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Multivariate Random Variables

1 Introduction

One-dimensional random variables are introduced when the object of interest
is a one-dimensional function of the events (in the probability space (Ω,F , P ));
recall Section 4 of the Introduction. In an analogous manner we now define
multivariate random variables, or random vectors, as multivariate functions.

Definition 1.1. An n-dimensional random variable or vector X is a (mea-
surable) function from the probability space Ω to Rn, that is,

X : Ω→ Rn. 2

Remark 1.1. We remind the reader that this text does not presuppose any
knowledge of measure theory. This is why we do not explicitly mention that
functions and sets are supposed to be measurable.

Remark 1.2. Sometimes we call X a random variable and sometimes we call
it a random vector, in which case we consider it a column vector :

X = (X1, X2, . . . , Xn)′. 2

A complete description of the distribution of the random variable is pro-
vided by the joint distribution function

FX1,X2,...,Xn(x1, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn),

for xk ∈ R, k = 1, 2, . . . , n.
A more compact way to express this is

FX(x) = P (X ≤ x), x ∈ Rn,

where the event {X ≤ x} is to be interpreted componentwise, that is,

©  Springer Science + Business Media, LLC 2009

A. Gut, An Intermediate course in Probabilty, Springer Texts in Statistics,
DOI: 10.1007/978-1-4419-0162-0_1,

15



16 1 Multivariate Random Variables

{X ≤ x} = {X1 ≤ x1, . . . , Xn ≤ xn} =
n⋂

k=1

{Xk ≤ xk}.

In the discrete case we introduce the joint probability function

pX(x) = P (X = x), x ∈ Rn,

that is,

pX1,X2,...,Xn(x1, x2, . . . , xn) = P (X1 = x1, . . . , Xn = xn)

for xk ∈ R, k = 1, 2, . . . , n.
It follows that

FX(x) =
∑
y≤x

pX(y),

that is,

FX1,X2,...,Xn(x1, x2, . . . , xn) =
∑

y1≤x1

. . .
∑

yn≤xn

pX1,X2,...,Xn(y1, y2, . . . , yn).

In the (absolutely) continuous case we define the joint density (function)

fX(x) =
dnFX(x)
dxn

, x ∈ Rn,

that is,

fX1,X2,...,Xn
(x1, x2, . . . , xn) =

∂nFX1,X2,...,Xn(x1, x2, . . . , xn)
∂x1∂x2 . . . ∂xn

,

where, again, xk ∈ R, k = 1, 2, . . . , n.

Remark 1.3. Throughout we assume that all components of a random vector
are of the same kind, either all discrete or all continuous. 2

It may well happen that in an n-dimensional problem one is only interested
in the distribution of m < n of the coordinate variables. We illustrate this
situation with an example where n = 2.

Example 1.1. Let (X,Y ) be a point that is uniformly distributed on the unit
disc; that is, the joint distribution of X and Y is

fX,Y (x, y) =

{
1
π , for x2 + y2 ≤ 1,
0, otherwise.

Determine the distribution of the x-coordinate. 2
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Choosing a point in the plane is obviously a two-dimensional task. How-
ever, the object of interest is a one-dimensional quantity; the problem is for-
mulated in terms of the joint distribution of X and Y , and we are interested
in the distribution of X (the density fX(x)).

Before we solve this problem we shall study the discrete case, which, in
some respects, is easier to handle.

Thus, suppose that (X,Y ) is a given two-dimensional random variable
whose joint probability function is pX,Y (x, y) and that we are interested in
finding pX(x). We have

pX(x) = P (X = x) = P (
⋃
y

{X = x, Y = y})

=
∑

y

P (X = x, Y = y) =
∑

y

pX,Y (x, y).

A similar computation yields pY (y). The distributions thus obtained are called
marginal distributions (of X and Y , respectively).

The marginal probability functions are

pX(x) =
∑

y

pX,Y (x, y)

and
pY (y) =

∑
x

pX,Y (x, y).

Analogous formulas hold in higher dimensions. They show that the proba-
bility function of a marginal distribution is obtained by summing the joint
probability function over the components that are not of interest.

The marginal distribution function is obtained in the usual way. In the
two-dimensional case we have, for example,

FX1(x) =
∑
x′≤x

pX1(x
′) =

∑
x′≤x

∑
y

pX1,X2(x
′, y).

