
Chapter 4
Proportionally modular numerical semigroups

Introduction

In [94] the authors introduce the concept of a modular Diophantine inequality. The
set of integer solutions of such an inequality is a numerical semigroup. In that
manuscript it is shown that the genus of these semigroups can be obtained from
the coefficients of the inequality. However, to date we still do not know formulas for
the Frobenius number or the multiplicity of the semigroup of solutions of a modular
Diophantine inequality.

Later in [92] these inequalities are slightly modified obtaining a wider class of
numerical semigroups. The new inequalities are called proportionally modular Dio-
phantine inequalities. In [95] the concept of Bézout sequence is introduced, which
became an important tool for the study of this type of numerical semigroup. These
sequences are tightly related to Farey sequences (see [40] for the definition and
properties of Farey sequences) and to the Stern-Brocot tree (see [38]).

1 Periodic subadditive functions

We introduce the concept of periodic subadditive function. We show that to every
such mapping there exists a numerical semigroup. This correspondence also goes
in the other direction; for every numerical semigroup and every nonzero element in
it, we find a periodic subadditive function associated to them. The contents of this
section can be found in [66].

Let Q+
0 denote the set of nonnegative rational numbers. A subadditive function

is a map f : N→Q+
0 such that

(1) f (0) = 0,
(2) f (x+ y)≤ f (x)+ f (y) for all x,y ∈ N.

From this definition it is easy to prove our next result, in which we see that every
subadditive function has a submonoid of N associated to it.
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Lemma 5.1. Let f : N→Q+
0 be a subadditive function. Then

M( f ) = {x ∈ N | f (x)≤ x}

is a submonoid of N.

Let m be a positive integer. The map f : N→Q+
0 has period m if f (x+m) = f (x)

for all x ∈ N. We denote by S F m the set of m-periodic subadditive functions. If
f ∈S F m, then we know that M( f ) is a submonoid of N. Clearly, for every x ∈ N
such that x ≥ max{ f (0), . . . , f (m− 1)} one has that x ∈ M( f ), which implies that
N\M( f ) is finite. This proves the following lemma.

Lemma 5.2. Let m be a positive integer and let f ∈S F m. Then M( f ) is a numer-
ical semigroup.

The use of subadditive functions is inspired in the following result, which is a
direct consequence of Lemma 2.6 and Proposition 3.5.

Lemma 5.3. Let S be a numerical semigroup and let m be a nonzero element of S.
Assume that Ap(S,m) = {w(0) = 0,w(1), . . . ,w(m− 1)} with w(i) ≡ i mod m for
all i ∈ {0, . . . ,m− 1}. Define f : N → N by f (x) = w(x mod m). Then f ∈ S F m
and M( f ) = S.

If m is a positive integer and f ∈ S F m, then as 0 = f (0) = f (0 + m) = f (m),
we have that f (m)≤ m, or equivalently m ∈ M( f ), as expected.

Lemma 5.4. Let m be a positive integer and f ∈S F m. Then m ∈ M( f ).

Let Sm be the set of numerical semigroups containing m. As a consequence of the
results given so far in this section, we obtain the following result which shows the
tight connection between numerical semigroups and periodic subadditive functions.

Theorem 5.5. Let m be a positive integer. Then

Sm = {M( f ) | f ∈S F m } .

We now introduce a family of periodic subadditive functions whose associated
semigroups will be the subject of study for the rest of this chapter.

Let a, b and c be positive integers. The map

f : N→Q+
0 , f (x) =

ax mod b
c

is a subadditive function of period b. Hence

S(a,b,c) = M( f ) =
{

x ∈ N
∣∣∣ ax mod b

c
≤ x
}

= {x ∈ N | ax mod b ≤ cx}

is a numerical semigroup.
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A proportionally modular Diophantine inequality is an expression of the form
ax mod b ≤ cx, with a, b and c positive integers. The integers a, b and c are called
the factor, modulus and proportion, respectively. The semigroup S(a,b,c) is the set
of integer solutions of a proportionally modular Diophantine inequality. A numerical
semigroup of this form will be called proportionally modular.

Example 5.6. S(12,32,3) = {x ∈ N | 12x mod 32 ≤ 3x}= {0,3,6,→}= 〈3,7,8〉.

2 The numerical semigroup associated to an interval of rational
numbers

We observe in this section that proportionally modular numerical semigroups are
precisely the set of numerators of the fractions belonging to a bounded interval. The
results of this section also appear in [92].

Given a subset A of Q+
0 , we denote by 〈A〉, the submonoid of Q+

0 generated by
A, that is,

〈A〉= {λ1a1 + · · ·+λnan | a1, . . . ,an ∈ A and λ1, . . . ,λn ∈ N} .

Clearly S(A) = 〈A〉∩N is a submonoid of N (we use the same letter we are using for
proportionally modular numerical semigroups by reasons that will become obvious
later). We say that S(A) is the numerical semigroup associated to A.

Given two rational numbers λ < µ , we use [λ ,µ], [λ ,µ[, ]λ ,µ] and ]λ ,µ[ to de-
note the closed, right-opened, left-opened and opened intervals of rational numbers
between λ and µ .

