Section 2.3 by conditioning methods. Here we show
how Examples 2.3.1 and 2.3.2 (in the reverse order) can be tackled with the
aid of transforms. Let us begin by saying that transforms are often easier
to work with computationally than the conditioning methods. However, one
reason for this is that behind the transform approach there are theorems that
sometimes are rather sophisticated.
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Example 2.3.2 (continued). Recall that the point of departure was

X | N = n ∈ Bin(n, p) with N ∈ Po(λ). (5.1)

An application of Theorem 2.2.1 yields

gX(t) = E
(
E(tX | N)

)
= E h(N) ,

where
h(n) = E(tX | N = n) = (q + pt)n,

from which it follows that

gX(t) = E(q + pt)N = gN (q + pt) = eλ((q+pt)−1) = eλp(t−1) ,

that is, X ∈ Po(λp) (why?). Note also that gN (q + pt) = gN (gBe(p)(t)).

Example 2.3.1 (continued). We had

X |M = m ∈ Po(m) with M ∈ Exp(1).

By using the moment generating function (for a change) and Theorem 2.2.1,
we obtain

ψX(t) = E etX = E
(
E(etX |M)

)
= E h(M),

where
h(m) = E(etX |M = m) = ψX|M=m(t) = em(et−1).

Thus,

ψX(t) = E eM(et−1) = ψM (et − 1) =
1

1− (et − 1)

=
1

2− et
=

1
2

1− 1
2e

t
= ψGe(1/2)(t) ,

and we conclude that X ∈ Ge(1/2). 2

Remark 5.1. It may be somewhat faster to use generating functions, but it is
useful to practise another transform. 2

Exercise 5.1. Solve Exercise 2.3.1 using transforms. 2

In Section 2.3 we also considered the situation

X | Σ2 = y ∈ N(0, y) with Σ2 ∈ Exp(1),

which is the normal distribution with mean zero and an exponentially dis-
tributed variance. After hard work we found that X ∈ L(1/

√
2). The alterna-

tive, using characteristic functions and Theorem 2.2.1, yields
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ϕX(t) = E eitX = E
(
E(eitX | Σ2)

)
= E h(Σ2) ,

where
h(y) = ϕX|Σ2=y(t) = e−t2y/2,

and so

ϕX(t) = E e−t2Σ2/2 = ψΣ2(− t2

2 )

=
1

1− (− t2

2 )
=

1
1 + ( 1√

2
)2t2

= ϕL(1/
√

2)(t),

and the desired conclusion follows. At this point, however, let us stress once
again that the price of the simpler computations here are some general theo-
rems (Theorem 2.2.1 and the uniqueness theorem for characteristic functions),
the proofs of which are all the more intricate.

Exercise 5.2. Solve Exercise 2.3.3 using transforms. 2

6 Sums of a Random Number of Random Variables

An important generalization of the theory of sums of independent random
variables is the theory of sums of a random number of (independent) random
variables. Apart from being a theory in its own right, it has several interesting
and important applications. In this section we study this problem under the
additional assumption that the number of terms in the sum is independent of
the summands; in the following section we present an important application
to branching processes (the interested reader might pause here for a moment
and read the first few paragraphs of that section).

Before proceeding, however, here are some examples that will be solved
after some theory has been presented.

Example 6.1. Consider a roulette wheel with the numbers 0, 1, . . . , 36. Charlie
bets one dollar on number 13 until it appears. He then bets one dollar the
same number of times on number 36. We wish to determine his expected loss
in the second round (in which he bets on number 36).

Example 6.2. Let X1, X2, . . . be independent, Exp(1)-distributed random
variables, and let N ∈ Fs(p) be independent of X1, X2, . . . . We wish to find
the distribution of X1 +X2 + · · ·+XN .

In Section 5 we presented a solution of Example 2.3.2 based on transforms.
Next we present another solution based on transforms where, instead, we
consider the random variable in focus as a sum of a random number of Be(p)-
distributed random variables.
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Example 2.3.2 (continued). As before, let N be the number of emitted par-
ticles during a given hour. We introduce the following indicator random
variables:

Yk =

{
1, if the kth particle is registered,
0, otherwise.

Then
X = Y1 + Y2 + · · ·+ YN

equals the number of registered particles during this particular hour. 2

Thus, the general idea is that we are given a setX1, X2, . . . of i.i.d. random
variables with partial sums Sn = X1 +X2 + · · ·+Xn, for n ≥ 1. Furthermore,
N is a nonnegative, integer-valued random variable that is independent of
X1, X2, . . . . Our aim is to investigate the random variable

SN = X1 +X2 + · · ·+XN , (6.1)

where SN = S0 = 0 when N = 0.
For A ⊂ (−∞,∞), we have

P (SN ∈ A | N = n) = P (Sn ∈ A | N = n) = P (Sn ∈ A), (6.2)

where the last equality is due to the independence of N and X1, X2, . . . . The
interpretation of (6.2) is that the distribution of SN , given N = n, is the same
as that of Sn.