A corresponding discussion for the continuous case cannot be made immedi-
ately, since all probabilities involved equal zero. We therefore make definitions
that are analogous to the results in the discrete case. In the two-dimensional
case we define the marginal density functions as follows:

fX(x) =
∫ ∞

−∞
fX,Y (x, y)DD

and
fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx.

The marginal distribution function of X is
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FX(x) =
∫ x

−∞
fX(u) du =

∫ x

−∞

(∫ ∞

−∞
fX,Y (u, y) dy

)
du.

We now return to Example 1.1. Recall that the joint density of X and Y is

fX,Y (x, y) =

{
1
π , for x2 + y2 ≤ 1,
0, otherwise,

which yields

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ √
1−x2

−
√

1−x2

1
π
dy =

2
π

√
1− x2

for −1 < x < 1 (and fX(x) = 0 for |x| ≥ 1).
As an extra precaution one might check that

∫ 1

−1
2
π

√
1− x2 dx = 1. Simi-

larly (by symmetry), we have

fY (y) =
2
π

√
1− y2 , −1 < y < 1.

Exercise 1.1. Let (X,Y, Z) be a point chosen uniformly within the three-
dimensional unit sphere. Determine the marginal distributions of (X,Y ) and
X. 2

We have now seen how a model might well be formulated in a higher di-
mension than the actual problem of interest. The converse is the problem of
discovering to what extent the marginal distributions determine the joint dis-
tribution. There exist counterexamples showing that the joint distribution is
not necessarily uniquely determined by the marginal ones. Interesting appli-
cations are computer tomography and satellite pictures; in both applications
one makes two-dimensional pictures and wishes to make conclusions about
three-dimensional objects (the brain and the Earth).

We close this section by introducing the concepts of independence and
uncorrelatedness.

The components of a random vector X are independent iff, for the joint
distribution, we have

FX(x) =
n∏

k=1

FXk
(xk), xk ∈ R, k = 1, 2, . . . , n,

that is, iff the joint distribution function equals the product of the marginal
ones. In the discrete case this is equivalent to

pX(x) =
n∏

k=1

pXk
(xk), xk ∈ R, k = 1, 2, . . . , n.

In the continuous case it is equivalent to



2 Functions of Random Variables 19

fX(x) =
n∏

k=1

fXk
(xk), xk ∈ R, k = 1, 2, . . . , n.

The random variables X and Y are uncorrelated iff their covariance equals
zero, that is, iff

Cov (X,Y ) = E(X − EX)(Y − E Y ) = 0.

If the variances are nondegenerate (and finite), the situation is equivalent to
the correlation coefficient being equal to zero, that is

ρX,Y =
Cov (X,Y )√
VarX ·VarY

= 0

(recall that the correlation coefficient ρ is a scale-invariant real number and
that |ρ| ≤ 1).

In particular, independent random variables are uncorrelated. The con-
verse is not necessarily true.

The random variables X1, X2, . . . , Xn are pairwise uncorrelated if every
pair is uncorrelated.

Exercise 1.2. Are X and Y independent in Example 1.1? Are they uncorre-
lated?

Exercise 1.3. Let (X,Y ) be a point that is uniformly distributed on a square
whose corners are (±1,±1). Determine the distribution(s) of the x- and y-
coordinates. Are X and Y independent? Are they uncorrelated? 2

2 Functions of Random Variables

Frequently, one is not primarily interested in the random variables themselves,
but in functions of them. For example, the sum and the difference of two ran-
dom variables X and Y are, in fact, functions of the two-dimensional random
variable (X,Y ).

As an introduction we consider one-dimensional functions of one-dimen-
sional random variables.

Example 2.1. Let X ∈ U(0, 1), and put Y = X2. Then

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (X ≤ √y) = FX(
√
y).

Differentiation yields

fY (y) = fX(
√
y)

1
2
√
y

=
1

2
√
y
, 0 < y < 1,

(and fY (y) = 0 otherwise).
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Example 2.2. Let X ∈ U(0, 1), and put Y = − logX. Then

FY (y) = P (Y ≤ y) = P (− logX ≤ y) = P (X ≥ e−y)
= 1− FX(e−y) = 1− e−y , y > 0,

which we recognize as FExp(1)(y) (or else we obtain fY (y) = e−y, for y > 0,
by differentiation and again that Y ∈ Exp(1)).