In this section, I denotes any of these intervals with 0 ≤ λ < µ .

Lemma 5.7. Let x1, . . . ,xk ∈ I, then 1
k (x1 + · · ·+ xk) ∈ I.

Proof. As k(min{x1, . . . ,xk}) ≤ x1 + · · ·+ xk ≤ k(max{x1, . . . ,xk}), we have that
min{x1, . . . ,xk} ≤ x1+···+xk

k ≤ max{x1, . . . ,xk}, and thus 1
k (x1 + · · ·+ xk) is in I. ut

The set S(I) coincides with the set of numerators of the fractions belonging to I.
This fact follows from the next result.

Lemma 5.8. Let x be a positive rational number. Then x ∈ 〈I〉 if and only if there
exists a positive integer k such that x

k ∈ I.

Proof. If x ∈ 〈I〉, then by definition x = λ1x1 + · · ·+ λkxk for some λ1, . . . ,λk ∈ N
and x1, . . . ,xk ∈ I. By Lemma 5.7, x

λ1+···+λk
∈ I.

If x
k ∈ I, then trivially k x

k ∈ 〈I〉. ut

We now see that every proportionally modular numerical semigroup can be re-
alized as the numerical semigroup associated to a closed interval whose ends are
determined by the factor, modulus and proportion of the semigroup.
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Lemma 5.9. Let a, b and c be positive integers with c < a. Then

S(a,b,c) = S
([

b
a
,

b
a− c

])
.

Proof. Let x∈ S(a,b,c)\{0}. Then ax mod b≤ cx. Hence there exists a nonnegative
integer k such that 0≤ ax−kb≤ cx. If k = 0, then ax≤ cx, contradicting c < a. Thus
k 6= 0 and b

a ≤
x
k ≤

b
a−c . By Lemma 5.8, we obtain x ∈ S

([ b
a , b

a−c

])
.

Now take x ∈ S
([ b

a , b
a−c

])
\ {0}. By Lemma 5.8 again, there exists a positive

integer k such that b
a ≤

x
k ≤

b
a−c . This implies that 0≤ ax−kb≤ cx, and consequently

ax mod b ≤ cx. ut

Remark 5.10. The condition c < a might seem restrictive. However this is not the
case, because if c ≥ a, then the semigroup S(a,b,c) is equal to N.

Note also that the inequality ax mod b ≤ cx has the same set of integer solutions
as (a mod b)x mod b≤ cx. Hence we can, in our study of Diophantine proportionally
modular inequalities, assume that 0 < c < a < b.

Example 5.11. S(44,32,3) = S(12,32,3) = S
([ 32

12 , 32
9

])
= S

([ 8
3 , 32

9

])
= N∩({0}∪[ 8

3 , 32
9

]
∪
[ 16

3 , 64
9

]
∪
[
8, 32

3

]
∪·· ·) = {0,3,6,→}.

Numerical semigroups associated to closed intervals are always proportionally
modular. Its factor, modulus and proportion are determined by the ends of the inter-
val. This result is a sort of converse to Lemma 5.9.

Lemma 5.12. Let a1, a2, b1 and b2 be positive integers with b1
a1

< b2
a2

. Then

S
([

b1

a1
,

b2

a2

])
= S(a1b2,b1b2,a1b2−a2b1).

Proof. Note that S
([

b1
a1

, b2
a2

])
= S

([
b1b2
a1b2

, b1b2
b1a2

])
. The proof now follows by Lem-

ma 5.9. ut

With this we can show that the numerical semigroup associated to a bounded
interval is proportionally modular.

Lemma 5.13. S(I) is a proportionally modular numerical semigroup.

Proof. As S(I) = 〈I〉 ∩N, we have that S(I) is a submonoid of N. Take α and β

in I with α < β . Then S([α,β ]) ⊆ S(I) because [α,β ] ⊆ I. By Lemma 5.12 and
Theorem 5.5, we know that S([α,β ]) is a numerical semigroup, and thus has finite
complement in N. This forces S(I) to have finite complement in N, which proves
that it is a numerical semigroup.

Let {n1, . . . ,np} be the minimal generating system of S(I). By Lemma 5.8, there
exist positive integers d1, . . . ,dp such that ni

di
∈ I for all i ∈ {1, . . . , p}. After rear-

ranging the set {n1, . . . ,np}, assume that
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n1

d1
< · · ·<

np

dp
.

Then S
([

n1
d1

,
np
dp

])
⊆ S(I), and by Lemma 5.8 again, {n1, . . . ,np} ⊆ S

([
n1
d1

,
np
dp

])
.

Thus S
([

n1
d1

,
np
dp

])
= S(I). In view of Lemma 5.12, S(I) is proportionally modular.

ut

With all these results we obtain the following characterization for proportionally
modular numerical semigroups, which states that the set of solutions of a propor-
tionally modular Diophantine inequality coincides with the set of numerators of all
the fractions in a bounded interval.

Theorem 5.14. Let S be a numerical semigroup. The following conditions are equiv-
alent.