Remark 6.1. Let N = min{n : Sn > 0}. Clearly, P (SN > 0) = 1. This implies
that if the summands are allowed to assume negative values (with positive
probability) then so will Sn, whereas SN is always positive. However, in this
case N is not independent of the summands; on the contrary, N is defined in
terms of the summands. 2

In case the summands are nonnegative and integer-valued, the generating
function of SN can be derived as follows:

Theorem 6.1. Let X1, X2, . . . be i.i.d. nonnegative, integer-valued random
variables, and let N be a nonnegative, integer-valued random variable, inde-
pendent of X1, X2, . . . . Set S0 = 0 and Sn = X1 +X2 + · · ·+Xn, for n ≥ 1.
Then

gSN
(t) = gN

(
gX(t)

)
. (6.3)

Proof. We have

gSN
(t) = E tSN =

∞∑
n=0

E (tSN | N = n) · P (N = n)

=
∞∑

n=0

E (tSn | N = n) · P (N = n) =
∞∑

n=0

E (tSn) · P (N = n)

=
∞∑

n=0

(
gX(t)

)n · P (N = n) = gN

(
gX(t)

)
. 2
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Remark 6.2. In the notation of Chapter 2 and with the aid of Theorem 2.2.1,
we may alternatively write

gSN
(t) = E tSN = E

(
E (tSN | N)

)
= E h(N) ,

where
h(n) = E (tSN | N = n) = · · · =

(
gX(t)

)n
,

which yields
gSN

(t) = E
(
gX(t)

)N = gN

(
gX(t)

)
.

2

Theorem 6.2. Suppose that the conditions of Theorem 6.1 are satisfied.

(a) If, moreover,
EN <∞ and E |X| <∞,

then
E SN = EN · EX.

(b) If, in addition,
VarN <∞ and VarX <∞,

then
VarSN = EN ·VarX + (EX)2 ·VarN.

Proof. It follows from Corollary 2.3.1 that

E SN = g′SN
(1) (6.4)

and that
VarSN = g′′SN

(1) + g′SN
(1)−

(
g′SN

(1)
)2
. (6.5)

Furthermore, by differentiating the right-hand side of (6.3), using the chain
rule, we obtain

g′SN
(t) = g′N

(
gX(t)

)
· g′X(t),

which, after letting t↗ 1, yields

E SN = g′SN
(1) = g′N (1) · g′X(1) = EN · EX.

This proves (a).
A further differentiation shows that

g′′SN
(t) = g′′N

(
gX(t)

)
·
(
g′X(t)

)2 + g′N
(
gX(t)

)
· g′′X(t),

which yields

g′′SN
(1) = g′′N (1) ·

(
g′X(1)

)2 + g′N (1) · g′′X(1)

= EN(N − 1) · (EX)2 + EN · EX(X − 1).

It finally follows that
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VarSN = g′′SN
(1) + g′SN

(1)−
(
g′SN

(1)
)2

= EN(N − 1) · (EX)2 + EN · EX(X − 1)

+ EN · EX − (EN · EX)2

= EN ·VarX + (EX)2 ·VarN. 2

Theorem 6.2 can also be proved directly by modifying the proof of Theorem
6.1 in the obvious manner. As for (a) we then have

E SN =
∞∑

n=0

E (SN | N = n) · P (N = n)

=
∞∑

n=0

E (Sn | N = n) · P (N = n)

=
∞∑

n=0

E (Sn) · P (N = n) =
∞∑

n=0

nE X · P (N = n)

= EX ·
∞∑

n=0

nP (N = n) = EX · EN.

Note in particular that this proof is valid for arbitrary X1, X2, . . . (some
argument concerning the absolute convergence is needed).

Exercise 6.1. Compute E S2
N similarly and prove Theorem 6.2(b). 2

In the notation of Chapter 2 we have, for Theorem 6.2(a) (cf. Remark 6.2),

E SN = E
(
E(SN | N)

)
= E h(N) ,

where

h(n) = E(SN | N = n) = E(Sn | N = n) = E Sn = nE X,

that is,
E SN = E(N EX) = EX · EN.

For an alternative proof of Theorem 6.2(b), we use Corollary 2.2.3.1, ac-
cording to which

VarSN = EVar (SN | N) + Var
(
E(SN | N)

)
.

Since (check!)

Var(SN | N = n) = Var(Sn | N = n) = VarSn = nVarX,

it follows that

EVar(SN | N) = E(N VarX) = EN ·VarX.
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Furthermore, E(SN | N = n) = nE X, which yields

Var
(
E(SN | N)

)
= Var(N · EX) = (EX)2 ·VarN,

and the desired conclusion follows.
Let us now use these results in order to obtain another solution of Example

2.3.2 and to solve the problem posed in Example 6.1.

Example 2.3.2 (continued). Recall that N was the number of emitted particles
during a given hour, that we kept track of whether particles were registered or
not by the indicator variables Y1, Y2, . . . , and that the number of registered
particles during this particular hour was given by X = Y1 + Y2 + · · ·+ YN .

An application of Theorem 6.1 now yields

gX(t) = gN

(
gY (t)

)
= exp{λ(gY (t)− 1)} = eλ(q+pt−1) = eλp(t−1) ,

which is the generating function of a Po(λp)-distribution. It follows from the
uniqueness theorem for generating functions that X ∈ Po(λp).