Example 2.3. Let X have an arbitrary continuous distribution, and suppose
that g is a differentiable, strictly increasing function (whose inverse g−1 thus
exists uniquely). Set Y = g(X). Computations like those above yield

FY (y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX

(
g−1(y)

)
and

fY (y) = fX

(
g−1(y)

)
· d
dy
g−1(y).

If g had been strictly decreasing, we would have obtained

fY (y) = −fX

(
g−1(y)

)
· d
dy
g−1(y).

(Note that fY (y) > 0 since dg−1(y)/dy < 0).
To summarize, we have shown that if g is strictly monotone, then

fY (y) = fX

(
g−1(y)

)
· | d
dy
g−1(y)|. 2

Our next topic is a multivariate analog of this result.

2.1 The Transformation Theorem

Let X be an n-dimensional, continuous, random variable with density fX(x),
and suppose that X has its mass concentrated on a set S ⊂ Rn. Let g =
(g1, g2, . . . , gn) be a bijection from S to some set T ⊂ Rn, and consider the
n-dimensional random variable

Y = g(X).

This means that we consider the n one-dimensional random variables

Y1 = g1(X1, X2, . . . , Xn),
Y2 = g2(X1, X2, . . . , Xn),
...
Yn = gn(X1, X2, . . . , Xn).

Finally, assume, say, that g and its inverse are both continuously differentiable
(in order for the Jacobian J = |d(x)/d(y)| to be well defined).
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Theorem 2.1. The density of Y is

fY(y) =

{
fX
(
h1(y), h2(y), . . . , hn(y)

)
· | J |, for y ∈ T,

0, otherwise,

where h is the (unique) inverse of g and where

J =
∣∣∣d(x)
d(y)

∣∣∣ =
∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x1
∂y2

. . . ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

. . . ∂x2
∂yn

...
...

. . .
...

∂xn

∂y1

∂xn

∂y2
. . . ∂xn

∂yn

∣∣∣∣∣∣∣∣∣∣
;

that is, J is the Jacobian.

Proof. We first introduce the following piece of notation:

h(B) = {x : g(x) ∈ B}, for B ⊂ Rn.

Now,

P (Y ∈ B) = P (X ∈ h(B)) =
∫

h(B)

fX(x)dx.

The change of variable y = g(x) yields

P (Y ∈ B) =
∫

B

fX(h1(y), h2(y), . . . , hn(y))· | J | dy ,

according to the formula for changing variables in multiple integrals. The
claim now follows in view of the following result:

Lemma 2.1. Let Z be an n-dimensional continuous random variable. If, for
every B ⊂ Rn,

P (Z ∈ B) =
∫

B

h(x) dx ,

then h is the density of Z. 2

Remark 2.1. Note that the Jacobian in Theorem 2.1 reduces to the derivative
of the inverse in Example 2.3 when n = 1. 2

Example 2.4. Let X and Y be independent N(0, 1)-distributed random vari-
ables. Show thatX+Y andX−Y are independentN(0, 2)-distributed random
variables.

We put U = X + Y and V = X − Y . Inversion yields X = (U + V )/2 and
Y = (U − V )/2, which implies that

J =

∣∣∣∣∣
1
2

1
2

1
2 − 1

2

∣∣∣∣∣ = −1
2
.
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By Theorem 2.1 and independence, we now obtain

fU,V (u, v) = fX,Y

(u+ v

2
,
u− v

2
)
· | J |

= fX

(u+ v

2
)
· fY

(u− v
2
)
· | J |

=
1√
2π
e−

1
2 ( u+v

2 )2 · 1√
2π
e−

1
2 ( u−v

2 )2 · 1
2

=
1√

2π · 2
e−

1
2

u2
2 · 1√

2π · 2
e−

1
2

v2
2 ,

for −∞ < u, v <∞. 2

Remark 2.2. That X + Y and X − Y are N(0, 2)-distributed might be known
from before; or it can easily be verified via the convolution formula. The
important point here is that with the aid of Theorem 2.1 we may, in addition,
prove independence.

Remark 2.3. We shall return to this example in Chapter 5 and provide a so-
lution that exploits special properties of the multivariate normal distribution;
see Examples 5.7.1 and 5.8.1. 2

Example 2.5. Let X and Y be independent Exp(1)-distributed random vari-
ables. Show that X/(X + Y ) and X + Y are independent, and find their
distributions.