1) S is proportionally modular.
2) There exist rational numbers α and β , with 0 < α < β , such that S = S([α,β ]).
3) There exists a bounded interval of positive rational numbers such that S = S(I).

3 Bézout sequences

In this section we introduce the concept of Bézout sequence. As we have mentioned
at the beginning of this chapter, this is one of the main tools used for the study of
the set of integer solutions of a proportionally modular Diophantine inequality. This
sequences and their relation with proportionally modular numerical semigroups are
the main topic of [95].

A sequence of fractions a1
b1

< a2
b2

< · · · < ap
bp

is a Bézout sequence if a1, . . . ,ap,
b1, . . . ,bp are positive integers such that ai+1bi−aibi+1 = 1 for all i∈ {1, . . . , p−1}.
We say that p is the length of the sequence, and that a1

b1
and ap

bp
are its ends.

Bézout sequences are tightly connected with proportionally modular numerical
semigroups. The first motivation to introduce this concept is the following property.

Proposition 5.15. Let a1, b1, a2 and b2 be positive integers such that a1b2−a2b1 =
1. Then S

([
b1
a1

, b2
a2

])
= 〈b1,b2〉.

Proof. Let x∈ 〈b1,b2〉\{0}. Then x = λb1 +µb2 for some λ ,µ ∈N, not both equal
to zero. As

b1

a1
≤ λb1 + µb2

λa1 + µa2
=

x
λa1 + µa2

≤ b2

a2
,

in view of Lemma 5.8, x ∈ S
([

b1
a1

, b2
a2

])
.

From Lemma 5.12, by using that a1b2−a2b1 = 1, we know that

S
([

b1

a1
,

b2

a2

])
= S(a1b2,b1b2,1).
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If x ∈ S
([

b1
a1

, b2
a2

])
, then a1b2x mod b1b2 ≤ x, and thus b2(a1x mod b1)≤ x. Since

x =
x− (a1x mod b1)b2

b1
b1 +(a1x mod b1)b2,

for proving that x ∈ 〈b1,b2〉, it suffices to show that x−(a1x mod b1)b2
b1

∈ Z (we al-
ready know that it is nonnegative). Or equivalently, that (a1x mod b1)b2 and x
are congruent modulo b1. Note that (a1x mod b1)b2 = a1b2x mod b1b2 = (1 +
b1a2)x mod b1b2 = x+b1a2x+ kb1b2 = x+b1(a2x+ kb2) for some integer k. ut

Remark 5.16. Assume now that a1
b1

< a2
b2

< · · · <
ap
bp

is a Bézout sequence. From

Lemma 5.8 a positive integer belongs to S
([

a1
b1

,
ap
bp

])
if and only if there exists

a positive integer k such that x
k ∈

[
a1
b1

,
ap
bp

]
. Note that x

k ∈
[

a1
b1

,
ap
bp

]
if and only if

x
k ∈
[

ai
bi

,
ai+1
bi+1

]
for some i ∈ {1, . . . , p−1}. This is equivalent to x ∈ S

([
ai
bi

,
ai+1
bi+1

])
in

view of Lemma 5.8 again. Proposition 5.15 states then that x ∈ S
([

a1
b1

,
ap
bp

])
if and

only if x ∈ 〈ai,ai+1〉 for some i ∈ {1, . . . , p−1}. That is,

S
([

a1

b1
,

ap

bp

])
= 〈a1,a2〉∪ 〈a2,a3〉∪ · · ·∪ 〈ap−1,ap〉.

This also proves the following.

Corollary 5.17. Let a1
b1

< a2
b2

< · · ·< ap
bp

be a Bézout sequence. Then

S
([

a1

b1
,

ap

bp

])
= 〈a1,a2, . . . ,ap〉.

Example 5.18. Let us find the integer solutions to 50x mod 131 ≤ 3x. We know that
the set of solutions to this inequality is S

([ 131
50 , 131

47

])
. As

131
50

<
76
29

<
21
8

<
8
3

<
11
4

<
25
9

<
39
14

<
131
47

is a Bézout sequence, we have that S
([ 131

50 , 131
47

])
= 〈131,76,21,8,11,25,39〉 =

〈8,11,21,25,39〉.

In this example we have given the Bézout sequence connecting the ends of the
interval defining the semigroup of solutions to the Diophantine inequality. We will
soon learn how to construct such a sequence once we know the ends of an interval.

As another consequence of Proposition 5.15, we obtain that every numerical
semigroup with embedding dimension two is proportionally modular.

Corollary 5.19. Every numerical semigroup of embedding dimension two is pro-
portionally modular.
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Proof. Let S be a numerical semigroup of embedding dimension two. There ex-
ist two relatively prime integers a and b greater than one such that S = 〈a,b〉. By
Bézout’s identity, there exist positive integers u and v such that bu−av = 1. Propo-
sition 5.15 ensures that S = 〈a,b〉= S

([ a
u , b

v

])
. Theorem 5.14 tells us that S is pro-

portionally modular. ut

Next we will show that given two positive rational numbers, there exists a Bézout
sequence whose ends are these numbers. First, we see that the numerators and de-
nominators of the fractions belonging to an interval whose ends are rational num-
bers admit special expressions in terms of the numerators and denominators of these
ends.