Moreover, by Theorem 6.2,

EX = EN · E Y = λ · p,
VarX = EN ·VarY + (E Y )2VarN = λ · pq + p2 · λ = λp. 2

Remark 6.3. The answers here and in Section 5 are obviously the same, but
they are obtained somewhat differently. Analogous arguments can be made in
other examples. This provides a link between the two sections. 2

As for Example 6.1, let N ∈ Fs(1/37) equal the number of bets on number
13, and let Y1, Y2, . . . be the losses in the bets on number 36. Thus

Yk =

{
1, if number 36 does not appear,
−35, (i.e., − 36 + 1) otherwise,

and Y1, Y2, . . . are independent with P (Yk = 1) = 36/37 and P (Yk = −35) =
1/37 (note that a negative loss is a gain). With this notation Charlie’s total
loss in the second round equals X = Y1 + Y2 + · · · + YN , and an application
of Theorem 6.2(a) yields

EX = EN · E Y = 37 ·
(

1 · 36
37
− 35 · 1

37

)
= 1.

If we wish to determine his overall loss, we have to add (N −1) · 1− 35 (or
N ·1−36) to X, in which case we find that the expected overall loss equals 2.

Although this does not seem so terrible, we must remember that this game
requires access to an infinite amount of money to start with.

Exercise 6.2. Find the generating function of his loss in the second round.
Try also to find it for his overall loss. 2
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If, as in Example 6.2, the summands have a continuous distribution, then
Theorem 6.1 no longer applies, since the generating function is not defined for
such random variables. However, the following result holds.

Theorem 6.3. Let X1, X2, . . . be i.i.d. random variables, whose moment gen-
erating function exists for |t| < h for some h > 0. Furthermore, let N be a
nonnegative, integer-valued random variable independent of X1, X2, . . . . Set
S0 = 0 and Sn = X1 +X2 + · · ·+Xn, for n ≥ 1. Then

ψSN
(t) = gN

(
ψX(t)

)
. 2

The proof is completely analogous to the proof of Theorem 6.1 and is therefore
left as an exercise.

Exercise 6.3. Prove Theorem 6.2 by starting from Theorem 6.3. Note, how-
ever, that this requires the existence of the moment generating function of
the summands, a restriction that we know from above is not necessary for
Theorem 6.2 to hold. 2

Next we solve the problem posed in Example 6.2. Recall from there that
we were given X1, X2, . . . independent, Exp(1)-distributed random variables
and N ∈ Fs(p) independent of X1, X2, . . . and that we wish to find the
distribution of X1 +X2 + · · ·+XN .

With the (by now) usual notation we have, by Theorem 6.3, for t < p,

ψSN
(t) = gN

(
ψX(t)

)
=

p · 1
1−t

1− q 1
1−t

=
p

1− t− q
=

=
p

p− t
=

1
1− t

p

= ψExp(1/p)(t) ,

which, by the uniqueness theorem for moment generating functions, shows
that SN ∈ Exp(1/p). 2

Remark 6.4. If in Example 6.2 we had assumed that N ∈ Ge(p), we would
have obtained

ψSN
(t) =

p

1− q 1
1−t

=
p(1− t)
p− t

= p+ q
1

1− t
p

.

This means that SN is a mixture of a δ(0)-distribution and an Exp(1/p)-
distribution, the weights being p and q, respectively. An intuitive argument
supporting this is that P (SN = 0) = P (N = 0) = p. If N ≥ 1, then SN

behaves as in Example 6.2. The distribution of SN thus is neither discrete
nor continuous; it is a mixture. Note also that a geometric random variable
that is known to be positive is, in fact, Fs-distributed; if Z ∈ Ge(p), then
Z | Z > 0 ∈ Fs(p). 2
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Finally, if the summands do not possess a moment generating function,
then characteristic functions can be used in the obvious way.

Theorem 6.4. Let X1, X2, . . . be i.i.d. random variables, and let N be a
nonnegative, integer-valued random variable independent of X1, X2, . . . . Set
S0 = 0 and Sn = X1 +X2 + · · ·+Xn, for n ≥ 1. Then

ϕSN
(t) = gN

(
ϕX(t)

)
. 2

Exercise 6.4. Prove Theorem 6.4.

Exercise 6.5. Use Theorem 6.4 to prove Theorem 6.2. 2

7 Branching Processes

An important application for the results of the previous section is provided by
the theory of branching processes, which is described by the following model:

At time t = 0 there exists an initial population (a group of ancestors or
founding members) X(0). During its lifespan, every individual gives birth to
a random number of children. During their lifespans, these children give birth
to a random number of children, and so on. The reproduction rules for the
simplest case, which is the only one we shall consider, are

(a) all individuals give birth according to the same probability law, indepen-
dently of each other;

(b) the number of children produced by an individual is independent of the
number of individuals in their generation.

Such branching processes are called Galton–Watson processes after Sir
Francis Galton (1822–1911)—a cousin of Charles Darwin—who studied the
decay of English peerage and other family names of distinction (he contested
the hypothesis that distinguished family names are more likely to become
extinct than names of ordinary families) and Rev. Henry William Watson
(1827–1903). They met via problem 4001 posed by Galton in the Educational
Times, 1 April 1873, for which Watson proposed a solution in the same journal,
1 August 1873. Another of Galton’s achievements was that he established the
use of fingerprints in the police force.

In the sequel we also assume that X(0) = 1; this is a common assumption,
made in order to simplify some nonsignificant matters. Furthermore, since
individuals give birth, we attribute the female sex to them. Finally, to avoid
certain trivialities, we exclude, throughout, the degenerate case—when each
individual always gives birth to exactly one child.
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Example 7.1. Family names. Assume that men and women who live together
actually marry and that the woman changes her last name to that of her
husband (as in the old days). A family name thus survives only through sons. If
sons are born according to the rules above, the evolution of a family name may
be described by a branching process. In particular, one might be interested in
whether or not a family name will live on forever or become extinct.

