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Preface to the First Edition

The purpose of this book is to provide the reader with a solid background
and understanding of the basic results and methods in probability theory
before entering into more advanced courses (in probability and/or statistics).
The presentation is fairly thorough and detailed with many solved examples.
Several examples are solved with different methods in order to illustrate their
different levels of sophistication, their pros, and their cons. The motivation
for this style of exposition is that experience has proved that the hard part in
courses of this kind usually is the application of the results and methods; to
know how, when, and where to apply what; and then, technically, to solve a
given problem once one knows how to proceed. Exercises are spread out along
the way, and every chapter ends with a large selection of problems.

Chapters 1 through 6 focus on some central areas of what might be called
pure probability theory: multivariate random variables, conditioning, trans-
forms, order variables, the multivariate normal distribution, and convergence.
A final chapter is devoted to the Poisson process because of its fundamental
role in the theory of stochastic processes, but also because it provides an ex-
cellent application of the results and methods acquired earlier in the book. As
an extra bonus, several facts about this process, which are frequently more
or less taken for granted, are thereby properly verified. The book concludes
with three appendixes: In the first we provide some suggestions for further
reading and in the second we provide a list of abbreviations and useful facts
concerning some standard distributions. The third appendix contains answers
to the problems given at the end of each chapter.

The level of the book is between the first undergraduate course in prob-
ability and the first graduate course. In particular, no knowledge of measure
theory is assumed. The prerequisites (beyond a first course in probability) are
basic analysis and some linear algebra.

Chapter 5 is, essentially, a revision of a handout by professor Carl-Gustav
Esseen. I am most grateful to him for allowing me to include the material in
the book.



vi

The readability of a book is not only a function of its content and how
(well) the material is presented; very important are layout, fonts, and other
aesthetical aspects. My heartfelt thanks to Anders Vretblad for his ideas,
views, and suggestions, for his design and creation of the allan.sty file, and
for his otherwise most generous help.

I am also very grateful to Svante Janson for providing me with various
index-making devices and to Lennart Norell for creating Figure 3.6.1.1 Ola
Hössjer and Pontus Andersson have gone through the manuscript with great
care at different stages in a search for misprints, slips, and other obscurities;
I thank them so much for every one of their discoveries as well as for many
other remarks (unfortunately, I am responsible for possible remaining inadver-
tencies). I also wish to thank my students from a second course in probability
theory in Uppsala and Jan Ohlin and his students from a similar course at the
Stockholm University for sending me a list of corrections on an earlier version
of this book.

Finally, I wish to thank Svante Janson and Dietrich von Rosen for sev-
eral helpful suggestions and moral support, and Martin Gilchrist of Springer-
Verlag for the care and understanding he has shown me and my manuscript.

Uppsala Allan Gut
May 1995

1 Figure 3.7.1 in this, second, edition.



Preface to the Second Edition

The first edition of this book appeared in 1995. Some misprints and (minor)
inadvertencies have been collected over the years, in part by myself, in part by
students and colleagues around the world. I was therefore very happy when
I received an email from John Kimmel at Springer-Verlag asking whether I
would be interested in an updated second edition of the book.

And here it is!
In addition to the cleaning up and some polishing, I have added some

remarks and clarifications here and there, and a few sections have moved to
new places.

More important, this edition features a new chapter, which provides an in-
troductory outlook into further areas and topics, such as stable distributions
and domains of attraction, extreme value theory and records, and, finally,
an introduction to a most central tool in probability theory and the theory
of stochastic processes, namely the theory of martingales. This chapter is
included mainly as an appetizer to the more advanced theory, for which sug-
gested further reading is given in Appendix A. I wish to thank Svante Janson
for a careful reading of the chapter and for several remarks and suggestions.

I conclude the preface of this second edition by extending my heartfelt
thanks to John Kimmel for his constant support and encouragement—for
always being there—over many years.

Uppsala Allan Gut
April 2009
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Introduction

1 Models

The object of probability theory is to describe and investigate mathematical
models of random phenomena, primarily from a theoretical point of view.
Statistics is concerned with creating principles, methods, and criteria to treat
data pertaining to such (random) phenomena or to data from experiments
and other observations of the real world by using, for example, the theories
and knowledge available from the theory of probability.

Modeling is used in many fields, including physics, chemistry, biology, and
economics. The models are, in general, deterministic. The motion of the plan-
ets, for example, may be described exactly; one may, say, compute the exact
date and hour of the next solar eclipse.

In probability theory one studies models of random phenomena. Such mod-
els are intended to describe random experiments, that is, experiments that can
be repeated (indefinitely) and where future outcomes cannot be exactly pre-
dicted even if the experimental situation can be fully controlled; there is some
randomness involved in the experiment.

A trivial example is the tossing of a coin. Even if we have complete knowl-
edge about the construction of the coin—for instance, that it is symmetric—we
cannot predict the outcome of future tosses. A less trivial example is quality
control. Even though the production of some given object (screws, ball bear-
ings, etc.) is aimed at making all of them identical, it is clear that some (ran-
dom) variation occurs, no matter how thoroughly the production equipment
has been designed, constructed, and installed. Another example is genetics.
Even though we know the “laws” of heredity, we cannot predict with certitude
the sex or the eye color of an unborn baby.

An important distinction we therefore would like to stress is the difference
between deterministic models and probabilistic models. A differential equa-
tion, say, may well describe a random phenomenon, although the equation
does not capture any of the randomness involved in the real problem; the
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differential equation models (only) the average behavior of the random phe-
nomenon. One way to make the distinction is to say that deterministic models
describe the macroscopic behavior of random phenomena, whereas probabilis-
tic models describe the microscopic behavior. The deterministic model gives
a picture of the situation from a distance (in which case one cannot observe
local (random) fluctuations), whereas the probabilistic model provides a pic-
ture of the situation close up. As an example we might consider a fluid. From
far away it moves along some main direction (and, indeed, this is what the in-
dividual molecules do—on average). At “atomic” distances, on the other, one
may (in addition) observe the erratic (random) movement of the individual
molecules.

The conclusion to be drawn here is that there are various ways to describe a
(random) phenomenon mathematically with different degrees of precision and
complexity. One important task for an applied mathematician is to choose the
model that is most appropriate in his or her particular case. This involves a
compromise between choosing a more accurate and detailed model on the one
hand and choosing a manageable and tractable model on the other. What we
must always remember is that we are modeling some real phenomenon and
that a model is a model and not reality, although a good description of it we
hope.

Keeping this in mind, the purpose of this book is, as the title suggests,
to present some of the theory of probability that goes beyond the first course
taken by all mathematics students, thus making the reader better equipped
to deal with problems of and models of random phenomena. Let us add,
however, that this is not an applied text; it concentrates on “pure” probability
theory. The full discussion of the theory of stochastic processes would require
a separate volume. We have, however, decided to include one chapter (the
last) on the Poisson process because of its special importance in applications.
In addition, we believe that the usual textbook treatment of this process is
rather casual and that a thorough discussion may be of value. Moreover, our
treatment shows the power of the methods and techniques acquired in the
earlier chapters and thus provides a nice application of that theory.

Sections 2 through 9 of this introductory chapter browse through the typ-
ical first course in probability, recalling the origin of the theory, as well as
definitions, notations, and a few facts. In the final section we give an outline
of the contents of the book.

2 The Probability Space

The basis of probability theory is the probability space. Let us begin by de-
scribing how a probability space comes about.

The key idea is the stabilization of relative frequencies. In the previous
section we mentioned that a random experiment is an experiment that can
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be repeated (indefinitely) and where future outcomes cannot be exactly pre-
dicted even if the experimental situation can be fully controlled. Suppose that
we perform “independent” repetitions of such an experiment and that we
record each time if some “event” A occurs or not (note that we have not yet
mathematically defined what we mean by either independence or event). Let
fn(A) denote the number of occurrences of A in the first n trials, and let
rn(A) denote the relative frequency of occurrences of A in the first n trials,
that is, rn(A) = fn(A)/n. Since the dawn of history, one has observed the
stabilization of the relative frequencies. This means that, empirically, one has
observed that (it seems that)

rn(A) converges to some real number as n→∞. (2.1)

As an example, consider the repeated tossing of a coin. In this case this means
that, eventually, the number of heads approximately equals the number of
tails, that is, the stabilization of their relative frequencies to 1/2.

Now, as we recall, the aim of probability theory is to provide a model of
random phenomena. It is therefore natural to use relation (2.1) as a starting
point for a definition of what is meant by the probability of an event.

The next step is to axiomatize the theory; this was done by the famous
Soviet/Russian mathematician A.N. Kolmogorov (1903–1987) in his funda-
mental monograph Grundbegriffe der Wahrscheinlichkeitsrechnung, which ap-
peared in 1933. Here we shall consider some elementary steps only.

The first thing to observe is that a number of rules that hold for relative
frequencies should also hold for probabilities. Let us consider some examples
in an intuitive language.

(a) Since 0 ≤ fn(A) ≤ n for any event A, it follows that 0 ≤ rn(A) ≤ 1. The
probability of an event therefore should be a real number in the interval
[0, 1].

(b) If A is the empty set ∅ (“nothing”), then fn(∅) = 0 and hence rn(∅) = 0.
The probability of the empty set should therefore equal 0. Similarly, if A is
the whole space Ω (“everything”), then fn(Ω) = n and hence rn(Ω) = 1.
The probability of the whole space should therefore equal 1.

(c) Let B be the complement of A within the whole space. Since in each
performance either A or B occurs and never both simultaneously, we
have fn(A) + fn(B) = n, and hence rn(A) + rn(B) = 1. The sum of
the probability of an event and the probability of its complement should
therefore equal 1.

(d) Suppose that the event A is contained in the event B. This clearly implies
that fn(A) ≤ fn(B) and hence that rn(A) ≤ rn(B). It follows that the
probability of A should be at most equal to the probability of B.

(e) Suppose that the events A and B are disjoint, and let C be their union.
Then fn(C) = fn(A) + fn(B) and hence rn(C) = rn(A) + rn(B), from
which we would conclude that the probability of the union of two disjoint
events equals the sum of their individual probabilities. This is called finite
additivity.



4 Introduction

(f) A closer inspection of the last property shows that if A and B are not
disjoint, then we have fn(C) ≤ fn(A)+fn(B) and hence rn(C) ≤ rn(A)+
rn(B), from which we would conclude that the probability of the union
of two events is at most equal to the sum of the individual probabilities.

(g) An even closer inspection shows that, in fact, fn(C) = fn(A) + fn(B)−
fn(D) in this case. Here D equals the intersection of A and B. It follows
that rn(C) = rn(A)+rn(B)−rn(D), from which we would conclude that
the probability of the union of two events equals the sum of the individual
probabilities minus the probability of their intersection.

It is easy to construct further rules that should hold for probabilities. Further,
it is obvious that some of the rules might be derived from others.

The next task is to find the minimal number of rules necessary to develop
the theory of probability.

To this end we introduce the probability space (Ω,F , P ). Here Ω, the sam-
ple space, is some (abstract) space—the set of elementary events {ω}—and
F is the collection of events. In basic terms, F equals the collection of sub-
sets of Ω. More technically, F equals the collection (σ-algebra) of measurable
subsets of Ω. Since we do not require measurability, we adhere to the first
definition, keeping in mind, however, that though not completely correct, it
will be sufficiently so for our purposes. Finally, P satisfies the following three
(Kolmogorov) axioms:

1. For any A ∈ F , there exists a number P (A), the probability of A, satis-
fying P (A) ≥ 0.

2. P (Ω) = 1.
3. Let {An, n ≥ 1} be a collection of pairwise disjoint events, and let A be

their union. Then

P (A) =
∞∑

n=1

P (An).

One can now show that these axioms imply all other rules, such as those
hinted at above. We also remark that Axiom 3 is called countable additivity
(in contrast to finite additivity ; cf. (e), which is less restrictive).

3 Independence and Conditional Probabilities

In the previous section we made “independent” repetitions of an experiment.
Let us now define this concept properly. Two events A and B are independent
iff the probability of their intersection equals the product of their individual
(the marginal) probabilities, that is, iff

P (A ∩B) = P (A) · P (B). (3.1)

The definition can be extended to arbitrary finite collections of events; one
requires that (3.1) hold for all finite subsets of the collection. If (3.1) holds
for all pairs only, the events are called pairwise independent.
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Another concept introduced in this connection is conditional probability .
Given two events A and B, with P (B) > 0, we define the conditional proba-
bility of A given B, P (A | B), by the relation

P (A | B) =
P (A ∩B)
P (B)

. (3.2)

In particular, if B = Ω, then P (A | Ω) = P (A), that is, conditional probabili-
ties reduce to ordinary (unconditional) probabilities. If A and B are indepen-
dent, then (3.2) reduces to P (A | B) = P (A) (of course).

It is an easy exercise to show that P ( · | B) satisfies the Kolmogorov axioms
for a given, fixed B with P (B) > 0 (please check!).

We close this section by quoting the law of total probability and Bayes’
formula (Thomas Bayes (1702(?)–1761) was an English dissenting minister).

Let {Hk, 1 ≤ k ≤ n} be a partition of Ω, that is, suppose that Hk, 1 ≤
k ≤ n, are disjoint sets and that their union equals Ω. Let A be an event. The
law of total probability states that

P (A) =
n∑

k=1

P (A | Hk) · P (Hk), (3.3)

and Bayes’ formula states that

P (Hi | A) =
P (A | Hi) · P (Hi)∑n

k=1 P (A | Hk) · P (Hk)
. (3.4)

4 Random Variables

In general, one is not interested in events of F per se, but rather in some
function of them. For example, suppose one plays some game where the payoff
is a function of the number of dots on two dice; suppose one receives 2 euros
if the total number of dots equals 2 or 3, that one receives 5 euros if the
total number of dots equals 4, 5, 6, or 7, and that one has to pay 10 euros
otherwise. As far as payoff is concerned, we have three groups of dots: {2, 3},
{4, 5, 6, 7}, and {8, 9, 10, 11, 12}. In other words, our payoff is a function of
the total number of dots on the dice. In order to compute the probability that
the payoff equals some number (5, say), we compute the probability that the
total number of dots falls into the class ({4, 5, 6, 7}), which corresponds to the
relevant payoff (5). This leads to the notion of random variables.

A random variable is a (measurable) function from the probability space
to the real numbers:

X : Ω→ R. (4.1)

Random variables are denoted by capital letters, such as X,Y, Z, U, V , and W .
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We remark, once more, that since we do not presuppose the concept of
measurability, we define random variables as functions. More specifically, ran-
dom variables are defined as measurable functions.

For our example, this means that if X is the payoff in the game and if
we wish to compute, say, the probability that X equals 5, then we do the
following:

P (X = 5) = P ({ω : X(ω) = 5}) = P (# dots = 4, 5, 6, 7)
(
=

1
2

)
.

Note that the first P pertains to the real-valued object X, whereas the other
two pertain to events in F ; the former probability is induced by the latter.

In order to describe a random variable one would need to know P (X ∈ B)
for all possible B (where we interpret “all possible B” as all subsets of R, with
the tacit understanding that in reality all possible (permitted) B constitute
a collection, B, of subsets of R, which are the measurable subsets of R; note
that B relates to R as F does to Ω). However, it turns out that it suffices to
know the value of P (X ∈ B) for sets B of the form (−∞, x] for −∞ < x <∞
(since those sets generate B). This brings us to the definition of a distribution
function.

The distribution function FX of the random variable X is defined as

FX(x) = P (X ≤ x) , −∞ < x <∞. (4.2)

A famous theorem by the French mathematician H. Lebesgue (1875–1941)
states that there exist three kinds of distributions (and mixtures of them). In
this book we are only concerned with two kinds: discrete distributions and
(absolutely) continuous distributions.

For discrete distributions we define the probability function pX as pX(x) =
P (X = x) for all x. It turns out that a probability function is nonzero for
at most a countable number of x values (try to prove that!). The connection
between the distribution function and the probability function is

FX(x) =
∑
y≤x

pX(y) , −∞ < x <∞. (4.3)

For continuous distributions we introduce the density function fX which
has the property that

FX(x) =
∫ x

−∞
fX(y) dy , −∞ < x <∞. (4.4)

Moreover, F
′

X(x) = fX(x) for all x that are continuity points of f .
As typical discrete distributions we mention the binomial, geometric, and

Poisson distributions. Typical continuous distributions are the uniform (rect-
angular), exponential, gamma, and normal distributions. Notation and char-
acteristics of these and of other distributions can be found in Appendix B.



5 Expectation, Variance, and Moments 7

5 Expectation, Variance, and Moments

In order for us to give a brief description of the distribution of a random vari-
able, it is obviously not very convenient to present a table of the distribution
function. It would be better to present some suitable characteristics. Two im-
portant classes of such characteristics are measures of location and measures
of dispersion.

Let X be a random variable with distribution function F . The most com-
mon measure of location is the mean or expected value EX, which is defined
as

EX =


∞∑

k=1

xk · pX(xk), if X is discrete,∫∞
−∞ x · fX(x) dx, if X is continuous,

(5.1)

provided the sum or integral is absolutely convergent. If we think of the dis-
tribution as the (physical) mass of some body, the mean corresponds to the
center of gravity. Note also that the proviso indicates that the mean does not
necessarily exist. For nonnegative random variables X with a divergent sum
or integral, we shall also permit ourselves to say that the mean is infinite
(EX = +∞).

Another measure of location is the median, which is a number m (not
necessarily unique) such that

P (X ≥ m) ≥ 1
2

and P (X ≤ m) ≥ 1
2
. (5.2)

If the distribution is symmetric, then, clearly, the median and the mean coin-
cide (provided that the latter exists). If the distribution is skew, the median
might be a better measure of the “average” than the mean. However, this also
depends on the problem at hand.

It is clear that two distributions may well have the same mean and yet be
very different. One way to distinguish them is via a measure of dispersion—by
indicating how spread out the mass is. The most commonly used such measure
is the variance VarX, which is defined as

VarX = E(X − EX)2 , (5.3)

and can be computed as

VarX =


∞∑

k=1

(xk − EX)2 · pX(xk), if X is discrete,∫∞
−∞(x− EX)2 · fX(x) dx, if X is continuous.

(5.4)

Note that the variance exists only if the corresponding sum or integral is
absolutely convergent.

An alternative and, in general, more convenient way to compute the vari-
ance is via the relation
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VarX = EX2 − (EX)2, (5.5)

which is obtained by expanding the square in (5.3). As for the analogy with
a physical body, the variance is related to the moment of inertia.

We close this section by defining moments and central moments. The for-
mer are

EXn, n = 1, 2, . . . , (5.6)

and the latter are
E(X − EX)n, n = 1, 2, . . . , (5.7)

provided they exist. In particular, the mean is the first moment (n = 1) and
the variance is the second central moment (n = 2). The absolute moments
and absolute central moments are

E|X|r, r > 0, (5.8)

and
E|X − EX|r, r > 0, (5.9)

respectively, provided they exist.

6 Joint Distributions and Independence

Let X and Y be random variables of the same kind (discrete or continuous).
A complete description of the pair (X,Y ) is given by the joint distribution
function

FX,Y (x, y) = P (X ≤ x, Y ≤ y), −∞ < x, y <∞. (6.1)

In the discrete case there exists a joint probability function:

pX,Y (x, y) = P (X = x, Y = y), −∞ < x, y <∞. (6.2)

In the continuous case there exists a joint density :

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
, −∞ < x, y <∞. (6.3)

The joint distribution function can be expressed in terms of the joint prob-
ability function and the joint density function, respectively, in the obvious
way.

Next we turn to the concept of independence. Intuitively, we would require
that P ({X ∈ A} ∩ {Y ∈ B}) = P ({X ∈ A}) · P ({Y ∈ B}) for all A ⊂ R
and B ⊂ R in order for X and Y to be independent. However, just as in
the definition of distribution functions, it suffices that this relation hold for
sets A = (−∞, x] for all x and B = (−∞, y] for all y. Thus, X and Y are
independent iff
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P ({X ≤ x} ∩ {Y ≤ y}) = P ({X ≤ x}) · P ({Y ≤ y}), (6.4)

for −∞ < x, y <∞, that is, iff

FX,Y (x, y) = FX(x) · FY (y), (6.5)

for all x and y. In the discrete case this is equivalent to

pX,Y (x, y) = pX(x) · pY (y), (6.6)

for all x and y, and in the continuous case it is equivalent to

fX,Y (x, y) = fX(x) · fY (y), (6.7)

for −∞ < x, y <∞.
The general case with sets of more than two random variables will be

considered in Chapter 1.

7 Sums of Random Variables, Covariance, Correlation

A central part of probability theory is the study of sums of (independent)
random variables. Here we confine ourselves to sums of two random variables,
X and Y .

Let (X,Y ) be a discrete two-dimensional random variable. In order to
compute the probability function of X + Y , we wish to find the probabilities
of the events {ω : X(ω) + Y (ω) = z} for all z ∈ R. Consider a fixed z ∈ R.
SinceX(ω)+Y (ω) = z exactly whenX(ω) = x and Y (ω) = y, where x+y = z,
it follows that

pX+Y (z) =
∑∑

{(x,y):x+y=z}

pX,Y (x, y) =
∑

x

pX,Y (x, z − x) , z ∈ R.

If, in addition, X and Y are independent, then

pX+Y (z) =
∑

x

pX(x)pY (z − x), z ∈ R, (7.1)

which we recognize as the convolution formula.
A similar computation in the continuous case is a little more complicated.

It is, however, a reasonable guess that the convolution formula should be

fX+Y (z) =
∫ ∞

−∞
fX(x)fY (z − x) dx, z ∈ R. (7.2)

That this is indeed the case can be shown by first considering FX+Y (z) and
then differentiating. Also, if X and Y are not independent, then
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fX+Y (z) =
∫ ∞

−∞
fX,Y (x, z − x) dx, z ∈ R,

in analogy with the discrete case.
Next we consider the mean and variance of sums of (two) random variables;

we shall, in fact, consider linear combinations of them. To this end, let a and
b be constants. It is easy to check that

E(aX + bY ) = aE X + bE Y ; (7.3)

in other words, expectation is linear.
Further, by rearranging (aX + bY − E(aX + bY ))2 into (a(X − EX) +

b(Y − E Y ))2, we obtain

Var(aX + bY ) = a2VarX + b2VarY + 2abE(X − EX)(Y − E Y ). (7.4)

Since the double product does not vanish in general, we do not have a
Pythagorean-looking identity. In fact, (7.4) provides the motivation for the
definition of covariance:

Cov(X,Y ) = E(X − EX)(Y − E Y ) (= EXY − EXE Y ). (7.5)

Covariance is a measure of the interdependence of X and Y in the sense that
it becomes large and positive when X and Y are both large and of the same
sign; it is large and negative if X and Y are both large and of opposite signs.
Since Cov(aX, bY ) = abCov(X,Y ), it follows that the covariance is not scale
invariant. A better measure of dependence is the correlation coefficient, which
is a scale-invariant real number:

ρX,Y =
Cov(X,Y )√
VarX ·VarY

. (7.6)

Moreover, |ρX,Y | ≤ 1. If ρX,Y = 0, we say that X and Y are uncorrelated.
There is a famous result to the effect that two independent random variables
are uncorrelated but that the converse does not necessarily hold.

We also note that if X and Y , for example, are independent, then (7.4)
reduces to the Pythagorean form. Furthermore, with a = b = 1 it follows, in
particular, that the variance of the sum equals the sum of the variances; and
with a = 1 and b = −1 it follows that the variance of the difference (also)
equals the sum of the variances.

8 Limit Theorems

The next part of a first course in probability usually contains a survey of
the most important distributions and their properties, a brief introduction to
some of the most important limit theorems such as the law of large numbers
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and the central limit theorem, and results such as the Poisson approximation
and normal approximation of the binomial distribution, for appropriate values
of n and p.

As for the most important distributions, we refer once more to Appendix B.
The law of large numbers is normally presented in the so-called weak form

under the assumption of finite variance. A preliminary tool for the proof is
Chebyshev’s inequality , which states that for a random variable U with mean
m and variance σ2 both finite, one has

P (| U −m |> ε) ≤ σ2

ε2
for all ε > 0. (8.1)

This inequality is, in fact, a special case of Markov’s inequality, according to
which

P (V > ε) ≤ E V r

εr
(8.2)

for positive random variables, V , with E V r <∞.
The law of large numbers and the central limit theorem (the former under

the assumption of finite mean only) are stated and proved in Chapter 6, so we
refrain from recalling them here. The other limit theorems mentioned above
are, in part, special cases of the central limit theorem. Some of them are also
reviewed in examples and problems in Chapter 6.

9 Stochastic Processes

A first course in probability theory frequently concludes with a small chapter
on stochastic processes, which contains definitions and some introduction to
the theory of Markov processes and/or the Poisson process.

A stochastic process is a family of random variables, X = {X(t), t ∈ T},
where T is some index set. Typical cases are T = the nonnegative integers
(in which case the process is said to have discrete time) and T = [0, 1] or
T = [0,∞) (in which case the process is said to have continuous time). A
stochastic process is in itself called discrete or continuous depending on the
state space, which is the set of values assumed by the process.

As argued earlier, this book is devoted to “pure” probability theory, so we
shall not discuss the general theory of stochastic processes. The only process
we will discuss in detail is the Poisson process, one definition of which is that
it has independent, stationary, Poisson-distributed increments.

10 The Contents of the Book

The purpose of this introductory chapter so far has been to provide a back-
ground and skim through the contents of the typical first course in probability.
In this last section we briefly describe the contents of the following chapters.
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In Chapter 1 we discuss multivariate random variables (random vectors)
and the connection between joint and marginal distributions. In addition,
we prove an important transformation theorem for continuous multivariate
random variables, permitting us to find the distribution of the (vector-valued)
function of a random vector.

Chapter 2 is devoted to conditional distributions; starting with (3.2) one
can establish relations for conditional probabilities in the discrete case, which
can be extended, by definitions, to the continuous case. Typically, one is given
two jointly distributed random variables X and Y and wishes to find the (con-
ditional) distribution of Y given that X has some fixed value. Conditional
expectations and conditional variances are defined, and some results and re-
lations are proved. Distributions with random parameters are discussed. One
such example is the following: Suppose that X has a Poisson distribution with
a parameter that itself is a random variable. What, really, is the distribution
of X? Two further sections provide some words on Bayesian statistics and
prediction and regression.

A very important tool in mathematics as well as in probability theory is the
transform. In mathematics one talks about Laplace and Fourier transforms.
The commonly used transforms in probability theory are the (probability)
generating function, the moment generating function, and the characteristic
function. The important feature of the transform is that adding indepen-
dent random variables (convolution) corresponds to multiplying transforms.
In Chapter 3 we present uniqueness theorems, “multiplication theorems,” and
some inversion results. Most results are given without proofs, since these
would require mathematical tools beyond the scope of this book. Remarks
on “why” some of the theorems hold, as well as examples, are given. One
section deals with distributions with random parameters from the perspective
of transforms. Another one is devoted to sums of a random number of inde-
pendent, identically distributed (i.i.d.) random variables, where the number
of summands is independent of the summands themselves. We thus consider
X1 + X2 + · · · + XN , where X1, X2, . . . are independent and identically dis-
tributed random variables and N is a nonnegative, integer-valued random
variable independent of X1, X2, . . . . An application to the simplest kind of
branching process is given.

Two interesting objects of a sample, that is, a set of independent, iden-
tically distributed observations of a random variable X, are the largest ob-
servation and the smallest observation. More generally, one can order the
observations in increasing order. In Chapter 4 we derive the distributions
of the ordered random variables, joint distributions of the smallest and the
largest observation, and, more generally, of the whole ordered sample—the
order statistic—as well as some functions of these.

The normal distribution is well known to be one of the most important
distributions. In Chapter 5 we provide a detailed account of the multivari-
ate normal distribution. In particular, three definitions are presented (and a
fourth one in the problem section); the first two are always equivalent, and all
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of them are equivalent in the nonsingular case. A number of important results
are proved, such as the equivalence of the uncorrelatedness and independence
of components of jointly normal random variables, special properties of linear
transformations of normal vectors, the independence of the sample mean and
the sample variance, and Cochran’s theorem.

Chapter 6 is devoted to another important part of probability theory (and
statistics): limit theorems, a particular case being the asymptotic behavior of
sums of random variables as the number of summands tends to infinity. We
begin by defining four modes of convergence—almost sure convergence, con-
vergence in probability, mean convergence, and distributional convergence—
and show that the limiting random variable or distribution is (essentially)
unique. We then proceed to show how the convergence concepts are related
to each other.

A very useful tool for distributional convergence is found in the so-called
continuity theorems, that is, limit theorems for transforms. The idea is that it
suffices to show that the sequence of, say, characteristic functions converges in
order to conclude that the corresponding sequence of random variables con-
verges in distribution (convergence of transforms is often easier to establish
than is proof of distributional convergence directly). Two important applica-
tions are the law of large numbers and the central limit theorem, which are
stated and proved.

Another problem that is investigated is whether or not the sum sequence
converges if the individual sequences do. More precisely, if {Un, n ≥ 1} and
{Vn, n ≥ 1} are sequences of random variables, such that Un and Vn both
converge in some mode as n → ∞, is it then true that Un + Vn converges as
n→∞?

Probability theory is, of course, much more than what one will find in
this book. Chapter 7 contains an outlook into some extensions and further
areas and concepts, such as stable distributions and domains of attraction
(that is, limit theorems when the variance does not exist), extreme value
theory and records. We close with an introduction to one of the most central
tools in probability theory and the theory of stochastic processes, namely
the theory of martingales. Although one needs a basic knowledge of measure
theory to fully appreciate the concept, one still will get the basic flavor with
our more elementary approach. The chapter thus may serve as an introduction
and appetizer to the more advanced theory of probability. For more on these
and additional topics we refer the reader to the more advanced literature, a
selection of which is cited in Appendix A.

This concludes the “pure probability” part. As mentioned above, we have
included a final chapter on the Poisson process. The reason for this is that
it is an extremely important and useful process for applications. Moreover,
it is common practice to use properties of the Poisson process that have not
been properly demonstrated. For example, one of the main features of the
Poisson process is the lack of memory property, which states: given that we
have waited some fixed time for an occurrence, the remaining waiting time
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follows the same (exponential) law as the original waiting time. Equivalently,
objects that break down according to a Poisson process never age. The proof
of this property is easy to provide. However, one of the first applications of
the property is to say that the waiting time between, say, the first and second
occurrences in the process is also exponential, the motivation being the same,
namely, that everything starts from scratch. Now, in this latter case we claim
that everything starts from scratch (also) at a (certain) random time point.
This distinction is usually not mentioned or, maybe, mentioned and then
quickly forgotten.

In Chapter 8 we prove a number of properties of the Poisson process with
the aid of the results and methods acquired earlier in the book. We frequently
present different proofs of the same result. It is our belief that this illustrates
the applicability of the different approaches and provides a comparison be-
tween the various techniques and their efficiencies. For example, the proof
via an elementary method may well be longer than that based on a more
sophisticated idea. On the other hand, the latter has in reality been preceded
(somewhere else) by results that may, in turn, require difficult proofs (or which
have been stated without proof).

To summarize, Chapter 8 gives a detailed account of the important Poisson
process with proofs and at the same time provides a nice application of the
theory of “pure” probability as we will have encountered it earlier in the book.
The chapter closes with a short outlook on extensions, such as nonhomoge-
neous Poisson processes, birth (and death) processes, and renewal processes.

Every chapter concludes with a problem section. Some of the problems
are fairly easy applications of the results in earlier sections, some are a little
harder. Answers to the problems can be found in Appendix C.

One purpose of this book, obviously, is to make the reader realize that
probability theory is an interesting, important, and fascinating subject. As a
starting point for those who wish to know more, Appendix A contains some
remarks and suggestions for further reading.

Throughout we use abbreviations to denote many standard distributions.
Appendix B contains a list of these abbreviations and some useful facts: the
probability function or the density function, mean, variance, and the charac-
teristic function.
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Multivariate Random Variables

1 Introduction

One-dimensional random variables are introduced when the object of interest
is a one-dimensional function of the events (in the probability space (Ω,F , P ));
recall Section 4 of the Introduction. In an analogous manner we now define
multivariate random variables, or random vectors, as multivariate functions.

Definition 1.1. An n-dimensional random variable or vector X is a (mea-
surable) function from the probability space Ω to Rn, that is,

X : Ω→ Rn. 2

Remark 1.1. We remind the reader that this text does not presuppose any
knowledge of measure theory. This is why we do not explicitly mention that
functions and sets are supposed to be measurable.

Remark 1.2. Sometimes we call X a random variable and sometimes we call
it a random vector, in which case we consider it a column vector :

X = (X1, X2, . . . , Xn)′. 2

A complete description of the distribution of the random variable is pro-
vided by the joint distribution function

FX1,X2,...,Xn(x1, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn),

for xk ∈ R, k = 1, 2, . . . , n.
A more compact way to express this is

FX(x) = P (X ≤ x), x ∈ Rn,

where the event {X ≤ x} is to be interpreted componentwise, that is,
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16 1 Multivariate Random Variables

{X ≤ x} = {X1 ≤ x1, . . . , Xn ≤ xn} =
n⋂

k=1

{Xk ≤ xk}.

In the discrete case we introduce the joint probability function

pX(x) = P (X = x), x ∈ Rn,

that is,

pX1,X2,...,Xn(x1, x2, . . . , xn) = P (X1 = x1, . . . , Xn = xn)

for xk ∈ R, k = 1, 2, . . . , n.
It follows that

FX(x) =
∑
y≤x

pX(y),

that is,

FX1,X2,...,Xn(x1, x2, . . . , xn) =
∑

y1≤x1

. . .
∑

yn≤xn

pX1,X2,...,Xn(y1, y2, . . . , yn).

In the (absolutely) continuous case we define the joint density (function)

fX(x) =
dnFX(x)
dxn

, x ∈ Rn,

that is,

fX1,X2,...,Xn
(x1, x2, . . . , xn) =

∂nFX1,X2,...,Xn(x1, x2, . . . , xn)
∂x1∂x2 . . . ∂xn

,

where, again, xk ∈ R, k = 1, 2, . . . , n.

Remark 1.3. Throughout we assume that all components of a random vector
are of the same kind, either all discrete or all continuous. 2

It may well happen that in an n-dimensional problem one is only interested
in the distribution of m < n of the coordinate variables. We illustrate this
situation with an example where n = 2.

Example 1.1. Let (X,Y ) be a point that is uniformly distributed on the unit
disc; that is, the joint distribution of X and Y is

fX,Y (x, y) =

{
1
π , for x2 + y2 ≤ 1,
0, otherwise.

Determine the distribution of the x-coordinate. 2
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Choosing a point in the plane is obviously a two-dimensional task. How-
ever, the object of interest is a one-dimensional quantity; the problem is for-
mulated in terms of the joint distribution of X and Y , and we are interested
in the distribution of X (the density fX(x)).

Before we solve this problem we shall study the discrete case, which, in
some respects, is easier to handle.

Thus, suppose that (X,Y ) is a given two-dimensional random variable
whose joint probability function is pX,Y (x, y) and that we are interested in
finding pX(x). We have

pX(x) = P (X = x) = P (
⋃
y

{X = x, Y = y})

=
∑

y

P (X = x, Y = y) =
∑

y

pX,Y (x, y).

A similar computation yields pY (y). The distributions thus obtained are called
marginal distributions (of X and Y , respectively).

The marginal probability functions are

pX(x) =
∑

y

pX,Y (x, y)

and
pY (y) =

∑
x

pX,Y (x, y).

Analogous formulas hold in higher dimensions. They show that the proba-
bility function of a marginal distribution is obtained by summing the joint
probability function over the components that are not of interest.

The marginal distribution function is obtained in the usual way. In the
two-dimensional case we have, for example,

FX1(x) =
∑
x′≤x

pX1(x
′) =

∑
x′≤x

∑
y

pX1,X2(x
′, y).

A corresponding discussion for the continuous case cannot be made immedi-
ately, since all probabilities involved equal zero. We therefore make definitions
that are analogous to the results in the discrete case. In the two-dimensional
case we define the marginal density functions as follows:

fX(x) =
∫ ∞

−∞
fX,Y (x, y)DD

and
fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx.

The marginal distribution function of X is
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FX(x) =
∫ x

−∞
fX(u) du =

∫ x

−∞

(∫ ∞

−∞
fX,Y (u, y) dy

)
du.

We now return to Example 1.1. Recall that the joint density of X and Y is

fX,Y (x, y) =

{
1
π , for x2 + y2 ≤ 1,
0, otherwise,

which yields

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ √
1−x2

−
√

1−x2

1
π
dy =

2
π

√
1− x2

for −1 < x < 1 (and fX(x) = 0 for |x| ≥ 1).
As an extra precaution one might check that

∫ 1

−1
2
π

√
1− x2 dx = 1. Simi-

larly (by symmetry), we have

fY (y) =
2
π

√
1− y2 , −1 < y < 1.

Exercise 1.1. Let (X,Y, Z) be a point chosen uniformly within the three-
dimensional unit sphere. Determine the marginal distributions of (X,Y ) and
X. 2

We have now seen how a model might well be formulated in a higher di-
mension than the actual problem of interest. The converse is the problem of
discovering to what extent the marginal distributions determine the joint dis-
tribution. There exist counterexamples showing that the joint distribution is
not necessarily uniquely determined by the marginal ones. Interesting appli-
cations are computer tomography and satellite pictures; in both applications
one makes two-dimensional pictures and wishes to make conclusions about
three-dimensional objects (the brain and the Earth).

We close this section by introducing the concepts of independence and
uncorrelatedness.

The components of a random vector X are independent iff, for the joint
distribution, we have

FX(x) =
n∏

k=1

FXk
(xk), xk ∈ R, k = 1, 2, . . . , n,

that is, iff the joint distribution function equals the product of the marginal
ones. In the discrete case this is equivalent to

pX(x) =
n∏

k=1

pXk
(xk), xk ∈ R, k = 1, 2, . . . , n.

In the continuous case it is equivalent to
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fX(x) =
n∏

k=1

fXk
(xk), xk ∈ R, k = 1, 2, . . . , n.

The random variables X and Y are uncorrelated iff their covariance equals
zero, that is, iff

Cov (X,Y ) = E(X − EX)(Y − E Y ) = 0.

If the variances are nondegenerate (and finite), the situation is equivalent to
the correlation coefficient being equal to zero, that is

ρX,Y =
Cov (X,Y )√
VarX ·VarY

= 0

(recall that the correlation coefficient ρ is a scale-invariant real number and
that |ρ| ≤ 1).

In particular, independent random variables are uncorrelated. The con-
verse is not necessarily true.

The random variables X1, X2, . . . , Xn are pairwise uncorrelated if every
pair is uncorrelated.

Exercise 1.2. Are X and Y independent in Example 1.1? Are they uncorre-
lated?

Exercise 1.3. Let (X,Y ) be a point that is uniformly distributed on a square
whose corners are (±1,±1). Determine the distribution(s) of the x- and y-
coordinates. Are X and Y independent? Are they uncorrelated? 2

2 Functions of Random Variables

Frequently, one is not primarily interested in the random variables themselves,
but in functions of them. For example, the sum and the difference of two ran-
dom variables X and Y are, in fact, functions of the two-dimensional random
variable (X,Y ).

As an introduction we consider one-dimensional functions of one-dimen-
sional random variables.

Example 2.1. Let X ∈ U(0, 1), and put Y = X2. Then

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (X ≤ √y) = FX(
√
y).

Differentiation yields

fY (y) = fX(
√
y)

1
2
√
y

=
1

2
√
y
, 0 < y < 1,

(and fY (y) = 0 otherwise).
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Example 2.2. Let X ∈ U(0, 1), and put Y = − logX. Then

FY (y) = P (Y ≤ y) = P (− logX ≤ y) = P (X ≥ e−y)
= 1− FX(e−y) = 1− e−y , y > 0,

which we recognize as FExp(1)(y) (or else we obtain fY (y) = e−y, for y > 0,
by differentiation and again that Y ∈ Exp(1)).

Example 2.3. Let X have an arbitrary continuous distribution, and suppose
that g is a differentiable, strictly increasing function (whose inverse g−1 thus
exists uniquely). Set Y = g(X). Computations like those above yield

FY (y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX

(
g−1(y)

)
and

fY (y) = fX

(
g−1(y)

)
· d
dy
g−1(y).

If g had been strictly decreasing, we would have obtained

fY (y) = −fX

(
g−1(y)

)
· d
dy
g−1(y).

(Note that fY (y) > 0 since dg−1(y)/dy < 0).
To summarize, we have shown that if g is strictly monotone, then

fY (y) = fX

(
g−1(y)

)
· | d
dy
g−1(y)|. 2

Our next topic is a multivariate analog of this result.

2.1 The Transformation Theorem

Let X be an n-dimensional, continuous, random variable with density fX(x),
and suppose that X has its mass concentrated on a set S ⊂ Rn. Let g =
(g1, g2, . . . , gn) be a bijection from S to some set T ⊂ Rn, and consider the
n-dimensional random variable

Y = g(X).

This means that we consider the n one-dimensional random variables

Y1 = g1(X1, X2, . . . , Xn),
Y2 = g2(X1, X2, . . . , Xn),
...
Yn = gn(X1, X2, . . . , Xn).

Finally, assume, say, that g and its inverse are both continuously differentiable
(in order for the Jacobian J = |d(x)/d(y)| to be well defined).
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Theorem 2.1. The density of Y is

fY(y) =

{
fX
(
h1(y), h2(y), . . . , hn(y)

)
· | J |, for y ∈ T,

0, otherwise,

where h is the (unique) inverse of g and where

J =
∣∣∣d(x)
d(y)

∣∣∣ =
∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x1
∂y2

. . . ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

. . . ∂x2
∂yn

...
...

. . .
...

∂xn

∂y1

∂xn

∂y2
. . . ∂xn

∂yn

∣∣∣∣∣∣∣∣∣∣
;

that is, J is the Jacobian.

Proof. We first introduce the following piece of notation:

h(B) = {x : g(x) ∈ B}, for B ⊂ Rn.

Now,

P (Y ∈ B) = P (X ∈ h(B)) =
∫

h(B)

fX(x)dx.

The change of variable y = g(x) yields

P (Y ∈ B) =
∫

B

fX(h1(y), h2(y), . . . , hn(y))· | J | dy ,

according to the formula for changing variables in multiple integrals. The
claim now follows in view of the following result:

Lemma 2.1. Let Z be an n-dimensional continuous random variable. If, for
every B ⊂ Rn,

P (Z ∈ B) =
∫

B

h(x) dx ,

then h is the density of Z. 2

Remark 2.1. Note that the Jacobian in Theorem 2.1 reduces to the derivative
of the inverse in Example 2.3 when n = 1. 2

Example 2.4. Let X and Y be independent N(0, 1)-distributed random vari-
ables. Show thatX+Y andX−Y are independentN(0, 2)-distributed random
variables.

We put U = X + Y and V = X − Y . Inversion yields X = (U + V )/2 and
Y = (U − V )/2, which implies that

J =

∣∣∣∣∣
1
2

1
2

1
2 − 1

2

∣∣∣∣∣ = −1
2
.
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By Theorem 2.1 and independence, we now obtain

fU,V (u, v) = fX,Y

(u+ v

2
,
u− v

2
)
· | J |

= fX

(u+ v

2
)
· fY

(u− v
2
)
· | J |

=
1√
2π
e−

1
2 ( u+v

2 )2 · 1√
2π
e−

1
2 ( u−v

2 )2 · 1
2

=
1√

2π · 2
e−

1
2

u2
2 · 1√

2π · 2
e−

1
2

v2
2 ,

for −∞ < u, v <∞. 2

Remark 2.2. That X + Y and X − Y are N(0, 2)-distributed might be known
from before; or it can easily be verified via the convolution formula. The
important point here is that with the aid of Theorem 2.1 we may, in addition,
prove independence.

Remark 2.3. We shall return to this example in Chapter 5 and provide a so-
lution that exploits special properties of the multivariate normal distribution;
see Examples 5.7.1 and 5.8.1. 2

Example 2.5. Let X and Y be independent Exp(1)-distributed random vari-
ables. Show that X/(X + Y ) and X + Y are independent, and find their
distributions.

We put U = X/(X + Y ) and V = X + Y . Inversion yields X = U · V ,
Y = V − UV , and

J =

∣∣∣∣∣ v u

−v 1− u

∣∣∣∣∣ = v.

Theorem 2.1 and independence yield

fU,V (u, v) = fX,Y (uv, v − uv)· | J |= fX(uv) · fY (v(1− u))· | J |
= e−uv · e−v(1−u) · v = ve−v

for 0 < u < 1 and v > 0, and fU,V (u, v) = 0 otherwise, that is,

fU,V (u, v) =

{
1 · ve−v, for 0 < u < 1, v > 0,
0, otherwise.

This shows that U ∈ U(0, 1), that V ∈ Γ(2, 1), and that U and V are inde-
pendent. 2

As a further application of Theorem 2.1 we prove the convolution formula
(in the continuous case); recall formula (7.2) of the Introduction. We are thus
given the continuous, independent random variables X and Y , and we seek
the distribution of X + Y.



2 Functions of Random Variables 23

A first observation is that we start with two variables but seek the distri-
bution of just one new one. The trick is to put U = X + Y and to introduce
an auxiliary variable V, which may be arbitrarily (that is, suitably) defined.
With the aid of Theorem 2.1, we then obtain fU,V (u, v) and, finally, fU (u)
by integrating over v.

Toward that end, set U = X + Y and V = X. Inversion yields X = V ,
Y = U − V , and

J =

∣∣∣∣∣0 1

1 −1

∣∣∣∣∣ = −1,

from which we obtain

fU,V (u, v) = fX,Y (v, u− v)· | J |= fX(v) · fY (u− v) · 1

and, finally,

fU (u) =
∫ ∞

−∞
fX(v)fY (u− v) dv,

which is the desired formula.

Exercise 2.1. Derive the density for the difference, product, and ratio, re-
spectively, of two independent, continuous random variables. 2

2.2 Many-to-One

A natural question is the following: What if g is not injective? Let us again
begin with the case n = 1.

Example 2.6. A simple one-dimensional example is y = x2. If X is a continu-
ous, one-dimensional, random variable and Y = X2, then

fY (y) = fX(
√
y)

1
2
√
y

+ fX(−√y) 1
2
√
y
.

Note that the function is 2-to-1 and that we obtain two terms. 2

Now consider the general case. Suppose that the set S ⊂ Rn can be par-
titioned into m disjoint subsets S1, S2, . . . , Sm in Rn, such that g : Sk → T
is 1 to 1 and satisfies the assumptions of Theorem 2.1 for each k. Then

P (Y ∈ T ) = P (X ∈ S) = P (X ∈
m⋃

k=1

Sk) =
m∑

k=1

P (X ∈ Sk) , (2.1)

which, by Theorem 2.1 applied m times, yields

fY(y) =
m∑

k=1

fX(h1k(y), h2k(y), . . . , hnk(y))· | Jk | , (2.2)
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where, for k = 1, 2, . . . , m, (h1k, h2k, . . . , hnk) is the inverse corresponding to
the mapping from Sk to T and Jk is the Jacobian.

A reconsideration of Example 2.6 in light of this formula shows that the
result there corresponds to the partition S = (R =)S1 ∪ S2 ∪ {0}, where
S1 = (0,∞) and S2 = (−∞, 0) and also that the first term in the right-hand
side there corresponds to S1 and the second one to S2. The fact that the value
at a single point may be arbitrarily chosen takes care of fY (0).

Example 2.7. Steven is a beginner at darts, which means that the points where
his darts hit the board can be assumed to be uniformly spread over the board.
Find the distribution of the distance from one hitting point to the center of
the board.

We assume, without restriction, that the radius of the board is 1 foot (this
is only a matter of scaling). Let (X,Y ) be the hitting point. We know from
Example 1.1 that

fX,Y (x, y) =

{
1
π , for x2 + y2 ≤ 1,
0, otherwise.

We wish to determine the distribution of U =
√
X2 + Y 2, that is, the distri-

bution of the distance from the hitting point to the origin. To this end we
introduce the auxiliary random variable V = arctan(Y/X) and note that the
range of the arctan function is (−π/2, π/2). This means that we have a 2-
to-1 mapping, since the points (X,Y ) and (−X,−Y ) correspond to the same
(U, V ). By symmetry and since the Jacobian equals u, we obtain

fU,V (u, v) =

{
2 · 1

π · u, for 0 < u < 1, −π
2 < v < π

2 ,

0, otherwise.

It follows that fU (u) = 2u for 0 < u < 1 (and 0 otherwise), that V ∈
U(−π/2, π/2), and that U and V are independent. 2

3 Problems

1. Show that if X ∈ C(0, 1), then so is 1/X.
2. Let X ∈ C(m,a). Determine the distribution of 1/X.
3. Show that if T ∈ t(n), then T 2 ∈ F (1, n).
4. Show that if F ∈ F (m,n), then 1/F ∈ F (n,m).
5. Show that if X ∈ C(0, 1), then X2 ∈ F (1, 1).
6. Show that β(1, 1) = U(0, 1).
7. Show that if F ∈ F (m,n), then 1/(1 + m

n F ) ∈ β(n/2,m/2).
8. Show that if X and Y are independent N(0, 1)-distributed random vari-

ables, then X/Y ∈ C(0, 1).
9. Show that if X ∈ N(0, 1) and Y ∈ χ2(n) are independent random vari-

ables, then X/
√
Y/n ∈ t(n).
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10. Show that ifX ∈ χ2(m) and Y ∈ χ2(n) are independent random variables,
then (X/m)/(Y/n) ∈ F (m,n).

11. Show that if X and Y are independent Exp(a)-distributed random vari-
ables, then X/Y ∈ F (2, 2).

12. Let X and Y be independent random variables such that X ∈ U(0, 1) and
Y ∈ U(0, α). Find the density function of Z = X + Y .
Remark. Note that there are two cases: α ≥ 1 and α < 1.

13. Let X and Y have a joint density function given by

f(x, y) =

{
1, for 0 ≤ x ≤ 2, max(0, x− 1) ≤ y ≤ min(1, x),
0, otherwise.

Determine the marginal density functions and the joint and marginal dis-
tribution functions.

14. Suppose that X ∈ Exp(1), let Y be the integer part and Z the fractional
part, that is, let

Y = [X] and Z = X − [X].

Show that Y and Z are independent and find their distributions.
15. Ottar jogs regularly. One day he started his run at 5:31 p.m. and returned

at 5:46 p.m. The following day he started at 5:31 p.m. and returned at
5:47 p.m. His watch shows only hours and minutes (not seconds). What
is the probability that the run the first day lasted longer than the run the
second day?

16. A certain chemistry problem involves the numerical study of a lognormal
random variable X. Suppose that the software package used requires the
input of E Y and VarY into the computer (where Y is normal and such
that X = eY ), but that one knows only the values of EX and VarX.
Find expressions for the former mean and variance in terms of the latter.

17. Let X and Y be independent Exp(a)-distributed random variables. Find
the density function of the random variable Z = X/(1 + Y ).

18. Let X ∈ Exp(1) and Y ∈ U(0, 1) be independent random variables. De-
termine the distribution (density) of X + Y .

19. The random vector X = (X1, X2, X3)′ has density function

fX(x) =

{
2

2e−5 · x
2
1 · x2 · ex1·x2·x3 , for 0 < x1, x2, x3 < 1,

0, otherwise.

Determine the distribution of X1 ·X2 ·X3.
20. The random variables X1 and X2 are independent and equidistributed

with density function

f(x) =

{
4x3, for 0 ≤ x ≤ 1,
0, otherwise.

Set Y1 = X1

√
X2 and Y2 = X2

√
X1.
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(a) Determine the joint density function of Y1 and Y2.
(b) Are Y1 and Y2 independent?

21. Let (X,Y )′ have density

f(x, y) =

{
x

(1+x)2·(1+xy)2
, for x, y > 0,

0, otherwise.

Show that X and X ·Y are independent, equidistriduted random variables
and determine their distribution.

22. Let X and Y have joint density

f(x, y) =

{
cx(1− y), when 0 < x < y < 1,
0, otherwise.

Determine the distribution of Y −X.
23. Suppose that (X,Y )′ has a density function given by

f(x, y) =

{
e−x2y, for x ≥ 1, y > 0,
0, otherwise.

Determine the distribution of X2Y .
24. Let X and Y have the following joint density function:

f(x, y) =

{
λ2e−λy, for 0 < x < y,

0, otherwise.

Show that Y and X/(Y −X) are independent, and find their distributions.
25. Let X and Y have joint density

f(x, y) =

{
cx, when 0 < x2 < y <

√
x < 1,

0, otherwise.

Determine the distribution of XY .
26. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
1
y e

−x/ye−y, when 0 < x, y <∞,
0, otherwise.

Show that X/Y and Y are independent standard exponential random
variables and exploit this fact in order to compute EX and VarX.

27. Let X and Y have joint density

f(x, y) =

{
cx, when 0 < x3 < y <

√
x < 1,

0, otherwise.

Determine the distribution of XY .
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28. Let X and Y have joint density

f(x, y) =

{
cx, when 0 < x2 < y <

√
x < 1,

0, otherwise.

Determine the distribution of X2/Y .
29. Suppose that (X,Y )′ has density

f(x, y) =

{
2

(1+x+y)3 , for x, y > 0,

0, otherwise.

Determine the distribution of
(a)X + Y ,
(b)X − Y .

30. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
2
5 (2x+ 3y), when 0 < x, y < 1,
0, otherwise.

Determine the distribution of 2X + 3Y .
31. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
xe−x−xy, when x > 0, y > 0,
0, otherwise.

Determine the distribution of X(1 + Y ).
32. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
c x

(1+y)2 , when 0 < y < x < 1,

0, otherwise.

Determine the distribution of X/(1 + Y )2.
33. Suppose that X, Y , and Z are random variables with a joint density

f(x, y, z) =

{
6

(1+x+y+z)4 , when x, y, z > 0,

0, otherwise.

Determine the distribution of X + Y + Z.
34. Suppose that X, Y , and Z are random variables with a joint density

f(x, y, z) =

{
ce−(x+y)2 , for −∞ < x <∞, 0 < y < 1,
0, otherwise.

Determine the distribution of X + Y .
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35. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
c

(1+x−y)2 , when 0 < y < x < 1,

0, otherwise.

Determine the distribution of X − Y .
36. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
c · cosx, when 0 < y < x < π

2 ,

0, otherwise.

Determine the distribution of Y/X.
37. Suppose that X and Y are independent Pa(1, 1)-distributed random vari-

ables. Determine the distributions of XY and X/Y .
38. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
c · log y, when 0 < y < x < 1,
0, otherwise.

Determine the distribution (density) of Z = − log(Y/X).
39. Let X1 ∈ Γ(a1, b) and X2 ∈ Γ(a2, b) be independent random variables.

Show that X1/X2 and X1 + X2 are independent random variables, and
determine their distributions.

40. Let X ∈ Γ(r, 1) and Y ∈ Γ(s, 1) be independent random variables.
(a) Show that X/(X + Y ) and X + Y are independent.
(b) Show that X/(X + Y ) ∈ β(r, s).
(c) Use (a) and (b) and the relation

X = (X + Y ) · X

X + Y

in order to compute the mean and the variance of the beta distribution.
41. Let X1, X2, and X3 be independent random variables, and suppose that

Xi ∈ Γ(ri, 1), i = 1, 2, 3. Set

Y1 =
X1

X1 +X2
,

Y2 =
X1 +X2

X1 +X2 +X3
,

Y3 = X1 +X2 +X3.

Determine the joint distribution of Y1, Y2, and Y3. Conclusions?
42. Let X and Y be independent N(0, 1)-distributed random variables.

(a) What is the distribution of X2 + Y 2?
(b) Are X2 + Y 2 and X/Y independent?
(c) Determine the distribution of X/Y .
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43. LetX and Y be independent random variables. Determine the distribution
of (X − Y )/(X + Y ) if
(a)X,Y ∈ Exp(1),
(b)X,Y ∈ N(0, 1) (see also Problem 5.10.9(c)).

44. A random vector in R2 is chosen as follows: Its length, Z, and its angle, Θ,
with the positive x-axis, are independent random variables, Z has density

f(z) = ze−z2/2 , z > 0,

and Θ ∈ U(0, 2π). Let Q denote the point of the vector. Determine the
joint distribution of the Cartesian coordinates of Q.

45. Show that the following procedure generates N(0, 1)-distributed random
numbers: Pick two independent U(0, 1)-distributed numbers U1 and U2

and set X =
√
−2 logU1 ·cos(2πU2) and Y =

√
−2 logU1 ·sin(2πU2). Show

that X and Y are independent N(0, 1)-distributed random variables.
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Conditioning

1 Conditional Distributions

Let A and B be events, and suppose that P (B) > 0. We recall from Section
3 of the Introduction that the conditional probability of A given B is defined
as P (A | B) = P (A ∩ B)/P (B) and that P (A | B) = P (A) if A and B are
independent.

Now, let (X,Y ) be a two-dimensional random variable whose components
are discrete.

Example 1.1. A symmetric die is thrown twice. Let U1 be a random variable
denoting the number of dots on the first throw, let U2 be a random variable
denoting the number of dots on the second throw, and set X = U1 + U2 and
Y = min{U1, U2}.

Suppose we wish to find the distribution of Y for some given value of X,
for example, P (Y = 2 | X = 7).

Set A = {Y = 2} and B = {X = 7}. From the definition of conditional
probabilities we obtain

P (Y = 2 | X = 7) = P (A | B) =
P (A ∩B)
P (B)

=
2
36
1
6

= 1
3 . 2

With this method one may compute P (Y = y | X = x) for any fixed value
of x as y varies for arbitrary, discrete, jointly distributed random variables.
This leads to the following definition.

Definition 1.1. Let X and Y be discrete, jointly distributed random variables.
For P (X = x) > 0 the conditional probability function of Y given that X = x
is

pY |X=x(y) = P (Y = y | X = x) =
pX,Y (x, y)
pX(x)

,

and the conditional distribution function of Y given that X = x is

©  Springer Science + Business Media, LLC 2009
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FY |X=x(y) =
∑
z≤y

pY |X=x(z).
2

Exercise 1.1. Show that pY |X=x(y) is a probability function of a true prob-
ability distribution. 2

It follows immediately (please check) that

pY |X=x(y) =
pX,Y (x, y)
pX(x)

=
pX,Y (x, y)∑

z

pX,Y (x, z)

and that

FY |X=x(y) =

∑
z≤y

pX,Y (x, z)

pX(x)
=

∑
z≤y

pX,Y (x, z)∑
z

pX,Y (x, z)
.

Exercise 1.2. Compute the conditional probability function pY |X=x(y) and
the conditional distribution function FY |X=x(y) in Example 1.1. 2

Now let X and Y have a joint continuous distribution. Expressions like
P (Y = y | X = x) have no meaning in this case, since the probability that a
fixed value is assumed equals zero. However, an examination of how the pre-
ceding conditional probabilities are computed makes the following definition
very natural.

Definition 1.2. Let X and Y have a joint continuous distribution. For
fX(x) > 0, the conditional density function of Y given that X = x is

fY |X=x(y) =
fX,Y (x, y)
fX(x)

,

and the conditional distribution function of Y given that X = x is

FY |X=x(y) =
∫ y

−∞
fY |X=x(z) dz. 2

In analogy with the discrete case, we further have

fY |X=x(y) =
fX,Y (x, y)∫ ∞

−∞
fX,Y (x, z) dz

and

FY |X=x(y) =

∫ y

−∞
fX,Y (x, z) dz∫ ∞

−∞
fX,Y (x, z) dz

.
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Exercise 1.3. Show that fY |X=x(y) is a density function of a true probability
distribution.

Exercise 1.4. Find the conditional distribution of Y given that X = x in
Example 1.1.1 and Exercise 1.1.3.

Exercise 1.5. Prove that if X and Y are independent then the conditional
distributions and the unconditional distributions are the same. Explain why
this is reasonable. 2

Remark 1.1. Definitions 1.1 and 1.2 can be extended to situations with more
than two random variables. How? 2

2 Conditional Expectation and Conditional Variance

In the same vein as the concepts of expected value and variance are intro-
duced as convenient location and dispersion measures for (ordinary) random
variables or distributions, it is natural to introduce analogs to these concepts
for conditional distributions. The following example shows how such notions
enter naturally.

Example 2.1. A stick of length one is broken at a random point, uniformly
distributed over the stick. The remaining piece is broken once more. Find the
expected value and variance of the piece that now remains.

In order to solve this problem we let X ∈ U(0, 1) be the first remaining
piece. The second remaining piece Y is uniformly distributed on the interval
(0, X). This is to be interpreted as follows: Given that X = x, the random
variable Y is uniformly distributed on the interval (0, x):

Y | X = x ∈ U(0, x),

that is, fY |X=x(y) = 1/x for 0 < y < x and 0, otherwise. Clearly, EX = 1/2
and VarX = 1/12. Furthermore, intuition suggests that

E(Y | X = x) =
x

2
and Var(Y | X = x) =

x2

12
. (2.1)

We wish to determine E Y and VarY somehow with the aid of the preceding
relations. 2

We are now ready to state our first definition.

Definition 2.1. Let X and Y be jointly distributed random variables. The
conditional expectation of Y given that X = x is

E(Y | X = x) =


∑

y

y pY |X=x(y) in the discrete case,∫ ∞

−∞
y fY |X=x(y) dy in the continuous case,

provided the relevant sum or integral is absolutely convergent. 2
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Exercise 2.1. Let X, Y, Y1, and Y2 be random variables, let g be a function,
and c a constant. Show that

(a) E(c | X = x) = c,
(b) E(Y1 + Y2 | X = x) = E(Y1 | X = x) + E(Y2 | X = x),
(c) E(cY | X = x) = c · E(Y | X = x),
(d) E(g(X,Y ) | X = x) = E(g(x, Y ) | X = x),
(e) E(Y | X = x) = E Y if X and Y are independent. 2

The conditional distribution of Y given that X = x depends on the value
of x (unless X and Y are independent). This implies that the conditional
expectation E(Y | X = x) is a function of x, that is,

E(Y | X = x) = h(x) (2.2)

for some function h. (IfX and Y are independent, then check that h(x) = E Y ,
a constant.)

An object of considerable interest and importance is the random variable
h(X), which we denote by

h(X) = E(Y | X). (2.3)

This random variable is of interest not only in the context of probability the-
ory (as we shall see later) but also in statistics in connection with estimation.
Loosely speaking, it turns out that if Y is a “good” estimator and X is “suit-
ably” chosen, then E(Y | X) is a “better” estimator. Technically, given a
so-called unbiased estimator U of a parameter θ, it is possible to construct
another unbiased estimator V by considering the conditional expectation of
U with respect to what is called a sufficient statistic T ; that is, V = E(U | T ).
The point is that E U = E V = θ (unbiasedness) and that VarV ≤ VarU (this
follows essentially from the sufficiency and Theorem 2.3 ahead). For details,
we refer to the statistics literature provided in Appendix A.

A natural question at this point is: What is the expected value of the
random variable E(Y | X)?

Theorem 2.1. Suppose that E|Y | <∞. Then

E
(
E(Y | X)

)
= E Y.

Proof. We prove the theorem for the continuous case and leave the (completely
analogous) proof for the discrete case as an exercise.

E
(
E(Y | X)

)
= E h(X) =

∫ ∞

−∞
h(x) fX(x) dx

=
∫ ∞

−∞
E(Y | X = x) fX(x) dx

=
∫ ∞

−∞

(∫ ∞

−∞
y fY |X=x(y) dy

)
fX(x) dx
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=
∫ ∞

−∞

∫ ∞

−∞
y
fX,Y (x, y)
fX(x)

fX(x) dy dx =
∫ ∞

−∞

∫ ∞

−∞
y fX,Y (x, y) dy dx

=
∫ ∞

−∞
y

(∫ ∞

−∞
fX,Y (x, y) dx

)
dy =

∫ ∞

−∞
y fY (y) dy = E Y. 2

Remark 2.1. Theorem 2.1 can be interpreted as an “expectation version” of
the law of total probability.

Remark 2.2. Clearly, E Y must exist in order for Theorem 2.1 to make sense,
that is, the corresponding sum or integral must be absolutely convergent. Now,
given this assumption, one can show that E(E(Y | X)) exists and is finite and
that the computations in the proof, such as reversing orders of integration, are
permitted. We shall, in the sequel, permit ourselves at times to be somewhat
sloppy about such verifications. Analogous remarks apply to further results
ahead.

We close this remark by pointing out that the conclusion always holds in
case Y is nonnegative, in the sense that if one of the members is infinite, then
so is the other. 2

Exercise 2.2. The object of this exercise is to show that if we do not assume
that E|Y | <∞ in Theorem 2.1, then the conclusion does not necessarily hold.
Namely, suppose that X ∈ Γ(1/2, 2) (= χ2(1)) and that

fY |X=x(y) =
1√
2π
x

1
2 e−

1
2 xy2

, −∞ < y <∞.

(a) Compute E(Y |X = x), E(Y |X), and, finally, E(E(Y |X)).
(b) Show that Y ∈ C(0, 1).
(c) What about E Y ? 2

We are now able to find E Y in Example 2.1.

Example 2.1 (continued). It follows from the definition that the first part of
(2.1) holds:

E(Y | X = x) =
x

2
, that is, h(x) =

x

2
.

An application of Theorem 2.1 now yields

E Y = E
(
E(Y | X)

)
= E h(X) = E

(1
2
X
)

=
1
2
EX =

1
2
· 1
2

=
1
4
.

We have thus determined E Y without prior knowledge about the distribution
of Y . 2

Exercise 2.3. Find the expectation of the remaining piece after it has been
broken off n times. 2
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Remark 2.3. That the result E Y = 1/4 is reasonable can intuitively be seen
from the fact that X on average equals 1/2 and that Y on average equals half
the value of X, that is 1/2 of 1/2. The proof of Theorem 2.1 consists, in fact,
of a stringent version of this kind of argument. 2

Theorem 2.2. Let X and Y be random variables and g be a function. We
have

(a) E
(
g(X)Y | X

)
= g(X) · E(Y | X), and

(b) E(Y | X) = E Y if X and Y are independent. 2

Exercise 2.4. Prove Theorem 2.2. 2

Remark 2.4. Conditioning with respect to X means that X should be inter-
preted as known, and, hence, g(X) as a constant that thus may be moved in
front of the expectation (recall Exercise 2.1(a)). This explains why Theorem
2.2(a) should hold. Part (b) follows from the fact that the conditional distribu-
tion and the unconditional distribution coincide if X and Y are independent;
in particular, this should remain true for the conditional expectation and the
unconditional expectation (recall Exercises 1.5 and 2.1(e)). 2

A natural problem is to find the variance of the remaining piece Y in Exam-
ple 2.1, which, in turn, suggests the introduction of the concept of conditional
variance.

Definition 2.2. Let X and Y have a joint distribution. The conditional vari-
ance of Y given that X = x is

Var(Y | X = x) = E
(
(Y − E(Y | X = x))2 | X = x

)
,

provided the corresponding sum or integral is absolutely convergent. 2

The conditional variance is (also) a function of x; call it v(x). The corre-
sponding random variable is

v(X) = Var(Y | X). (2.4)

The following result is fundamental.

Theorem 2.3. Let X and Y be random variables and g a real-valued function.
If E Y 2 <∞ and E

(
g(X)

)2
<∞, then

E
(
Y − g(X)

)2 = EVar(Y | X) + E
(
E(Y | X)− g(X)

)2
.

Proof. An expansion of the left-hand side yields

E
(
Y − g(X)

)2
= E

(
Y − E(Y | X) + E(Y | X)− g(X)

)2
= E

(
Y − E(Y | X)

)2 + 2E
(
Y − E(Y | X)

)(
E(Y | X)− g(X)

)
+ E

(
E(Y | X)− g(X)

)2
.
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Using Theorem 2.1, the right-hand side becomes

E E
(
(Y − E(Y | X))2 | X

)
+ 2E E

(
(Y − E(Y | X))

× (E(Y | X)− g(X)) | X
)

+ E
(
E(Y | X)− g(X)

)2
= EVar(Y | X) + 2E

{
(E(Y | X)− g(X))E(Y − E(Y | X) | X)

}
+ E

(
E(Y | X)− g(X)

)2
by Theorem 2.2(a). Finally, since E(Y − E(Y | X) | X) = 0, this equals

EVar(Y | X) + 2E
{
(E(Y | X)− g(X)) · 0

}
+ E

(
E(Y | X)− g(X)

)2
,

which was to be proved. 2

The particular choice g(X) = E Y , together with an application of Theo-
rem 2.1, yields the following corollary:

Corollary 2.3.1. Suppose that E Y 2 <∞. Then

Var Y = EVar (Y | X) + Var
(
E(Y | X)

)
.

2

Example 2.1 (continued). Let us determine VarY with the aid of Corollary
2.3.1.

It follows from second part of formula (2.1) that

Var(Y | X = x) =
1
12
x2, and hence, v(X) =

1
12
X2,

so that
EVar(Y | X) = E v(X) = E

( 1
12
X2
)

=
1
12
· 1
3

=
1
36
.

Furthermore,

Var
(
E(Y | X)

)
= Var(h(X)) = Var

(1
2
X
)

=
1
4
Var(X) =

1
4
· 1
12

=
1
48
.

An application of Corollary 2.3.1 finally yields VarY = 1/36 + 1/48 = 7/144.
We have thus computed VarY without knowing the distribution of Y . 2

Exercise 2.5. Find the distribution of Y in Example 2.1, and verify the values
of E Y and VarY obtained above. 2

A discrete variant of Example 2.1 is the following: Let X be uniformly
distributed over the numbers 1, 2, . . . , 6 (that is, throw a symmetric die) and
let Y be uniformly distributed over the numbers 1, 2, . . . , X (that is, then
throw a symmetric die with X faces). In this case,

h(x) = E(Y | X = x) =
1 + x

2
,

from which it follows that

E Y = E h(X) = E

(
1 +X

2

)
=

1
2
(1 + EX) =

1
2
(1 + 3.5) = 2.25.

The computation of VarY is somewhat more elaborate. We leave the details
to the reader. 2
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3 Distributions with Random Parameters

We begin with two examples:

Example 3.1. Suppose that the density X of red blood corpuscles in humans
follows a Poisson distribution whose parameter depends on the observed in-
dividual. This means that for Jürg we have X ∈ Po(mJ), where mJ is Jürg’s
parameter value, while for Alice we have X ∈ Po(mA), where mA is Alice’s
parameter value. For a person selected at random we may consider the pa-
rameter value M as a random variable such that, given that M = m, we have
X ∈ Po(m); namely,

P (X = k |M = m) = e−m · m
k

k!
, k = 0, 1, 2, . . . . (3.1)

Thus, if we know that Alice was chosen, then P (X = k | M = mA) =
e−mA ·mk

A/k!, for k = 0, 1, 2, . . . , as before. We shall soon see that X itself
(unconditioned) need not follow a Poisson distribution.

Example 3.2. A radioactive substance emits α-particles in such a way that the
number of emitted particles during an hour, N , follows a Po(λ)-distribution.
The particle counter, however, is somewhat unreliable in the sense that an
emitted particle is registered with probability p (0 < p < 1), whereas it
remains unregistered with probability q = 1 − p. All particles are registered
independently of each other. This means that if we know that n particles
were emitted during a specific hour, then the number of registered particles
X ∈ Bin(n, p), that is,

P (X = k | N = n) =
(
n

k

)
pkqn−k, k = 0, 1, . . . , n (3.2)

(and N ∈ Po(λ)). If, however, we observe the process during an arbitrar-
ily chosen hour, it follows, as will be seen below, that the number of regis-
tered particles does not follow a binomial distribution (but instead a Poisson
distribution). 2

The common feature in these examples is that the random variable under
consideration, X, has a known distribution but with a parameter that is a
random variable. Somewhat imprecisely, we might say that in Example 3.1 we
have X ∈ Po(M), where M follows some distribution, and that in Example
3.2 we have X ∈ Bin(N, p), where N ∈ Po(λ). We prefer, however, to describe
these cases as

X |M = m ∈ Po(m) with M ∈ F , (3.3)

where F is some distribution, and

X | N = n ∈ Bin(n, p) with N ∈ Po(λ) , (3.4)

respectively.
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Let us now determine the (unconditional) distributions of X in our exam-
ples, where, in Example 3.1, we assume that M ∈ Exp(1).