Lemma 5.20. Let a1,a2,b1,b2,x and y be positive integers such that a1
b1

< a2
b2

. Then
a1
b1

< x
y < a2

b2
if and only if x

y = λa1+µa2
λb1+µb2

for some λ and µ positive integers.

Proof. Necessity. If a1
b1

< x
y < a2

b2
, then it is not difficult to show that (x,y) belongs

to the positive cone spanned by (a1,b1) and (a2,b2) (that is, to the set of pairs of
the form r(a1,b1)+ s(a2,b2) with r and s positive rational numbers). Hence there
exist positive rational numbers p1

q1
and p2

q2
such that (x,y) = p1

q1
(a1,b1)+ p2

q2
(a2,b2).

Thus q1q2x = p1q2a1 + p2q1a2 and q1q2y = p1q2b1 + p2q1b2, and consequently
x
y = q1q2x

q1q2y = p1q2a1+p2q1a2
p1q2b1+p2q1b2

.
Sufficiency. Follows from the fact that for any positive integers a,b,c and d, if

a
b < c

d , then a
b < a+c

b+d < c
d (this has already been used in Proposition 5.15). ut

The next result gives the basic step for constructing a Bézout sequence whose
ends are two given rational numbers.

Lemma 5.21. Let a1, a2, b1 and b2 be positive integers such that a1
b1

< a2
b2

and
gcd{a1,b1} = 1. Then there exist x,y ∈ N \ {0} such that a1

b1
< x

y < a2
b2

and b1x−
a1y = 1.

Proof. Observe that b1x− a1y = 1 if and only if x = 1+a1y
b1

. As gcd{a1,b1} = 1,
the equation a1y ≡ −1 mod b1 has infinitely many positive solutions. Hence x

y =
1+a1y

b1y = a1
b1

+ 1
b1y fulfills the desired inequalities for y a large-enough solution to the

equation a1y ≡−1 mod b1. ut

Among all possible values arising from the preceding lemma, we fix one that
will enable us to apply induction for proving Theorem 5.23. As we will see next,
this choice will allow us to effectively construct a Bézout sequence with known
ends.

Lemma 5.22. Let a1, a2, b1 and b2 be positive integers such that a1
b1

< a2
b2

, gcd{a1,

b1}= gcd{a2,b2}= 1 and a2b1−a1b2 = d > 1. Then there exists t ∈ N, 1 ≤ t < d
such that gcd{ta1 +a2, tb1 +b2}= d.
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Proof. In view of Lemma 5.21, there exist x,y∈N such that a1
b1

< x
y < a2

b2
with b1x−

a1y = 1. Now, from Lemma 5.20, we have that x
y = λa1+µa2

λb1+µb2
for some λ ,µ ∈N\{0}.

As b1x−a1y = 1, we know that gcd{x,y}= 1 and thus x = λa1+µa2
gcd{λa1+µa2,λb1+µb2}

and

y = λb1+µb2
gcd{λa1+µa2,λb1+µb2}

. By substituting these values in b1x− a1y = 1 we deduce
that gcd{λa1 + µa2,λb1 + µb2} = µ(a2b1 − a1b2) = µd. Hence µ | λa1 + µa2
and µ | λb1 + µb2, and consequently µ | λa1 and µ | λb1. By using now that
gcd{a1,b1} = 1, we deduce that µ | λ . Let α = λ

µ
∈ N \ {0}. We have then that

d = gcd{αa1 +a2,αb1 +b2}.
Note that if d = gcd{a,b}, then d | (a− kd,b− kd) for all k,k ∈ N. By applying

this fact, we deduce that if t = α mod d, then d | gcd{ta1 + a2, tb1 + b2}. Besides,
b1

ta1+a2
d − a1

tb1+b2
d = b1a2−a1b2

d = d
d = 1. Hence gcd{ ta1+a2

d , tb1+b2
d } = 1 and thus

gcd{ta1 +a2, tb1 +b2}= d.
Since t = α mod d, obviously t < d; also t 6= 0, because gcd{a2,b2}= 1 6= d. ut

Now we are ready to show that for every two positive rational numbers, we can
construct a Bézout sequence connecting them.

Theorem 5.23. Let a1, a2, b1 and b2 be positive integers such that a1
b1

< a2
b2

,
gcd{a1,b1} = gcd{a2,b2} = 1 and a2b1 − a1b2 = d. Then there exists a Bézout
sequence of length less than or equal to d +1 with ends a1

b1
and a2

b2
.