Instead of family names, one might consider some mutant gene and its
survival or otherwise.

Example 7.2. Nuclear reactions. The fission caused by colliding neutrons re-
sults in a (random) number of new neutrons, which, when they collide produce
new neutrons, and so on.

Example 7.3. Waiting lines. A customer who arrives at an empty server (or a
telephone call that arrives at a switchboard) may be viewed as an ancestor.
The customers (or calls) arriving while he is being served are his children, and
so on. The process continues as long as there are people waiting to be served.

Example 7.4. The laptometer. When the sprows burst in a laptometer we
are faced with failures of the first kind. Now, every sprow that bursts causes
failures of the second kind (independently of the number of failures of the first
kind and of the other sprows). Suppose the number of failures of the first kind
during one hour follows the Po(λ)-distribution and that the number of failures
of the second kind caused by one sprow follows the Bin(n, p)-distribution. Find
the mean and variance of the total number of failures during one hour. 2

We shall solve the problem posed in Example 7.4 later.
Now, let, for n ≥ 1,

X(n) = # individuals in generation n,

let Y and {Yk, k ≥ 1} be generic random variables denoting the number of
children obtained by individuals, and set pk = P (Y = k), k = 0, 1, 2, . . . .
Recall that we exclude the case P (Y = 1) = 1.

Consider the initial population or the ancestor X(0) (= 1 = Eve). Then
X(1) equals the number of children of the ancestor and X(1) d= Y . Next, let
Y1, Y2, . . . be the number of children obtained by the first, second, . . . child.
It follows from the assumptions that Y1, Y2, . . . are i.i.d. and, furthermore,
independent of X(1). Since

X(2) = Y1 + · · ·+ YX(1), (7.1)

we may apply the results from Section 6. An application of Theorem 6.1 yields

gX(2)(t) = gX(1)

(
gY1(t)

)
. (7.2)

If we introduce the notations
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gn(t) = gX(n)(t) for n = 1, 2, . . .

and g(t) = g1(t) (= gX(1)(t) = gY (t)), (7.2) may be rewritten as

g2(t) = g
(
g(t)

)
. (7.3)

Next, let Y1, Y2, . . . be the number of children obtained by the first, second,
. . . individuals in generation n− 1. By arguing as before, we obtain

gX(n)(t) = gX(n−1)

(
gY1(t)

)
,

that is,
gn(t) = gn−1

(
g(t)

)
. (7.4)

This corresponds to the case k = 1 in the following result.

Theorem 7.1. For a branching process as above we have

gn(t) = gn−k

(
gk(t)

)
for k = 1, 2, . . . , n− 1. 2

If, in addition, E Y1 <∞, it follows from Theorem 6.2(a) that

EX(2) = EX(1) · E Y1 = (E Y1)2,

which, after iteration, yields

EX(n) = (E Y1)n. (7.5)

Since every individual is expected to produce E Y1 children, this is, intuitively,
a very reasonable relation.

An analogous, although slightly more complicated, formula for the variance
can also be obtained.

Theorem 7.2. (a) Suppose that m = E Y1 <∞. Then

EX(n) = mn.

(b) Suppose, further, that σ2 = VarY1 <∞. Then

VarX(n) = σ2(mn−1 +mn + · · ·+m2n−2). 2

Exercise 7.1. Prove Theorems 7.1 and 7.2(b). 2

Remark 7.1. Theorem 7.2 may, of course, also be derived from Theorem 7.1
by differentiation (cf. Corollary 2.3.1). 2
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Asymptotics

Suppose that σ2 = VarY1 <∞. It follows from Theorem 7.2 that

EX(n)→


0, when m < 1,
(=)1, when m = 1,
+∞, when m > 1,

(7.6)

and that

VarX(n)→

{
0, when m < 1,
+∞, when m ≥ 1

(7.7)

as n → ∞. It is easy to show that P (X(n) > 0) → 0 as n → ∞ when
m < 1. Although we have not defined any concept of convergence yet (this
will be done in Chapter 6), our intuition tells us that X(n) should converge
to zero as n→∞ in some sense in this case. Furthermore, (7.6) tells us that
X(n) increases indefinitely (on average) when m > 1. In this case, however,
one might imagine that since the variance also grows the population may,
by chance, die out at some finite time (in particular, at some early point in
time). For the boundary case m = 1, it may be a little harder to guess what
will happen in the long run. The following result puts our speculations into a
stringent formulation.

Denote by η the probability of (ultimate) extinction of a branching process.
For future reference we note that

η = P (ultimate extinction) = P (X(n) = 0 for some n)

= P
( ∞⋃
n=1

{X(n) = 0}
)
.

(7.8)

For obvious reasons we assume in the following that P (X(1) = 0) > 0.

Theorem 7.3. (a) η satisfies the equation t = g(t).
(b) η is the smallest nonnegative root of the equation t = g(t).
(c) η = 1 for m ≤ 1 and η < 1 for m > 1.