Example 3.1 (continued). We thus have

X |M = m ∈ Po(m) with M ∈ Exp(1). (3.5)

By (the continuous version of) the law of total probability, we obtain, for
k = 0, 1, 2, . . . ,

P (X = k) =
∫ ∞

0

P (X = k |M = x) · fM (x) dx

=
∫ ∞

0

e−xx
k

k!
· e−x dx =

∫ ∞

0

xk

k!
e−2x dx

=
1

2k+1
·
∫ ∞

0

1
Γ(k + 1)

2k+1xk+1−1e−2x dx

=
1

2k+1
· 1 =

1
2
·
(1

2

)k

,

that is, X ∈ Ge(1/2). The unconditional distribution in this case thus is not
a Poisson distribution; it is a geometric distribution. 2

Exercise 3.1. Determine the distribution of X if M has

(a) an Exp(a)-distribution,
(b) a Γ(p, a)-distribution. 2

Note also that we may use the formulas from Section 2 to compute EX
and VarX without knowing the distribution of X. Namely, since E(X |M =
m) = m (i.e., h(M) = E(X |M) = M), Theorem 2.1 yields

EX = E
(
E(X |M)

)
= EM = 1 ,

and Corollary 2.3.1 yields

VarX = EVar(X |M) + Var
(
E(X |M)

)
= EM + VarM = 1 + 1 = 2.

If, however, the distribution has been determined (as above), the formulas
from Section 2 may be used for checking.

If applied to Exercise 3.1(a), the latter formulas yield EX = a and
VarX = a+a2. Since this situation differs from Example 3.1 only by a rescal-
ing of M , one might perhaps guess that the solution is another geometric
distribution. If this were true, we would have

EX = a =
q

p
=

1− p
p

=
1
p
− 1; p =

1
a+ 1

.

This value of p inserted in the expression for the variance yields



40 2 Conditioning

q

p2
=

1− p
p2

=
1
p2
− 1
p

= (a+ 1)2 − (a+ 1) = a2 + a,

which coincides with our computations above and provides the guess that
X ∈ Ge(1/(a+ 1)).

Remark 3.1. In Example 3.1 we used the results of Section 2.2 to confirm our
result. In Exercise 3.1(a) they were used to confirm (provide) a guess. 2

We now turn to the α-particles.

Example 3.2 (continued). Intuitively, the deficiency of the particle counter im-
plies that the radiation actually measured is, on average, a fraction p of the
original Poisson stream of particles. We might therefore expect that the num-
ber of registered particles during one hour should be a Po(λp)-distributed
random variable. That this is actually correct is verified next.

The model implies that

X | N = n ∈ Bin(n, p) with N ∈ Po(λ).

The law of total probability yields, for k = 0, 1, 2, . . . ,

P (X = k) =
∞∑

n=0

P (X = k | N = n) · P (N = n)

=
∞∑

n=k

(
n

k

)
pkqn−k · e−λλ

n

n!

=
pk

k!
e−λ

∞∑
n=k

λn

(n− k)!
qn−k =

(λp)k

k!
e−λ

∞∑
n=k

(λq)n−k

(n− k)!

=
(λp)k

k!
e−λ

∞∑
j=0

(λq)j

j!
=

(λp)k

k!
e−λ · eλq = e−λp (λp)k

k!
,

that is, X ∈ Po(λp). The unconditional distribution thus is not a binomial
distribution; it is a Poisson distribution. 2

Remark 3.2. This is an example of a so-called thinned Poisson process. For
more details, we refer to Section 8.6. 2

Exercise 3.2. Use Theorem 2.1 and Corollary 2.3.1 to check the values of
EX and VarX. 2

A family of distributions that is of special interest is the family of mixed
normal, or mixed Gaussian, distributions. These are normal distributions with
a random variance, namely,

X | Σ2 = y ∈ N(µ, y) with Σ2 ∈ F , (3.6)



3 Distributions with Random Parameters 41

where F is some distribution (on (0,∞)).
For simplicity we assume in the following that µ = 0.
As an example, consider normally distributed observations with rare dis-

turbances. More specifically, the observations might be N(0, 1)-distributed
with probability 0.99 and N(0, 100)-distributed with probability 0.01. We may
write this as

X ∈ N(0,Σ2), where P (Σ2 = 1) = 0.99 and P (Σ2 = 100) = 0.01.

By Theorem 2.1 it follows immediately that EX = 0. As for the variance,
Corollary 2.3.1 tells us that

Var X = EVar (X | Σ2) + Var
(
E(X | Σ2)

)
= E Σ2 = 0.99 · 1 + 100 · 0.01 = 1.99.

If Σ2 has a continuous distribution, computations such as those above yield

FX(x) =
∫ ∞

0

Φ
(
x
√
y

)
fΣ2(y) dy ,

from which the density function of X is obtained by differentiation:

fX(x) =
∫ ∞

0

1
√
y
φ

(
x
√
y

)
fΣ2(y) dy =

∫ ∞

0

1√
2πy

e−x2/2yfΣ2(y) dy . (3.7)

Mean and variance can be found via the results of Section 2:

EX = E
(
E(X | Σ2)

)
= 0,

VarX = EVar (X | Σ2) + Var
(
E(X | Σ2)

)
= E Σ2.

Next, we determine the distribution of X under the particular assumption
that Σ2 ∈ Exp(1). We are thus faced with the situation

X | Σ2 = y ∈ N(0, y) with Σ2 ∈ Exp(1) (3.8)

By (3.7),

fX(x) =
∫ ∞

0

1√
2πy

e−x2/2ye−y dy =
[

set y = u2
]

=
∫ ∞

0

1√
2π
e−x2/2u2

e−u2
· 2 du =

√
2
π

∫ ∞

0

exp
{
− x2

2u2
− u2

}
du .

In order to solve this integral, the following device may be of use: Let x > 0,
set

I(x) =
∫ ∞

0

exp
{
− x2

2u2
− u2

}
du ,
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differentiate (differentiation and integration may be interchanged), and make
the change of variable y = x/u

√
2. This yields

I ′(x) =
∫ ∞

0

(
− x

u2

)
exp
{
− x2

2u2
− u2

}
du = −

√
2
∫ ∞

0

exp
{
−y2 − x2

2y2

}
dy .

It follows that I satisfies the differential equation

I ′(x) = −
√

2I(x)

with the initial condition

I(0) =
∫ ∞

0

e−u2
du =

√
π

2
,

the solution of which is

I(x) =
√
π

2
e−x

√
2 , x > 0. (3.9)

By inserting (3.9) into the expression for fX(x), and noting that the density
is symmetric around x = 0, we finally obtain

fX(x) =

√
2
π

√
π

2
e−|x|

√
2 =

1√
2
e−|x|

√
2 =

1
2

√
2e−|x|

√
2 , −∞ < x <∞,

that is, X ∈ L( 1√
2
); a Laplace distribution.

An extra check yields EX = 0 and VarX = E Σ2 = 1 (= 2 · ( 1√
2
)2), as

desired.

Exercise 3.3. Show that if X has a normal distribution such that the mean
is zero and the inverse of the variance is Γ-distributed, viz.,

X | Σ2 = λ ∈ N(0, 1/λ) with Σ2 ∈ Γ
(n

2
,
2
n

)
,

then X ∈ t(n).

Exercise 3.4. Sheila has a coin with P (head) = p1 and Betty has a coin
with P (head) = p2. Sheila tosses her coin m times. Each time she obtains
“heads,” Betty tosses her coin (otherwise not). Find the distribution of the
total number of heads obtained by Betty.

Further, check that mean and variance coincide with the values obtained
by Theorem 2.1 and Corollary 2.3.1. Alternatively, find mean and variance
first and try to guess the desired distribution (and check if your guess was
correct).

As a hint, observe that the game can be modeled as follows: Let N be the
number of heads obtained by Sheila and X be the number of heads obtained
by Betty. We thus wish to find the distribution of X, where

X | N = n ∈ Bin(n, p2) with N ∈ Bin(m, p1) , 0 < p1, p2 < 1. 2

We shall return to the topic of this section in Section 3.5.
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4 The Bayesian Approach

A typical problem in probability theory begins with assumptions such as “let
X ∈ Po(m),” “let Y ∈ N(µ, σ2),” “toss a symmetric coin 15 times,” and so
forth. In the computations that follow, one tacitly assumes that all parameters
are known, that the coin is exactly symmetric, and so on.

In statistics one assumes (certain) parameters to be unknown, for example,
that the coin might be asymmetric, and one searches for methods, devices,
and rules to decide whether or not one should believe in certain hypotheses.
Two typical illustrations in the Gaussian approach are “µ unknown and σ
known” and “µ and σ unknown.”

The Bayesian approach is a kind of compromise. One claims, for example,
that parameters are never completely unknown; one always has some prior
opinion or knowledge about them.

A probabilistic model describing this approach was given in Example 3.1.
The opening statement there was that the density of red blood corpuscles
follows a Poisson distribution. One interpretation of that statement could
have been that whenever we are faced with a blood sample the density of red
blood corpuscles in the sample is Poissonian. The Bayesian approach taken in
Example 3.1 is that whenever we know from whom the blood sample has been
taken, the density of red blood corpuscles in the sample is Poissonian, however,
with a parameter depending on the individual. If we do not know from whom
the sample has been taken, then the parameter is unknown; it is a random
variable following some distribution. We also found that if this distribution is
the standard exponential, then the density of red blood corpuscles is geometric
(and hence not Poissonian).

The prior knowledge about the parameters in this approach is expressed
in such a way that the parameters are assumed to follow some probability
distribution, called the prior (or a priori) distribution. If one wishes to assume
that a parameter is “completely unknown,” one might solve the situation by
attributing some uniform distribution to the parameter.

In this terminology we may formulate our findings in Example 3.1 as fol-
lows: If the parameter in a Poisson distribution has a standard exponential
prior distribution, then the random variable under consideration follows a
Ge(1/2)-distribution.

Frequently, one performs random experiments in order to estimate (un-
known) parameters. The estimates are based on observations from some
probability distribution. The Bayesian analog is to determine the conditional
distribution of the parameter given the result of the random experiment. Such
a distribution is called the posterior (or a posteriori) distribution.

Next we determine the posterior distribution in Example 3.1.

Example 4.1. The model in the example was

X |M = m ∈ Po(m) with M ∈ Exp(1). (4.1)
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We further had found that X ∈ Ge(1/2). Now we wish to determine the
conditional distribution of M given the value of X.

For x > 0, we have

FM |X=k(x) = P (M ≤ x | X = k) =
P ({M ≤ x} ∩ {X = k})

P (X = k)

=

∫ x

0
P (X = k |M = y) · fM (y) dy

P (X = k)

=

∫ x

0
e−y yk

k! · e
−y dy

( 1
2 )k+1

=
∫ x

0

1
Γ(k + 1)

yk2k+1e−2y dy ,

which, after differentiation, yields

fM |X=k(x) =
1

Γ(k + 1)
xk2k+1e−2x, x > 0.

Thus, M | X = k ∈ Γ(k + 1, 1
2 ) or, in our new terminology, the posterior

distribution of M given that X equals k is Γ(k + 1, 1
2 ). 2

Remark 4.1. Note that, starting from the distribution of X given M (and from
that of M), we have determined the distribution of M given X and that the
solution of the problem, in fact, amounted to applying a continuous version
of Bayes’ formula. 2

Exercise 4.1. Check that EM and VarM are what they are supposed to be
by applying Theorem 2.1 and Corollary 2.3.1 to the posterior distribution. 2

We conclude this section by studying coin tossing from the Bayesian point
of view under the assumption that nothing is known about p = P (heads).

Let Xn be the number of heads after n coin tosses. One possible model is

Xn | P = p ∈ Bin(n, p) with P ∈ U(0, 1). (4.2)

The prior distribution of P , thus, is the U(0, 1)-distribution. Models of this
kind are called mixed binomial models.

For k = 0, 1, 2, . . . , n, we now obtain (via some facts about the beta
distribution)

P (Xn = k) =
∫ 1

0

(
n

k

)
xk(1− x)n−k · 1 dx

=
(
n

k

)∫ 1

0

x(k+1)−1(1− x)(n+1−k)−1 dx

=
(
n

k

)
Γ(k + 1)Γ(n+ 1− k)
Γ(k + 1 + n+ 1− k)

=
n! k! (n− k)!

k! (n− k)! (n+ 1)!
=

1
n+ 1

.
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This means that Xn is uniformly distributed over the integers 0, 1, . . . , n.
A second thought reveals that this is a very reasonable conclusion. Since

nothing is known about the coin (in the sense of relation (4.2)), there is nothing
that favors a specific outcome, that is, all outcomes should be equally probable.

If p is known, we know that the results in different tosses are independent
and that the probability of heads given that we obtained 100 heads in a row
(still) equals p. What about these facts in the Bayesian model?

P (Xn+1 = n+ 1 | Xn = n) =
P ({Xn+1 = n+ 1} ∩ {Xn = n})

P (Xn = n)

=
P (Xn+1 = n+ 1)

P (Xn = n)

=
1

n+2
1

n+1

=
n+ 1
n+ 2

→ 1 as n→∞.

This means that if we know that there were many heads in a row then the
(conditional) probability of another head is very large; the results in different
tosses are not at all independent.

Why is this the case? Let us find the posterior distribution of P .

P (P ≤ x | Xn = k) =

∫ x

0
P (Xn = k | P = y) · fP (y) dy

P (Xn = k)

=

∫ x

0

(
n
k

)
yk(1− y)n−k · 1 dy

1
n+1

= (n+ 1)
(
n

k

)∫ x

0

yk(1− y)n−k dy .

Differentiation yields

fP |Xn=k(x) =
Γ(n+ 2)

Γ(k + 1)Γ(n+ 1− k)
xk(1− x)n−k, 0 < x < 1,

viz., a β(k + 1, n+ 1− k)-distribution.
For k = n we obtain in particular (or, by direct computation)

fP |Xn=n(x) = (n+ 1)xn, 0 < x < 1.

It follows that

P (P > 1− ε | Xn = n) = 1− (1− ε)n+1 → 1 as n→∞

for all ε > 0. This means that if we know that there were many heads in a
row then we also know that p is close to 1 and thus that it is very likely that
the next toss will yield another head.

Remark 4.2. It is, of course, possible to consider the posterior distribution as
a prior distribution for a further random experiment, and so on. 2
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5 Regression and Prediction

A common statistics problem is to analyze how different (levels of) treat-
ments or treatment combinations affect the outcome of an experiment. The
yield of a crop, for example, may depend on variability in watering, fertiliza-
tion, climate, and other factors in the various areas where the experiment is
performed. One problem is that one cannot predict the outcome y exactly,
meaning without error, even if the levels of the treatments x1, x2, . . . , xn are
known exactly. An important function for predicting the outcome is the con-
ditional expectation of the (random) outcome Y given the (random) levels of
treatment X1, X2, . . . , Xn.

Let X1, X2, . . . , Xn and Y be jointly distributed random variables, and
set

h(x) = h(x1, . . . , xn) = E(Y | X1 = x1, . . . , Xn = xn) = E(Y | X = x).

Definition 5.1. The function h is called the regression function Y on X. 2

Remark 5.1. For n = 1 we have h(x) = E(Y | X = x), which is the ordinary
conditional expectation. 2

Definition 5.2. A predictor (for Y ) based on X is a function, d(X). The
predictor is called linear if d is linear, that is, if d(X) = a0+a1X1+· · ·+anXn,
where a0, a1, . . . , an are constants. 2

Predictors are used to predict (as the name suggests). The prediction error
is given by the random variable

Y − d(X). (5.1)

There are several ways to compare different predictors. One suitable measure
is defined as follows:

Definition 5.3. The expected quadratic prediction error is

E
(
Y − d(X)

)2
.

Moreover, if d1 and d2 are predictors, we say that d1 is better than d2 if
E(Y − d1(X))2 ≤ E(Y − d2(X))2. 2

In the following we confine ourselves to considering the case n = 1. A
predictor is thus a function of X, d(X), and the expected quadratic prediction
error is E(Y − d(X))2. If the predictor is linear, that is, if d(X) = a + bX,
where a and b are constants, the expected quadratic prediction error is E(Y −
(a+ bX))2.
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Example 5.1. Pick a point uniformly distributed in the triangle x, y ≥ 0, x+
y ≤ 1. We wish to determine the regression functions E(Y | X = x) and
E(X | Y = y).

To solve this problem we first note that the joint density of X and Y is

fX,Y (x, y) =

{
c, for x, y ≥ 0, x+ y ≤ 1,
0, otherwise,

where c is some constant, which is found by noticing that the total mass equals
1. We thus have

1 =
∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dxdy =

∫ 1

0

(∫ 1−x

0

c dy

)
dx

= c

∫ 1

0

(1− x) dx = c

[
− (1− x)2

2

]1
0

=
c

2
,

from which it follows that c = 2.
In order to determine the conditional densities we first compute the

marginal ones:

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ 1−x

0

2 dy = 2(1− x), 0 < x < 1,

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx =

∫ 1−y

0

2 dx = 2(1− y), 0 < y < 1.

Incidentally, X and Y have the same distribution for reasons of symmetry.
Finally,

fY |X=x(y) =
fX,Y (x, y)
fX(x)

=
2

2(1− x)
=

1
1− x

, 0 < y < 1− x,

and so

E(Y | X = x) =
∫ 1−x

0

y · 1
1− x

dy =
1

1− x

[
y2

2

]1−x

0

=
(1− x)2

2(1− x)
=

1− x
2

and, by symmetry,

E(X | Y = y) =
1− y

2
. 2

Remark 5.2. Note also, for example, that Y | X = x ∈ U(0, 1 − x) in the
example, that is, the density is, for x fixed, a constant (which is the inverse
of the length of the interval (0, 1 − x)). This implies that E(Y | X = x) =
(1−x)/2, which agrees with the previous results. It also provides an alternative
solution to the last part of the problem. In this case the gain is marginal, but
in a more technically complicated situation it might be more substantial. 2
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Exercise 5.1. Solve the same problem when

fX,Y (x, y) =

{
cx, for 0 < x, y < 1,
0, otherwise.

Exercise 5.2. Solve the same problem when

fX,Y (x, y) =

{
e−y, for 0 < x < y,

0, otherwise. 2

Theorem 5.1. Suppose that E Y 2 < ∞. Then h(X) = E(Y | X) (i.e., the
regression function Y on X) is the best predictor of Y based on X.

Proof. By Theorem 2.3 we know that for an arbitrary predictor d(X),

E
(
Y − d(X)

)2 = EVar (Y | X) + E
(
h(X)− d(X)

)2 ≥ EVar (Y | X) ,

where equality holds iff d(X)=h(X) (more precisely, iff P (d(X)=h(X))= 1).
The choice d(x) = h(x) thus yields minimal expected quadratic prediction
error. 2

Example 5.2. In Example 5.1 we found the regression function of Y based on
X to be (1 − X)/2. By Theorem 5.1 it is the best predictor of Y based on
X. A simple calculation shows that the expected quadratic prediction error is
E(Y − (1−X)/2)2 = 1/48.

We also noted that X and Y have the same marginal distribution. A
(very) naive suggestion for another predictor therefore might be X itself. The
expected quadratic prediction error for this predictor is E(Y −X)2 = 1/4 >
1/48, which shows that the regression function is indeed a better predictor.2

Sometimes it is difficult to determine regression functions explicitly. In
such cases one might be satisfied with the best linear predictor. This means
that one wishes to minimize E(Y − (a+ bX))2 as a function of a and b, which
leads to the well-known method of least squares. The solution of this problem
is given in the following result.

Theorem 5.2. Suppose that EX2 < ∞ and E Y 2 < ∞. Set µx = EX,
µy = E Y , σ2

x = VarX, σ2
y = VarY , σxy = Cov(X,Y ), and ρ = σxy/σxσy.

The best linear predictor of Y based on X is

L(X) = α+ βX,

where
α = µy −

σxy

σ2
x

µx = µy − ρ
σy

σx
µx and β =

σxy

σ2
x

= ρ
σy

σx
. 2
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The best linear predictor thus is

µy + ρ
σy

σx
(X − µx). (5.2)

Definition 5.4. The line y = µy + ρ
σy

σx
(x − µx) is called the regression line

Y on X. The slope, ρσy

σx
, of the line is called the regression coefficient. 2

Remark 5.3. Note that y = L(x), where L(X) is the best linear predictor of
Y based on X.

Remark 5.4. If, in particular, (X,Y ) has a joint Gaussian distribution, it turns
out that the regression function is linear, that is, for this very important case
the best linear predictor is, in fact, the best predictor. For details, we refer
the reader to Section 5.6. 2

Example 5.1 (continued). The regression function Y on X turned out to be
linear in this example; y = (1−x)/2. It follows in particular that the regression
function coincides with the regression line Y on X. The regression coefficient
equals −1/2. 2

The expected quadratic prediction error of the best linear predictor of Y
based on X is obtained as follows:

Theorem 5.3. E
(
Y − L(X)

)2 = σ2
y(1− ρ2).

Proof.

E
(
Y − L(X)

)2 = E
(
Y − µy − ρ

σy

σx
(X − µx)

)2 = E(Y − µy)2

+ ρ2
σ2

y

σ2
x

E(X − µx)2 − 2ρ
σy

σx
E(Y − µy)(X − µx)

= σ2
y + ρ2 · σ2

y − 2ρ
σy

σx
σxy = σ2

y(1− ρ2). 2

Definition 5.5. The quantity σ2
y(1− ρ2) is called residual variance. 2

Exercise 5.3. Check via Theorem 5.3 that the residual variance in Example
5.1 equals 1/48 as was claimed in Example 5.2. 2

The regression line X on Y is determined similarly. It is

x = µx + ρ
σx

σy
(y − µy),

which can be rewritten as

y = µy +
1
ρ
· σy

σx
(x− µx)
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if ρ 6= 0. The regression lines Y on X and X on Y are thus, in general,
different. They coincide iff they have the same slope—iff

ρ · σy

σx
=

1
ρ
· σy

σx
⇐⇒ |ρ| = 1,

that is, iff there exists a linear relation between X and Y . 2

Example 5.1 (continued). The regression function X on Y was also linear (and
coincides with the regression lineX on Y ). The line has the form x = (1−y)/2,
that is, y = 1 − 2x. In particular, we note that the slopes of the regression
lines are −1/2 and −2, respectively. 2

6 Problems

1. Let X and Y be independent Exp(1)-distributed random variables. Find
the conditional distribution of X given that X + Y = c (c is a positive
constant).

2. Let X and Y be independent Γ(2, a)-distributed random variables. Find
the conditional distribution of X given that X + Y = 2.

3. The life of a repairing device is Exp(1/a)-distributed. Peter wishes to use
it on n different, independent, Exp(1/na)-distributed occasions.
(a) Compute the probability Pn that this is possible.
(b) Determine the limit of Pn as n→∞.

4. The life T (hours) of the lightbulb in an overhead projector follows
an Exp(10)-distribution. During a normal week it is used a Po(12)-
distributed number of lectures lasting exactly one hour each. Find the
probability that a projector with a newly installed lightbulb functions
throughout a normal week (without replacing the lightbulb).

5. The random variables N, X1, X2, . . . are independent, N ∈ Po(λ), and
Xk ∈ Be(1/2), k ≥ 1. Set

Y1 =
N∑

k=1

Xk and Y2 = N − Y1

(Y1 = 0 for N = 0). Show that Y1 and Y2 are independent, and determine
their distributions.

6. Suppose that X ∈ N(0, 1) and Y ∈ Exp(1) are independent random
variables. Prove that X

√
2Y has a standard Laplace distribution.

7. Let N ∈ Ge(p) and set X = (−1)N . Compute
(a) EX and VarX,
(b) the distribution (probability function) of X.

8. The density function of the two-dimensional random variable (X,Y ) is

fX,Y (x, y) =

{
x2

2·y3 · e−
x
y , for 0 < x <∞, 0 < y < 1,

0, otherwise.
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(a) Determine the distribution of Y .
(b) Find the conditional distribution of X given that Y = y.
(c) Use the results from (a) and (b) to compute EX and VarX.

9. The density of the random vector (X,Y )′ is

fX,Y (x, y) =

{
cx, for x ≥ 0, y ≥ 0, x+ y ≤ 1,
0, otherwise.

Compute
(a) c,
(b) the conditional expectations E(Y | X = x) and E(X | Y = y).

10. Suppose X and Y have a joint density function given by

f(x, y) =

{
cx2, for 0 < x < y < 1,
0, otherwise.

Find c, the marginal density functions, EX, E Y , and the conditional
expectations E(Y | X = x) and E(X | Y = y).

11. Suppose X and Y have a joint density function given by

f(x, y) =

{
c · x2y, for 0 < y < x < 1,
0, otherwise.

Compute c, the marginal densities, EX, E Y , and the conditional expec-
tations E(Y | X = x) and E(X | Y = y).

12. Let X and Y have joint density

f(x, y) =

{
cxy, when 0 < y < x < 1,
0, otherwise.

Compute the conditional expectations E(Y | X = x) and E(X | Y = y).
13. Let X and Y have joint density

f(x, y) =

{
cy, when 0 < y < x < 2,
0, otherwise.

Compute the conditional expectations E(Y | X = x) and E(X | Y = y).
14. Suppose that X and Y are random variables with joint density

f(x, y) =

{
c(x+ 2y), when 0 < x < y < 1,
0, otherwise.

Compute the regression functions E(Y | X = x) and E(X | Y = y).
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15. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
2
5 (2x+ 3y), when 0 < x, y < 1,
0, otherwise.

Compute the conditional expectations E(Y | X = x) and E(X | Y = y).
16. Let X and Y be random variables with a joint density

f(x, y) =

{
4
5 (x+ 3y)e−x−2y, when x, y > 0,
0, otherwise.

Compute the regression functions E(Y | X = x) and E(X | Y = y).
17. Suppose that the joint density of X and Y is given by

f(x, y) =

{
xe−x−xy, when x > 0, y > 0,
0, otherwise.

Determine the regression functions E(Y | X = x) and E(X | Y = y).
18. Let the joint density function of X and Y be given by

f(x, y) =

{
c(x+ y), for 0 < x < y < 1,
0, otherwise.

Determine c, the marginal densities, EX, E Y , and the conditional ex-
pectations E(Y | X = x) and E(X | Y = y).

19. Let the joint density of X and Y be given by

fX,Y (x, y) =

{
c, for 0 ≤ x ≤ 1, x2 ≤ y ≤ x,
0, otherwise.

Compute c, the marginal densities, and the conditional expectations E(Y |
X = x) and E(X | Y = y).

20. Suppose that X and Y are random variables with joint density

f(x, y) =

{
cx, when 0 < x < 1, x3 < y < x1/3,

0, otherwise.

Compute the conditional expectations E(Y | X = x) and E(X | Y = y).
21. Suppose that X and Y are random variables with joint density

f(x, y) =

{
cy, when 0 < x < 1, x4 < y < x1/4,

0, otherwise.

Compute the conditional expectations E(Y | X = x) and E(X | Y = y).
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22. Let the joint density function of X and Y be given by

f(x, y) =

{
c · x3 y, for x, y > 0, x2 + y2 ≤ 1,
0, otherwise.

Compute c, the marginal densities, and the conditional expectations E(Y |
X = x) and E(X | Y = y).

23. The joint density function of X and Y is given by

f(x, y) =

{
c · xy, for x, y > 0, 4x2 + y2 ≤ 1,
0, otherwise.

Compute c, the marginal densities, and the conditional expectations E(Y |
X = x) and E(X | Y = y).

24. Let X and Y have joint density

f(x, y) =


c

x3y
, when 1 < y < x,

0, otherwise.

Compute the conditional expectations E(Y | X = x) and E(X | Y = y).
25. Let X and Y have joint density

f(x, y) =


c

x4y
, when 1 < y < x,

0, otherwise.

Compute the conditional expectations E(Y | X = x) and E(X | Y = y).
26. Suppose that X and Y are random variables with a joint density

f(x, y) =


c

(1 + x− y)2
, when 0 < y < x < 1,

0, otherwise.

Compute the conditional expectations E(Y | X = x) and E(X | Y = y).
27. Suppose that X and Y are random variables with a joint density

f(x, y) =

{
c · cosx, when 0 < y < x < π

2 ,

0, otherwise.

Compute the conditional expectations E(Y | X = x) and E(X | Y = y).
28. Let X and Y have joint density

f(x, y) =

{
c log y, when 0 < y < x < 1,
0, otherwise.

Compute the conditional expectations E(Y | X = x) and E(X | Y = y).
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29. The random vector (X,Y )′ has the following joint distribution:

P (X = m, Y = n) =
(
m

n

)
1

2m

m

15
,

where m = 1, 2, . . . , 5 and n = 0, 1, . . . , m. Compute E(Y | X = m).
30. Show that a suitable power of a Weibull-distributed random variable

whose parameter is gamma-distributed is Pareto-distributed. More pre-
cisely, show that if

X | A = a ∈W ( 1
a ,

1
b ) with A ∈ Γ(p, θ) ,

then Xb has a (translated) Pareto distribution.
31. Show that an exponential random variable such that the inverse of the pa-

rameter is gamma-distributed is Pareto-distributed. More precisely, show
that if

X |M = m ∈ Exp(m) with M−1 ∈ Γ(p, a) ,

then X has a (translated) Pareto distribution.
32. Let X and Y be random variables such that

Y | X = x ∈ Exp(1/x) with X ∈ Γ(2, 1).

(a) Show that Y has a translated Pareto distribution.
(b) Compute E Y .
(c) Check the value in (b) by recomputing it via our favorite formula for

conditional means.
33. Suppose that the random variable X is uniformly distributed symmetri-

cally around zero, but in such a way that the parameter is uniform on
(0, 1); that is, suppose that

X | A = a ∈ U(−a, a) with A ∈ U(0, 1).

Find the distribution of X, EX, and VarX.
34. In Section 4 we studied the situation when a coin, such that p = P (head)

is considered to be a U(0, 1)-distributed random variable, is tossed, and
found (i.a.) that if Xn = # heads after n tosses, then Xn is uniformly
distributed over the integers 0, 1, . . . , n.
Suppose instead that p is considered to be β(2, 2)-distributed. What then?
More precisely, consider the following model:

Xn | Y = y ∈ Bin(n, y) with fY (y) = 6y(1− y), 0 < y < 1.

(a) Compute EXn and VarXn.
(b) Determine the distribution of Xn.

35. Let X and Y be jointly distributed random variables such that

Y | X = x ∈ Bin(n, x) with X ∈ U(0, 1).

Compute E Y , VarY , and Cov(X,Y ) (without using what is known from
Section 4 about the distribution of Y ).
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36. Let X and Y be jointly distributed random variables such that

Y | X = x ∈ Fs(x) with fX(x) = 3x2, 0 ≤ x ≤ 1.

Compute E Y , VarY , Cov (X,Y ), and the distribution of Y .
37. Let X be the number of coin tosses until heads is obtained. Suppose that

the probability of heads is unknown in the sense that we consider it to be
a random variable Y ∈ U(0, 1).
(a) Find the distribution of X (cf. Problem 3.8.48).
(b) The expected value of an Fs-distributed random variable exists, as is

well known. What about EX?
(c) Suppose that the value X = n has been observed. Find the posterior

distribution of Y , that is, the distribution of Y | X = n.
38. Let p be the probability that the tip points downward after a person

throws a drawing pin once. Annika throws a drawing pin until it points
downward for the first time. Let X be the number of throws for this to
happen. She then throws the drawing pin another X times. Let Y be the
number of times the drawing pin points downward in the latter series of
throws. Find the distribution of Y (cf. Problem 3.8.31).

39. A point P is chosen uniformly in an n-dimensional sphere of radius 1. Next,
a point Q is chosen uniformly within the concentric sphere, centered at
the origin, going through P . Let X and Y be the distances of P and Q,
respectively, to the common center. Find the joint density function of X
and Y and the conditional expectations E(Y | X = x) and E(X | Y = y).
Hint 1. Begin by trying the case n = 2.
Hint 2. The volume of an n-dimensional sphere of radius r is equal to
cnr

n, where cn is some constant (which is of no interest for the problem).
Remark. For n = 1 we rediscover the stick from Example 2.1.

40. Let X and Y be independent random variables. The conditional distri-
bution of Y given that X = x then does not depend on x. Moreover,
E(Y | X = x) is independent of x; recall Theorem 2.2(b) and Remark 2.4.
Now, suppose instead that E(Y | X = x) is independent of x (i.e., that
E(Y | X) = E Y ). We say that Y has constant regression with respect
to X. However, it does not necessarily follow that X and Y are indepen-
dent. Namely, let the joint density of X and Y be given by

f(x, y) =

{
1
2 , for |x|+ |y| ≤ 1,
0, otherwise.

Show that Y has constant regression with respect to X and/but that X
and Y are not independent.
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Transforms

1 Introduction

In Chapter 1 we learned how to handle transformations in order to find the dis-
tribution of new (constructed) random variables. Since the arithmetic mean
or average of a set of (independent) random variables is a very important
object in probability theory as well as in statistics, we focus in this chap-
ter on sums of independent random variables (from which one easily finds
corresponding results for the average). We know from earlier work that the
convolution formula may be used but also that the sums or integrals involved
may be difficult or even impossible to compute. In particular, this is the case
if the number of summands is “large.” In that case, however, the central limit
theorem is (frequently) applicable. This result will be proved in the chapter
on convergence; see Theorem 6.5.2.

Exercise 1.1. Let X1, X2, . . . be independent U(0, 1)-distributed random
variables.

(a) Find the distribution of X1 +X2.
(b) Find the distribution of X1 +X2 +X3.
(c) Show that the distribution of Sn = X1 +X2 + · · ·+Xn is given by

FSn
(x) =

1
n!

n−1∑
k=0

(−1)k

(
n

k

)
(x− k)n

+, 0 ≤ x ≤ n,

where x+ = max{x, 0}. 2

Even if, in theory, we have solved this problem, we face new problems if we
actually wish to compute P (Sn ≤ x) for some given x already for moderately
sized values of n; for example, what is P (S5 ≤ π)?

In this chapter we shall learn how such problems can be transformed into
new problems, how the new (simpler) problems are solved, and finally that
these solutions can be retransformed or inverted to provide a solution to the
original problems.

©  Springer Science + Business Media, LLC 2009
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Remark 1.1. In order to determine the distribution of sums of independent
random variables we mentioned the convolution formula. From analysis we
recall that the problem of convolving functions can be transformed to the
problem of multiplying their Laplace transforms or Fourier transforms (which
is a simpler task). 2

We begin, however, with an example from a different area.

Example 1.1. Let a1, a2, . . . , an be positive reals. We want to know their
product.

This is a “difficult” problem. We therefore find the logarithms of the num-
bers, add them to yield

∑n
k=1 log ak, and then invert. 2

Figure 1.1 illustrates the procedure.

{ak} −−−−−−−−−−−−−−−−−−−−−−−→ {log ak}

↓
↓
↓

↓
Π ak ←−−−−−−−−−−−−−−−−−−−−−−− Σ log ak

Figure 1.1

We obtained the correct answer since exp{
∑n

k=1 log ak} =
∏n

k=1 ak.
The central ideas of the solution thus are

(a) addition is easier to perform than multiplication;
(b) the logarithm has a unique inverse (i.e., if log x = log y, then x = y),

namely, the exponential function.

As for sums of independent random variables, the topic of this chapter, we
shall introduce three transforms: the (probability) generating function, the
moment generating function, and the characteristic function. Two common
features of these transforms are that

(a) summation of independent random variables (convolution) corresponds to
multiplication of the transforms;

(b) the transformation is 1-to-1, namely, there is a uniqueness theorem to the
effect that if two random variables have the same transform then they
also have the same distribution.

Notation: The notation
X

d= Y

means that the random variables X and Y are equidistributed. 2
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Remark 1.2. It is worth pointing out that two random variables, X and Y ,
may well have the property X d= Y and yet X(ω) 6= Y (ω) for all ω. A very
simple example is the following: Toss a fair coin once and set

X =

{
1, if the outcome is heads,
0, if the outcome is tails,

and

Y =

{
1, if the outcome is tails,
0, if the outcome is heads.

Clearly, X ∈ Be(1/2) and Y ∈ Be(1/2), in particular, X d= Y . But X(ω) and
Y (ω) differ for every ω. 2

2 The Probability Generating Function

Definition 2.1. Let X be a nonnegative, integer-valued random variable. The
(probability) generating function of X is

gX(t) = E tX =
∞∑

n=0

tn · P (X = n). 2

Remark 2.1. The generating function is defined at least for |t| ≤ 1, since it is
a power series with coefficients in [0, 1]. Note also that gX(1) =

∑∞
n=0 P (X =

n) = 1. 2

Theorem 2.1. Let X and Y be nonnegative, integer-valued random variables.
If gX = gY , then pX = pY . 2

The theorem states that if two nonnegative, integer-valued random vari-
ables have the same generating function then they follow the same probability
law. It is thus the uniqueness theorem mentioned in the previous section. The
result is a special case of the uniqueness theorem for power series. We refer
to the literature cited in Appendix A for a complete proof.

Theorem 2.2. Let X1, X2, . . . , Xn be independent, nonnegative, integer-
valued random variables, and set Sn = X1 +X2 + · · ·+Xn. Then

gSn(t) =
n∏

k=1

gXk
(t).

Proof. Since X1, X2, . . . , Xn are independent, the same is true for tX1 , tX2 ,
. . . , tXn , which yields

gSn
(t) = E tX1+X2+···+Xn = E

n∏
k=1

tXk =
n∏

k=1

E tXk =
n∏

k=1

gXk
(t). 2
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This result asserts that adding independent, nonnegative, integer-valued ran-
dom variables corresponds to multiplying their generating functions (recall
Example 1.1(a)).

A case of particular importance is given next.

Corollary 2.2.1. If, in addition, X1, X2, . . . , Xn are equidistributed, then

gSn(t) =
(
gX(t)

)n
. 2

Termwise differentiation of the generating function (this is permitted (at
least) for |t| < 1) yields

g′X(t) =
∞∑

n=1

ntn−1P (X = n), (2.1)

g′′X(t) =
∞∑

n=2

n(n− 1)tn−2P (X = n), (2.2)

and, in general, for k = 1, 2, . . . ,

g
(k)
X (t) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)tn−kP (X = n) . (2.3)

By putting t = 0 in (2.1)–(2.3), we obtain g(n)
X (0) = n! · P (X = n), that is,

P (X = n) =
g
(n)
X (0)
n!

. (2.4)

The probability generating function thus generates the probabilities; hence
the name of the transform.

By letting t ↗ 1 in (2.1)–(2.3) (this requires a little more care), the fol-
lowing result is obtained.

Theorem 2.3. Let X be a nonnegative, integer-valued random variable, and
suppose that E |X|k <∞ for some k = 1, 2, . . . . Then

EX(X − 1) · · · (X − k + 1) = g
(k)
X (1). 2

Remark 2.2. Derivatives at t = 1 are throughout to be interpreted as limits
as t ↗ 1. For simplicity, however, we use the simpler notation g′(1), g′′(1),
and so on. 2

The following example illustrates the relevance of this remark.
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Example 2.1. Suppose that X has the probability function

p(k) =
C

k2
, k = 1, 2, 3, . . . ,

(where, to be precise, C−1 =
∑∞

k=1 1/k2 = π2/6). The divergence of the
harmonic series tells us that the distribution does not have a finite mean.

Now, the generating function is

g(t) =
6
π2

∞∑
k=1

tk

k2
, for |t| ≤ 1,

so that

g′(t) =
6
π2

∞∑
k=1

tk−1

k
= − 6

π2
· log(1− t)

t
↗ +∞ as t↗ 1.

This shows that although the generating function itself exists for t = 1, the
derivative only exists for all t strictly smaller than 1, but not for the boundary
value t = 1. 2

For k = 1 and k = 2 we have, in particular, the following result:

Corollary 2.3.1 Let X be as before. Then

(a) E |X| <∞ =⇒ EX = g′X(1), and
(b) EX2 <∞ =⇒ VarX = g′′X(1) + g′X(1)−

(
g′X(1)

)2. 2

Exercise 2.1. Prove Corollary 2.3.1. 2

Next we consider some special distributions:
The Bernoulli distribution. Let X ∈ Be(p). Then

gX(t) = q · t0 + p · t1 = q + pt, for all t,

g′X(t) = p, and g′′X(t) = 0,

which yields
EX = g′X(1) = p

and

VarX = g′′X(1) + g′X(1)− (g′X(1))2 = 0 + p− p2 = p(1− p) = pq.

The binomial distribution. Let X ∈ Bin(n, p). Then

gX(t) =
n∑

k=0

tk
(
n

k

)
pkqn−k =

n∑
k=0

(
n

k

)
(pt)kqn−k = (q + pt)n,

for all t. Furthermore,
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g′X(t) = n(q + pt)n−1 · p and g′′X(t) = n(n− 1)(q + pt)n−2 · p2,

which yields

EX = np and VarX = n(n− 1)p2 + np− (np)2 = npq.

We further observe that

gBin(n,p)(t) =
(
gBe(p)(t)

)n
,

which, according to Corollary 2.2.1, shows that if Y1, Y2, . . . , Yn are inde-
pendent, Be(p)-distributed random variables, and Xn = Y1 + Y2 + · · · + Yn,
then

gXn(t) = gBin(n,p)(t).

By Theorem 2.1 (uniqueness) it follows thatXn ∈ Bin(n, p), a conclusion that,
alternatively, could be proved by the convolution formula and induction.

Similarly, if X1 ∈ Bin(n1, p) and X2 ∈ Bin(n2, p) are independent, then,
by Theorem 2.2,

gX1+X2(t) = (q + pt)n1+n2 = gBin(n1+n2,p)(t) ,

which proves that X1+X2 ∈ Bin(n1+n2, p) and hence establishes, in a simple
manner, the addition theorem for the binomial distribution.

Remark 2.3. It is instructive to reprove the last results by actually using the
convolution formula. We stress, however, that the simplicity of the method
of generating functions is illusory, since it in fact exploits various results on
generating functions and their derivatives. 2

The geometric distribution. Let X ∈ Ge(p). Then

gX(t) =
∞∑

k=0

tkpqk = p

∞∑
k=0

(tq)k =
p

1− qt
, |t| < 1

q
.

Moreover,
g′X(t) = − p

(1− qt)2
· (−q) =

pq

(1− qt)2

and

g′′X(t) = − 2pq
(1− qt)3

· (−q) =
2pq2

(1− qt)3
,

from which it follows that EX = q/p and VarX = q/p2.

Exercise 2.2. Let X1, X2, . . . , Xn be independent Ge(p)-distributed ran-
dom variables. Determine the distribution of X1 +X2 + · · ·+Xn. 2
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The Poisson distribution. Let X ∈ Po(m). Then

gX(t) =
∞∑

k=0

tke−mmk

k!
= e−m

∞∑
k=0

(mt)k

k!
= em(t−1).

Exercise 2.3. (a) Let X ∈ Po(m). Show that EX = VarX = m.
(b) Let X1 ∈ Po(m1) and X2 ∈ Po(m2) be independent random variables.

Show that X1 +X2 ∈ Po(m1 +m2). 2

3 The Moment Generating Function

In spite of their usefulness, probability generating functions are of limited use
in that they are only defined for nonnegative, integer-valued random variables.
Important distributions, such as the normal distribution and the exponential
distribution, cannot be handled with this transform. This inconvenience is
overcome as follows:

Definition 3.1. The moment generating function of a random variable X is

ψX(t) = E etX ,

provided there exists h > 0, such that the expectation exists and is finite for
|t| < h. 2

Remark 3.1. As a first observation we mention the close connection between
moment generating functions and Laplace transforms of real-valued functions.
Indeed, for a nonnegative random variable X, one may define the Laplace
transform

E e−sX for s ≥ 0,

which thus always exist (why?). Analogously, one may view the moment gen-
erating function as a two-sided Laplace transform.

Remark 3.2. Note that for nonnegative, integer-valued random variables we
have ψ(t) = g(et), for |t| < h, provided the moment generating function exists
(for |t| < h). 2

The uniqueness and multiplication theorems are presented next. The
proofs are analogous to those for the generating function.

Theorem 3.1. Let X and Y be random variables. If there exists h > 0, such
that ψX(t) = ψY (t) for |t| < h, then X

d= Y . 2

Theorem 3.2. Let X1, X2, . . . , Xn be independent random variables whose
moment generating functions exist for |t| < h for some h > 0, and set Sn =
X1 +X2 + · · ·+Xn. Then

ψSn(t) =
n∏

k=1

ψXk
(t) , |t| < h. 2
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Corollary 3.2.1. If, in addition, X1, X2, . . . , Xn are equidistributed, then

ψSn(t) =
(
ψX(t)

)n
, |t| < h. 2

For the probability generating function we found that the derivatives at
zero produced the probabilities (which motivated the name of the transform).
The derivatives at 0 of the moment generating function produce the moments
(hence the name of the transform).

Theorem 3.3. Let X be a random variable whose moment generating func-
tion ψX(t), exists for |t| < h for some h > 0. Then

(a) all moments exist, that is, E |X|r <∞ for all r > 0;
(b) EXn = ψ

(n)
X (0) for n = 1, 2, . . . .

Proof. We prove the theorem in the continuous case, leaving the completely
analogous proof in the discrete case as an exercise.

By assumption, ∫ ∞

−∞
etxfX(x) dx <∞ for |t| < h.

Let t, 0 < t < h, be given. The assumption implies that, for every x1 > 0,∫ ∞

x1

etxfX(x) dx <∞ and
∫ −x1

−∞
e−txfX(x) dx <∞. (3.1)

Since |x|r/e|tx| → 0 as x→∞ for all r > 0, we further have

|x|r ≤ e|tx| for |x| > x2. (3.2)

Now, let x0 > x2. It follows from (3.1) and (3.2) that∫ ∞

−∞
|x|rfX(x) dx

=
∫ −x0

−∞
|x|rfX(x) dx+

∫ x0

−x0

|x|rfX(x) dx+
∫ ∞

x0

|x|rfX(x) dx

≤
∫ −x0

−∞
e−txfX(x) dx+ |x0|r · P (|X| ≤ x0) +

∫ ∞

x0

etxfX(x) dx <∞.

This proves (a), from which (b) follows by differentiation:

ψ
(n)
X (t) =

∫ ∞

−∞
xnetxfX(x) dx

and, hence,

ψ
(n)
X (0) =

∫ ∞

−∞
xnfX(x) dx = EXn. 2
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Remark 3.3. The idea in part (a) is that the exponential function grows more
rapidly than every polynomial. As a consequence, |x|r ≤ e|tx| as soon as
|x| > x2 (say). On the other hand, for |x| < x2 we trivially have |x|r ≤ Ce|tx|
for some constant C. It follows that for all x

|x|r ≤ (C + 1)e|tx| ,

and hence that

E |X|r ≤ (C + 1)E e|tX| <∞ for |t| < h.

Note that this, in fact, proves Theorem 3.2(a) in the continuous case as well
as in the discrete case.

Remark 3.4. Taylor expansion of the exponential function yields

etX = 1 +
∞∑

n=1

tnXn

n!
for |t| < h.

By taking expectation termwise (this is permitted), we obtain

ψX(t) = E etX = 1 +
∞∑

n=1

tn

n!
EXn for |t| < h.

Termwise differentiation (which is also permitted) yields the result of part (b).
A special feature with the series expansion is that if the moment generating
function is given in that form we may simply read off the moments; EXn is
the coefficient of tn/n!, n = 1, 2, . . . , in the series expansion. 2

Let us now, as in the previous section, study some known distributions.
First, some discrete ones:
The Bernoulli distribution. Let X ∈ Be(p). Then ψX(t) = q + pet. Differenti-
ation yields EX = p and VarX = pq. Taylor expansion of et leads to

ψX(t) = q + p
∞∑

n=0

tn

n!
= 1 +

∞∑
n=1

tn

n!
· p ,

from which it follows that EXn = p, n = 1, 2, . . . . In particular, EX = p
and VarX = p− p2 = pq.
The binomial distribution. Let X ∈ Bin(n, p). Then

ψX(t) =
n∑

k=0

etk

(
n

k

)
pkqn−k =

n∑
k=0

(
n

k

)
(pet)kqn−k = (q + pet)n.

Differentiation yields EX = np and VarX = npq.
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Taylor expansion can also be performed in this case, but it is more cum-
bersome. If, however, we only wish to find EX and VarX it is not too hard:

ψX(t) =
(
q + pet

)n =
(
q + p

∞∑
k=0

tk

k!

)n

=
(
1 + pt+ p

t2

2!
+ · · ·

)n

= 1 + npt+
(
n

2

)
p2t2 + np

t2

2
+ · · ·

= 1 + npt+
(
n(n− 1)p2 + np

) t2
2

+ · · · .

Here the ellipses mean that the following terms contain t raised to at least
the third degree. By identifying the coefficients we find that EX = np and
that EX2 = n(n− 1)p2 + np, which yields VarX = npq.

Remark 3.5. Let us immediately point out that in this particular case this is
not a very convenient procedure for determining EX and VarX; the purpose
was merely to illustrate the method. 2

Exercise 3.1. Prove, with the aid of moment generating functions, that if
Y1, Y2, . . . , Yn are independent Be(p)-distributed random variables, then Y1+
Y2 + · · ·+ Yn ∈ Bin(n, p).

Exercise 3.2. Prove, similarly, that if X1 ∈ Bin(n1, p) and X2 ∈ Bin(n2, p)
are independent, then X1 +X2 ∈ Bin(n1 + n2, p). 2

The geometric distribution. For X ∈ Ge(p) computations like those made for
the generating function yield ψX(t) = p/(1−qet) (for qet < 1). Differentiation
yields EX and VarX.
The Poisson distribution. For X ∈ Po(m) we obtain ψX(t) = em(et−1) for all
t, and so forth.

Next we compute the moment generating function for some continuous
distributions.
The uniform (rectangular) distribution. Let X ∈ U(a, b). Then

ψX(t) =
∫ b

a

etx 1
b− a

dx =
1

b− a

[
1
t
etx

]b

a

=
etb − eta

t(b− a)

for all t. In particular,

ψU(0,1)(t) =
et − 1
t

and ψU(−1,1)(t) =
et − e−t

2t
=

sinh t
t

.

The moments can be obtained by differentiation. If, instead, we use Taylor
expansion, then
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ψX(t) =
1

t(b− a)

[
1 +

∞∑
n=1

(tb)n

n!
−
(
1 +

∞∑
n=1

(ta)n

n!

)]

=
1

t(b− a)

∞∑
n=1

( (tb)n

n!
− (ta)n

n!

)
=

1
b− a

∞∑
n=1

bn − an

n!
tn−1

= 1 +
∞∑

n=1

bn+1 − an+1

(b− a)(n+ 1)!
tn = 1 +

∞∑
n=1

bn+1 − an+1

(b− a)(n+ 1)
· t

n

n!
,

from which we conclude that

EXn =
bn+1 − an+1

(b− a)(n+ 1)
for n = 1, 2, . . . ,

and thus, in particular, the known expressions for mean and variance, via

EX =
b2 − a2

2(b− a)
=
a+ b

2
,

E X2 =
b3 − a3

3(b− a)
=
b2 + ab+ a2

3
,

VarX =
b2 + ab+ a2

3
−
(a+ b

2

)2

=
(b− a)2

12
.

The exponential distribution. Let X ∈ Exp(a). Then

ψX(t) =
∫ ∞

0

etx 1
a
e−x/a dx =

1
a

∫ ∞

0

e−x( 1
a−t) dx

=
1
a
· 1

1
a − t

=
1

1− at
for t <

1
a
.

Furthermore, ψ′X(t) = a/(1 − at)2, ψ′′X(t) = 2a2/(1 − at)3, and, in general,
ψ

(n)
X (t) = n!an/(1 − at)n+1. It follows that EXn = n!an, n = 1, 2, . . . , and,

in particular, that EX = a and VarX = a2.

Exercise 3.3. Perform a Taylor expansion of the moment generating func-
tion, and verify the expressions for the moments. 2

The gamma distribution. For X ∈ Γ(p, a), we have

ψX(t) =
∫ ∞

0

etx 1
Γ(p)

xp−1 1
ap
e−x/a dx

=
1
ap
· 1
( 1

a − t)p

∫ ∞

0

1
Γ(p)

xp−1
(1
a
− t
)p

e−x( 1
a−t) dx

=
1
ap

1
( 1

a − t)p
· 1 =

1
(1− at)p

for t <
1
a
.
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As is standard by now, the moments may be obtained via differentiation.
Note also that ψ(t) = (ψExp(a)(t))p. Thus, for p = 1, 2, . . . , we conclude
from Corollary 3.2.1 and Theorem 3.1 that if Y1, Y2, . . . , Yp are independent,
Exp(a)-distributed random variables then Y1 + Y2 + · · ·+ Yp ∈ Γ(p, a).

Exercise 3.4. (a) Check the details of the last statement.
(b) Show that if X1 ∈ Γ(p1, a) and X2 ∈ Γ(p2, a) are independent random

variables then X1 +X2 ∈ Γ(p1 + p2, a). 2

The standard normal distribution. Suppose that X ∈ N(0, 1). Then

ψX(t) =
∫ ∞

−∞
etx 1√

2π
exp{−x2/2} dx

= et2/2

∫ ∞

−∞

1√
2π

exp{−(x− t)2/2} dx = et2/2, −∞ < t <∞.

The general normal (Gaussian) distribution. Suppose that X ∈ N(µ, σ2).
Then

ψX(t) =
∫ ∞

−∞
etx 1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
dx

= etµ+σ2t2/2

∫ ∞

−∞

1
σ
√

2π
exp

{
− (x− µ− σ2t)2

2σ2

}
dx

= etµ+σ2t2/2, −∞ < t <∞.

The computations in the special case and the general case are essentially
the same; it is a matter of completing squares. However, this is a bit more
technical in the general case.

This leads to the following useful result, which shows how to derive the
moment generating function of a linear transformation of a random variable.

Theorem 3.4. Let X be a random variable and a and b be real numbers. Then

ψaX+b(t) = etbψX(at).

Proof. ψaX+b(t) = E et(aX+b) = etb · E e(at)X = etb · ψX(at). 2

As an illustration we show how the moment generating function for a gen-
eral normal distribution can be derived from the moment generating function
of the standard normal one.

Thus, suppose that X ∈ N(µ, σ2). We then know that X d= σY +µ, where
Y ∈ N(0, 1). An application of Theorem 3.4 thus tells us that

ψX(t) = etµψY (σt) = etµ+σ2t2/2,

as expected.



3 The Moment Generating Function 69

Exercise 3.5. (a) Show that if X ∈ N(µ, σ2) then EX = µ and VarX = σ2.
(b) LetX1 ∈ N(µ1, σ

2
1) andX2 ∈ N(µ2, σ

2
2) be independent random variables.

Show that X1 +X2 is normally distributed, and find the parameters.
(c) Let X ∈ N(0, σ2). Show that EX2n+1 = 0 for n = 0, 1, 2, . . ., and that

EX2n = [(2n)!/2nn!] · σ2n = (2n − 1)!!σ2n = 1 · 3 · · · (2n − 1)σ2n for
n = 1, 2, . . . .

Exercise 3.6. (a) Show that if X ∈ N(0, 1) then X2 ∈ χ2(1) by computing
the moment generating function of X2, that is, by showing that

ψX2(t) = E exp{tX2} =
1√

1− 2t
for t <

1
2
.

(b) Show that if X1 ∈ N(0, 1) and X2 ∈ N(0, 1) are independent then X2
1 +

X2
2 ∈ χ2(2) (= Exp(2)). 2

For two-dimensional analogs to Exercise 3.6, see Problems 5.10.36 and 37.
The Cauchy distribution. The moment generating function does not exist for
the Cauchy distribution, since

∫
[etx/(1 + x2)] dx is divergent for all t 6= 0.

Note also that the nonexistence of the moment generating function follows
from Theorem 3.3(a), since no moments of order 1 and above exist.

According to Theorem 3.3(a), it is conceivable that there might exist distri-
butions with moments of all orders and, yet, the moment generating function
does not exist in any neighborhood around zero. In fact, the log-normal dis-
tribution is one such example. To see this we first note that if X ∈ LN(µ, σ2),
then X d= eY , where Y ∈ N(µ, σ2), which implies that

fX(x) =


1

σx
√

2π
exp{− (log x−µ)2

2σ2 }, for x > 0,

0, otherwise.

It follows that

EXr = E erY = ψY (r) = exp{rµ+ 1
2σ

2r2},

for any r > 0, that is, all moments exist.
However, since ex ≥ xn/n! for any n, it follows that, for any t > 0,

E exp{tX} = E exp{teY } ≥ E (teY )n

n!
=
tn

n!
E enY

=
tn

n!
ψY (n) =

tn

n!
exp{nµ+ 1

2σ
2n2}

=
1
n!

exp{n(log t+ µ+ 1
2σ

2n)} ,

which can be made arbitrarily large by choosing n sufficiently large, since
log t+µ+ 1

2σ
2n ≥ 1

4σ
2n for any fixed t > 0 as n→∞ and exp{cn2}/n!→∞
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as n→∞ for any positive constant c. The moment generating function thus
does not exist for any positive t.

Another class of distributions that possesses moments of all orders but not
a moment generating function is the class of generalized gamma distributions
whose densities are

f(x) = Cxβ−1e−xα

, x > 0,

where β > −1, 0 < α < 1, and C is a normalizing constant (that is chosen
such that the total mass equals 1).

It is clear that all moments exist, but, since α < 1, we have∫ ∞

−∞
etxxβ−1e−xα

dx = +∞

for all t > 0, so that the moment generating function does not exist.

Remark 3.6. The fact that the integral is finite for all t < 0 is no contradiction,
since for a moment generating function to exist we require finiteness of the
integral in a neighborhood of zero, that is, for |t| < h for some h > 0. 2

We close this section by defining the moment generating function for ran-
dom vectors.

Definition 3.2. Let X = (X1, X2, . . . , Xn)′ be a random vector. The mo-
ment generating function of X is

ψX1,...,Xn
(t1, . . . , tn) = E et1X1+···+tnXn ,

provided there exist h1, h2, . . . , hn > 0 such that the expectation exists for
|tk| < hk, k = 1, 2, . . . , n. 2

Remark 3.7. In vector notation (where, thus, X, t, and h are column vectors)
the definition may be rewritten in the more compact form

ψX(t) = E et
′X ,

provided there exists h > 0, such that the expectation exists for |t| < h (the
inequalities being interpreted componentwise). 2

4 The Characteristic Function

So far we have introduced two transforms: the generating function and the
moment generating function. The advantage of moment generating functions
over generating functions is that they can be defined for all kinds of ran-
dom variables. However, the moment generating function does not exist for
all distributions; the Cauchy and the log-normal distributions are two such
examples. In this section we introduce a third transform, the characteristic
function, which exists for all distributions. A minor technical complication,
however, is that this transform is complex-valued and therefore requires some-
what more sophisticated mathematics in order to be dealt with stringently.
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Definition 4.1. The characteristic function of a random variable X is

ϕX(t) = E eitX = E(cos tX + i sin tX). 2

As mentioned above, the characteristic function is complex-valued. Since

|E eitX | ≤ E |eitX | = E 1 = 1, (4.1)

it follows that the characteristic function exists for all t and for all random
variables.

Remark 4.1. Apart from a minus sign in the exponent (and, possibly, a fac-
tor

√
1/2π), characteristic functions coincide with Fourier transforms in the

continuous case and with Fourier series in the discrete case. 2

We begin with some basic facts and properties.

Theorem 4.1. Let X be a random variable. Then

(a) |ϕX(t)| ≤ ϕX(0) = 1;
(b) ϕX(t) = ϕX(−t);
(c) ϕX(t) is (uniformly) continuous.

Proof. (a) ϕX(0) = E ei·0·X = 1. This, together with (4.1), proves (a).
(b) We have

ϕX(t) = E(cos tX − i sin tX) = E(cos(−t)X + i sin(−t)X)

= E ei(−t)X = ϕX(−t).

(c) Let t be arbitrary and h > 0 (a similar argument works for h < 0). Then

|ϕX(t+ h)− ϕX(t)| = |E ei(t+h)X − E eitX |
= |E eitX(eihX − 1)| ≤ E|eitX(eihX − 1)|
= E |eihX − 1|. (4.2)

Now, suppose thatX has a continuous distribution; the discrete case is treated
analogously.

For the function eix we have the trivial estimate |eix−1| ≤ 2, but also the
more delicate one |eix − 1| ≤ |x|. With the aid of these estimates we obtain,
for A > 0,

E |eihX − 1| =
∫ −A

−∞
|eihx − 1|fX(x) dx+

∫ A

−A

|eihx − 1|fX(x) dx

+
∫ ∞

A

|eihx − 1|fX(x) dx

≤
∫ −A

−∞
2fX(x) dx+

∫ A

−A

|hx|fX(x) dx+
∫ ∞

A

2fX(x) dx

≤ 2P (|X| ≥ A) + hAP (|X| ≤ A)

≤ 2P (|X| ≥ A) + hA. (4.3)
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Let ε > 0 be arbitrarily small. It follows from (4.2) and (4.3) that

|ϕX(t+ h)− ϕX(t)| ≤ 2P (|X| ≥ A) + hA < ε, (4.4)

provided we first choose A so large that 2P (|X| ≥ A) < ε/2, and then h so
small that hA < ε/2. This proves the continuity of ϕX . Since the estimate
in (4.4) does not depend on t, we have, in fact, shown that ϕX is uniformly
continuous. 2

Theorem 4.2. Let X and Y be random variables. If ϕX = ϕY , then X d= Y .2

This is the uniqueness theorem for characteristic functions. Next we
present, without proof, some inversion theorems.

Theorem 4.3. Let X be a random variable with distribution function F and
characteristic function ϕ. If F is continuous at a and b, then

F (b)− F (a) = lim
T→∞

1
2π

∫ T

−T

e−itb − e−ita

−it
· ϕ(t) dt. 2

Remark 4.2. Observe that Theorem 4.2 is an immediate corollary of Theorem
4.3. This is due to the fact that the former theorem is an existence result
(only), whereas the latter provides a formula for explicitly computing the
distribution function in terms of the characteristic function. 2

Theorem 4.4. If, in addition,
∫∞
−∞ |ϕ(t)| dt < ∞, then X has a continuous

distribution with density

f(x) =
1
2π

∫ ∞

−∞
e−itx · ϕ(t) dt. 2

Theorem 4.5. If the distribution of X is discrete, then

P (X = x) = lim
T→∞

1
2T

∫ T

−T

e−itx · ϕ(t) dt. 2

As for the name of the transform, we have just seen that every random
variable possesses a unique characteristic function; the characteristic function
characterizes the distribution uniquely.

The proof of the following result, the multiplication theorem for charac-
teristic functions, is similar to those for the other transforms and is therefore
omitted.

Theorem 4.6. Let X1, X2, . . . , Xn be independent random variables, and set
Sn = X1 +X2 + · · ·+Xn. Then

ϕSn
(t) =

n∏
k=1

ϕXk
(t).

2
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Corollary 4.6.1. If, in addition, X1, X2, . . . , Xn are equidistributed, then

ϕSn(t) =
(
ϕX(t)

)n
. 2

Since we have derived the transform of several known distributions in the
two previous sections, we leave some of them as exercises in this section.

Exercise 4.1. Show that ϕBe(p)(t) = q + peit, ϕBin(n,p)(t) = (q + peit)n,
ϕGe(p)(t) = p/(1− qeit), and ϕPo(m)(t) = exp{m(eit − 1)}. 2

Note that for the computation of these characteristic functions one seems
to perform the same work as for the computation of the corresponding moment
generating function, the only difference being that t is replaced by it. In fact, in
the discrete cases we considered in the previous sections, the computations are
really completely analogous. The binomial theorem, convergence of geometric
series, and Taylor expansion of the exponential function hold unchanged in
the complex case.

The situation is somewhat more complicated for continuous distributions.
The uniform (rectangular) distribution. Let X ∈ U(a, b). Then

ϕX(t) =
∫ b

a

eitx 1
b− a

dx =
1

b− a

∫ b

a

(cos tx+ i sin tx) dx

=
1

b− a
·
[
1
t

sin tx− i1
t

cos tx
]b

a

=
1

b− a
· 1
t
(sin bt− sin at− i cos bt+ i cos at)

=
1

it(b− a)
(i sin bt− i sin at+ cos bt− cos at)

=
eitb − eita

it(b− a)
(
= ψX(it)

)
.

In particular,

ϕU(0,1)(t) =
eit − 1
it

and ϕU(−1,1)(t) =
eit − e−it

2it
=

sin t
t
. (4.5)

The (mathematical) complication is that we cannot integrate as easily as we
could before. However, in this case we observe that the derivative of eix equals
ieix, which justifies the integration and hence implies that the computations
here are “the same” as for the moment generating function.

For the exponential and gamma distributions, the complication arises in
the following manner:
The exponential distribution. Let X ∈ Exp(a). Then
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ϕX(t) =
∫ ∞

0

eitx 1
a
e−x/a dx =

1
a

∫ ∞

0

e−x( 1
a−it) dx

=
1
a
· 1

1
a − it

=
1

1− ait
.

The gamma distribution. Let X ∈ Γ(p, a). We are faced with the same prob-
lems as for the exponential distribution. The conclusion is that ϕΓ(p,a)(t) =
(1− ait)−p.
The standard normal (Gaussian) distribution. Let X ∈ N(0, 1). Then

ϕX(t) =
∫ ∞

−∞
eitx 1√

2π
e−

1
2 x2

dx

= e−t2/2

∫ ∞

−∞

1√
2π
e−

1
2 (x−it)2 dx = e−t2/2.

In this case one cannot argue as before, since there is no primitive function.
Instead we observe that the moment generating function can be extended into
a function that is analytic in the complex plane. The characteristic function
equals the thus extended function along the imaginary axis, from which we
conclude that ϕX(t) = ψX(it) (= e(it)

2/2 = e−t2/2).

It is now possible to prove the addition theorems for the various distribu-
tions just as for generating functions and moment generating functions.

Exercise 4.2. Prove the addition theorems for the binomial, Poisson, and
gamma distributions. 2

In Remark 3.4 we gave a series expansion of the moment generating func-
tion. Following is the counterpart for characteristic functions:

Theorem 4.7. Let X be a random variable. If E |X|n < ∞ for some n =
1, 2, . . . , then

(a) ϕ(k)
X (0) = ik · EXk for k = 1, 2, . . . , n;

(b) ϕX(t) = 1 +
∑n

k=1EX
k · (it)k/k! + o(|t|n) as t→ 0. 2

Remark 4.3. For n = 2 we obtain, in particular,

ϕX(t) = 1 + itE X − t2

2
EX2 + o(t2) as t→ 0.

If, moreover, EX = 0 and VarX = σ2, then

ϕX(t) = 1− 1
2 t

2σ2 + o(t2) as t→ 0. 2

Exercise 4.3. Find the mean and variance of the binomial, Poisson, uniform,
exponential, and standard normal distributions. 2
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The conclusion of Theorem 4.7 is rather natural in view of Theorem 3.3 and
Remark 3.4. Note, however, that a random variable whose moment generating
function exists has moments of all orders (Theorem 3.3(a)), which implies that
the series expansion can be carried out as an infinite sum. Since, however,
all random variables (in particular, those without (higher order) moments)
possess a characteristic function, it is reasonable to expect that the expansion
here can only be carried out as long as moments exist. The order of magnitude
of the remainder follows from estimating the difference of eix and the first part
of its (complex) Taylor expansion.

Furthermore, a comparison between Theorems 3.3(b) and 4.7(a) tempts
one to guess that these results could be derived from one another; once again
the relation ϕX(t) = ψX(it) seems plausible. This relation is, however, not
true in general—recall that there are random variables, such as the Cauchy dis-
tribution, for which the moment generating function does not exist. In short,
the validity of the relation depends on to what extent (if at all) the function
E eizX , where z is complex-valued, is an analytic function of z, a problem
that will not be considered here (recall, however, the earlier arguments for
the standard normal distribution).

Theorem 4.7 states that if the moment of a given order exists, then the
characteristic function is differentiable, and the moments up to that order can
be computed via the derivatives of the characteristic function as stated in the
theorem. A natural question is whether a converse holds. The answer is yes,
but only for moments of even order.

Theorem 4.8. Let X be a random variable. If, for some n = 0, 1, 2, . . ., the
characteristic function ϕ has a finite derivative of order 2n at t = 0, then
E|X|2n <∞ (and the conclusions of Theorem 4.7 hold).

The “problem” with the converse is that if we want to apply Theorem 4.8
to show that the mean is finite we must first show that the second derivative
of the characteristic function exists. Since there exist distributions with finite
mean whose characteristic functions are not twice differentiable (such as the
so-called stable distributions with index between 1 and 2), the theorem is not
always applicable.

Next we present the analog of Theorem 3.4 on how to find the transform
of a linearly transformed random variable.

Theorem 4.9. Let X be a random variable and a and b be real numbers. Then

ϕaX+b(t) = eibt · ϕX(at).

Proof. ϕaX+b(t) = E eit(aX+b) = eitb · E ei(at)X = eitb · ϕX(at). 2

Exercise 4.4. Let X ∈ N(µ, σ2). Use the expression above for the character-
istic function of the standard normal distribution and Theorem 4.9 to show
that ϕX(t) = eitµ−σ2t2/2.
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Exercise 4.5. Prove the addition theorem for the normal distribution. 2

The Cauchy distribution. For X ∈ C(0, 1), one can show that

ϕX(t) =
∫ ∞

−∞
eitx · 1

π

1
1 + x2

dx = e−|t|.

A device for doing this is the following: If we “already happen to know” that
the difference between two independent, Exp(1)-distributed random variables
is L(1)-distributed, then we know that

ϕL(1)(t) =
1

1− it
· 1
1 + it

=
1

1 + t2

(use Theorem 4.6 and Theorem 4.9 (with a = −1 and b = 0)). We thus have

1
1 + t2

=
∫ ∞

−∞
eitx 1

2e
−|x| dx.

A change of variables, such that x→ t and t→ x, yields

1
1 + x2

=
∫ ∞

−∞
eitx 1

2e
−|t| dt,

and, by symmetry,
1

1 + x2
=
∫ ∞

−∞
e−itx 1

2e
−|t| dt,

which can be rewritten as

1
π
· 1
1 + x2

=
1
2π

∫ ∞

−∞
e−itxe−|t| dt. (4.6)

A comparison with the inversion formula given in Theorem 4.4 shows that
since the left-hand side of (4.6) is the density of the C(0, 1)-distribution, it
necessarily follows that e−|t| is the characteristic function of this distribution.

Exercise 4.6. Use Theorem 4.9 to show that ϕC(m,a)(t) = eitmϕX(at) =
eitm−a|t|. 2

Our final result in this section is a consequence of Theorems 4.9 and 4.1(b).

Theorem 4.10. Let X be a random variable. Then

ϕX is real ⇐⇒ X
d= −X

(i.e., iff the distribution of X is symmetric).
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Proof. Theorem 4.9 (with a = −1 and b = 0) and Theorem 4.1(b) together
yield

ϕ−X(t) = ϕX(−t) = ϕX(t). (4.7)

First suppose that ϕX is real-valued, that is, that ϕX(t) = ϕX(t). It fol-
lows that ϕ−X(t) = ϕX(t), or that X and −X have the same characteristic
function. By the uniqueness theorem they are equidistributed.

Now suppose that X d= −X. Then ϕX(t) = ϕ−X(t), which, together with
(4.7), yields ϕX(t) = ϕX(t), that is, ϕX is real-valued. 2

Exercise 4.7. Show that if X and Y are i.i.d. random variables then X − Y
has a symmetric distribution.

Exercise 4.8. Show that one cannot find i.i.d. random variables X and Y
such that X − Y ∈ U(−1, 1). 2

We conclude by defining the characteristic function for random vectors.

Definition 4.2. Let X = (X1, X2 . . . , Xn)′ be a random vector. The charac-
teristic function of X is

ϕX1,...,Xn
(t1, . . . , tn) = E ei(t1X1+···+tnXn).

In the more compact vector notation (cf. Remark 3.7) this may be rewritten
as

ϕX(t) = E eit′X . 2

In particular, the following special formulas, which are useful at times, can be
obtained:

ϕX1,...,Xn
(t, t, . . . , t) = E eit(X1+···+Xn) = ϕX1+···+Xn

(t)

and
ϕX1,...,Xn

(t, 0, . . . , 0) = ϕX1(t).

Characteristic functions of random vectors are an important tool in the treat-
ment of the multivariate normal distribution in Chapter 5.

5 Distributions with Random Parameters

This topic was treated in Section 2.3 by conditioning methods. Here we show
how Examples 2.3.1 and 2.3.2 (in the reverse order) can be tackled with the
aid of transforms. Let us begin by saying that transforms are often easier
to work with computationally than the conditioning methods. However, one
reason for this is that behind the transform approach there are theorems that
sometimes are rather sophisticated.
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Example 2.3.2 (continued). Recall that the point of departure was

X | N = n ∈ Bin(n, p) with N ∈ Po(λ). (5.1)

An application of Theorem 2.2.1 yields

gX(t) = E
(
E(tX | N)

)
= E h(N) ,

where
h(n) = E(tX | N = n) = (q + pt)n,

from which it follows that

gX(t) = E(q + pt)N = gN (q + pt) = eλ((q+pt)−1) = eλp(t−1) ,

that is, X ∈ Po(λp) (why?). Note also that gN (q + pt) = gN (gBe(p)(t)).