Proof. We proceed by induction on d. For d = 1 the result is trivial. Now assume
that the statement holds for all the integers k with 1 ≤ k < d. By Lemma 5.22, we
know that there exists a positive integer t, 1 ≤ t < d such that gcd{ta1 + a2, tb1 +
b2} = d. Let x1 = ta1+a2

d and y1 = tb1+b2
d . Since x1

y1
= ta1+a2

tb1+b2
, Lemma 5.20 asserts

that a1
b1

< x1
y1

< a2
b2

. Moreover, b1x1−a1y1 = b1
ta1+a2

d −a1
tb1+b2

d = b1a2−a1b2
d = d

d = 1

and a2y1−b2x1 = a2
tb1+b2

d −b2
ta1+a2

d = t(a2b1−a1b2)
d = td

d = t < d. By applying the
induction hypothesis to x1

y1
< a2

b2
, we deduce that there exists a Bézout sequence

x1
y1

< x2
y2

< · · ·< xs
ys

< a2
b2

with s≤ t. Hence, a1
b1

< x1
y1

< x2
y2

< · · ·< xs
ys

< a2
b2

is a Bézout
sequence of length less than or equal to t +2 ≤ d +1. ut

Remark 5.24. The proof of Theorem 5.23 gives an algorithmic procedure to com-
pute a Bézout sequence with known ends a1

b1
and a2

b2
. Thus we have a procedure to

compute a system of generators of S
([

a1
b1

, a2
b2

])
. We must first compute the least

positive integer t such that gcd{ta1 + a2, tb1 + b2} = d, and then repeat the proce-
dure with ( ta1+a2

d )/( tb1+b2
d ) < a2

b2
.

Example 5.25 ([95]). We start with the fractions 13/3 < 6/1. Here d = 5 and so
there exists t ∈ {1, . . . ,4} such that gcd{13t +6,3t +1}= 5. The choice t = 3 fulfills
the desired condition, whence we can place 3×13+6

3×3+1 = 9/2 between 13/3 and 6/1.
Now we proceed with 9/2 < 6/1, and obtain d = 3. In this setting gcd{1×9+6,1×
2 + 1} = 3. Thus we put 9+6

2+1 = 5
1 between 9/6 and 6/1. Finally for 5/1 < 6/1, it

holds that d = 1 and consequently the process stops. A Bézout sequence for the
given ends is
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13
3

<
9
2

<
5
1

<
6
1
.

Observe that Bézout sequences connecting two ends are not unique, since if a
b <

c
d is a Bézout sequence, then so is a

b < a+c
b+d < c

d .

4 Minimal generators of a proportionally modular numerical
semigroup

We have seen the connection between systems of generators of a proportionally
modular numerical semigroup and Bézout sequences. In this section we will try to
sharpen this connection in order to obtain the minimal system of generators of a
proportionally modular numerical semigroup. We follow the steps given in [95].

A Bézout sequence a1
b1

< a2
b2

< · · · < ap
bp

is proper if ai+hbi − aibi+h ≥ 2 for all
h ≥ 2 such that i, i + h ∈ {1, . . . , p}. Every Bézout sequence can be refined to a
proper Bézout sequence, by just removing those terms strictly between ai

bi
and ai+h

bi+h
whenever ai+hbi−aibi+h = 1.

Example 5.26. The Bézout sequence 5
3 < 12

7 < 7
4 < 9

5 is not proper, and 5
3 < 7

4 < 9
5

is proper.

Lemma 5.27. Let a
u < b

v < c
w be a Bézout sequence. Then b = a+c

d with d = cu−aw.

Proof. The proof follows easily by taking into account that bu−av = cv−bw = 1.
ut

The next result shows that the maximum of the set of numerators of a proper
Bézout sequence is always reached at one of its ends.

Lemma 5.28. Let a1
b1

< a2
b2

< · · ·< ap
bp

be a proper Bézout sequence. Then

max{a1,a2, . . . ,ap}= max{a1,ap}.

Proof. We proceed by induction on p. For p = 2, the statement is trivially true. We
assume as induction hypothesis that max{a2, . . . ,ap}= max{a2,ap}. We next show
that max{a1, . . . ,ap} = max{a1,ap}. If max{a2,ap} = ap, then the result follows
trivially. Let us assume then that max{a2,ap} = a2. If we apply Lemma 5.27 to
the Bézout sequence a1

b1
< a2

b2
< a3

b3
, then we obtain that a2 = a1+a3

a3b1−a1b3
, and as this

Bézout sequence is proper, a3b1 − a1b3 ≥ 2. Hence a2 ≤ a1+a3
2 ≤ 2max{a1,a3}

2 . We
distinguish two cases depending on the value of max{a1,a3}.

• If max{a1,a3} = a3, then we deduce that a2 ≤ a3. Since max{a2, . . . ,ap} = a2,
this implies that a2 = a3. By using that a2

b2
< a3

b3
is a Bézout sequence and a2 = a3,

we obtain that a2(b2 − b3) = 1, whence a2 = 1. Since a1 ≥ 1, we conclude that
max{a1, . . . ,ap}= a1.
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• If max{a1,a3}= a1, then a2 ≤ a1, and the proof follows easily. ut

As a consequence of this result, we have that the numerators of the fractions of a
proper Bézout sequence are arranged in a special way.

Proposition 5.29. Let a1
b1

< a2
b2

< · · · <
ap
bp

be a proper Bézout sequence. Then
a1, . . . ,ap is a convex sequence, that is, there exists h ∈ {1, . . . , p} such that

a1 ≥ a2 ≥ ·· · ≥ ah ≤ ah+1 ≤ ·· · ≤ ap.