Proof. (a) Let Ak = {the founding member produces k children}, k ≥ 0. By
the law of total probability we have

η =
∞∑

k=0

P (extinction | Ak) · P (Ak). (7.9)

Now, P (Ak) = pk, and by the independence assumptions we have

P (extinction | Ak) = ηk. (7.10)

These facts and (7.9) yield

η =
∞∑

k=0

ηkpk = g(η), (7.11)

which proves (a).
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(b) Set ηn = P (X(n) = 0) and suppose that η∗ is some nonnegative root of
the equation t = g(t) (since g(1) = 1, such a root exists always). Since g is
nondecreasing for t ≥ 0, we have, by Theorem 7.1,

η1 = g(0) ≤ g(η∗) = η∗,

η2 = g(η1) ≤ g(η∗) = η∗,

and, by induction,
ηn+1 = g(ηn) ≤ g(η∗) = η∗,

that is, ηn ≤ η∗ for all n. Finally, in view of (7.8) and the fact that {X(n) =
0} ⊂ {X(n+ 1) = 0} for all n, it follows that ηn ↗ η and hence that η ≤ η∗,
which was to be proved.
(c) Since g is an infinite series with nonnegative coefficients, it follows that
g′(t) ≥ 0 and g′′(t) ≥ 0 for 0 ≤ t ≤ 1. This implies that g is convex and
nondecreasing on [0,1]. Furthermore, g(1) = 1. By comparing the graphs of
the functions y = g(t) and y = t in the three cases m < 1, m = 1, and
m > 1, respectively, it follows that they intersect at t = 1 only when m ≤ 1
(tangentially whenm = 1) and at t = η and t = 1 whenm > 1 (see Figure 7.1).
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Figure 7.1

The proof of the theorem is complete. 2

We close this section with some computations to illustrate the theory.
Given first is an example related to Example 7.2 as well as to a biological
phenomenon called binary splitting.

Example 7.5. In this branching process, the neutrons or cells either split into
two new “individuals” during their lifetime or die. Suppose that the probabil-
ities for these alternatives are p and q = 1− p, respectively.

Since m = 0 · q+ 2 · p = 2p, it follows that the population becomes extinct
with probability 1 when p ≤ 1/2. For p > 1/2 we use Theorem 7.3. The
equation t = g(t) then becomes

t = q + p · t2,

the solutions of which are t1 = 1 and t2 = q/p < 1. Thus η = q/p in this case.
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Example 7.6. A branching process starts with one individual, who reproduces
according to the following principle:

# children 0 1 2
probability 1

6
1
2

1
3

The children reproduce according to the same rule, independently of each
other, and so on.

(a) What is the probability of extinction?
(b) Determine the distribution of the number of grandchildren.

Solution. (a) We wish to apply Theorem 7.3. Since

m =
1
6
· 0 +

1
2
· 1 +

1
3
· 2 =

7
6
> 1 ,

we solve the equation t = g(t), that is,

t =
1
6

+
1
2
t+

1
3
t2.

The roots are t1 = 1 and t2 = 1/2 (recall that t = 1 is always a solution). It
follows that η = 1/2.
(b) According to Theorem 7.1, we have

g2(t) = g
(
g(t)

)
=

1
6

+
1
2
·
(1

6
+

1
2
t+

1
3
t2
)

+ 1
3 ·
(1

6
+

1
2
t+

1
3
t2
)2

.

The distribution of X(2) is obtained by simplifying the expression on the
right-hand side, noting that P (X(2) = k) is the coefficient of tk. We omit the
details. 2

Remark 7.2. The distribution may, of course, also be found by combinatorial
methods (try it and check that the results are the same!). 2

Finally, let us solve the problems posed in Example 7.4.
Regard failures of the first kind as children and failures of the second kind

as grandchildren. Thus, X(1) ∈ Po(λ) and X(2) = Y1+Y2+· · ·+YX(1), where
Y1, Y2, . . . ∈ Bin(n, p) are independent and independent of X(1). We wish to
find the expected value and the variance of X(1) + X(2). Note, however, a
discrepancy from the usual model in that the failures of the second kind do
not have the same distribution as X(1).

Since EX(1) = λ and EX(2) = EX(1) · E Y1 = λnp, we obtain

E
(
X(1) +X(2)

)
= λ+ λnp.

The computation of the variance is a little more tricky, since X(1) and X(2)
are not independent. But
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X(1) +X(2) = X(1) + Y1 + · · ·+ YX(1)

= (1 + Y1) + (1 + Y2) + · · ·+ (1 + YX(1))

=
X(1)∑
k=1

(1 + Yk),

and so
E
(
X(1) +X(2)

)
= EX(1)E(1 + Y1) = λ(1 + np)

(as above) and

Var
(
X(1) +X(2)

)
= EX(1)Var(1 + Y1) +

(
E(1 + Y1)

)2VarX(1)

= λnpq + (1 + np)2λ = λ
(
npq + (1 + np)2

)
.

The same device can be used to find the generating function. Namely,

gX(1)+X(2)(t) = gX(1)

(
g1+Y1(t)

)
,

which, together with the fact that

g1+Y1(t) = E t1+Y1 = tE tY1 = tgY1(t) = t(q + pt)n ,

yields
gX(1)+X(2)(t) = eλ(t(q+pt)n−1). 2

8 Problems

1. The nonnegative, integer-valued, random variable X has generating func-
tion gX(t) = log

(
1/(1 − qt)

)
. Determine P (X = k) for k = 0, 1, 2, . . . ,

EX, and VarX.
2. The random variable X has the property that all moments are equal, that

is, EXn = c for all n ≥ 1, for some constant c. Find the distribution of
X (no proof of uniqueness is required).