Example 2.3.1 (continued). We had

X |M = m ∈ Po(m) with M ∈ Exp(1).

By using the moment generating function (for a change) and Theorem 2.2.1,
we obtain

ψX(t) = E etX = E
(
E(etX |M)

)
= E h(M),

where
h(m) = E(etX |M = m) = ψX|M=m(t) = em(et−1).

Thus,

ψX(t) = E eM(et−1) = ψM (et − 1) =
1

1− (et − 1)

=
1

2− et
=

1
2

1− 1
2e

t
= ψGe(1/2)(t) ,

and we conclude that X ∈ Ge(1/2). 2

Remark 5.1. It may be somewhat faster to use generating functions, but it is
useful to practise another transform. 2

Exercise 5.1. Solve Exercise 2.3.1 using transforms. 2

In Section 2.3 we also considered the situation

X | Σ2 = y ∈ N(0, y) with Σ2 ∈ Exp(1),

which is the normal distribution with mean zero and an exponentially dis-
tributed variance. After hard work we found that X ∈ L(1/

√
2). The alterna-

tive, using characteristic functions and Theorem 2.2.1, yields
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ϕX(t) = E eitX = E
(
E(eitX | Σ2)

)
= E h(Σ2) ,

where
h(y) = ϕX|Σ2=y(t) = e−t2y/2,

and so

ϕX(t) = E e−t2Σ2/2 = ψΣ2(− t2

2 )

=
1

1− (− t2

2 )
=

1
1 + ( 1√

2
)2t2

= ϕL(1/
√

2)(t),

and the desired conclusion follows. At this point, however, let us stress once
again that the price of the simpler computations here are some general theo-
rems (Theorem 2.2.1 and the uniqueness theorem for characteristic functions),
the proofs of which are all the more intricate.

Exercise 5.2. Solve Exercise 2.3.3 using transforms. 2

6 Sums of a Random Number of Random Variables

An important generalization of the theory of sums of independent random
variables is the theory of sums of a random number of (independent) random
variables. Apart from being a theory in its own right, it has several interesting
and important applications. In this section we study this problem under the
additional assumption that the number of terms in the sum is independent of
the summands; in the following section we present an important application
to branching processes (the interested reader might pause here for a moment
and read the first few paragraphs of that section).

Before proceeding, however, here are some examples that will be solved
after some theory has been presented.

Example 6.1. Consider a roulette wheel with the numbers 0, 1, . . . , 36. Charlie
bets one dollar on number 13 until it appears. He then bets one dollar the
same number of times on number 36. We wish to determine his expected loss
in the second round (in which he bets on number 36).

Example 6.2. Let X1, X2, . . . be independent, Exp(1)-distributed random
variables, and let N ∈ Fs(p) be independent of X1, X2, . . . . We wish to find
the distribution of X1 +X2 + · · ·+XN .

In Section 5 we presented a solution of Example 2.3.2 based on transforms.
Next we present another solution based on transforms where, instead, we
consider the random variable in focus as a sum of a random number of Be(p)-
distributed random variables.
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Example 2.3.2 (continued). As before, let N be the number of emitted par-
ticles during a given hour. We introduce the following indicator random
variables:

Yk =

{
1, if the kth particle is registered,
0, otherwise.

Then
X = Y1 + Y2 + · · ·+ YN

equals the number of registered particles during this particular hour. 2

Thus, the general idea is that we are given a setX1, X2, . . . of i.i.d. random
variables with partial sums Sn = X1 +X2 + · · ·+Xn, for n ≥ 1. Furthermore,
N is a nonnegative, integer-valued random variable that is independent of
X1, X2, . . . . Our aim is to investigate the random variable

SN = X1 +X2 + · · ·+XN , (6.1)

where SN = S0 = 0 when N = 0.
For A ⊂ (−∞,∞), we have

P (SN ∈ A | N = n) = P (Sn ∈ A | N = n) = P (Sn ∈ A), (6.2)

where the last equality is due to the independence of N and X1, X2, . . . . The
interpretation of (6.2) is that the distribution of SN , given N = n, is the same
as that of Sn.

Remark 6.1. Let N = min{n : Sn > 0}. Clearly, P (SN > 0) = 1. This implies
that if the summands are allowed to assume negative values (with positive
probability) then so will Sn, whereas SN is always positive. However, in this
case N is not independent of the summands; on the contrary, N is defined in
terms of the summands. 2

In case the summands are nonnegative and integer-valued, the generating
function of SN can be derived as follows:

Theorem 6.1. Let X1, X2, . . . be i.i.d. nonnegative, integer-valued random
variables, and let N be a nonnegative, integer-valued random variable, inde-
pendent of X1, X2, . . . . Set S0 = 0 and Sn = X1 +X2 + · · ·+Xn, for n ≥ 1.
Then

gSN
(t) = gN

(
gX(t)

)
. (6.3)

Proof. We have

gSN
(t) = E tSN =

∞∑
n=0

E (tSN | N = n) · P (N = n)

=
∞∑

n=0

E (tSn | N = n) · P (N = n) =
∞∑

n=0

E (tSn) · P (N = n)

=
∞∑

n=0

(
gX(t)

)n · P (N = n) = gN

(
gX(t)

)
. 2



6 Sums of a Random Number of Random Variables 81

Remark 6.2. In the notation of Chapter 2 and with the aid of Theorem 2.2.1,
we may alternatively write

gSN
(t) = E tSN = E

(
E (tSN | N)

)
= E h(N) ,

where
h(n) = E (tSN | N = n) = · · · =

(
gX(t)

)n
,

which yields
gSN

(t) = E
(
gX(t)

)N = gN

(
gX(t)

)
.

2

Theorem 6.2. Suppose that the conditions of Theorem 6.1 are satisfied.

(a) If, moreover,
EN <∞ and E |X| <∞,

then
E SN = EN · EX.

(b) If, in addition,
VarN <∞ and VarX <∞,

then
VarSN = EN ·VarX + (EX)2 ·VarN.

Proof. It follows from Corollary 2.3.1 that

E SN = g′SN
(1) (6.4)

and that
VarSN = g′′SN

(1) + g′SN
(1)−

(
g′SN

(1)
)2
. (6.5)

Furthermore, by differentiating the right-hand side of (6.3), using the chain
rule, we obtain

g′SN
(t) = g′N

(
gX(t)

)
· g′X(t),

which, after letting t↗ 1, yields

E SN = g′SN
(1) = g′N (1) · g′X(1) = EN · EX.

This proves (a).
A further differentiation shows that

g′′SN
(t) = g′′N

(
gX(t)

)
·
(
g′X(t)

)2 + g′N
(
gX(t)

)
· g′′X(t),

which yields

g′′SN
(1) = g′′N (1) ·

(
g′X(1)

)2 + g′N (1) · g′′X(1)

= EN(N − 1) · (EX)2 + EN · EX(X − 1).

It finally follows that
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VarSN = g′′SN
(1) + g′SN

(1)−
(
g′SN

(1)
)2

= EN(N − 1) · (EX)2 + EN · EX(X − 1)

+ EN · EX − (EN · EX)2

= EN ·VarX + (EX)2 ·VarN. 2

Theorem 6.2 can also be proved directly by modifying the proof of Theorem
6.1 in the obvious manner. As for (a) we then have

E SN =
∞∑

n=0

E (SN | N = n) · P (N = n)

=
∞∑

n=0

E (Sn | N = n) · P (N = n)

=
∞∑

n=0

E (Sn) · P (N = n) =
∞∑

n=0

nE X · P (N = n)

= EX ·
∞∑

n=0

nP (N = n) = EX · EN.

Note in particular that this proof is valid for arbitrary X1, X2, . . . (some
argument concerning the absolute convergence is needed).

Exercise 6.1. Compute E S2
N similarly and prove Theorem 6.2(b). 2

In the notation of Chapter 2 we have, for Theorem 6.2(a) (cf. Remark 6.2),

E SN = E
(
E(SN | N)

)
= E h(N) ,

where

h(n) = E(SN | N = n) = E(Sn | N = n) = E Sn = nE X,

that is,
E SN = E(N EX) = EX · EN.

For an alternative proof of Theorem 6.2(b), we use Corollary 2.2.3.1, ac-
cording to which

VarSN = EVar (SN | N) + Var
(
E(SN | N)

)
.

Since (check!)

Var(SN | N = n) = Var(Sn | N = n) = VarSn = nVarX,

it follows that

EVar(SN | N) = E(N VarX) = EN ·VarX.
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Furthermore, E(SN | N = n) = nE X, which yields

Var
(
E(SN | N)

)
= Var(N · EX) = (EX)2 ·VarN,

and the desired conclusion follows.
Let us now use these results in order to obtain another solution of Example

2.3.2 and to solve the problem posed in Example 6.1.

Example 2.3.2 (continued). Recall that N was the number of emitted particles
during a given hour, that we kept track of whether particles were registered or
not by the indicator variables Y1, Y2, . . . , and that the number of registered
particles during this particular hour was given by X = Y1 + Y2 + · · ·+ YN .

An application of Theorem 6.1 now yields

gX(t) = gN

(
gY (t)

)
= exp{λ(gY (t)− 1)} = eλ(q+pt−1) = eλp(t−1) ,

which is the generating function of a Po(λp)-distribution. It follows from the
uniqueness theorem for generating functions that X ∈ Po(λp).

Moreover, by Theorem 6.2,

EX = EN · E Y = λ · p,
VarX = EN ·VarY + (E Y )2VarN = λ · pq + p2 · λ = λp. 2

Remark 6.3. The answers here and in Section 5 are obviously the same, but
they are obtained somewhat differently. Analogous arguments can be made in
other examples. This provides a link between the two sections. 2

As for Example 6.1, let N ∈ Fs(1/37) equal the number of bets on number
13, and let Y1, Y2, . . . be the losses in the bets on number 36. Thus

Yk =

{
1, if number 36 does not appear,
−35, (i.e., − 36 + 1) otherwise,

and Y1, Y2, . . . are independent with P (Yk = 1) = 36/37 and P (Yk = −35) =
1/37 (note that a negative loss is a gain). With this notation Charlie’s total
loss in the second round equals X = Y1 + Y2 + · · · + YN , and an application
of Theorem 6.2(a) yields

EX = EN · E Y = 37 ·
(

1 · 36
37
− 35 · 1

37

)
= 1.

If we wish to determine his overall loss, we have to add (N −1) · 1− 35 (or
N ·1−36) to X, in which case we find that the expected overall loss equals 2.

Although this does not seem so terrible, we must remember that this game
requires access to an infinite amount of money to start with.

Exercise 6.2. Find the generating function of his loss in the second round.
Try also to find it for his overall loss. 2
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If, as in Example 6.2, the summands have a continuous distribution, then
Theorem 6.1 no longer applies, since the generating function is not defined for
such random variables. However, the following result holds.

Theorem 6.3. Let X1, X2, . . . be i.i.d. random variables, whose moment gen-
erating function exists for |t| < h for some h > 0. Furthermore, let N be a
nonnegative, integer-valued random variable independent of X1, X2, . . . . Set
S0 = 0 and Sn = X1 +X2 + · · ·+Xn, for n ≥ 1. Then

ψSN
(t) = gN

(
ψX(t)

)
. 2

The proof is completely analogous to the proof of Theorem 6.1 and is therefore
left as an exercise.

Exercise 6.3. Prove Theorem 6.2 by starting from Theorem 6.3. Note, how-
ever, that this requires the existence of the moment generating function of
the summands, a restriction that we know from above is not necessary for
Theorem 6.2 to hold. 2

Next we solve the problem posed in Example 6.2. Recall from there that
we were given X1, X2, . . . independent, Exp(1)-distributed random variables
and N ∈ Fs(p) independent of X1, X2, . . . and that we wish to find the
distribution of X1 +X2 + · · ·+XN .

With the (by now) usual notation we have, by Theorem 6.3, for t < p,

ψSN
(t) = gN

(
ψX(t)

)
=

p · 1
1−t

1− q 1
1−t

=
p

1− t− q
=

=
p

p− t
=

1
1− t

p

= ψExp(1/p)(t) ,

which, by the uniqueness theorem for moment generating functions, shows
that SN ∈ Exp(1/p). 2

Remark 6.4. If in Example 6.2 we had assumed that N ∈ Ge(p), we would
have obtained

ψSN
(t) =

p

1− q 1
1−t

=
p(1− t)
p− t

= p+ q
1

1− t
p

.

This means that SN is a mixture of a δ(0)-distribution and an Exp(1/p)-
distribution, the weights being p and q, respectively. An intuitive argument
supporting this is that P (SN = 0) = P (N = 0) = p. If N ≥ 1, then SN

behaves as in Example 6.2. The distribution of SN thus is neither discrete
nor continuous; it is a mixture. Note also that a geometric random variable
that is known to be positive is, in fact, Fs-distributed; if Z ∈ Ge(p), then
Z | Z > 0 ∈ Fs(p). 2
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Finally, if the summands do not possess a moment generating function,
then characteristic functions can be used in the obvious way.

Theorem 6.4. Let X1, X2, . . . be i.i.d. random variables, and let N be a
nonnegative, integer-valued random variable independent of X1, X2, . . . . Set
S0 = 0 and Sn = X1 +X2 + · · ·+Xn, for n ≥ 1. Then

ϕSN
(t) = gN

(
ϕX(t)

)
. 2

Exercise 6.4. Prove Theorem 6.4.

Exercise 6.5. Use Theorem 6.4 to prove Theorem 6.2. 2

7 Branching Processes

An important application for the results of the previous section is provided by
the theory of branching processes, which is described by the following model:

At time t = 0 there exists an initial population (a group of ancestors or
founding members) X(0). During its lifespan, every individual gives birth to
a random number of children. During their lifespans, these children give birth
to a random number of children, and so on. The reproduction rules for the
simplest case, which is the only one we shall consider, are

(a) all individuals give birth according to the same probability law, indepen-
dently of each other;

(b) the number of children produced by an individual is independent of the
number of individuals in their generation.

Such branching processes are called Galton–Watson processes after Sir
Francis Galton (1822–1911)—a cousin of Charles Darwin—who studied the
decay of English peerage and other family names of distinction (he contested
the hypothesis that distinguished family names are more likely to become
extinct than names of ordinary families) and Rev. Henry William Watson
(1827–1903). They met via problem 4001 posed by Galton in the Educational
Times, 1 April 1873, for which Watson proposed a solution in the same journal,
1 August 1873. Another of Galton’s achievements was that he established the
use of fingerprints in the police force.

In the sequel we also assume that X(0) = 1; this is a common assumption,
made in order to simplify some nonsignificant matters. Furthermore, since
individuals give birth, we attribute the female sex to them. Finally, to avoid
certain trivialities, we exclude, throughout, the degenerate case—when each
individual always gives birth to exactly one child.
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Example 7.1. Family names. Assume that men and women who live together
actually marry and that the woman changes her last name to that of her
husband (as in the old days). A family name thus survives only through sons. If
sons are born according to the rules above, the evolution of a family name may
be described by a branching process. In particular, one might be interested in
whether or not a family name will live on forever or become extinct.

Instead of family names, one might consider some mutant gene and its
survival or otherwise.

Example 7.2. Nuclear reactions. The fission caused by colliding neutrons re-
sults in a (random) number of new neutrons, which, when they collide produce
new neutrons, and so on.

Example 7.3. Waiting lines. A customer who arrives at an empty server (or a
telephone call that arrives at a switchboard) may be viewed as an ancestor.
The customers (or calls) arriving while he is being served are his children, and
so on. The process continues as long as there are people waiting to be served.

Example 7.4. The laptometer. When the sprows burst in a laptometer we
are faced with failures of the first kind. Now, every sprow that bursts causes
failures of the second kind (independently of the number of failures of the first
kind and of the other sprows). Suppose the number of failures of the first kind
during one hour follows the Po(λ)-distribution and that the number of failures
of the second kind caused by one sprow follows the Bin(n, p)-distribution. Find
the mean and variance of the total number of failures during one hour. 2

We shall solve the problem posed in Example 7.4 later.
Now, let, for n ≥ 1,

X(n) = # individuals in generation n,

let Y and {Yk, k ≥ 1} be generic random variables denoting the number of
children obtained by individuals, and set pk = P (Y = k), k = 0, 1, 2, . . . .
Recall that we exclude the case P (Y = 1) = 1.

Consider the initial population or the ancestor X(0) (= 1 = Eve). Then
X(1) equals the number of children of the ancestor and X(1) d= Y . Next, let
Y1, Y2, . . . be the number of children obtained by the first, second, . . . child.
It follows from the assumptions that Y1, Y2, . . . are i.i.d. and, furthermore,
independent of X(1). Since

X(2) = Y1 + · · ·+ YX(1), (7.1)

we may apply the results from Section 6. An application of Theorem 6.1 yields

gX(2)(t) = gX(1)

(
gY1(t)

)
. (7.2)

If we introduce the notations
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gn(t) = gX(n)(t) for n = 1, 2, . . .

and g(t) = g1(t) (= gX(1)(t) = gY (t)), (7.2) may be rewritten as

g2(t) = g
(
g(t)

)
. (7.3)

Next, let Y1, Y2, . . . be the number of children obtained by the first, second,
. . . individuals in generation n− 1. By arguing as before, we obtain

gX(n)(t) = gX(n−1)

(
gY1(t)

)
,

that is,
gn(t) = gn−1

(
g(t)

)
. (7.4)

This corresponds to the case k = 1 in the following result.

Theorem 7.1. For a branching process as above we have

gn(t) = gn−k

(
gk(t)

)
for k = 1, 2, . . . , n− 1. 2

If, in addition, E Y1 <∞, it follows from Theorem 6.2(a) that

EX(2) = EX(1) · E Y1 = (E Y1)2,

which, after iteration, yields

EX(n) = (E Y1)n. (7.5)

Since every individual is expected to produce E Y1 children, this is, intuitively,
a very reasonable relation.

An analogous, although slightly more complicated, formula for the variance
can also be obtained.

Theorem 7.2. (a) Suppose that m = E Y1 <∞. Then

EX(n) = mn.

(b) Suppose, further, that σ2 = VarY1 <∞. Then

VarX(n) = σ2(mn−1 +mn + · · ·+m2n−2). 2

Exercise 7.1. Prove Theorems 7.1 and 7.2(b). 2

Remark 7.1. Theorem 7.2 may, of course, also be derived from Theorem 7.1
by differentiation (cf. Corollary 2.3.1). 2
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Asymptotics

Suppose that σ2 = VarY1 <∞. It follows from Theorem 7.2 that

EX(n)→


0, when m < 1,
(=)1, when m = 1,
+∞, when m > 1,

(7.6)

and that

VarX(n)→

{
0, when m < 1,
+∞, when m ≥ 1

(7.7)

as n → ∞. It is easy to show that P (X(n) > 0) → 0 as n → ∞ when
m < 1. Although we have not defined any concept of convergence yet (this
will be done in Chapter 6), our intuition tells us that X(n) should converge
to zero as n→∞ in some sense in this case. Furthermore, (7.6) tells us that
X(n) increases indefinitely (on average) when m > 1. In this case, however,
one might imagine that since the variance also grows the population may,
by chance, die out at some finite time (in particular, at some early point in
time). For the boundary case m = 1, it may be a little harder to guess what
will happen in the long run. The following result puts our speculations into a
stringent formulation.

Denote by η the probability of (ultimate) extinction of a branching process.
For future reference we note that

η = P (ultimate extinction) = P (X(n) = 0 for some n)

= P
( ∞⋃
n=1

{X(n) = 0}
)
.

(7.8)

For obvious reasons we assume in the following that P (X(1) = 0) > 0.

Theorem 7.3. (a) η satisfies the equation t = g(t).
(b) η is the smallest nonnegative root of the equation t = g(t).
(c) η = 1 for m ≤ 1 and η < 1 for m > 1.

Proof. (a) Let Ak = {the founding member produces k children}, k ≥ 0. By
the law of total probability we have

η =
∞∑

k=0

P (extinction | Ak) · P (Ak). (7.9)

Now, P (Ak) = pk, and by the independence assumptions we have

P (extinction | Ak) = ηk. (7.10)

These facts and (7.9) yield

η =
∞∑

k=0

ηkpk = g(η), (7.11)

which proves (a).



7 Branching Processes 89

(b) Set ηn = P (X(n) = 0) and suppose that η∗ is some nonnegative root of
the equation t = g(t) (since g(1) = 1, such a root exists always). Since g is
nondecreasing for t ≥ 0, we have, by Theorem 7.1,

η1 = g(0) ≤ g(η∗) = η∗,

η2 = g(η1) ≤ g(η∗) = η∗,

and, by induction,
ηn+1 = g(ηn) ≤ g(η∗) = η∗,

that is, ηn ≤ η∗ for all n. Finally, in view of (7.8) and the fact that {X(n) =
0} ⊂ {X(n+ 1) = 0} for all n, it follows that ηn ↗ η and hence that η ≤ η∗,
which was to be proved.
(c) Since g is an infinite series with nonnegative coefficients, it follows that
g′(t) ≥ 0 and g′′(t) ≥ 0 for 0 ≤ t ≤ 1. This implies that g is convex and
nondecreasing on [0,1]. Furthermore, g(1) = 1. By comparing the graphs of
the functions y = g(t) and y = t in the three cases m < 1, m = 1, and
m > 1, respectively, it follows that they intersect at t = 1 only when m ≤ 1
(tangentially whenm = 1) and at t = η and t = 1 whenm > 1 (see Figure 7.1).
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Figure 7.1

The proof of the theorem is complete. 2

We close this section with some computations to illustrate the theory.
Given first is an example related to Example 7.2 as well as to a biological
phenomenon called binary splitting.

Example 7.5. In this branching process, the neutrons or cells either split into
two new “individuals” during their lifetime or die. Suppose that the probabil-
ities for these alternatives are p and q = 1− p, respectively.

Since m = 0 · q+ 2 · p = 2p, it follows that the population becomes extinct
with probability 1 when p ≤ 1/2. For p > 1/2 we use Theorem 7.3. The
equation t = g(t) then becomes

t = q + p · t2,

the solutions of which are t1 = 1 and t2 = q/p < 1. Thus η = q/p in this case.
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Example 7.6. A branching process starts with one individual, who reproduces
according to the following principle:

# children 0 1 2
probability 1

6
1
2

1
3

The children reproduce according to the same rule, independently of each
other, and so on.

(a) What is the probability of extinction?
(b) Determine the distribution of the number of grandchildren.

Solution. (a) We wish to apply Theorem 7.3. Since

m =
1
6
· 0 +

1
2
· 1 +

1
3
· 2 =

7
6
> 1 ,

we solve the equation t = g(t), that is,

t =
1
6

+
1
2
t+

1
3
t2.

The roots are t1 = 1 and t2 = 1/2 (recall that t = 1 is always a solution). It
follows that η = 1/2.
(b) According to Theorem 7.1, we have

g2(t) = g
(
g(t)

)
=

1
6

+
1
2
·
(1

6
+

1
2
t+

1
3
t2
)

+ 1
3 ·
(1

6
+

1
2
t+

1
3
t2
)2

.

The distribution of X(2) is obtained by simplifying the expression on the
right-hand side, noting that P (X(2) = k) is the coefficient of tk. We omit the
details. 2

Remark 7.2. The distribution may, of course, also be found by combinatorial
methods (try it and check that the results are the same!). 2

Finally, let us solve the problems posed in Example 7.4.
Regard failures of the first kind as children and failures of the second kind

as grandchildren. Thus, X(1) ∈ Po(λ) and X(2) = Y1+Y2+· · ·+YX(1), where
Y1, Y2, . . . ∈ Bin(n, p) are independent and independent of X(1). We wish to
find the expected value and the variance of X(1) + X(2). Note, however, a
discrepancy from the usual model in that the failures of the second kind do
not have the same distribution as X(1).

Since EX(1) = λ and EX(2) = EX(1) · E Y1 = λnp, we obtain

E
(
X(1) +X(2)

)
= λ+ λnp.

The computation of the variance is a little more tricky, since X(1) and X(2)
are not independent. But
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X(1) +X(2) = X(1) + Y1 + · · ·+ YX(1)

= (1 + Y1) + (1 + Y2) + · · ·+ (1 + YX(1))

=
X(1)∑
k=1

(1 + Yk),

and so
E
(
X(1) +X(2)

)
= EX(1)E(1 + Y1) = λ(1 + np)

(as above) and

Var
(
X(1) +X(2)

)
= EX(1)Var(1 + Y1) +

(
E(1 + Y1)

)2VarX(1)

= λnpq + (1 + np)2λ = λ
(
npq + (1 + np)2

)
.

The same device can be used to find the generating function. Namely,

gX(1)+X(2)(t) = gX(1)

(
g1+Y1(t)

)
,

which, together with the fact that

g1+Y1(t) = E t1+Y1 = tE tY1 = tgY1(t) = t(q + pt)n ,

yields
gX(1)+X(2)(t) = eλ(t(q+pt)n−1). 2

8 Problems

1. The nonnegative, integer-valued, random variable X has generating func-
tion gX(t) = log

(
1/(1 − qt)

)
. Determine P (X = k) for k = 0, 1, 2, . . . ,

EX, and VarX.
2. The random variable X has the property that all moments are equal, that

is, EXn = c for all n ≥ 1, for some constant c. Find the distribution of
X (no proof of uniqueness is required).

3. The random variable X has the property that

EXn =
2n

n+ 1
, n = 1, 2, . . . .

Find some (in fact, the unique) distribution of X having these moments.
4. Suppose that Y is a random variable such that

E Y k =
1
4

+ 2k−1, k = 1, 2, . . . .

Determine the distribution of Y .



92 3 Transforms

5. Let Y ∈ β(n,m) (n, m integers).
(a) Compute the moment generating function of − log Y .
(b) Show that − log Y has the same distribution as

∑m
k=1Xk, where

X1, X2 · · · are independent, exponentially distributed random vari-
ables.

Remark. The formula Γ(r+ s)/Γ(r) = (r+ s− 1) · · · (r+1)r , which holds
when s is an integer, might be useful.

6. Show, by using moment generating functions, that if X ∈ L(1), then
X

d= Y1−Y2, where Y1 and Y2 are independent, exponentially distributed
random variables.

7. In the previous problem we found that a standard Laplace-distributed
random variable has the same distribution as the difference between two
standard exponential random variables. It is therefore reasonable to be-
lieve that if Y1 and Y2 are independent L(1)-distributed, then

Y1 + Y2
d= X1 −X2,

where X1 and X2 are independent Γ(2, 1)-distributed random variables.
Prove, by checking moment generating functions, that this is in fact true.

8. LetX ∈ Γ(p, a). Compute the (two-dimensional) moment generating func-
tion of (X, logX).

9. Let X ∈ Bin(n, p). Compute EX4 with the aid of the moment generating
function.

10. Let X1, X2, . . . , Xn be independent random variables with expectation 0
and finite third moments. Show, with the aid of characteristic functions,
that

E(X1 +X2 + · · ·+Xn)3 = EX3
1 + EX3

2 + · · ·+ EX3
n.

11. Let X and Y be independent random variables and suppose that Y is
symmetric (around zero). Show that XY is symmetric.

12. The aim of the problem is to prove the double-angle formula

sin 2t = 2 sin t cos t.

Let X and Y be independent random variables, where X ∈ U(−1, 1) and
Y assumes the values +1 and −1 with probabilities 1/2.
(a) Show that Z = X + Y ∈ U(−2, 2) by finding the distribution function

of Z.
(b) Translate this fact into a statement about the corresponding charac-

teristic functions.
(c) Rearrange.

13. Let X1, X2 . . . be independent C(0, 1)-distributed random variables, and
set Sn =

∑n
k=1Xk, n ≥ 1. Show that

(a) Sn/n ∈ C(0, 1),
(b) (1/n)

∑n
k=1 Sk/k ∈ C(0, 1).

Remark. If {Sk/k, k ≥ 1} were independent, then (b) would follow imme-
diately from (a).
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14. For a positive, (absolutely) continuous random variable X we define the
Laplace transform as

LX(s) = E e−sX =
∫ ∞

0

e−sxfX(x) dx, s > 0.

Suppose that X is positive and stable with index α ∈ (0, 1), which means
that

LX(s) = e−sα

, s > 0.

Further, let Y ∈ Exp(1) be independent of X. Show that(Y
X

)α

∈ Exp(1) (which means that
(Y
X

)α d= Y ).

15. Another transform: For a random variable X we define the cumulant gen-
erating function, KX(t) = logψX(t) as

KX(t) =
∞∑

n=1

1
n!
knt

n ,

where kn = kn(X) is the so called nth cumulant or semi-invariant of X.
(a) Show that, if X and Y are independent random variables, then

kn(X + Y ) = kn(X) + kn(Y ).

(b) Express k1, k2, and k3 in terms of the moments EXk, k = 1, 2, 3, of X.
16. Suppose that X1, X2, . . . are independent, identically Linnik(α)-distri-

buted random variables, that N ∈ Fs(p), and that N and X1, X2, . . . are
independent. Show that p1/α(X1 + X2 + · · · + XN ) is, again, Linnik(α)-
distributed.
Remark. The characteristic function of the Linnik(α)-distribution (α > 0)
is ϕ(t) = (1 + |t|α)−1.

17. Suppose that the joint generating function of X and Y equals

gX,Y (s, t) = E sXtY = exp{α(s− 1) + β(t− 1) + γ(st− 1)},

with α > 0, β > 0, γ 6= 0.
(a) Show that X and Y both have a Poisson distribution, but that X +Y

does not.
(b) Are X and Y independent?

18. Let the random variables Y, X1, X2, . . . be independent, suppose that
Y ∈ Fs(p), where 0 < p < 1, and suppose that X1, X2, X3, . . . are all
Exp(1/a)-distributed. Find the distribution of

Z =
Y∑

j=1

Xj .
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19. Let X1, X2, . . . be Ge(α)-distributed random variables, let N ∈ Fs(p),
suppose that all random variables are independent, and set

Y = X1 +X2 + · · ·+XN .

(a) Show that Y ∈ Ge(β), and determine β.
(b) Compute E Y and VarY with “the usual formulas”, and check that

the results agree with mean and variance of the distribution in (a).
20. Let 0 < p = 1 − q < 1. Suppose that X1, X2, . . . are independent

Ge(q)-distributed random variables and that N ∈ Ge(p) is independent
of X1, X2, . . . .
(a) Find the distribution of Z = X1 +X2 + · · ·+XN .
(b) Show that Z | Z > 0 ∈ Fs(α), and determine α.

21. Suppose that X1, X2, . . . are independent L(a)-distributed random vari-
ables, let Np ∈ Fs(p) be independent of X1, X2, . . . , and set Yp =∑Np

k=1Xk. Show that √
pYp ∈ L(a) .

22. LetN, X1, X2, . . . be independent random variables such thatN ∈ Po(1)
and Xk ∈ Po(2) for all k. Set Z =

∑N
k=1Xk (and Z = 0 when N = 0).

Compute E Z, VarZ, and P (Z = 0).
23. Let Y1, Y2, . . . be i.i.d. random variables, and let N be a nonnegative,

integer-valued random variable that is independent of Y1, Y2, . . . . Com-
pute Cov (

∑N
k=1 Yk, N).

24. Let, form 6= 1,X1, X2, . . . be independent random variables with EXn =
mn, n ≥ 1, let N ∈ Po(λ) be independent of X1, X2, . . . , and set

Z = X1 +X2 + · · ·+XN .

Determine E Z.
Remark. Note that X1, X2, . . . are NOT identically distributed, that is,
the usual “E SN = EN · EX” does NOT work; you have to modify the
proof of that formula.

25. Let N ∈ Bin(n, 1− e−m), and let X1, X2, . . . have the same 0-truncated
Poisson distribution, namely,

P (X1 = x) =
mx/x!
em − 1

, x = 1, 2, 3, . . . .

Further, assume that N, X1, X2, . . . are independent,
(a) Find the distribution of Y =

∑N
k=1Xk (Y = 0 when N = 0).

(b) Compute E Y and VarY without using (a).
26. The number of cars passing a road crossing during an hour is Po(b)-

distributed. The number of passengers in each car is Po(p)-distributed.
Find the generating function of the total number of passengers, Y , passing
the road crossing during one hour, and compute E Y and VarY .
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27. A miner has been trapped in a mine with three doors. One takes him to
freedom after one hour, one brings him back to the mine after 3 hours
and the third one brings him back after 5 hours. Suppose that he wishes
to get out of the mine and that he does so by choosing one of the three
doors uniformly at random and continues to do so until he is free. Find
the generating function, the mean and the variance for the time it takes
him to reach freedom.

28. Lisa shoots at a target. The probability of a hit in each shot is 1/2. Given
a hit, the probability of a bull’s-eye is p. She shoots until she misses the
target. Let X be the total number of bull’s-eyes Lisa has obtained when
she has finished shooting; find its distribution.

29. Karin has an unfair coin; the probability of heads is p (0 < p < 1). She
tosses the coin until she obtains heads. She then tosses a fair coin as many
times as she tossed the unfair one. For every head she has obtained with
the fair coin she finally throws a symmetric die. Determine the expected
number and variance of the total number of dots Karin obtains by this
procedure.

30. Philip throws a fair die until he obtains a four. Diane then tosses a coin
as many times as Philip threw his die. Determine the expected value and
variance of the number of
(a) heads,
(b) tails, and
(c) heads and tails obtained by Diane.

31. Let p be the probability that the tip points downward after a person
throws a drawing pin once. Miriam throws a drawing pin until it points
downward for the first time. Let X be the number of throws for this to
happen. She then throws the drawing pin another X times. Let Y be the
number of times the drawing pin points downward in the latter series of
throws. Find the distribution of Y (cf. Problem 2.6.38).

32. Let X1, X2, . . . be independent observations of a random variable X,
whose density function is

fX(x) = 1
2e
−|x| , −∞ < x <∞.

Suppose we continue sampling until a negative observation appears. Let
Y be the sum of the observations thus obtained (including the negative
one). Show that the density function of Y is

fY (x) =

{
2
3e

x, for x < 0,
1
6e
−x/2, for x > 0.

33. At a certain black spot, the number of traffic accidents per year follows
a Po(10, 000)-distribution. The number of deaths per accident follows a
Po(0.1)-distribution, and the number of casualties per accidents follows
a Po(2)-distribution. The correlation coefficient between the number of
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casualties and the number of deaths per accidents is 0.5. Compute the
expectation and variance of the total number of deaths and casualties
during a year.

34. Suppose that X is a nonnegative, integer-valued random variable, and let
n and m be nonnegative integers. Show that

gnX+m(t) = tm · gX(tn).

35. Suppose that the offspring distribution in a branching process is the Ge(p)-
distribution, and let X(n) be the number of individuals in generation n,
n = 0, 1, 2, . . . .
(a) What is the probability of extinction?
(b) Find the probability that the population is extinct in the second gen-

eration.
36. Consider a branching process whose offspring distribution is Bin(n, p)-

distributed. Compute the expected value, the variance and the probability
that there are 0 or 1 grandchild, that is, find, in the usual notation, EX(2),
VarX(2), P (X(2) = 0), and P (X(2) = 1).

37. Consider a branching process where the individuals reproduce according
to the following pattern:

# of children 0 1 2
probability 1

6
1
3

1
2

Individuals reproduce independently of each other and independently of
the number of their sisters and brothers. Determine
(a) the probability that the population becomes extinct;
(b) the probability that the population has become extinct in the second

generation;
(c) the expected number of children given that there are no grandchildren.

38. One bacterium each of the two dangerous Alphomylia and Klaipeda tribes
have escaped from a laboratory. They reproduce according to a standard
branching process as follows:

# of children 0 1 2
probability Alphomylia 1

4
1
4

1
2

probability Klaipeda 1
6

1
6

2
3

The two cultures reproduce independently of each other. Determine the
probability that 0, 1, and 2 of the cultures, respectively, become extinct.

39. Suppose that the offspring distribution in a branching process is the Ge(p)-
distribution, and let X(n) be the number of individuals in generation
n, n = 0, 1, 2, . . . .
(a) What is the probability of extinction?

Now suppose that p = 1/2, and set gn(t) = gX(n)(t).
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(b) Show that

gn(t) =
n− (n− 1)t
n+ 1− nt

, n = 1, 2, . . . .

(c) Show that

P (X(n) = k) =


n

n+ 1
, for k = 0,

nk−1

(n+ 1)k+1
, for k = 1, 2, . . . .

(d) Show that

P (X(n) = k | X(n) > 0) =
1

n+ 1

( n

n+ 1

)k−1

, for k = 1, 2, . . . ,

that is, show that the number of individuals in generation n, given that
the population is not yet extinct, follows an Fs(1/(n+1))-distribution.
Finally, suppose that the population becomes extinct at generation
number N .

(e) Show that

P (N = n) = gn−1( 1
2 )− gn−1(0) , n = 1, 2, . . . .

(f) Show that P (N = n) = 1/(n(n+ 1)), n = 1, 2, . . . (and hence that
P (N <∞) = 1, i.e., η = 1).

(g) Compute EN . Why is this a reasonable answer?
40. The growth dynamics of pollen cells can be modeled by binary splitting

as follows: After one unit of time, a cell either splits into two or dies. The
new cells develop according to the same law independently of each other.
The probabilities of dying and splitting are 0.46 and 0.54, respectively.
(a) Determine the maximal initial size of the population in order for the

probability of extinction to be at least 0.3.
(b) What is the probability that the population is extinct after two gener-

ations if the initial population is the maximal number obtained in (a)?
41. Consider binary splitting, that is, the branching process where the distri-

bution of Y = the number of children is given by

P (Y = 2) = 1− P (Y = 0) = p, 0 < p < 1.

However, suppose that p is not known, that p is random, viz., consider
the following setup: Assume that

P (Y = 2 | P = p) = p, P (Y = 0 | P = p) = 1− p, with

fP (x) =

{
2x, for 0 < x < 1,
0, otherwise.

(a) Find the distribution of Y .
(b) Determine the probability of extinction.
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42. Consider the following modification of a branching process: A mature
individual produces children according to the generating function g(t).
However, an individual becomes mature with probability α and dies before
maturity with probability 1− α. Throughout X(0) = 1, that is, we start
with one immature individual.
(a) Find the generating function of the number of individuals in the first

two generations.
(b) Suppose that the offspring distribution is geometric with parameter p.

Determine the extinction probability.
43. Let {X(n), n ≥ 0} be the usual Galton–Watson process, starting with

X(0) = 1. Suppose, in addition, that immigration is allowed in the sense
that in addition to the children born in generation n there are Zn indi-
viduals immigrating, where {Zn, n ≥ 1} are i.i.d. random variables with
the same distribution as X(1).
(a) What is the expected number of individuals in generation 1?
(b) Find the generating function of the number of individuals in genera-

tions 1 and 2, respectively.
(c) Determine/express the probability that the population is extinct after

two generations.
Remark. It may be helpful to let p0 denote the probability that an in-
dividual does not have any children (which, in particular, means that
P (X(1) = 0) = p0).

44. Consider a branching process with reproduction mean m < 1. Suppose
also, as before, that X(0) = 1.
(a) What is the probability of extinction?
(b) Determine the expected value of the total progeny.
(c) Now suppose that X(0) = k, where k is an integer ≥ 2. What are the

answers to the questions in (a) and (b) now?
45. The following model can be used to describe the number of women (moth-

ers and daughters) in a given area. The number of mothers is a random
variable X ∈ Po(λ). Independently of the others, every mother gives birth
to a Po(µ)-distributed number of daughters. Let Y be the total number
of daughters and hence Z = X + Y be the total number of women in the
area.
(a) Find the generating function of Z.
(b) Compute E Z and VarZ.

46. LetX(n) be the number of individuals in the nth generation of a branching
process (X(0) = 1), and set Tn = 1+X(1)+ · · ·+X(n), that is, Tn equals
the total progeny up to and including generation number n. Let g(t) and
Gn(t) be the generating functions of X(1) and Tn, respectively. Prove the
following formula:

Gn(t) = t · g
(
Gn−1(t)

)
.
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47. Consider a branching process with a Po(m)-distributed offspring. Let
X(1) and X(2) be the number of individuals in generations 1 and 2,
respectively. Determine the generating function of
(a) X(1),
(b) X(2),
(c) X(1) +X(2),
(d) Determine Cov(X(1), X(2)).

48. Let X be the number of coin tosses until heads is obtained. Suppose that
the probability of heads is unknown in the sense that we consider it to be
a random variable Y ∈ U(0, 1). Find the distribution of X (cf. Problem
2.6.37).
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Order Statistics

1 One-Dimensional Results

Let X1, X2, . . . be a (random) sample from a distribution with distribution
function F , and let X denote a generic random variable with this distribu-
tion. Very natural objects of interest are the largest observation, the smallest
observation, the centermost observation (the median), among others. In this
chapter we shall derive marginal as well as joint distributions of such objects.

Example 1.1. In a 100-meter Olympic race the running times can be consid-
ered to be U(9.6, 10.0)-distributed. Suppose that there are eight competitors
in the finals. We wish to find the probability that the winner breaks the world
record of 9.69 seconds. All units are seconds.

Example 1.2. One hundred numbers, uniformly distributed in the interval
(0, 1), are generated by a computer. What is the probability that the largest
number is at most 0.9? What is the probability that the second smallest num-
ber is at least 0.002? 2

Definition 1.1. For k = 1, 2, . . . , n, let

X(k) = the kth smallest of X1, X2, . . . , Xn. (1.1)

(X(1), X(2), . . . , X(n)) is called the order statistic and X(k) the kth order vari-
able, k = 1, 2, . . . , n. 2

The order statistic is thus obtained from the original (unordered) sample
through permutation; the observations are arranged in increasing order. It
follows that

X(1) ≤ X(2) ≤ · · · ≤ X(n). (1.2)

Remark 1.1. Actually, the order variables also depend on n; X(k) is the kth
smallest of the n observations X1, X2, . . . , Xn. To be completely descrip-
tive, the notation should therefore also include an n, denoting the sam-
ple size. In the literature one sometimes finds the (more clumsy) notation
X1:n, X2:n, . . . , Xn:n. 2
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DOI: 10.1007/978-1-4419-0162-0_4,
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Exercise 1.1. Suppose that F is continuous. Compute P (Xk = X(k), k =
1, 2, . . . , n), that is, the probability that the original, unordered sample is in
fact (already) ordered.

Exercise 1.2. Suppose that F is continuous and that we have a sample of
size n. We now make one further observation. Compute, in the notation of
Remark 1.1, P (Xk:n = Xk:n+1), that is, the probability that the kth smallest
observation still is the kth smallest observation. 2

The extreme order variables are

X(1) = min{X1, X2, . . . , Xn} and X(n) = max{X1, X2, . . . , Xn},

whose distribution functions are obtained as follows:

FX(n)(x) = P (X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x)

=
n∏

k=1

P (Xk ≤ x) =
(
F (x)

)n
and

FX(1)(x) = 1− P (X(1) > x) = 1− P (X1 > x,X2 > x, . . . ,Xn > x)

= 1−
n∏

k=1

P (Xk > x) = 1−
(
1− F (x)

)n
.

In the continuous case we additionally have the following expressions for the
densities:

fX(n)(x) = n
(
F (x)

)n−1
f(x) and fX(1)(x) = n

(
1− F (x)

)n−1
f(x).

Example 1.1 (continued). Let us solve the problem posed earlier. We wish to
determine P (X(1) < 9.69).

Since fX(x) = 2.5 for 9.6 < x < 10.0 and zero otherwise, it follows that in
the interval 9.8 < x < 10.2 we have FX(x) = 2.5x− 24 and hence

FX(1)(x) = 1− (25− 2.5x)8

(since we assume that the running times are independent). Since the desired
probability equals FX(1)(9.69), the answer to our problem is 1 − (25 − 2.5 ·
9.69)8 ≈ 0.8699. 2

Exercise 1.3. Solve the problem in Example 1.2. 2

These results are now generalized to arbitrary order variables.
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Theorem 1.1. For k = 1, 2, . . . , n, we have

FX(k)(x) =
Γ(n+ 1)

Γ(k)Γ(n+ 1− k)

∫ F (x)

0

yk−1(1− y)n−k dy , (1.3)

that is,
FX(k)(x) = Fβ(k,n+1−k)

(
F (x)

)
.

In particular, if X ∈ U(0, 1), then

X(k) ∈ β(k, n+ 1− k), k = 1, 2, . . . , n. (1.4)

Proof. For i = 0, 1, 2, . . . , n, let

Ai(x) = {exactly i of the variables X1, X2, . . . , Xn ≤ x}.

Since these sets are disjoint and

# observations ≤ x ∈ Bin(n, F (x)), (1.5)

it follows that

FX(k)(x) = P (X(k) ≤ x) = P

(
n⋃

i=k

Ai(x)

)

=
n∑

i=k

P (Ai(x)) =
n∑

i=k

(
n

i

)(
F (x)

)i(1− F (x)
)n−i

.

A comparison with (1.3) shows that it remains to prove the following formula:

n∑
i=k

(
n

i

)
zi(1− z)n−i =

Γ(n+ 1)
Γ(k)Γ(n+ 1− k)

∫ z

0

yk−1(1− y)n−k dy (1.6)

for k = 1, 2, . . . , n (and 0 ≤ z ≤ 1). This is done by backward induction, that
is, we begin with the case k = n and move downward.

For k = n, both members in (1.6) equal zn. Now suppose that relation
(1.6) holds for n, n− 1, . . . , k.

Claim. Formula (1.6) holds for k − 1.

Proof. Set

ai =
(
n

i

)
zi(1− z)n−i, i = 1, 2, . . . , n,

Σk =
n∑

i=k

ai, k = 1, 2, . . . , n,

Ik =
Γ(n+ 1)

Γ(k)Γ(n+ 1− k)

∫ z

0

yk−1(1− y)n−k dy, k = 1, 2, . . . , n.
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We wish to show that Σk−1 = Ik−1.
From the assumption and by partial integration, it follows that

Σk = Ik

=
[ Γ(n+ 1)
Γ(k)Γ(n+ 1− k)

· (− 1
n− k + 1

)yk−1(1− y)n−k+1
]z
0

− Γ(n+ 1)
Γ(k)Γ(n+ 1− k)

(− 1
n− k + 1

)(k − 1)
∫ z

0

yk−2(1− y)n−k+1 dy

= − Γ(n+ 1)
Γ(k)Γ(n+ 2− k)

zk−1(1− z)n−k+1

+
Γ(n+ 1)

Γ(k − 1)Γ(n+ 2− k)

∫ z

0

yk−2(1− y)n−k+1 dy (1.7)

= −
(

n

k − 1

)
zk−1(1− z)n−(k−1)

+
Γ(n+ 1)

Γ(k − 1)Γ(n+ 1− (k − 1))

∫ z

0

y(k−1)−1(1− y)n−(k−1) dy

= −ak−1 + Ik−1.

The extreme members now tell us that Σk = −ak−1 + Ik−1, which, by moving
ak−1 to the left-hand side, proves (1.3), from which the special case (1.4)
follows immediately.

The proof of the theorem is thus complete. 2

Remark 1.2. Formula (1.6) will also appear in Chapter 8, where the members
of the relation will be interpreted as a conditional probability for Poisson
processes; see Remark 8.3.3. 2

In the continuous case, differentiation of FX(k)(x) as given in (1.3) yields
the density of X(k), 1 ≤ k ≤ n.

Theorem 1.2. Suppose that the distribution is continuous with density f(x).
For k = 1, 2, . . . , n, the density of X(k) is given by

fX(k)(x) =
Γ(n+ 1)

Γ(k)Γ(n+ 1− k)
(
F (x)

)k−1(1− F (x)
)n−k

f(x) , (1.8)

that is,
fX(k)(x) = fβ(k,n+1−k)

(
F (x)

)
· f(x). 2

Remark 1.3. For k = 1 and k = n, we rediscover, in both theorems, the
familiar expressions for the distribution functions and density functions of
the smallest and largest values. 2

Under the assumption that the density is (for instance) continuous, we can
make the following heuristic derivation of (1.8): If h is “very small,” then
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FX(k)(x+ h)− FX(k)(x) = P (x < X(k) ≤ x+ h)

≈ P (k − 1 obs ≤ x, 1 obs in (x, x+ h], n− k obs > x+ h) ,

because the probability that at least two observations fall into the interval
(x, x+ h] is negligible.

Now, this is a multinomial probability, which equals

n!
(k − 1)! 1! (n− k)!

(
F (x)

)k−1(
F (x+ h)− F (x)

)1(1− F (x+ h)
)n−k

=
Γ(n+ 1)

Γ(k)Γ(n+ 1− k)
(
F (x)

)k−1(
F (x+ h)− F (x)

)(
1− F (x+ h)

)n−k
.

By the mean value theorem, F (x+ h)− F (x) = h · f(θx,h), where x ≤ θx,h ≤
x + h. Since h is small and f is (for instance) continuous, we further have
f(θx,h) ≈ f(x) and F (x+ h) ≈ F (x), which yield

FX(k)(x+h)−FX(k)(x) ≈ h ·
Γ(n+ 1)

Γ(k)Γ(n+ 1− k)
(
F (x)

)k−1(1−F (x)
)n−k

f(x).

The conclusion now follows by dividing with h and letting h→ 0.

Remark 1.4. The probability we just computed is of the order of magnitude
O(h). With some additional work one can show that

P (at least two observations in (x, x+ h]) = O(h2) = o(h) (1.9)

as h→ 0, that is, what we considered negligible above is indeed negligible.
More formally, we thus have

FX(k)(x+ h)− FX(k)(x)

= h
Γ(n+ 1)

Γ(k)Γ(n+ 1− k)
(
F (x)

)k−1(1− F (x)
)n−k

f(x) + o(h)

as h→ 0 (where o(h) also includes the other approximations). 2

2 The Joint Distribution of the Extremes

In the previous section we studied the distribution of a single order variable.
Here we consider X(1) and X(n) jointly. The distribution is assumed to be
continuous throughout.

Theorem 2.1. The joint density of X(1) and X(n) is given by

fX(1),X(n)(x, y) =

{
n(n− 1)

(
F (y)− F (x)

)n−2
f(y)f(x), for x < y,

0, otherwise.
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Proof. We modify the idea on which the derivation of the marginal distribu-
tions of X(1) and X(n) was based. The key observation is that

P (X(1) > x,X(n) ≤ y) = P (x < Xk ≤ y, k = 1, 2, . . . , n)

=
n∏

k=1

P (x < Xk ≤ y) =
(
F (y)− F (x)

)n
, for x < y.

(2.1)

For x ≥ y the probability is, of course, equal to zero.
Now, (2.1) and the fact that

P (X(1) ≤ x, X(n) ≤ y) + P (X(1) > x, X(n) ≤ y) = P (X(n) ≤ y) (2.2)

lead to

FX(1),X(n)(x, y) = FX(n)(y)− P (X(1) > x,X(n) ≤ y)

=

{(
F (y)

)n − (F (y)− F (x)
)n
, for x < y,(

F (y)
)n
, for x ≥ y.

(2.3)

Differentiation with respect to x and y yields the desired result. 2

Exercise 2.1. Generalize the heuristic derivation of the density in Theorem
1.2 to the density in Theorem 2.1. 2

An important quantity related to X(1) and X(n) is the range

Rn = X(n) −X(1), (2.4)

which provides information of how spread out the underlying distribution
might be. The distribution of Rn can be obtained by the methods of Chapter
1 by introducing the auxiliary random variable U = X(1). With the aid of
Theorems 2.1 and 1.2.1 we then obtain an expression for fRn,U (r, u). Inte-
grating with respect to u yields the marginal density fRn

(r). The result is as
follows:

Theorem 2.2. The density of the range Rn, as defined in (2.4), is

fRn
(r) = n(n− 1)

∫ ∞

−∞

(
F (u+ r)− F (u)

)n−2
f(u+ r)f(u) du,

for r > 0. 2

Exercise 2.2. Give the details of the proof of Theorem 2.2. 2

Example 2.1. If X ∈ U(0, 1), then

fRn
(r) = n(n− 1)

∫ 1−r

0

(u+ r − u)n−2 · 1 · 1 du

= n(n− 1)rn−2(1− r), 0 < r < 1,
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that is, Rn ∈ β(n− 1, 2). Moreover,

ERn =
∫ 1

0

r · n(n− 1)rn−2(1− r) dr = n(n− 1)
∫ 1

0

(rn−1 − rn) dr

= n(n− 1)
( 1
n
− 1
n+ 1

)
=
n− 1
n+ 1

. (2.5)

This may, alternatively, be read off from the β(n− 1, 2)-distribution;

ERn =
n− 1

(n− 1) + 2
=
n− 1
n+ 1

.

Furthermore, if one thinks intuitively about how n points in the unit interval
are distributed on average, one realizes that the value

n

n+ 1
− 1
n+ 1

(
=
n− 1
n+ 1

)
is to be expected for the range. 2

Exercise 2.3. Find the probability that all runners in Example 1.1 finish
within the time interval (9.8, 9.9). 2

Example 2.2. Let X1, X2, . . . , Xn be independent, Exp(1)-distributed ran-
dom variables. Determine

(a) fX(1),X(n)(x, y),
(b) fRn(r).

Solution. (a) For 0 < x < y,

fX(1),X(n)(x, y) = n(n− 1)
(
1− e−y − (1− e−x)

)n−2 · e−y · e−x

= n(n− 1)(e−x − e−y)n−2e−(x+y) ,

(and zero otherwise).
(b) It follows from Theorem 2.2 that

fRn(r) = n(n− 1)
∫ ∞

0

(e−u − e−(u+r))n−2e−(2u+r) du

= n(n− 1)
∫ ∞

0

e−u(n−2)(1− e−r)n−2e−(2u+r) du

= n(n− 1)(1− e−r)n−2e−r

∫ ∞

0

e−nu du

= (n− 1)(1− e−r)n−2e−r , r > 0. 2

Remark 2.1. We also observe that FRn(r) = (1 − e−r)n−1 = (F (r))n−1. This
can be explained by the fact that the exponential distribution has “no mem-
ory.” A more thorough understanding of this fact is provided in Chapter 8,
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which is devoted to the study of the Poisson process. In that context the lack of
memory amounts to the fact that (X(2) −X(1), X(3) −X(1), . . . , X(n) −X(1))
can be interpreted as the order statistic corresponding to a sample of size
n − 1 from an Exp(1)-distribution, which in turn implies that Rn can
be interpreted as the largest of those n − 1 observations. In the language
of Remark 1.1, we might say that (X(2) − X(1), X(3) − X(1), . . . , X(n) −
X(1))

d= (Y1:n−1,Y2:n−1, . . . , Yn−1:n−1), in particular, Rn
d= Yn−1:n−1, where

Y1, Y2, . . . , Yn−1 is a sample (of size n− 1) from an Exp(1)-distribution. 2

Exercise 2.4. Consider Example 2.2 with n = 2. Then Rn = R2 = X(2) −
X(1) ∈ Exp(1). In view of Remark 2.1 it is tempting to guess that X(1) and
X(2) −X(1) are independent. Show that this is indeed the case.

For an extension, see Problems 4.20(a) and 4.21(a).

Exercise 2.5. The geometric distribution is a discrete analog of the exponen-
tial distribution in the sense of lack of memory. More precisely, show that if
X1 and X2 are independent, Ge(p)-distributed random variables, then X(1)

and X(2) −X(1) are independent. 2

Conditional distributions can also be obtained as is shown in the following
example:

Example 2.3. Let X1, X2, and X3 be independent, Exp(1)-distributed ran-
dom variables. Compute

E(X(3) | X(1) = x) .

Solution. By Theorem 2.1 (see also Example 2.2(a)) we have

fX(1),X(3)(x, y) = 3 · 2(e−x − e−y) e−(x+y) for 0 < x < y,

and hence

fX(3)|X(1)=x(y) =
fX(1),X(3)(x, y)

fX(1)(x)
=

6(e−x − e−y)e−(x+y)

3e−3x

= 2(e−x − e−y)e2x−y, for 0 < x < y.

The conditional expectation thus becomes

E(X(3) | X(1) = x) =
∫ ∞

x

2y(e−x − e−y)e2x−y dy

=
∫ ∞

0

2(u+ x)(e−x − e−(u+x))e2x−u−x du

= 2
∫ ∞

0

(u+ x)(1− e−u)e−u du

= 2
∫ ∞

0

u(e−u − e−2u) du+ 2x
∫ ∞

0

(e−u − e−2u) du

= 2
(
1− 1

2
· 1
2

)
+ 2x

(
1− 1

2

)
= x+

3
2
. 2
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Remark 2.2. As in the previous example, one can use properties of the Poisson
process to justify the answer; see Problem 8.9.27. 2

Exercise 2.6. Suppose n points are chosen uniformly and independently of
each other on the unit disc. Compute the expected value of the area of the
annulus obtained by drawing circles through the extremes. 2

We conclude this section with a discrete version of Example 2.3.

Exercise 2.7. Independent repetitions of an experiment are performed. A is
an event that occurs with probability p, 0 < p < 1. Let Tk be the number of
the performance at which A occurs the kth time, k = 1, 2, . . . . Compute

(a) E(T3 | T1 = 5),
(b) E(T1 | T3 = 5). 2

3 The Joint Distribution of the Order Statistic

So far we have found the marginal distributions of the order variables and the
joint distribution of the extremes. In general it might be of interest to know
the distribution of an arbitrary collection of order variables. From Chapter
1 we know that once we are given a joint distribution we can always find
marginal distributions by integrating the joint density with respect to the
other variables. In this section we show how the joint distribution of the
(whole) order statistic can be derived. The point of departure is that the joint
density of the (unordered) sample is known and that the ordering, in fact, is
a linear transformation to which Theorem 1.2.1 can be applied. However, it
is not a 1-to-1 transformation, and so the arguments at the end of Section 1.2
must be used.

We are thus given the joint density of the unordered sample

fX1,...,Xn
(x1, . . . , xn) =

n∏
i=1

f(xi). (3.1)

Consider the mapping (X1, X2, . . . , Xn) → (X(1), X(2), . . . , X(n)). We have
already argued that it is a permutation; the observations are simply rearranged
in increasing order. The transformation can thus be rewritten as

X(1)

X(2)

...
X(n)

 = P


X1

X2

...
Xn

 , (3.2)

where P = (Pij) is a permutation matrix, that is, a matrix with exactly one
1 in every row and every column and zeroes otherwise; Pij = 1 means that
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X(i) = Xj . However, the mapping is not 1-to-1, since, by symmetry, there
are n! different outcomes that all generate the same order statistic. If, for
example, n = 3 and the observations are 3,2,8, then the order statistic is
(2,3,8). However, the results 2,3,8; 2,8,3; 3,8,2; 8,2,3; and 8,3,2 all would have
yielded the same order statistic.

We therefore partition the space Rn into n! equally shaped parts, departing
from one “corner” each, so that the mapping from each part to Rn is 1-to-1
in the sense of the end of Section 1.2. By formula (1.2.2),

fX(1),...,X(n)(y1, . . . , yn) =
n!∑

i=1

fX1,...,Xn(x1i(y), . . . , xni(y))· | Ji |, (3.3)

where Ji is the Jacobian corresponding to the transformation from “domain”
i to Rn. Since a permutation matrix has determinant ±1, it follows that
| Ji |= 1 for all i.

Now, by construction, each xki(y) equals some yj , so

fX1,...,Xn(x1i(y), . . . , xni(y)) =
n∏

k=1

fXk
(xki(y)) =

n∏
k=1

f(yk) ; (3.4)

namely, we multiply the original density f evaluated at the points xki(y),
k = 1, 2, . . . , n, that is, at the points y1, y2, . . . , yn—however, in a different
order. The density fX(1),...,X(n)(y1, . . . , yn) is therefore a sum of the n! identical
terms

∏n
k=1 f(yk) · 1. This leads to the following result:

Theorem 3.1. The (joint) density of the order statistic is

fX(1),...,X(n)(y1, . . . , yn) =

n!
n∏

k=1

f(yk), if y1 < y2 < · · · < yn,

0, otherwise. 2

Exercise 3.1. Consider the event that we have exactly one observation in
each of the intervals (yk, yk + hk], k = 1, 2, . . . , n (where y1, y2, . . . , yn are
given and h1, h2, . . . , hn are so small that y1 < y1 + h1 ≤ y2 < y2 + h2 ≤
. . . ≤ yn−1 < yn−1 + hn−1 ≤ yn < yn + hn). The probability of this event
equals

n! ·
n∏

k=1

(
F (yk + hk)− F (yk)

)
, (3.5)

which, by the mean value theorem (and under the assumption that f is “nice”
(cf. the end of Section 1)), implies that the expression in (3.5) is approximately
equal to

n! ·
n∏

k=1

hk · f(yk). (3.6)

Complete the heuristic derivation of fX(1),...,X(n)(y1, . . . , yn). 2
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Next we observe that, given the joint density, we can obtain any desired
marginal density by integration (recall Chapter 1). The (n − 1)-dimensional
integral∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
fX(1),...,X(n)(y1, . . . , yn) dy1 · · · dyk−1dyk+1 · · · dyn, (3.7)

for example, yields fX(k)(yk). This density was derived in Theorem 1.2 by
one-dimensional arguments. The (n− 2)-dimensional integral∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
fX(1),...,X(n)(y1, . . . , yn) dy2dy3 · · · dyn−1 (3.8)

yields fX(1),X(n)(y1, yn), which was obtained earlier in Theorem 2.1. On the
other hand, by integrating over all variables but Xj and Xk, 1 ≤ j < k ≤ n,
we obtain fX(j),X(k)(yj , yk), which has not been derived so far (for j 6= 1 or
k 6= n).

As an illustration, let us derive fX(k)(yk) starting from the joint density
as given in Theorem 3.1.

fX(k)(yk)

=
∫ yk

−∞

∫ yk−1

−∞
· · ·
∫ y2

−∞

∫ ∞

yk

∫ ∞

yk+1

· · ·
∫ ∞

yn−1

n!
n∏

i=1

f(yi)

× dyn · · · dyk+1dy1 · · · dyk−1

= n!
∫ yk

−∞

∫ yk−1

−∞
· · ·
∫ y2

−∞

∫ ∞

yk

∫ ∞

yk+1

· · ·
∫ ∞

yn−2

n−1∏
i=1

f(yi)
(
1− F (yn−1)

)
× dyn−1 · · · dyk+1dy1 · · · dyk−1

= · · · = · · ·

= n!
∫ yk

−∞

∫ yk−1

−∞
· · ·
∫ y2

−∞

k∏
i=1

f(yi)

(
1− F (yk)

)n−k

(n− k)!
dy1dy2 · · · dyk−1

=
Γ(n+ 1)

Γ(n+ 1− k)
(
1− F (yk)

)n−k
∫ yk

−∞

∫ yk−1

−∞
· · ·
∫ y2

−∞

k∏
i=1

f(yi)

× dy1dy2 · · · dyk−1

=
Γ(n+ 1)

Γ(n+ 1− k)
(
1− F (yk)

)n−k
∫ yk

−∞

∫ yk−1

−∞
· · ·
∫ y3

−∞

k∏
i=2

f(yi)F (y2)

× dy2dy3 · · · dyk−1

= · · · = Γ(n+ 1)
Γ(n+ 1− k)

(
1− F (yk)

)n−k ·
(
F (yk)

)k−1

(k − 1)!
· f(yk)

=
Γ(n+ 1)

Γ(k)Γ(n+ 1− k)
(
F (yk)

)k−1(1− F (yk)
)n−k · f(yk) ,
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in accordance with Theorem 1.2.
We leave it to the reader to derive general two-dimensional densities. Let

us consider, however, one example with n = 3.

Example 3.1. Let X1, X2, and X3 be a sample from a U(0, 1)-distribution.
Compute the densities of (X(1),X(2)), (X(1),X(3)), and (X(2),X(3)).

Solution. By Theorem 3.1 we have

fX(1),X(2),X(3)(y1, y2, y3) =

{
6, for 0 < y1 < y2 < y3 < 1,
0, otherwise.

Consequently,

fX(1),X(2)(y1, y2) =
∫ 1

y2

6 dy3 = 6(1− y2), 0 < y1 < y2 < 1, (3.9)

fX(1),X(3)(y1, y3) =
∫ y3

y1

6 dy2 = 6(y3 − y1), 0 < y1 < y3 < 1, (3.10)

fX(2),X(3)(y2, y3) =
∫ y2

0

6 dy1 = 6y2, 0 < y2 < y3 < 1, (3.11)

and we are done. 2

Remark 3.1. From (3.9) we may further conclude that

fX(1)(y1) =
∫ 1

y1

6(1− y2) dy2 = 3(1− y1)2, 0 < y1 < 1,

and that

fX(2)(y2) =
∫ y2

0

6(1− y2) dy1 = 6y2(1− y2), 0 < y2 < 1.

From (3.10) we similarly have

fX(1)(y1) =
∫ 1

y1

6(y3 − y1) dy3 = 3(1− y1)2, 0 < y1 < 1,

and
fX(3)(y3) =

∫ y3

0

6(y3 − y1) dy1 = 3y2
3 , 0 < y3 < 1.

Integration in (3.11) yields

fX(2)(y2) =
∫ 1

y2

6y2 dy3 = 6y2(1− y2), 0 < y2 < 1,

and
fX(3)(y3) =

∫ y3

0

6y2 dy2 = 3y2
3 , 0 < y3 < 1.
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The densities of the extremes are, of course, the familiar ones, and the den-
sity of X(2) is easily identified as that of the β(2, 2)-distribution (in accordance
with Theorem 1.1 (and Remark 1.2)). 2

Exercise 3.2. Let X1, X2, X3, and X4 be a sample from a U(0, 1)-distri-
bution. Compute the marginal distributions of the order statistic. How many
such marginal distributions are there? 2

4 Problems

1. Suppose that X, Y , and Z have a joint density function given by

f(x, y, z) =

{
e−(x+y+z), for x, y, z > 0,
0, otherwise.

Compute P (X < Y < Z) and P (X = Y < Z).
2. Two points are chosen uniformly and independently on the perimeter of

a circle of radius 1. This divides the perimeter into two pieces. Determine
the expected value of the length of the shorter piece.

3. Let X1 and X2 be independent, U(0, 1)-distributed random variables, and
let Y denote the point that is closest to an endpoint. Determine the dis-
tribution of Y .

4. The statistician Piggy has to wait an amount of time T0 at the post office
on an occasion when she is in a great hurry. In order to investigate whether
or not chance makes her wait particularly long when she is in a hurry,
she checks how many visits she makes to the post office until she has to
wait longer than the first time. Formally, let T1, T2, . . . be the successive
waiting times and N be the number of times until some Tk > T0, that is,

{N = k} = {Tj ≤ T0, 1 ≤ j < k, Tk > T0}.

What is the distribution of N under the assumption that {Tn, n ≥ 0} are
i.i.d. continuous random variables? What can be said about EN ?

5. Let X1, X2, . . . , Xn be independent, continuous random variables with
common distribution function F (x), and consider the order statistic
(X(1), X(2), . . . , X(n)). Compute E

(
F (X(n))− F (X(1))

)
.

6. Let X1, X2, X3, and X4 be independent, U(0, 1)-distributed random vari-
ables. Compute
(a) P (X(3) +X(4) ≤ 1),
(b)P (X3 +X4 ≤ 1).

7. Let X1, X2, X3 be independent U(0, 1)-distributed random variables,
and let X(1), X(2), X(3) be the corresponding order variables. Compute
P (X(1) + X(3) ≤ 1).
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8. Suppose that X1, X2, X3, X4 are independent U(0, 1)-distributed random
variables and let (X(1), X(2), X(3), X(4)) be the corresponding order statis-
tic. Compute
(a) P (X(2) +X(3) ≤ 1),
(b)P (X(2) ≤ 3X(1)).

9. Suppose that X1, X2, X3, X4 are independent U(0, 1)-distributed random
variables and let (X(1), X(2), X(3), X(4)) be the corresponding order statis-
tic. Find the distribution of
(a)X(3) −X(1),
(b)X(4) −X(2).

10. Suppose thatX1, X2, X3 are independent U(0, 1)-distributed random vari-
ables and let (X(1), X(2), X(3)) be the corresponding order statistic. Com-
pute P (X(1) +X(2) > X(3)).
Remark. A concrete example runs as follows: Take 3 sticks of length 1,
break each of them uniformly at random, and pick one of the pieces from
each stick. Find the probability that the 3 chosen pieces can be constructed
into a triangle.

11. Suppose thatX1, X2, X3 are independent U(0, 1)-distributed random vari-
ables and let (X(1), X(2), X(3)) be the corresponding order statistic. It is
of course a trivial observation that we always have X(3) ≥ X(1). However,
(a) Compute P (X(3) > 2X(1)).
(b) Determine a so that P (X(3) > aX(1)) = 1/2.

12. Let X1, X2, X3 be independent U(0, 1)-distributed random variables, and
let X(1), X(2), X(3) be the ordered sample. Let 0 ≤ a < b ≤ 1. Compute

E(X(2) | X(1) = a,X(3) = b).

13. Let X1, X2, . . . , X8 be independent Exp(1)-distributed random variables
with order statistic (X(1), X(2), . . . , X(8)). Find

E(X(7) | X(5) = 10).

14. Let X1, X2, X3 be independent U(0, 1)-distributed random variables, and
let X(1), X(2), X(3) be the order statistic. Prove the intuitively reasonable
result that X(1) and X(3) are conditionally independent given X(2) and
determine this (conditional) distribution.
Remark. The problem thus is to determine the distribution of (X(1), X(3)) |
X(2) = x.

15. The random variables X1, X2, and X3 are independent and Exp(1)-
distributed. Compute the correlation coefficient ρX(1),X(3) .

16. Let X1 and X2 be independent, Exp(a)-distributed random variables.
a) Show that X(1) and X(2)−X(1) are independent, and determine their

distributions.
b) Compute E(X(2) | X(1) = y) and E(X(1) | X(2) = x).

17. LetX1, X2, andX3 be independent, U(0, 1)-distributed random variables.
Compute P (X(3) > 1/2 | X(1) = x).
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18. Suppose that X ∈ U(0, 1). Let X(1), X(2), . . . , X(n) be the order variables
corresponding to a sample of n independent observations of X, and set

Vi =
X(i)

X(i+1)
, i = 1, 2, · · · , n− 1, and Vn = X(n).

Show that
(a) V1, V2, . . . , Vn are independent,
(b) V i

i ∈ U(0, 1) for i = 1, 2, . . . , n.
19. The random variables X1, X2, . . . , Xn, Y1, Y2, . . . , Yn are independent

and U(0, a)-distributed. Determine the distribution of

Zn = n · log
(

max{X(n), Y(n)}
min{X(n), Y(n)}

)
.

20. Let X1, X2, . . . , Xn be independent, Exp(a)-distributed random vari-
ables, and set

Y1 = X(1) and Yk = X(k) −X(k−1), for 2 ≤ k ≤ n.

(a) Show that Y1, Y2, . . . , Yn are independent, and determine their dis-
tributions.

(b) Determine EX(n) and VarX(n).
21. The purpose of this problem is to provide a probabilistic proof of the

relation ∫ ∞

0

nx(1− e−x)n−1
e−xdx = 1 +

1
2

+
1
3

+ · · ·+ 1
n
.

Let X1, X2, . . . , Xn be independent, Exp(1)-distributed random vari-
ables. Consider the usual order variables X(1), X(2), . . . , X(n), and set

Y1 = X(1) and Yk = X(k) −X(k−1), k = 2, 3, . . . , n.

(a) Show that Y1, Y2, . . . , Yn are independent, and determine their dis-
tributions.

(b) Use (a) and the fact that X(n) = Y1+Y2+· · ·+Yn to prove the desired
formula.

Remark 1. The independence of Y1, Y2, . . . , Yn is not needed for the proof
of the formula.
Remark 2. For a proof using properties of the Poisson process, see Sub-
section 8.5.4.

22. Let X1, X2, . . . , Xn be independent, Exp(1)-distributed random vari-
ables, and set

Zn = nX(1) + (n− 1)X(2) + · · ·+ 2X(n−1) +X(n) .

Compute E Zn and VarZn.
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23. The random variables X1, X2, . . . , Xn are independent and Exp(1)-
distributed. Set

Vn = X(n) and Wn = X1 +
1
2
X2 +

1
3
X3 + · · ·+ 1

n
Xn.

Show that Vn
d= Wn.

24. Let X1, X2, . . . , Xn be independent, Exp(a)-distributed random vari-
ables. Determine the distribution of

∑n
k=1X(k).

25. Let X1, X2, . . . , Xn be i.i.d. random variables and let X(1), X(2), . . . , X(n)

be the order variables. Determine

E(X1 | X(1), X(2), . . . , X(n)).