Two fractions a1
b1

< a2
b2

are said to be adjacent if

a2

b2 +1
<

a1

b1
, and b1 = 1 or

a2

b2
<

a1

b1−1
.

As we will see later, this is the second condition required to obtain Bézout sequences
whose numerators represent minimal systems of generators.

First we show that 1 cannot be the numerator of a fraction in a Bézout sequence
of length two with adjacent ends.

Lemma 5.30. If a1
b1

< a2
b2

is a Bézout sequence whose ends are adjacent, then 1 6∈
{a1,a2}.

Proof. Assume that a1 = 1. Then 1 = a2b1 − a1b2 = a2b1 − b2. Since a2
b2+1 < 1

b1
,

we have that a2b1 < b2 +1, in contradiction with a2b1 = b2 +1.
Suppose now that a2 = 1. Observe that in this setting b1 6= 1, since otherwise

a1
1 < 1

b2
and thus a1b2 < 1. Hence 1

b2
< a1

b1−1 and therefore b1 −1 < a1b2. But this
is impossible because 1 = a2b1−a1b2 = b1−a1b2. ut

Proposition 5.31. If a1
b1

< a2
b2

< · · · < ap
bp

is a proper Bézout sequence whose ends
are adjacent, then {a1, . . . ,ap} is the minimal system of generators of the numerical
semigroup S = 〈a1, . . . ,ap〉.

Proof. We use induction on p. For p = 2, we know by Lemma 5.30 that a1 and a2
are integers greater than or equal to 2 with gcd{a1,a2} = 1. Thus the statement is
true for p = 2.

From Lemma 5.28, we know that max{a1, . . . ,ap} = max{a1,ap}. We distin-
guish two cases, depending on the value of max{a1,ap}.

• Assume that max{a1, . . . ,ap} = a1. Obviously a2
b2

< · · · < ap
bp

is a proper Bézout

sequence. We prove that its ends are adjacent. Clearly ap
bp+1 < a2

b2
. Note also that

b1 6= 1, since otherwise the inequality a1
1 < a2

b2
would imply that a2 > a1, con-

tradicting that a1 = max{a1, . . . ,ap}. Since a1b2 < a2b1 and a2 ≤ a1, we have
that a1b2 − a1 < a2b1 − a2. Hence, if b2 6= 1, we have that ap

bp
< a1

b1−1 < a2
b2−1 .

This proves that a2
b2

< · · · < ap
bp

is a proper Bézout sequence with adjacent ends.
By using the induction hypothesis, we have that {a2, . . . ,ap} minimally gener-
ates 〈a2, . . . ,ap〉. Since a1 = max{a1, . . . ,ap}, in order to prove that {a1, . . . ,ap}
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is a minimal system of generators of 〈a1, . . . ,ap〉, it suffices to show that a1 6∈
〈a2, . . . ,ap〉. In view of Corollary 5.17 we know that 〈a2, . . . ,ap〉= S

([
a2
b2

,
ap
bp

])
.

Hence, if a1 ∈ 〈a2, . . . ,ap〉, then by Lemma 5.8 there exists a positive inte-
ger y such that a2

b2
≤ a1

y ≤ ap
bp

. This leads to a1
b1

< a1
y ≤ ap

bp
and consequently

a1
b1−1 ≤

a1
y ≤ ap

bp
, contradicting that a1

b1
and ap

bp
are adjacent.

• Assume now that max{a1, . . . ,ap} = ap. The proof follows by arguing as in the
preceding case, but now using that in this setting a1

b1
< · · · < ap−1

bp−1
is a proper

Bézout sequence with adjacent ends. ut

We see next that the converse to this result also holds: every proportionally mod-
ular numerical semigroup is minimally generated by the numerators of a proper
Bézout sequence with adjacent ends. The key to this result is the following lemma.

Lemma 5.32. Let S be a proportionally modular numerical semigroup other than
N. Then there exist two minimal generators n1 and np of S and positive integers b1

and bp such that S = S
([

n1
b1

,
np
bp

])
. Moreover, n1

b1
and np

bp
are adjacent.

Proof. Let α and β be two positive rational numbers such that α < β and S =
S([α,β ]) (Theorem 5.14). By Lemma 5.8, we know that if n is a minimal gen-
erator of S then there exists a positive integer x such that α ≤ n

x ≤ β . Note
that gcd{n,x} = 1, since if gcd{n,x} = d 6= 1, then α ≤ n/d

x/d ≤ β , which would
mean that n

d is in S, contradicting that n is a minimal generator of S. Let a(n) =
max

{
x ∈ N\{0} | α ≤ n

x

}
. We are assuming that S 6= N, thus if ni and n j are

two distinct minimal generators of S, then ni
a(ni)

6= n j
a(n j)

, because gcd{ni,a(ni)} =

gcd{n j,a(n j)}= 1, and ni
a(ni)

= n j
a(n j)

would imply that ni = n j. Hence there exists an
arrangement of the minimal generators n1, . . . ,np of S such that α ≤ n1

a(n1) < n2
a(n2) <

· · ·< np
a(np) ≤ β . For all i∈{1, . . . , p−1}, let b(ni)= min

{
x ∈ N\{0} | ni

x ≤ np
a(np)

}
.