3. The random variable X has the property that

EXn =
2n

n+ 1
, n = 1, 2, . . . .

Find some (in fact, the unique) distribution of X having these moments.
4. Suppose that Y is a random variable such that

E Y k =
1
4

+ 2k−1, k = 1, 2, . . . .

Determine the distribution of Y .
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5. Let Y ∈ β(n,m) (n, m integers).
(a) Compute the moment generating function of − log Y .
(b) Show that − log Y has the same distribution as

∑m
k=1Xk, where

X1, X2 · · · are independent, exponentially distributed random vari-
ables.

Remark. The formula Γ(r+ s)/Γ(r) = (r+ s− 1) · · · (r+1)r , which holds
when s is an integer, might be useful.

6. Show, by using moment generating functions, that if X ∈ L(1), then
X

d= Y1−Y2, where Y1 and Y2 are independent, exponentially distributed
random variables.

7. In the previous problem we found that a standard Laplace-distributed
random variable has the same distribution as the difference between two
standard exponential random variables. It is therefore reasonable to be-
lieve that if Y1 and Y2 are independent L(1)-distributed, then

Y1 + Y2
d= X1 −X2,

where X1 and X2 are independent Γ(2, 1)-distributed random variables.
Prove, by checking moment generating functions, that this is in fact true.

8. LetX ∈ Γ(p, a). Compute the (two-dimensional) moment generating func-
tion of (X, logX).

9. Let X ∈ Bin(n, p). Compute EX4 with the aid of the moment generating
function.

10. Let X1, X2, . . . , Xn be independent random variables with expectation 0
and finite third moments. Show, with the aid of characteristic functions,
that

E(X1 +X2 + · · ·+Xn)3 = EX3
1 + EX3

2 + · · ·+ EX3
n.

11. Let X and Y be independent random variables and suppose that Y is
symmetric (around zero). Show that XY is symmetric.

12. The aim of the problem is to prove the double-angle formula

sin 2t = 2 sin t cos t.

Let X and Y be independent random variables, where X ∈ U(−1, 1) and
Y assumes the values +1 and −1 with probabilities 1/2.
(a) Show that Z = X + Y ∈ U(−2, 2) by finding the distribution function

of Z.
(b) Translate this fact into a statement about the corresponding charac-

teristic functions.
(c) Rearrange.

13. Let X1, X2 . . . be independent C(0, 1)-distributed random variables, and
set Sn =

∑n
k=1Xk, n ≥ 1. Show that

(a) Sn/n ∈ C(0, 1),
(b) (1/n)

∑n
k=1 Sk/k ∈ C(0, 1).

Remark. If {Sk/k, k ≥ 1} were independent, then (b) would follow imme-
diately from (a).
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14. For a positive, (absolutely) continuous random variable X we define the
Laplace transform as

LX(s) = E e−sX =
∫ ∞

0

e−sxfX(x) dx, s > 0.

Suppose that X is positive and stable with index α ∈ (0, 1), which means
that

LX(s) = e−sα

, s > 0.

Further, let Y ∈ Exp(1) be independent of X. Show that(Y
X

)α

∈ Exp(1) (which means that
(Y
X

)α d= Y ).

15. Another transform: For a random variable X we define the cumulant gen-
erating function, KX(t) = logψX(t) as

KX(t) =
∞∑

n=1

1
n!
knt

n ,

where kn = kn(X) is the so called nth cumulant or semi-invariant of X.
(a) Show that, if X and Y are independent random variables, then

kn(X + Y ) = kn(X) + kn(Y ).

(b) Express k1, k2, and k3 in terms of the moments EXk, k = 1, 2, 3, of X.
16. Suppose that X1, X2, . . . are independent, identically Linnik(α)-distri-

buted random variables, that N ∈ Fs(p), and that N and X1, X2, . . . are
independent. Show that p1/α(X1 + X2 + · · · + XN ) is, again, Linnik(α)-
distributed.
Remark. The characteristic function of the Linnik(α)-distribution (α > 0)
is ϕ(t) = (1 + |t|α)−1.

17. Suppose that the joint generating function of X and Y equals

gX,Y (s, t) = E sXtY = exp{α(s− 1) + β(t− 1) + γ(st− 1)},

with α > 0, β > 0, γ 6= 0.
(a) Show that X and Y both have a Poisson distribution, but that X +Y

does not.
(b) Are X and Y independent?

18. Let the random variables Y, X1, X2, . . . be independent, suppose that
Y ∈ Fs(p), where 0 < p < 1, and suppose that X1, X2, X3, . . . are all
Exp(1/a)-distributed. Find the distribution of

Z =
Y∑

j=1

Xj .
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19. Let X1, X2, . . . be Ge(α)-distributed random variables, let N ∈ Fs(p),
suppose that all random variables are independent, and set

Y = X1 +X2 + · · ·+XN .

(a) Show that Y ∈ Ge(β), and determine β.
(b) Compute E Y and VarY with “the usual formulas”, and check that

the results agree with mean and variance of the distribution in (a).
20. Let 0 < p = 1 − q < 1. Suppose that X1, X2, . . . are independent

Ge(q)-distributed random variables and that N ∈ Ge(p) is independent
of X1, X2, . . . .
(a) Find the distribution of Z = X1 +X2 + · · ·+XN .
(b) Show that Z | Z > 0 ∈ Fs(α), and determine α.