26. The number of individuals N in a tribe is Fs(p)-distributed. The lifetimes
of the individuals in the tribe are independent, Exp(1/a)-distributed ran-
dom variables, which, further, are independent of N . Determine the dis-
tribution of the shortest lifetime.

27. LetX1, X2, . . . be independent, U(0, 1)-distributed random variables, and
let N ∈ Po(λ) be independent of X1, X2, . . .. Set

V = max{X1, X2, . . . , XN}

(V = 0 when N = 0). Determine the distribution of V , and compute E V .
28. Let X1, X2, . . . be Exp(θ)-distributed random variables, let N ∈ Po(λ),

and suppose that all random variables are independent. Set

Y = max{X1, X2, . . . , XN} with Y = 0 for N = 0.

Show that Y d= max{0, V }, where V has a Gumbel type distribution.
Remark. The distribution function of the standard Gumbel distribution
equals

Λ(x) = e−e−x

, −∞ < x <∞.

29. Suppose that the random variables X1, X2, . . . are independent with com-
mon distribution function F (x). Suppose, further, that N is a positive,
integer-valued random variable with generating function g(t). Finally, sup-
pose that N and X1, X2, . . . are independent. Set

Y = max{X1, X2, . . . , XN}.

Show that
FY (y) = g

(
F (y)

)
.
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The Multivariate Normal Distribution

1 Preliminaries from Linear Algebra

In Chapter 1 we studied how to handle (linear transformations of) random vec-
tors, that is, vectors whose components are random variables. Since the normal
distribution is (one of) the most important distribution(s) and since there are
special properties, methods, and devices pertaining to this distribution, we
devote this chapter to the study of the multivariate normal distribution, or,
equivalently, to the study of normal random vectors. We show, for example,
that the sample mean and the sample variance in a (one-dimensional) sample
are independent, a property that, in fact, characterizes this distribution and is
essential, for example, in the so called t-test, which is used to test hypotheses
about the mean in the (univariate) normal distribution when the variance is
unknown. In fact, along the way we will encounter three different ways to
show this independence. Another interesting fact that will be established is
that if the components of a normal random vector are uncorrelated, then they
are in fact independent. One section is devoted to quadratic forms of normal
random vectors, which are of great importance in many branches of statistics.
The main result, Cohran’s theorem, states that, under certain conditions, one
can split the sum of the squares of the observations into a number of quadratic
forms, each of them pertaining to some cause of variation in an experiment
in such a way that these quadratic forms are independent, and (essentially)
χ2-distributed random variables. This can be used to test whether or not a
certain cause of variation influences the outcome of the experiment. For more
on the statistical aspects, we refer to the literature cited in Appendix A.

We begin, however, by recalling some basic facts from linear algebra.
Vectors are always column vectors (recall Remark 1.1.2). For convenience,
however, we sometimes write x = (x1, x2, . . . , xn)′. A square matrix A =
{aij , i, j = 1, 2, . . . , n} is symmetric if aij = aji and all elements are real.
All eigenvalues of a real, symmetric matrix are real. In this chapter all matrices
are real.
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A square matrix C is orthogonal if C′C = I, where I is the identity matrix.
Note that since, trivially, C−1C = CC−1 = I, it follows that

C−1 = C′. (1.1)

Moreover, detC = ±1.

Remark 1.1. Orthogonality means that the rows (and columns) of an orthog-
onal matrix, considered as vectors, are orthonormal, that is, they have length
1 and are orthogonal; the scalar products between them are zero. 2

Let x be an n-vector, let C be an orthogonal n × n matrix, and set y =
Cx; y is also an n-vector. A consequence of the orthogonality is that x and
y have the same length. Indeed,

y′y = (Cx)′Cx = x′C′Cx = x′x. (1.2)

Now, let A be a symmetric matrix. A fundamental result is that there exists
an orthogonal matrix C such that

C′AC = D, (1.3)

where D is a diagonal matrix, the elements of the diagonal being the eigen-
values, λ1, λ2, . . . , λn, of A. It also follows that

detA = detD =
n∏

k=1

λk. (1.4)

A quadratic form Q = Q(x) based on the symmetric matrix A is defined by

Q(x) = x′Ax
(
=

n∑
i=1

n∑
j=1

aijxixj

)
, x ∈ Rn. (1.5)

Q is positive-definite if Q(x) > 0 for all x 6= 0 and nonnegative-definite
(positive-semidefinite) if Q(x) ≥ 0 for all x.

One can show that Q is positive- (nonnegative-)definite iff all eigenvalues
are positive (nonnegative). Another useful criterion is to check all subdeter-
minants of A, that is, detAk, where Ak = {aij , i, j = 1, 2, . . . , k} and k =
1, 2, . . . , n. Then Q is positive- (nonnegative-)definite iff detAk > 0 (≥ 0)
for all k = 1, 2, . . . , n.

A matrix is positive- (nonnegative-)definite iff the corresponding quadratic
form is positive- (nonnegative-)definite.

Now, let A be a square matrix whose inverse exists. The algebraic com-
plement Aij of the element aij is defined as the matrix that remains after
deleting the ith row and the jth column of A. For the element a−1

ij of the
inverse A−1 of A, we have
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a−1
ij = (−1)i+j detAji

detA
. (1.6)

In particular, if A is symmetric, it follows that Aij = A′
ji, from which we

conclude that detAij = detAji and hence that a−1
ij = a−1

ji and that A−1 is
symmetric.

Finally, we need to define the square root of a nonnegative-definite sym-
metric matrix. For a diagonal matrix D it is easy to see that the diagonal
matrix whose diagonal elements are the square roots of those of D has the
property that the square equals D. For the general case we know, from (1.3),
that there exists an orthogonal matrix C such that C′AC = D, that is, such
that

A = CDC′, (1.7)

where D is the diagonal matrix whose diagonal elements are the eigenvalues
of A; dii = λi, i = 1, 2, . . . , n.

Let us denote the square root of D, as described above, by D̃. We thus
have d̃ii =

√
λi, i = 1, 2, . . . , n and D̃2 = D. Set B = CD̃C′. Then

B2 = BB = CD̃C′CD̃C′ = CD̃D̃C′ = CDC′ = A , (1.8)

that is, B is a square root of A. A common notation is A1/2.
Now, this holds true for any of the 2n choices of square roots. However, in

order to ensure that the square root is nonnegative-definite we tacitly assume
in the following that the nonnegative square root of the eigenvalues has been
chosen, viz., that throughout d̃ii = +

√
λi.

If, in addition, A has an inverse, one can show that

(A−1)1/2 = (A1/2)−1, (1.9)

which is denoted by A−1/2.

Exercise 1.1. Verify formula (1.9).

Exercise 1.2. Show that detA−1/2 = (detA)−1/2. 2

Remark 1.2. The reader who is less used to working with vectors and matrices
might like to spell out certain formulas explicitly as sums or double sums, and
so forth. 2

2 The Covariance Matrix

Let X be a random n-vector whose components have finite variance.

Definition 2.1. The mean vector of X is µ = EX, the components of which
are µi = EXi, i = 1, 2, . . . , n.

The covariance matrix of X is Λ = E(X − µ)(X − µ)′, whose elements
are λij = E(Xi − µi)(Xj − µj), i, j = 1, 2, . . . , n. 2
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Thus, λii = VarXi, i = 1, 2, . . . , n, and λij = Cov(Xi, Xj) = λji, i, j =
1, 2, . . . , n (and i 6= j, or else Cov(Xi, Xi) = VarXi). In particular, every
covariance matrix is symmetric.

Theorem 2.1. Every covariance matrix is nonnegative-definite.

Proof. The proof is immediate from the fact that, for any y ∈ Rn,

Q(y) = y′Λy = y′E(X− µ)(X− µ)′y = Var (y′(X− µ)) ≥ 0. 2

Remark 2.1. If detΛ > 0, the probability distribution of X is truly n-
dimensional in the sense that it cannot be concentrated on a subspace of
lower dimension. If detΛ = 0 it can be concentrated on such a subspace; we
call it the singular case (as opposed to the nonsingular case). 2

Next we consider linear transformations.

Theorem 2.2. Let X be a random n-vector with mean vector µ and covari-
ance matrix Λ. Further, let B be an m × n matrix, let b be a constant m-
vector, and set Y = BX + b. Then

EY = Bµ + b and Cov Y = BΛB′.

Proof. We have
EY = BEX + b = Bµ + b

and

Cov Y = E(Y − EY)(Y − EY)′ = EB(X− µ)(X− µ)′B′

= BE
{
(X− µ)(X− µ)′

}
B′ = BΛB′ . 2

Remark 2.2. Note that for n = 1 the theorem reduces to the well-known facts
E Y = aE X + b and VarY = a2VarX (where Y = aX + b).

Remark 2.3. We will permit ourselves, at times, to be somewhat careless about
specifying dimensions of matrices and vectors. It will always be tacitly under-
stood that the dimensions are compatible with the arithmetic of the situation
at hand. 2

3 A First Definition

We will provide three definitions of the multivariate normal distribution. In
this section we present the first one, which states that a random vector is
normal iff every linear combination of its components is normal. In Section 4
we provide a definition based on the characteristic function, and in Section
5 we give a definition based on the density function. We also prove that the
first two definitions are always equivalent (i.e., when the covariance matrix is
nonnegative-definite) and that the three of them are equivalent in the non-
singular case (i.e., when the covariance matrix is positive-definite). A fourth
definition is given in Problem 10.1.
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Definition I. The random n-vector X is normal iff, for every n-vector a, the
(one-dimensional) random variable a′X is normal. The notation X ∈ N(µ,Λ)
is used to denote that X has a (multivariate) normal distribution with mean
vector µ and covariance matrix Λ. 2

Remark 3.1. The actual distribution of a′X depends, of course, on a. The de-
generate normal distribution (meaning variance equal to zero) is also included
as a possible distribution of a′X.

Remark 3.2. Note that no assumption whatsoever is made about indepen-
dence between the components of X. 2

Surprisingly enough, this somewhat abstract definition is extremely appli-
cable and useful. Moreover, several proofs, which otherwise become compli-
cated, become very “simple” (and beautiful). For example, the following three
properties are immediate consequences of this definition:

(a) Every component of X is normal.
(b) X1 +X2 + · · ·+Xn is normal.
(c) Every marginal distribution is normal.

Indeed, to see that Xk is normal for k = 1, 2, . . . , n, we choose a such
that ak = 1 and aj = 0 otherwise.

To see that the sum of all components is normal, we simply choose ak = 1
for all k.

As for (c) we argue as follows: To show that (Xi1 , Xi2 , . . . , Xik
)′ is normal

for some k = (1, ) 2, . . . , n − 1, amounts to checking that all linear combi-
nations of these components are normal. However, since we know that X is
normal, we know that a′X is normal for every a, in particular for all a, such
that aj = 0 for j 6= i1, i2, . . . , ik, which establishes the desired conclusion.

We also observe that, from a first course in probability theory, we know
that any linear combination of independent normal random variables is normal
(via the convolution formula and/or the moment generating function—recall
Theorem 3.3.2), that is, the condition in Definition I is satisfied. It follows, in
particular, that

(d) if X has independent normal components, then X is normal.

Another important result is as follows:

Theorem 3.1. Suppose that X ∈ N(µ,Λ) and set Y = BX + b. Then Y ∈
N(Bµ + b,BΛB′).

Proof. The first part of the proof merely amounts to establishing the fact
that a linear combination of the components of Y is a (some other) linear
combination of the components of X. Namely, we wish to show that a′Y is
normal for every a. However,

a′Y = a′BX + a′b = (B′a)′X + a′b = c′X + d, (3.1)
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where c = B′a and d = a′b. Since c′X is normal according to Definition I
(and d is a constant), it follows that a′Y is normal. The correctness of the
parameters follows from Theorem 2.2. 2

Exercise 3.1. Let X1, X2, X3, and X4 be independent, N(0, 1)-distributed
random variables. Set Y1 = X1 + 2X2 + 3X3 + 4X4 and Y2 = 4X1 + 3X2 +
2X3 +X4. Determine the distribution of Y.

Exercise 3.2. Let X ∈ N +
((1

2

)
,

(
1 −2
−2 7

))
. Set

Y1 = X1 +X2 and Y2 = 2X1 − 3X2.

Determine the distribution of Y. 2

A word of caution is appropriate at this point. We noted above that all
marginal distributions of a normal random vector X are normal. The joint
normality of all components of X was essential here. In the following exam-
ple we define two random variables that are normal but not jointly normal.
This shows that a general converse does not hold; there exist normal random
variables that are not jointly normal.

Example 3.1. Let X ∈ N(0, 1) and let Z be independent of X and such that
P (Z = 1) = P (Z = −1) = 1/2. Set Y = Z ·X. Then

P (Y ≤ x) =
1
2
P (X ≤ x) +

1
2
P (−X ≤ x) =

1
2
Φ(x) +

1
2
(
1− Φ(−x)

)
= Φ(x) ,

that is, Y ∈ N(0, 1). Thus, X and Y are both (standard) normal. However,
since

P (X + Y = 0) = P (Z = −1) =
1
2
,

it follows from Definition I that X + Y cannot be normal and, hence, that
(X,Y )′ is not normal. 2

For a further example, see Problem 10.7.
Another kind of converse one might consider is the following. An obvious

consequence of Theorem 3.1 is that if X ∈ N(µ,Λ), and if the matrices A

and B are such that A = B, then AX d= BX. A natural question is whether
or not the converse holds, viz., if AX d= BX, does it then follow that A = B?

Exercise 3.3. Let X1 and X2 be independent standard normal random vari-
ables and put

Y1 = X1+X2, Y2 = 2X1+X2 and Z1 = X1

√
2, Z2 =

3√
2
X1+

1√
2
X2.

(a) Determine the corresponding matrices A and B?
(b) Check that A 6= B.
(c) Show that (nevertheless) Y and Z are have the same normal distribution

(which one?). 2
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4 The Characteristic Function: Another Definition

The characteristic function of a random vector X is (recall Definition 3.4.2)

ϕX(t) = E eit′X. (4.1)

Now, suppose that X ∈ N(µ,Λ). We observe that Z = t′X in (4.1) has
a one-dimensional normal distribution by Definition I. The parameters are
m = E Z = t′µ and σ2 = VarZ = t′Λt. Since

ϕX(t) = ϕZ(1) = exp{im− 1
2σ

2} , (4.2)

we have established the following result:

Theorem 4.1. For X ∈ N(µ,Λ), we have

ϕX(t) = exp{it′µ− 1
2t
′Λt}. 2

It turns out that we can, in fact, establish a converse to this result and
thereby obtain another, equivalent, definition of the multivariate normal dis-
tribution. We therefore temporarily “forget” the above and begin by proving
the following fact:

Lemma 4.1. For any nonnegative-definite symmetric matrix Λ, the function

ϕ∗(t) = exp{it′µ− 1
2t
′Λt}

is the characteristic function of a random vector X with EX = µ and
Cov X = Λ.

Proof. Let Y be a random vector whose components Y1, Y2, . . . , Yn are inde-
pendent, N(0, 1)-distributed random variables, and set

X = Λ1/2Y + µ. (4.3)

Since Cov Y = I, it follows from Theorem 2.2 that

EX = µ and Cov X = Λ. (4.4)

Furthermore, an easy computation shows that

ϕY(t) = E exp{it′Y} = exp{− 1
2t
′t}. (4.5)

It finally follows that

ϕX(t) = E exp{it′X} = E exp{it′(Λ1/2Y + µ)}
= exp{it′µ} · E exp{it′Λ1/2Y}
= exp{it′µ} · E exp{i(Λ1/2t)′Y}
= exp{it′µ} · ϕY(Λ1/2t)

= exp{it′µ} · exp
{
− 1

2 (Λ1/2t)′(Λ1/2t)
}

= exp
{
it′µ− 1

2t
′Λt
}
,

as desired. 2
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Note that at this point we do not (yet) know that X is normal.
The next step is to show that if X has a characteristic function given as

in the lemma, then X is normal in the sense of Definition I. Thus, let X be
given as described and let a be an arbitrary n-vector. Then

ϕa′X(u) = E exp{iua′X} = ϕX(ua)

= exp
{
i(ua)′µ− 1

2 (ua)′Λ(ua)
}

= exp{ium− 1
2u

2σ2} ,

where m = a′µ and σ2 = a′Λa ≥ 0, which proves that a′X ∈ N(m,σ2) and
hence that X is normal in the sense of Definition I.

Alternatively, we may argue as in the proof of Theorem 3.1:

a′X = a′
(
Λ1/2Y + µ

)
= a′Λ1/2Y + a′µ =

(
Λ1/2a

)′
Y + a′µ ,

which shows that a linear combination of the components of X is equal to
(another) linear combination of the components of Y, which, in turn, we
know is normal, since Y has independent components.

We have thus shown that the function defined in Lemma 4.1 is, indeed,
a characteristic function and that the linear combinations of the components
of the corresponding random vector are normal. This motivates the following
alternative definition of the multivariate normal distribution.

Definition II. A random vector X is normal iff its characteristic function is
of the form

ϕX(t) = exp{it′µ− 1
2t
′Λt} ,

for some vector µ and nonnegative-definite matrix Λ. 2

We have also established the following fact:

Theorem 4.2. Definitions I and II are equivalent. 2

Remark 4.1. The definition and expression for the moment generating func-
tion are the obvious ones:

ψX(t) = E et
′X = exp

{
t′µ + 1

2t
′Λt}. 2

Exercise 4.1. Suppose that X = (X1, X2)′ has characteristic function

ϕX(t) = exp{it1 + 2it2 − 1
2 t

2
1 + 2t1t2 − 6t22}.

Determine the distribution of X.

Exercise 4.2. Suppose that X = (X1, X2)′ has characteristic function

ϕ(t, u) = exp{it− 2t2 − u2 − tu}.

Find the distribution of X1 +X2.

Exercise 4.3. Suppose that X and Y have a (joint) moment generating func-
tion given by

ψ(t, u) = exp{t2 + 2tu+ 4u2}.
Compute P (2X < Y + 2). 2
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5 The Density: A Third Definition

Let X ∈ N(µ,Λ). If detΛ = 0, the distribution is singular, as mentioned
before, and no density exists. If, however, detΛ > 0, then there exists a
density function that, moreover, is uniquely determined by the parameters µ
and Λ.

In order to determine the density, it is therefore sufficient to find it for a
normal distribution constructed in some convenient way. To this end, let Y
and X be defined as in the proof of Lemma 4.1, that is, Y has independent,
standard normal components and X = Λ1/2Y + µ. Then X ∈ N(µ,Λ) by
Theorem 3.1, as desired.

Now, since the density of Y is known, it is easy to compute the density of
X with the aid of the transformation theorem. Namely,

fY(y) =
n∏

k=1

fYk
(yk) =

n∏
k=1

1√
2π
e−y2

k/2

=
( 1

2π

)n/2

e−
1
2

Pn
k=1 y2

k =
( 1

2π

)n/2

e−
1
2y′y, y ∈ Rn.

Further, since detΛ > 0, we know that the inverse Λ−1 exists, that

Y = Λ−1/2(X− µ), (5.1)

and hence that the Jacobian is detΛ−1/2 = (detΛ)−1/2 (Exercise 1.2). The
following result emerges.

Theorem 5.1. For X ∈ N(µ,Λ) with detΛ > 0, we have

fX(x) =
( 1

2π

)n/2 1√
detΛ

exp
{
− 1

2 (x− µ)′Λ−1(x− µ)
}
. 2

Exercise 5.1. We have tacitly used the fact that if X is a random vector and
Y = BX then ∣∣∣d(y)

d(x)

∣∣∣ = detB.

Prove that this is correct. 2

We are now ready for our third definition.

Definition III. A random vector X with EX = µ and CovX = Λ, such that
detΛ > 0, is N(µ,Λ)-distributed iff the density equals

fX(x) =
( 1

2π

)n/2 1√
detΛ

exp
{
− 1

2 (x− µ)′Λ−1(x− µ)
}
, x ∈ Rn. 2

Theorem 5.2. Definitions I, II, and III are equivalent (in the nonsingular
case).
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Proof. The equivalence of Definitions I and II was established in Section 4. The
equivalence of Definitions II and III (in the nonsingular case) is a consequence
of the uniqueness theorem for characteristic functions. 2

Now let us see how the density function can be computed explicitly.
Let Λij be the algebraic complement of λij = Cov(Xi, Xj) and set 4ij =
(−1)i+jdetΛij (= 4ji, since Λ is symmetric). Since the elements of Λ−1 are
4ij/4, i, j = 1, 2, . . . , n, where 4 = detΛ, it follows that

fX(x) =
( 1

2π

)n/2 1√
4

exp
{
−1

2

n∑
i=1

n∑
j=1

4ij

4
(xi − µi)(xj − µj)

}
. (5.2)

In particular, the following holds for the case n = 2: Set µk = EXk and
σ2

k = VarXk, k = 1, 2, and σ12 = Cov(X1, X2), and let ρ = σ12/σ1σ2 be the
correlation coefficient, where |ρ| < 1 (since detΛ > 0). Then4 = σ2

1σ
2
2(1−ρ2),

411 = σ2
2 , 422 = σ2

1 , 412 = 421 = −ρσ1σ2, and hence

Λ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
and Λ−1 =

1
1− ρ2


1
σ2

1

− ρ

σ1σ2

− ρ

σ1σ2

1
σ2

2

 .

It follows that

fX1,X2(x1, x2) =
1

2πσ1σ2

√
1− ρ2

× exp
{
− 1

2(1− ρ2)
(
(
x1 − µ1

σ1
)2 − 2ρ

(x1 − µ1)(x2 − µ2)
σ1σ2

+ (
x2 − µ2

σ2
)2
)}
.

Exercise 5.2. Let the (joint) moment generating function of X be

ψ(t, u) = exp{t2 + 3tu+ 4u2}.

Determine the density function of X.

Exercise 5.3. Suppose that X ∈ N(0,Λ), where

Λ =


7
2

1
2 −1

1
2

1
2 0

−1 0 1
2

 .

Put Y1 = X2 +X3, Y2 = X1 +X3, and Y3 = X1 +X2. Determine the density
function of Y. 2
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6 Conditional Distributions

Let X ∈ N(µ,Λ), and suppose that detΛ > 0. The density thus exists as
given in Section 5. Conditional densities are defined (Chapter 2) as the ratio
of the relevant joint and marginal densities. One can show that all marginal
distributions of a nonsingular normal distribution are nonsingular and hence
possess densities.

Let us consider the case n = 2 in some detail. Suppose that (X,Y )′ ∈
N(µ,Λ), where EX = µx, E Y = µy, VarX = σ2

x, VarY = σ2
y, and ρX,Y = ρ,

where |ρ| < 1. Then

fY |X=x(y) =
fX,Y (x, y)
fX(x)

=

1

2πσxσy

√
1−ρ2

exp{− 1
2(1−ρ2) ((

x−µx

σx
)2 − 2ρ (x−µx)(y−µy)

σxσy
+ (y−µy

σy
)2)}

1√
2πσx

exp{−1
2 (x−µx

σx
)2}

=
1

√
2πσy

√
1− ρ2

exp
{
− 1

2(1−ρ2)

(
(x−µx

σx
)2ρ2 − 2ρ (x−µx)(y−µy)

σxσy
+ (y−µy

σy
)2
)}

=
1

√
2πσy

√
1− ρ2

exp
{
− 1

2σ2
y(1− ρ2)

(
y − µy − ρ

σy

σx
(x− µx)

)2}
. (6.1)

This density is easily recognized as the density of a normal distribution with
mean µy + ρ

σy

σx
(x−µx) and variance σ2

y(1− ρ2). It follows, in particular, that

E(Y | X = x) = µy + ρ
σy

σx
(x− µx),

Var(Y | X = x) = σ2
y(1− ρ2).

(6.2)

As a special feature we observe that the regression function is linear (and
coinciding with the regression line) and that the conditional variance equals
the residual variance. For the former statement we refer back to Remark 2.5.4
and for the latter to Theorem 2.5.3. Further, recall that the residual variance
is independent of x.

Example 6.1. Suppose the density of (X,Y )′ is given by

f(x, y) =
1
2π

exp{−1
2 (x2 − 2xy + 2y2)}.

Determine the conditional distributions, particularly the conditional expecta-
tions and the conditional variances.

Solution. The function x2− 2xy+2y2 = (x− y)2 + y2 is positive-definite. We
thus identify the joint distribution as normal. An inspection of the density
shows that
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EX = E Y = 0 and Λ−1 =
(

1 −1
−1 2

)
, (6.3)

which implies that(
X

Y

)
∈ N(0,Λ), where Λ =

(
2 1
1 1

)
. (6.4)

It follows that VarX = 2, VarY = 1, and Cov(X,Y ) = 1, and hence that
ρX,Y = 1/

√
2.

A comparison with (6.2) shows that

E(Y | X = x) =
x

2
and Var (Y | X = x) =

1
2
,

E(X | Y = y) = y and Var(X | Y = y) = 1.

The conditional distributions are the normal distributions with corresponding
parameters. 2

Remark 6.1. Instead of having to remember formula (6.2), it is often as sim-
ple to perform the computations leading to (6.1) directly in each case. In-
deed, in higher dimensions this is necessary. As an illustration, let us compute
fY |X=x(y).

Following (6.4) or by using the fact that fX(x) =
∫∞
−∞ fX,Y (x, y) dy, we

have

fY |X=x(y) =
1
2π exp{−1

2 (x2 − 2xy + 2y2)}
1√

2π
√

2
exp{−1

2 ·
x2

2 }

=
1√

2π
√

1/2
exp
{
−1

2
(x2

2
− 2xy + 2y2

)}
=

1√
2π
√

1/2
exp
{
−1

2
(y − x/2)2

1/2

}
,

which is the density of the N(x/2, 1/2)-distribution. 2

Exercise 6.1. Compute fX|Y =y(x) similarly. 2

Example 6.2. Suppose that X ∈ N(µ,Λ), where µ = 1 and

Λ =
(

3 1
1 2

)
.

Find the conditional distribution of X1 +X2 given that X1 −X2 = 0.

Solution. We introduce the random variables Y1 = X1+X2 and Y2 = X1−X2

to reduce the problem to the standard case; we are then faced with the problem
of finding the conditional distribution of Y1 given that Y2 = 0.
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Since we can write Y = BX, where

B =
(

1 1
1 −1

)
,

it follows that Y ∈ N(Bµ,BΛB′), that is, that

Y ∈ N
((2

0

)
,

(
7 1
1 3

))
,

and hence that

fY(y) =
1

2π
√

20
exp
{
−1

2

(3(y1 − 2)2

20
− (y1 − 2)y2

10
+

7y2
2

20

)}
.

Further, since Y2 ∈ N(0, 3), we have

fY2(y2) =
1√

2π
√

3
exp
{
−1

2
· y

2
2

3

}
.

Finally,

fY1|Y2=0(y1) =
fY1,Y2(y1, 0)
fY2(0)

=
1

2π
√

20
exp{− 1

2 ·
3(y1−2)2

20 }
1√

2π
√

3
exp{− 1

2 · 0}

=
1√

2π
√

20/3
exp
{
− 1

2
(y1 − 2)2

20/3

}
,

which we identify as the density of the N(2, 20/3)-distribution. 2

Remark 6.2. It follows from the general formula (6.1) that the final exponent
must be a square. This provides an extra check of one’s computations. Also,
the variance appears twice (in the last example it is 20/3) and must be the
same in both places. 2

Let us conclude by briefly considering the general case n ≥ 2. Thus,
X ∈ N(µ,Λ) with detΛ > 0. Let X̃1 = (Xi1,Xi2 , ..., Xik

)′ and X̃2 =
(Xj1,Xj2 , ..., Xjm

)′ be subvectors of X, that is, vectors whose components
consist of k and m of the components of X, respectively, where 1 ≤ k < n
and 1 ≤ m < n. The components of X̃1 and X̃2 are assumed to be different.
By definition we then have

feX2|eX1=ex1
(x̃2) =

feX1, eX2
(x̃1, x̃2)

feX1
(x̃1)

. (6.5)

Given the formula for normal densities (Theorem 5.1) and the fact that the
coordinates of x̃1 are constants, the ratio in (6.5) must be the density of
some normal distribution. The conclusion is that conditional distributions of
multivariate normal distributions are normal.
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Exercise 6.2. Let X ∈ N(0,Λ), where

Λ =

 1 2 −1
2 6 0
−1 0 4

 .

Set Y1 = X1 +X3, Y2 = 2X1 −X2, and Y3 = 2X3 −X2. Find the conditional
distribution of Y3 given that Y1 = 0 and Y2 = 1.

7 Independence

A very special property of the multivariate normal distribution is the
following:

Theorem 7.1. Let X be a normal random vector. The components of X are
independent iff they are uncorrelated.

Proof. We only need to show that uncorrelated components are independent,
the converse always being true.

Thus, by assumption, Cov(Xi, Xj) = 0, i 6= j. This implies that the
covariance matrix is diagonal, the diagonal elements being σ2

1 , σ
2
2 , . . . , σ

2
n.

If some σ2
k = 0, then that component is degenerate and hence independent

of the others. We therefore may assume that all variances are positive in
the following. It then follows that the inverse Λ−1 of the covariance matrix
exists; it is a diagonal matrix with diagonal elements 1/σ2

1 , 1/σ2
2 , . . . , 1/σ2

n.
The corresponding density function therefore equals

fX(x) =
( 1

2π

)n/2 1∏n
k=1 σk

· exp
{
−1

2

n∑
k=1

(xk − µk)2

σ2
k

}
=

n∏
k=1

1√
2πσk

· exp
{
− (xk − µk)2

2σ2
k

}
,

which proves the desired independence. 2

Example 7.1. LetX1 andX2 be independent,N(0, 1)-distributed random vari-
ables. Show that X1 +X2 and X1 −X2 are independent.

Solution. It is easily checked that Cov(X1 +X2, X1−X2) = 0, which implies
that X1 + X2 and X1 −X2 are uncorrelated. By Theorem 7.1 they are also
independent. 2

Remark 7.1. We have already encountered Example 7.1 in Chapter 1; see Ex-
ample 1.2.4. There independence was proved with the aid of transformation
(Theorem 1.2.1) and factorization. The solution here illustrates the power of
Theorem 7.1. 2
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Exercise 7.1. Let X and Y be jointly normal with correlation coefficient ρ
and suppose that VarX = VarY . Show that X and Y − ρX are independent.

Exercise 7.2. Let X and Y be jointly normal with EX = E Y = 0, VarX =
VarY = 1, and correlation coefficient ρ. Find θ such that X cos θ + Y sin θ
and X cos θ − Y sin θ are independent.

Exercise 7.3. Generalize the results of Example 7.1 and Exercise 7.1 to the
case of nonequal variances. 2

Remark 7.2. In Example 3.1 we stressed the importance of the assumption
that the distribution was jointly normal. The example is also suited to illus-
trate the importance of that assumption with respect to Theorem 7.1. Namely,
since EX = E Y = 0 and EXY = EX2Z = EX2 · E Z = 0, it follows that
X and Y are uncorrelated. However, since |X| = |Y |, it is clear that X and Y
are not independent. 2

We conclude by stating the following generalization of Theorem 7.1, the
proof of which we leave as an exercise:

Theorem 7.2. Suppose that X ∈ N(µ,Λ), where Λ can be partitioned as
follows:

Λ =


Λ1 0 0 0
0 Λ2 0 0

0 0
. . . 0

0 0 0 Λk


(possibly after reordering the components), where Λ1, Λ2, . . . , Λk are ma-
trices along the diagonal of Λ. Then X can be partitioned into vectors
X(1), X(2), . . . , X(k) with Cov(X(i)) = Λi, i = 1, 2, . . . , k, in such a way
that these random vectors are independent. 2

Example 7.2. Suppose that X ∈ N(0,Λ), where

Λ =

1 0 0
0 2 4
0 4 9

 .

Then X1 and (X2, X3)′ are independent. 2

8 Linear Transformations

A major consequence of Theorem 7.1 is that it is possible to make linear
transformations of normal vectors in such a way that the new vector has
independent components. In particular, any orthogonal transformation of a
normal vector whose components are independent and have common variance
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produces a new normal random vector with independent components. As a
major application, we show in Example 8.3 how these relatively simple facts
can be used to prove the rather delicate result that states that the sample mean
and the sample variance in a normal sample are independent. For further
details concerning applications in statistics we refer to Appendix A, where
some references are given.

We first recall from Section 3 that a linear transformation of a nor-
mal random vector is normal. Now suppose that X ∈ N(µ,Λ). Since Λ is
nonnegative-definite, there exists (formula (1.3)) an orthogonal matrix C,
such that C′ΛC = D, where D is a diagonal matrix whose diagonal elements
are the eigenvalues λ1, λ2, . . . , λn of Λ.

Set Y = C′X. It follows from Theorem 3.1 that Y ∈ N(C′µ,D). The com-
ponents of Y are thus uncorrelated and, in view of Theorem 7.1, independent,
which establishes the following result:

Theorem 8.1. Let X ∈ N(µ,Λ), and set Y = C′X, where the orthogonal
matrix C is such that C′ΛC = D. Then Y ∈ N(C′µ,D). Moreover, the
components of Y are independent and VarYk = λk, k = 1, 2, . . . , n, where
λ1, λ2, . . . , λn are the eigenvalues of Λ. 2

Remark 8.1. In particular, it may occur that some eigenvalues are equal to
zero, in which case the corresponding component is degenerate.

Remark 8.2. As a special corollary it follows that the statement “X ∈ N(0, I)”
is equivalent to the statement “X1, X2, . . . , Xn are independent, standard
normal random variables.”

Remark 8.3. The primary use of Theorem 8.1 is in proofs and for theoretical
arguments. In practice it may be cumbersome to apply the theorem when n
is large, since the computation of the eigenvalues of Λ amounts to solving an
algebraic equation of degree n. 2

Another situation of considerable importance in statistics is orthogonal
transformations of independent, normal random variables with the same vari-
ance, the point being that the transformed random variables also are inde-
pendent. That this is indeed the case may easily be proved with the aid of
Theorem 8.1. Namely, let X ∈ N(µ, σ2I), where σ2 > 0, and set Y = CX,
where C is an orthogonal matrix. Then Cov Y = Cσ2IC′ = σ2I, which, in
view of Theorem 7.1, yields the following result:

Theorem 8.2. Let X ∈ N(µ, σ2I), where σ2 > 0, let C be an arbitrary or-
thogonal matrix, and set Y = CX. Then Y ∈ N(Cµ, σ2I); in particular,
Y1, Y2, . . . , Yn are independent normal random variables with the same vari-
ance, σ2. 2

As a first application we reexamine Example 7.1.
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Example 8.1. Thus, X and Y are independent, N(0, 1)-distributed random
variables, and we wish to show that X + Y and X − Y are independent.

It is clearly equivalent to prove that U = (X+Y )/
√

2 and V = (X−Y )/
√

2
are independent. Now, (X,Y )′ ∈ N(0, I) and(

U
V

)
= B

(
X
Y

)
, where B =

(
1√
2

1√
2

1√
2
− 1√

2

)
,

that is, B is orthogonal. The conclusion follows immediately from Theorem
8.2.

Example 8.2. Let X1, X2, . . . , Xn be independent, N(0, 1)-distributed ran-
dom variables, and let a1, a2, . . . , an be reals, such that

∑n
k=1 a

2
k 6= 0. Find

the conditional distribution of
∑n

k=1X
2
k given that

∑n
k=1 akXk = 0.

Solution. We first observe that
∑n

k=1X
2
k ∈ χ2(n) (recall Exercise 3.3.6 for

the case n = 2). In order to determine the desired conditional distribution,
we define an orthogonal matrix C, whose first row consists of the elements
a1/a, a2/a, . . . , an/a, where a =

√∑n
k=1 a

2
k; note that

∑n
k=1(ak/a)2 = 1.

From linear algebra we know that the matrix C can be completed in such
a way that it becomes an orthogonal matrix. Next we set Y = CX, note
that Y ∈ N(0, I) by Theorem 8.2, and observe that, in particular, aY1 =∑n

k=1 akXk. Moreover, since C is orthogonal, we have
∑n

k=1 Y
2
k =

∑n
k=1X

2
k

(formula (1.2)). It follows that the desired conditional distribution is the same
as the conditional distribution of

∑n
k=1 Y

2
k given that Y1 = 0, that is, as the

distribution of
∑n

k=2 Y
2
k , which is χ2(n− 1). 2

Exercise 8.1. Study the case n = 2 and a1 = a2 = 1 in detail. Try also to
reach the conclusion via the random variables U and V in Example 8.1. 2

Example 8.3. There exists a famous characterization of the normal distribu-
tion to the effect that it is the only distribution such that the arithmetic mean
and the sample variance are independent. This independence is, for example,
exploited in order to verify that the t-statistic, which is used for testing the
mean in a normal population when the variance is unknown, actually follows
a t-distribution.

Here we prove the “if” part; the other one is much harder. Thus, let
X1, X2, . . . , Xn be independent, N(0, 1)-distributed random variables, set
X̄n = 1

n

∑n
k=1Xk and s2n = 1

n−1

∑n
k=1(Xk − X̄n)2.

The first step is to determine the distribution of

(X̄n, X1 − X̄n, X2 − X̄n, . . . , Xn − X̄n)′.

Since the vector can be written as BX, where
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B =



1
n

1
n

1
n . . . 1

n

1− 1
n − 1

n − 1
n . . . − 1

n

− 1
n 1− 1

n −
1
n . . . − 1

n

...
...

. . .
...

− 1
n − 1

n − 1
n . . . 1− 1

n


,

we know that the vector is normal with mean 0 and covariance matrix

BB′ =

(
1
n 0

0 A

)
,

where A is some matrix the exact expression of which is of no importance here.
Namely, the point is that we may apply Theorem 7.2 in order to conclude that
X̄n and (X1 − X̄n, X2 − X̄n, . . . , Xn − X̄n) are independent, and since s2n is
simply a function of (X1− X̄n, X2− X̄n, . . . , Xn− X̄n) it follows that X̄n and
s2n are independent random variables. 2

Exercise 8.2. Suppose that X ∈ N(µ, σ2I), where σ2 > 0. Show that if B is
any matrix such that BB′ = D, a diagonal matrix, then the components of
Y = BX are independent, normal random variables; this generalizes Theorem
8.2. As an application, reconsider Example 8.1. 2

Theorem 8.3. (Daly’s theorem) Let X∈N(µ, σ2I) and set X̄n = 1
n

∑n
k=1Xk.

Suppose that g(x) is translation invariant, that is, for all x ∈ Rn, we have
g(x + a · 1) = g(x) for all a. Then X̄n and g(X) are independent.

Proof. Throughout the proof we assume, without restriction, that µ = 0 and
that σ2 = 1. The translation invariance of g implies that g is, in fact, living in
the (n− 1)-dimensional hyperplane x1 + x2 + · · ·+ xn = constant, on which
X̄n is constant. We therefore make a change of variable similar to that of
Example 8.2. Namely, define an orthogonal matrix C such that the first row
has all elements equal to 1/

√
n, and set Y = CX. Then, by construction, we

have Y1 =
√
n · X̄n and, by Theorem 8.2, that Y ∈ N(0, I). The translation

invariance implies, in view of the above, that g depends only on Y2, Y3, . . . , Yn

and hence, by Theorem 7.2, is independent of Y1. 2

Example 8.4. Since the sample variance s2n as defined in Example 8.3 is trans-
lation invariant, the conclusion of that example follows, alternatively, from
Daly’s theorem. Note, however, that Daly’s theorem can be viewed as an
extension of that very example.

Example 8.5. The range Rn = X(n) −X(1) (which was defined in Section 4.2)
is obviously translation invariant. It follows that X̄n and Rn are independent
(in normal samples). 2
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There also exist useful linear transformations that are not orthogonal. One
important example, in the two-dimensional case, is the following, a special case
of which was considered in Exercise 7.1.

Suppose that X ∈ N(µ,Λ), where

µ =

(
µ1

µ2

)
and Λ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)

with |ρ| < 1. Define Y through the relations

X1 = µ1 + σ1Y1,

X2 = µ2 + ρσ2Y1 + σ2

√
1− ρ2Y2.

(8.1)

This means that X and Y are connected via X = µ + BY, where

B =

(
σ1 0

ρσ2 σ2

√
1− ρ2

)
,

which is not orthogonal. However, a simple computation shows that Y ∈
N(0, I), that is, Y1 and Y2 are independent, standard normal random variables.

Example 8.6. If X1 and X2 are independent and N(0, 1)-distributed, then X2
1

and X2
2 are independent, χ2(1)-distributed random variables, from which it

follows that X2
1 + X2

2 ∈ χ2(2) (Exercise 3.3.6(b)). Now, assume that X is
normal with EX1 = EX2 = 0, VarX1 = VarX2 = 1, and ρX1,X2 = ρ with
|ρ| < 1. Find the distribution of X2

1 − 2ρX1X2 +X2
2 .

To solve this problem, we first observe that for ρ = 0 it reduces to Exercise
3.3.6(b) (why?). In the general case,

X2
1 − 2ρX1X2 +X2

2 = (X1 − ρX2)2 + (1− ρ2)X2
2 . (8.2)

From above (or Exercise 7.1) we know that X1−ρX2 and X2 are independent,
in fact, (

X1 − ρX2

X2

)
=

(
1 −ρ
0 1

)
·
(
X1

X2

)
∈ N

(
0,

(
1− ρ2 0

0 1

))
.

It follows that

X2
1 − 2ρX1X2 +X2

2 = (1− ρ2)
{(X1 − ρX2√

1− ρ2

)2

+X2
2

}
∈ (1− ρ2) · χ2(2) ,

and since χ2(2) = Exp(2) we conclude, from the scaling property of the
exponential distribution, that X2

1 − 2ρX1X2 +X2
2 ∈ Exp(2(1− ρ2)).

We shall return to this example in a more general setting in Section 9; see
also Problem 10.37. 2
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9 Quadratic Forms and Cochran’s Theorem

Quadratic forms of normal random vectors are of great importance in many
branches of statistics, such as least-squares methods, the analysis of variance,
regression analysis, and experimental design. The general idea is to split the
sum of the squares of the observations into a number of quadratic forms, each
corresponding to some cause of variation. In an agricultural experiment, for
example, the yield of crop varies. The reason for this may be differences in
fertilization, watering, climate, and other factors in the various areas where the
experiment is performed. For future purposes one would like to investigate, if
possible, how much (or if at all) the various treatments influence the variability
of the result. The splitting of the sum of squares mentioned above separates the
causes of variability in such a way that each quadratic form corresponds to one
cause, with a final form—the residual form—that measures the random errors
involved in the experiment. The conclusion of Cochran’s theorem (Theorem
9.2) is that, under the assumption of normality, the various quadratic forms
are independent and χ2-distributed (except for a constant factor). This can
then be used for testing hypotheses concerning the influence of the different
treatments. Once again, we remind the reader that some books on statistics
for further study are mentioned in Appendix A.

We begin by investigating a particular quadratic form, after which we
prove the important Cochran’s theorem.

Let X ∈ N(µ,Λ), where Λ is nonsingular, and consider the quadratic form
(X − µ)′Λ−1(X − µ), which appears in the exponent of the normal density.
In the special case µ = 0 and Λ = I it reduces to X′X, which is χ2(n)-
distributed (n is the dimension of X). The following result shows that this is
also true in the general case.

Theorem 9.1. Suppose that X ∈ N(µ,Λ) with detΛ > 0. Then

(X− µ)′Λ−1(X− µ) ∈ χ2(n),

where n is the dimension of X.

Proof. Set Y = Λ−1/2(X− µ). Then

EY = 0 and Cov Y = Λ−1/2ΛΛ−1/2 = I,

that is, Y ∈ N(0, I), and it follows that

(X− µ)′Λ−1(X− µ) = (Λ−1/2(X− µ))′(Λ−1/2(X− µ)) = Y′Y ∈ χ2(n),

as was shown above. 2

Remark 9.1. Let n = 2. With the usual notation the theorem amounts to the
fact that

1
1− ρ2

{ (X1 − µ1)2

σ2
1

− 2ρ
(X1 − µ1)(X2 − µ2)

σ1σ2
+

(X2 − µ2)2

σ2
2

}
∈ χ2(2). 2
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As an introduction to Cochran’s theorem, we study the following situation.
Suppose that X1, X2, . . . , Xn is a sample of X ∈ N(0, σ2). Set X̄n =
1
n

∑n
k=1Xk, and consider the following identity:

n∑
k=1

X2
k =

n∑
k=1

(Xk − X̄n)2 + n · X̄2
n. (9.1)

The first term on the right-hand side equals (n−1)s2n, where s2n is the sample
variance. It is a σ2·χ2(n−1)-distributed quadratic form. The second term is σ2·
χ2(1)-distributed. The terms are independent. The left-hand side is σ2 ·χ2(n)-
distributed. We have thus split the sum of the squares of the observations
into a sum of two independent quadratic forms that both follow some χ2-
distribution (except for the factor σ2).

The statistical significance of this is that the splitting of the sum of the
squares

∑n
k=1X

2
k is the following. Namely, the first term on the right-hand

side of (9.1) is large if the sample is very much spread out, and the second
term is large if the mean is not “close” to zero. Thus, if the sum of squares is
large we may, via the decomposition (9.1) find out the cause; is the variance
large or is it not true that the mean is zero (or both)?

In Example 8.3 we found that the terms on the right-hand side of (9.1)
were independent. This leads to the t-test, which is used for testing whether
or not the mean equals zero. More generally, representations of the sum of
squares as a sum of nonnegative-definite quadratic forms play a fundamental
role in statistics, as pointed out before. The problem is to assert that the
various terms on the right-hand side of such representations are independent
and χ2-distributed. Cochran’s theorem provides a solution to this problem.

As a preliminary we need the following lemma:

Lemma 9.1. Let x1, x2, . . . , xn be real numbers. Suppose that
∑n

i=1 x
2
i can

be split into a sum of nonnegative-definite quadratic forms, that is, suppose
that

n∑
i=1

x2
i = Q1 +Q2 + · · ·+Qk ,

where Qi = x′Aix and (RankQi =) RankAi = ri for i = 1, 2, . . . , k.
If
∑k

i=1 ri = n, then there exists an orthogonal matrix C such that, with
x = Cy, we have

Q1 = y2
1 + y2

2 + · · ·+ y2
r1
,

Q2 = y2
r1+1 + y2

r1+2 + · · ·+ y2
r1+r2

,

Q3 = y2
r1+r2+1 + y2

r1+r2+2 + · · ·+ y2
r1+r2+r3

,

...
Qk = y2

n−rk+1 + y2
n−rk+2 + · · ·+ y2

n. 2
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Remark 9.2. Note that different quadratic forms contain different y variables
and that the number of terms in each Qi equals the rank ri of Qi. 2

We confine ourselves to proving the lemma for the case k = 2. The general
case is obtained by induction.

Proof. Recall the assumption that k = 2. We thus have

Q =
n∑

i=1

x2
i = x′A1x + x′A2x

(
= Q1 +Q2

)
, (9.2)

where A1 and A2 are nonnegative-definite matrices with ranks r1 and r2,
respectively, and r1 + r2 = n. Since A1 is nonnegative-definite, there exists an
orthogonal matrix C such that

C′A1C = D,

where D is a diagonal matrix, the diagonal elements λ1, λ2, . . . , λn of which
are the eigenvalues of A1. Since RankA1 = r1, r1 λ-values are positive and
n − r1 λ-values equal zero. Suppose, without restriction, that λi > 0 for
i = 1, 2, . . . , r1 and that λr1+1 = λr1+2 = · · · = λn = 0, and set x = Cy.
Then (recall (1.2) for the first equality)

Q =
n∑

i=1

y2
i =

r1∑
i=1

λi · y2
i + y′C′A2Cy ,

or, equivalently,
r1∑

i=1

(1− λi) · y2
i +

n∑
i=r1+1

y2
i = y′C′A2Cy . (9.3)

Since the rank of the right-hand side of (9.3) equals r2 (= n − r1), it follows
that λ1 = λ2 = · · · = λr1 = 1, which shows that

Q1 =
r1∑

i=1

y2
i and Q2 =

n∑
i=r1+1

y2
i . (9.4)

This proves the lemma for the case k = 2. 2

Theorem 9.2. (Cochran’s theorem) Suppose that X1, X2, . . . , Xn are inde-
pendent, N(0, σ2)-distributed random variables, and that

n∑
i=1

X2
i = Q1 +Q2 + · · ·+Qk ,

where Q1, Q2, . . . , Qk are nonnegative-definite quadratic forms in the random
variables X1, X2, . . . , Xn, that is,

Qi = X′AiX , i = 1, 2, . . . , k.
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Set RankAi = ri, i = 1, 2, . . . , k. If

r1 + r2 + · · ·+ rk = n,

then

(a) Q1, Q2, . . . , Qk are independent;
(b) Qi ∈ σ2χ2(ri), i = 1, 2, . . . , k.

Proof. It follows from Lemma 9.1 that there exists an orthogonal matrix C
such that the transformation X = CY yields

Q1 = Y 2
1 + Y 2

2 + · · ·+ Y 2
r1
,

Q2 = Y 2
r1+1 + Y 2

r1+2 + · · ·+ Y 2
r1+r2

,

...
Qk = Y 2

n−rk+1 + Y 2
n−rk+2 + · · ·+ Y 2

n .

Since, by Theorem 8.2, Y1, Y2, . . . , Yn are independent, N(0, σ2)-distributed
random variables, and since every Y 2 occurs in exactly one Qj , the conclusion
follows. 2

Remark 9.3. It suffices to assume that RankAi ≤ ri for i = 1, 2, . . . , k, with
r1 + r2 + · · · + rk = n, in order for Theorem 9.2 to hold. This follows from
a result in linear algebra, namely that if A,B, and C are matrices such that
A + B = C, then RankC ≤ RankA + RankB. An application of this result
yields

n ≤
k∑

i=1

RankAi ≤
k∑

i=1

ri = n , (9.5)

which, in view of the assumption, forces RankAi to be equal to ri for all i. 2

Example 9.1. We have already proved (twice) in Section 8 that the sample
mean and the sample variance are independent in a normal sample. By using
the partition in formula (9.1) and Cochran’s theorem (and Remark 9.2) we
may obtain a third proof of that fact. 2

In applications the quadratic forms can frequently be written as

Q = L2
1 + L2

2 + · · ·+ L2
p , (9.6)

where L1, L2, . . . , Lp are linear forms in X1, X2, . . . , Xn. It may therefore
be useful to know some method for determining the rank of a quadratic form
of this kind.

Theorem 9.3. Suppose that the nonnegative-definite form Q = Q(x) is of the
form (9.6), where

Li = a′ix , i = 1, 2, . . . , p,

and set L = (L1, L2, ..., Lp)′. If there exist exactly m linear relations d′jL = 0,
j = 1, 2, . . . , m, then RankQ = p−m.
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Proof. Put L = Ax, where A is a p × n matrix. Then RankA = p − m.
However, since

Q = L′L = x′A′Ax ,

it follows (from linear algebra) that RankA′A = RankA. 2

Example 9.1 (continued). Thus, let X ∈ N(0, σ2I), and consider the partition
(9.1). Then Q1 =

∑n
k=1(Xk − X̄n)2 is of the kind described in Theorem 9.3,

since
∑n

k=1(Xk − X̄n) = 0. 2

10 Problems

1. In this chapter we have (so far) met three equivalent definitions of a mul-
tivariate normal distribution. Here is a fourth one: X is normal if and only
if there exists an orthogonal transformation C such that the random vec-
tor CX has independent, normal components. Show that this definition is
indeed equivalent to the usual ones (e.g., by showing that it is equivalent
to the first one).

2. Suppose that X and Y have a two-dimensional normal distribution with
means 0, variances 1, and correlation coefficient ρ, |ρ| < 1. Let (R,Θ) be
the polar coordinates. Determine the distribution of Θ.

3. The random variablesX1 andX2 are independent andN(0, 1)-distributed.
Set

Y1 =
X2

1 −X2
2√

X2
1 +X2

2

and Y2 =
2X1 ·X2√
X2

1 +X2
2

.

Show that Y1 and Y2 are independent, N(0, 1)-distributed random vari-
ables.

4. The random vector (X,Y )′ has a two-dimensional normal distribution
with VarX = VarY . Show that X + Y and X − Y are independent
random variables.

5. Suppose thatX and Y have a joint normal distribution with EX = E Y =
0, VarX = σ2

x, VarY = σ2
y, and correlation coefficient ρ. Compute EXY

and VarXY .
Remark. One may use the fact that X and a suitable linear combination
of X and Y are independent.

6. The random variables X and Y are independent and N(0, 1)-distributed.
Determine
(a) E(X | X > Y ),
(b) E(X + Y | X > Y ).

7. We know from Section 7 that if X and Y are jointly normally distributed
then they are independent iff they are uncorrelated. Now, let X ∈ N(0, 1)
and c ≥ 0. Define Y as follows:

Y =

{
X, for |X| ≤ c,
−X, for |X| > c.
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(a) Show that Y ∈ N(0, 1).
(b) Show that X and Y are not jointly normal.

Next, let g(c) = Cov (X,Y ).
(c) Show that g(0) = −1 and that g(c) → 1 as c → ∞. Show that

there exists c0 such that g(c0) = 0 (i.e., such that X and Y are
uncorrelated).

(d) Show that X and Y are not independent (when c = c0).
8. In Section 6 we found that conditional distributions of normal vectors are

normal. The converse is, however, not true. Namely, consider the bivariate
density

fX,Y (x, y) = C · exp{−(1 + x2)(1 + y2)}, −∞ < x, y <∞,

where C is a normalizing constant. This is not a bivariate normal density.
Show that in spite of this the conditional distributions are normal, that
is, compute the conditional densities fY |X=x(y) and fX|Y =y(x) and show
that they are normal densities.

9. Suppose that the random variablesX and Y are independent andN(0, σ2)-
distributed.
(a) Show that X/Y ∈ C(0, 1).
(b) Show that X + Y and X − Y are independent.
(c) Determine the distribution of (X − Y )/(X + Y ) (see also Problem

1.43(b)).
10. Suppose that the moment generating function of (X,Y )′ is

ψX,Y (t, u) = exp{2t+ 3u+ t2 + atu+ 2u2}.

Determine a so that X + 2Y and 2X − Y become independent.
11. Let X have a three-dimensional normal distribution. Show that if X1 and

X2 +X3 are independent, X2 and X1 +X3 are independent, and X3 and
X1 +X2 are independent, then X1, X2, and X3 are independent.

12. Let X1 and X2 be independent, N(0, 1)-distributed random variables. Set
Y1 = X1− 3X2 + 2 and Y2 = 2X1−X2− 1. Determine the distribution of
(a) Y, and
(b) Y1 | Y2 = y.

13. LetX1, X2, andX3 be independent,N(1, 1)-distributed random variables.
Set U = 2X1 − X2 + X3 and V = X1 + 2X2 + 3X3. Determine the
conditional distribution of V given that U = 3.

14. Let X1, X2, X3 be independent N(2, 1)-distributed random variables. De-
termine the distribution of X1 + 3X2 − 2X3 given that 2X1 −X2 = 1.

15. Let Y1, Y2, and Y3 be independent, N(0, 1)-distributed random variables,
and set

X1 = Y1 − Y3,

X2 = 2Y1 + Y2 − 2Y3,

X3 = −2Y1 + 3Y3.
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Determine the conditional distribution of X2 given that X1 +X3 = x.
16. The random variables X1, X2, and X3 are independent and N(0, 1)-

distributed. Consider the random variables

Y1 = X2 +X3,

Y2 = X1 +X3,

Y3 = X1 +X2.

Determine the conditional density of Y1 given that Y2 = Y3 = 0.
17. The random vector X has a three-dimensional normal distribution with

mean vector 0 and covariance matrix Λ given by

Λ =

 2 0 −1
0 3 1
−1 1 5

 .

Find the distribution of X2 given that X1−X3 = 1 and that X2+X3 = 0.
18. The random vector X has a three-dimensional normal distribution with

expectation 0 and covariance matrix Λ given by

Λ =

 1 2 −1
2 4 0
−1 0 7

 .

Find the distribution of X3 given that X1 = 1.
19. The random vector X has a three-dimensional normal distribution with

expectation 0 and covariance matrix Λ given by

Λ =

 2 1 −1
1 3 0
−1 0 5

 .

Find the distribution of X2 given that X1 +X3 = 1.
20. The random vector X has a three-dimensional normal distribution with

mean vector µ = 0 and covariance matrix

Λ =

 3 −2 1
−2 2 0

1 0 1

 .

Find the distribution of X1 +X3 given that
(a)X2 = 0,
(b)X2 = 2.

21. Let X ∈ N(µ,Λ), where

µ =

2
0
1

 and Λ =

 3 −2 1
−2 2 0

1 0 2

 .

Determine the conditional distribution of X1 −X3 given that X2 = −1.
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22. Let X ∈ N(µ,Λ), where

µ =

2
0
1

 and Λ =

 3 −2 1
−2 2 0

1 0 3

 .

Determine the conditional distribution of X1 +X2 given that X3 = 1.
23. The random vector X has a three-dimensional normal distribution with

expectation µ and covariance matrix Λ given by

µ =

1
1
0

 and Λ =

 4 −2 1
−2 3 0

1 0 1

 .

Find the conditional distribution of X1 + 2X2 given that
(a)X2 −X3 = 1.
(b)X2 +X3 = 1.

24. The random vector X has a three-dimensional normal distribution with
mean vector µ and covariance matrix Λ given by

µ =

 1
0
−2

 and Λ =

 3 −2 1
−2 4 −1

1 −1 2

 .

Find the conditional distribution of X1 given that X1 = −X2.
25. Let X have a three-dimensional normal distribution with mean vector and

covariance matrix

µ =

1
1
1

 and Λ =

2 1 1
1 3 −1
1 −1 2

 ,

respectively. Set Y1 = X1 +X2 +X3 and Y2 = X1 +X3. Determine the
conditional distribution of Y1 given that Y2 = 0.

26. Let X ∈ N(0,Λ), where

Λ =

 2 1 −1
1 3 0
−1 0 5


Find the conditional distribution of X1 given that X1 = X2 and X1 +
X2 +X3 = 0.

27. The random vector X has a three-dimensional normal distribution with
expectation 0 and covariance matrix Λ given by

Λ =

2 1 0
1 2 1
0 1 2

 .

Find the distribution of X2 given that X1 = X2 = X3.



144 5 The Multivariate Normal Distribution

28. Let X ∈ N(0,Λ), where

Λ =

 1 − 1
2

3
2

− 1
2 2 −1
3
2 −1 4

 .

Determine the conditional distribution of (X1, X1 +X2)′ given that X1 +
X2 +X3 = 0.

29. Suppose that the characteristic function of (X,Y, Z)′ is

ϕ(s, t, u) = exp{2is− s2 − 2t2 − 4u2 − 2st+ 2su}.

Compute the conditional distribution of X + Z given that X + Y = 0.
30. Let X1, X2, and X3 have a joint moment generating function as follows:

ψ(t1, t2, t3) = exp{2t1 − t3 + t21 + 2t22 + 3t23 + 2t1t2 − 2t1t3}.

Determine the conditional distribution of X1+X3 given that X1+X2 = 1.
31. The moment generating function of (X,Y, Z)′ is

ψ(s, t, u) = exp
{s2

2
+ t2 + 2u2 − st

2
+

3su
2
− tu

2

}
.

Determine the conditional distribution of X given that X + Z = 0 and
Y + Z = 1.

32. Suppose (X,Y, Z)′ is normal with density

C · exp
{
− 1

2
(4x2 + 3y2 + 5z2 + 2xy + 6xz + 4zy)

}
,

where C is a normalizing constant. Determine the conditional distribution
of X given that X + Z = 1 and Y + Z = 0.

33. Let X and Y be random variables, such that

Y | X = x ∈ N(x, τ2) with X ∈ N(µ, σ2).

(a) Compute E Y , VarY and Cov (X,Y ).
(b) Determine the distribution of the vector (X,Y )′.
(c) Determine the (posterior) distribution of X | Y = y.

34. Let X and Y be jointly normal with means 0, variances 1, and correlation
coefficient ρ. Compute the moment generating function of X · Y for
(a) ρ = 0, and
(b) general ρ.

35. Suppose X1, X2, and X3 are independent and N(0, 1)-distributed. Com-
pute the moment generating function of Y = X1X2 +X1X3 +X2X3.

36. If X and Y are independent, N(0, 1)-distributed random variables, then
X2 + Y 2 ∈ χ2(2) (recall Exercise 3.3.6). Now, let X and Y be jointly
normal with means 0, variances 1, and correlation coefficient ρ. In this
case X2 +Y 2 has a noncentral χ2(2)-distribution. Determine the moment
generating function of that distribution.
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37. Let (X,Y )′ have a two-dimensional normal distribution with means 0,
variances 1, and correlation coefficient ρ, |ρ| < 1. Determine the distribu-
tion of (X2 − 2ρXY + Y 2)/(1− ρ2) by computing its moment generating
function.
Remark. Recall Example 8.6 and Remark 9.1.

38. Let X1, X2, . . . , Xn be independent, N(0, 1)-distributed random vari-
ables, and set X̄k = 1

k−1

∑k−1
i=1 Xi, 2 ≤ k ≤ n. Show that

Q =
n∑

k=2

k − 1
k

(Xk − X̄k)2

is χ2-distributed. What is the number of degrees of freedom?
39. LetX1, X2, andX3 be independent,N(1, 1)-distributed random variables.

Set U = X1 +X2 +X3 and V = X1 +2X2 +3X3. Determine the constants
a and b so that E(U − a− bV )2 is minimized.

40. Let X and Y be independent, N(0, 1)-distributed random variables. Then
X + Y and X − Y are independent; see Example 7.1. The purpose of
this problem is to point out a (partial) converse. Suppose that X and Y
are independent random variables with common distribution function F .
Suppose, further, that F is symmetric and that σ2 = EX2 <∞. Let ϕ be
the characteristic function of X (and Y ). Show that if X + Y and X − Y
are independent then we have

ϕ(t) =
(
ϕ(t/2)

)4
.

Use this relation to show that ϕ(t) = e−σ2t2/2 . Finally, conclude that F
is the distribution function of a normal distribution (N(0, σ2)).
Remark 1. The assumptions that the distribution is symmetric and the
variance is finite are not necessary. However, without them the problem
becomes much more difficult.
Remark 2. Results of this kind are called characterization theorems. An-
other characterization of the normal distribution is provided by the follow-
ing famous theorem due to the Swedish probabilist and statistician Harald
Cramér (1893–1985): If X and Y are independent random variables such
that X + Y has a normal distribution, then X and Y are both normal.
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Convergence

1 Definitions

There are several convergence concepts in probability theory. We shall discuss
four of them here.

Let X1, X2, . . . be random variables.

Definition 1.1. Xn converges almost surely (a.s.) to the random variable X
as n→∞ iff

P ({ω : Xn(ω)→ X(ω) as n→∞}) = 1.

Notation: Xn
a.s.−→ X as n→∞.

Definition 1.2. Xn converges in probability to the random variable X as
n→∞ iff, ∀ ε > 0,

P (|Xn −X| > ε)→ 0 as n→∞.

Notation: Xn
p−→ X as n→∞.

Definition 1.3. Xn converges in r-mean to the random variable X as n→∞
iff

E|Xn −X|r → 0 as n→∞.

Notation: Xn
r−→ X as n→∞.

Definition 1.4. Xn converges in distribution to the random variable X as
n→∞ iff

FXn(x)→ FX(x) as n→∞ for all x ∈ C(FX),

where C(FX) = {x : FX(x) is continuous at x} = the continuity set of FX .
Notation: Xn

d−→ X as n→∞. 2
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Remark 1.1. When dealing with almost-sure convergence, we consider every
ω ∈ Ω and check whether or not the real numbers Xn(ω) converge to the real
number X(ω) as n → ∞. We have almost-sure convergence if the ω-set for
which there is convergence has probability 1 or, equivalently, if the ω-set for
which we do not have convergence has probability 0. Almost-sure convergence
is also called convergence with probability 1 (w.p.1).

Remark 1.2. Convergence in 2-mean (r = 2 in Definition 1.3) is usually called
convergence in square mean (or mean-square convergence).

Remark 1.3. Note that in Definition 1.4 the random variables are present only
in terms of their distribution functions. Thus, they need not be defined on the
same probability space.

Remark 1.4. We will permit ourselves the convenient abuse of notation such
as Xn

d−→ N(0, 1) or Xn
d−→ Po(λ) as n → ∞ instead of the formally more

correct, but lengthierXn
d−→ X as n→∞, whereX ∈ N(0, 1), andXn

d−→ X
as n→∞, where X ∈ Po(λ), respectively.

Remark 1.5. As mentioned in Section 4 of the Introduction, one can show that
a distribution function has at most only a countable number of discontinuities.
As a consequence, C(FX) equals the whole real line except, possibly, for at
most a countable number of points. 2

Before proceeding with the theory, we present some examples.

Example 1.1. Let Xn ∈ Γ(n, 1/n). Show that Xn
p−→ 1 as n→∞.

We first note that EXn = 1 and that VarXn = 1/n. An application of
Chebyshev’s inequality now shows that, for all ε > 0,

P (|Xn − 1| > ε) ≤ 1
nε2
→ 0 as n→∞.

Example 1.2. Let X1, X2, . . . be independent random variables with common
density

f(x) =

{
αx−α−1, for x > 1, alpha > 0,
0, otherwise,

and set Yn = n−1/α ·max1≤k≤nXk, n ≥ 1. Show that Yn converges in distri-
bution as n→∞, and determine the limit distribution.

In order to solve this problem we first compute the common distribution
function:

F (x) =

{∫ x

1
αy−α−1 dy = 1− x−α, for x > 1,

0, otherwise,

from which it follows that, for any x > 0,
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FYn
(x) = P

(
max

1≤k≤n
Xk ≤ xn1/α

)
=
(
F (xn1/α)

)n
=
(
1− 1

nxα

)n

→ e−x−α

as n→∞.

Example 1.3. The law of large numbers. This important result will be proved
in full generality in Section 5 ahead. However, in Section 8 of the Introduction
it was mentioned that a weaker version assuming finite variance usually is
proved in a first course in probability. More precisely, let X1, X2, . . . be a
sequence of i.i.d. random variables with mean µ and finite variance σ2 and set
Sn = X1 +X2 + · · ·+Xn, n ≥ 1. The law of large numbers states that

P
(
|Sn

n
− µ| > ε

)
→ 0 as n→∞ for all ε > 0,

that is,
Sn

n

p−→ µ as n→∞.

The proof of this statement under the above assumptions follows from Cheby-
shev’s inequality:

P

(
|Sn

n
− µ| > ε

)
≤ σ2

nε2
→ 0 as n→∞. 2

The following example, which involves convergence in distribution, deals with
a special case of the Poisson approximation of the binomial distribution. The
general result states that if Xn is binomial with n “large” and p “small” we
may approximate Xn with a suitable Poisson distribution.

Example 1.4. Suppose that Xn ∈ Bin(n, λ/n). Then

Xn
d−→ Po(λ) as n→∞.

The elementary proof involves showing that, for fixed k,(
n

k

)(λ
n

)k(
1− λ

n

)n−k

→ e−λλ
k

k!
as n→∞.

We omit the details. Another solution, involving transforms, will be given in
Section 4. 2

We close this section with two exercises.

Exercise 1.1. Let X1, X2, . . . be a sample from the distribution whose den-
sity is

f(x) =

{
1
2 (1 + x)e−x, for x > 0,
0, otherwise.

Set Yn = min{X1, X2, . . . , Xn}. Show that n · Yn converges in distribution as
n→∞, and find the limit distribution.
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Exercise 1.2. Let X1, X2, . . . be random variables defined by the relations

P (Xn = 0) = 1− 1
n
, P (Xn = 1) =

1
2n
, and P (Xn = −1) =

1
2n
, n ≥ 1.

Show that

(a) Xn
p−→ 0 as n→∞,

(b) Xn
r−→ 0 as n→∞, for any r > 0. 2

2 Uniqueness

We begin by proving that convergence is unique—in other words, that the
limiting random variable is uniquely defined in the following sense: If Xn → X
and Xn → Y almost surely, in probability, or in r-mean, then X = Y almost
surely, that is, P (X = Y ) = 1 (or, equivalently, P ({ω : X(ω) 6= Y (ω)}) = 0).
For distributional convergence, uniqueness means FX(x) = FY (x) for all x,
that is, X d= Y .

As a preparation, we recall how uniqueness is proved in analysis. Let
a1, a2, . . . be a convergent sequence of real numbers. We claim that the limit
is unique. In order to prove this, one shows that if there are reals a and b such
that

an → a and an → b as n→∞, (2.1)

then, necessarily, a = b.
The conclusion follows from the triangle inequality:

|a− b| ≤ |a− an|+ |an − b| → 0 + 0 = 0 as n→∞.

Since a− b does not depend on n, it follows that |a− b| = 0, that is, a = b.
A proof using reductio ad absurdum runs as follows. Suppose that a 6= b.

This implies that |a− b| > ε for some ε > 0. Let such an ε > 0 be given. For
every n, we must have either

|an − a| > ε/2 or |an − b| > ε/2, (2.2)

that is, there must exist infinitely many n such that (at least) one of the
inequalities in (2.2) holds. Therefore, (at least) one of the statements an → a
as n→∞ or an → b as n→∞ cannot hold, which contradicts the assumption
and hence shows that indeed a = b.

This is, of course, a rather inelegant proof. We present it only because the
proof for convergence in probability is closely related.

To prove uniqueness for our new convergence concepts, we proceed analo-
gously.

Theorem 2.1. Let X1, X2, . . . be a sequence of random variables. If Xn con-
verges almost surely, in probability, in r-mean, or in distribution as n → ∞,
then the limiting random variable (distribution) is unique.
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Proof. (i) Suppose first that Xn
a.s.−→ X and Xn

a.s.−→ Y as n→∞. Let

NX = {ω : Xn(ω) 6→ X(ω) as n→∞}

and
NY = {ω : Xn(ω) 6→ Y (ω) as n→∞}.

Clearly, P (NX) = P (NY ) = 0.
Now let ω ∈ (NX ∪NY )c. By the triangle inequality it follows that

|X(ω)− Y (ω)| ≤ |X(ω)−Xn(ω)|+ |Xn(ω)− Y (ω)| → 0 (2.3)

as n→∞ and hence that

X(ω) = Y (ω) whenever ω /∈ NX ∪NY .

Consequently,

P (X 6= Y ) ≤ P (NX ∪NY ) ≤ P (NX) + P (NY ) = 0 ,

which proves uniqueness in this case.
(ii) Next suppose that Xn

p−→ X and Xn
p−→ Y as n → ∞, and let ε > 0

be arbitrary. Since

|X − Y | ≤ |X −Xn|+ |Xn − Y |, (2.4)

it follows that if |X − Y | > ε for some ω ∈ Ω, then either |X −Xn| > ε/2 or
|Xn − Y | > ε/2 (cf. (2.2)). More formally,

{ω : |X − Y | > ε} ⊂
{
ω : |X −Xn| >

ε

2

}
∪
{
ω : |Xn − Y | >

ε

2

}
. (2.5)

Thus,

P (|X − Y | > ε) ≤ P
(
|X −Xn| >

ε

2

)
+ P

(
|Xn − Y | >

ε

2

)
→ 0 (2.6)

as n→∞, that is,

P (|X − Y | > ε) = 0 for all ε > 0,

which implies that

P (|X − Y | > 0) = 0, that is, P (X = Y ) = 1.

(iii) Now suppose that Xn
r−→ X and Xn

r−→ Y as n → ∞. For this case
we need a replacement for the triangle inequality when r 6= 1.

Lemma 2.1. Let r > 0. Suppose that U and V are random variables such
that E|U |r <∞ and E|V |r <∞. Then

E|U + V |r ≤ 2r(E|U |r + E|V |r).
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Proof. Let a and b be reals. Then

|a+ b|r ≤ (|a|+ |b|)r ≤ (2 ·max{|a|, |b|})r

= 2r ·max{|a|r, |b|r} ≤ 2r · (|a|r + |b|r).

For every ω ∈ Ω, we thus have

|U(ω) + V (ω)|r ≤ 2r (|U(ω)|r + |V (ω)|r).