Then there exists a permutation σ on the set {1, . . . , p−1} such that

α ≤
nσ(1)

b(nσ(1))
<

nσ(2)

b(nσ(2))
< · · ·<

nσ(p−1)

b(nσ(p−1))
<

np

a(np)
≤ β .

Note that α ≤ nσ(1)
a(nσ(1))

≤ nσ(1)
b(nσ(1))

since b(nσ(1))≤ a(nσ(1)), and that np
a(np)+1 < α due

to the maximality of a(np). Hence np
a(np)+1 <

nσ(1)
b(nσ(1))

. Besides, it is clear from the

definition of b(nσ(1)) that if b(nσ(1)) 6= 1, then np
a(np) <

nσ(1)
b(nσ(1))−1 .

In order to conclude the proof, it suffices to show that S is the numerical semi-
group T = S

([
nσ(1)

b(nσ(1))
,

np
a(np)

])
. Since [

nσ(1)
b(nσ(1))

,
np

a(np) ]⊆ [α,β ], we have that T ⊆ S.

As
nσ(1)

b(nσ(1))
<

nσ(2)
b(nσ(2))

< · · · <
nσ(p−1)

b(nσ(p−1))
<

np
a(np) , by Lemma 5.8 we deduce that

{n1, . . . ,np} ⊆ T . Thus S = T . ut
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Proposition 5.33. Let S be a proportionally modular numerical semigroup with
e(S) = p ≥ 2. Then there exist an arrangement n1, . . . ,np of the set of minimal gen-
erators of S and positive integers b1, . . . ,bp such that n1

b1
< n2

b2
< · · ·< np

bp
is a proper

Bézout sequence with adjacent ends.

Proof. By Lemma 5.32, we know that there exists n1 and np minimal generators of

S and positive integers b1 and bp such that S = S
([

n1
b1

,
np
bp

])
and the limits of this

interval are adjacent.
As we pointed out in the proof of Lemma 5.32, since n1 and np are mini-

mal generators of S and in view of Lemma 5.8, it must hold that gcd{n1,b1} =
gcd{np,bp}= 1.

If we apply Theorem 5.23 to n1
b1

<
np
bp

and refine the resulting Bézout sequence,

then we obtain a proper Bézout sequence n1
b1

< x1
y1

< · · · < xl
yl

<
np
bp

whose ends are
adjacent. From Proposition 5.31, we conclude that {n1,x1, . . . ,xl ,np} is the minimal
system of generators of S. ut

We end this section by giving an arithmetic characterization of the minimal sys-
tems of generators of a proportionally modular numerical semigroup (and thus a
characterization of these semigroups). The following easy modular computations
will be useful to establish this description. Given positive integers a and b with
gcd{a,b}= 1, by Bézout’s identity, there exist integers u and v such that au+bu = 1.
We denote by a−1 mod b the integer u mod b.

Lemma 5.34. Let n1 and n2 be two integers greater than or equal to two such that
gcd{n1,n2}= 1. Then n2(n−1

2 mod n1)−n1((−n1)−1 mod n2) = 1.

Proof. Since n2(n−1
2 mod n1) ≡ 1 mod n1 and n−1

2 mod n1 < n1, we have that
n2(n−1

2 mod n1)−1
n1

is an integer less than n2. Besides,

n2(n−1
2 mod n1)−n1

n2(n−1
2 mod n1)−1

n1
= 1,

which implies that n1
n2(n−1

2 mod n1)−1
n1

≡−1( mod n2). Hence n2(n−1
2 mod n1)−1

n1
equals

(−n1)−1 mod n2. Thus n2(n−1
2 mod n1)−n1((−n1)−1 mod n2) = 1. ut

The above-mentioned characterization is stated as follows.

Theorem 5.35. A numerical semigroup S is proportionally modular if and only if
there is an arrangement n1, . . . ,np of its minimal generators such that the following
conditions hold:

1) gcd{ni,ni+1}= 1 for all i ∈ {1, . . . , p−1},
2) ni−1 +ni+1 ≡ 0 mod ni for all i ∈ {2, . . . , p−1}.
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Proof. Necessity. By Proposition 5.33, we know that (possibly after a rearrange-
ment of n1, . . . ,np) there exist positive integers b1, . . . ,bp such that n1

b1
< · · · < np

bp

is a Bézout sequence. Hence gcd{ni,ni+1} = 1 for all i ∈ {1, . . . , p− 1}. In view
of Lemma 5.27, we obtain that ni = ni−1+ni+1

ni+1bi−1−ni−1bi+1
for all i ∈ {2, . . . , p− 1} and

consequently ni−1 +ni−1 ≡ 0 mod ni for all i ∈ {2, . . . , p−1}.
Sufficiency. From Lemma 5.34 and Condition 2), it is not hard to see that

n1

n−1
2 mod n1

<
n2

n−1
3 mod n2

< · · ·<
np−1

n−1
p mod np−1

<
np

(−np−1)−1 mod np

is a Bézout sequence. By Corollary 5.17 and Theorem 5.14, we conclude that S is a
proportionally modular numerical semigroup. ut

Example 5.36. This theorem gives a criterium to check whether or not a numerical
semigroup is proportionally modular. We illustrate it with some examples.