We put U = X/(X + Y ) and V = X + Y . Inversion yields X = U · V ,
Y = V − UV , and

J =

∣∣∣∣∣ v u

−v 1− u

∣∣∣∣∣ = v.

Theorem 2.1 and independence yield

fU,V (u, v) = fX,Y (uv, v − uv)· | J |= fX(uv) · fY (v(1− u))· | J |
= e−uv · e−v(1−u) · v = ve−v

for 0 < u < 1 and v > 0, and fU,V (u, v) = 0 otherwise, that is,

fU,V (u, v) =

{
1 · ve−v, for 0 < u < 1, v > 0,
0, otherwise.

This shows that U ∈ U(0, 1), that V ∈ Γ(2, 1), and that U and V are inde-
pendent. 2

As a further application of Theorem 2.1 we prove the convolution formula
(in the continuous case); recall formula (7.2) of the Introduction. We are thus
given the continuous, independent random variables X and Y , and we seek
the distribution of X + Y.
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A first observation is that we start with two variables but seek the distri-
bution of just one new one. The trick is to put U = X + Y and to introduce
an auxiliary variable V, which may be arbitrarily (that is, suitably) defined.
With the aid of Theorem 2.1, we then obtain fU,V (u, v) and, finally, fU (u)
by integrating over v.

Toward that end, set U = X + Y and V = X. Inversion yields X = V ,
Y = U − V , and

J =

∣∣∣∣∣0 1

1 −1

∣∣∣∣∣ = −1,

from which we obtain

fU,V (u, v) = fX,Y (v, u− v)· | J |= fX(v) · fY (u− v) · 1

and, finally,

fU (u) =
∫ ∞

−∞
fX(v)fY (u− v) dv,

which is the desired formula.

Exercise 2.1. Derive the density for the difference, product, and ratio, re-
spectively, of two independent, continuous random variables. 2

2.2 Many-to-One

A natural question is the following: What if g is not injective? Let us again
begin with the case n = 1.

Example 2.6. A simple one-dimensional example is y = x2. If X is a continu-
ous, one-dimensional, random variable and Y = X2, then

fY (y) = fX(
√
y)

1
2
√
y

+ fX(−√y) 1
2
√
y
.

Note that the function is 2-to-1 and that we obtain two terms. 2

Now consider the general case. Suppose that the set S ⊂ Rn can be par-
titioned into m disjoint subsets S1, S2, . . . , Sm in Rn, such that g : Sk → T
is 1 to 1 and satisfies the assumptions of Theorem 2.1 for each k. Then

P (Y ∈ T ) = P (X ∈ S) = P (X ∈
m⋃

k=1

Sk) =
m∑

k=1

P (X ∈ Sk) , (2.1)

which, by Theorem 2.1 applied m times, yields

fY(y) =
m∑

k=1

fX(h1k(y), h2k(y), . . . , hnk(y))· | Jk | , (2.2)
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where, for k = 1, 2, . . . , m, (h1k, h2k, . . . , hnk) is the inverse corresponding to
the mapping from Sk to T and Jk is the Jacobian.

A reconsideration of Example 2.6 in light of this formula shows that the
result there corresponds to the partition S = (R =)S1 ∪ S2 ∪ {0}, where
S1 = (0,∞) and S2 = (−∞, 0) and also that the first term in the right-hand
side there corresponds to S1 and the second one to S2. The fact that the value
at a single point may be arbitrarily chosen takes care of fY (0).

Example 2.7. Steven is a beginner at darts, which means that the points where
his darts hit the board can be assumed to be uniformly spread over the board.
Find the distribution of the distance from one hitting point to the center of
the board.

We assume, without restriction, that the radius of the board is 1 foot (this
is only a matter of scaling). Let (X,Y ) be the hitting point. We know from
Example 1.1 that

fX,Y (x, y) =

{
1
π , for x2 + y2 ≤ 1,
0, otherwise.

We wish to determine the distribution of U =
√
X2 + Y 2, that is, the distri-

bution of the distance from the hitting point to the origin. To this end we
introduce the auxiliary random variable V = arctan(Y/X) and note that the
range of the arctan function is (−π/2, π/2). This means that we have a 2-
to-1 mapping, since the points (X,Y ) and (−X,−Y ) correspond to the same
(U, V ). By symmetry and since the Jacobian equals u, we obtain

fU,V (u, v) =

{
2 · 1

π · u, for 0 < u < 1, −π
2 < v < π

2 ,

0, otherwise.