21. Suppose that X1, X2, . . . are independent L(a)-distributed random vari-
ables, let Np ∈ Fs(p) be independent of X1, X2, . . . , and set Yp =∑Np

k=1Xk. Show that √
pYp ∈ L(a) .

22. LetN, X1, X2, . . . be independent random variables such thatN ∈ Po(1)
and Xk ∈ Po(2) for all k. Set Z =

∑N
k=1Xk (and Z = 0 when N = 0).

Compute E Z, VarZ, and P (Z = 0).
23. Let Y1, Y2, . . . be i.i.d. random variables, and let N be a nonnegative,

integer-valued random variable that is independent of Y1, Y2, . . . . Com-
pute Cov (

∑N
k=1 Yk, N).

24. Let, form 6= 1,X1, X2, . . . be independent random variables with EXn =
mn, n ≥ 1, let N ∈ Po(λ) be independent of X1, X2, . . . , and set

Z = X1 +X2 + · · ·+XN .

Determine E Z.
Remark. Note that X1, X2, . . . are NOT identically distributed, that is,
the usual “E SN = EN · EX” does NOT work; you have to modify the
proof of that formula.

25. Let N ∈ Bin(n, 1− e−m), and let X1, X2, . . . have the same 0-truncated
Poisson distribution, namely,

P (X1 = x) =
mx/x!
em − 1

, x = 1, 2, 3, . . . .

Further, assume that N, X1, X2, . . . are independent,
(a) Find the distribution of Y =

∑N
k=1Xk (Y = 0 when N = 0).

(b) Compute E Y and VarY without using (a).
26. The number of cars passing a road crossing during an hour is Po(b)-

distributed. The number of passengers in each car is Po(p)-distributed.
Find the generating function of the total number of passengers, Y , passing
the road crossing during one hour, and compute E Y and VarY .
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27. A miner has been trapped in a mine with three doors. One takes him to
freedom after one hour, one brings him back to the mine after 3 hours
and the third one brings him back after 5 hours. Suppose that he wishes
to get out of the mine and that he does so by choosing one of the three
doors uniformly at random and continues to do so until he is free. Find
the generating function, the mean and the variance for the time it takes
him to reach freedom.

28. Lisa shoots at a target. The probability of a hit in each shot is 1/2. Given
a hit, the probability of a bull’s-eye is p. She shoots until she misses the
target. Let X be the total number of bull’s-eyes Lisa has obtained when
she has finished shooting; find its distribution.

29. Karin has an unfair coin; the probability of heads is p (0 < p < 1). She
tosses the coin until she obtains heads. She then tosses a fair coin as many
times as she tossed the unfair one. For every head she has obtained with
the fair coin she finally throws a symmetric die. Determine the expected
number and variance of the total number of dots Karin obtains by this
procedure.

30. Philip throws a fair die until he obtains a four. Diane then tosses a coin
as many times as Philip threw his die. Determine the expected value and
variance of the number of
(a) heads,
(b) tails, and
(c) heads and tails obtained by Diane.

31. Let p be the probability that the tip points downward after a person
throws a drawing pin once. Miriam throws a drawing pin until it points
downward for the first time. Let X be the number of throws for this to
happen. She then throws the drawing pin another X times. Let Y be the
number of times the drawing pin points downward in the latter series of
throws. Find the distribution of Y (cf. Problem 2.6.38).

32. Let X1, X2, . . . be independent observations of a random variable X,
whose density function is

fX(x) = 1
2e
−|x| , −∞ < x <∞.

Suppose we continue sampling until a negative observation appears. Let
Y be the sum of the observations thus obtained (including the negative
one). Show that the density function of Y is

fY (x) =

{
2
3e

x, for x < 0,
1
6e
−x/2, for x > 0.

33. At a certain black spot, the number of traffic accidents per year follows
a Po(10, 000)-distribution. The number of deaths per accident follows a
Po(0.1)-distribution, and the number of casualties per accidents follows
a Po(2)-distribution. The correlation coefficient between the number of
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casualties and the number of deaths per accidents is 0.5. Compute the
expectation and variance of the total number of deaths and casualties
during a year.

34. Suppose that X is a nonnegative, integer-valued random variable, and let
n and m be nonnegative integers. Show that

gnX+m(t) = tm · gX(tn).

35. Suppose that the offspring distribution in a branching process is the Ge(p)-
distribution, and let X(n) be the number of individuals in generation n,
n = 0, 1, 2, . . . .
(a) What is the probability of extinction?
(b) Find the probability that the population is extinct in the second gen-

eration.
36. Consider a branching process whose offspring distribution is Bin(n, p)-

distributed. Compute the expected value, the variance and the probability
that there are 0 or 1 grandchild, that is, find, in the usual notation, EX(2),
VarX(2), P (X(2) = 0), and P (X(2) = 1).

37. Consider a branching process where the individuals reproduce according
to the following pattern:

# of children 0 1 2
probability 1

6
1
3

1
2

Individuals reproduce independently of each other and independently of
the number of their sisters and brothers. Determine
(a) the probability that the population becomes extinct;
(b) the probability that the population has become extinct in the second

generation;
(c) the expected number of children given that there are no grandchildren.