Taking expectations in both members yields

E|U + V |r ≤ 2r(E|U |r + E|V |r). 2

Remark 2.1. The constant 2r can be improved to max{1, 2r−1}. 2

In order to prove (iii), we now note that by Lemma 2.1

E|X − Y |r ≤ 2r(E|X −Xn|r + E|Xn − Y |r)→ 0 as n→∞. (2.7)

This implies that E|X − Y |r = 0, which yields P (|X − Y | = 0) = 1 (i.e.,
P (X = Y ) = 1).
(iv) Finally, suppose that

Xn
d−→ X and Xn

d−→ Y as n→∞,

and let x ∈ C(FX)∩C(FY ) (note that (C(FX)∩C(FY ))c contains at most a
countable number of points). Then

|FX(x)− FY (x)| ≤ |FX(x)− FXn(x)|+ |FXn(x)− FY (x)| → 0 (2.8)

as n→∞, which shows that FX(x) = FY (x) for all x ∈ C(FX) ∩ C(FY ). As
a last step we would have to show that in fact FX(x) = FY (x) for all x. We
confine ourselves to claiming that this is a consequence of the right continuity
of distribution functions. 2

3 Relations Between the Convergence Concepts

The obvious first question is whether or not the convergence concepts we
have introduced really are different and if they are, whether or not they can
be ordered in some sense. These problems are the topic of the present section.
Instead of beginning with a big theorem, we prefer to proceed step by step
and state the result at the end.
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One can show that Xn
a.s.−→ X as n→∞ iff, ∀ ε > 0 and δ, 0 < δ < 1, ∃n0

such that, ∀n > n0,

P

( ⋂
m>n

{|Xm −X| < ε}

)
> 1− δ, (3.1)

or, equivalently,

P

( ⋃
m>n

{|Xm −X| > ε}

)
< δ. (3.2)

Since, for m > n,

{|Xm −X| > ε} ⊂
⋃
k>n

{|Xk −X| > ε},

we have made plausible the fact that
I. Xn

a.s.−→ X as n→∞ =⇒ Xn
p−→ X as n→∞. 2

Remark 3.1. An approximate way of verbalizing the conclusion is that, for
convergence in probability, the set whereXm andX are not close is small form
large. But, we may have different sets of discrepancy for different (large) values
of m. For a.s. convergence, however, the discrepancy set is fixed, common, for
all large m. 2

The following example shows that the two convergence concepts are not
equivalent:

Example 3.1. Let X2, X3, . . . be independent random variables such that

P (Xn = 1) = 1− 1
n

and P (Xn = n) =
1
n
, n ≥ 2.

Clearly,

P (|Xn − 1| > ε) = P (Xn = n) =
1
n
→ 0 as n→∞,

for every ε > 0, that is,

Xn
p−→ 1 as n→∞. (3.3)

We now show that Xn does not converge a.s. to 1 as n → ∞. Namely, for
every ε > 0, δ ∈ (0, 1), and N > n, we have

P
( ⋂

m>n

{|Xm − 1| < ε}
)
≤ P

( N⋂
m=n+1

{|Xm − 1| < ε}
)

=
N∏

m=n+1

P (|Xm − 1| < ε) =
N∏

m=n+1

P (Xm = 1) =
N∏

m=n+1

(
1− 1

m

)

=
N∏

m=n+1

m− 1
m

=
n

N
< 1− δ, (3.4)
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no matter how large n is chosen, provided we then choose N such that N >
n/(1 − δ). This shows that there exists no n0 for which (3.1) can hold, and
hence that Xn does not converge a.s. to 1 as n → ∞. Moreover, it follows
from Theorem 2.1 (uniqueness) that we cannot have a.s. convergence to any
other random variable either, since we then would also have convergence in
probability to that random variable, which in turn would contradict (3.3). 2

It is actually possible to compute the left-hand side of (3.4):

P
( ⋂

m>n

{|Xm − 1| < ε}
)

= P
(

lim
N→∞

N⋂
m=n+1

{|Xm − 1| < ε}
)

= lim
N→∞

P
( N⋂

m=n+1

{|Xm − 1| < ε}
)

= · · · = lim
N→∞

n

N
= 0 < 1− δ

for every δ, 0 < δ < 1. However, in order to do this properly, we would need
the following lemma for the second equality sign.

Lemma 3.1. Suppose that B and {Bn, n ≥ 1} are subsets of Ω, such that
Bn ↑ B as n→∞. Then P (Bn)→ P (B) as n→∞. 2

Exercise 3.1. Prove Lemma 3.1. 2

Remark 3.2. The lemma amounts to showing that

P ( lim
n→∞

Bn) = lim
n→∞

P (Bn) ,

that is, we must verify the interchange of taking limits and computing prob-
abilities (i.e., summation or integration).

Remark 3.3. Please note that our proofs for a.s. convergence have not been
carried out in detail. In fact, complete proofs would lead beyond the scope of
this book. Our hope was to “make plausible” the results. 2

The next step is to show that

II. Xn
r−→ X as n→∞ =⇒ Xn

p−→ X as n→∞.

This part is easy since, by Markov’s inequality (recall formula (8.2) of the
Introduction),

P (|Xn −X| > ε) ≤ E|Xn −X|r

εr
→ 0 as n→∞, (3.5)

which proves the conclusion. 2

That the converse need not hold follows trivially from the fact that E|Xn−
X|r might not even exist. There are, however, cases when Xn

p−→ X as
n→∞, whereas E|Xn −X|r 6→ 0 as n→∞. For r = 1 we may use Example
3.1. We prefer, however, to modify the example in order to make it more
general.
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Example 3.2. Let α > 0 and let X2, X3, . . . be random variables such that

P (Xn = 1) = 1− 1
nα

and P (Xn = n) =
1
nα
, n ≥ 2.

Since P (|Xn − 1| > ε) = P (Xn = n) = 1/nα → 0 as n→∞, it follows that

Xn
p−→ 1 as n→∞. (3.6)

Furthermore,

E|Xn − 1|r = 0r ·
(

1− 1
nα

)
+ |n− 1|r · 1

nα
=

(n− 1)r

nα
,

from which it follows that

E|Xn − 1|r →


0, for r < α,

1, for r = α,

+∞, for r > α.

(3.7)

This shows that Xn
r−→ 1 as n → ∞ when r < α but that Xn does not

converge in r-mean as n → ∞ when r ≥ α. Convergence in r-mean thus is a
strictly stronger concept than convergence in probability. 2

Remark 3.4. If α = 1 and if, in addition, X2, X3, . . . are independent, then

Xn
p−→ 1 as n→∞,

Xn

a.s.

6−→ as n→∞,
E Xn → 2 as n→∞,

Xn
r−→ 1 as n→∞ for 0 < r < 1,

Xn

r

6−→ as n→∞ for r ≥ 1.

Remark 3.5. If α = 2 and in addition X2, X3, . . . are independent, then

Xn
p−→ 1 as n→∞,

Xn
a.s.−→ 1 as n→∞ (try to prove that!),

EXn → 1 and VarXn → 1 as n→∞,

Xn
r−→ 1 as n→∞ for 0 < r < 2,

Xn

r

6−→ as n→∞ for r ≥ 2. 2

III. The concepts a.s. convergence and convergence in r-mean cannot be
ordered; neither implies the other.

To see this, we inspect Remarks 3.4 and 3.5. In the former, Xn converges
in r-mean for 0 < r < 1, but not almost surely, and in the latter Xn converges
almost surely, but not in r-mean, if r ≥ 2. 2
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Note also that if r ≥ 1 in Remark 3.4, then Xn converges in probability,
but neither almost surely nor in r-mean; whereas if 0 < r < 2 in Remark
3.5, then Xn converges almost surely and hence in probability as well as in
r-mean.

We finally relate the concept of convergence in distribution to the others.

IV. Xn
p−→ X as n→∞ =⇒ Xn

d−→ X as n→∞.

Let ε > 0. Then

FXn(x) = P (Xn ≤ x)
= P ({Xn ≤ x} ∩ {|Xn −X| ≤ ε}) + P ({Xn ≤ x} ∩ {|Xn −X| > ε})
≤ P ({X ≤ x+ ε} ∩ {|Xn −X| ≤ ε}) + P (|Xn −X| > ε)
≤ P (X ≤ x+ ε) + P (|Xn −X| > ε),

that is,
FXn(x) ≤ FX(x+ ε) + P (|Xn −X| > ε). (3.8)

By switching Xn to X, x to x − ε, X to Xn, and x + ε to x, it follows,
analogously, that

FX(x− ε) ≤ FXn
(x) + P (|Xn −X| > ε). (3.9)

Since Xn
p−→ X as n→∞, we obtain, by letting n→∞ in (3.8) and (3.9),

FX(x− ε) ≤ lim inf
n→∞

FXn
(x) ≤ lim sup

n→∞
FXn

(x) ≤ FX(x+ ε). (3.10)

This relation holds for all x and for all ε > 0. To prove convergence in distri-
bution, we finally suppose that x ∈ C(FX) and let ε→ 0. It follows that

FX(x) ≤ lim inf
n→∞

FXn(x) ≤ lim sup
n→∞

FXn(x) ≤ FX(x), (3.11)

that is,
lim

n→∞
FXn

(x) = FX(x).

Since x ∈ C(FX) was arbitrary, the conclusion follows. 2

Remark 3.6. We observe that if FX has a jump at x, then we can only conclude
that

FX(x−) ≤ lim inf
n→∞

FXn
(x) ≤ lim sup

n→∞
FXn

(x) ≤ FX(x). (3.12)

Here FX(x) − FX(x−) equals the size of the jump. This explains why only
continuity points are involved in the definition of distributional convergence.2

Since, as was mentioned earlier, distributional convergence does not require
jointly distributed random variables, whereas the other concepts do, it is clear
that distributional convergence is the weakest concept. The following example
shows that there exist jointly distributed random variables that converge in
distribution only.
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Example 3.3. Suppose that X is a random variable with a symmetric, contin-
uous, nondegenerate distribution, and let X1, X2, . . . be such that X2n = X

and X2n−1 = −X, n = 1, 2, . . . . Since Xn
d= X for all n, we have, in particu-

lar, Xn
d−→ X as n→∞. Further, since X has a nondegenerate distribution,

there exists a > 0 such that P (|X| > a) > 0 (why?). It follows that for every
ε, 0 < ε < 2a,

P (|Xn −X| > ε) =

{
0, for n even,
P (|X| > ε/2) > 0, for n odd.

This shows that Xn cannot converge in probability to X as n→∞, and thus
neither almost surely nor in r-mean. 2

The following theorem collects our findings from this section so far:

Theorem 3.1. Let X and X1, X2, . . . be random variables. The following
implications hold as n→∞:

Xn
a.s.−→ X =⇒ Xn

p−→ X =⇒ Xn
d−→ X

⇑

Xn
r−→ X.

All implications are strict. 2

In addition to this general result, we have the following one, which states
that convergence in probability and convergence in distribution are equivalent
if the limiting random variable is degenerate.

Theorem 3.2. Let X1, X2, . . . be random variables and c be a constant. Then

Xn
d−→ δ(c) as n→∞ ⇐⇒ Xn

p−→ c as n→∞.

Proof. Since the implication ⇐= always holds (Theorem 3.1), we only have
to prove the converse.

Thus, assume that Xn
d−→ δ(c) as n→∞, and let ε > 0. Then

P (|Xn − c| > ε) = 1− P (c− ε ≤ Xn ≤ c+ ε)
= 1− FXn

(c+ ε) + FXn
(c− ε)− P (Xn = c− ε)

≤ 1− FXn
(c+ ε) + FXn

(c− ε)→ 1− 1 + 0
= 0 as n→∞,

since FXn(c + ε) → FX(c + ε) = 1, FXn(c − ε) → FX(c − ε) = 0, and c + ε
and c− ε ∈ C(FX) = {x : x 6= c}. 2
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Recall, once again, that only the continuity points of the limiting distri-
bution function were involved in Definition 1.4. The following example shows
that this is necessary for the definition to make sense.

Example 3.4. Let Xn ∈ δ(1/n) for all n. Then, clearly, Xn
p−→ 0 as n → ∞.

It follows from Theorem 3.1 that we also have Xn
d−→ δ(0) as n → ∞.

However, FXn
(0) = 0 for all n, whereas Fδ(0)(0) = 1, that is, the sequence

of distribution functions does not converge to the corresponding value of the
distribution function of the limiting random variable at every point (but at
all continuity points).

If, instead Xn ∈ δ(−1/n) for all n, then, similarly, Xn
p−→ 0 and Xn

d−→
δ(0) as n → ∞. However, in this case FXn

(0) = 1 for all n, so that the
distribution functions converge properly at every point.

Given the similarity of the two cases it would obviously be absurd if one
would have convergence in distribution in the first case but not in the second
one. Luckily the requirement that convergence is only required at continuity
points saves the situation. 2

Remark 3.7. For a.s. convergence, convergence in probability, and convergence
in r-mean, one can show that Cauchy convergence actually implies conver-
gence. For a.s. convergence this follows from the corresponding result for real
numbers, but for the other concepts this is much harder to prove.

Remark 3.8. The uniqueness theorems in Section 2 for a.s. convergence and
convergence in r-mean may actually be obtained as corollaries of the unique-
ness theorem for convergence in probability via Theorem 3.1. Explicitly, sup-
pose, for example, that Xn

a.s.−→ X and that Xn
a.s.−→ Y as n→∞. According

to Theorem 3.1, we then also have Xn
p−→ X and Xn

p−→ Y as n → ∞ and
hence, by uniqueness, that P (X = Y ) = 1. 2

Exercise 3.2. Show that Xn
r−→ X and Xn

a.s.−→ Y as n → ∞ implies that
P (X = Y ) = 1.

Exercise 3.3. Toss a symmetric coin and set X = 1 for heads and X = 0 for
tails. Let X1, X2, . . . be random variables such that X2n = X and X2n−1 =

1−X, n = 1, 2, . . . . Show that Xn
d−→ X as n→∞, but that Xn

p

6−→X as
n→∞. 2

4 Convergence via Transforms

In Chapter 3 we found that transforms are very useful for determining the
distribution of new random variables, particularly for sums of independent
random variables. In this section we shall see that transforms may also be
used to prove convergence in distribution; it turns out that in order to prove
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that Xn
d−→ X as n → ∞, it suffices to assert that the transform of Xn

converges to the corresponding transform of X. Theorems of this kind are
called continuity theorems.

Two important applications will be given in the next section, where we
prove two fundamental results on the convergence of normalized sums of i.i.d.
random variables: the law of large numbers and the central limit theorem.

Theorem 4.1. Let X, X1, X2, . . . be nonnegative, integer-valued random
variables, and suppose that

gXn(t)→ gX(t) as n→∞.

Then
Xn

d−→ X as n→∞.
2

Theorem 4.2. Let X1, X2, . . . be random variables such that ψXn
(t) exists

for |t| < h for some h > 0 and for all n. Suppose further that X is a random
variable whose moment generating function ψX(t) exists for |t| ≤ h1 < h for
some h1 > 0 and that

ψXn(t)→ ψX(t) as n→∞, for |t| ≤ h1.

Then
Xn

d−→ X as n→∞.
2

Theorem 4.3. Let X, X1, X2, . . . be random variables, and suppose that

ϕXn
(t)→ ϕX(t) as n→∞, for −∞ < t <∞.

Then
Xn

d−→ X as n→∞.
2

Remark 4.1. Theorem 4.3 can be sharpened; we need only to assume that
ϕXn(t) → ϕ(t) as n → ∞, where ϕ is some function that is continuous at
t = 0. The conclusion then is that Xn converges in distribution as n→∞ to
some random variableX whose characteristic function is ϕ. The formulation of
Theorem 4.3 implicitly presupposes the knowledge that the limit is, indeed, a
characteristic function and, moreover, the characteristic function of a known
(to us) random variable X. In the sharper formulation we can answer the
weaker question of whether or not Xn converges in distribution as n → ∞;
we have an existence theorem in this case.

Remark 4.2. The converse problem is also of interest. Namely, one can show
that if X1, X2, . . . is a sequence of random variables such that

Xn
d−→ X as n→∞

for some random variable X, then

ϕXn
(t)→ ϕX(t) as n→∞ for −∞ < t <∞,

that is, the characteristic functions converge. 2
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A particular case of interest is when the limiting random variable X is
degenerate. We then know from Theorem 3.2 that convergence in probability
and distributional convergence are equivalent. The following result is a useful
consequence of this fact:

Corollary 4.3.1. Let X1, X2, . . . be random variables, and suppose that, for
some real number c,

ϕXn
(t)→ eitc as n→∞, for −∞ < t <∞.

Then
Xn

p−→ c as n→∞. 2

Exercise 4.1. Prove Corollary 4.3.1. 2

Example 4.1. Show that Xn
p−→ 1 as n→∞ in Example 3.1.

In order to apply the corollary, we prove that the characteristic function
of Xn converges as desired as n tends to infinity:

ϕXn
(t) = eit·1(1− 1

n

)
+ eit·n 1

n
= eit +

eitn − eit

n
→ eit as n→∞,

since |eitn − eit|/n ≤ 2/n → 0 as n → ∞. And since eit is the characteristic
function of the δ(1)-distribution, Corollary 4.3.1 finally implies that Xn

p−→ 1
as n→∞.

Remark 4.3. The earlier, direct proof is the obvious one; the purpose here was
merely to illustrate the method. Note also that Theorem 4.3, which lies behind
this method, was stated without proof.

Remark 4.4. The analogous computation using moment generating functions
collapses:

ψXn
(t) = et·1(1− 1

n

)
+ et·n 1

n
→

{
et, for t ≤ 0,
+∞, for t > 0,

as n→∞.

The reason for the collapse is that, as we found in Example 3.1, the moments
of order greater than or equal to 1 do not converge properly—recall that
EXn → 2 and VarXn →∞ as n→∞—and, hence, the moment generating
functions cannot converge either. 2

Example 4.2. (Another solution of Example 1.1) Since Xn ∈ Γ(n, 1/n), we
have

ϕXn
(t) =

( 1
1− it

n

)n

=
1(

1− it
n

)n → 1
e−it

= eit = ϕδ(1)(t) as n→∞,

and the desired conclusion follows from Corollary 4.3.1. 2
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Exercise 4.2. Use transforms to solve the problem given in Exercise 1.2. 2

As another, deeper example we reconsider Example 1.4 concerning the
Poisson approximation of the binomial distribution.

Example 4.3. We were given Xn ∈ Bin(n, λ/n) and wanted to show that
Xn

d−→ Po(λ) as n→∞.
To verify this we compute the generating function of Xn:

gXn
(t) =

(
1− λ

n
+
λ

n
t
)n

=
(
1 +

λ(t− 1)
n

)n

→ eλ(t−1)

= gPo(λ)(t) as n→∞,

and the conclusion follows from Theorem 4.1. 2

In proving uniqueness for distributional convergence (Step IV in the proof
of Theorem 2.1), we had some trouble with the continuity points. Here we
provide a proof using characteristic functions in which we do not have to worry
about such matters. (The reasons are that uniqueness theorems and continuity
theorems for transforms imply distributional uniqueness and distributional
convergence of random variables and also that events on sets with probability
zero do not matter in theorems for transforms.)

We thus assume that X1, X2, . . . are random variables such that Xn
d−→

X and Xn
d−→ Y as n→∞. Then (Remark 4.2)

ϕXn(t)→ ϕX(t) and ϕXn(t)→ ϕY (t) as n→∞,

whence

|ϕX(t)− ϕY (t)| ≤ |ϕX(t)− ϕXn
(t)|+ |ϕXn

(t)− ϕY (t)| → 0 + 0 = 0

as n→∞. This shows that ϕX(t) = ϕY (t), which, by Theorem 3.4.2, proves
that X d= Y , and we are done.

5 The Law of Large Numbers and the Central Limit
Theorem

The two most fundamental results in probability theory are the law of large
numbers (LLN) and the central limit theorem (CLT). In a first course in prob-
ability the law of large numbers is usually proved with the aid of Chebyshev’s
inequality under the assumption of finite variance, and the central limit the-
orem is normally given without a proof. Here we shall formulate and prove
both theorems under minimal conditions (in the case of i.i.d. summands).
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Theorem 5.1. (The weak law of large numbers) Let X1, X2, . . . be i.i.d. ran-
dom variables with finite expectation µ, and set Sn = X1 + X2 + · · · + Xn,
n ≥ 1. Then

X̄n =
Sn

n

p−→ µ as n→∞.

Proof. According to Corollary 4.3.1, it suffices to show that

ϕX̄n
(t)→ eitµ as n→∞, for −∞ < t <∞.

By Theorem 3.4.9 and Corollary 3.4.6.1 we have

ϕX̄n
(t) = ϕSn

( t
n

)
=
(
ϕX1

( t
n

))n

, (5.1)

which, together with Theorem 3.4.7, yields

ϕX̄n
(t) =

(
1 + i

t

n
µ+ o

( t
n

))n

→ eitµ as n→∞

for all t. 2

Remark 5.1. With different methods one can in fact prove that X̄n
a.s.−→ µ as

n → ∞ and that the assumption about finite mean is necessary. This result
is called the strong law of large numbers in contrast to Theorem 5.1, which is
called the weak law of large numbers. For more on this, we refer to Appendix
A, where some references are given, and to the end of Subsection 7.7.3 for
some remarks on complete convergence and its relation to the strong law. 2

Exercise 5.1. Let X1, X2, . . . be i.i.d. random variables such that E|X|k <
∞. Show that

Xk
1 +Xk

2 + · · ·+Xk
n

n

p−→ EXk as n→∞. 2

Theorem 5.2. (The central limit theorem) Let X1, X2, . . . be i.i.d. random
variables with finite expectation µ and finite variance σ2, and set Sn = X1 +
X2 + · · ·+Xn, n ≥ 1. Then

Sn − nµ
σ
√
n

d−→ N(0, 1) as n→∞.

Proof. In view of the continuity theorem for characteristic functions (Theorem
4.3), it suffices to prove that

ϕSn−nµ
σ
√

n
(t)→ e−t2/2 as n→∞, for −∞ < t <∞. (5.2)

The relation

Sn − nµ
σ
√
n

=

∑n
k=1

(
Xk−µ

σ

)
√
n
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shows that it is no restriction to assume, throughout the proof, that µ = 0
and σ = 1. With the aid of Theorems 3.4.9, 3.4.6, and 3.4.7 (in particular,
Remark 3.4.3), we then obtain

ϕSn−nµ
σ
√

n
(t) = ϕ Sn√

n
(t) = ϕSn

( t√
n
) =

(
ϕX1(

t√
n
)
)n

=
(

1− t2

2n
+ o
( t2
n

))n

→ e−t2/2 as n→∞. 2

Remark 5.2. The centering (µ = 0) in the proof has a simplifying effect. Oth-
erwise, one would have

ϕSn−nµ
σ
√

n
(t) = exp

{
− iµ

√
n

σ t
}
· ϕ Sn

σ
√

n
(t)

= exp
{
− iµ

√
n

σ t
}
·
(
ϕX1(

t
σ
√

n
)
)n (5.3)

= exp
{
− iµ

√
n

σ t
}(

1 + i
t

σ
√
n
µ− t2

2σ2n
EX2

1 + o
( t2
n

))n

.

By exploiting the relation x = exp{log x} and Taylor expansion of the function
log(1 + z), which is valid for all complex z with |z| < 1, the last expression in
(5.3) becomes

exp
{
− iµ
√
n

σ
t
}
· exp

{
n · log

[
1 +

itµ

σ
√
n
− t2(σ2 + µ2)

2σ2n
+ o
( t2
n

)]}
= exp

{
− iµ
√
n

σ
t+ n

[ itµ
σ
√
n
− t2(σ2 + µ2)

2σ2n
+ o
( t2
n

)
− 1

2
·
(
itµ

σ
√
n
− t2(σ2 + µ2)

2σ2n
+ o
( t2
n

))2

+ o
( t2
n

)]}
= exp

{
− iµ
√
n

σ
t+ n

[ itµ
σ
√
n
− t2(σ2 + µ2)

2σ2n
+

1
2
t2µ2

σ2n
+ o
( t2
n

)]}
= e−t2/2+n·o(t2/n) → e−t2/2 as n→∞.

The troublemaker is the factor exp{−iµ
√
nt/σ}, which must be annihilated

by a corresponding piece in the second factor.

Remark 5.3. One may, alternatively, prove the central limit theorem with the
aid of moment generating functions. However, the theorem is then only verified
for random variables that actually possess a moment generating function. 2

One important application of the preceding results is to the empirical
distribution function.

Example 5.1. Let X1, X2, . . . , Xn be a sample of the random variable X.
Suppose that the distribution function of X is F , and let Fn denote the
empirical distribution function of the sample, that is,

Fn(x) =
# observations ≤ x

n
.
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Show that, for every fixed x,

(a) Fn(x)
p−→ F (x) as n→∞,

(b)
√
n(Fn(x)− F (x)) d−→ N(0, σ2(x)) as n→∞, and determine σ2(x).

Since {# observations ≤ x} ∈ Bin(n, F (x)) (recall Section 4.1), we intro-
duce the indicators

Ik(x) =

{
1, if Xk ≤ x,
0, otherwise.

The law of large numbers (i.e., Theorem 5.1) then immediately yields

Fn(x) =
1
n

n∑
k=1

Ik(x)
p−→ E I1(x) = F (x) as n→∞,

which proves (a). To prove (b) we note that Theorem 5.2, similarly, yields

√
n(Fn(x)− F (x)) d−→ N(0, σ2(x)) as n→∞,

where σ2(x) = Var I1(x) = F (x)(1− F (x)). 2

Remark 5.4. Using the strong law cited in Remark 5.1, one can in fact show
that Fn(x) a.s.−→ F (x) as n → ∞. A further strengthening is the Glivenko–
Cantelli theorem, which states that

sup
x
|Fn(x)− F (x)| a.s.−→ 0 as n→∞.

Remark 5.5. The empirical distribution function is a useful tool for estimat-
ing the true (unknown) distribution function. More precisely, part (a) shows
that the empirical distribution at some point x is close to the true value F (x)
for large samples. Part (b) gives an estimate of the deviation from the true
value. Another use of the empirical distribution is to test the hypothesis that
a sample or a series of observations actually has been taken from some pre-
specified distribution. One such test is the Kolmogorov test, which is based
on the quantity of the left-hand side in the Glivenko–Cantelli theorem cited
above.

A related test quantity, which is useful for testing whether two samples
of equal size have been taken from the same distribution or population is
supx |F

(1)
n (x) − F (2)

n (x)|, where F (1)
n and F

(2)
n are the empirical distribution

functions of the two samples. 2

The law of large numbers states that P (|X̄n − µ| > ε) → 0 as n → ∞
for any ε > 0, which means that X̄n − µ is “small” (with high probability)
when n is “large.” This can be interpreted as a qualitative statement. A natural
question now is how small? The central limit theorem states that σ−1

√
n(X̄n−

µ) d−→ N as n→∞, whereN ∈ N(0, 1), which means that “σ−1
√
n(X̄n−µ) ≈
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N ,” or, equivalently, that “X̄n−µ ≈ Nσ/
√
n” when n is “large” (provided the

variance is finite). This is a quantitative statement. Alternatively, we may say
that the central limit theorem provides information on the rate of convergence
in the law of large numbers.

For example, if X1, X2, . . . is a sequence of independent, U(0, 1)-distri-
buted random variables, the law of large numbers only provides the informa-
tion that

P (|X̄n − 1
2 | >

1
10 )→ 0 as n→∞,

whereas the central limit theorem yields the numerical result

P (|X̄n − 1
2 | >

1
10 ) ≈ 2

(
1− Φ(

√
12n
10 )

)
,

which may be computed for any given sample size n.

Remark 5.6. The obvious next step would be to ask for rates of convergence in
the central limit theorem, that is, to ask for a more detailed explanation of the
statement that “X̄n is approximately normally distributed when n is large,”
the corresponding qualitative statement of which is “F(Sn−nµ)/σ

√
n(x)−Φ(x)

is small when n is large.” The following is a quantitative result meeting this
demand: Suppose, in addition, that E|X1|3 <∞. Then

sup
x
|FSn−nµ

σ
√

n
(x)− Φ(x)| ≤ C · E|X1|3

σ3
√
n
, (5.4)

where C is a constant (0.7655 is the current best estimate). 2

We close this section with an example and an exercise. The example also
provides a solution to Problem 3.8.13(a), so the reader who has not (yet)
solved that problem should skip it.

Example 5.2. Let X1, X2, . . . be independent, C(0, 1)-distributed random
variables. Then the fact that ϕX(t) = e−|t| and formula (5.1) tell us that

ϕX̄n
(t) = (ϕX1

(
t/n)

)n =
(
e−|t/n|)n = e−|t| = ϕX1(t).

It follows from the uniqueness theorem for characteristic functions that

X̄n
d= X1, for all n. (5.5)

In particular, the law of large numbers does not hold. However, this is no
contradiction, because the mean of the Cauchy distribution does not exist. 2

6 Convergence of Sums of Sequences of Random
Variables

Let X1, X2, . . . and Y1, Y2, . . . be sequences of random variables. Suppose
that Xn → X and that Yn → Y as n → ∞ in one of the four senses defined
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above. In this section we shall determine to what extent we may conclude that
Xn + Yn → X + Y as n→∞ (in the same sense).

Again, it is instructive to recall the corresponding proof for sequences of
real numbers. Thus, assume that a1, a2, . . . and b1, b2, . . . are sequences of reals
such that

an → a and bn → b as n→∞. (6.1)

The conclusion that an + bn → a + b as n → ∞ follows from the triangle
inequality:

|an + bn − (a+ b)| = |(an − a) + (bn − b)| ≤ |an − a|+ |bn − b| → 0 (6.2)

as n→∞.
Alternatively, we could argue as follows. Given ε > 0, we have

|an − a| < ε for n > n1(ε) and |bn − b| < ε for n > n2(ε),

from which it follows that

|an + bn − (a+ b)| < 2ε for n > max{n1(ε), n2(ε)},

which yields the assertion.
Yet another proof is obtained by assuming the opposite in order to obtain

a contradiction. Suppose that

an + bn 6→ a+ b as n→∞. (6.3)

We can then find infinitely many values of n such that, for some ε > 0,

|an + bn − (a+ b)| > ε, (6.4)

from which we conclude that for every such n

|an − a| >
ε

2
or |bn − b| >

ε

2
. (6.5)

It follows that there must exist infinitely many n such that (at least) one of
the inequalities in (6.5) holds. This shows that (at least) one of the statements
an → a as n→∞ or bn → b as n→∞ cannot hold, in contradiction to (6.1).

Now let us turn our attention to the corresponding problem for sums of
sequences of random variables.

Theorem 6.1. Let X1, X2, . . . and Y1, Y2, . . . be sequences of random vari-
ables such that

Xn
a.s.−→ X and Yn

a.s.−→ Y as n→∞.

Then
Xn + Yn

a.s.−→ X + Y as n→∞.
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Proof. We introduce the sets NX and NY from Theorem 2.1 and choose ω ∈
(NX ∪ NY )c. The conclusion now follows by modifying part (i) in the proof
of Theorem 2.1 in the obvious manner (cf. (6.2)). 2

The corresponding results for convergence in probability and mean con-
vergence follow by analogous modifications of the proof of Theorem 2.1, parts
(ii) and (iii), respectively.

Theorem 6.2. Let X1, X2, . . . and Y1, Y2, . . . be sequences of random vari-
ables such that

Xn
p−→ X and Yn

p−→ Y as n→∞.

Then
Xn + Yn

p−→ X + Y as n→∞.
2

Theorem 6.3. Let X1, X2, . . . and Y1, Y2, . . . be sequences of random vari-
ables such that, for some r > 0,

Xn
r−→ X and Yn

r−→ Y as n→∞.

Then
Xn + Yn

r−→ X + Y as n→∞.
2

Exercise 6.1. Complete the proof of Theorem 6.1 and prove Theorems 6.2
and 6.3. 2

As for convergence in distribution, a little more care is needed, in that some
additional assumption is required. We first prove a positive result under the
additional assumption that one of the limiting random variables is degenerate,
and in Theorem 6.6 we prove a result under extra independence conditions.

Theorem 6.4. Let X1, X2, . . . and Y1, Y2, . . . be sequences of random vari-
ables such that

Xn
d−→ X and Yn

p−→ a as n→∞,

where a is a constant. Then

Xn + Yn
d−→ X + a as n→∞.

Proof. The proof is similar to that of Step IV in the proof of Theorem 3.1.
Let ε > 0 be given. Then

FXn+Yn(x) = P (Xn + Yn ≤ x)
= P ({Xn + Yn ≤ x} ∩ {|Yn − a| ≤ ε})

+ P ({Xn + Yn ≤ x} ∩ {|Yn − a| > ε})
≤ P ({Xn ≤ x− a+ ε} ∩ {|Yn − a| ≤ ε})

+ P (|Yn − a| > ε)
≤ P (Xn ≤ x− a+ ε) + P (|Yn − a| > ε)
= FXn(x− a+ ε) + P (|Yn − a| > ε) ,
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from which it follows that

lim sup
n→∞

FXn+Yn(x) ≤ FX(x− a+ ε) (6.6)

for x− a+ ε ∈ C(FX). A similar argument shows that

lim inf
n→∞

FXn+Yn(x) ≥ FX(x− a− ε) (6.7)

for x−a−ε ∈ C(FX); we leave that as an exercise. Since ε > 0 may be arbitrar-
ily small (and since FX has only at most a countable number of discontinuity
points), we finally conclude that

FXn+Yn
(x)→ FX(x− a) = FX+a(x) as n→∞

for x− a ∈ C(FX), that is, for x ∈ C(FX+a). 2

Remark 6.1. The strength of the results so far is that no assumptions about
independence have been made. 2

The assertions above also hold for differences, products, and ratios. We
leave the formulations and proofs as an exercise, except for the result corre-
sponding to Theorem 6.4, which is formulated next.

Theorem 6.5. Let X1, X2, . . . and Y1, Y2, . . . be sequences of random vari-
ables. Suppose that

Xn
d−→ X and Yn

p−→ a as n→∞,

where a is a constant. Then

Xn + Yn
d−→ X + a,

Xn − Yn
d−→ X − a,

Xn · Yn
d−→ X · a,

Xn

Yn

d−→ X

a
, for a 6= 0,

as n→∞. 2

Remark 6.2. Theorem 6.5 is frequently called Cramér’s theorem or Slutsky’s
theorem. 2

Example 6.1. Let X1, X2, . . . be independent, U(0, 1)-distributed random
variables. Show that

X1 +X2 + · · ·+Xn

X2
1 +X2

2 + · · ·+X2
n

p−→ 3
2

as n→∞.



6 Convergence of Sums of Sequences of Random Variables 169

Solution. When we multiply the numerator and denominator by 1/n, the ratio
turns into

(X1 +X2 + · · ·+Xn)/n
(X2

1 +X2
2 + · · ·+X2

n)/n
.

The numerator converges, according to the law of large numbers, to EX1 =
1/2 as n → ∞. Since X2

1 , X
2
2 , . . . are independent, equidistributed random

variables with finite mean, another application of the law of large numbers
shows that the denominator converges to EX2

1 = 1/3 as n→∞. An applica-
tion of Theorem 6.5 finally shows that the ratio under consideration converges
to the ratio of the limits, that is, to (1/2)/(1/3) = 3/2 as n→∞.

Example 6.2. Let X1, X2, . . . be independent, L(1)-distributed random vari-
ables. Show that

√
n
X1 +X2 + · · ·+Xn

X2
1 +X2

2 + · · ·+X2
n

d−→ N(0, σ2) as n→∞ ,

and determine σ2.

Solution. By beginning as in the previous example, the left-hand side becomes

(X1 +X2 + · · ·+Xn)/
√
n

(X2
1 +X2

2 + · · ·+X2
n)/n

.

By the central limit theorem the numerator converges in distribution to the
N(0, 2)-distribution as n→∞; by the law of large numbers, the denominator
converges to EX2

1 = 2 as n→∞. It follows from Cramér’s theorem (Theorem
6.5) that the ratio converges in distribution to Y d= 1/2 ·N(0, 2) d= N(0, 1/2)
as n→∞. 2

Next we present the announced result for sums of sequences of random
variables under certain independence assumptions.

Theorem 6.6. Let X1, X2, . . . and Y1, Y2, . . . be sequences of random vari-
ables such that

Xn
d−→ X and Yn

d−→ Y as n→∞.

Suppose further that Xn and Yn are independent for all n and that X and Y
are independent. Then

Xn + Yn
d−→ X + Y as n→∞.

Proof. The independence assumption suggests the use of transforms.
It follows from the continuity theorem for characteristic functions, Theo-

rem 4.3, that it suffices to show that

ϕXn+Yn
(t)→ ϕX+Y (t) as n→∞ for −∞ < t <∞. (6.8)
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In view of Theorem 3.4.6, it suffices to show that

ϕXn
(t)ϕYn

(t)→ ϕX(t)ϕY (t) as n→∞ for −∞ < t <∞.

This, however, is a simple consequence of the fact that the individual sequences
of characteristic functions converge (and of Remark 4.2). 2

In Sections 1 and 4 we showed that a binomial distribution with large n and
small p = λ/n for some λ > 0 may be approximated with a suitable Poisson
distribution. As an application of Theorem 6.6 we prove, in the following
example, an addition theorem for binomial distributions with large sample
sizes and small success probabilities.

Example 6.3. Let Xn ∈ Bin(nx, px(n)), let Yn ∈ Bin(ny, py(n)), and suppose
that Xn and Yn are independent for all n ≥ 1. Suppose in addition that
nx → ∞ and px(n) → 0 such that nxpx(n) → λx as nx → ∞, and that
ny →∞ and py(n)→ 0 such that nypy(n)→ λy as ny →∞.

For the case px(n) = λx/nx and py(n) = λy/ny, we know from Examples

1.4 and 4.3 that Xn
d−→ Po(λx) as nx → ∞ and that Yn

d−→ Po(λy) as
ny → ∞; for the general case see Problem 8.10(a). Furthermore, it is clear
that the two limiting random variables are independent. It therefore follows
from Theorem 6.6 and the addition theorem for the Poisson distribution that

Xn + Yn
d−→ Po(λx + λy) as nx and ny →∞.

In particular, this is true if the sample sizes are equal, that is, when nx =
ny →∞. 2

A common mathematics problem is whether or not one may interchange
various operations, for example, taking limits and integrating. The final result
of this section provides a useful answer in one simple case to the following
problem.

Suppose that X1, X2, . . . is a sequence of random variables that converges
in some sense to the random variable X and that g is a real-valued function.
Is it true that the sequence g(X1), g(X2), . . . converges (in the same sense)?
If so, does the limiting random variable equal g(X)?

Theorem 6.7. Let X1, X2, . . . be random variables such that

Xn
p−→ a as n→∞.

Suppose, further, that g is a function that is continuous at a. Then

g(Xn)
p−→ g(a) as n→∞.

Proof. The assumption is that

P (|Xn − a| > δ)→ 0 as n→∞ ∀ δ > 0, (6.9)
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and we wish to prove that

P (|g(Xn)− g(a)| > ε)→ 0 as n→∞ ∀ ε > 0. (6.10)

The continuity of g at a implies that

∀ ε > 0 ∃ δ > 0 such that |x− a| < δ =⇒ |g(x)− g(a)| < ε,

or, equivalently, that

∀ ε > 0 ∃ δ > 0 such that |g(x)− g(a)| > ε =⇒ |x− a| > δ. (6.11)

From (6.11) we conclude that

{ω : |g(Xn(ω))− g(a)| > ε} ⊂ {ω : |Xn(ω)− a| > δ},

that is, ∀ ε > 0 ∃ δ > 0 such that

P (|g(Xn)− g(a)| > ε) ≤ P (|Xn − a| > δ). (6.12)

Since the latter probability tends to zero for all δ, this is, in particular, true
for the very δ we chose in (6.12) as a partner of the arbitrary ε > 0 with which
we started. 2

Example 6.4. Let Y1, Y2, . . . be random variables such that Yn
p−→ 2 as n→

∞. Then Y 2
n

p−→ 4 as n → ∞, since the function g(x) = x2 is continuous at
x = 2.

Example 6.5. Let X1, X2, . . . be i.i.d. random variables with finite mean µ ≥
0. Show that

√
X̄n

p−→ √µ as n→∞.

To see, this we first note that by the law of large numbers we have X̄n
p−→ µ

as n → ∞, and since the function g(x) =
√
x is continuous, in particular at

x = µ, the conclusion follows. 2

Exercise 6.2. It is a little harder to show that if, instead, we assume that
Xn

p−→ X as n → ∞ and that g is continuous, then g(Xn)
p−→ g(X) as

n→∞. Generalize the proof of Theorem 6.7, and try to find out why this is
harder. 2

We conclude this section with some further examples, which aim to com-
bine Theorems 6.5 and 6.7.

Example 6.6. Let {Xn, n ≥ 1} be independent, N(0, 1)-distributed random
variables. Show that

X1√
1
n

∑n
k=1X

2
k

d−→ N(0, 1) as n→∞.
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Since the X1 in the numerator is standard normal, it follows in particular that
X1

d−→ N(0, 1) as n → ∞. As for the denominator, 1
n

∑n
k=1X

2
k

p−→ EX2

= 1 as n → ∞ in view of the law of large numbers (recall Exercise 5.1). It
follows from Theorem 6.7 (cf. also Example 6.5) that√√√√ 1

n

n∑
k=1

X2
k

p−→ 1 as n→∞.

An application of Cramér’s theorem finally proves the conclusion.

Example 6.7. Let Zn ∈ N(0, 1) and Vn ∈ χ2(n) be independent random vari-
ables, and set

Tn =
Zn√

Vn

n

, n = 1, 2, . . . .

Show that
Tn

d−→ N(0, 1) as n→∞.

Solution. Since E Vn = n and VarVn = 2n, it follows from Chebyshev’s in-
equality that

P (|Vn

n
− 1| > ε) ≤

Var(Vn

n )
ε2

=
2n

n2 · ε2
=

2
nε2
→ 0 as n→∞

and hence that Vn/n
p−→ 1 as n → ∞. Since g(x) =

√
x is continuous at

x = 1, it further follows, from Theorem 6.7, that
√
Vn/n

p−→ 1 as n → ∞.
An application of Cramér’s theorem finishes the proof. 2

Remark 6.3. From statistics we know that Tn ∈ t(n) and that the t-distri-
bution, for example, is used in order to obtain confidence intervals for µ when
σ is unknown in the normal distribution. When n, the number of degrees of
freedom, is large, one approximates the t-percentile with the corresponding
percentile of the standard normal distribution. Example 6.7 shows that this
is reasonable in the sense that t(n) d−→ N(0, 1) as n → ∞. In this case the
percentiles converge too, namely, tα(n) → λα as n → ∞ (since the normal
distribution function is strictly increasing).

Remark 6.4. It is not necessary that Vn and Zn are independent for the con-
clusion to hold. It is, however, necessary in order for Tn to be t-distributed,
which is of statistical importance; cf. Remark 6.3. 2

The following exercise deals with the analogous problem of the success
probability in Bernoulli trials or coin tossing experiments being unknown:

Exercise 6.3. Let X1, X2, . . . , Xn be independent, Be(p)-distributed ran-
dom variables, 0 < p < 1, and set X̄n = (1/n)

∑n
k=1Xk. The interval
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X̄n ± λα/2

√
X̄n(1− X̄n)/n is commonly used as an approximate confidence

interval for p on the confidence level 1−α. Show that this is acceptable in the
sense that

X̄n − p√
X̄n(1− X̄n)/n

d−→ N(0, 1) as n→∞. 2

Finally, in this section we provide an example where a sequence of random
variables converges in distribution to a standard normal distribution, but the
variance tends to infinity.

Example 6.8. Let X2, X3, . . . be as described in Example 3.1 and, further-
more, independent of X ∈ N(0, 1). Set

Yn = X ·Xn, n ≥ 2.

Show that
Yn

d−→ N(0, 1) as n→∞, (6.13)

that
E Yn = 0, (6.14)

and (but) that
VarYn → +∞ as n→∞. (6.15)

Solution. Since Xn
p−→ 1 as n → ∞ and X ∈ N(0, 1), an application of

Cramér’s theorem proves (6.13).
Furthermore, by independence,

E Yn = E(X ·Xn) = EX · EXn = 0 · EXn = 0 ,

and

VarYn = E Y 2
n = E(X ·Xn)2 = EX2 · EX2

n

= 1 ·
(
12
(
1− 1

n

)
+ n2 · 1

n

)
= 1− 1

n
+ n→ +∞ as n→∞. 2

7 The Galton–Watson Process Revisited

In Section 3.7 we encountered branching processes, more precisely, Galton–
Watson processes defined as follows:

At time t = 0 there exists an initial population, which we suppose consists
of one individual: X(0) = 1. In the following, every individual gives birth to a
random number of children, who during their lifespans give birth to a random
number of children, and so on. The reproduction rules for the Galton–Watson
process are that all individuals give birth according to the same probability
law, independently of each other, and that the number of children produced by
an individual is independent of the number of individuals in their generation.
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We further introduced the random variables

X(n) = # individuals in generation n, n ≥ 1,

and used Y and {Yk, k ≥ 1} as generic random variables to denote the number
of children obtained by individuals. We also excluded the case P (Y = 1) = 1,
and for asymptotics the case P (Y = 0) = 0 (since otherwise the population
can never die out).

In Problem 3.8.46 we considered the total population “so far”, that is, we
let Tn, n ≥ 1, denote the total progeny up to and including the nth generation,
viz.,

Tn = 1 +X(1) + · · ·+X(n), n ≥ 1.

With g(t) and Gn(t) being the generating functions of Y and Tn, respectively,
the task was to establish the relation

Gn(t) = t · g
(
Gn−1(t)

)
. (7.1)

The trick to see that this is true is to rewrite Tn as

Tn = 1 +
X(1)∑
k=0

Tn−1(k),

where Tn−1(k) are i.i.d. random variables corresponding to the total progeny
up to and including generation n− 1 of the children in the first generation.

Now, suppose that m = E Y ≤ 1. We then know from Theorem 3.7.3 that
the probability of extinction is equal to 1 (η = 1). This means that there will
be a random variable T that describes the total population, where

T = lim
n→∞

Tn.

More precisely the family of random variable Tn ↗ T as n → ∞, which, in
particular, implies that the generating functions converge. Letting n→∞ in
equation (7.1) we obtain

G(t) = tg
(
G(t)

)
, (7.2)

where thus G(t) = gT (t).
Letting t ↗ 1 we find that G(1) = g(G(1)), that is, G(1) is a root of

the equation t = g(t). But since there is no root to this equation in [0, 1) we
conclude that G(1) = 1, which shows that T is a bona fide random variable;
P (T <∞) = 1.

By differentiating and recalling our formulas in Section 3.2 that relate
derivatives and moments (provided they exist) we now may derive expressions
for the mean and the variance of T , the total progeny of the process.

If m = 1 we have EX(n) = 1 for all n ≥ 1, so that E T = +∞. We
therefore suppose that m < 1.
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Differentiating (7.2) twice we obtain

G′(t) = g(G(t)) + tg′
(
G(t)

)
G′(t),

G′′(t) = 2g′
(
G(t)

)
G′(t) + tg′′

(
G(t)

)
·
(
G′(t)

)2 + tg′
(
G(t)

)
G′′(t).

Letting t↗ 1 in the first derivative now yields

E T = G′(1) = g(G(1)) + g′
(
G(1)

)
G′(1) = g(1) + g′(1)G′(1) = 1 +m · E T,

so that

E T =
1

1−m
, (7.3)

in agreement with Problem 3.8.44b.
If, in addition VarY = σ2 < ∞ we may let t ↗ 1 in the expression of

second derivative, which yields

E T (T − 1) = G′′(1) = 2g′
(
G(1)

)
G′(1) + g′′

(
G(1)

)
·
(
G′(1)

)2
+ g′

(
G(1)

)
G′′(1)

= 2mE T + E Y (Y − 1) · (E T )2 +m · E T (T − 1) ,

which, after rearranging and joining with (7.3), tells us that

VarT =
σ2

(1−m)3
. (7.4)

We conclude by mentioning the particular case when Y ∈ Po(m), that
is, when every individual produces a Poisson distributed number of children.
Given our results above it is clear that we must have m ≤ 1.

In this case G is implicitly given via the relation

G(t) = t · eλ(G(t)−1) , (7.5)

from which one can show that the corresponding distribution is given by

P (T = k) =
1
k!

(λk)k−1e−λk, k = 1, 2, . . . .

This particular distribution has a name; it is called the Borel distribution.
Since E Y = VarY = m when Y ∈ Po(m), we have

E T =
1

1−m
and VarT =

m

(1−m)3
. (7.6)

in this case (provided, of course, that m < 1).

Exercise 7.1. Check (7.6) by differentiating (7.2).
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Another special case is when Y ∈ Ge(p), where p ≥ 1/2 in order for
m = p/q ≤ 1. Then

G(t) = t · p

1− qG(t)
. (7.7)

By solving equation (7.7), which is a second degree equation in G(t), one finds
that

G(t) =
1−
√

1− 4pqt
2q

. (7.8)

8 Problems

1. Let X1, X2, . . . be U(0, 1)-distributed random variables. Show that
(a) max1≤k≤nXk

p−→ 1 as n→∞,
(b) min1≤k≤nXk

p−→ 0 as n→∞.
2. Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables with density

f(x) =

{
e−(x−a), for x ≥ a,
0, for x < a.

Set Yn = min{X1, X2, . . . , Xn}. Show that

Yn
p−→ a as n→∞.

Remark. This is a translated exponential distribution; technically, if X
is distributed as above, then X − a ∈ Exp(1). We may interpret this
as X having age a and a remaining lifetime X − a, which is standard
exponential.

3. Let Xk, k ≥ 1, be i.i.d. random variables with finite variance σ2, and let,
for n ≥ 1,

X̄n =
1
n

n∑
k=1

Xk and s2n =
1

n− 1

n∑
k=1

(Xk − X̄n)2

denote the arithmetic mean and sample variance, respectively. It is well
known(?) that s2n is an unbiased estimator of σ2, that is, that E s2n = σ2.
(a) Prove this well known fact.
(b) Prove that, moreover, s2n

p−→ σ2 as n→∞.
4. Let (Xk, Yk), 1 ≤ k ≤ n, be a sample from a two-dimensional distribution

with mean vector and covariance matrix

µ =
(
µx

µy

)
, Λ =

(
σ2

x ρ
ρ σ2

y

)
,
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respectively, and let

X̄n =
1
n

n∑
k=1

Xk, s2n,x =
1

n− 1

n∑
k=1

(Xk − X̄n)2,

Ȳn =
1
n

n∑
k=1

Yk, s2n,y =
1

n− 1

n∑
k=1

(Yk − Ȳn)2,

denote the arithmetic means and sample variances of the respective com-
ponents. The empirical correlation coefficient is defined as

rn =
∑n

k=1(Xk − X̄n)(Yk − Ȳn)√∑n
k=1(Xk − X̄n)2

∑n
k=1(Yk − Ȳn)2

.

Prove that
rn

p−→ ρ as n→∞.

Hint. s2n,x
p−→??, 1

n

∑n
k=1XkYk

p−→??.
5. LetX1, X2, . . . be independent, C(0, 1)-distributed random variables. De-

termine the limit distribution of

Yn =
1
n
·max{X1, X2, . . . , Xn}

as n→∞.
Remark. It may be helpful to know that arctanx+ arctan 1/x = π/2 and
that arctan y = y − y3/3 + y5/5− y7/7 + · · · .

6. Suppose that X1, X2, . . . are independent, Pa(1, 2)-distributed random
variables, and set Yn = max{X1, X2, . . . , Xn}.
(a) Show that Yn

p−→ 1 as n→∞.
It thus follows that Yn ≈ 1 with a probability close to 1 when n is
large. One might therefore suspect that there exists a limit theorem
to the effect that Yn − 1, suitably rescaled, converges in distribution
as n→∞ (note that Yn > 1 always).

(b) Show that n(Yn − 1) converges in distribution as n → ∞, and deter-
mine the limit distribution.

7. Let X1, X2, . . . be i.i.d. random variables, and let

τ(t) = min{n : Xn > t}, t ≥ 0.

(a) Determine the distribution of τ(t).
(b) Show that, if pt = P (X1 > t)→ 0 as t→∞, then

ptτ(t)
d−→ Exp(1) as t→∞.

8. Suppose that Xn ∈ Ge(λ/(n + λ)), n = 1, 2, . . . , where λ is a positive
constant. Show that Xn/n converges in distribution to an exponential
distribution as n → ∞, and determine the parameter of the limit distri-
bution.
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9. Let X1, X2, . . . be a sequence of random variables such that

P
(
Xn =

k

n

)
=

1
n
, for k = 1, 2, . . . , n.

Determine the limit distribution of Xn as n→∞.
10. Let Xn ∈ Bin(n, pn).

(a) Suppose that n · pn → m as n→∞. Show that

Xn
d−→ Po(m) as n→∞.

(b) Suppose that pn → 0 and that npn →∞ as n→∞. Show that

Xn − npn√
npn

d−→ N(0, 1) as n→∞.

(c) Suppose that npn(1− pn)→∞ as n→∞. Show that

Xn − npn√
npn(1− pn)

d−→ N(0, 1) as n→∞.

Remark. These results, which usually are presented without proofs in a
first probability course, verify the common approximations of the binomial
distribution with the Poisson and normal distributions.

11. Let Xn ∈ Bin(n2,m/n), m > 0. Show that

Xn − n ·m√
nm

d−→ N(0, 1) as n→∞.

12. Let Xn1, Xn2, . . . , Xnn be independent random variables with a common
distribution given as follows:

P (Xnk = 0) = 1− 1
n
− 1
n2

, P (Xnk = 1) =
1
n
, P (Xnk = 2) =

1
n2
,

where k = 1, 2, . . . , n and n = 2, 3, . . . . Set Sn = Xn1 +Xn2 + · · ·+Xnn,
n ≥ 2. Show that

Sn
d−→ Po(1) as n→∞.

13. Let X1, X2, . . . be independent, equidistributed random variables with
characteristic function

ϕ(t) =

{
1−

√
|t|(2− |t|), for |t| ≤ 1,

0, for |t| ≥ 1 .

Set Sn =
∑n

k=1Xk, n ≥ 1. Show that Sn/n
2 converges in distribution as

n→∞, and determine the limit distribution.
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14. Let Xn1, Xn2, . . . , Xnn be independent random variables, with a common
distribution given, and set

P (Xnk = 0) = 1− 2
n
− 4
n3

, P (Xnk = 1) =
2
n
, P (Xnk = 2) =

4
n3
,

and Sn = Xn1 + Xn2 + · · · + Xnn for k = 1, 2, . . . , n and n ≥ 2. Show
that

Sn
d−→ Po(λ) as n→∞,

and determine λ.
15. Let X and Y be random variables such that

Y | X = x ∈ N(0, x) with X ∈ Po(λ).

(a) Find the characteristic function of Y .
(b) Show that

Y√
λ

d−→ N(0, 1) as λ→∞.

16. Let X1, X2, . . . be independent, L(a)-distributed random variables, and
let N ∈ Po(m) be independent of X1, X2, . . . . Determine the limit dis-
tribution of SN = X1 + X2 + · · · + XN (where S0 = 0) as m → ∞ and
a→ 0 in such a way that m · a2 → 1.

17. Let N , X1, X2, . . . be independent random variables such that N ∈ Po(λ)
and Xk ∈ Po(µ), k = 1, 2, . . . . Determine the limit distribution of Y =
X1 +X2 + · · ·+XN as λ→∞ and µ→ 0 such that λ · µ→ γ > 0. (The
sum is zero for N = 0.)

18. Let X1, X2, . . . be independent Po(m)-distributed random variables, sup-
pose that N ∈ Ge(p) is independent of X1, X2, . . . , and set SN =
X1 + X2 + · · · + XN (and S0 = 0 for N = 0). Let m → 0 and p → 0
in such a way that p/m → α, where α is a given positive number. Show
that SN converges in distribution, and determine the limit distribution.

19. Suppose that the random variables Nn, X1, X2, . . . are independent, that
Nn ∈ Ge(pn), 0 < pn < 1, and that X1, X2, . . . are equidistributed with
finite mean µ. Show that if pn → 0 as n→∞ then pn(X1+X2+· · ·+XNn

)
converges in distribution as n→∞, and determine the limit distribution.

20. Suppose that X1, X2, . . . are i.i.d. symmetric random variables with finite
variance σ2, let Np ∈ Fs(p) be independent of X1, X2, . . . , and set Yp =∑Np

k=1Xk. Show that

√
pYp

d−→ L(a) as p→ 0,

and determine a.
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21. LetX1, X2, . . . be independent, U(0, 1)-distributed random variables, and
let Nm ∈ Po(m) be independent of X1, X2, . . . . Set

Vm = max{X1, . . . , XNm}

(Vm = 0 when Nm = 0). Determine
(a) the distribution function of Vm,
(b) the moment generating function of Vm.

It is reasonable to believe that Vm is “close” to 1 when m is “large”
(cf. Problem 8.1). The purpose of parts (c) and (d) is to show how
this can be made more precise.

(c) Show that E Vm → 1 as m→∞.
(d) Show that m(1 − Vm) converges in distribution as m → ∞, and de-

termine the limit distribution.
22. LetX1n, X2n, . . . , Xnn be independent random variables such thatXkn ∈

Be(pk,n), k = 1, 2, . . . , n, n ≥ 1. Suppose, further, that
∑n

k=1 pk,n →
λ < ∞ and that max1≤k≤n pk,n → 0 as n → ∞. Show that

∑n
k=1Xkn

converges in distribution as n→∞, and determine the limit distribution.
23. Show that

lim
n→∞

e−n
n∑

k=0

nk

k!
=

1
2

by applying the central limit theorem to suitably chosen, independent,
Poisson-distributed random variables.

24. Let X1, X2, . . . be independent, U(−1, 1)-distributed random variables.
(a) Show that

Yn =
∑n

k=1Xk∑n
k=1X

2
k +

∑n
k=1X

3
k

converges in probability as n→∞, and determine the limit.
(b) Show that Yn, suitably normalized, converges in distribution as n →
∞, and determine the limit distribution.

25. Let Xn ∈ Γ(n, 1), and set

Yn =
Xn − n√

Xn

.

Show that Yn
d−→ N(0, 1) as n→∞.

26. Let X1, X2, . . . be positive, i.i.d. random variables with mean µ and finite
variance σ2, and set Sn =

∑n
k=1Xk, n ≥ 1. Show that

Sn − nµ√
Sn

d−→ N(0, b2) as n→∞,

and determine b2.
27. Let X1, X2, . . . be i.i.d. random variables with finite mean µ 6= 0, and set

Sn =
∑n

k=1Xk, n ≥ 1.
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(a) Show that

Sn − nµ
Sn + nµ

converges in probability as n→∞,

and determine the limit.
(b) Suppose in addition that 0 < VarX = σ2 <∞. Show that

√
n
Sn − nµ
Sn + nµ

d−→ N(0, a2) as n→∞,

and determine a2.
28. Suppose that X1, X2, . . . are i.i.d. random variables with mean 0 and

variance 1. Show that∑n
k=1Xk√∑n

k=1X
2
k

d−→ N(0, 1) as n→∞.

29. Let X1, X2, . . . and Y1, Y2, . . . be two (not necessarily independent)
sequences of random variables and suppose that Xn

d−→ X and that
P (Xn 6= Yn)→ 0 as n→∞. Prove that (also)

Yn
d−→ X as n→∞.

30. Let {Yk, k ≥ 1} be independent, U(−1, 1)-distributed random variables,
and set

Xn =
∑n

k=1 Yk√
n ·max1≤k≤n Yk

.

Show that Xn
d−→ N(0, 1/3) as n→∞.

31. Let X1, X2, . . . be independent, U(−a, a)-distributed random variables
(a > 0). Set

Sn =
n∑

k=1

Xk, Zn = max
1≤k≤n

Xk, and Vn = min
1≤k≤n

Xk.

Show that SnZn/Vn, suitably normalized, converges in distribution as
n→∞, and determine the limit distribution.

32. Let X1, X2, . . . be independent, U(0, 1)-distributed random variables,
and set

Zn = max
1≤k≤n

Xk and Vn = min
1≤k≤n

Xk.

Determine the limit distribution of nVn/Zn as n→∞.
33. Let X1, X2, . . . be independent random variables such that Xk ∈ Exp(k!),

k = 1, 2 . . . , and set Sn =
∑n

k=1Xk, n ≥ 1. Show that

Sn

n!
d−→ Exp(1) as n→∞.

Hint. What is the distribution of Xn/n! ?
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34. Let X1, X2, . . . be i.i.d. random variables with expectation 1 and finite
variance σ2, and set Sn = X1 +X2 + · · ·+Xn, for n ≥ 1. Show that√

Sn −
√
n

d−→ N(0, b2) as n→∞,

and determine the constant b2.
35. Let X1, X2, . . . be i.i.d. random variables with mean µ and positive, finite

variance σ2, and set Sn =
∑n

k=1Xk, n ≥ 1. Finally, suppose that g is twice
continuously differentiable, and that g′(µ) 6= 0. Show that

√
n
(
g
(Sn

n

)
− g(µ)

)
d−→ N(0, b2) as n→∞,

and determine b2.
Hint. Try Taylor expansion.

36. Let X1, X2, . . . and Y1, Y2, . . . be independent sequences of independent
random variables. Suppose that there exist sequences {an, n ≥ 1} of real
numbers and {bn, n ≥ 1} of positive real numbers tending to infinity such
that

Xn − an

bn

d−→ Z1 and
Yn − an

bn

d−→ Z2 as n→∞,

where Z1 and Z2 are independent random variables. Show that

max{Xn, Yn} − an

bn

d−→ max{Z1, Z2} as n→∞,

min{Xn, Yn} − an

bn

d−→ min{Z1, Z2} as n→∞.

37. Suppose that {Ut, t ≥ 0} and {Vt, t ≥ 0} are families of random variables,
such that

Ut
p−→ a and Vt

d−→ V as t→∞,

for some finite constant a, and random variable V . Prove that

P (max{Ut, Vt} ≤ y)→

{
0, for y < a,

P (V ≤ y), for y > a,

as t→∞.
Remark. This is a kind of Cramér theorem for the maximum.

38. Let X1, X2, . . . be independent random variables such that, for some
fixed positive integer m, X1, . . . , Xm are equidistributed with mean µ1

and variance σ2
1 , and Xm+1, Xm+2, . . . are equidistributed with mean µ2

and variance σ2
2 . Set Sn =

∑n
k=1Xk, n ≥ 1. Show that the central limit

theorem (still) holds.
Remark. Begin with the case m = 1.
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39. Let X1, X2, . . . be U(−1, 1)-distributed random variables, and set

Yn =

Xn, for |Xn| ≤ 1− 1
n
,

n, otherwise.

(a) Show that Yn converges in distribution as n→∞, and determine the
limit distribution.

(b) Let Y denote the limiting random variable. Consider the statements
E Yn → E Y and VarYn → VarY as n→∞. Are they true or false?

40. Let Z ∈ U(0, 1) be independent of Y1, Y2, . . . , where

P (Yn = 1) = 1− 1
nα

and P (Yn = n) =
1
nα
, n ≥ 2, (α > 0),

and set
Xn = Z · Yn, n ≥ 2.

(a) Show that Xn converges in distribution as n→∞ and determine the
limit distribution.

(b) What about EXn and VarXn as n→∞?
41. Let X1, X2, . . . be identically distributed random variables converging in

distribution to the random variable X, let {an, n ≥ 1} and {bn, n ≥ 1}
be sequences of positive reals ↗ +∞, and set

Yn =

{
Xn, when Xn ≤ an,

bn, when Xn > an.

(a) Show that Yn
d−→ X as n→∞.

(b) Suppose, in addition, that E|X| < ∞. Provide some sufficient condi-
tion to ensure that E Yn → EX as n→∞.

42. The following example shows that a sequence of continuous random vari-
ables may converge in distribution without the sequence of densities being
convergent. Namely, let Xn have a distribution function given by

Fn(x) =

x−
sin(2nπx)

2nπ
, for 0 < x < 1,

0, otherwise.

Show that Xn
d−→ U(0, 1) as n → ∞, but that fn(x) does not converge

to the density of the U(0, 1)-distribution.
43. Let Y1, Y2, . . . be a sequence of random variables such that

Yn
d−→ Y as n→∞,

and let {Nn, n ≥ 1} be a sequence of nonnegative, integer-valued random
variables such that
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Nn
p−→ +∞ as n→∞.

Finally, suppose that the sequences {Nn, n ≥ 1} and Y1, Y2, . . . are inde-
pendent of each other. Prove (for example, with the aid of characteristic
functions) that

YNn

d−→ Y as n→∞.
Hint. Consider the cases {Nn ≤ M} and {Nn > M} where M is some
suitably chosen “large” integer.

44. Let X1, X2, . . . and X be normal random variables. Show that

Xn
d−→ X as n→∞ ⇐⇒

EXn → EX and VarXn → VarX as n→∞.

45. Suppose that Xn ∈ Exp(an), n ≥ 1. Show that

Xn
d−→ X ∈ Exp(a) as n→∞ ⇐⇒ an → a as n→∞.

46. Prove that if {Xn, n ≥ 1} are Poissonian random variables such that Xn

converges to X in square mean, then X must be Poissonian too.
47. Suppose that {Zk, k ≥ 1} is a sequence of branching processes—all of

them starting with one single individual at time 0. Suppose, furthermore,
that Zk

d−→ Z as k → ∞, where Z is some nonnegative integer-valued
random variable. Show that the corresponding sequence {ηk, k ≥ 1} of
extinction probabilities converges as k →∞.

48. Let X1, X2, . . . be independent random variables such that Xk ∈ Po(k),
k = 1, 2, . . . , and set Zn = 1

n{
∑n

k=1Xk−n2/2}. Show that Zn converges
in distribution as n→∞, and determine the limit distribution.
Hint. Note that Xk

d=
∑k

j=1 Yj,k for every k ≥ 1, where {Yj,k, 1 ≤ j ≤
k, k ≥ 1} are independent Po(1)-distributed random variables.

49. Suppose that N ∈ Po(λ) independent observations of a random variable,
X, with mean 0 and variance 1, are performed. Moreover, assume that N
is independent of X1, X2, . . . . Show that

X1 +X2 + · · ·+XN√
N

d−→ N(0, 1) as λ→∞.

50. The purpose of this problem is to show that one can obtain a (kind of)
central limit theorem even if the summands have infinite variance (if the
variance does not exist). A short introduction to the general topic of pos-
sible limit theorems for normalized sums without finite variance is given
in Section 7.3.
Let X1, X2, . . . be independent random variables with the following sym-
metric Pareto distribution:

fX(x) =


1
|x|3

, for |x| > 1,

0, otherwise.
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Set Sn =
∑n

k=1Xk, n ≥ 1. Show via the following steps that

Sn√
n log n

d−→ N(0, 1) as n→∞.

(Note that we do not normalize by
√
n as in the standard case.)

Fix n and consider, for k = 1, 2, . . . , n, the truncated random variables

Ynk =

{
Xk, when |Xk| ≤

√
n,

0, otherwise,

and

Znk =

{
Xk, when |Xk| >

√
n,

0, otherwise,

and note that Ynk + Znk = Xk. Further, set S′n =
∑n

k=1 Ynk and S′′n =∑n
k=1 Znk.

(a) Show that

E
∣∣ S′′n√
n log n

∣∣→ 0 as n→∞,

and conclude that
S′′n√
n log n

→ 0 in 1-mean as n→∞,

and hence in probability (why?).
(b) Show that it remains to prove that

S′n√
n log n

d−→ N(0, 1) as n→∞.

(c) Let ϕ denote a characteristic function. Show that

ϕYnk
(t) = 1− 2

∫ √
n

1

1− cos tx
x3

dx,

and hence that

ϕ S′n√
n log n

(t) =
(
1− 2

∫ √
n

1

1− cos tx√
n log n

x3
dx
)n

.

(d) Show that it remains to prove

2
∫ √

n

1

1− cos tx√
n log n

x3
dx =

t2

2n
+ o
( 1
n

)
as n→∞.

(e) Prove this relation.
Remark. Note that (a) and (b) together show that Sn and S′n have the
same asymptotic distributional behavior, that VarYnk = log n for 1 ≤ k ≤
n and n ≥ 1, and hence that we have used the “natural” normalization√

VarS′n for S′n.
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An Outlook on Further Topics

Probability theory is, of course, much more than what one will find in this
book (so far). In this chapter we provide an outlook on some extensions and
further areas and concepts in probability theory. For more we refer to the
more advanced literature cited in Appendix A.

We begin, in the first section, by presenting some extensions of the clas-
sical limit theorems, that is, the law of large numbers and the central limit
theorem, to cases where one relaxes the assumptions of independence and
equidistribution.

Another question in this context is whether there exist (other) limit dis-
tributions if the variance of the summands does not exist (is infinite). This
leads, in the case of i.i.d. summands, to the class of stable distributions and
their, what is called, domains of attraction. Sections 2 and 3 are devoted to
this problem.

In connection with the convergence concepts in Section 6.3, it was men-
tioned that convergence in r-mean was, in general, not implied by the other
convergence concepts. In Section 4 we define uniform integrability, which is
the precise condition one needs in order to assure that moments converge
whenever convergence almost surely, in probability, or in distribution holds.
As a pleasant illustration we prove Stirling’s formula with the aid of the ex-
ponential distribution.

There exists an abundance of situations where extremes rather than sums
are relevant; earthquakes, floods, storms, and many others. Analogous to
“limit theory for sums” there exists a “limit theory for extremes,” that is
for Yn = max{X1, X2, . . . , Xn}, n ≥ 1, where (in our case) X1, X2, . . . , Xn

are i.i.d. random variables. Section 5 provides an introduction to the what is
called extreme value theory. We also mention the closely related records, which
are extremes at first appearance.

Section 7 introduces the Borel–Cantelli lemmas, which are a useful tool for
studying the limit superior and limit inferior of sequences of events, and, as an
extension, in order to decide whether some special event will occur infinitely
many times or not. As a toy example we prove the intuitively obvious fact that

©  Springer Science + Business Media, LLC 2009
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if one tosses a coin an infinite number of times there will appear infinitely many
heads and infinitely many tails. For a fair coin this is trivial due to symmetry,
but what about an unfair coin? We also revisit Examples 6.3.1 and 6.3.2, and
introduce the concept of complete convergence.

The final section, preceding some problems for solution, serves as an intro-
duction to one of the most central tools in probability theory and the theory
of stochastic processes, namely the theory of martingales, which, as a very
rough definition, may be thought of as an extension of the theory of sums of
independent random variables with mean zero and of fair games. In order to
fully appreciate the theory one needs to base it on measure theory. Neverthe-
less, the basic flavor of the topic can be understood with our more elementary
approach.

1 Extensions of the Main Limit Theorems

Several generalizations of the central limit theorem seem natural, such as:

1. the summands have (somewhat) different distributions;
2. the summands are not independent ;
3. the variance does not exist.

In the first two subsections we provide some hints on the law of large
numbers and the central limit theorem for the case of independent but not
identically distributed summands. In the third subsection a few comments
are given in the case of dependent summands. Possible (other) limit theorems
when the variance is infinite (does not exist) is a separate issue, to which we
return in Sections 2 and 3 for a short introduction.

1.1 The Law of Large Numbers: The Non-i-i.d. Case

It is intuitively reasonable to expect that the law of large numbers remains
valid if the summands have different distributions—within limits.

We begin by presenting two extensions of this result.

Theorem 1.1. Let X1, X2, . . . be independent random variables with EXk =
µk and VarXk = σ2

k, and suppose that

1
n

n∑
k=1

µk → µ and that
1
n

n∑
k=1

σ2
k → σ2 as n→∞,

(where |µ| <∞ and σ2 <∞). Then

1
n

n∑
k=1

Xk
p→ µ as n→∞.
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Proof. Set Sn =
∑n

k=1Xk, mn =
∑n

k=1 µk, and s2n =
∑n

k=1 σ
2
k, and let ε > 0.

By Chebyshev’s inequality we then have

P
(∣∣∣Sn −mn

n

∣∣∣ > ε
)
≤ s2n
n2ε2

→ 0 as n→∞ ,

which tells us that
Sn −mn

n

p→ 0 as n→∞,

which implies that

Sn

n
=
Sn −mn

n
+
mn

n

p→ 0 + µ = µ as n→∞

via Theorem 6.6.2. 2

The next result is an example of the law of large numbers for weighted
sums.

Theorem 1.2. Let X1, X2, . . . be i.i.d. random variables with finite mean µ,
and let {(ank, 1 ≤ k ≤ n), n ≥ 1} be “weights,” that is, suppose that ank ≥ 0
and

∑n
k=1 ank = 1 for n = 1, 2, . . .. Suppose, in addition, that

max
1≤k≤n

ank ≤
C

n
for all n,

for some positive constant C, and set

Sn =
n∑

k=1

ankXk , n = 1, 2, . . . .

Then
Sn

p→ µ as n→∞.

Proof. The proof follows very much the lines of the previous one. We first
note that

E Sn = µ
n∑

k=1

ank = µ and that VarSn = σ2
n∑

k=1

a2
nk = σ2An ,

where thus

An =
n∑

k=1

a2
nk ≤ max

1≤k≤n
ank

n∑
k=1

ank ≤
C

n
· 1 =

C

n
.