It follows that fU (u) = 2u for 0 < u < 1 (and 0 otherwise), that V ∈
U(−π/2, π/2), and that U and V are independent. 2

3 Problems

1. Show that if X ∈ C(0, 1), then so is 1/X.
2. Let X ∈ C(m,a). Determine the distribution of 1/X.
3. Show that if T ∈ t(n), then T 2 ∈ F (1, n).
4. Show that if F ∈ F (m,n), then 1/F ∈ F (n,m).
5. Show that if X ∈ C(0, 1), then X2 ∈ F (1, 1).
6. Show that β(1, 1) = U(0, 1).
7. Show that if F ∈ F (m,n), then 1/(1 + m

n F ) ∈ β(n/2,m/2).
8. Show that if X and Y are independent N(0, 1)-distributed random vari-

ables, then X/Y ∈ C(0, 1).
9. Show that if X ∈ N(0, 1) and Y ∈ χ2(n) are independent random vari-

ables, then X/
√
Y/n ∈ t(n).
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10. Show that ifX ∈ χ2(m) and Y ∈ χ2(n) are independent random variables,
then (X/m)/(Y/n) ∈ F (m,n).

11. Show that if X and Y are independent Exp(a)-distributed random vari-
ables, then X/Y ∈ F (2, 2).

12. Let X and Y be independent random variables such that X ∈ U(0, 1) and
Y ∈ U(0, α). Find the density function of Z = X + Y .
Remark. Note that there are two cases: α ≥ 1 and α < 1.

13. Let X and Y have a joint density function given by

f(x, y) =

{
1, for 0 ≤ x ≤ 2, max(0, x− 1) ≤ y ≤ min(1, x),
0, otherwise.

Determine the marginal density functions and the joint and marginal dis-
tribution functions.

14. Suppose that X ∈ Exp(1), let Y be the integer part and Z the fractional
part, that is, let

Y = [X] and Z = X − [X].

Show that Y and Z are independent and find their distributions.
15. Ottar jogs regularly. One day he started his run at 5:31 p.m. and returned

at 5:46 p.m. The following day he started at 5:31 p.m. and returned at
5:47 p.m. His watch shows only hours and minutes (not seconds). What
is the probability that the run the first day lasted longer than the run the
second day?

16. A certain chemistry problem involves the numerical study of a lognormal
random variable X. Suppose that the software package used requires the
input of E Y and VarY into the computer (where Y is normal and such
that X = eY ), but that one knows only the values of EX and VarX.
Find expressions for the former mean and variance in terms of the latter.

17. Let X and Y be independent Exp(a)-distributed random variables. Find
the density function of the random variable Z = X/(1 + Y ).

18. Let X ∈ Exp(1) and Y ∈ U(0, 1) be independent random variables. De-
termine the distribution (density) of X + Y .

19. The random vector X = (X1, X2, X3)′ has density function

fX(x) =

{
2

2e−5 · x
2
1 · x2 · ex1·x2·x3 , for 0 < x1, x2, x3 < 1,

0, otherwise.

Determine the distribution of X1 ·X2 ·X3.
20. The random variables X1 and X2 are independent and equidistributed

with density function

f(x) =

{
4x3, for 0 ≤ x ≤ 1,
0, otherwise.

Set Y1 = X1

√
X2 and Y2 = X2

√
X1.
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(a) Determine the joint density function of Y1 and Y2.
(b) Are Y1 and Y2 independent?

21. Let (X,Y )′ have density

f(x, y) =

{
x

(1+x)2·(1+xy)2
, for x, y > 0,

0, otherwise.

Show that X and X ·Y are independent, equidistriduted random variables
and determine their distribution.

22. Let X and Y have joint density

f(x, y) =

{
cx(1− y), when 0 < x < y < 1,
0, otherwise.

Determine the distribution of Y −X.
23. Suppose that (X,Y )′ has a density function given by

f(x, y) =

{
e−x2y, for x ≥ 1, y > 0,
0, otherwise.

Determine the distribution of X2Y .
24. Let X and Y have the following joint density function:

f(x, y) =

{
λ2e−λy, for 0 < x < y,

0, otherwise.