38. One bacterium each of the two dangerous Alphomylia and Klaipeda tribes
have escaped from a laboratory. They reproduce according to a standard
branching process as follows:

# of children 0 1 2
probability Alphomylia 1

4
1
4

1
2

probability Klaipeda 1
6

1
6

2
3

The two cultures reproduce independently of each other. Determine the
probability that 0, 1, and 2 of the cultures, respectively, become extinct.

39. Suppose that the offspring distribution in a branching process is the Ge(p)-
distribution, and let X(n) be the number of individuals in generation
n, n = 0, 1, 2, . . . .
(a) What is the probability of extinction?

Now suppose that p = 1/2, and set gn(t) = gX(n)(t).
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(b) Show that

gn(t) =
n− (n− 1)t
n+ 1− nt

, n = 1, 2, . . . .

(c) Show that

P (X(n) = k) =


n

n+ 1
, for k = 0,

nk−1

(n+ 1)k+1
, for k = 1, 2, . . . .

(d) Show that

P (X(n) = k | X(n) > 0) =
1

n+ 1

( n

n+ 1

)k−1

, for k = 1, 2, . . . ,

that is, show that the number of individuals in generation n, given that
the population is not yet extinct, follows an Fs(1/(n+1))-distribution.
Finally, suppose that the population becomes extinct at generation
number N .

(e) Show that

P (N = n) = gn−1( 1
2 )− gn−1(0) , n = 1, 2, . . . .

(f) Show that P (N = n) = 1/(n(n+ 1)), n = 1, 2, . . . (and hence that
P (N <∞) = 1, i.e., η = 1).

(g) Compute EN . Why is this a reasonable answer?
40. The growth dynamics of pollen cells can be modeled by binary splitting

as follows: After one unit of time, a cell either splits into two or dies. The
new cells develop according to the same law independently of each other.
The probabilities of dying and splitting are 0.46 and 0.54, respectively.
(a) Determine the maximal initial size of the population in order for the

probability of extinction to be at least 0.3.
(b) What is the probability that the population is extinct after two gener-

ations if the initial population is the maximal number obtained in (a)?
41. Consider binary splitting, that is, the branching process where the distri-

bution of Y = the number of children is given by

P (Y = 2) = 1− P (Y = 0) = p, 0 < p < 1.

However, suppose that p is not known, that p is random, viz., consider
the following setup: Assume that

P (Y = 2 | P = p) = p, P (Y = 0 | P = p) = 1− p, with

fP (x) =

{
2x, for 0 < x < 1,
0, otherwise.

(a) Find the distribution of Y .
(b) Determine the probability of extinction.
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42. Consider the following modification of a branching process: A mature
individual produces children according to the generating function g(t).
However, an individual becomes mature with probability α and dies before
maturity with probability 1− α. Throughout X(0) = 1, that is, we start
with one immature individual.
(a) Find the generating function of the number of individuals in the first

two generations.
(b) Suppose that the offspring distribution is geometric with parameter p.

Determine the extinction probability.
43. Let {X(n), n ≥ 0} be the usual Galton–Watson process, starting with

X(0) = 1. Suppose, in addition, that immigration is allowed in the sense
that in addition to the children born in generation n there are Zn indi-
viduals immigrating, where {Zn, n ≥ 1} are i.i.d. random variables with
the same distribution as X(1).
(a) What is the expected number of individuals in generation 1?
(b) Find the generating function of the number of individuals in genera-

tions 1 and 2, respectively.
(c) Determine/express the probability that the population is extinct after

two generations.
Remark. It may be helpful to let p0 denote the probability that an in-
dividual does not have any children (which, in particular, means that
P (X(1) = 0) = p0).

44. Consider a branching process with reproduction mean m < 1. Suppose
also, as before, that X(0) = 1.
(a) What is the probability of extinction?
(b) Determine the expected value of the total progeny.
(c) Now suppose that X(0) = k, where k is an integer ≥ 2. What are the

answers to the questions in (a) and (b) now?
45. The following model can be used to describe the number of women (moth-

ers and daughters) in a given area. The number of mothers is a random
variable X ∈ Po(λ). Independently of the others, every mother gives birth
to a Po(µ)-distributed number of daughters. Let Y be the total number
of daughters and hence Z = X + Y be the total number of women in the
area.
(a) Find the generating function of Z.
(b) Compute E Z and VarZ.

46. LetX(n) be the number of individuals in the nth generation of a branching
process (X(0) = 1), and set Tn = 1+X(1)+ · · ·+X(n), that is, Tn equals
the total progeny up to and including generation number n. Let g(t) and
Gn(t) be the generating functions of X(1) and Tn, respectively. Prove the
following formula:

Gn(t) = t · g
(
Gn−1(t)

)
.
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47. Consider a branching process with a Po(m)-distributed offspring. Let
X(1) and X(2) be the number of individuals in generations 1 and 2,
respectively. Determine the generating function of
(a) X(1),
(b) X(2),
(c) X(1) +X(2),
(d) Determine Cov(X(1), X(2)).

48. Let X be the number of coin tosses until heads is obtained. Suppose that
the probability of heads is unknown in the sense that we consider it to be
a random variable Y ∈ U(0, 1). Find the distribution of X (cf. Problem
2.6.37).