By Chebyshev’s inequality we now obtain

P
(
|Sn − µ| > ε

)
≤ VarSn

ε2
=
σ2An

ε2
≤ σ2C

n
→ 0 as n→∞ ,

and the conclusion follows. 2
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1.2 The Central Limit Theorem: The Non-i-i.d. Case

An important criterion pertaining to the central limit theorem is the Lya-
pounov condition. It should be said, however, that more than finite variance
is necessary in order for the condition to apply. This is the price one pays
for relaxing the assumption of equidistribution. For the proof we refer to the
literature cited in Appendix A.

Theorem 1.3. Suppose that X1, X2, . . . are independent random variables,
set, for k ≥ 1, µk = EXk and σ2

k = VarXk, and suppose that E|Xk|r < ∞
for all k and some r > 2. If

β(n, r) =
∑n

k=1E|Xk − µk|r(∑n
k=1 σ

2
k

)r/2
→ 0 as n→∞, (1.1)

then ∑n
k=1(Xk − µk)√∑n

k=1 σ
2
k

d→ N(0, 1) as n→∞. 2

If, in particular, X1, X2, . . . are identically distributed and, for simplicity,
with mean zero, then Lyapounov’s condition turns into

β(n, r) =
nE|X1|r

(nσ2)r/2
=
E|X1|r

σr
· 1
n1−r/2

→ 0 as n→∞, (1.2)

which proves the central limit theorem under this slightly stronger assumption.

1.3 Sums of Dependent Random Variables

There exist many notions of dependence. One of the first things one learns
in probability theory is that the outcomes of repeated drawings of balls with
replacement from an urn of balls with different colors are independent, whereas
the drawings without replacement are not. Markov dependence means, vaguely
speaking, that the future of a process depends on the past only through the
present. Another important dependence concept is martingale dependence,
which is the topic of Section 8. Generally speaking, a typical dependence
concept is defined via some kind of decay, in the sense that the further two
elements are apart in time or index, the weaker is the dependence.

A simple such concept is m-dependence.

Definition 1.1. The sequence X1, X2, . . . is m-dependent if Xi and Xj are
independent whenever |i− j| > m. 2

Remark 1.1. Independence is the same as 0-dependence.1

1 In Swedish this looks fancier: “Oberoende” is the same as “0-beroende.”
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Example 1.1. Y1, Y2, . . . be i.i.d. random variables, and set

X1 = Y1 · Y2, X2 = Y2 · Y3, . . . , Xk = Yk · Yk+1, . . . .

The sequence X1, X2, . . . clearly is a 1-dependent sequence; neighboring X
variables are dependent, but Xi and Xj with |i− j| > 1 are independent. 2

A common example of m-dependent sequences are the so-called (m + 1)-
block factors defined by

Xn = g(Yn, Yn+1, . . . , Yn+m−1, Yn+m), n ≥ 1,

where Y1, Y2, . . . are independent random variables, and g : Rm+1 → R. Note
that our example is a 2-block factor with g(y1, y2) = y1 · y2.

The law of large numbers and the central limit theorem are both valid in
this setting. Following is the law of large numbers.

Theorem 1.4. Suppose that X1, X2, . . . is a sequence of m-dependent ran-
dom variables with finite mean µ and set Sn =

∑n
k=1Xk, n ≥ 1. Then

Sn

n

p→ µ as n→∞.

Proof. For simplicity we confine ourselves to proving the theorem for m =
1. We then separate Sn into the sums over the odd and even summands,
respectively.

Since the even as well as the odd summands are independent, the law of
large numbers for independent summands, Theorem 6.5.1 tells us that∑m

k=1X2k

m

p→ µ and
∑m

k=1X2k−1

m

p→ µ as m→∞,

so that an application of Theorem 6.6.2 yields

S2m

2m
=

1
2

∑m
k=1X2k−1

m
+

1
2

∑m
k=1X2k

m

p→ 1
2
µ+

1
2
µ = µ as m→∞,

when n = 2m is even. For n = 2m+ 1 odd we similarly obtain

S2m+1

2m+ 1
=

m+ 1
2m+ 1

·
∑m+1

k=1 X2k−1

m+ 1
+

m

2m+ 1
·
∑m

k=1X2k

m

p→ 1
2
µ+

1
2
µ = µ as m→∞ ,

which finishes the proof. 2

Exercise 1.1. Complete the proof of the theorem for general m. 2

In the m-dependent case the dependence stops abruptly. A natural gener-
alization would be to allow the dependence to drop gradually. This introduces
the concept of mixing. There are variations with different names. We refer to
the more advanced literature for details.
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2 Stable Distributions

Let X, X1, X2, . . . be i.i.d. random variables with partial sums Sn, n ≥ 1.
The law of large numbers states that Sn/n

p→ µ as n → ∞ if the mean µ is
finite. The central limit theorem states that (Sn − nµ)/(σ

√
n) d→ N(0, 1) as

n → ∞, provided the mean µ and the variance σ2 exist. A natural question
is whether there exists something “in between,” that is, can we obtain some
(other) limit by normalizing with n to some other power than 1 or 1/2? In
this section and the next one we provide a glimpse into more general limit
theorems for sums of i.i.d. random variables.

Before addressing the question just raised, here is another observation. If,
in particular, we assume that the random variables are C(0, 1)-distributed,
then we recall from Remark 6.5.2 that, for any n ≥ 1,

ϕSn
n

(t) =
(
ϕX

( t
n

))n

=
(
e−|t/n|

)n

= e−|t| = ϕX(t),

that
Sn

n

d= X for all n,

and, hence, that law of large numbers does not hold, which was no contradic-
tion, because the mean does not exist.

Now, if, instead the random variables are N(0, σ2)-distributed, then the
analogous computation shows that

ϕ Sn√
n
(t) =

(
ϕX

( t√
n

))n

=
(

exp
{
− 1

2

( t√
n

)2})n

= e−t2/2 = ϕX(t),

that is,
Sn√
n

d= X for all n,

in view of the uniqueness theorem for characteristic functions.
Returning to our question above it seems, with this in mind, reasonable to

try a distribution whose characteristic function equals exp{−|t|α} for α > 0
(provided this is really a characteristic function also when α 6= 1 and 6= 2).
By modifying the computations above we similarly find that

Sn

n1/α

d= X for all n, (2.1)

where, thus, α = 1 corresponds to the Cauchy distribution and α = 2 to the
normal distribution.

Distributions with a characteristic function of the form

ϕ(t) = e−c|t|α , where 0 < α ≤ 2 and c > 0, (2.2)

are called symmetric stable. However, ϕ as defined in (2.2) is not a character-
istic function for any α > 2.

The general definition of stable distributions, stated in terms of random
variables is as follows.
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Definition 2.1. Let X1, X2, . . . be i.i.d. random variables, and set Sn =
X1 +X2 + · · ·+Xn. The distribution of the random variables is stable (in the
broad sense) if there exist sequences an > 0 and bn such that

Sn
d= anX + bn.

The distribution is strictly stable if bn = 0 for all n. 2

Remark 2.1. The stability pertains to the fact that the sum of any number
of random variables has the same distribution as the individual summands
themselves (after scaling and translation).

Remark 2.2. One can show that if X has a stable distribution, then, neces-
sarily, an = n1/α for some α > 0, which means that our first attempt to
investigate possible characteristic functions was exhaustive (except for sym-
metry) and that, once again, only the case 0 < α ≤ 2 is possible. Moreover,
α is called the index.

Exercise 2.1. Another fact is that if X has a stable distribution with index
α, 0 < α < 2, then

E|X|r
{
<∞, for 0 < r < α,

=∞, for r ≥ α.

This implies, in particular, that the law of large numbers must hold for stable
distributions with α > 1. Prove directly via characteristic functions that this
is the case. Recall also, from above, that the case α = 1 corresponds to the
Cauchy distribution for which the law of large numbers does not hold.

We close this section by mentioning that there exist characterizations in
terms of characteristic functions for the general class of stable distributions
(not just the symmetric ones), but that is beyond the present outlook.

3 Domains of Attraction

We now return to the question posed in the introduction of Section 2, namely
whether there exist limit theorems “in between” the law of large numbers and
the central limit theorem. With the previous section in mind it is natural to
guess that the result is positive, that such results would be connected with
the stable distributions, and that the variance is not necessarily assumed to
exist.

In order to discuss this problem we introduce the notion of domains of
attraction.
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Definition 3.1. Let X, X1, X2, . . . be i.i.d. random variables with partial
sums Sn, n ≥ 1. We say that X, or, equivalently, the distribution FX , be-
longs to the domain of attraction of the (non-degenerate) distribution G if
there exist normalizing sequences {an > 0, n ≥ 1} and {bn, n ≥ 1} such that

Sn − bn
an

d→ G as n→∞.

The notation is FX ∈ D(G); alternatively, X ∈ D(Z) if Z ∈ G. 2

If VarX < ∞, the central limit theorem tells us that X belongs to the
domain of attraction of the normal distribution; choose bn = nE X, and an =√
nVarX. In particular, the normal distribution belongs to its own domain

of attraction. Recalling Section 2 we also note that the stable distributions
belong to their own domain of attraction.

In fact, the stable distributions are the only possible limit distributions.

Theorem 3.1. Only the stable distributions or random variables possess a
domain of attraction.

With this information the next problem of interest would be to exhibit
criteria for a distribution to belong to the domain of attraction of some given
(stable) distribution. In order to state such results we need some facts about
what is called regular and slow variation.

Definition 3.2. Let a > 0. A positive measurable function u on [a,∞) varies
regularly at infinity with exponent ρ, −∞ < ρ <∞, denoted u ∈ RV (ρ), iff

u(tx)
u(t)

→ xρ as t→∞ for all x > 0.

If ρ = 0 the function is slowly varying at infinity; u ∈ SV. 2

Typical examples of regularly varying functions are

xρ, xρ log+ x, xρ log+ log+ x, xρ log+ x

log+ log+ x
, and so on.

Typical slowly varying functions are the above when ρ = 0. Every positive
function with a positive finite limit as x→∞ is slowly varying.

Exercise 3.1. Check that the typical functions behave as claimed.

Here is now the main theorem.

Theorem 3.2. A random variable X with distribution function F belongs to
the domain of attraction of a stable distribution iff there exists L ∈ SV such
that

U(x) = EX2I{|X| ≤ x} ∼ x2−αL(x) as x→∞, (3.1)
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and, moreover, for α ∈ (0, 2), that

P (X > x)
P (|X| > x)

→ p and
P (X < −x)
P (|X| > x)

→ 1− p as x→∞. (3.2)

By partial integration and properties of regularly varying functions one
can show that (3.1) is equivalent to

x2P (|X| > x)
U(x)

→ 2− α
α

as x→∞, for 0 < α ≤ 2, (3.3)

P (|X| > x) ∼ 2− α
α
· L(x)
xα

as x→∞, for 0 < α < 2, (3.4)

which, in view of Theorem 3.1 yields the following alternative formulation of
Theorem 3.2.

Theorem 3.3. A random variable X with distribution function F belongs to
the domain of attraction of
(a) the normal distribution iff U ∈ SV;
(b) a stable distribution with index α ∈ (0, 2) iff (3.4) and (3.2) hold.

Let us, as a first illustration, look at the simplest example.

Example 3.1. Let X, X1, X2, . . . be independent random variables with com-
mon density

f(x) =


1

2x2
, for |x| > 1,

0, otherwise.

Note that the distribution is symmetric and that the mean is infinite.
Now, for x > 1,

P (X > x) =
1
2x
, P (X < −x) =

1
2|x|

, P (|X| > x) =
1
x
, U(x) = x− 1,

so that (3.1)–(3.4) are satisfied (p = 1/2 and L(x) = 1).

Our second example is a boundary case in that the variance does not exist,
but the asymptotic distribution is still the normal one.

Example 3.2. Suppose that X, X1, X2, . . . are independent random variables
with common density

f(x) =


1
|x|3

, for |x| > 1,

0, otherwise.

The distribution is symmetric again, the mean is finite and the variance is
infinite —

∫∞
1

(x2/x3) dx = +∞. As for (3.1) we find that
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U(x) =
∫
|y|≤x

y2f(y) dy = 2
∫ x

1

dy

y
= 2 log x,

so that U ∈ SV as x→∞, that is, X belongs to the domain of attraction of
the normal distribution.

This means that, for a suitable choice of normalizing constants {an, n ≥ 1}
(no centering because of symmetry), we have

Sn

an

d→ N(0, 1) as n→∞.

More precisely, omitting all details, we just mention that one can show that,
in fact,

Sn√
n log n

d→ N(0, 1) as n→∞.

Remark 3.1. The object of Problem 6.8.50 was to prove this result with the
aid of characteristic functions, that is, directly, without using the theory of
domains of attraction.

4 Uniform Integrability

We found in Section 6.3 that convergence in probability does not necessarily
imply convergence of moments. A natural question is whether there exists
some condition that guarantees that a sequence that converges in probability
(or almost surely or in distribution) also converges in r-mean. It turns out
that uniform integrability is the adequate concept for this problem.

Definition 4.1. A sequence X1, X2, . . . is called uniformly integrable if

E|Xn|I{|Xn| > a} → 0 as a→∞ uniformly in n. 2

Remark 4.1. If, for example, all distributions involved are continuous, this is
the same as∫

|x|>a

|x|fXn
(x) dx→ 0 as a→∞ uniformly in n. 2

The following result shows why uniform integrability is the correct concept.
For a proof and much more on uniform integrability, we refer to the literature
cited in Appendix A.

Theorem 4.1. Let X, X1, X2, . . . be random variables such that Xn
p→ X

as n→∞. Let r > 0, and suppose that E|Xn|r <∞ for all n. The following
are equivalent:

(a) {|Xn|r, n ≥ 1} is uniformly integrable;
(b)Xn

r→ X as n→∞;
(c) E|Xn|r → E|X|r as n→∞. 2
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The immediate application of the theorem is manifested in the following
exercise.

Exercise 4.1. Show that if Xn
p→ X as n→∞ and X1, X2, . . . is uniformly

integrable, then EXn → EX as n→∞. 2

Example 4.1. A uniformly bounded sequence of random variables is uniformly
integrable. Technically, if the random variables X1, X2, . . . are uniformly
bounded, there exists some constant A > 0 such that P (|Xn| ≤ A) = 1
for all n. This implies that the expectation in the definition, in fact, equals
zero as soon as a > A.

Example 4.2. In Example 6.3.1 we found that Xn converges in probability as
n→∞ and that Xn converges in r-mean as n→∞ when r < 1 but not when
r ≥ 1. In view of Theorem 4.1 it must follow that {|Xn|r, n ≥ 1} is uniformly
integrable when r < 1 but not when r ≥ 1.

Indeed, it follows from the definition that (for a > 1)

E|Xn|rI{|Xn| > a} = nr · 1
n
· I{a < n} → 0 as a→∞

uniformly in n iff r < 1, which verifies the desired conclusion. 2

Exercise 4.2. State and prove an analogous statement for Example 6.3.2.

Exercise 4.3. Consider the following modification of Example 6.3.1. Let
X1, X2, . . . be random variables such that

P (Xn = 1) = 1− 1
n

and P (Xn = 1000) =
1
n
, n ≥ 2.

Show that Xn
p→ 1 as n→∞, that {|Xn|r, n ≥ 1} is uniformly integrable for

all r > 0, and hence that Xn
r→ 1 as n→∞ for all r > 0. 2

Remark 4.2. Since X1, X2, . . . are uniformly bounded, the latter part follows
immediately from Example 4.1, but it is instructive to verify the conclusion
directly via the definition.

Note also that the difference between Exercise 4.3 and Example 6.3.1 is
that there the “rare” value n drifts off to infinity, whereas here it is a fixed
constant (1000). 2

It is frequently difficult to verify uniform integrability of a sequence di-
rectly. The following result provides a convenient sufficient criterion.

Theorem 4.2. Let X1, X2, . . . be random variables, and suppose that

sup
n
E|Xn|r <∞ for some r > 1.

Then {Xn, n ≥ 1} is uniformly integrable. In particular, this is the case if
{|Xn|r, n ≥ 1} is uniformly integrable for some r > 1.
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Proof. We have

E|Xn|I{|Xn| > a} ≤ a1−rE|Xn|rI{|Xn| > a} ≤ a1−rE|Xn|r

≤ a1−r sup
n
E|Xn|r → 0 as a→∞,

independently, hence uniformly, in n.
The particular case is immediate since more is assumed. 2

Remark 4.3. The typical case is when one wishes to prove convergence of the
sequence of expected values and knows that the sequence of variances is uni-
formly bounded. 2

We close this section with an illustration of how one can prove Stirling’s
formula via the central limit theorem with the aid of the exponential distri-
bution and Theorems 4.1 and 4.2.

Example 4.3. Let X1, X2, . . . be independent Exp(1)-distributed random
variables, and set Sn =

∑n
k=1Xk, n ≥ 1. From the central limit theorem

we know that
Sn − n√

n

d→ N(0, 1) as n→∞,

and, since, for example, the variances of the normalized partial sums are equal
to 1 for all n (so that the second moments are uniformly bounded), it follows
from Theorems 4.2 and 4.1 that

lim
n→∞

E
∣∣∣Sn − n√

n

∣∣∣ = E|N(0, 1)| =
√

2
π
. (4.1)

Since we know that Sn ∈ Γ(n, 1) the expectation can be spelled out exactly
and we can rewrite (4.1) as∫ ∞

0

∣∣∣x− n√
n

∣∣∣ 1
Γ(n)

xn−1e−x dx→
√

2
π

as n→∞. (4.2)

By splitting the integral at x = n, and making the change of variable u = x/n
one arrives after some additional computations at the relation

lim
n→∞

(
n
e

)n√2nπ
n!

= 1 ,

which is—Stirling’s formula. 2

Exercise 4.4. Carry out the details of the program. 2



5 An Introduction to Extreme Value Theory 199

5 An Introduction to Extreme Value Theory

Suppose that X1, X2, . . . is a sequence of i.i.d. distributed random variables.
What are the possible limit distributions of the normalized partial sums? If the
variance is finite the answer is the normal distribution in view of the central
limit theorem. In the general case, we found in Section 3 that the possible
limit distributions are the stable distributions.

This section is devoted to the analogous problem for extremes. Thus, let,
for n ≥ 1,

Yn = max{X1, X2, . . . , Xn}.

What are the possible limit distributions of Yn, after suitable normalization,
as n→∞?

The following definition is the analog of Definition 3.1 (which concerned
sums) for extremes.

Definition 5.1. Let X, X1, X2, . . . be i.i.d. random variables, and set Yn =
max1≤k≤nXk, n ≥ 1. We say that X, or, equivalently, the distribution func-
tion FX , belongs to the domain of attraction of the extremal distribution G
if there exist normalizing sequences {an > 0, n ≥ 1} and {bn, n ≥ 1}, such
that

Yn − bn
an

d→ G as n→∞. 2

Example 5.1. Let X1, X2, . . . be independent Exp(1)-distributed random
variables, and set Yn = max{X1, X2, . . . , Xn}, n ≥ 1. Then,

F (x) = 1− e−x for x > 0,

(and 0 otherwise), so that

P (Yn ≤ x) =
(
1− e−x

)n
.

Aiming at something like (1 − u/n)n → eu as n → ∞ suggests that we try
an = 1 and bn = log n to obtain

FYn−log n(x) = P (Yn ≤ x+ log n) =
(
1− e−x−log n

)n
=
(
1− e−x

n

)n

→ e−e−x

as n→∞ ,

for all x ∈ R.

Example 5.2. Let X1, X2, . . . be independent Pa(β, α)-distributed random
variables, and set Yn = max{X1, X2, . . . , Xn}, n ≥ 1. Then,

F (x) =
∫ x

β

αβα

yα+1
dy = 1−

(β
x

)α

for x > β,

(and 0 otherwise), so that
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P (Yn ≤ x) =
(
1−

(β
x

)α)n

.

An inspection of this relation suggests the normalization an = n1/α and bn =
0, which, for x > 0 and n large, yields

Fn−1/αYn
(x) = P (Yn ≤ xn1/α) =

(
1−

( β

xn1/α

)α)n

=
(
1− (β/x)α

n

)n

→ e−(β/x)α

as n→∞ .

Remark 5.1. For β = 1 the example reduces to Example 6.1.2.

Example 5.3. LetX1, X2, . . . be independent U(0, θ)-distributed random vari-
ables (θ > 0), and set Yn = max{X1, X2, . . . , Xn}, n ≥ 1. Thus, F (x) = x/θ
for x ∈ (0, θ) and 0 otherwise, so that,

P (Yn ≤ x) =
(x
θ

)n

.

Now, since Yn
p→ θ as n→∞ (this is intuitively “obvious,” but check Problem

6.8.1), it is more convenient to study θ − Yn, viz.,

P (θ − Yn ≤ x) = P (Yn ≥ θ − x) = 1−
(
1− x

θ

)n

.

The usual approach now suggests an = 1/n and bn = θ. Using this we obtain,
for any x < 0,

P (n(Yn − θ) ≤ x) = P
(
θ − Yn ≥

(−x)
n

)
=
(
1− (−x)

θn

)n

→ e−(−x)/θ as n→∞ . 2

Looking back at the examples we note that the limit distributions have
different expressions and that their domains vary; they are x > 0, x ∈ R,
and x < 0, respectively. It seems that the possible limits may be of at least
three kinds. The following result tells us that this is indeed the case. More
precisely, there are exactly three so-called types, meaning those mentioned in
the theorem below, together with linear transformations of them.

Theorem 5.1. There exist three types of extremal distributions:

Fréchet: Φα(x) =

{
0, for x < 0,
exp{−x−α}, for x ≥ 0,

α > 0;

Weibull: Ψα(x) =

{
exp{−(−x)α}, for x < 0,
1, for x ≥ 0,

α > 0;

Gumbel: Λ(x) = exp{−e−x}, for x ∈ R.
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The proof is beyond the scope of this book, let us just mention that the
so-called convergence of types theorem is a crucial ingredient.

Remark 5.2. Just as the normal and stable distributions belong to their own
domain of attraction (recall relation (2.1) above), it is natural to expect that
the three extreme value distributions of the theorem belong to their domain
of attraction. This is more formally spelled out in Problem 9.10 below.

6 Records

Let X, X1, X2, . . . be i.i.d. continuous random variables. The record times
are L(1) = 1 and, recursively,

L(n) = min{k : Xk > XL(n−1)}, n ≥ 2,

and the record values are
XL(n), n ≥ 1.

The associated counting process {µ(n), n ≥ 1} is defined by

µ(n) = # records among X1, X2, . . . , Xn = max{k : L(k) ≤ n}.

The reason for assuming continuity is that we wish to avoid ties.

-
n

6

Xn

0 1 2 3 4 5 6 7 8 9 10 11 12

r r
r r r r

r
r r

r
r rL(1) = 1

L(2) = 3

L(3) = 7

L(4) = 10
. . .

b b b b b b b b

Fig. 7.1. Partial maxima ◦

Whereas the sequence of partial maxima, Yn, n ≥ 1, describe “the largest
value so far,” the record values pick these values the first time they appear.
The sequence of record values thus constitutes a subsequence of the partial
maxima. Otherwise put, the sequence of record values behaves like a com-
pressed sequence of partial maxima, as is depicted in the above figure.

We begin by noticing that the record times and the number of records
are distribution independent (under our continuity assumption). This is due
to the fact that for a given random variable X with distribution function F ,
it follows that F (X) ∈ U(0, 1). This implies that there is a 1-to-1 map from
every random variable to every other one, which preserves the record times,
and therefore also the number of records—but not the record values.
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Next, set

Ik =

{
1, if Xk is a record,
0, otherwise,

so that µ(n) =
∑n

k=1 Ik, n ≥ 1.
By symmetry, all permutations betweenX1, X2, . . . , Xn are equally likely,

from which we conclude that

P (Ik = 1) = 1− P (Ik = 0) =
1
k
, k = 1, 2, . . . , n.

In addition one can show that the random variables {Ik, k ≥ 1} are indepen-
dent. We collect these facts in the following result.

Theorem 6.1. Let X1, X2, . . . , Xn, n ≥ 1, be i.i.d. continuous random vari-
ables. Then

(a) the indicators I1, I2, . . . , In are independent;
(b)P (Ik = 1) = 1/k for k = 1, 2, . . . , n.

As a corollary it is now a simple task to compute the mean and the variance
of µ(n) and their asymptotics.

Theorem 6.2. Let γ = 0.5772 . . . denote Euler’s constant. We have

mn = E µ(n) =
n∑

k=1

1
k

= log n+ γ + o(1) as n→∞;

Varµ(n) =
n∑

k=1

1
k

(
1− 1

k

)
= log n+ γ − π2

6
+ o(1) as n→∞.

Proof. That E µ(n) =
∑n

k=1
1
k , and that Varµ(n) =

∑n
k=1

1
k (1− 1

k ), is clear.
The remaining claims follow from the facts that

n∑
k=1

1
k

= log n+ γ + o(1) as n→∞ and
∞∑

n=1

1
n2

=
π2

6
.

2

Next we present the weak laws of large numbers for the counting process.

Theorem 6.3. We have

µ(n)
logn

p→ 1 as n→∞.

Proof. Chebyshev’s inequality together with Theorem 6.2 yields

P
(µ(n)− E µ(n)

Var (µ(n))
> ε
)
≤ 1
ε2Var (µ(n))

→ 0 as n→∞,
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which tells us that
µ(n)− E µ(n)

Var (µ(n))
p→ 0 as n→∞.

Finally,

µ(n)
logn

=
µ(n)− E µ(n)

Var (µ(n))
· Var (µ(n))

logn
+
E µ(n)
logn

p→ 0 · 1 + 1 = 1 as n→∞,

in view of Theorem 6.2 (and Theorem 6.6.2). 2

The central limit theorem for the counting process runs as follows.

Theorem 6.4. We have
µ(n)− logn√

logn
d→ N(0, 1) as n→∞.

Proof. We check the Lyapounov condition (1.1) with r = 3:

E|Ik − E Ik|3 =
∣∣∣0− 1

k

∣∣∣3 · (1− 1
k

)
+
∣∣∣1− 1

k

∣∣∣3 1
k

=
(
1− 1

k

)1
k
·
( 1
k2

+
(
1− 1

k

)2)
≤ 2
(
1− 1

k

)1
k
,

so that

β(n, 3) =
∑n

k=1E|Xk − µk|3(∑n
k=1 σ

2
k

)3/2
≤ 2

∑n
k=1

(
1− 1

k

)
1
k(∑n

k=1

(
1− 1

k

)
1
k

)3/2

= 2
( n∑

k=1

(
1− 1

k

)1
k

)−1/2

→ 0 as n→∞,

since
n∑

k=1

(
1− 1

k

)1
k
≥ 1

2

n∑
k=2

1
k
→∞ as n→∞. 2

Exercise 6.1. Another way to prove this is via characteristic functions or
moment generating functions; note, in particular, that |Ik− 1

k | ≤ 1 for all k.2

The analogous results for record times state that

logL(n)
n

p→ 1 as n→∞,

logL(n)− n√
n

d→ N(0, 1) as n→∞.

In the opening of this section we found that the record values, {XL(n), n ≥
1}, seemed to behave like a compressed sequence of partial maxima, which
makes it reasonable to believe that there exist three possible limit distributions
for XL(n) as n → ∞, which are somehow connected with the the three limit
theorems for extremes. The following theorem shows that this is, indeed, the
case.
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Theorem 6.5. Suppose that F is absolutely continuous. The possible types
of limit distributions for record values are

Φ(− log(− logG(x))),

where G is an extremal distribution and Φ the distribution function of the
standard normal distribution. More precisely, the three classes or types of
limit distributions are

Φ(R)
α (x) =

{
0, for x < 0,
Φ(α log x), for x ≥ 0,

α > 0;

Ψ (R)
α (x) =

{
Φ(−α log(−x)), for x < 0,
1, for x ≥ 0,

α > 0;

Λ(R)(x) = Φ(x), for x ∈ R.

7 The Borel–Cantelli Lemmas

The aim of this section is to provide some additional material on a.s. con-
vergence. Although the reader cannot be expected to appreciate the concept
fully at this level, we add here some additional facts and properties to shed
somewhat light on it. The main results or tools are the Borel–Cantelli lemmas.
We begin, however, with the following definition:

Definition 7.1. Let {An, n ≥ 1} be a sequence of events (subsets of Ω). We
define

A∗ = lim inf
n→∞

An =
∞⋃

n=1

∞⋂
m=n

Am,

A∗ = lim sup
n→∞

An =
∞⋂

n=1

∞⋃
m=n

Am. 2

Thus, if ω ∈ Ω belongs to the set lim infn→∞An, then ω belongs to
⋂∞

m=nAm

for some n, that is, there exists an n such that ω ∈ Am for all m ≥ n. In
particular, if An is the event that something special occurs at “time” n, then
lim infn→∞Ac

n means that from some n onward this property never occurs.
Similarly, if ω ∈ Ω belongs to the set lim supn→∞An, then ω belongs to⋃∞

m=nAm for every n, that is, no matter how large we choosem there is always
some n ≥ m such that ω ∈ An, or, equivalently, ω ∈ An for infinitely many
values of n or, equivalently, for arbitrarily large values of n. A convenient way
to express this is

ω ∈ {An infinitely often (i.o.)} ⇐⇒ ω ∈ A∗. (7.1)
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Example 7.1. Let X1, X2, . . . be a sequence of random variables and let An =
{|Xn| > ε}, n ≥ 1, ε > 0. Then ω ∈ lim infn→∞Ac

n means that ω is such that
|Xn(ω)| ≤ ε for all sufficiently large n, and ω ∈ lim supn→∞An means that
ω is such that there exist arbitrarily large values of n such that |Xn(ω)| > ε.
In particular, every ω for which Xn(ω) → 0 as n → ∞ must be such that,
for every ε > 0, only finitely many of the real numbers Xn(ω) exceed ε in
absolute value. Hence,

Xn
a.s.→ 0 as n→∞ ⇐⇒ P (|Xn| > ε i.o.) = 0 for all ε > 0. (7.2)

We shall return to this example later. 2

Here is the first Borel–Cantelli lemma.

Theorem 7.1. Let {An, n ≥ 1} be arbitrary events. Then

∞∑
n=1

P (An) <∞ =⇒ P (An i.o.) = 0.

Proof. We have

P (An i.o.) = P (lim sup
n→∞

An) = P (
∞⋂

n=1

∞⋃
m=n

Am)

≤ P (
∞⋃

m=n

Am) ≤
∞∑

m=n

P (Am)→ 0 as n→∞.
2

The converse does not hold in general—one example is given at the very end
of this section. However, with an additional assumption of independence, the
following, second Borel–Cantelli lemma, holds true.

Theorem 7.2. Let {An, n ≥ 1} be independent events. Then

∞∑
n=1

P (An) =∞ =⇒ P (An i.o.) = 1.

Proof. By the De Morgan formula and independence we obtain

P (An i.o.) = P

( ∞⋂
n=1

∞⋃
m=n

Am

)
= 1− P

( ∞⋃
n=1

∞⋂
m=n

Ac
m

)

= 1− lim
n→∞

P

( ∞⋂
m=n

Ac
m

)
= 1− lim

n→∞
lim

N→∞
P

( N⋂
m=n

Ac
m

)

= 1− lim
n→∞

lim
N→∞

N∏
m=n

(
1− P (Am)

)
.
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Now, since for 0 < x < 1 we have e−x ≥ 1− x, it follows that

N∏
m=n

(
1− P (Am)

)
≤ exp

{
−

N∑
m=n

P (Am)
}
→ 0 as N →∞

for every n, since, by assumption,
∑∞

m=1 P (Am) =∞. 2

Remark 7.1. There exist more general versions of this result that allow for
some dependence between the events (i.e., independence is not necessary for
the converse to hold). 2

As a first application, let us reconsider Examples 6.3.1 and 6.3.2.

Example 7.2. Thus, X2, X3, . . . is a sequence of random variables such that

P (Xn = 1) = 1− 1
nα

and P (Xn = n) =
1
nα
, n ≥ 2,

where α is some positive number. Under the additional assumption that the
random variables are independent, it was claimed in Remark 6.3.5 that Xn

a.s.→
1 as n→∞ when α = 2 and proved in Example 6.3.1 that this is not the case
when α = 1.

Now, in view of the first Borel–Cantelli lemma, it follows immediately
that Xn

a.s.→ 1 as n → ∞ for all α > 1, even without any assumption about
independence! To see this we first recall Example 7.1, according to which

Xn
a.s.→ 1 as n→∞ ⇐⇒ P (|Xn − 1| > ε i.o.) = 0 for all ε > 0.

The desired conclusion now follows from Theorem 7.1 since, for α > 1,

∞∑
n=1

P (|Xn − 1| > ε) =
∞∑

n=1

1
nα

<∞ for all ε > 0.

It follows, moreover, from the second Borel–Cantelli lemma that if, in addition,
we assume that X1, X2, . . . are independent, then we do not have almost-sure
convergence for any α ≤ 1. In particular, almost-sure convergence holds if and
only if α > 1 in that case. 2

A second look at the arguments above shows (please check!) that, in fact,
the following, more general result holds true.

Theorem 7.3. Let X1, X2, . . . be a sequence of independent random vari-
ables. Then

Xn
a.s.→ 0 as n→∞ ⇐⇒

∞∑
n=1

P (|Xn| > ε) <∞ for all ε > 0. 2
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Let us now comment on formula(s) (6.3.1) (and (6.3.2)), which were presented
before without proof, and show, at least, that almost-sure convergence implies
their validity. Toward this end, let X1, X2, . . . be a sequence of random vari-
ables and A = {ω : Xn(ω)→ X(ω) as n→∞} for some random variable X.
Then (why?)

A =
∞⋂

n=1

∞⋃
m=1

∞⋂
i=m

{
|Xi −X| ≤

1
n

}
. (7.3)

Thus, assuming that almost-sure convergence holds, we have P (A) = 1, from
which it follows that

P
( ∞⋃

m=1

∞⋂
i=m

{
|Xi −X| ≤

1
n

})
= 1

for all n. Furthermore, the sets {
⋂∞

i=m{|Xi −X| ≤ 1/n}, m ≥ 1 } are mono-
tone increasing as m → ∞, which, in view of Lemma 6.3.1, implies that, for
all n,

lim
m→∞

P
( ∞⋂

i=m

{
|Xi −X| ≤

1
n

})
= P

( ∞⋃
m=1

∞⋂
i=m

{
|Xi −X| ≤

1
n

})
.

However, the latter probability was just seen to equal 1, from which it follows
that P (

⋂∞
i=m{|Xi−X| ≤ 1/n}) can be made arbitrary close to 1 by choosing

m large enough. Therefore, since n was arbitrary we have shown (why?) that
if Xn

a.s.→ X as n→∞ then, for every ε > 0 and δ, 0 < δ < 1, there exists m0

such that for all m > m0 we have

P
( ∞⋂

i=m

{|Xi −X| < ε}
)
> 1− δ,

which is exactly (6.3.1) (which was equivalent to (6.3.2)).

7.1 Patterns

We begin with an example of a different and simpler nature.

Example 7.3. Toss a regular coin repeatedly (independent tosses) and let An =
{the nth toss yields a head} for n ≥ 1. Then

P (An i.o.) = 1.

To see this we note that
∑∞

n=1 P (An) =
∑∞

n=1 1/2 = ∞, and the conclusion
follows from Theorem 7.2.

In words, if we toss a regular coin repeatedly, we obtain only finitely many
heads with probability zero. Intuitively, this is obvious since, by symmetry,
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if this were not true, the same would not be true for tails either, which is
impossible, since at least one of them must appear infinitely often.

However, for a biased coin, one could imagine that if the probability of
obtaining heads is “very small,” then it might happen that, with some “very
small” probability, only finitely many heads appear. To treat that case, sup-
pose that P (heads) = p, where 0 < p < 1. Then

∑∞
n=1 P (An) =

∑∞
n=1 p =∞.

We thus conclude, from the second Borel–Cantelli lemma, that P (An i.o.) = 1
for any coin (unless it has two heads and no tails, or vice versa). 2

The following exercise can be solved similarly, but a little more care is
required, since the corresponding events are no longer independent; recalling
Subsection 1.3 we find that the events form a 1-dependent sequence.

Exercise 7.1. Toss a coin repeatedly as before and let An = {the (n− 1)th
and the nth toss both yield a head} for n ≥ 2. Then

P (An i.o.) = 1.

In other words, the event “two heads in a row” will occur infinitely often with
probability 1.

Exercise 7.2. Toss another coin as above. Show that any finite pattern occurs
infinitely often with probability 1. 2

Remark 7.2. There exists a theorem, called Kolmogorov’s 0-1 law, according
to which, for independent events {An, n ≥ 1}, the probability P (An i.o.) can
only assume the values 0 or 1. Example 7.3 above is of this kind, and, by
exploiting the fact that the events {A2n, n ≥ 1} are independent, one can
show that the law also applies to Exercise 7.1. The problem is, of course, to
decide which of the values is the true one for the problem at hand. 2

The previous problem may serve as an introduction to patterns. In some
vague sense we may formulate this by stating that given a finite alphabet,
any finite sequence of letters, such that the letters are selected uniformly at
random, will appear infinitely often with probability 1. A natural question
is to ask how long one has to wait for the appearance of a given sequence.
That this problem is more sophisticated than one might think at first glance
is illustrated by the following example.

Example 7.4. Let X, X1, X2, . . . be i.i.d. random variables, such that P (X =
0) = P (X = 1) = 1/2.

(a) Let N1 be the number of 0’s and 1’s until the first appearance of the
pattern 10. Find EN1.

(b) Let N2 be the number of 0’s and 1’s until the first appearance of the
pattern 11. Find EN2.
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Before we try to solve this problem it seems pretty obvious that the answers
are the same for (a) and (b). However, this is not true!
(a) Let N1 be the required number. A realization of the game would run as
follows: We start off with a random number of 0’s (possibly none) which at
some point are followed by a 1, after which we are done as soon as a 0 appears.
Technically, the pattern 10 appears after the following sequence

000 . . . 0001︸ ︷︷ ︸
M1

111 . . . 1110︸ ︷︷ ︸
M2

,

where thusM1 andM2 are independent Fs(1/2)-distributed random variables,
which implies that

EN1 = E(M1 +M2) = EM1 + EM2 = 2 + 2 = 4.

(b) Let N2 be the required number. This case is different, because when the
first 1 has appeared we are done only if the next digit equals 1. If this is not the
case we start over again. This means that there will be a geometric number of
M1 blocks followed by 0, after which the sequence is finished off with another
M1 block followed by 1:

000 . . . 0001︸ ︷︷ ︸
M1(1)

0 000 . . . 0001︸ ︷︷ ︸
M1(2)

0 . . . 000 . . . 0001︸ ︷︷ ︸
M1(Y )

0 000 . . . 0001︸ ︷︷ ︸
M∗

1

1 ,

that is,

N2 =
Y∑

k=1

(M1(k) + 1) + (M∗
1 + 1),

where, thus Y ∈ Ge(1/2), M1(k), and M∗
1 all are distributed as M1 and all

random variables are independent. Thus,

EN2 = E (Y + 1) · E(M1 + 1) = (1 + 1) · (2 + 1) = 6.

Alternatively, and as the mathematics reveals, we may consider the experi-
ment as consisting of Z (= Y + 1) blocks of size M1 + 1, where the last block
is a success and the previous ones are failures. With this viewpoint we obtain

N2 =
Z∑

k=1

(M1(k) + 1),

and the expected value turns out the same as before, since Z ∈ Fs(1/2).
Another solution that we include because of its beauty is to condition on

the outcome of the first digit(s) and see how the process evolves after that
using the law of total probability. A similar kind of argument was used in
the early part of the proof of Theorem 3.7.3 concerning the probability of
extinction in a branching process.



210 7 An Outlook on Further Topics

There are three ways to start off:

1. the first digit is a 0, after which we start from scratch;
2. the first two digits are 10, after which we start from scratch;
3. the first two digits are 11, after which we are done.

It follows that
N2 =

1
2
(1 +N ′

2) +
1
4
(2 +N ′′

2 ) +
1
4
· 2,

where N ′
2 and N ′′

2 are distributed as N2. Taking expectation yields

EN2 =
1
2
· (1 + EN2) +

1
4
· (2 + EN2) +

1
4
· 2 =

3
2

+
3
4
EN2,

from which we conclude that EN2 = 6.
To summarize, for the sequence “10” the expected number was 4 and for

the sequence “11” it was 6. By symmetry it follows that for “01” and “00”
the answers must also be 4 and 6, respectively.

The reason for the different answers is that beginning and end are over-
lapping in 11 and 00, but not in 10 and 01. The overlapping makes it harder
to obtain the desired sequence. This may also be observed in the different
solutions. Whereas in (a) once the first 1 has appeared we simply have to wait
for a 0, in (b) the 0 must appear immediately after the 1, otherwise we start
from scratch again. Note how this is reflected in the last solution of (b).

7.2 Records Revisited

For another application of the Borel–Cantelli lemmas we recall the records
from Section 6. For a sequence X1, X2, . . . of i.i.d. continuous random vari-
ables the record times were L(1) = 1 and L(n) = min{k : Xk > XL(n−1)} for
n ≥ 2. We also introduced the indicator variables {Ik, k ≥ 1}, which equal 1 if
a record is observed and 0 otherwise, and the counting process {µ(n), n ≥ 1}
is defined by

µ(n) =
n∑

k=1

Ik = # records among X1, X2, . . . , Xn = max{k : L(k) ≤ n}.

Since P (Ik = 1) = 1/k for all k we conclude that

∞∑
n=1

P (Ik = 1) =∞,

so that, because of the independence of the indicators, the second Borel–
Cantelli lemma tells us that there will be infinitely many records with prob-
ability 1. This is not surprising, since, intuitively, there is always room for a
new observation that is bigger than all others so far.
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After this it is tempting to introduce double records, which appear when-
ever there are two records immediately following each other. Intuition this
time might suggest once more that there is always room for two records in a
row. So, let us check this.

Let Dn = 1 if Xn produces a double record, that is, if Xn−1 and Xn both
are records, and let Dn = 0 otherwise. Then, for n ≥ 2,

P (Dn = 1) = P (In = 1, In−1 = 1) = P (In = 1) · P (In−1 = 1) =
1
n
· 1
n− 1

.

We also note that the random variables {Dn, n ≥ 2} are not independent
(more precisely, they are 1-dependent), which causes no problem. Namely,

∞∑
n=2

P (Dn = 1) =
∞∑

n=2

1
n(n− 1)

= lim
m→∞

m∑
n=2

( 1
n− 1

− 1
n

)
= lim

m→∞
(1− 1

m
) = 1,

so that by the first Borel–Cantelli lemma—which does not require inde-
pendence—we conclude that

P (Dn = 1 i.o.) = 0,

that is, the probability of infinitely many double records is equal to zero.
Moreover, the expected number of double records is

E
∞∑

n=2

Dn =
∞∑

n=2

EDn =
∞∑

n=2

P (Dn = 1) = 1;

in other words, we can expect one double record. A detailed analysis shows
that, in fact, the total number of double records is

∞∑
n=2

Dn ∈ Po(1).

7.3 Complete Convergence

We close this section by introducing another convergence concept, which, as
will be seen, is closely related to the Borel–Cantelli lemmas.

Definition 7.2. A sequence {Xn, n ≥ 1} of random variables converges com-
pletely to the constant θ if

∞∑
n=1

P (|Xn − θ| > ε) <∞ for all ε > 0. 2

Two immediate observations are that complete convergence always implies
a.s. convergence in view of the first Borel–Cantelli lemma and that complete
convergence and almost-sure convergence are equivalent for sequences of in-
dependent random variables.
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Theorem 7.4. Let X1, X2, . . . be random variables and θ be some constant.
The following implications hold as n→∞:

Xn → θ completely =⇒ Xn
a.s.→ θ.

If, in addition, X1, X2, . . . are independent, then

Xn → θ completely ⇐⇒ Xn
a.s.→ θ. 2

Example 7.5. Another inspection of Example 6.3.1 tells us that it follows im-
mediately from the definition of complete convergence that Xn → 1 com-
pletely as n → ∞ when α > 1 and that complete convergence does not hold
if X1, X2, . . . are independent and α ≤ 1. 2

The concept was introduced in the late 1940s in connection with the following
result:

Theorem 7.5. Let X1, X2, . . . be a sequence of i.i.d. random variables, and
set Sn =

∑n
k=1Xk, n ≥ 1. Then

Sn

n
→ 0 completely as n→∞ ⇐⇒ EX = 0 and EX2 <∞ ,

or, equivalently,

∞∑
n=1

P (|Sn| > nε) <∞ for all ε > 0 ⇐⇒ EX = 0 and EX2 <∞ . 2

Remark 7.3. A first naive attempt to prove the sufficiency would be to use
Chebyshev’s inequality. The attack fails, however, since the harmonic series
diverges; more sophisticated tools are required. 2

We mentioned in Remark 6.5.1 that the so-called strong law of large num-
bers, which states that Sn/n converges almost surely as n→∞, is equivalent
to the existence of the mean, EX. Consequently, if the mean exists and/but
the variance (or any moment of higher order than the first one) does not exist,
then almost-sure convergence holds. In particular, if the mean equals 0, then

P (|Sn| > nε i.o.) = 0 for all ε > 0 ,

whereas Theorem 7.5 tells us that the corresponding Borel–Cantelli sum di-
verges in this case. This is the example we promised just before stating The-
orem 7.2. Note also that the events {|Sn| > nε, n ≥ 1} are definitely not
independent.
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8 Martingales

One of the most important modern concepts in probability is the concept
of martingales. A rigorous treatment is beyond the scope of this book. The
purpose of this section is to give the reader a flavor of martingale theory in a
slightly simplified way.

Definition 8.1. Let X1, X2, . . . be a sequence of random variables with finite
expectations. We call X1, X2, . . . a martingale if

E(Xn+1 | X1, X2, . . . , Xn) = Xn for all n ≥ 1. 2

The term martingale originates in gambling theory. The famous game
double or nothing, in which the gambling strategy is to double one’s stake as
long as one loses and leave as soon as one wins, is called a “martingale.” That
it is, indeed, a martingale in the sense of our definition will be seen below.

Exercise 8.1. Use Theorem 2.2.1 to show that X1, X2, . . . is a martingale if
and only if

E(Xn | X1, X2, . . . , Xm) = Xm for all n ≥ m ≥ 1. 2

In general, consider a game such that Xn is the gambler’s fortune after
n plays, n ≥ 1. If the game satisfies the martingale property, it means that
the expected fortune of the player, given the history of the game, equals the
current fortune. Such games may be considered to be fair, since on average
neither the player nor the bank loses any money.

Example 8.1. The canonical example of a martingale is a sequence of partial
sums of independent random variables with mean zero. Namely, let Y1, Y2, . . .
be independent random variables with mean zero, and set

Xn = Y1 + Y2 + · · ·+ Yn, n ≥ 1.

Then

E(Xn+1 | X1, X2, . . . , Xn) = E(Xn + Yn+1 | X1, X2, . . . , Xn)
= Xn + E(Yn+1 | X1, X2, . . . , Xn)
= Xn + E(Yn+1 | Y1, Y2, . . . , Yn)
= Xn + 0 = Xn,

as claimed. For the second equality we used Theorem 2.2.2(a), and for the
third one we used the fact that knowledge of X1, X2, . . . , Xn is equivalent to
knowledge of Y1, Y2, . . . , Yn. The last equality follows from the independence
of the summands; recall Theorem 2.2.2(b). 2
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Another example is a sequence of products of independent random vari-
ables with mean 1.

Example 8.2. Suppose that Y1, Y2, . . . are independent random variables with
mean 1, and set Xn =

∏n
k=1 Yk, n ≥ 1 (with Y0 = X0 = 1). Then

E(Xn+1 | X1, X2, . . . , Xn) = E(Xn · Yn+1 | X1, X2, . . . , Xn)
= Xn · E(Yn+1 | X1, X2, . . . , Xn)
= Xn · 1 = Xn,

which verifies the martingale property of {Xn, n ≥ 1}.

One application of this example is the game “double or nothing” mentioned
above. To see this, set X0 = 1 and, recursively,

Xn+1 =

{
2Xn, with probability 1

2 ,

0, with probability 1
2 ,

or, equivalently,

P (Xn = 2n) =
1
2n
, P (Xn = 0) = 1− 1

2n
for n ≥ 1.

Since

Xn =
n∏

k=1

Yk,

where Y1, Y2, . . . are i.i.d. random variables such that P (Yk = 0) = P (Yk =
2) = 1/2 for all k ≥ 1, it follows that Xn equals a product of i.i.d. random
variables with mean 1, so that {Xn, n ≥ 1} is a martingale.

A problem with this game is that the expected money spent when the
game is over is infinite. Namely, suppose that the initial stake is 1 euro. If the
gambler wins at the nth game, she or he has spent 1+2+4+· · ·+2n−1 = 2n−1
euros and won 2n euros, for a total net of 1 euro. The total number of games is
Fs(1/2)-distributed. This implies on the one hand that, on average, a success
or win occurs after two games, and on the other hand that, on average, the
gambler will have spent an amount of

∞∑
n=1

1
2n
·
(
2n − 1

)
=∞

euros in order to achieve this. In practice this is therefore an impossible game.
A truncated version would be to use the same strategy but to leave the game
no matter what happens after (at most) a fixed number of games (to be
decided before the game starts).

Another example is related to the likelihood ratio test. Let Y1, Y2, . . . , Yn

be independent random variables with common density f and some character-
izing parameter θ of interest. In order to test the null hypothesis H0 : θ = θ0
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against the alternative H1 : θ = θ1, the Neyman–Pearson lemma in statistics
tells us that such a test should be based on the likelihood ratio statistic

Ln =
n∏

k=1

f(Xk; θ1)
f(Xk; θ0)

,

where fθ0 and fθ1 are the densities under the null and alternative hypotheses,
respectively.

Now, the factors f(Xk; θ1)/f(Xk; θ0) are i.i.d. random variables, and, un-
der the null hypothesis, the mean equals

E0

(f(Xk; θ1)
f(Xk; θ0)

)
=
∫ ∞

−∞

f(x; θ1)
f(x; θ0)

f(x; θ0) dx =
∫ ∞

−∞
f(x; θ1) dx = 1,

that is, Ln is made up as a product of i.i.d. random variables with mean 1,
from which we immediately conclude that {Ln, n ≥ 1} is a martingale.

We also remark that if = in the definition is replaced by≥ thenX1, X2, . . .
is called a submartingale, and if it is replaced by ≤ it is called a supermartin-
gale. As a typical example one can show that if {Xn, n ≥ 1} is a martingale
and E|Xn|r < ∞ for all n ≥ 1 and some r ≥ 1, then {|Xn|r, n ≥ 1} is a
submartingale.

Applying this to the martingale in Example 8.1 tells us that whereas the
sums {Xn, n ≥ 1} of independent random variables with mean zero consti-
tute a martingale, such is not the case with the sequence of sums of squares
{X2

n, n ≥ 1} (provided the variances are finite); that sequence is a submartin-
gale. However by centering the sequence one obtains a martingale. This is the
topic of Problems 9.11 and 9.12.

There also exist so-called reversed martingales. If we interpret n as time,
then “reversing” means reversing time. Traditionally one defines reversed mar-
tingales via the relation

Xn = E(Xm | Xn+1, Xn+2, Xn+3, . . .) for all m < n ,

which means that one conditions on “the future.” The more modern way is
to let the index set be the negative integers as follows.

Definition 8.2. Let . . . , X−3, X−2, X−1 be a sequence of random variables
with finite expectations. We call . . . , X−3, X−2, X−1 a reversed martingale if

E(Xn+1 | . . . , Xn−3, Xn−2, Xn−1, Xn) = Xn for all n ≤ −1. 2

The obvious parallel to Exercise 8.1 is next.

Exercise 8.2. Use Theorem 2.2.1 to show that . . . , X−3, X−2, X−1 is a re-
versed martingale if and only if

E(Xn | . . . , Xm−3, Xm−2, Xm−1, Xm) = Xm for all m ≤ n ≤ 0.

In particular, . . . , X−3, X−2, X−1 is a reversed martingale if and only if,

E(X−1 | . . . , Xm−3, Xm−2, Xm−1, Xm) = Xm for all m ≤ −1. 2
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Just as the sequence of sums of independent random variables with mean
zero constitutes the generic example of a martingale it turns out that the
sequence of arithmetic means of i.i.d. random variables with finite mean (not
necessarily equal to zero) constitutes the generic example of a reversed mar-
tingale.

To see this, suppose that Y1, Y2, . . . are i.i.d. random variables with finite
mean µ, set Sn =

∑n
k=1 Yk, n ≥ 1, and

X−n =
Sn

n
for n ≥ 1.

We wish to show that

{Xn, n ≤ −1} is a martingale. (8.1)

Now, knowing the arithmetic means when k ≥ n is the same as knowing Sn

and Yk, k > n, so that, due to independence,

E
(
X−n | Xk, k ≤ n− 1

)
= E

(Sn

n
| Sn+1, Yn+2, Yn+3 , . . .

)
= E

(Sn

n
| Sn+1

)
=

1
n

n∑
k=1

E(Yk | Sn+1)

=
1
n

n∑
k=1

Sn+1

n+ 1
=
Sn+1

n+ 1
= X−n−1,

where, in the third to last equality we exploited the symmetry, which in turn,
is due to the equidistribution.

We have thus established relation (8.1) as desired.

Remark 8.1. Reversed submartingales and reversed supermartingales may be
defined “the obvious way.” 2

Exercise 8.3. Define them! 2

We close this introduction to the theory of martingales by stating (without
proof) the main convergence results. Analogous, although slightly different,
results also hold for submartingales and supermartingales.

Theorem 8.1. Suppose that {Xn, n ≥ 1} is a martingale. If

sup
n
Emax{Xn, 0} <∞,

then Xn converges almost surely as n → ∞. Moreover, the following are
equivalent:

(a) {Xn, n ≥ 1} is uniformly integrable;
(b)Xn converges in 1-mean;
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(c) Xn
a.s.→ X∞ as n→∞, where E|X∞| <∞, and X∞ closes the sequence,

that is, {Xn, n = 1, 2, . . . ,∞} is a martingale;
(d) there exists a random variable Y with finite mean such that

Xn = E(Y | X1, X2, . . . , Xn) for all n ≥ 1. 2

The analog for reversed martingales runs as follows.

Theorem 8.2. Suppose that {Xn, n ≤ −1} is a reversed martingale. Then

(a) {Xn, n ≤ −1} is uniformly integrable;
(b)Xn → X−∞ a.s. and in 1-mean as n→ −∞;
(c) {Xn, −∞ ≤ n ≤ −1} is a martingale. 2

Note that the results differ somewhat. This is due to the fact that whereas
ordinary, forward martingales always have a first element, but not necessarily
a last element (which would correspond to X∞), reversed martingales always
have a last element, namely X−1, but not necessarily a first element (which
would correspond to X−∞). This, in turn, has the effect that reversed mar-
tingales “automatically” are uniformly integrable, as a consequence of which
conclusions (a)–(c) are “automatic” for reversed martingales, but only hold
under somewhat stronger assumptions for (forward) martingales.

Note also that the generic martingale, the sum of independent random
variables with mean zero, need not be convergent at all. This is, in particular,
the case if the summands are equidistributed with finite variance σ2, in which
case the sum Sn behaves, asymptotically, like σ

√
n ·N(0, 1), where N(0, 1) is

a standard normal random variable.

9 Problems

1. Let X1, X2, . . . be independent, equidistributed random variables, and set
Sn = X1 + · · ·+Xn, n ≥ 1. The sequence {Sn, n ≥ 0} (where S0 = 0) is
called a random walk. Consider the following “perturbed” random walk.
Let {εn, n ≥ 1} be a sequence of random variables such that, for some
fixed A > 0, we have P (|εn| ≤ A) = 1 for all n, and set

Tn = Sn + εn, n = 1, 2, . . . .

Suppose that EX1 = µ exists. Show that the law of large numbers holds
for the perturbed random walk {Tn, n ≥ 1}.

2. In a game of dice one wishes to use one of two dice A and B. A has two
white and four red faces and B has two red and four white faces. A coin is
tossed in order to decide which die is to be used and that die is then used
throughout. Let {Xk, k ≥ 1} be a sequence of random variables defined
as follows:
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Xk =

{
1, if red is obtained,
0, if white is obtained

at the kth roll of the die. Show that the law of large numbers does not
hold for the sequence {Xk, k ≥ 1}. Why is this the case?

3. Suppose that X1, X2, . . . are independent random variables such that
Xk ∈ Be(pk), k ≥ 1, and set Sn =

∑n
k=1Xk, mn =

∑n
k=1 pk, and s2n =∑n

k=1 pk(1− pk), n ≥ 1. Show that if

∞∑
k=1

pk(1− pk) = +∞, (9.1)

then
Sn −mn

sn

d→ N(0, 1) as n→∞.

Remark 1. The case pk = 1/k, k ≥ 1, corresponds to the record times,
and we rediscover Theorem 6.4.
Remark 2. One can show that the assumption (9.1) is necessary for the
conclusion to hold.

4. Prove the following central limit theorem for a sum of independent (not
identically distributed) random variables: Suppose that X1, X2, . . . are
independent random variables such that Xk ∈ U(−k, k), and set Sn =∑n

k=1Xk, n ≥ 1. Show that

Sn

n3/2

d→ N(µ, σ2) as n→∞,

and determine µ and σ2.
Remark. Note that the normalization is not proportional to

√
n; rather,

it is asymptotically proportional to
√

VarSn.
5. Let X1, X2, . . . be independent, U(0, 1)-distributed random variables. We

say that there is a peak at Xk if Xk−1 and Xk+1 are both smaller than
Xk, k ≥ 2. What is the probability of a peak at
(a)X2?
(b)X3?
(c) X2 and X3?
(d)X2 and X4?
(e) X2 and X5?
(f) Xi and Xj , i, j ≥ 2?
Remark. Letting Ik = 1 if there is a peak at Xk and 0 otherwise, the
sequence {Ik, k ≥ 1} forms a 2-dependent sequence of random variables.

6. Verify formula (2.1), i.e., that if X, X1, X2, . . . are i.i.d. symmetric stable
random variables, then

Sn

n1/α

d= X for all n.
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7. Prove that the law of large numbers holds for symmetric, stable distribu-
tions with index α, 1 < α ≤ 2.

8. Let 0 < α < 2 and suppose that X, X1, X2, . . . are independent random
variables with common (two-sided Pareto) density

f(x) =


α

2|x|α+1
, for |x| > 1,

0, otherwise.

Show that the distribution belongs to the domain of attraction of a sym-
metric stable distribution with index α; in other words, that the sums
Sn =

∑n
k=1Xk, suitably normalized, converge in distribution to a sym-

metric stable distribution with index α.
Remark 1. More precisely, one can show that Sn/n

1/α converges in distri-
bution to a symmetric stable law with index α.
Remark 2. This problem generalizes Examples 3.1 and 3.2.

9. The same problem as the previous one, but for the density

f(x) =


c log |x|
|x|α+1

, for |x| > 1,

0, otherwise,

where c is an appropriate normalizing constant.
Remark. In this case one can show that Sn/(n log n)1/α converges in dis-
tribution to a symmetric stable law with index α.

10. Show that the extremal distributions belong to their own domain of at-
traction. More precisely, let X, X1, X2, . . . be i.i.d. random variables, and
set

Yn = max{X1, X2, . . . , Xn}, n ≥ 1.

Show that,
(a) if X has a Fréchet distribution, then

Yn

n1/α

d= X;

(b) if X has a Weibull distribution, then

n1/αYn
d= X;

(c) if X has a Gumbel distribution, then

Yn − logn d= X.

11. Let Y1, Y2, . . . be independent random variables with mean zero and finite
variances VarYk = σ2

k. Set

Xn =
( n∑

k=1

Yk

)2

−
n∑

k=1

σ2
k , n ≥ 1.

Show that X1, X2, . . . is a martingale.
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12. Let Y1, Y2, . . . be i.i.d. random variables with finite mean µ, and finite
variance σ2, and let Sn, n ≥ 1, denote their partial sums. Set

Xn = (Sn − nµ)2 − nσ2 , n ≥ 1.

Show that X1, X2, . . . is a martingale.
13. LetX(n) be the number of individuals in the nth generation of a branching

process (X(0) = 1) with reproduction mean m (= EX(1)). Set

Un =
X(n)
mn

, n ≥ 1.

Show that U1, U2, . . . is a martingale.
14. Let Y1, Y2, . . . are i.i.d. random variables with a finite moment generating

function ψ, set Sn =
∑n

k=1 Yk, n ≥ 1, with S0 = 0, and

Xn =
etSn

(ψ(t))n
, n ≥ 1.

(a) Show that {Xn, n ≥ 1} is a martingale (which is frequently called the
exponential martingale).

(b) Find the relevant martingale if the common distribution is the stan-
dard normal one.
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The Poisson Process

1 Introduction and Definitions

Suppose that an event E may occur at any point in time and that the num-
ber of occurrences of E during disjoint time intervals are independent. As
examples we might think of the arrivals of customers to a store (where E
means that a customer arrives), calls to a telephone switchboard, the emis-
sion of particles from a radioactive source, and accidents at a street cross-
ing. The common feature in all these examples, although somewhat vaguely
expressed, is that very many repetitions of independent Bernoulli trials are
performed and that the success probability of each such trial is very small. A
little less vaguely, let us imagine the time interval (0, t] split into the n parts
(0, t/n], (t/n, 2t/n], . . . , ((n−1)t/n, t], where n is “very large.” The probabil-
ity of an arrival of a customer, the emission of a particle, and so forth, then
is very small in every small time interval, events in disjoint time intervals are
independent, and the number of time intervals is large. The Poisson approx-
imation of the binomial distribution then tells us that the total number of
occurrences in (0, t] is approximately Poisson-distributed. (Observe that we
have discarded the possibility of more than one occurrence in a small time
interval—only one customer at a time can get through the door!)

1.1 First Definition of a Poisson Process

The discrete stochastic process in continuous time, which is commonly used
to describe phenomena of the above kind, is called the Poisson process. We
shall denote it by {X(t), t ≥ 0}, where

X(t) = # occurrences in (0, t].

Definition I. A Poisson process is a stochastic process {X(t), t ≥ 0} with
independent, stationary, Poisson-distributed increments. Also, X(0) = 0. In
other words,

©  Springer Science + Business Media, LLC 2009
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(a) the increments {X(tk) − X(tk−1), 1 ≤ k ≤ n} are independent random
variables for all 0 ≤ t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn and all n;

(b) X(0) = 0 and there exists λ > 0 such that

X(t)−X(s) ∈ Po(λ(t− s)), for 0 ≤ s < t.

The constant λ is called the intensity of the process. 2

By the law of large numbers (essentially) or by Chebyshev’s inequality, it
follows easily from the definition that X(t)/t

p−→λ as t→∞ (in fact, almost-
sure convergence holds). This shows that the intensity measures the average
frequency or density of occurrences. A further interpretation can be made via
Definition II ahead.

1.2 Second Definition of a Poisson Process

In addition to the independence between disjoint time intervals, we remarked
that it is “almost impossible” that there are two or more occurrences in a small
time interval. For an arbitrary time interval ((i−1)t/n, it/n], i = 1, 2, . . . , n,
it is thus reasonably probable that E occurs once and essentially impossible
that E occurs more than once. We shall begin by showing that these facts
hold true in a mathematical sense for the Poisson process as defined above
and then see that, in fact, these properties (together with the independence
between disjoint time intervals) characterize the Poisson process.

We first observe that

0 < 1− e−x < x, for x > 0,

from which it follows that

P (E occurs once during (t, t+ h]) = e−λhλh

= λh− λh(1− e−λh)
= λh+ o(h) as h→ 0. (1.1)

Furthermore,

∞∑
k=2

xk

k!
≤ 1

2

∞∑
k=2

xk ≤ 1
2

x2

1− x
≤ x2, for 0 < x <

1
2
,

which implies that

P (at least 2 occurrences of E during (t, t+ h])

=
∞∑

k=2

e−λh (λh)k

k!
≤ (λh)2 = o(h) as h→ 0. (1.2)
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Definition II. A Poisson process {X(t), t ≥ 0} is a nonnegative, integer-
valued stochastic process such that X(0) = 0 and

(a) the process has independent increments;
(b) P (exactly one occurrence during (t, t+h]) = λh+ o(h) as h→ 0 for some

λ > 0;
(c) P (at least two occurrences during (t, t+ h]) = o(h) as h→ 0. 2

Remark 1.1. It follows from this definition that {X(t), t ≥ 0} is nondecreas-
ing. This is also clear from the fact that the process counts the number of
occurrences (of some event). Sometimes, however, the process is defined in
terms of jumps instead of occurrences; then the assumption that the process
is nondecreasing has to be incorporated in the definition (see also Problem
9.33). 2

Theorem 1.1. Definitions I and II are equivalent.

Proof. The implication Definition I ⇒ Definition II has already been demon-
strated. In order to prove the converse, we wish to show that the increments
follow a Poisson distribution, that is, that

X(t)−X(s) ∈ Po(λ(t− s)) for 0 ≤ s < t. (1.3)

First let s = 0. Our aim is thus to show that

X(t) ∈ Po(λt), t > 0. (1.4)

For n = 0, 1, 2, . . . , let

En = {exactly n occurrences during (t, t+ h]} ,

and set
Pn(t) = P (X(t) = n).

For n = 0 we have

P0(t+ h) = P0(t) · P (X(t+ h) = 0 | X(t) = 0) = P0(t) · P (E0)
= P0(t)(1− λh+ o(h)) as h→ 0,

and hence

P0(t+ h)− P0(t) = −λhP0(t) + o(h) as h→ 0.

Division by h and letting h→ 0 leads to the differential equation

P ′0(t) = −λP0(t). (1.5a)

An analogous argument for n ≥ 1 yields
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Pn(t+ h) = P
( n⋃

k=0

{X(t) = k,X(t+ h) = n}
)

= Pn(t) · P (X(t+ h) = n | X(t) = n)
+ Pn−1(t) · P (X(t+ h) = n | X(t) = n− 1)

+ P
( n−2⋃

k=0

{X(t) = k,X(t+ h) = n}
)

= Pn(t)P (E0) + Pn−1(t)P (E1) + P
( n−2⋃

k=0

{X(t) = k,En−k}
)

= Pn(t) · (1− λh+ o(h)) + Pn−1(t) · (λh+ o(h)) + o(h)

as h→ 0, since, by part (c) of Definition II,

P
( n−2⋃

k=0

{X(t) = k,En−k}
)

≤ P (at least two occurrences during (t, t+ h]) = o(h)

as h → 0. By moving Pn(t) to the left-hand side above, dividing by h, and
letting h→ 0, we obtain

P ′n(t) = −λPn(t) + λPn−1(t), n ≥ 1. (1.5b)

Formally, we have only proved that the right derivatives exist and satisfy
the differential equations in (1.5). A completely analogous argument for the
interval (t−h, t] shows, however, that the left derivatives exist and satisfy the
same system of differential equations.

Since equation (1.5.b) contains P ′n, Pn, as well as Pn−1, we can (only)
express Pn as a function of Pn−1. However, (1.5.a) contains only P ′0 and P0

and is easy to solve. Once this is done, we let n = 1 in (1.5.b), insert our
solution P0 into (1.5.b), solve for P1, let n = 2, and so forth.

To solve (1.5), we use the method of integrating factors. The condition
X(0) = 0 amounts to the initial condition

P0(0) = 1. (1.5c)

Starting with (1.5.a), the computations run as follows:

P ′0(t) + λP0(t) = 0,
d

dt

(
eλtP0(t)

)
= eλtP ′0(t) + λeλtP0(t) = 0,

eλtP0(t) = c0 = constant,

P0(t) = c0e
−λt,
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which, together with (1.5.c), yields c0 = 1 and hence

P0(t) = e−λt, (1.6a)

as desired.
Inserting (1.6.a) into (1.5.b) with n = 1 and arguing similarly yield

P ′1(t) + λP1(t) = λe−λt,

d

dt

(
eλtP1(t)

)
= eλtP ′1(t) + λeλtP1(t) = λ,

eλtP1(t) = λt+ c1,

P1(t) = (λt+ c1)e−λt.

By (1.5.c) we must have Pn(0) = 0, n ≥ 1, which leads to the solution

P1(t) = λte−λt. (1.6b)

For the general case we use induction. Thus, suppose that

Pk(t) = e−λt (λt)
k

k!
, k = 0, 1, 2, . . . , n− 1.

We claim that

Pn(t) = e−λt (λt)
n

n!
. (1.6c)

By (1.5.b) and the induction hypothesis it follows that

P ′n(t) + λPn(t) = λPn−1(t) = λe−λt (λt)n−1

(n− 1)!
,

d

dt

(
eλtPn(t)

)
=

λntn−1

(n− 1)!
,

eλtPn(t) =
(λt)n

n!
+ cn,

which (since Pn(0) = 0 yields cn = 0) proves (1.6.c). This finishes the proof
of (1.4) when s = 0. For s > 0, we set

Y (t) = X(t+ s)−X(s), t ≥ 0, (1.7)

and note that Y (0) = 0 and that the Y -process has independent increments
since the X-process does. Furthermore, Y -occurrences during (t, t+ h] corre-
spond toX-occurrences during (t+s, t+s+h]. The Y -process thus satisfies the
conditions in Definition II, which, according to what has already been shown,
proves that Y (t) ∈ Po(λt), t > 0, that is, that X(t+ s)−X(s) ∈ Po(λt).

The proof of the theorem thus is complete. 2
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One step in proving the equivalence of the two definitions of a Poisson
process was to start with Definition II. This led to the system of differential
equations (1.5). The solution above was obtained by iteration and induction.
The following exercise provides another way to solve the equations.

Exercise 1.1. Let g(t, s) = gX(t)(s) be the generating function of X(t). Mul-
tiply the equation P ′n(t) = · · · by sn for all n = 0, 1, 2, . . . and add all
equations. Show that this, together with the initial condition (1.5.c), yields

(a)
∂g(t, s)
∂t

= λ(s− 1)g(t, s),

(b) g(t, s) = eλt(s−1),
(c) X(t) ∈ Po(λt). 2

1.3 The Lack of Memory Property

A typical realization of a Poisson process is thus a step function that begins
at 0, where it stays for a random time period, after which it jumps to 1, where
it stays for a random time period, and so on. The step function thus is such
that the steps have height 1 and random lengths. Moreover, the step function
is right continuous.

Now let T1, T2, . . . be the successive time points of the occurrences of an
event E. Set τ1 = T1 and τk = Tk − Tk−1 for k ≥ 2. Figure 1.1 depicts a
typical realization.

↑

3 -

2 -

1 -

-−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t
1 2 3 4 5 6 7 8 9 10

Figure 1.1

In this example, T1 = 3, T2 = 5.5, and T3 = 8.9. Furthermore, τ1 = 3,
τ2 = 2.5, and τ3 = 3.4.

Our next task is to investigate the occurrence times {Tn, n ≥ 1} and the
durations {τk, k ≥ 1}. We first consider T1 (= τ1).

Let t > 0. Since
{T1 > t} = {X(t) = 0}, (1.8)

we obtain

1− Fτ1(t) = 1− FT1(t) = P (T1 > t) = P (X(t) = 0) = e−λt, (1.9)

that is, T1 and τ1 are Exp(1/λ)-distributed.
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The exponential distribution is famous for the lack of memory property.

Theorem 1.2. P (T1 > t+ s | T1 > s) = e−λt = P (T1 > t).

Proof. P (T1 > t+ s | T1 > s) =
P (T1 > t+ s)
P (T1 > s)

=
e−λ(t+s)

e−λs
= e−λt. 2

The significance of this result is that if, at time s, we know that there
has been no occurrence, then the residual waiting time until an occurrence
is, again, Exp(1/λ)-distributed. In other words, the residual waiting time has
the same distribution as the initial waiting time. Another way to express this
fact is that an object whose lifetime has an exponential distribution does not
age; once we know that it has reached a given (fixed) age, its residual lifetime
has the same distribution as the original lifetime. This is the celebrated lack
of memory property.

Example 1.1. Customers arrive at a store according to a Poisson process with
an intensity of two customers every minute. Suddenly the cashier realizes that
he has to go to the bathroom. He believes that one minute is required for this.

(a) He decides to rush away as soon as he is free in order to be back before
the next customer arrives. What is the probability that he will succeed?

(b) As soon as he is free he first wonders whether or not he dares to leave.
After 30 seconds he decides to do so. What is the probability that he will
be back before the next customer arrives?