Show that Y and X/(Y −X) are independent, and find their distributions.
25. Let X and Y have joint density

f(x, y) =

{
cx, when 0 < x2 < y <

√
x < 1,

0, otherwise.

Determine the distribution of XY .
26. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
1
y e

−x/ye−y, when 0 < x, y <∞,
0, otherwise.

Show that X/Y and Y are independent standard exponential random
variables and exploit this fact in order to compute EX and VarX.

27. Let X and Y have joint density

f(x, y) =

{
cx, when 0 < x3 < y <

√
x < 1,

0, otherwise.

Determine the distribution of XY .
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28. Let X and Y have joint density

f(x, y) =

{
cx, when 0 < x2 < y <

√
x < 1,

0, otherwise.

Determine the distribution of X2/Y .
29. Suppose that (X,Y )′ has density

f(x, y) =

{
2

(1+x+y)3 , for x, y > 0,

0, otherwise.

Determine the distribution of
(a)X + Y ,
(b)X − Y .

30. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
2
5 (2x+ 3y), when 0 < x, y < 1,
0, otherwise.

Determine the distribution of 2X + 3Y .
31. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
xe−x−xy, when x > 0, y > 0,
0, otherwise.

Determine the distribution of X(1 + Y ).
32. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
c x

(1+y)2 , when 0 < y < x < 1,

0, otherwise.

Determine the distribution of X/(1 + Y )2.
33. Suppose that X, Y , and Z are random variables with a joint density

f(x, y, z) =

{
6

(1+x+y+z)4 , when x, y, z > 0,

0, otherwise.

Determine the distribution of X + Y + Z.
34. Suppose that X, Y , and Z are random variables with a joint density

f(x, y, z) =

{
ce−(x+y)2 , for −∞ < x <∞, 0 < y < 1,
0, otherwise.

Determine the distribution of X + Y .
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35. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
c

(1+x−y)2 , when 0 < y < x < 1,

0, otherwise.

Determine the distribution of X − Y .
36. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
c · cosx, when 0 < y < x < π

2 ,

0, otherwise.

Determine the distribution of Y/X.
37. Suppose that X and Y are independent Pa(1, 1)-distributed random vari-

ables. Determine the distributions of XY and X/Y .
38. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
c · log y, when 0 < y < x < 1,
0, otherwise.

Determine the distribution (density) of Z = − log(Y/X).
39. Let X1 ∈ Γ(a1, b) and X2 ∈ Γ(a2, b) be independent random variables.

Show that X1/X2 and X1 + X2 are independent random variables, and
determine their distributions.

40. Let X ∈ Γ(r, 1) and Y ∈ Γ(s, 1) be independent random variables.
(a) Show that X/(X + Y ) and X + Y are independent.
(b) Show that X/(X + Y ) ∈ β(r, s).
(c) Use (a) and (b) and the relation

X = (X + Y ) · X

X + Y

in order to compute the mean and the variance of the beta distribution.
41. Let X1, X2, and X3 be independent random variables, and suppose that

Xi ∈ Γ(ri, 1), i = 1, 2, 3. Set

Y1 =
X1

X1 +X2
,

Y2 =
X1 +X2

X1 +X2 +X3
,

Y3 = X1 +X2 +X3.

Determine the joint distribution of Y1, Y2, and Y3. Conclusions?
42. Let X and Y be independent N(0, 1)-distributed random variables.

(a) What is the distribution of X2 + Y 2?
(b) Are X2 + Y 2 and X/Y independent?
(c) Determine the distribution of X/Y .
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43. LetX and Y be independent random variables. Determine the distribution
of (X − Y )/(X + Y ) if
(a)X,Y ∈ Exp(1),
(b)X,Y ∈ N(0, 1) (see also Problem 5.10.9(c)).

44. A random vector in R2 is chosen as follows: Its length, Z, and its angle, Θ,
with the positive x-axis, are independent random variables, Z has density

f(z) = ze−z2/2 , z > 0,

and Θ ∈ U(0, 2π). Let Q denote the point of the vector. Determine the
joint distribution of the Cartesian coordinates of Q.

45. Show that the following procedure generates N(0, 1)-distributed random
numbers: Pick two independent U(0, 1)-distributed numbers U1 and U2

and set X =
√
−2 logU1 ·cos(2πU2) and Y =

√
−2 logU1 ·sin(2πU2). Show

that X and Y are independent N(0, 1)-distributed random variables.