We first observe that because of the lack of memory property the answers
in (a) and (b) are the same. As for part (a), the cashier succeeds if the waiting
time T ∈ Exp(1/2) until the arrival of the next customer exceeds 1:

P (T > 1) = e−2·1 = e−2 . 2

The following exercise contains a slight modification of Problem 2.6.4:

Exercise 1.2. The task in that problem was to find the probability that the
lifetime of a new lightbulb in an overhead projector was long enough for
the projector to function throughout a week. What is the probability if the
lightbulb is not necessarily new? For example, we know that everything was
all right last week, and we ask for the probability that the lightbulb will last
long enough for the projector to function this week, too. 2

Since the exponential distribution, and hence the Poisson process, has no
memory, that is, “begins from scratch,” at any given, fixed, observed timepoint
one might be tempted to guess that the Poisson process also begins from
scratch at (certain?) random times, for example, at T1. If this were true, then
the time until the first occurrence after time T1 should also be Exp(1/λ)-
distributed, that is, we should have τ2 ∈ Exp(1/λ). Moreover, τ1 and τ2 should
be independent, and hence T2 ∈ Γ(2, 1/λ). By repeating the arguments, we
have made the following result plausible:
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Theorem 1.3. For k ≥ 1, let Tk denote the time of the kth occurrence in a
Poisson process, and set τ1 = T1 and τk = Tk − Tk−1, k ≥ 2. Then

(a) τk, k ≥ 1, are independent, Exp(1/λ)-distributed random variables;
(b) Tk ∈ Γ(k, 1/λ).

Proof. For k = 1, we have already shown that T1 and τ1 are distributed as
claimed. A fundamental relation in the following is

{Tk ≤ t} = {X(t) ≥ k} (1.10)

(for k = 1, recall (1.8)).
Now, let k = 2 and 0 ≤ s ≤ t. Then

P (T1 ≤ s, T2 > t) = P (X(s) ≥ 1, X(t) < 2)
= P (X(s) = 1, X(t) = 1)
= P (X(s) = 1, X(t)−X(s) = 0)
= P (X(s) = 1) · P (X(t)−X(s) = 0)

= λse−λs · e−λ(t−s) = λse−λt.

Since P (T1 ≤ s, T2 > t) + P (T1 ≤ s, T2 ≤ t) = P (T1 ≤ s), it follows that

FT1,T2(s, t) = P (T1 ≤ s, T2 ≤ t)
= 1− e−λs − λse−λt, for 0 ≤ s ≤ t. (1.11)

Differentiation yields the joint density of T1 and T2:

fT1,T2(s, t) = λ2e−λt, for 0 ≤ s ≤ t. (1.12)

By the change of variable τ1 = T1, τ2 = T2 − T1 (i.e., T1 = τ1, T2 = τ1 + τ2)
and Theorem 1.2.1, we obtain the joint density of τ1 and τ2:

fτ1,τ2(u1, u2) = λ2e−λ(u1+u2) = λe−λu1 · λe−λu2 , u1, u2 > 0. (1.13)

This proves (a) for the case k = 2. In the general case, (a) follows similarly,
but the computations become more (and more) involved. We carry out the
details for k = 3 below, and indicate the proof for the general case. Once (a)
has been established (b) is immediate.

Thus, let k = 3 and 0 ≤ s ≤ t ≤ u. By arguing as above, we have

P (T1 ≤ s ≤ T2 < t, T3 > u)
= P (X(s) = 1, X(t) = 2, X(u) < 3)
= P (X(s) = 1, X(t)−X(s) = 1, X(u)−X(t) = 0)
= P (X(s) = 1) · P (X(t)−X(s) = 1) · P (X(u)−X(t) = 0)

= λse−λs · λ(t− s)e−λ(t−s) · e−λ(u−t) = λ2s(t− s)e−λu,
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and

P (T1 ≤ s ≤ T2 ≤ t, T3 ≤ u) + P (T1 ≤ s ≤ T2 ≤ t, T3 > u)
= P (T1 ≤ s < T2 ≤ t) = P (X(s) = 1, X(t) ≥ 2)
= P (X(s) = 1, X(t)−X(s) ≥ 1)
= P (X(s) = 1) · (1− P (X(t)−X(s) = 0))

= λse−λs · (1− e−λ(t−s)) = λs(e−λs − e−λt).

Next we note that

FT1,T2,T3(s, t, u) = P (T1 ≤ s, T2 ≤ t, T3 ≤ u)
= P (T2 ≤ s, T3 ≤ u) + P (T1 ≤ s < T2 ≤ t, T3 ≤ u),

that

P (T2 ≤ s, T3 ≤ u) + P (T2 ≤ s, T3 > u)
= P (T2 ≤ s) = P (X(s) ≥ 2) = 1− P (X(s) ≤ 1)

= 1− e−λs − λse−λs,

and that

P (T2 ≤ s, T3 > u) = P (X(s) ≥ 2, X(u) < 3)
= P (X(s) = 2, X(u)−X(s) = 0)
= P (X(s) = 2) · P (X(u)−X(s) = 0)

=
(λs)2

2
e−λs · e−λ(u−s) =

(λs)2

2
e−λu.

We finally combine the above to obtain

FT1,T2,T3(s, t, u) = P (T2 ≤ s)− P (T2 ≤ s, T3 > u)
+ P (T1 ≤ s < T2 ≤ t)− P (T1 ≤ s < T2 ≤ t, T3 > u)

= 1− e−λs − λse−λs − (λs)2

2
e−λu

+ λs(e−λs − e−λt)− λ2s(t− s)e−λu

= 1− e−λs − λse−λt − λ2

(
st− s2

2

)
e−λu, (1.14)

and, after differentiation,

fT1,T2,T3(s, t, u) = λ3e−λu, for 0 < s < t < u. (1.15)

The change of variables τ1 = T1, τ1 + τ2 = T2, and τ1 + τ2 + τ3 = T3 concludes
the derivation, yielding

fτ1,τ2,τ3(v1, v2, v3) = λe−λv1 · λe−λv2 · λe−λv3 , (1.16)

for v1, v2, v3 > 0, which is the desired conclusion.
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Before we proceed to the general case we make the crucial observation
that the probability P (T1 ≤ s < T2 ≤ t, T3 > u) was the only quantity
containing all of s, t, and u and, hence, since differentiation is with respect to
all variables, this probability was the only one that contributed to the density.
This carries over to the general case, that is, it suffices to actually compute
only the probability containing all variables.

Thus, let k ≥ 3 and let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk. In analogy with the above
we find that the crucial probability is precisely the one in which the Ti are
separated by the ti. It follows that

FT1,T2,...,Tk
(t1, t2, . . . , tk)

= −P (T1 ≤ t1 < T2 ≤ t2 < · · · < Tk−1 ≤ tk−1, Tk > tk)
+R(t1, t2, . . . , tk)

= −λk−1t1(t2 − t1)(t3 − t2) · · · (tk−1 − tk−2)e−λtk ,

+R(t1, t2, . . . , tk) , (1.17)

where R(t1, t2, . . . , tk) is a reminder containing the probabilities of lower order,
that is, those for which at least one ti is missing.

Differentiation now yields

fT1,T2,...,Tk
(t1, t2, . . . , tk) = λke−λtk , (1.18)

which, after the transformation τ1 = T1, τ2 = T2 − T1, τ3 = T3 − T2, . . .,
τk = Tk − Tk−1, shows that

fτ1,τ2,...,τk
(u1, u2, . . . , uk) =

k∏
i=1

λe−λui for u1, u2, . . . , uk > 0, (1.19)

and we are done. 2

Remark 1.2. A simple proof of (b) can be obtained from (1.10):

1− FTk
(t) = P (Tk > t) = P (X(t) < k) =

k−1∑
j=0

e−λt (λt)
j

j!
. (1.20)

Differentiation yields

−fTk
(t) =

k−1∑
j=1

e−λt λ
jtj−1

(j − 1)!
−

k−1∑
j=0

λe−λt (λt)
j

j!

= λe−λt

k−2∑
j=0

(λt)j

j!
−

k−1∑
j=0

(λt)j

j!

 = −λe−λt (λt)k−1

(k − 1)!
,

that is,

fTk
(t) =

1
Γ(k)

λktk−1e−λt, for t > 0.
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Remark 1.3. Note that we cannot deduce (a) from (b), since Tk ∈ Γ(k, 1/λ)
and Tk = τ1 + τ2 + · · · + τk does not imply (a). An investigation involving
joint distributions is required.

Remark 1.4. Theorem 1.3 shows that the Poisson process starts from scratch
not only at fixed time points, but also at the occurrence times {Tk, k ≥ 1}.
It is, however, not true that the Poisson process starts from scratch at any
random timepoint. We shall return to this problem in Subsection 2.3. 2

Example 1.2. There are a number of (purely) mathematical relations for which
there exist probabilistic proofs that require “no computation.” For example,
the formula ∫ ∞

t

1
Γ(k)

λkxk−1e−λx dx =
k−1∑
j=0

e−λt (λt)
j

j!
(1.21)

can be proved by partial integration (and induction). However, it is (also)
an “immediate consequence” of (1.10). To see this we observe that the left-
hand side equals P (Tk > t) by Theorem 1.3(b) and the right-hand side equals
P (X(t) < k). Since these probabilities are the same, (1.21) follows. We shall
point to further examples of this kind later on. 2

1.4 A Third Definition of the Poisson Process

So far we have given two equivalent definitions of the Poisson process and,
in Theorem 1.3, determined some distributional properties of the (inter)
occurrence times. Our final definition amounts to the fact that these prop-
erties, in fact, characterize the Poisson process.

Definition III. Let {X(t), t ≥ 0} be a stochastic process with X(0) = 0,
let τ1 be the time of the first occurrence, and let τk be the time between
the (k − 1)th and the kth occurrences for k ≥ 2. If {τk, k ≥ 1} are inde-
pendent, Exp(θ)-distributed random variables for some θ > 0 and X(t) =
# occurrences in (0, t], then {X(t), t ≥ 0} is a Poisson process with intensity
λ = θ−1. 2

Theorem 1.4. Definitions I, II, and III are equivalent.

Proof. In view of Theorems 1.1 and 1.3(a) we must show (for example) that
a stochastic process {X(t), t ≥ 0}, defined according to Definition III, has
independent, stationary, Poisson-distributed increments.

We first show that

P (X(t) = k) = e−λt (λt)
k

k!
for k = 0, 1, 2, . . . , (1.22)

where λ = θ−1.
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Thus, set λ = θ−1. For k = 0, it follows from (1.8) that

P (X(t) = 0) = P (τ1 > t) =
∫ ∞

t

λe−λx dx = e−λt,

which proves (1.22) for that case.
Now let k ≥ 1 and set Tk = τ1 + τ2 + · · ·+ τk. Then Tk ∈ Γ(k, 1/λ). This,

together with (1.10) and (1.17), yields

P (X(t) = k) = P (X(t) ≥ k)− P (X(t) ≥ k + 1)
= P (Tk ≤ t)− P (Tk+1 ≤ t) = P (Tk+1 > t)− P (Tk > t)

=
∫ ∞

t

1
Γ(k + 1)

λk+1xke−λx dx−
∫ ∞

t

1
Γ(k)

λkxk−1e−λx dx

=
k∑

j=0

e−λt (λt)
j

j!
−

k−1∑
j=0

e−λt (λt)
j

j!
= e−λt (λt)

k

k!
,

as desired.
The following, alternative derivation of (1.22), which is included here be-

cause we need an extension below, departs from (1.10), according to which

P (X(t) = k) = P (Tk ≤ t < Tk+1) =
∫ ∞

t

(∫ t

0

fTk,Tk+1(u, v) du
)
dv. (1.23)

To determine fTk,Tk+1(u, v), we use transformation. Since Tk and τk+1 are
independent with known distributions, we have

fTk,τk+1(t, s) =
1

Γ(k)
λk+1tk−1e−λte−λs, for s, t ≥ 0

(recall that λ = θ−1), so that an application of Theorem 1.2.1 yields

fTk,Tk+1(u, v) =
1

Γ(k)
λk+1uk−1e−λv, for 0 ≤ u ≤ v. (1.24)

By inserting this into (1.23) and integrating, we finally obtain

P (X(t) = k) =
λk

(k − 1)!

∫ ∞

t

λe−λv

(∫ t

0

uk−1 du

)
dv = e−λt (λt)

k

k!
.

Next we consider the two time intervals (0, s] and (s, s+t] jointly. To begin
with, let i ≥ 0 and j ≥ 2 be nonnegative integers. We have

P (X(s) = i, X(s+ t)−X(s) = j)
= P (X(s) = i, X(s+ t) = i+ j)
= P (Ti ≤ s < Ti+1, Ti+j ≤ s+ t < Ti+j+1)

=
∫ ∞

s+t

∫ s+t

s

∫ t3

s

∫ s

0

fTi,Ti+1,Ti+j ,Ti+j+1(t1, t2, t3, t4) dt1dt2dt3dt4.
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In order to find the desired joint density, we extend the derivation of (1.24) as
follows. Set Y1 = Ti, Y2 = Ti+1−Ti, Y3 = Ti+j−Ti+1, and Y4 = Ti+j+1−Ti+j .
The joint density of Y1, Y2, Y3, and Y4 is easily found from the assumptions:

fY1,Y2,Y3,Y4(y1, y2, y3, y4)

=
1

Γ(i)
yi−1
1 λie−λy1 · λe−λy2 · 1

Γ(j − 1)
yj−2
3 λj−1e−λy3 · λe−λy4 ,

for y1, y2, y3, y4 > 0. An application of Theorem 1.2.1 yields the desired den-
sity, which is inserted into the integral above. Integration (the details of which
we omit) finally yields

P (X(s) = i, X(s+ t)−X(s) = j) = e−λs (λs)i

i!
· e−λt (λt)

j

j!
. (1.25)

The obvious extension to an arbitrary finite number of time intervals concludes
the proof for that case.

It remains to check the boundary cases i = 0, j = 0 and i = 0, j = 1
(actually, these cases are easier): Toward that end we modify the derivation
of (1.25) as follows:

For i = 0 and j = 0, we have

P (X(s) = 0, X(s+ t)−X(s) = 0) = P (X(s+ t) = 0)

= P (T1 > s+ t) = e−λ(s+t) = e−λs · e−λt ,

which is (1.25) for that case.
For i = 0 and j = 1 we have

P (X(s) = 0, X(s+ t)−X(s) = 1) = P (X(s) = 0, X(s+ t) = 1)

= P (s < T1 ≤ s+ t < T2) =
∫ ∞

s+t

∫ s+t

s

fT1,T2(t1, t2) dt1dt2.

Inserting the expression for the density as given by (1.24) (with k = 1) and
integration yields

P (X(s) = 0, X(s+ t)−X(s) = 1) = e−λs · λte−λt ,

which is (1.25) for that case.
The proof is complete. 2

2 Restarted Poisson Processes

We have now encountered three equivalent definitions of the Poisson process.
In the following we shall use these definitions at our convenience in order to
establish various properties of the process. At times we shall also give several
proofs of some fact, thereby illustrating how the choice of definition affects
the complexity of the proof.
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2.1 Fixed Times and Occurrence Times

In the first result of this section we use the lack of memory property to assert
that a Poisson process started at a fixed (later) time point is, again, a Poisson
process. (Since the Poisson process always starts at 0, we have to subtract the
value of the new starting point.)

Theorem 2.1. If {X(t), t ≥ 0} is a Poisson process, then so is

{X(t+ s)−X(s), t ≥ 0} for every fixed s > 0.

Proof. Put Y (t) = X(t + s) −X(s) for t ≥ 0. By arguing as in the proof of
Theorem 1.1, it follows that the Y -process has independent increments and
that an occurrence in the Y -process during (t, t+h] corresponds to an occur-
rence in the X-process during (t+ s, t+ s+h]. The properties of Definition II
are thus satisfied, and the conclusion follows. 2

Next we prove the corresponding assertion for {X(Tk + t)−X(Tk), t ≥ 0},
where Tk, as before, is the time of the kth occurrence in the original Poisson
process. Observe that in this theorem we (re)start at the random times Tk,
for k ≥ 1.

Theorem 2.2. If {X(t), t ≥ 0} is a Poisson process, then so is

{X(Tk + t)−X(Tk), t ≥ 0} for every fixed k ≥ 1.

First Proof. The first occurrence in the new process corresponds to the
(k + 1)th occurrence in the original process, the second to the (k + 2)th
occurrence, and so on; occurrence m in {X(Tk + t) − X(Tk), t ≥ 0} is the
same as occurrence k+m in the original process, for m ≥ 1. Since the original
durations are independent and Exp(1/λ)-distributed, it follows that the same
is true for the durations of the new process. The conclusion follows in view of
Definition III.

Second Proof. Put Y (t) = X(Tk + t)−X(Tk) for t ≥ 0. The following compu-
tation shows that the increments of the new process are Poisson-distributed.

By the law of total probability, we have for n = 0, 1, 2, . . . and t, s > 0,

P (Y (t+ s)− Y (s) = n) = P (X(Tk + t+ s)−X(Tk + s) = n)

=
∫ ∞

0

P (X(Tk + t+ s)−X(Tk + s) = n | Tk = u) · fTk
(u) du

=
∫ ∞

0

P (X(u+ t+ s)−X(u+ s) = n | Tk = u) · fTk
(u) du

=
∫ ∞

0

P (X(u+ t+ s)−X(u+ s) = n) · fTk
(u) du

=
∫ ∞

0

e−λt (λt)
n

n!
· fTk

(u) du = e−λt (λt)
n

n!
.
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The crucial point is that the events {X(u+t+s)−X(u+s) = n} and {Tk = u}
are independent (this is used for the fourth equality). This follows since the
first event depends on {X(v), u+s < v ≤ u+t+s}, the second event depends
on {X(v), 0 < v ≤ u}, and the intervals (0, u] and (u+s, u+t+s] are disjoint.
An inspection of the integrands shows that, for the same reason, we further
have

X(Tk + t+ s)−X(Tk + s) | Tk = u ∈ Po(λt). (2.1)

To prove that the process has independent increments, one considers finite
collections of disjoint time intervals jointly. 2

Exercise 2.1. Let {X(t), t ≥ 0} be a Poisson process with intensity 4.

(a) What is the expected time of the third occurrence?
(b) Suppose that the process has been observed during one time unit. What

is the expected time of the third occurrence given that X(1) = 8?
(c) What is the distribution of the time between the 12th and the 15th

occurrences? 2

Example 2.1. Susan stands at a road crossing. She needs six seconds to cross.
Cars pass by with a constant speed according to a Poisson process with an
intensity of 15 cars a minute. Susan does not dare to cross the street before
she has clear visibility, which means that there appears a gap of (at least) six
seconds between two cars. Let N be the number of cars that pass before the
necessary gap between two cars appears. Determine

(a) the distribution of N , and compute EN ;
(b) the total waiting time T before Susan can cross the road.

Solution. (a) The car arrival intensity is λ = 15, which implies that the waiting
time τ1 until a car arrives is Exp(1/15)-distributed.

Now, with N as defined above, we have N ∈ Ge(p), where

p = P (N = 0) = P (τ1 > 1
10 ) = e−

1
10 (15) = e−1.5.

It follows that EN = e1.5 − 1.
(b) Let τ1, τ2, . . . be the times between cars. Then τ1, τ2, . . . are independent,
Exp(1/15)-distributed random variables. The actual waiting times, however,
are τ∗k = τk | τk ≤ 0.1, for k ≤ 1. Since there are N cars passing before she
can cross, we obtain

T = τ∗1 + τ∗2 + · · ·+ τ∗N ,

which equals zero when N equals zero. It follows from Section 3.6 that

E T = EN · E τ∗1 = (e1.5 − 1) ·
( 1

15
− 0.1
e1.5 − 1

)
=
e1.5 − 2.5

15
. 2
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Exercise 2.2. (a) Next, suppose that Susan immediately wants to return.
Determine the expected number of cars and the expected waiting time before
she can return.
(b) Find the expected total time that has elapsed upon her return.

Exercise 2.3. This time, suppose that Susan went across the street to buy
ice cream, which requires an Exp(2)-distributed amount of time, after which
she returns. Determine the expected total time that has elapsed from her start
until her return has been completed.

Exercise 2.4. Now suppose that Susan and Daisy went across the street,
after which Daisy wanted to return immediately, whereas Susan wanted to
buy ice cream. After having argued for 30 seconds about what to do, they
decided that Susan would buy her ice cream (as above) and then return while
Daisy would return immediately and wait for Susan. How long did Daisy wait
for Susan? 2

2.2 More General Random Times

In this subsection we generalize Theorem 2.2 in that we consider restarts at
certain other random time points. The results will be used in Section 5 ahead.

Theorem 2.3. Suppose that {X(t), t ≥ 0} is a Poisson process and that T
is a nonnegative random variable that is independent of the Poisson process.
Then {X(T + t)−X(T ), t ≥ 0} is a Poisson process.

First Proof. Set Y (t) = X(T + t)−X(T ) for t ≥ 0. We show that Definition
I applies. The independence of the increments is a simple consequence of
the facts that they are independent in the original process and that T is
independent of that process. Furthermore, computations analogous to those
of the proof of Theorem 2.2 yield, for 0 ≤ t1 < t2 and k = 0, 1, 2, . . . (when
T has a continuous distribution),

P (Y (t2)− Y (t1) = k) = P (X(T + t2)−X(T + t1) = k)

=
∫ ∞

0

P (X(T + t2)−X(T + t1) = k | T = u) · fT (u) du

=
∫ ∞

0

P (X(u+ t2)−X(u+ t1) = k | T = u) · fT (u) du

=
∫ ∞

0

P (X(u+ t2)−X(u+ t1) = k) · fT (u) du

=
∫ ∞

0

e−λ(u+t2−(u+t1))

(
λ(u+ t2 − (u+ t1))

)k
k!

· fT (u) du

= e−λ(t2−t1)
(λ(t2 − t1))k

k!

∫ ∞

0

fT (u) du

= e−λ(t2−t1)
(λ(t2 − t1))k

k!
.
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Once again, the proof for discrete T is analogous and is left to the reader.
In order to determine the distribution of an increment, we may, alterna-

tively, use transforms, for example, generating functions. Let 0 ≤ t1 < t2. We
first observe that

h(t) = E(sY (t2)−Y (t1) | T = t)

= E(sX(T+t2)−X(T+t1) | T = t) = E(sX(t+t2)−X(t+t1) | T = t)

= E sX(t+t2)−X(t+t1) = eλ(t2−t1)(s−1),

that is, h(t) does not depend on t. An application of Theorem 2.2.1 yields

gY (t2)−Y (t1)(s) = E sY (t2)−Y (t1) = E
(
E(sY (t2)−Y (t1) | T )

)
= E h(T ) = eλ(t2−t1)(s−1),

which, in view of Theorem 3.2.1 (uniqueness of the generating function), shows
that Y (t2)− Y (t1) ∈ Po(λ(t2 − t1)), as required. 2

Remark 2.1. As for independence, the comments at the end of the second
proof of Theorem 2.2 also apply here. 2

Second Proof. Let Y (t), for t ≥ 0, be defined as in the first proof. Indepen-
dence of the increments follows as in that proof.

For T continuous, we further have

P (exactly one Y -occurrence during (t, t+ h])

=
∫ ∞

0

P (exactly one X-occurrence during (u+ t, u+ t+ h]) | T = u)

× fT (u) du

=
∫ ∞

0

P (exactly one X-occurrence during (u+ t, u+ t+ h]) · fT (u) du

=
∫ ∞

0

(λh+ o(h)) · fT (u) du = λh+ o(h) as h→ 0,

and, similarly,

P (at least two Y -occurrences during (t, t+ h]) = o(h) as h→ 0.

Again, the computations for T discrete are analogous. The conditions of Def-
inition II have thus been verified, and the result follows. 2

Remark 2.2. For the reader who is acquainted with Lebesgue integration, we
remark that the proofs for T continuous and T discrete actually can be com-
bined into one proof, which, in addition, is valid for T having an arbitrary
distribution.
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Remark 2.3. It is a lot harder to give a proof of Theorem 2.3 based on Defi-
nition III. This is because the kth occurrence in the new process corresponds
to an occurrence with a random number in the original process. However,
it is not so difficult to show that the time until the first occurrence in the
Y -process, T (y)

1 ∈ Exp(1/λ).
Explicitly, say, for T continuous,

P (T (y)
1 > t) = P (Y (t) = 0) = P (X(T + t)−X(T ) = 0)

=
∫ ∞

0

P (X(T + t)−X(T ) = 0 | T = u) · fT (u) du

=
∫ ∞

0

P (X(u+ t)−X(u) = 0 | T = u) · fT (u) du

=
∫ ∞

0

P (X(u+ t)−X(u) = 0) · fT (u) du

=
∫ ∞

0

e−λt · fT (u) du = e−λt. 2

In our second generalization of Theorem 2.2 we restart the Poisson process
at min{Tk, T}, where Tk is as before and T is independent of {X(t), t ≥ 0}.

Theorem 2.4. Let {X(t), t ≥ 0} be a Poisson process, let, for k ≥ 1, Tk

be the time of the kth occurrence, let T be a nonnegative random variable
that is independent of the Poisson process, and set T ∗k = min{Tk, T}. Then
{X(T ∗k + t)−X(T ∗k ), t ≥ 0} is a Poisson process.

Proof. Put Y (t) = X(T ∗k + t) −X(T ∗k ), t ≥ 0. We begin by determining the
distribution of the increments of the new process. By arguing as in the second
proof of Theorem 2.2, it follows that X(u+ t2)−X(u+ t1) is independent of
{T = u} and that

X(T + t2)−X(T + t1) | T = u ∈ Po(λ(t2 − t1)) for 0 ≤ t1 < t2 (2.2)

(cf. also (2.1)). However, the same properties hold true with T replaced by
T ∗k . To see this, we note that the event {T ∗k = u} depends only on {X(t), 0 ≤
t ≤ u} and T (which is independent of {X(t), t ≥ 0}). As a consequence,
the event {T ∗k = u} is independent of everything occurring after time u, in
particular of X(u + t2) − X(u + t1). We thus have the same independence
property as before. It follows that

X(T ∗k + t2)−X(T ∗k + t1) | T ∗k = u ∈ Po(λ(t2 − t1)) for 0 ≤ t1 < t2. (2.3)

The first proof of Theorem 2.3 thus applies (cf. also the second proof of The-
orem 2.2), and we conclude that

Y (t2)− Y (t1) ∈ Po(λ(t2 − t1)) for 0 ≤ t1 < t2. (2.4)

The independence of the increments follows from the above facts and from
the fact that the original process has independent increments. 2
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Remark 2.4. A minor variation of the proof is as follows (if T has a continuous
distribution).

For n = 0, 1, 2, . . . , we have

P (Y (t2)− Y (t1) = n) = P (X(T ∗k + t2)−X(T ∗k + t1) = n)
= P (X(T ∗k + t2)−X(T ∗k + t1) = n, T ∗k = Tk)

+ P (X(T ∗k + t2)−X(T ∗k + t1) = n, T ∗k = T )
= P (X(T ∗k + t2)−X(T ∗k + t1) = n, Tk < T )+

+ P (X(T ∗k + t2)−X(T ∗k + t1) = n, T ≤ Tk)

=
∫ ∞

0

P (X(T ∗k + t2)−X(T ∗k + t1) = n | Tk = u < T )P (T > u)

× fTk
(u) du

+
∫ ∞

0

P (X(T ∗k + t2)−X(T ∗k + t1) = n | T = u ≤ Tk)P (Tk ≥ u)

× fT (u) du

=
∫ ∞

0

P (X(u+ t2)−X(u+ t1) = n | Tk = u < T )P (T > u)

× fTk
(u) du

+
∫ ∞

0

P (X(u+ t2)−X(u+ t1) = n | T = u ≤ Tk)P (Tk ≥ u)

× fT (u) du

=
∫ ∞

0

P (X(u+ t2)−X(u+ t1) = n)P (T > u) · fTk
(u) du

+
∫ ∞

0

P (X(u+ t2)−X(u+ t1) = n)P (Tk ≥ u) · fT (u) du

= e−λ(t2−t1)
(λ(t2 − t1))n

n!

×
(∫ ∞

0

∫ ∞

u

fT (v)fTk
(u) dv du+

∫ ∞

0

∫ ∞

u

fTk
(v)fT (u) dv du

)
= e−λ(t2−t1)

(λ(t2 − t1))n

n!
,

which shows that the increments are Poisson-distributed, as desired.
The removal of the conditioning is justified by the fact that the events

{Tk = u < T} and {T = u ≤ Tk} depend only on {X(t), 0 ≤ t ≤ u} and T ,
which makes them independent of X(u+ t2)−X(u+ t1).

By considering several disjoint time intervals jointly, one can prove inde-
pendence of the increments. 2
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2.3 Some Further Topics

Parts of the content of this subsection touch, or even cross, the boundary of
the scope of this book. In spite of this, let us make some further remarks.

As for the difference between Theorem 2.1 and Theorems 2.2 to 2.4, we may
make a comparison with Markov processes. Theorem 2.1, which is based on
the “starting from scratch” property at fixed time points, is a consequence of
what is called the weak Markov property (where one conditions on fixed times).
Theorems 2.2 to 2.4, which establish the starting from scratch property for
certain random time points, is a consequence of the so-called strong Markov
property (which involves conditioning on (certain) random times).

A closer inspection of the proof of Theorem 2.4 shows that the hardest
points were those required to prove relation (2.3) and the independence of the
increments. For these conclusions we used the fact that “T ∗k does not depend
on the future” in the sense that the event {T ∗k = u} depends only on what
happens to the original Poisson process up to time u, that is, on {X(t), t ≤ u}.
Analogous arguments were made in the second proof of Theorem 2.2, the proof
of Theorem 2.3, and Remark 2.4.

In view of this it is reasonable to guess that theorems of the preceding
kind hold true for any T that is independent of the future in the same sense.
Indeed, there exists a concept called stopping time based on this property.
Moreover,

(a) the strong Markov property is satisfied if the usual (weak) Markov prop-
erty holds with fixed times replaced by stopping times;

(b) Poisson processes start from scratch at stopping times, that is, Theorems
2.2 to 2.4 can be shown to hold true for T being an arbitrary stopping
time; Theorems 2.2 to 2.4 are special cases of this more general result.

We conclude with an example, which shows that a restarted Poisson pro-
cess is not always a Poisson process.

Example 2.2. Let {X(t), t ≥ 0} be a Poisson process, and set

T = sup{n : X(n) = 0}.

This means that T is the last integral time point before the first occurrence.
Further, let T ′ be the time of the first occurrence in the process {X(T + t)−
X(T ), t ≥ 0}. Then, necessarily, P (T ′ ≤ 1) = 1, which, in particular, implies
that T ′ does not follow an exponential distribution. The new process thus
cannot be a Poisson process (in view of Definition III). 2

The important feature of the example is that the event {T = n} depends
on the future, that is, on {X(t), t > n}; T is not a stopping time.
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3 Conditioning on the Number of Occurrences
in an Interval

In this section we investigate how a given number of occurrences of a Poisson
process during a fixed time interval are distributed within that time interval.
For simplicity, we assume that the time interval is (0, 1]. As it turns out, all
results are independent of the intensity of the Poisson process. The reason for
this is that the intensity acts only as a scaling factor and that conditioning
annihilates the scaling effects. Moreover, if Y ∈ Exp(θ), for θ > 0, then
aY ∈ Exp(aθ) for every a > 0. By exploiting these facts and the lack of
memory property, it is easy (and a good exercise) to formulate and prove
corresponding results for general intervals.

The simplest problem is to determine the distribution of T1 given that
X(1) = 1. A moment’s thought reveals the following. In view of the lack of
memory property, the process should not be able to remember when during
the time interval (0, 1] there was an occurrence. All time points should, in
some sense, be equally likely. Our first result establishes that this is, indeed,
the case.

Theorem 3.1. The conditional distribution of T1 given that X(1) = 1 is the
U(0, 1)-distribution, that is,

FT1|X(1)=1(t) = P (T1 ≤ t | X(1) = 1) =


0, for t < 0,
t, for 0 ≤ t ≤ 1,
1, for t > 1,

(3.1)

or, equivalently,

fT1|X(1)=1(t) =

{
1, for 0 ≤ t ≤ 1,
0, otherwise.

(3.2)

First Proof. For 0 ≤ t ≤ 1, we have

P (T1 ≤ t | X(1) = 1) =
P (T1 ≤ t,X(1) = 1)

P (X(1) = 1)

=
P (X(t) = 1, X(1) = 1)

P (X(1) = 1)

=
P (X(t) = 1, X(1)−X(t) = 0)

P (X(1) = 1)

=
P (X(t) = 1) · P (X(1)−X(t) = 0)

P (X(1) = 1)

=
λte−λt · e−λ(1−t)

λe−λ
= t.

The cases t < 0 and t > 1 are, of course, trivial. This proves (3.1), from which
(3.2) follows by differentiation.
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Second Proof. This proof is similar to the second proof of Theorem 2.2. Let
0 ≤ t ≤ 1.

P (T1 ≤ t | X(1) = 1) =
P (T1 ≤ t,X(1) = 1)

P (X(1) = 1)

=

∫ t

0
P (X(1) = 1 | T1 = s) · fT1(s) ds

P (X(1) = 1)

=

∫ t

0
P (X(1)−X(s) = 0 | T1 = s) · fT1(s) ds

P (X(1) = 1)

=

∫ t

0
P (X(1)−X(s) = 0) · fT1(s) ds

P (X(1) = 1)

=

∫ t

0
e−λ(1−s) · λe−λs ds

λe−λ
=
∫ t

0

ds = t. 2

Now suppose that X(1) = n. Intuitively, we then have n points, each
of which behaves according to Theorem 3.1. In view of the lack of memory
property, it is reasonable to believe that they behave independently of each
other. In the remainder of this section we shall verify these facts. We first
show that the (marginal) distribution of Tk given that X(1) = n is the same as
that of the kth order variable in a sample of n independent, U(0, 1)-distributed
random variables (cf. Theorem 4.1.1). Then we show that the joint conditional
distribution of the occurrence times is the same as that of the order statistic
of n independent, U(0, 1)-distributed random variables (cf. Theorem 4.3.1).

Theorem 3.2. For k = 1, 2, . . . , n,

Tk | X(1) = n ∈ β(k, n+ 1− k),

that is,

fTk|X(1)=n(t) =


Γ(n+ 1)

Γ(k)Γ(n+ 1− k)
tk−1(1− t)n−k, for 0 ≤ t ≤ 1,

0, otherwise.

Remark 3.1. For n = k = 1, we rediscover Theorem 3.1. 2

Proof. We modify the second proof of Theorem 3.1. For 0 ≤ t ≤ 1, we have

P (Tk ≤ t | X(1) = n) =
P (Tk ≤ t,X(1) = n)

P (X(1) = n)

=

∫ t

0
P (X(1) = n | Tk = s) · fTk

(s) ds
P (X(1) = n)

=

∫ t

0
P (X(1)−X(s) = n− k) · fTk

(s) ds
P (X(1) = n)
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=

∫ t

0
e−λ(1−s) (λ(1−s))n−k

(n−k)! · 1
Γ(k)λ

ksk−1e−λs ds

e−λ λn

n!

=
n!

Γ(k) (n− k)!

∫ t

0

sk−1(1− s)n−k ds

=
Γ(n+ 1)

Γ(k)Γ(n+ 1− k)

∫ t

0

sk−1(1− s)n+1−k−1 ds .

The density is obtained via differentiation. 2

Theorem 3.3. The joint conditional density of T1, T2, . . . , Tn given that
X(1) = n is

fT1,...,Tn|X(1)=n(t1, . . . , tn) =

{
n!, for 0 < t1 < t2 < · · · < tn < 1,
0, otherwise.

Proof. We first determine the distribution of (T1, T2, . . . , Tn). With τk, 1 ≤
k ≤ n, as before, it follows from Theorem 1.3(a) that

fτ1,...,τn
(u1, . . . , un) =

n∏
k=1

λe−λuk = λn exp
{
−λ

n∑
k=1

uk

}
, uk > 0,

which, with the aid of Theorem 1.2.1, yields

fT1,...,Tn
(t1, . . . , tn) = λne−λtn for 0 < t1 < t2 < · · · < tn. (3.3)

By proceeding as in the proof of Theorem 3.2, we next obtain, for 0 < t1 <
t2 < · · · < tn < 1,

P (T1 ≤ t1, T2 ≤ t2, . . . , Tn ≤ tn | X(1) = n)

=
P (T1 ≤ t1, T2 ≤ t2, . . . , Tn ≤ tn, X(1) = n)

P (X(1) = n)

=
∫∫
· · ·
∫
P (X(1)−X(sn) = 0) · fT1,...,Tn

(s1, . . . , sn) ds1ds2 · · · dsn

P (X(1) = n)

=

∫ t1
0

∫ t2
s1
· · ·
∫ tn

sn−1
e−λ(1−sn) · λne−λsn dsndsn−1 · · · ds1

e−λ λn

n!

= n!
∫ t1

0

∫ t2

s1

· · ·
∫ tn

sn−1

dsndsn−1 · · · ds1.

Differentiation yields the desired conclusion. 2

This establishes that the joint conditional distribution of the occurrence
times is the same as that of the order statistic of a sample from the U(0, 1)-
distribution as claimed above. Another way to express this fact is as follows:
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Theorem 3.4. Let U1, U2, . . . , Un be independent, U(0, 1)-distributed ran-
dom variables, and let U(1) ≤ U(2) ≤ · · · ≤ U(n) be the order variables. Then(

(T1, T2, . . . , Tn) | X(1) = n
) d= (U(1), U(2), . . . , U(n)). 2

Remark 3.2. A problem related to these results is the computation of the
conditional probability

P (X(s) = k | X(t) = n), for k = 0, 1, 2, . . . , n and 0 ≤ s ≤ t.

One solution is to proceed as before (please do!). Another way to attack the
problem is to use Theorem 3.3 as follows. Since the occurrences are uniformly
distributed in (0, t], it follows that the probability that a given occurrence
precedes s equals s/t, for 0 ≤ s ≤ t. In view of the independence we conclude
that, for 0 ≤ s ≤ t,

# occurrences in (0, s] | X(t) = n ∈ Bin
(
n, s/t

)
, (3.4)

and hence, for k = 0, 1, . . . , n and 0 ≤ s ≤ t, that

P (X(s) = k | X(t) = n) =
(
n

k

)(s
t

)k(
1− s

t

)n−k

. (3.5)

Remark 3.3. Just as (1.21) was obtained with the aid of (1.10), we may use a
conditional version of (1.10) together with (3.4) to show that

Γ(n+ 1)
Γ(k)Γ(n+ 1− k)

∫ t

0

xk−1(1− x)n−k dx =
n∑

j=k

(
n

j

)
tj(1− t)n−j . (3.6)

The appropriate conditional version of (1.10) is

P (Tk ≤ t | X(1) = n) = P (X(t) ≥ k | X(1) = n), (3.7)

for k = 1, 2, . . . , n and 0 ≤ t ≤ 1. Since the left-hand sides of (3.6) and (3.7)
are equal and since this is also true for the right-hand sides, (3.6) follows im-
mediately from (3.7). Observe also that relation (3.6) was proved by induction
(partial integration) during the proof of Theorem 4.1.1.

Remark 3.4. The result in Remark 3.2 can be generalized to several subin-
tervals. Explicitly, by similar arguments one can, for example, show that the
joint conditional distribution of

(X(t1)−X(s1), X(t2)−X(s2), . . . , X(tk)−X(sk)) | X(1) = n

is multinomial with parameters (n; p1, ..., pk), where pj = tj − sj for j =
1, 2, . . . , k and 0 ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sk < tk ≤ 1. 2
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4 Conditioning on Occurrence Times

In the previous section we conditioned on the event {X(1) = n}, that is, on
the event that there have been n occurrences at time 1. In this section we
condition on Tn, that is, on the nth occurrence time. The conclusions are as
follows:

Theorem 4.1. For k = 1, 2, . . . , n,

(a) Tk | Tn = 1 ∈ β(k, n− k);
(b) Tk/Tn ∈ β(k, n− k);
(c) Tn and Tk/Tn are independent.

Proof. The conclusions are fairly straightforward consequences of Theorem
1.2.1.

(a) Let Y1 ∈ Γ(r, θ) and Y2 ∈ Γ(s, θ) be independent random variables,
and set V1 = Y1 and V2 = Y1 + Y2. By Theorem 1.2.1 we have

fV1,V2(v1, v2) =
1

Γ(r)
1
θr
vr−1
1 e−v1/θ · 1

Γ(s)
1
θs

(v2 − v1)s−1e−(v2−v1)/θ · 1

=
Γ(r + s)
Γ(r)Γ(s)

(v1
v2

)r−1(
1− v1

v2

)s−1 1
v2
· 1
Γ(r + s)

1
θr+s

vr+s−1
2 e−v2/θ, (4.1)

for 0 < v1 < v2. Since V2 ∈ Γ(r + s, θ), it follows that

fV1|V2=1(v) =
fV1,V2(v, 1)
fV2(1)

=
Γ(r + s)
Γ(r)Γ(s)

vr−1(1− v)s−1, for 0 < v < 1, (4.2)

that is, V1 | V2 = 1 ∈ β(r, s). By observing that Tn = Tk + (Tn − Tk) and by
identifying Tk with Y1 and Tn − Tk with Y2 (and hence k with r, n− k with
s, and 1/λ with θ), we conclude that (a) holds.

(b) and (c) It follows from Theorem 1.2.1 applied to (4.1) and the trans-
formation W1 = V1/V2 (= Y1/(Y1 + Y2)) and W2 = V2 (= Y1 + Y2) that

fW1,W2(w1, w2)

=
Γ(r + s)
Γ(r)Γ(s)

wr−1
1 (1− w1)s−1 · 1

Γ(r + s)
1

θr+s
wr+s−1

2 e−w2/θ, (4.3)

for 0 < w1 < 1 and w2 > 0 (cf. Example 1.2.5 and Problems 1.3.41 and 1.3.42).
This proves the independence of W1 and W2 and that W1 ∈ β(r, s). The
identification Tk/Tn = W1 and Tn = W2 and parameters as above concludes
the proof of (b) and (c). 2

The results can also be generalized to joint distribution s. We provide only
the statements here and leave the details to the reader.

By starting from the joint density of (T1, T2, . . . , Tn) in (3.3) and by making
computations analogous to those that lead to (4.2), one can show that, for
0 < t1 < t2 < · · · < tn−1 < 1,
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fT1,...,Tn−1|Tn=1(t1, . . . , tn−1) = (n− 1)! . (4.4)

This means that the conditional distribution of (T1, T2, . . . , Tn−1) given that
Tn = 1 is the same as that of the order statistic corresponding to a sample of
size n− 1 from a U(0, 1)-distribution.

Furthermore, by applying a suitable transformation and Theorem 1.2.1 to
the density in (3.3), we obtain, for 0 < y1 < y2 < · · · < yn−1 < 1 and yn > 0,

f T1
Tn

,
T2
Tn

,...,
Tn−1

Tn
,Tn

(y1, y2, . . . , yn) = λnyn−1
n e−λyn .

By viewing this as

f T1
Tn

,
T2
Tn

,...,
Tn−1

Tn
,Tn

(y1, y2, . . . , yn) = (n− 1)! · 1
Γ(n)

λnyn−1
n e−λyn

(in the same domain), it follows that (T1/Tn, T2/Tn, . . . , Tn−1/Tn) is dis-
tributed as the order statistic corresponding to a sample of size n− 1 from a
U(0, 1)-distribution and that the vector is independent of Tn (∈ Γ(n, 1/λ)).

It is also possible to verify that the marginal densities of Tk and Tk/Tn

are those given in Theorem 4.1.
The following result collects the above facts:

Theorem 4.2. Let U1, U2, . . . , Un be independent, U(0, 1)-distributed ran-
dom variables, and let U(1) ≤ U(2) ≤ · · · ≤ U(n) be the order variables. Then

(a)
(
(T1, T2, . . . , Tn) | Tn+1 = 1

) d= (U(1), U(2), . . . , U(n));

(b) (T1/Tn+1, T2/Tn+1, . . . , Tn/Tn+1)
d= (U(1), U(2), . . . , U(n));

(c) (T1/Tn+1, T2/Tn+1, . . . , Tn/Tn+1) and Tn+1 are independent. 2

5 Several Independent Poisson Processes

Suppose that we are given m independent Poisson processes

{X1(t), t ≥ 0}, {X2(t), t ≥ 0}, . . . , {Xm(t), t ≥ 0}

with intensities λ1, λ2, . . . , λm, respectively, and consider a new process
{Y (t), t ≥ 0} defined as follows: The Y -occurrences are defined as the union of
all Xk-occurrences, k = 1, 2, . . . , m, that is, every Y -occurrence corresponds
to an Xk-occurrence for some k, and vice versa.

As a typical example, we might consider a service station to which m kinds
of customers arrive according to (m) independent Poisson processes. The Y -
process then corresponds to arrivals (of any kind) to the service station.

Another example (discussed ahead) is that of a (radioactive) source emit-
ting particles of different kinds according to independent Poisson processes.
The Y -process then corresponds to “a particle is emitted.”
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A typical realization for m = 5 is given in the following figure:

X1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t× ×

X2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t× ×

X3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t× × × ×

X4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t× ×

X5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t× × ×

Y −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t× × × × × × × × × × × × ×

Figure 5.1

5.1 The Superpositioned Poisson Process

The Y -process we have just described is called a superpositioned Poisson pro-
cess; the inclusion of “Poisson” in the name is motivated by the following
result:

Theorem 5.1. {Y (t), t ≥ 0} is a Poisson process with intensity λ = λ1 +
λ2 + · · ·+ λm.

First Proof. We show that the conditions of Definition I are satisfied.
The Y -process has independent increments because all the X-processes

do and also because the processes are independent. Further, since the sum
of independent, Poisson-distributed random variables is Poisson-distributed
with a parameter equal to the sum of the individual ones, it follows that

Y (t+ s)− Y (s) =
m∑

k=1

(
Xk(t+ s)−Xk(s)

)
∈ Po

( m∑
k=1

λkt
)
, (5.1)

for all s, t ≥ 0.

Second Proof. We show that Definition II is applicable.
The independence of the increments of the Y -process follows as before.

Next we note that there is exactly one Y -occurrence during (t, t + h] if (and
only if) there is exactly one X-occurrence during (t, t+ h]. Therefore, let

A
(i)
k = {i Xk-occurrences during (t, t+ h]}, (5.2)

for k = 1, 2, . . . , m and i = 0, 1, 2, . . . . Then

P (A(0)
k ) = 1− λkh+ o(h),

P (A(1)
k ) = λkh+ o(h),

P
( ∞⋃

i=2

A
(i)
k

)
= o(h),

(5.3)
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as h→ 0. Thus

P (exactly one Y -occurrence during (t, t+ h])

= P
( m⋃

k=1

{A(1)
k

⋂(⋂
j 6=k

A
(0)
j

)
}
)

=
m∑

k=1

P
(
{A(1)

k

⋂( ⋂
j 6=k

A
(0)
j

)
}
)

=
m∑

k=1

P (A(1)
k ) ·

∏
j 6=k

P (A(0)
j )

=
m∑

k=1

(λkh+ o(h)) ·
∏
j 6=k

(1− λjh+ o(h))

=
( m∑

k=1

λk

)
· h+ o(h) as h→ 0,

which shows that condition (b) in Definition II is satisfied with λ =
∑m

k=1 λk.
Finally, at least two Y -occurrences during (t, t + h] means that we have

either at least two Xk-occurrences for at least one k or exactly one Xk-
occurrence for at least two different values of k. Thus

P (at least two Y -occurrences during (t, t+ h])

= P
({ m⋃

k=1

∞⋃
i=2

A
(i)
k

} ⋃{ m⋃
j=2

⋃
k1,...,kj

ki different

j⋂
i=1

A
(1)
ki

})

≤ P
( m⋃

k=1

∞⋃
i=2

A
(i)
k

)
+ P

( m⋃
j=2

⋃
k1,...,kj

ki different

j⋂
i=1

A
(1)
ki

)

≤
m∑

k=1

P (
∞⋃

i=2

A
(i)
k ) +

m∑
j=2

∑
k1,...,kj

ki different

P (
j⋂

i=1

A
(1)
ki

)

= m · o(h) +
m∑

j=2

∑
k1,...,kj

ki different

j∏
i=1

(λkih+ o(h))

= o(h) as h→ 0,

since the dominating term in the product is (
∏j

i=1 λki
) · hj = o(h) as h→ 0,

for all j ≥ 2, and the number of terms in the double sum is finite.
This establishes that condition (c) in Definition II is satisfied, and the

proof is, again, complete. 2

Just as for Theorem 2.3, it is cumbersome to give a complete proof based
on Definition III. Let us show, however, that the durations in the Y -process



5 Several Independent Poisson Processes 249

are Exp((
∑m

k=1 λk)−1)-distributed; to prove independence requires more tools
than we have at our disposal here.

We begin by determining the distribution of the time Ty until the first
Y -occurrence. Let T (k) be the time until the first Xk-occurrence, k =
1, 2, . . . , m. Then T (1), T (2), . . . , T (m) are independent, T (k) ∈ Exp(1/λk),
k = 1, 2, . . . , m, and

Ty = min
1≤k≤m

T (k). (5.4)

It follows that

P (Ty > t) = P
( m⋂

k=1

{T (k) > t}
)

=
m∏

k=1

P (T (k) > t)

=
m∏

k=1

e−λkt = exp
{
−
( m∑

k=1

λk

)
t
}
, for t ≥ 0,

that is,

Ty ∈ Exp
(( m∑

k=1

λk

)−1)
. (5.5)

Next, consider some fixed j, and set T̃ (j) = min{T (i) : i 6= j}. Since

Ty = min{T (j), T̃ (j)} (5.6)

and T̃ (j) is independent of the Xj-process, it follows from Theorem 2.4 (with
k = 1) that {Xj(Ty + t)−Xj(Ty), t ≥ 0} is a Poisson process (with intensity
λj).

Since j was arbitrary, the same conclusion holds for all j, which implies
that the time between the first and second Y -occurrences is the same as
the time until the first occurrence in the superpositioned process generated
by the X-processes restarted at Ty (cf. the first proof of Theorem 2.2). By
(5.5), however, we know that this waiting time has the desired exponential
distribution. Finally, by induction, we conclude that the same is true for all
durations. 2

Example 2.1 (continued). Recall Susan standing at a road crossing, needing 6
seconds to cross the road. Suppose that the following, more detailed descrip-
tion of the traffic situation is available. Cars pass from left to right with a
constant speed according to a Poisson process with an intensity of 10 cars a
minute, and from right to left with a constant speed according to a Poisson
process with an intensity of 5 cars a minute. As before, let N be the number of
cars that pass before the necessary gap between two cars appears. Determine

(a) the distribution of N , and compute EN ;
(b) the total waiting time T before Susan can cross the road.
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It follows from Theorem 5.1 that the process of cars passing by is a Poisson
process with intensity 10 + 5 = 15. The answers to (a) and (b) thus are the
same as before. 2

Exercise 5.1. A radioactive substance emits particles of two kinds, A and
B, according to two independent Poisson processes with intensities 10 and 15
particles per minute, respectively. The particles are registered in a counter,
which is started at time t = 0. Let T be the time of the first registered particle.
Compute E T . 2

5.2 Where Did the First Event Occur?

In connection with the results of the preceding subsection, the following is
a natural question: What is the probability that the first Y -occurrence is
caused by the Xk-process? Equivalently (in the notation of Subsection 5.1),
what is the probability that T (k) is the smallest among T (1), T (2), . . . , T (m)?
For the service station described in Example 1.1, this amounts to asking for
the probability that the first customer to arrive is of some given kind. For the
particles it means asking for the probability that a given type of particle is
the first to be emitted.

In Figure 5.1 the X2-process causes the first Y -occurrence.
Suppose first that m = 2 and that λ1 = λ2. By symmetry the probability

that the first Y -occurrence is caused by the X1-process equals

P (T (1) < T (2)) =
1
2
. (5.7)

Similarly, if λ1 = λ2 = · · · = λm for some m ≥ 2, the probability that the
first Y -occurrence is caused by the Xk-process equals

P (min{T (1), T (2), . . . , T (m)} = T (k)) =
1
m
. (5.8)

Now, let λ1, λ2, . . . , λm be arbitrary and m ≥ 2. We wish to determine the
probability in (5.8), that is,

P (T (k) < min
j 6=k

T (j)) = P (T (k) < T̃ (k)). (5.9)

From the previous subsection we know that T̃ (k) ∈ Exp((
∑

j 6=k λj)−1) and
that T̃ (k) and T (k) are independent. The desired probability thus equals∫ ∞

0

(∫ ∞

x

λke
−λkx · λ̃ke

−eλky dy

)
dx =

λk

λk + λ̃k

, (5.10)

where λ̃k =
∑

j 6=k λj . Thus, the answer to the question raised above is that,
for k = 1, 2, . . . , m,



5 Several Independent Poisson Processes 251

P (min{T (1), T (2), . . . , T (m)} = T (k)) =
λk

λ1 + λ2 + · · ·+ λm
. (5.11)

In particular, if all λk are equal, (5.11) reduces to (5.8) (and, for m = 2, to
(5.7)).

Remark 5.1. Since the exponential distribution is continuous, there are no
ties, that is, all probabilities such as P (T (i) = T (j)) with i 6= j equal zero, in
particular, P (all T (j) are different) = 1. 2

Example 2.1 (continued). What is the probability that the first car that passes
runs from left to right?

Since the intensities from left to right and from right to left are 10 and 5,
respectively, it follows that the answer is 10/(10 + 5) = 2/3.

Example 5.1. A radioactive material emits α-, β-, γ-, and δ-particles according
to four independent Poisson processes with intensities λα, λβ , λγ , and λδ,
respectively. A particle counter counts all emitted particles. Let Y (t) be the
number of emissions (registrations) during (0, t], for t ≥ 0.

(a) Show that {Y (t), t ≥ 0} is a Poisson process, and determine the intensity
of the process.

(b) What is the expected duration Ty until a particle is registered?
(c) What is the probability that the first registered particle is a β-particle?
(d) What is the expected duration Tβ until a β-particle is registered?

Solution. (a) It follows from Theorem 5.1 that {Y (t), t ≥ 0} is a Poisson
process with intensity

λ = λα + λβ + λγ + λδ.

(b) Ty ∈ Exp(1/λ), that is, E Ty = 1/λ.
(c) Recalling formula (5.11), the answer is λβ/λ.
(d) Since β-particles are emitted according to a Poisson process with intensity

λβ independently of the other Poisson processes, it follows that Tβ ∈
Exp(1/λβ) and hence that E Tβ = 1/λβ . 2

Exercise 5.1. Compute the probability that the first registered particle is an
α-particle.

Exercise 5.2. John and Betty are having a date tonight. They agree to meet
at the opera house Xj and Xb hours after 7 p.m., where Xj and Xb are
independent, Exp(1)-distributed random variables.

(a) Determine the expected arrival time of the first person.
(b) Determine his or her expected waiting time.
(c) Suppose that, in addition, they decide that they will wait at most 30

minutes for each other. What is the probability that they will actually
meet? 2
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We close this subsection by pointing out another computational method for
finding the probability in (5.11) when m = 2. The idea is to view probabilities
as expectations of indicators as follows:

P (T (1) < T (2)) = E I{T (1) < T (2)} = E
(
E(I{T (1) < T (2)} | T (1))

)
= E e−λ2T (1)

= ψT (1)(−λ2) =
1

1− 1
λ1
· (−λ2)

=
λ1

λ1 + λ2
.

For the third equality sign we used the fact that

E(I{T (1) < T (2)} | T (1) = t) = E(I{t < T (2)} | T (1) = t)

= E I{t < T (2)} = P (T (2) > t) = e−λ2t.

5.3 An Extension

An immediate generalization of the problem discussed in the previous subsec-
tion is given by the following question: What is the probability that there are
n Xk-occurrences preceding occurrences of any other kind?

The following is an example for the case m = 2. A mathematically equiv-
alent example formulated in terms of a game is given after the solution; it is
instructive to reflect a moment on why the problems are indeed equivalent:

Example 5.2. A radioactive source emits a substance, which is a mixture of
α-particles and β-particles. The particles are emitted as independent Poisson
processes with intensities λ and µ particles per second, respectively. Let N be
the number of emitted α-particles between two consecutive β-particles. Find
the distribution of N .

First Solution. The “immediate” solution is based on conditional probabili-
ties.

We first consider the number of α-particles preceding the first β-particle.
Let Tβ be the waiting time until the first β-particle is emitted. Then Tβ ∈
Exp(1/µ) and

P (N = n | Tβ = t) = e−λt (λt)
n

n!
for n = 0, 1, 2, . . . . (5.12)

It follows that

P (N = n) =
∫ ∞

0

P (N = n | Tβ = t) · fTβ
(t) dt

=
∫ ∞

0

e−λt (λt)
n

n!
· µe−µt dt =

∫ ∞

0

µλn

Γ(n+ 1)
tne−(λ+µ)t dt

=
µλn

(λ+ µ)n+1

∫ ∞

0

1
Γ(n+ 1)

(λ+ µ)n+1tne−(λ+µ)t dt

=
µ

λ+ µ

( λ

λ+ µ

)n

, for n = 0, 1, 2, . . . ,

that is, N ∈ Ge(µ/(λ+ µ)).
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Observe that this, in particular, shows that the probability that the first
emitted particle is a β-particle equals µ/(λ+ µ) (in agreement with (5.11)).

This answers the question of how many α-particles there are before the first
β-particle is emitted. In order to answer the original, more general question,
we observe that, by Theorem 2.4 (cf. also the third proof of Theorem 5.1),
“everything begins from scratch” each time a particle is emitted. It follows that
the number of α-particles between two β-particles follows the same geometric
distribution.

Second Solution. We use (5.12) and transforms. Since

E(sN | Tβ = t) = eλt(s−1), (5.13)

we obtain, for s < 1 + µ/λ,

gN (s) = E sN = E
(
E(sN | Tβ)

)
= E eλTβ(s−1) = ψTβ

(λ(s− 1))

=
1

1− λ(s−1)
µ

=
µ

µ+ λ− λs
=

µ
λ+µ

1− λ
λ+µs

,

which is the generating function of the Ge(µ/(λ + µ))-distribution. By the
uniqueness theorem (Theorem 3.2.1), we conclude that N ∈ Ge(µ/(λ+ µ)).

Third Solution. The probability that an α-particle comes first is equal to
µ/(λ + µ), by (5.11). Moreover, everything starts from scratch each time a
particle is emitted. The event {N = n} therefore occurs precisely when the
first n particles are α-particles and the (n+ 1)th particle is a β-particle. The
probability of this occurring equals

λ

λ+ µ
· λ

λ+ µ
· · · λ

λ+ µ
· µ

λ+ µ
,

with n factors µ/(λ+ µ). This shows (again) that

P (N = n) =
( λ

λ+ µ

)n µ

λ+ µ
for n = 0, 1, 2, . . . , (5.14)

as desired. 2

Example 5.3. Patricia and Cindy are playing computer games on their com-
puters. The duration of the games are Exp(θ)- and Exp(µ)-distributed, re-
spectively, and all durations are independent. Find the distribution of the
number of games Patricia wins between two consecutive wins by Cindy. 2

Now, letm ≥ 2 be arbitrary. In Example 5.2 this corresponds tom different
kinds of particles. The problem of finding the number of particles of type k
preceding any other kind of particle is reduced to the case m = 2 by putting
all other kinds of particles into one (big) category in a manner similar to that
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of Subsections 5.1 and 5.2. We thus create a superpositioned Y -process based
on the Xj-processes with j 6= k. By Theorem 5.1, this yields a Poisson process
with intensity λ̃k =

∑
j 6=k λj , which is independent of the Xk-process. The

rest is immediate.
We collect our findings from Subsections 5.2 and 5.3 in the following result:

Theorem 5.2. Let {X1(t), t ≥ 0}, {X2(t), t ≥ 0}, . . . , {Xm(t), t ≥ 0} be
independent Poisson processes with intensities λ1, λ2, . . . , λm, respectively,
and set pk = λk/(λ1+· · ·+λm), for k = 1, 2, . . . , m. For every k, 1 ≤ k ≤ m,
we then have the following properties:

(a) The probability that the first occurrence is caused by the Xk-process equals
pk.

(b) The probability that the first n occurrences are caused by the Xk-process
equals pn

k , n ≥ 1.
(c) The number of Xk-occurrences preceding an occurrence of any other kind

is Ge(1− pk)-distributed.
(d) The number of occurrences preceding the first occurrence in the Xk-process

is Ge(pk)-distributed.
(e) The number of non-Xk-occurrences between two occurrences in the Xk-

process is Ge(pk)-distributed. 2

5.4 An Example

In Example 1.2 and Remark 3.3 two mathematical formulas were demon-
strated with the aid of probabilistic arguments. Here is another example:∫ ∞

0

xne−x(1− e−x)n−1dx = 1 +
1
2

+
1
3

+ · · ·+ 1
n
. (5.15)

One way to prove (5.15) is, of course, through induction and partial inte-
gration. Another method is to identify the left-hand side as E Y(n), where
Y(n) is the largest of n independent, identically Exp(1)-distributed random
variables, Y1, Y2, . . . , Yn. As for the right-hand side, we put Z1 = Y(1) and
Zk = Y(k) − Y(k−1), for k ≥ 2, compute the joint distribution of these differ-
ences, and note that

Y(n) = Z1 + Z2 + · · ·+ Zn. (5.16)

This solution was suggested in Problem 4.4.21.
Here we prove (5.15) by exploiting properties of the Poisson process,

whereby Theorems 2.4 and 5.1 will be useful.

Solution. Consider n independent Poisson processes with intensity 1, and let
Y1, Y2, . . . , Yn be the times until the first occurrences in the processes. Then
Yk, for 1 ≤ k ≤ n, are independent, Exp(1)-distributed random variables.
Further, Y(n) = max{Y1, Y2, . . . , Yn} is the time that has elapsed when every
process has had (at least) one occurrence.
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We next introduce Z1, Z2, . . . , Zn as above as the differences of the order
variables Y(1), Y(2), . . . , Y(n). Then Z1 is the time until the first overall occur-
rence, which, by Theorem 5.1, is Exp(1/n)-distributed. By Theorem 2.4, all
processes start from scratch at time Z1.

We now remove the process where something occurred. Then Z2 is the
time until an event occurs in one of the remaining n−1 processes. By arguing
as above, it follows that Z2 ∈ Exp(1/(n − 1)), and we repeat as above. By
(5.16) this finally yields

E Y(n) =
1
n

+
1

n− 1
+

1
n− 2

+ · · ·+ 1
2

+ 1,

as desired (since E Y(n) also equals the left-hand side of (5.15)).

6 Thinning of Poisson Processes

By a thinned stochastic process, we mean that not every occurrence is ob-
served. The typical example is particles that are emitted from a source ac-
cording to a Poisson process, but, due to the malfunctioning of the counter,
only some of the particles are registered. Here we shall confine ourselves to
studying the following, simplest case.

Let X(t) be the number of emitted particles in (0, t], and suppose that
{X(t), t ≥ 0} is a Poisson process with intensity λ. Suppose, further, that the
counter is defective as follows. Every particle is registered with probability p,
where 0 < p < 1 (and not registered with probability q = 1−p). Registrations
of different particles are independent. Let Y (t) be the number of registered
particles in (0, t]. What can be said about the process {Y (t), t ≥ 0}?

The intuitive guess is that {Y (t), t ≥ 0} is a Poisson process with intensity
λp. The reason for this is that the registering process behaves like the emitting
process, but with a smaller intensity; particles are registered in the same
fashion as they are emitted, but more sparsely. The deficiency of the counter
acts like a (homogeneous) filter or sieve. We now prove that this is, indeed,
the case, and we begin by providing a proof adapted to fit Definition II.

Since {X(t), t ≥ 0} has independent increments, and particles are regis-
tered or not independently of each other, it follows that {Y (t), t ≥ 0} also
has independent increments. Now, set

Ak = {k Y -occurrences during (t, t+ h]},
Bk = {k X-occurrences during (t, t+ h]},

for k = 0, 1, 2, . . . . Then



256 8 The Poisson Process

P (A1) = P
(
A1

⋂( ∞⋃
k=1

Bk

))
= P (B1 ∩A1) + P

(( ∞⋃
k=2

Bk

)⋂
A1

)
= P (B1) · P (A1 | B1) + P ((

∞⋃
k=2

Bk)
⋂
A1)

= (λh+ o(h)) · p+ o(h) as h→ 0,

since P ((
⋃∞

k=2Bk)
⋂
A1) ≤ P (

⋃∞
k=2Bk) = o(h) as h → 0. This proves that

condition (b) of Definition II is satisfied. That condition (c) is satisfied follows
from the fact that

P
( ∞⋃

k=2

Ak

)
≤ P

( ∞⋃
k=2

Bk

)
= o(h) as h→ 0.

We have thus shown that {Y (t), t ≥ 0} is a Poisson process with intensity λp.
Next we provide a proof based on Definition I. This can be done in two

ways, either by conditioning or by using transforms. We shall do both, and
we begin with the former (independence of the increments follows as before).

Let 0 ≤ s < t, and for n = 0, 1, 2, . . . and k = 0, 1, 2, . . . , n, let Dn,k

be the event that “n particles are emitted during (s, t] and k of them are
registered.” Then

P (Dn,k) = P (X(t)−X(s) = n)
× P (k registrations during (s, t] | X(t)−X(s) = n)

= e−λ(t−s) (λ(t− s))n

n!
·
(
n

k

)
pkqn−k. (6.1)

Furthermore, for k = 0, 1, 2, . . . , we have

P (Y (t)− Y (s) = k) = P
( ∞⋃

n=k

Dn,k

)
=

∞∑
n=k

P (Dn,k)

=
∞∑

n=k

e−λ(t−s) (λ(t− s))n

n!
·
(
n

k

)
pkqn−k

= e−λ(t−s) (λ(t− s))kpk

k!

∞∑
n=k

(λ(t− s))n−kqn−k

(n− k)!

= e−λp(t−s) (λp(t− s))k

k!
,

which shows that Y (t)− Y (s) ∈ Po(λp(t− s)).
Alternatively, we may use indicator variables. Namely, let

Zk =

{
1, if particle k is registered,
0, otherwise.

(6.2)
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Then {Zk, k ≥ 1} are independent, Be(p)-distributed random variables and

Y (t) = Z1 + Z2 + · · ·+ ZX(t). (6.3)

Thus,

P (Y (t) = k) =
∞∑

n=k

P (Y (t) = k | X(t) = n) · P (X(t) = n)

=
∞∑

n=k

(
n

k

)
pkqn−ke−λt (λt)

n

n!
,

which leads to the same computations as before (except that here we have
assumed that s = 0 for simplicity).

The last approach, generating functions and Theorem 3.6.1 together yield

gY (t)(u) = gX(t)

(
gZ(u)

)
= eλt(q+pu−1) = eλpt(u−1) = gPo(λpt)(u), (6.4)

and the desired conclusion follows.
Just as for Theorem 5.1, it is harder to give a complete proof based on

Definition III. It is, however, fairly easy to prove that the time Ty until the
first registration is Exp(1/λp)-distributed:

P (Ty > t) = P
( ∞⋃

k=0

{{X(t) = k} ∩ {no registration}}
)

=
∞∑

k=0

e−λt (λt)
k

k!
qk = e−λt

∞∑
k=0

(λqt)k

k!
= e−λpt.

Remark 6.1. We have (twice) used the fact that, for k = 1, 2, . . . , n,

P (k registrations during (s, t] | X(t)−X(s) = n) =
(
n

k

)
pkqn−k (6.5)

without proof. We ask the reader to check this formula. We also refer to
Problem 9.8, where further properties are given. 2

Exercise 6.1. Cars pass by a gas station. The periods between arrivals are
independent, Exp(1/λ)-distributed random variables. The probability that a
passing car needs gas is p, and the needs are independent.

(a) What kind of process can be used to describe the phenomenon “cars com-
ing to the station”?
Now suppose that a car that stops at the station needs gas with probability
pg and oil with probability po and that these needs are independent. What
kind of process can be used to describe the phenomena:

(b) “cars come to the station for gas”?
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(c) “cars come to the station for oil”?
(d) “cars come to the station for gas and oil”?
(e) “cars come to the station for gas or oil”?

Exercise 6.2. Suppose that the particle counter in Example 5.1 is unreliable
in the sense that particles are registered with probabilities pα, pβ , pγ , and
pδ, respectively, and that all registrations occur (or not) independently of
everything else.

(a) Show that the registration process is a Poisson process and determine the
intensity.

(b) What is the expected duration until a particle is emitted?
(c) What is the expected duration until a particle is registered?
(d) What is the probability that the first registered particle is a γ-particle?
(e) What is the expected duration until a γ-particle is emitted?
(f) What is the expected duration until a γ-particle is registered? 2

We conclude this section with a classical problem called the coupon col-
lector’s problem. Each element in a finite population has a “bonus” attached
to it. Elements are drawn from the population by simple random sampling
with replacement and with equal probabilities. Each time a new element is
obtained, one receives the corresponding bonus. One object of interest is the
bonus sum after all elements have been obtained. Another quantity of interest
is the random sample size, that is, the total number of draws required in order
for all elements to have appeared.

Here we shall focus on the latter quantity, but we first give a concrete
example. There exist n different pictures (of movie stars, baseball players,
statisticians, etc.). Each time one buys a bar of soap, one of the pictures (which
is hidden inside the package) is obtained. The problem is to determine how
many bars of soap one needs to buy in order to obtain a complete collection
of pictures.

We now use a Poisson process technique to determine the expected sample
size or the expected number of soaps one has to buy. To this end, we assume
that the bars of soap are bought according to a Poisson process with intensity
1. Each buy corresponds to an event in this process. Furthermore, we introduce
n independent Poisson processes (one for each picture) such that if a soap with
picture k is bought, we obtain an event in the kth process. When (at least) one
event has occurred in all of these n processes, one has a complete collection
of pictures.

Now, let T be the time that has elapsed at that moment, let N be the
number of soaps one has bought at time T , and let Y1, Y2, . . . be the periods
between the buys. Then

T = Y1 + Y2 + · · ·+ YN . (6.6)

Next we consider the process “the kth picture is obtained,” where 1 ≤ k ≤
n. This process may be viewed as having been obtained by observing the
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original Poisson process with intensity 1, “registering” only the observation
corresponding to the kth picture. Therefore, these n processes are Poisson
processes with intensity 1/n, which, furthermore, are independent of each
other.

The next step is to observe that

T
d= max{X1, X2, . . . , Xn}, (6.7)

where X1, X2, . . . , Xn are independent, Exp(n)-distributed random vari-
ables, from which it follows that

E T = n
(
1 +

1
2

+
1
3

+ · · ·+ 1
n

)
. (6.8)

Here we have used the scaling property of the exponential distribution (if
Z ∈ Exp(1) and V ∈ Exp(a), then aZ

d= V ) and Problem 4.4.21 or formula
(5.15) of Subsection 5.4.

Finally, since N and Y1, Y2, . . . are independent, it follows from the results
of Section 3.6 that

E T = EN · E Y1 = EN · 1 = n
(
1 +

1
2

+
1
3

+ · · ·+ 1
n

)
. (6.9)

If n = 100, for example, then EN = E T ≈ 518.74. Note also that the
expected number of soaps one has to buy in order to obtain the last picture
equals n, that is, 100 in the numerical example.

Remark 6.2. For large values of n, EN = E T ≈ n(log n + γ), where
γ = 0.57721566... is Euler’s constant. For n = 100, this approximation yields
EN ≈ 518.24. 2

Let us point out that this is not the simplest solution to this problem.
A simpler one is obtained by considering the number of soaps bought in or-
der to obtain “the next new picture.” This decomposes the total number
N of soaps into a sum of Fs-distributed random variables (with parameters
1, 1/2, 1/3, . . . , 1/n, respectively) from which the conclusion follows; the reader
is asked to fill in the details. The Poisson process approach, however, is very
convenient for generalizations.

Exercise 6.3. Jesper has a CD-player with a “random” selections function.
This means that the different selections on a CD are played in a random order.
Suppose that the CD he got for his birthday contains 5 Mozart piano sonatas
consisting of 3 movements each, and suppose that all movements are exactly
4 minutes long. Find the expected time until he has listened to everything
using the random function.

Exercise 6.4. Margaret and Elisabeth both collect baseball pictures. Each
time their father buys a candy bar he gives them the picture. Find the expected
number of bars he has to buy in order for both of them to have a complete
picture collection (that is, they share all pictures and we seek the number of
candy bars needed for two complete sets of pictures). 2
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7 The Compound Poisson Process

Definition 7.1. Let {Yk, k ≥ 1} be i.i.d. random variables, let {N(t), t ≥ 0}
be a Poisson process with intensity λ, which is independent of {Yk, k ≥ 1},
and set

X(t) = Y1 + Y2 + · · ·+ YN(t).

Then {X(t), t ≥ 0} is a compound Poisson process. 2

If the Y -variables are Be(p)-distributed, then {X(t), t ≥ 0} is a Poisson
process. For the general case we know from Theorem 3.6.4 that

ϕX(t)(u) = gN(t)

(
ϕY (u)

)
= eλt(ϕY (u)−1). (7.1)

The probability function of X(t) can be expressed as follows. Let Sn =∑n
k=1 Yk, n ≥ 1. Then

P (X(t) = k) =
∞∑

n=0

P (Sn = k) · e−λt (λt)
n

n!
, for k = 0, 1, 2, . . . . (7.2)

Example 6.1 (thinning) was of this kind (cf. (6.3) and (6.4)).

Exercise 7.1. Verify formula (7.2). 2

Example 7.1 (The randomized random walk). Consider the following general-
ization of the simple, symmetric random walk. The jumps, {Yk, k ≥ 1}, are
still independent and equal ±1 with probability 1/2 each, but the times of
the jumps are generated by a Poisson process, that is, the times between the
jumps are not 1, but rather are independent, equidistributed (nonnegative)
random variables. In this model Sn =

∑n
k=1 Yk is the position of the random

walk after n steps and X(t) is the position at time t.

Example 7.2. (Risk theory). An insurance company is subject to claims from
its policyholders. Suppose that claims are made at time points generated by
a Poisson process and that the sizes of the claims are i.i.d. random variables.
If {Yk, k ≥ 1} are the amounts claimed and N(t) is the number of claims
made up to time t, then X(t) equals the total amount claimed at time t. If, in
addition, the initial capital of the company is u and the gross premium rate
is β, then the quantity

u+ βt−X(t) (7.3)

equals the capital of the company at time t. In particular, if this quantity is
negative, then financial ruin has occurred.

In order to avoid negative values in examples like the one above, we may
use the quantity max{0, u+ βt−X(t)} instead of (7.3). 2
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Example 7.3. (Storage theory). In this model the stock—for example, the wa-
ter in a dam or the stock of merchandise in a store—is refilled at a constant
rate, β. The starting level is X(0) = u. The stock decreases according to a
Poisson process, and the sizes of the decreases are i.i.d. random variables. The
quantity (7.3) then describes the content of water in the dam or the available
stock in the store, respectively. A negative quantity implies that the dam is
empty or that the store has zero stock. 2

In general, N(t) denotes the number of occurrences in (0, t] for t > 0, and
the sequence {Yk, k ≥ 1} corresponds to the values (prices, rewards) associ-
ated with the occurrences. We therefore call X(t) the value of the Poisson
process at time t, for t > 0.

Remark 7.1. The compound Poisson process is also an important process
in its own right, for example, in the characterization of classes of limit
distributions. 2

8 Some Further Generalizations and Remarks

There are many generalizations and extensions of the Poisson process. In this
section we briefly describe some of them.

8.1 The Poisson Process at Random Time Points

As we have noted, the Poisson process {X(t), t ≥ 0} has the property that the
increments are Poisson-distributed, in particular, X(t) ∈ Po(λt), for t > 0.
We first remark that this need not be true at random time points.

Example 8.1. Let T = min{t : X(t) = k}. Then P (X(T ) = k) = 1, that is,
X(T ) is degenerate.

Example 8.2. A less trivial example is obtained by letting T ∈ Exp(θ), where
T is independent of {X(t), t ≥ 0}. Then

P (X(T ) = n) =
∫ ∞

0

P (X(T ) = n | T = t) · fT (t) dt

=
1

1 + λθ

( λθ

1 + λθ

)n

for n = 0, 1, 2, . . . ,
(8.1)

that is, X(T ) ∈ Ge(1/(1 + λθ)) (cf. also Section 2.3 and Subsection 5.3).
Alternatively, by proceeding as in Section 3.5 or Subsection 5.3, we obtain,

for s < 1 + 1/λθ,

gX(T )(s) = E
(
E(sX(T ) | T )

)
= ψT

(
λ(s− 1)

)
=

1
1+λθ

1− λθ
1+λθ s

,

which is the generating function of the Ge(1/(1 + λθ))-distribution. 2



262 8 The Poisson Process

The fact that the same computations were performed in Subsection 5.3
raises the question if there is any connection between Examples 5.2 and 8.2.
The answer is, of course, yes, because in Example 5.2 we were actually in-
terested in determining the distribution of the number of α-particles at time
Tβ ∈ Exp(1/µ), which is precisely what Example 8.2 is all about.

8.2 Poisson Processes with Random Intensities

Computations similar to those of the previous subsection also occur when the
intensity is random.

Example 8.3. Suppose we are given a Poisson process with an exponential
intensity, that is, let {X(t), t ≥ 0} be a Poisson process with intensity Λ ∈
Exp(θ). Determine the distribution of X(t), t ≥ 0.

What is meant here is that conditional on Λ = λ, {X(t), t ≥ 0} is a
Poisson process with intensity λ (recall Sections 2.3 and 3.5). For s, t ≥ 0,
this means that

X(t+ s)−X(s) | Λ = λ ∈ Po(λt) with Λ ∈ Exp(θ). (8.2)

By arguing as in the cited sections, it follows (please check!), for s, t ≥ 0 and
n = 0, 1, 2, . . . , that

P (X(t+ s)−X(s) = n) =
1

1 + θt

( θt

1 + θt

)n

.

Using generating functions as before yields

gX(t+s)−X(t)(u) =
1

1+θt

1− θt
1+θtu

for u < 1 +
1
θt
.

In either case, the conclusion is that X(t+ s)−X(s) ∈ Ge(1/(1 + θt)). 2

Remark 8.1. The process {X(t), t ≥ 0} thus is not a Poisson process in gen-
eral. The expression “Poisson process with random intensity” is to be inter-
preted as in (8.2) and the sentence preceding that formula. 2

Now that we know that the process of Example 8.3 is not a Poisson process,
it might be of interest to see at what point(s) the conditions of Definition II
break down.

Let us begin by computing the probabilities of one and at least two events,
respectively, during (t, t+ h]. We have, as h→ 0,

P (X(t+ h)−X(t) = 1) =
1

1 + θh
· θh

1 + θh
= θh+ o(h) (8.3)

and
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P (X(t+ h)−X(t) ≥ 2) =
∞∑

n=2

1
1 + θh

( θh

1 + θh

)n

=
( θh

1 + θh

)2

= o(h), (8.4)

that is, conditions (b) and (c) in Definition II are satisfied. The only remaining
thing to check, therefore, is the independence of the increments (a check that
must necessarily end in a negative conclusion).

Let 0 ≤ s1 < s1 + t1 ≤ s2 < s2 + t2. For m,n = 0, 1, 2, . . . , we have

P (X(s1 + t1)−X(s1) = m, X(s2 + t2)−X(s2) = n)

=
∫ ∞

0

P (X(s1 + t1)−X(s1) = m, X(s2 + t2)−X(s2) = n | Λ = λ)

× fΛ(λ) dλ

=
∫ ∞

0

e−λt1
(λt1)m

m!
e−λt2

(λt2)n

n!
1
θ
e−

λ
θ dλ

=
(
m+ n

m

)
tm1 t

n
2

(t1 + t2 + 1
θ )m+n+1

· 1
θ
. (8.5)

By dividing with the marginal distribution of the first increment, we obtain the
conditional distribution of X(t2 +s2)−X(s2) given that X(t1 +s1)−X(s1) =
m. Namely, for n,m = 0, 1, 2, . . ., we have

P (X(s2 + t2)−X(s2) = n | X(s1 + t1)−X(s1) = m)

=
(
n+m

m

)( t2

t1 + t2 + 1
θ

)n( t1 + 1
θ

t1 + t2 + 1
θ

)m+1

.
(8.6)

This shows that the increments are not independent. Moreover, since(
n+m

m

)
=
(
n+ (m+ 1)− 1

(m+ 1)− 1

)
,

we may identify the conditional distribution in (8.6) as a negative binomial
distribution.

One explanation of the fact that the increments are not independent is
that if the number of occurrences in the first time interval is known, then we
have obtained some information on the intensity, which in turn provides infor-
mation on the number of occurrences in later time intervals. Note, however,
that conditional on Λ = λ, the increments are indeed independent; this was,
in fact, tacitly exploited in the derivation of (8.5).

The following example illustrates how a Poisson process with a random
intensity may occur (cf. also Example 2.3.1):

Example 8.4. Suppose that radioactive particles are emitted from a source
according to a Poisson process such that the intensity of the process depends
on the kind of particle the source is emitting. That is, given the kind of
particles, they are emitted according to a Poisson process.
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For example, suppose we have m boxes of radioactive particles, which (due
to a past error) have not been labeled; that is, we do not know which kind of
particles the source emits. 2

Remark 8.2. Note the difference between this situation and that of Exam-
ple 5.1. 2

8.3 The Nonhomogeneous Poisson Process

A nonhomogeneous Poisson process is a Poisson process with a time-dependent
intensity. With this process one can model time-dependent phenomena, for
example, phenomena that depend on the day of the week or on the season.
In the example “telephone calls arriving at a switchboard,” it is possible to
incorporate into the model the assumption that the intensity varies during
the day.

The strict definition of the nonhomogeneous Poisson process is Definition
II with condition (b) replaced by

(b′) P (exactly one occurrence during (t, t+ h]) = λ(t)h+ o(h) as h→ 0.

The case λ(t) ≡ λ corresponds, of course, to the ordinary Poisson process.
In Example 7.2, risk theory, one can imagine seasonal variations; for car

insurances one can, for example, imagine different intensities for summers and
winters. In queueing theory one might include rush hours in the model, that
is, the intensity may depend on the time of the day.

By modifying the computations that led to (1.5) and (1.6) (as always,
check!), we obtain

X(t2)−X(t1) ∈ Po
(∫ t2

t1

λ(u) du
)

for 0 ≤ t1 < t2. (8.7)

If, for example, λ(t) = t2, for t ≥ 0, then X(2) −X(1) is Po(
∫ 2

1
u2du)-distri-

buted, that is, Po(7/3)-distributed.

8.4 The Birth Process

The (pure) birth process has a state-dependent intensity. The definition is
Definition II with (b) replaced by

(b′′) P (X(t+h) = k+1 | X(t) = k) = λkh+ o(h) as h→ 0
for k = 0, 1, 2, . . ..

As the name suggests, a jump from k to k + 1 is called a birth.

Example 8.5. A typical birthrate is λk = k · λ, k ≥ 1. This corresponds to the
situation where the event {X(t) = k} can be interpreted as k “individuals”
exist and each individual gives birth according to a Poisson process with
intensity λ; λk = kλ is the cumulative intensity when X(t) = k. Note also the
connection with the superpositioned Poisson process described in Section 5.
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Example 8.6. Imagine a waiting line in a store to which customers arrive ac-
cording to a Poisson process with intensity λ. However, if there are k persons
in the line, they join the line with probability 1/(k+1) and leave (for another
store) with probability k/(k + 1). Then λk = k/(k + 1). 2

One may, analogously, introduce deaths corresponding to downward tran-
sitions (from k to k − 1 for k ≥ 1). For the formal definition we need the
obvious assumption of type (b) for the deaths. A process thus obtained is
called a (pure) death process. If both births and deaths may occur, we have a
birth and death process.

In the telephone switchboard example, births might correspond to arriving
calls and deaths to ending conversations. If one studies the number of cus-
tomers in a store, births might correspond to arrivals and deaths to departures.

Remark 8.3. For these processes the initial condition X(0) = 0 is not always
the natural one. Consider, for example, the following situation. One individual
in a population of size N has been infected with some dangerous virus. One
wishes to study how the infection spreads. If {X(t) = k} denotes the event that
there are k infected individuals, the obvious initial condition is X(0) = 1. If
instead {X(t) = k} denotes the event that there are k noninfected individuals,
the natural initial condition is {X(0) = N − 1}. 2

8.5 The Doubly Stochastic Poisson Process

This process is defined as a nonhomogeneous Poisson process with an inten-
sity function that is a stochastic process. It is also called a Cox process. In
particular, the intensity (process) may itself be a Poisson process. In the time
homogeneous case, the process reduces to that of Subsection 8.2.

An example is the pure birth process. More precisely, let {X(t), t ≥ 0} be
the pure birth process with intensity λk = kλ of Example 8.5. A reinterpreta-
tion of the discussion there shows that the intensity actually is the stochastic
process Λ(t) = λX(t).

8.6 The Renewal Process

By modifying Definition III of a Poisson process in such a way that the du-
rations {τk, k ≥ 1} are just i.i.d. nonnegative random variables, we obtain a
renewal process. Conversely, a renewal process with exponentially distributed
durations is a Poisson process.

More precisely, a random walk {Sn, n ≥ 0} is a sequence of random vari-
ables, starting at S0 = 0, with i.i.d. increments X1, X2, . . . . A renewal process
is a random walk with nonnegative increments. The canonical application is a
lightbulb that whenever it fails is instantly replaced by a new, identical one,
which, upon failure is replaced by another one, which, in turn, . . .. The central
object of interest is the (renewal) counting process, which counts the number
of replacements during a given time.
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Technically, we let X1, X2, . . . be the individual lifetimes, more generally,
the durations of the individual objects, and set Sn =

∑n
k=1Xk, n ≥ 1. The

number of replacements during the time interval (0, t], that is, the counting
process, then becomes

N(t) = max{n : Sn ≤ t}, t ≥ 0.

If, in particular, the lifetimes have an exponential distribution, the counting
process reduces to a Poisson process.

A discrete example is the binomial process, in which the durations are in-
dependent, Be(p)-distributed random variables. This means that with prob-
ability p there is a new occurrence after one time unit and with probability
1−p after zero time (an instant occurrence). The number of occurrences X(t)
up to time t follows a (translated) negative binomial distribution.

Formally, if Z0, Z1, Z2, . . . are the number of occurrences at the respective
time points 0, 1, 2, . . . , then Z0, Z1, Z2, . . . are independent, Fs(p)-distributed
random variables and X(t) = X(n) = Z0 + Z1 + Z2 + · · · + Zn, where n is
the largest integer that does not exceed t (n = [t]). It follows that X(n)−n ∈
NBin(n, p) (since the negative binomial distribution is a sum of independent,
geometric distributions).

Although there are important differences between renewal counting pro-
cesses and the Poisson process, such as the lack of memory property, which
does not hold for general renewal processes, their asymptotic behavior is in
many respects similar.

For example, for a Poisson {X(t), t ≥ 0} one has

EX(t) = λt and
X(t)
t

p−→λ as t→∞ , (8.8)

and one can show that if EX1 = µ <∞, then, for a renewal counting process
{N(t), t ≥ 0}, one has

EN(t)
t

→ 1
µ

and
N(t)
t

p−→ 1
µ

as t→∞ , (8.9)

where, in order to compare the results, we observe that the intensity λ of the
Poisson process corresponds to 1/µ in the renewal case.

Remark 8.4. The first result in (8.9) is called the elementary renewal theorem.

Remark 8.5. One can, in fact prove that convergence in probability may be
sharpened to almost sure convergence in both cases. 2

A more general model, one that allows for repair times, is the alternating
renewal process. In this model X1, X2, . . . , the lifetimes, can be considered
as the time periods during which some device functions, and an additional
sequence Y1, Y2, . . . may be interpreted as the successive, intertwined, repair
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times. In, for example, queueing theory, lifetimes might correspond to busy
times and repair times to idle times.

In this model one may, for example, derive expressions for the relative
amount of time the device functions or the relative amount of time the queue-
ing system is busy.

8.7 The Life Length Process

In connection with the nonhomogeneous Poisson process, it is natural to men-
tion the life length process. This process has two states, 0 and 1, corresponding
to life and death, respectively. The connection with the Poisson process is that
we may interpret the life length process as a truncated nonhomogeneous Pois-
son process, in that the states 1, 2, 3, . . . are lumped together into state 1.

Definition 8.1. A life length process {X(t), t ≥ 0} is a stochastic process
with states 0 and 1, such that X(0) = 0 and

P (X(t+ h) = 1 | X(t) = 0) = λ(t)h+ o(h) as h→ 0.

The function λ is called the intensity function. 2

To see the connection with the nonhomogeneous Poisson process, let
{X(t), t ≥ 0} be such a process and let {X∗(t), t ≥ 0} be defined as fol-
lows:

X∗(t) =

{
0, when X(t) = 0,
1, when X(t) ≥ 1.

The process {X∗(t), t ≥ 0} thus defined is a life length process. The following
figure illustrates the connection.

↑

4 - X(t)

3 -

2 -

1 - X∗(t)

-−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t
1 2 3 4 5 6 7 8 9

Figure 8.1

We now derive some properties of life length processes. With the notations
P0(t) = P (X(t) = 0) and P1(t) = P (X(t) = 1), we have

P0(0) = 1 and P0(t) + P1(t) = 1. (8.10)
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By arguing as in the proof of Theorem 1.1 (check the details!), we obtain

P0(t+ h) = P0(t)(1− λ(t)h) + o(h) as h→ 0,

from which it follows that

P ′0(t) = −λ(t)P0(t) , (8.11)

and hence that

P0(t) = exp
{
−
∫ t

0

λ(s) ds
}

and P1(t) = 1− exp
{
−
∫ t

0

λ(s) ds
}
. (8.12)

Now, let T be the lifetime (life length) of the process. Since

{T > t} = {X(t) = 0} (8.13)

(cf. (1.8)), the distribution function of T is

FT (t) = 1− P (T > t) = P1(t) = 1− exp
{
−
∫ t

0

λ(s) ds
}
. (8.14)

Differentiation yields the density:

fT (t) = λ(t) exp {−
∫ t

0

λ(s) ds}. (8.15)

The computations above show how the distribution of the lifetime can be
obtained if the intensity function is given. On the other hand, (8.14) and
(8.15) together yield

λ(t) =
fT (t)

1− FT (t)
, (8.16)

which shows that if, instead, the distribution of the lifetime is given, then we
can find the intensity function. The distribution and the intensity function
thus determine each other uniquely.

If, in particular, the intensity function is constant, λ(t) ≡ λ, it follows
immediately that T ∈ Exp(1/λ), and conversely.

Now, let Ts be the residual lifetime at s, that is, the remaining lifetime
given the process is alive at time s. For t > 0 (and s ≥ 0), we then obtain

FTs
(t) = 1− P (Ts > t) = 1− P (T > s+ t | T > s)

= 1− exp {−
∫ s+t

s

λ(u) du} .

Remark 8.6. Note that the life length process does not have independent in-
crements. Why is this “obvious”?
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Remark 8.7. The function RT (t) = 1−FT (t) provides the probability that the
life length exceeds t; it is called the survival function. Using this function, we
may rewrite (8.16) as

λ(t) =
fT (t)
RT (t)

. 2

If, for example, the intensity function is constant, λ, then RT (t) = e−λt,
for t > 0. For λ(t) = t2, we obtain

RT (t) = exp
{
−
∫ t

0

s2 ds
}

= exp {−t3/3}, for t > 0.

We conclude with a heuristic explanation of the nature of (8.14). The left-
hand side in the definition equals the probability that the process dies during
(t, t+h] given that it is still alive at time t. According to the right-hand side,
this probability equals λ(t)h+ o(h) ≈ λ(t)h for h small.

Another way to describe this probability is

P (t < T ≤ t+ h | T > t) =
P (t < T ≤ t+ h)

P (T > t)
=
FT (t+ h)− FT (t)

1− FT (t)
.

By the mean value theorem, it follows, for 0 ≤ θ ≤ 1 and f “nice”, that

P (t < T ≤ t+ h | T > t) =
h · fT (t+ θh)

1− FT (t)
≈ hfT (t)

1− FT (t)
=
hfT (t)
RT (t)

.

A comparison with the definition finally “shows” that

λ(t)h ≈ hfT (t)
1− FT (t)

, for h small, (8.17)

which “justifies” (8.16).

9 Problems

1. Let {X1(t), t ≥ 0} and {X2(t), t ≥ 0} be independent Poisson processes
with common intensity λ. Suppose thatX1(3) = 9 andX2(3) = 5. What is
the probability that the X1-process reaches level 10 before the X2-process
does?

2. Solve the same problem under the assumption that the processes have
intensities λ1 and λ2, respectively.

3. Consider two independent Poisson processes {X1(t), t ≥ 0} and {X2(t),
t ≥ 0} with common intensity. What is the probability that the two-
dimensional process {(X1(t), X2(t)), t ≥ 0} passes through the point
(a) (1, 1) ?
(b) (1, 2) ?
(c) (i, j) ?
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4. Susan likes pancakes very much, but Tom does not. The time to eat a
pancake can be assumed to be exponential. Their mother has studied
them over the years and estimates the parameters (= 1/expected time)
to be 7 and 2, respectively. Compute the probability that Susan finishes
10 pancakes before Tom has finished his first one.

5. Suppose that customers arrive at a counter or server according to a Pois-
son process with intensity λ and that the service times are independent,
Exp(1/µ)-distributed random variables. Suppose also that a customer ar-
rives at time zero and finds the counter free.
(a) Determine the distribution of the number of customers that arrive

while the first customer is served.
(b) Compute the probability that the server will be busy forever.
Remark. We may interpret the situation as follows: We are given a
branching process where the lifetimes of the individuals are independent,
Exp(1/µ)-distributed random variables and the reproduction is such that
individuals give birth at a constant rate λ throughout their lives under
the usual independence assumptions. Furthermore, the initial population
consists of one individual (i.e., X(0) = 1). In (a) we wish to find the dis-
tribution of the number of children obtained by an individual, and in (b)
we ask for the probability of nonextinction (i.e., 1− η).

6. Fredrik and Ulrich both received soap bubble machines for Christmas.
The machines emit bubbles according to independent Poisson processes
with intensities 3 and 2 (bubbles per minute), respectively. Suppose they
turn them on at the same time.
(a) Find the probability that Fredrik’s machine produces the first bubble.
(b) Find the probability that Ulrich’s machine produces 3 bubbles before

Fredrik’s first bubble.
7. At the center of espionage in Kznatropsk one is thinking of a new method

for sending Morse telegrams. Instead of using the traditional method,
that is, to send letters in groups of 5 according to a Poisson process with
intensity 1, one might send them one by one according to a Poisson process
with intensity 5. Before deciding which method to use one would like to
know the following: What is the probability that it takes less time to send
one group of 5 letters the traditional way than to send 5 letters the new
way (the actual transmission time can be neglected).

8. Consider a Poisson process with intensity λ. We start observing at time
t = 0. Let T be the time that has elapsed at the first occurrence. Continue
to observe the process T further units of time. Let N(T ) be the number
of occurrences during the latter period (i.e., during (T, 2T ]). Determine
the distribution of N(T ).

9. A particle source A emits one particle at a time, according to a Poisson
process with an intensity of two particles a minute. Another particle source
B emits two particles at a time, according to a Poisson process with an
intensity of one pair of particles a minute. The sources are independent
of each other. We begin to observe the sources at time zero. Compute the
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probability that source A has emitted two particles before source B has
done so.

10. A specific component in a cryptometer has an Exp(µ)-distributed life-
time, µ > 0. If replacement is made as soon as a component fails, and
if X(t) = # failures during (0, t] = # replacements during (0, t], then
{X(t), t ≥ 0} is, of course, a Poisson process. Let {Vn, n ≥ 1} be these
usual interreplacement times, and suppose, instead, that the nth compo-
nent is replaced:
(a) After time min{Vn, a}, that is, as soon as the component fails or

reaches age a, whichever comes first. Show that the replacement pro-
cess is not a Poisson process.

(b) After time min{Vn,Wn}, where {Wn, n ≥ 1} is a sequence of indepen-
dent, Exp(θ)-distributed random variables, θ > 0, which is indepen-
dent of {Vn, n ≥ 1}. Show that the replacement process is a Poisson
process and determine the intensity.

11. Karin arrives at the post office, which opens at 9:00 a.m., at 9:05 a.m. She
finds two cashiers at work, both serving one customer each. The customers
started being served at 9:00 and 9:01, respectively. The service times are
independent and Exp(8)-distributed. Let Tk be the time from 9:05 until
service has been completed for k of the two customers, k = 1, 2. Find
E Tk for k = 1 and 2.

12. Måns waits for the bus. The waiting time, T , until a bus comes is U(0, a)-
distributed. While he waits he tries to get a ride from cars that pass
by according to a Poisson process with intensity λ. The probability of a
passing car picking him up is p. Determine the probability that Måns is
picked up by some car before the bus arrives.
Remark. All necessary independence assumptions are permitted.

13. Consider a sender that transmits signals according to a Poisson process
with intensity λ. The signals are received by a receiver, however, in such
a way that every signal is registered with probability p, 0 < p < 1, and
“missed” with probability q = 1 − p. Registrations are independent. Let
X(t) be the number of transmitted signals during (0, t], let Y (t) be the
number of registered signals, and let Z(t) be the number of nonregistered
signals during this period, where t ≥ 0.
(a) Show that Y (t) and Z(t) are independent, and determine their distri-

butions.
(b) Determine the distribution of the number of signals that have been

transmitted when the first signal is registered.
(c) Determine the distribution of the number of signals that have been

transmitted when the kth signal is registered.
(d) Determine the conditional distribution of the number of registered

signals given the number of transmitted signals, that is, compute
P (Y (t) = k | X(t) = n) for suitable choices of k and n.
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(e) Determine the conditional distribution of the number of transmit-
ted signals given the number of registered signals, that is, compute
P (X(t) = n | Y (t) = k) for suitable choices of k and n.

Remark. It thus follows from (a) that the number of registered signals dur-
ing a given time period provides no information about the actual number
of nonregistered signals.

14. We have seen that a thinned Poisson process, is, again, a Poisson-process.
Prove the following analog for a “geometric process.” More precisely:
(a) Show that, if N andX, X1, X2, . . . are independent random variables,

N ∈ Ge(α), and X ∈ Be(β), then Y = X1 + X2 + · · · + XN has a
geometric distribution, and determine the parameter.

(b) Safety check by computing mean and variance with the “usual” formu-
las for mean and variance of sums of a random number of independent
random variables.

15. A radio amateur wishes to transmit a message. The frequency on which
she sends the Morse signals is subject to random disturbances according to
a Poisson process with intensity λ per second. In order to succeed with the
transmission, she needs a time period of a seconds without disturbances.
She stops as soon as she is done. Let T be the total time required to finish.
Determine E T .

16. Peter wishes to take a picture of his girlfriend Sheila. Since they are in
a rather dark room, he needs a rather long exposure time, during which
Sheila must not move. The following model can be used to describe the
situation. The success of a photo is called an “A-event.” Each time Sheila
moves, she causes a disturbance called a “D-event.” A-events and D-
events occur according to independent Poisson processes with intensities
λA and λD, respectively. The experiment is started at time t = 0. Let T
be the time of the first A-occurrence. The experiment is deemed successful
if T ≥ 1 and if no D-event occurs during the time interval (0, T +2]. What
is the probability of a successful photo?

17. People arrive at an automatic teller machine (ATM) according to a Poisson
process with intensity λ. The service time required at the ATM is constant,
a seconds. Unfortunately, this machine does not allow for any waiting
customers (i.e., no queue is allowed), which means that persons who arrive
while the ATM is busy have to leave. When the a seconds of a customer
have elapsed, the ATM is free to serve again, and so on. Suppose that the
ATM is free at time zero, and let Tn be the time of the arrival of the nth
customer. Find the distribution of Tn, and compute E Tn and VarTn.
Remark. Customers arriving (and leaving) while the ATM is busy thus do
not affect the service time.

18. Suppose that we are at time zero. Passengers arrive at a train station
according to a Poisson process with intensity λ. Compute the expected
value of the total waiting time of all passengers who have come to the
station in order to catch a train that leaves at time t.
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19. Suppose that electrical pulses having i.i.d. random amplitudes A1, A2, . . .
arrive at a counter in accordance with a Poisson process with intensity λ.
The amplitude of a pulse is assumed to decrease exponentially, that is, if
a pulse has amplitude A upon its arrival, then its amplitude at time t is
Ae−αt, where α is some positive parameter. We finally assume that the
initial amplitudes of the pulses are independent of the Poisson process.
Compute the expected value of the total amplitude at time t.

20. Customers arrive at a computer center at time points generated by a Pois-
son process with intensity λ. The number of jobs brought to the center
by the customers are independent random variables whose common gen-
erating function is g(u). Compute the generating function of the number
of jobs brought to the computer center during the time interval (s, t].

21. We have seen that if we superposition a fixed number of Poisson process
we obtain a new Poisson process. This need however not be true if we
superposition a random number of such processes. More precisely, let us
superposition N ∈ Fs(p) independent Poisson processes, each with the
same intensity λ, where N is independent of the Poisson processes.
(a) Show that the new process is not a Poisson process, e.g., by computing

its generating function, or by computing the mean and the variance
(which are equal for the Poisson distribution).

(b) Find (nevertheless) the probability that the first occurrence occurs in
process number 1.

22. Let X1, X2, . . . be the i.i.d. lifetimes of some component in some large
machine. The simplest replacement policy is to change a component as
soon as it fails. In this case it may be necessary to call a repairman at
night, which might be costly. Another policy, called replacement based on
age, is to replace at failure or at some given age, a, say, whichever comes
first, in which case the interreplacement times are

Wk = min{Xk, a}, k ≥ 1.

Suppose that c1 is the cost for replacements due to failure and that c2 is the
cost for replacements due to age. In addition, let Yk be the cost attached
to replacement k, k ≥ 1, and let N(t) be the number of replacements
made in the time interval (0, t], where {N(t), t ≥ 0} is a Poisson process,
which is independent of X1, X2, . . . . This means that

Z(t) =
N(t)∑
k=1

Yk

is the total cost caused by the replacements in the time interval (0, t] (with
Z(t) = 0 whenever N(t) = 0).
(a) Compute E Y1 and VarY1.
(b) Compute E Z(t) and VarZ(t).

23. Let {X(t), t ≥ 0} be a Poisson process with random intensity Λ ∈ Γ(m, θ).
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(a) Determine the distribution of X(t).
(b) Why is the conclusion in (a) reasonable?
Hint. Recall Example 8.3.

24. Let {X(t) , t ≥ 0} be a Poisson process with intensity λ that is run N
time units, where N ∈ Fs(p).
(a) Compute EX(N) and VarX(N).
(b) Find the limit distribution of X(N) as λ → 0 and p → 0 in such a

way that λ/p→ 1.
25. A Poisson process is observed during n days. The intensity is, however,

not constant, but varies randomly day by day, so that we may consider
the intensities during the n days as n independent, Exp(1/α)-distributed
random variables. Determine the distribution of the total number of oc-
currences during the n days.

26. Let {X(t), t ≥ 0} be a Poisson process and let {Tk, k ≥ 1} be the occur-
rence times. Suppose that we know that T3 = 1 and that T1 = x, where
0 < x < 1. Our intuition then tells us that the conditional distribution of
T2 should be U(x, 1)-distributed. Prove that this is indeed the case, i.e.,
show that

T2 | T1 = x, T3 = 1 ∈ U(x, 1) for 0 < x < 1.

27. Suppose that X1, X2, and X3 are independent, Exp(1)-distributed ran-
dom variables, and let X(1), X(2), X(3) be the order variables. Determine
E(X(3) | X(1) = x). (Recall Example 4.2.3.)

28. Consider a queueing system where customers arrive according to a Poisson
process with intensity λ customers per minute. Let X(t) be the total
number of customers that arrive during (0, t]. Compute the correlation
coefficient of X(t) and X(t+ s).

29. A particle is subject to hits at time points generated by a Poisson pro-
cess with intensity λ. Every hit moves the particle a horizontal, N(0, σ2)-
distributed distance. The displacements are independent random vari-
ables, which, in addition, are independent of the Poisson process. Let
St be the location of the particle at time t (we begin at time zero).
(a) Compute E St.
(b) Compute Var(St).
(c) Show that

St − E St√
Var(St)

d−→ N(0, a2) as t→∞,

and determine the value of the constant a.
30. Consider a Poisson process with intensity λ, and let T be the time of the

first occurrence in the time interval (0, t]. If there is no occurrence during
(0, t], we set T = t. Compute E T .

31. In the previous example, let, instead, T be the time of the last occurrence
in the time interval (0, t]. If there is no occurrence during (0, t], we set
T = 0. Compute E T .
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32. A further (and final) definition of the Poisson process runs as follows: A
nondecreasing stochastic process {X(t), t ≥ 0} is a Poisson process iff
(a) it is nonnegative, integer-valued, and X(0) = 0;
(b) it has independent, stationary increments;
(c) it increases by jumps of unit magnitude only.
Show that a process satisfying these conditions is a Poisson process.
Remark. Note that if {X(t), t ≥ 0} is a Poisson process, then conditions
(a)–(c) are obviously satisfied. We thus have a fourth, equivalent, defini-
tion of a Poisson process.
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Suggestions for Further Reading

A natural first step for the reader who wishes to further penetrate the world of
probability theory, stochastic processes, and statistics is to become acquainted
with statistical theory at some moderate level in order to learn the fundamen-
tals of estimation theory, hypothesis testing, analysis of variance, regression,
and so forth.

In order to go deeper into probability theory one has to study the topic
from a measure-theoretic point of view. A selection of books dealing with
this viewpoint includes Billingsley (1986), Breiman (1968), Chow and Teicher
(1988), Chung (1974), Dudley (1989), Durrett (1991), Gnedenko (1968), and
Gut (2007) at various stages of modernity. Kolmogorov’s treatise Grundbe-
griffe der Wahrscheinlichkeitsrechnung is, of course, the fundamental, seminal
reference.

Loève (1977), Petrov (1975, 1995), Stout (1974), and Gut (2007) are mainly
devoted to classical probability theory, including general versions of the law of
large numbers, the central limit theorem, and the so-called law of the iterated
logarithm.

For more on martingale theory, we recommend Neveu (1975), Hall and
Heyde (1980), Williams (1991) and Gut (2007), Chapter 10. Doob (1953)
contains the first systematic treatment of the topic.

Billingsley (1968, 1999), Grenander (1963), Parthasarathy (1967), and Pol-
lard (1984) are devoted to convergence in more general settings. For example,
if in the central limit theorem one considers the joint distribution of all partial
sums (S1, S2, . . . , Sn), suitably normalized and linearly interpolated, one can
show that in the limit this polygonal path behaves like the so-called Wiener
process or Brownian motion.

Feller’s two books (1968, 1971) contain a wealth of information and are
pleasant reading, but they are not very suitable as textbooks.

An important application or part of probability theory is the theory of
stochastic processes. Some books dealing with the general theory of stochastic
processes are Gikhman and Skorokhod (1969, 1974, 1975, 1979), Grimmett
and Stirzaker (1992), Resnick (1992), Skorokhod (1982), and, to some extent,
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Doob (1953). The focus in Karatzas and Shreve (1991) is on Brownian motion.
Protter (2005) provides an excellent introduction to the theory of stochastic
integration and differential equations. So does Steele (2000), where the focus
is mainly on financial mathematics, and Øksendal (2003).

Some references on applied probability theory, such as queueing theory,
renewal theory, regenerative processes, Markov chains, and processes with in-
dependent increments, are Asmussen (2000, 2003), Çinlar (1975), Gut (2009),
Prabhu (1965), Resnick (1992), Ross (1996), and Wolff (1989); Doob (1953)
and Feller (1968, 1971) also contain material in this area. Leadbetter et al.
(1983) and Resnick (2008) are mainly devoted to extremal processes.

The first real book on statistical theory is Cramér (1946), which contains
a lot of information and is still most readable. Casella and Berger (1990) and,
at a somewhat higher level, Rao (1973) are also adequate reading. The books
by Lehmann and coauthors (1998, 2005) require a deeper prerequisite from
probability theory and should be studied at a later stage. Liese and Miescke
(2008) as well as Le Cam and Yang (2005) are more modern and advanced
books in the area and also contain a somewhat different approach. And beyond
those, there are of course, many more . . . .

In addition to those mentioned above the following reference list contains
a selection of further literature.
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11. Çinlar, E. (1975), Introduction to stochastic processes, Prentice-Hall, Englewood

Cliffs, NJ.
12. Cramér, H. (1946), Mathematical methods of statistics, Princeton University

Press, Princeton, NJ.
13. Doob, J.L. (1953), Stochastic processes, Wiley, New York.
14. Dudley, R. (1989), Real analysis and probability, Wadsworth & Brooks/Cole,

Belmont, CA.



References 279

15. Durrett, R. (1991), Probability: Theory and examples, Wadsworth & Brooks/
Cole, Belmont, CA.
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C

Answers to Problems

Chapter 1

2. f1/X(x) = 1
π ·

a
a2x2+(mx−1)2

, −∞ < x <∞

13. fX(x) = x for 0 < x < 1, 2− x for 1 < x < 2; X ∈ Tri(0, 2)
fY (y) = 1 for 0 < y < 1; Y ∈ U(0, 1)

F (x, y) = 1 for x > 2, y > 1; y for x− 1 > y, 0 < y < 1; xy− y2

2 −
(x−1)2

2

for x − 1 < y < 1, 1 < x < 2; xy − y2

2 for 0 < y < x, 0 < x < 1; x2

2 for

x < y, 0 < x < 1; 1− (2−x)2

2 for y > 1, 1 < x < 2; 0, otherwise

FX(x) = x2

2 for 0 < x < 1, 1− (2−x)2

2 for 1 < x < 2, 1 for x ≥ 2,
0 otherwise
FY (y) = y for 0 < y < 1, 1 for y ≥ 1, 0 for y ≤ 0

14. Y ∈ Ge(1− e−1/a), fZ(z) =
1
a e−1/a

1−e−1/a , 0 < z < 1

15. 1
24

16. E Y = logEX − 1
2 log(1 + VarX

(E X)2 ), VarY = log(1 + VarX
(E X)2 )

17. fZ(z) = z+1+a
a(z+1)2 e

−z/a, z > 0

18. f(u) = 1− e−u for 0 < u < 1, e−u(e− 1) for u > 1
19. fX1·X2·X3(y) = 1

2e−5 (1− y)2ey, 0 < y < 1

20. (a) fY1,Y2(y1, y2) = 64
3 (y1y2)

5/3
, 0 < y2

1 < y2 <
√
y1 < 1 (b) No

21. fX(x) = fX·Y (x) = 1
(1+x)2 , x > 0, (F (2, 2))

22. f(u) = 4(1− u)3, 0 < u < 1
23. Exp(1)
24. Y ∈ Γ(2, 1

λ ), X
Y−X ∈ F (2, 2)

25. f(u) = 20
3 (u1/3 − u2/3), 0 < u < 1



288 C Answers to Problems

26. EX = 1, VarX = 3
27. f(u) = 5(u1/4 − u2/3), 0 < u < 1
28. f(u) = 5

3u
2/3, 0 < u < 1

29. (a) fX+Y (u) = 2u
(1+u)3 , u > 0

(b) fX−Y (u) = 1
2(1+|u|)2 , −∞ < u <∞, (symmetric F (2, 2))

30. f(u) = u2

15 for 0 < u < 2, 2u
15 for 2 < u < 3, 1

15u(5− u) for 3 < u < 5
31. Γ(2, 1)
32. f(u) = u

(2 log 2−1)(1−u)3 for 0 < u < 1
2 , 1

(2 log 2−1)u2 for 1
2 < u < 1

33. f(u) = 3u2

(1+u)4 , u > 0

34. N(0, 1
2 )

35. f(u) = 1
1−log 2 ·

1−u
(1+u)2 , 0 < u < 1

36. U(0, 1)
37. fXY (u) = log u

u2 for u > 1, fX/Y (v) = 1
2 for 0 < v < 1, 1

2v2 for v > 1

38. fZ(z) = 1
3e
−z(2z + 1), z > 0

39. fX1/X2(u) = Γ(a1+a2)
Γ(a1)Γ(a2)

(
u

1+u

)a1−1( 1
1+u

)a2+1, u > 0,

X1 +X2 ∈ Γ(a1 + a2, b)
40. (c) Mean = r

r+s , variance = rs
(r+s)2(r+s+1)

41. fY(y) = 1
Γ(r1)Γ(r2)Γ(r3)

yr1−1
1 yr1+r2−1

2 yr1+r2+r3−1
3 (1− y1)r2−1

×(1− y2)r3−1
e−y3 , 0 < y1 < 1, 0 < y2 < 1, y3 > 0;

Y1 ∈ β(r1, r2), Y2 ∈ β(r1 + r2, r3), Y3 ∈ Γ(r1 + r2 + r3, 1), independent
42. (a) χ2(2) (b) Yes (c) C(0, 1)
43. (a) U(−1, 1) (b) C(0, 1)
44. N(0, 1), independent

Chapter 2

1. U(0, c)
2. fX|X+Y =2(x) = 3x

2 (1− x
2 ), 0 < x < 2

3. Pn = ( n
n+1 )n → 1

e as n→∞

4. exp{−12(1− e−1/10)}
5. Y1 and Y2 ∈ Po(λ

2 ).

7. (a) p
2−p , 4(1−p)

(2−p)2 (b) P (X = 1) = 1
2−p , P (X = −1) = 1−p

2−p

8. (a) U(0, 1) (b) Γ(3, y) (c) EX = 3
2 , VarX = 1.75
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9. (a) c = 6 (b) E(Y | X = x) = 1−x
2 , E(X | Y = y) = 2

3 (1− y)
10. c = 12; fX(x) = 12x2(1− x), 0 < x < 1, fY (y) = 4y3, 0 < y < 1;

EX = 3
5 , E Y = 4

5 ; E(Y | X = x) = 1+x
2 , E(X | Y = y) = 3

4y

11. c = 10; fX(x) = 5x4, 0 < x < 1, fY (y) = 10
3 y(1− y

3), 0 < y < 1;

EX = 5
6 , E Y = 5

9 ; E(Y | X = x) = 2
3x, E(X | Y = y) = 3

4 ·
1−y4

1−y3

12. E(Y | X = x) = 2x
3 and E(X | Y = y) = 2

3
y2+y+1

y+1

13. E(Y | X = x) = 2x
3 and E(X | Y = y) = y+2

2

14. E(Y | X = x) = 4+3x−7x2

6(1+x−2x2) and E(X | Y = y) = 8y
15

15. E(Y | X = x) = 2x+2
4x+3 and E(X | Y = y) = 4+9y

6(1+3y)

16. E(Y | X = x) = x+3
2x+3 and E(X | Y = y) = 2+3y

1+3y

17. E(Y | X = x) = 1
x and E(X | Y = y) = 2

1+y

18. c = 2; fX(x) = 1 + 2x− 3x2, 0 < x < 1, fY (y) = 3y2, 0 < y < 1;

EX = 5
12 , E Y = 3

4 ; E(Y | X = x) = 2+5x+5x2

3(3x+1) , E(X | Y = y) = 5y
9

19. c = 6; fX(x) = 6x(1−x), 0 < x < 1, fY (y) = 6y
1
2 (1−y 1

2 ), 0 < y < 1;
E(Y | X = x) = 1

2 (x+ x2), E(X | Y = y) = 1
2 (y +

√
y)

20. E(Y | X = x) = x3+x1/3

2 and E(X | Y = y) = 2
3

y1/3−y25/3

1−y14/3

21. E(Y | X = x) = 2
3

x.25−x11.5

1−x7.5 and E(X | Y = y) = y4+y1/4

2

22. c = 24; fX(x) = 12x3(1− x2), 0 < x < 1,
fY (y) = 6(1− y2)2y, 0 < y < 1;
E(Y | X = x) = 2

3

√
1− x2, E(X | Y = y) = 4

5

√
1− y2

23. c = 32; fX(x) = 16x(1− 4x2), 0 < x < 1
2 ,

fY (y) = 4y(1− y2), 0 < y < 1;
E(Y | X = x) = 2

3

√
1− 4x2, E(X | Y = y) = 1

3

√
1− y2

24. E(Y | X = x) = x−1
log x and E(X | Y = y) = 2y

25. E(Y | X = x) = x−1
log x and E(X | Y = y) = 3y

2

26. E(Y | X = x) = (1 + x)
(
1− log(1+x)

x

)
,

E(X | Y = y) = 2−y
1−y log(2− y)− 1 + y

27. E(Y | X = x) = x
2 and E(X | Y = y) =

π
2−y sin y−cosy

1−sin y

28. E(Y | X = x) = 2x log x−x
4(log x−1) and E(X | Y = y) = y+1

2

29. m
2

30. f(u) =
(

1
θ

)p(
x+ 1

θ

)p+1 , u > 0
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31. f(u) =
(

1
a

)p(
x+ 1

a

)p+1 , u > 0

32. (a) fY (y) = 2
(1+y)3 , y > 0 (b) 1

33. fX(x) = −1
2 log |x|, −1 < x < 1; EX = 0, VarX = 1

9

34. (a) n
2 ,

n2

20 + n
5 (b) P (Xn = k) = 6(k+1)(n−k+1)

(n+3)(n+2)(n+1) , k = 0, 1, 2, . . . , n

35. E Y = n
2 , VarY = n2

12 + n
6 , Cov (X,Y ) = n

12

36. E Y = 3
2 , VarY = 9

4 , Cov(X,Y ) = − 1
8 ,

P (Y = n) = 18
(n+3)(n+2)(n+1)n , n ≥ 1

37. (a) P (X = k) = 1
k(k+1) , k = 1, 2, . . .

(b) EX does not exist (= +∞)
(c) β(2, n)

38. P (Y = 0) = 1−p
2−p , P (Y = k) = (1−p)k−1

(2−p)k+1 , k = 1, 2, . . .

39. fX,Y (x, y) = n2 yn−1

xn , 0 < y < x < 1,

E(Y | X = x) = nx
n+1 , E(X | Y = y) = − 1−y

log y

Chapter 3

1. P (X = k) = (1−e−1)
k

k , k = 1, 2, . . ., EX = VarX = e− 1
2. X ∈ Be(c) for 0 ≤ c ≤ 1. No solution for c /∈ [0, 1]
3. U(0, 2)
4. P (X = 0) = P (X = 1) = 1

4 , P (X = 2) = 1
2

5. (a) (n+m−1)(n+m−2)···(n+1)n
(n+m−t−1)(n+m−t−2)···(n−t+1)(n−t) (=

∏m−1
k=0 (1− t

n+k )−1), t < n

8. ψ(X,log X)(t, u) = Γ(p+u)
Γ(p) ·

au

(1−at)p+u

9. np+
(
n
2

)
14p2 +

(
n
3

)
36p3 +

(
n
4

)
24p4

15. (b) k1 = EX, k2 = EX2 − (EX)2 = VarX,
k3 = EX3 − 3EXEX2 + 2(EX)3 = E(X − EX)3

17. (a) gX(s) = gX,Y (s, 1), gY (t) = gX,Y (1, t)
(b) gX+Y (t) = gX,Y (t, t). No

18. Exp( 1
pa )

19. (a) β = αp
1−α(1−p) (b) E Y = 1−β

β , VarY = 1−β
β2

20. (a) P (Z = k) = (1−p)2

(2−p)k+1 for k ≥ 1, P (Z = 0) = 1
2−p (b) 1−p

2−p

22. E Z = 2, VarZ = 6; P (Z = 0) = exp{e−2 − 1}
23. E Y ·VarN
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24. m
m−1

(
eλ(m−1) − 1

)
25. (a) Po(nm) (b) E Y = VarY = nm

26. gY (t) = exp{b(ep(t−1) − 1)}, E Y = bp, VarY = bp(1 + p)
27. gT (t) = t

3−t3−t5 , E T = 9, VarT = 98

28. Ge( 1
1+p )

29. 7
4p and 35

24p + 49
16p2

30. (a) 3 and 9 (b) 3 and 9 (c) 6 and 30

31. P (Y = 0) = 1−p
2−p , P (Y = k) = (1−p)k−1

(2−p)k+1 , k = 1, 2, . . .

33. 21000 and 69600
35. (a) η = 1 for p ≥ 1/2, p

q for p < 1/2 (b) P (X(2) = 0) = p
1−pq

36. EX(2) = (np)2, VarX(2) = (np)2q(1 + np),
P (X(2) = 0) = (q + pqn)n, P (X(2) = 1) = (np)2(q + pqn)n−1qn−1

37. (a) 1
3 (b) P (X(2) = 0) = 17

72 (c) E(X(1) | X(2) = 0) = 6
17

38. 3
8 ,

1
2 ,

1
4 , respectively

39. (a) p
q for p < q, 1 for p ≥ q (g) EN does not exist (= +∞)

40. (a) 7 (b) 0.0206
41. (a) P (Y = 0) = 1

3 , P (Y = 2) = 2
3 (b) 1

2

42. (a) gX(1)(t) = 1− α+ αg(t), gX(2)(t) = 1− α+ αg(1− α+ αg(t))

(b) η = 1 for αq
p ≤ 1, 1−αq

q for αq
p > 1

43. (a) 2m (b) gX(1)(t) = (g(t))2, gX(2)(t) =
(
g(g(t))

)2
g(t)

(c) (g(p0))2 · p0

44. (a) 1 (b) 1
1−m (c) 1 and k

1−m

45. (a) gZ(t) = exp{λ(t · eµ(t−1) − 1)}
(b) E Z = λ(1 + µ), VarZ = λ(1 + 3µ+ µ2)

47. (a) em(t−1) (b) exp{m(em(t−1) − 1)}
(c) exp{m(tem(t−1) − 1)} (d) m2

48. P (X = k) = 1
k(k+1) , k = 1, 2, . . .

Chapter 4

1. 1
6 and 0

2. π
2

3. fY (y) = 2− 4y for 0 < y < 1
2 , 4y − 2 for 1

2 < y < 1
4. P (N = n) = 1

n(n+1) , n = 1, 2, . . .; EN does not exist (= +∞)
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5. n−1
n+1

6. (a) 1
8 (b) 1

2

7. 1
2

8. (a) 1
2 (b) 2

3

9. (a) f(u) = 12u(1− u)2, 0 < u < 1 (b) f(u) = 12u(1− u)2, 0 < u < 1
10. 1

2

11. (a) 3
4 (b) a = 2 +

√
2

12. a+b
2

13. 65
6

14. fX(1),X(3))|X(2)=x(y, z) = 1
x(1−x) , 0 < y < x < z < 1

15. 2
7

16. (a) X(1) ∈ Exp(a
2 ), X(2) −X(1) ∈ Exp(a) (b) y + a, a− x

ex/a−1

17. 3−4x
4(1−x)2 for 0 < x ≤ 1

2 , 1 for x > 1
2

19. Exp(1)
20. (a) Yk ∈ Exp( a

n+1−k )

(b) EX(n) = a ·
∑n

k=1
1
k , VarX(n) = a2 ·

∑n
k=1

1
k2

21. (a) Yk ∈ Exp( 1
n+1−k )

22. E Zn =
∑n

k=1
k+1
2 = n(n+3)

4 , VarZn =
∑n

k=1
(k+1)2

4 = n(2n2+9n+13)
24

24. Γ(n, a)
25. 1

n

∑n
k=1Xk

26. f(x) = ape−ax

(1−(1−p)e−ax)2 , x > 0

27. P (V = 0) = e−λ, fV (x) = λe−λ(1−x), 0 < x < 1, E V = 1− 1
λ + e−λ

λ

28. FY (y) = exp{−λe−y/θ} for y ≥ 0 and 0 for y < 0

Chapter 5

2. fΘ(θ) =
√

1−ρ2

2π(1−ρ sin 2θ) , 0 < θ < 2π

5. EXY = ρσyσx, VarXY = σ2
xσ

2
y(1 + ρ2)

6. (a) 1√
π

(b) 0

8. N
(
1, 1

1+x2

)
and N

(
1, 1

1+y2

)
9. (c) C(0, 1)

10. 4
3

12. (a) N
(( 2
−1

)
,

(
10 5
5 5

))
(b) N(y + 3, 5)
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13. N(6.5, 25
2 )

14. N(4.2, 13.8)
15. N(−6x

5 ,
9
5 )

16. N(0, 4
3 )

17. N( 18
41 ,

25
41 )

18. N(−1, 6)
19. N( 1

5 ,
14
5 )

20. (a) N(0, 4) (b) N(−2, 4)
21. N(2, 1)
22. N(2, 2

3 )
23. (a) N(3, 23

4 ) (b) N(3, 7
4 )

24. N( 2
3 ,

8
3 )

25. N(1, 3)
26. N(0, 11

13 )
27. N(0, 1)

28. N
(
0,

(
3
7 −

3
14

− 3
14

31
28

))
29. N( 8

5 ,
28
5 )

30. N( 4
5 ,

18
5 )

31. N(− 13
79 ,

12
79 )

32. N( 1
2 ,

1
4 )

33. (a) µ, σ2τ2, σ2 (b) N
((µ

µ

)
,

(
σ2 σ2

σ2 σ2 + τ2

))
(c) N

(
µ+ (y−µ)σ2

σ2+τ2 ,
σ2τ2

σ2+τ2

)
34. (a) 1√

1−t2
(b) 1√

1−2ρt−t2(1−ρ2)
= 1√

(1−ρt)2−t2

35. 1
(1+t)

√
1−2t

36. 1√
1−4t+4(1−ρ2)t2

= 1√
(1−2t)2−4ρ2t2

37. ψ(t) = 1
1−2t , t < 2 (χ2(2))

38. n− 1
39. a = b = 3/7

Chapter 6

5. Yn
d−→Y as n→∞, where FY (y) = exp{− 1

πy}, y > 0
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6. Exp(1
2 )

7. (a) Fs(pt)
8. Exp( 1

λ )
9. U(0, 1)

13. ϕSn/n2(t)→ e−
√

2|t| (symmetric stable (1/2))
14. 2
15. (a) ϕY (t) = exp{λ(e−t2/2 − 1)}
16. N(0, 2)
17. Po(γ)
18. Ge( α

α+1 )
19. Exp(µ)
20. σ2

21. (a) FVm(x) = em(x−1), 0 ≤ x ≤ 1 (b) ψVm(t) = m
m+te

t + t
m+te

−m

(d) m(1− Vm) d−→Exp(1) as m→∞
22. Po(λ)

24. (a) 0 (b)
√
nYn

d−→N(0, 3) as n→∞
26. σ2

µ

27. (a) 0 (b) σ2

4µ2

31. 1
a

√
3
n ·

SnZn

Vn

d−→N(0, 1) as n→∞

32. Exp(1)

34. b2 = σ2

4

35. σ2(g′(µ))2

39. (a) U(−1, 1) (b) false, false.
40. (a) U(−a, a) (b) EXn → 1

2 for α > 1, = 1 for α = 1, →∞ for α < 1,

Var (Xn)→ 1
12 for α > 2, → 5

12 for α = 2, →∞ for α < 2
41. (b) bnP (X1 > an)→ 0 as n→∞
42. fn(x) = 1− cos(2nπx), 0 < x < 1; the density oscillates.
48. N( 1

2 ,
1
2 )

Chapter 7

2. The outcome of A/B is completely decisive for the rest.
4. µ = 0, σ2 = 1

9

5. (a) 1
3 (b) 1

3 (c) 0 (d) 2
15 (e) 1

9

13. (b) exp{tSn − nt2

2 }



C Answers to Problems 295

Chapter 8

1. 31
32

2. 1− ( λ2
λ1+λ2

)
5

3. (a) 1
2 (b) 3

8 (c)
(
i+j

i

)
( 1
2 )i+j

4.
(

7
9

)10
5. (a) Ge( µ

λ+µ ) (b) 1− µ
λ for µ < λ, 0 for µ ≥ λ

6. (a) 3
5 (b)

(
2
5

)3
7. 1−

(
5
6

)5 = 4651
7776

8. P (N(T ) = n) = ( 1
2 )n+1

, n = 0, 1, 2, . . ., (Ge( 1
2 ))

9. 4
9

10. (a) Bounded interreplacement times (b) 1
µ + 1

θ

11. E T1 = 4, E T2 = 12
12. 1− (1− e−λpa)/λpa

13. (a) Y (t) ∈ Po(λpt), Z(t) ∈ Po(λqt)

(b) P (N = n) = p(1− p)n−1
, n = 1, 2, . . ., (Fs(p))

(c) P (N = n) =
(
n−1
k−1

)
pk(1− p)n−k

, n = k, k+1, . . ., (k+NBin(k, p))

(d) P (Y (t) = k | X(t) = n) =
(
n
k

)
pk(1− p)n−k

, k = 0, 1, . . . , n,
n = 0, 1, 2, . . ., (Bin(n, p))

(e) P (X(t) = n | Y (t) = k) = e−λ(1−p)t (λ(1−p)t)n−k

(n−k)! , n = k, k + 1, . . .,

(k + # nonregistered particles)
14. (a) γ = α

α+β(1−α) (b) E Y = 1−γ
γ , VarY = 1−γ

γ2

15. (eaλ − 1)/λ
16. λA

λA+λD
· e−(λA+3λD)

17. Tn = (n− 1)a+ Vn, where Vn ∈ Γ(n, 1
λ );

E Tn = (n− 1)a+ n
λ , VarTn = n

λ2

18. λt2/2
19. λE A

α (1− e−αt)

20. eλ(t−s)(g(u)−1)

21. (b) −p log p
1−p

22. (a) E Y1 = c1P (X1 < a) + c2P (X1 ≥ a),
VarY1 = (c1 − c2)2P (X1 < a) · P (X1 ≥ a)
(b) E Z1(t) = λt

(
c1P (X1 < a) + c2P (X1 ≥ a)

)
,

Var (Z1(t) = λt
(
c21P (X1 < a) + c22P (X1 ≥ a)

)
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23. (a) P (X(t) = k) =
(
m+k−1

k

)
( 1
1+θt )

m( θt
1+θt )

k, k = 0, 1, 2, . . .,

(NBin(m, 1
1+θt ))

24. (a) λ
p , λ

p + λ2q
p2 (b) Ge

(
1
2

)
25. P (Nn = k) =

(
n+k−1

k

)
( α
1+α )n( 1

1+α )k, k = 0, 1, 2, . . ., (NBin(n, α
1+α ))

27. x+ 1.5

28.
√

t
t+s

29. (a) 0 (b) λtσ2 (c) 1.
30. 1

λ (1− e−λt)
31. t− (1− e−λt)/λ



Index

(absolutely) continuous, 6, 16
absolute central moment, 8
absolute convergence, 7, 33, 35, 36, 82
absolute moment, 8
absolutely convergent, 7
addition theorem, 62, 74
algebraic complement, 118, 126
almost surely, 166
almost-sure convergence, 204
alternating renewal process, 266
auxiliary random variable, 23
axiom, 3
axioms

Kolmogorov, 3–5

Bayes’ formula, 5, 44
Bayesian statistics, 12, 43
Bernoulli, 61, 65
Bernoulli trials, 221
best linear predictor, 49
best predictor, 48, 49
binary splitting, 89, 97
binomial, 61, 65
binomial process, 266
birth and death process, 265
birth process, 264
bivariate normal distribution

density, 126
Borel distribution, 175
Borel–Cantelli lemma, 204, 205
branching process, 12, 85–88, 90, 184,

220, 270
asymptotics, 88, 173
expectation, 87

extinction, 88, 184
reproduction, 85
variance, 87

Cauchy, 69, 76
Cauchy convergence, 158
Cauchy distribution, 165, 192
central limit theorem, 11, 13, 57,

161–164, 169, 184
domain of attraction, 196
records, 203

central moment, 8
characteristic function, 12, 58, 70–79,

85, 123, 124, 159, 260, 282, 283
continuity theorem, 159, 162, 169
moments, 75
multivariate normal, 123, 124
uniform continuity, 71, 72

characterization theorem, 145
Chebyshev’s inequality, 11, 161
children, 85, 90
Cochran’s theorem, 13, 136, 138
collection of events, 4
complete convergence, 211
compound Poisson process, 260
conditional density, 32, 47, 127, 241,

243
multivariate normal, 127

conditional distribution, 12, 31, 33, 34,
36, 43, 127–129, 133, 241, 246

multivariate normal, 127
conditional distribution function, 31, 32
conditional expectation, 12, 33, 34, 36,

47, 127
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conditional probability, 4, 5, 31, 244,
252

conditional probability function, 31
conditional variance, 12, 33, 36, 127
conditioning, 36, 77, 241, 245, 256
confidence interval, 172, 173
constant regression, 55
continuity point, 6
continuity set, 147
continuity theorem, 13, 159, 161, 162,

169
continuous, 7, 9, 16, 18, 32, 33, 71, 73,

283
continuous distribution, 6
continuous time, 11, 221
convergence, 13, 147

almost surely, 13, 147
Cauchy convergence, 158
continuity theorem, 159
in r-mean, 13, 147, 167
in distribution, 13, 147, 158, 160, 167,

173
in probability, 13, 147, 160, 167, 170
in square mean, 148
of functions, 170
of sums of sequences, 165
relations between concepts, 152, 157
uniqueness, 150, 158, 161
via transforms, 158, 169

convergence of sums of sequences, 165
convolution, 12, 58
convolution formula, 9, 22, 57, 58, 62
correlation, 9
correlation coefficient, 10, 19, 126
countable additivity, 4
counting process, 265

records, 201, 203
coupon collector’s problem, 258
covariance, 9, 10, 19, 120
covariance matrix, 119, 120

nonsingular, 120
singular, 120

Cox process, 265
Cramér’s theorem, 168, 169

Daly’s theorem, 134
death process, 265
degenerate normal distribution, 121
density, 6, 21, 125, 126, 283

bivariate normal, 126
conditional, 47, 127
joint, 8, 16, 18
marginal, 17, 111
multivariate, 20
multivariate normal distribution, 126

density function, 33, 130
conditional, 32
marginal, 17

dependence, 10
dependence concepts, 190

(m + 1)-block factor, 191
determinant, 118
deterministic model, 1, 2
discrete, 7, 9, 16, 18, 31, 33, 71, 73, 282
discrete distribution, 6
discrete stochastic process, 221
discrete time, 11
distribution, 6, 7, 15

(absolutely) continuous, 6, 16
Bernoulli, 282
beta, 283
binomial, 282
Borel, 175
Cauchy, 285
chi-square, 283
conditional, 12, 31, 127
continuous, 6, 283–285
discrete, 6, 282
exponential, 283
first success, 282
gamma, 283
geometric, 282
hypergeometric, 282
joint, 8
Laplace, 283
marginal, 17
multivariate normal, 12
negative binomial, 282
one point, 282
Pareto, 285
Poisson, 282
posterior, 43
prior, 43
rectangular, 283
stable, 192, 194, 219
symmetric Bernoulli, 282
triangular, 283
unconditional, 33, 36, 39, 40
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uniform, 283
with random parameters, 12, 38, 77

distribution function, 6, 7
conditional, 31, 32
joint, 8, 15, 18
marginal, 17, 18

domain of attraction, 193, 199, 219
central limit theorem, 196
definition, 194
normal distribution, 195, 196
regular variation, 195
slow variation, 194
stable distributions, 194, 195

double or nothing, 213, 214
double records, 211
doubly stochastic Poisson process, 265
duration, 226, 248, 265, 266

eigenvalue, 118, 119
elementary event, 4
empirical distribution function, 163
equidistributed, 58
event, 3–5
events

collection of, 4
expectation, 7, 61, 81, 82, 87, 282, 283

conditional, 12, 33, 47
of indicator, 252
of sum, 10
unconditional, 36

expected quadratic prediction error, 46,
48, 49

expected value, 7, 34
exponential, 67, 73
exponential martingale, 220
extinct, 86
extinction, 88, 90, 270
extremal distribution, 219

domain of attraction, 199
Gnedenko, 200
record values, 204
types, 200

extreme order variables, 102

family names, 86
finite additivity, 4
first occurrence, 14, 250, 252, 254, 258,

273
fixed time, 14

Fourier series, 71
Fourier transform, 12, 58, 71
Fréchet distribution, 200

Galton–Watson process, 85, 173
gamma, 67, 74
Gaussian, 68, 74
generating function, 12, 58–60, 62, 63,

74, 78, 80, 86, 116, 237, 253, 257
continuity theorem, 159

generation, 86
geometric, 62, 66
grandchildren, 90, 96
Gumbel distribution, 200

increments
independence, 263
independent, 11, 221, 223, 231, 268,

275
joint density, 233
stationary, 221, 231, 275

independence, 3–5, 8–10, 18, 19, 22, 80,
121, 130, 132, 140, 161, 169

multivariate normal distribution, 130
pairwise, 4

independence of sample mean and
sample variance, 133

independent, 31, 33, 36
independent increments, 11, 221, 223,

231, 247, 255, 263, 268, 275
independent Poisson processes, 246,

251, 252, 254
independent quadratic forms, 137, 138
indicator, 164

variable, 80, 83
indicator variables, 256
induced, 6
inequality

Chebyshev, 11
Markov, 11

initial population, 85, 86
insurance, 260
intensity, 222, 231, 247, 251

random, 262
state-dependent, 264
time-dependent, 264

intensity function, 267, 268
inversion theorem, 72

Jacobian, 20, 21, 24, 110, 125
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joint, 12
joint conditional distribution, 243
joint density, 8, 18, 105, 111, 233, 245

of the order statistic, 110
of the unordered sample, 109

joint distribution, 8, 31, 36, 245
continuous, 32
discrete, 31
of the extremes, 105
of the order statistic, 109

joint distribution function, 8, 15, 18
joint normality, 122
joint probability function, 8, 16
jointly normal, 13, 122, 131, 140
jump, 223, 226, 260, 275

Kolmogorov, 3
Kolmogorov axioms, 3–5
Kznatropsk, 270

lack of memory, 13, 107, 226, 227, 266
Laplace transform, 12, 58, 63
largest observation, 102
law of large numbers, 10, 11, 13, 149,

161, 162, 164, 165, 169, 188, 192,
219

strong, 162
weak, 162

law of total probability, 5, 35, 39, 40
Lebesgue, 6
life length process, 267
likelihood ratio test, 214, 215
limit theorem, 10, 13
linear, 46
linear algebra, 117
linear combination, 10
linear form, 139
linear predictor, 48
linear transformation, 13, 120, 131, 135
log-normal, 69
Lyapounov’s condition, 190

m-dependence, 190, 208, 211, 218
macroscopic behavior, 2
many-to-one, 23, 24, 110
marginal, 12

density, 17
distribution function, 17, 18
probability function, 17

marginal density, 17, 111
marginal distribution, 17, 121, 127

multivariate normal, 121
Markov property, 240
Markov’s inequality, 11
martingale, 213, 219, 220

convergence, 216
exponential, 220
reversed, 215

matrix, 117
inverse, 119
square root, 119
symmetric, 117

mean, 7
mean vector, 119, 120
measurable, 4, 6, 15
measure of dependence, 10
measure of dispersion, 7
measure of location, 7
median, 7
method of least squares, 48
microscopic behavior, 2
mixed binomial model, 44
mixed Gaussian distribution, 40
mixed normal distribution, 40
model, 1, 2

deterministic, 1
of random phenomena, 1–3
probabilistic, 1

moment, 7, 8, 64, 67, 75
absolute, 8
absolute central, 8
central, 8
inequality, 151

moment generating function, 12, 58,
63–67, 70, 73–75, 78, 84, 124, 159,
163

continuity theorem, 159
multivariate normal, 124

moments
characteristic function, 75

multiplication theorem, 60, 63, 72
multivariate distribution, 117
multivariate normal, 12, 117

characteristic function, 123, 124
conditional density, 127, 129
conditional distribution, 127
definition, 121, 124, 125
density, 125, 126
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independence, 130
independence of sample mean and

range, 134
independence of sample mean and

sample variance, 134, 139
linear transformation, 120, 132
marginal distribution, 121
moment generating function, 124
nonsingular, 125
orthogonal transformation, 132
uncorrelatedness, 130

multivariate random variables, 12, 15

n-dimensional random variable, 15
nonhomogeneous Poisson process, 264,

267
nonnegative-definite, 118, 120, 123, 124
nonsingular, 120, 125, 127
normal, 68, 74, 124

density, 129
random vector, 117, 130, 136

normal approximation, 11, 178
normal distribution, 12, 68

degenerate, 121
mixed, 40
multivariate, 12, 117
nonsingular, 125
singular, 125

occurrence, 3, 13, 14, 221, 222, 231, 246,
255, 274

first, 250, 252, 254, 258, 274
last, 274
one, 222, 223
two or more, 222, 223

occurrence times, 226, 245
conditioning, 245, 246

occurrences
conditioning, 241, 242

order statistic, 12, 101, 110, 243, 246
marginal density, 111

order variables, 101
density, 104
distribution function, 102

orthogonal matrix, 118, 119, 132, 134
orthogonal transformation, 132

pairwise independence, 4
parameter, 43

known, 43
posterior distribution, 43
prior distribution, 43
unknown, 43

partial maxima, 201, 219
particle, 38, 40, 77, 80, 83, 246, 251–253,

255, 263, 270, 274
registered, 255

particle counter, 38, 80, 83, 251, 255,
258, 271

partition, 5, 24
peak numbers, 218
permutation matrix, 109
Poisson, 63, 66
Poisson approximation, 11, 149, 161,

178, 221
Poisson process, 11, 13, 108, 109, 247,

266
compound, 260
definition, 221, 223, 231, 275
doubly stochastic, 265
duration, 226
first occurrence, 274
generalizations, 261
intensity, 222
last occurrence, 274
nonhomogeneous, 264, 267
random intensity, 262, 273, 274
random times, 261
residual waiting time, 227
restart, 233

fixed times, 234
occurrence times, 234
random times, 236, 238

superpositioned, 246
thinning, 255, 272
value of, 261

positive-definite, 118
positive-semidefinite, 118
posterior distribution, 43–45
prediction, 12, 46
prediction error, 46

expected quadratic, 46, 48, 49
predictor, 46

best, 48
best linear, 49
better, 46

prior distribution, 43, 44
probabilistic model, 1, 2
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probability
conditional, 4

probability distribution, 32, 33
probability function, 6, 9, 32, 282

conditional, 31
joint, 8, 16
marginal, 17

probability space, 2, 4, 5, 15

quadratic form, 118, 136
queueing theory, 86, 274

random experiment, 1, 2, 43, 45
random intensity, 262
random number of random variables,

116, 179, 184
random phenomenon, 1, 2
random time, 14
random variable, 5–8, 15, 34, 36

auxiliary, 23
functions of, 19
multivariate, 12, 15

random variables
sums of, 9, 10
sums of a random number, 12, 79

random vector, 12, 15, 70, 77, 117, 119,
123, 125

function of, 12
normal, 117

random walk, 217, 260, 265
range, 106, 107, 134
rate of convergence, 165
real, 76
records, 210

counting process, 201
central limit theorem, 203

double records, 211
record times, 201, 218

central limit theorem, 203
record values, 201

types, 204
rectangular, 66, 73
register, 251
registered particle, 38, 80, 83, 257, 258
regression, 12, 46

coefficient, 49
function, 46–48, 127
line, 49, 127

regular variation, 194

relative frequency, 3
stabilization, 3

renewal
counting process, 265
process, 265

alternating, 266
replacement policy, 271, 273
residual lifetime, 268
residual variance, 49, 127
residual waiting time, 227
reversed martingales, 215
risk theory, 260
ruin, 260

sample, 12, 101, 109, 243, 246
sample space, 4
signal, 271
singular, 120
slow variation, 194
Slutsky’s theorem, 168
smallest observation, 102
soap bubbles, 270
stabilization of relative frequencies, 2
stable distribution, 75, 192, 194, 219

domain of attraction, 194
start from scratch, 14, 227, 253, 255

at fixed times, 227, 231
at random times, 227, 231

state space, 11
state-dependent intensity, 264
stationary increments, 221, 275
Stirling’s formula, 198
stochastic process, 11, 275

continuous, 11
discrete, 11

stock, 261
stopping time, 240
storage theory, 261
submartingale, 215
sums of a random number of random

variables, 12, 79, 86, 260
characteristic function, 85
expectation, 81, 82
generating function, 80
moment generating function, 84
variance, 81, 82

sums of random variables, 9
independent, 57–59, 63, 72

supermartingale, 215
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superposition, 247, 249, 273
survival, 86

function, 269

Taylor expansion, 65–67, 75, 163
thinned Poisson process, 40, 272
thinning, 255, 260
time-dependent intensity, 264
transform, 12, 57, 58, 77, 158, 161, 237,

253, 256
transformation, 20, 130, 232, 246

many-to-one, 23
transformation theorem, 12, 125
translation invariance, 134
triangle inequality, 151
types, 200, 204

unconditional

distribution, 33, 36, 39, 40
expectation, 36
probabilities, 5

uncorrelated, 10, 18, 19, 130, 140
uniform, 66, 73
uniform integrability, 196
uniqueness theorem, 58, 59, 63, 72, 77
unordered sample, 101

variance, 7, 61, 81, 82, 87, 282, 283
conditional, 12, 33, 36, 127
of difference, 10
of sum, 10
residual, 49, 127

waiting time, 13, 249, 252
residual, 227

Weibull distribution, 200
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