(1) The semigroup 〈6,8,11,13〉 is not proportionally modular, since gcd{6,8} 6= 1.
(2) We already know that the semigroup 〈8,11,21,25,39〉 is proportionally mod-

ular. Let us check it again by using the last theorem. In the arrangement of
the generators described in Theorem 5.35, 8 and 11 lie together (in view of
Proposition 5.29, this arrangement yields a convex sequence). It does not really
matter if we start with 8,11 or 11,8, since if an arrangement fits the conditions
of Theorem 5.35 so does its symmetry. The next generator we must place is 21.
As 21 + 11 = 32 ≡ 0 mod 8 and 21 + 8 6≡ 0 mod 11, thus 21 goes at the left
of 8. Proceeding in this way with 25 and 39, we conclude that the generators
arranged as 21,8,11,25,39 fulfill the conditions of Theorem 5.35.

(3) Let us see that 〈5,7,11〉 is not proportionally modular. The generators 5 and 7
must be neighbors in the sequence. Hence we start with 5,7. If we want to place
11, then we must check if 11+7 is a multiple of 5 or 5+11 is a multiple of 7.
None of these two conditions hold, and thus there is no possible arrangement of
5,7,11 that meets the requirements of Theorem 5.35.

5 Modular numerical semigroups

Given a, b and c positive integers, we leave open the problem of finding formulas
to compute, in terms of a, b and c, the Frobenius number, genus and multiplicity of
S(a,b,c). In this section we present the results of [94], which show that a formula
for the genus of S(a,b,1) can be given in terms of a and b.

A modular Diophantine inequality is an expression of the form ax mod b ≤ x,
with a and b positive integers. A numerical semigroup is modular if it is the set of
solutions of a modular Diophantine inequality.

Remark 5.37. 1) Every numerical semigroup of embedding dimension two is mod-
ular (see the proof of Proposition 5.15 and Corollary 5.19).
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2) There are proportionally modular numerical semigroups that are not modular (for
instance 〈3,8,10〉 as shown in [92, Example 26]; this is proposed as an exercise
at the end of this chapter).

Easy computations are enough to prove the following two results. We write them
down because we will reference them in the future.

Lemma 5.38. Let a and b be two integers such that 0 ≤ a < b and let x ∈ N. Then

a(b− x) mod b =
{

0, if ax mod b = 0,
b− (ax mod b), if ax mod b 6= 0,

Lemma 5.39. Let a and b be integers such that 0≤ a < b. Then ax mod b > x implies
that a(b− x) mod b < b− x.

As a consequence of this we obtain the following property, which shows that the
modulus of a modular numerical semigroup behaves like the Frobenius number in a
symmetric numerical semigroup.

Proposition 5.40. Let S be a modular numerical semigroup with modulus b. If x ∈
N\S, then b− x ∈ S.

As every integer greater than b belongs to S(a,b,1), in order to compute the
genus of S(a,b,1) we can focus on the interval [0,b−1]. Next we see when for x in
this interval, both x and b− x belong to S(a,b,1).

Lemma 5.41. Let S = S(a,b,1) for some integers 0 ≤ a < b, and let x be an integer
such that 0 ≤ x ≤ b−1. Then x ∈ S and b− x ∈ S if and only if ax mod b ∈ {0,x}.

Proof. Necessity. Assume that ax mod b 6= 0. As x∈ S, we have that ax mod b≤ x. If
ax mod b < x, then by Lemma 5.38, we have that a(b−x) mod b = b−(ax mod b) >
b− x, and consequently b− x 6∈ S, which contradicts the hypothesis. We conclude
that ax mod b = x.

Sufficiency. If ax mod b = 0, then clearly x ∈ S. Moreover, by Lemma 5.38, we
have that a(b− x) mod b = 0 and thus b− x is an element of S.

If ax mod b = x 6= 0, then again x ∈ S, and Lemma 5.38 states that a(b−
x) mod b = b− (ax mod b) = b− x, which implies that b− x ∈ S. ut

We consider both possibilities separately. Easy modular calculations characterize
them.

Lemma 5.42. Let a and b be positive integers, and let x be an integer such that
0 ≤ x ≤ b−1. Then ax mod b = 0 if and only if x is a multiple of b

gcd{a,b} .

Lemma 5.43. Let a and b be positive integers, and let x be an integer such that
0 ≤ x ≤ b−1. Then ax mod b = x if and only if x is a multiple of b

gcd{a−1,b} .

With this we can control the set of integers x in [0,b−1] such that x ∈ S(a,b,1)
and b− x ∈ S(a,b,1).
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Lemma 5.44. Let S = S(a,b,1) for some integers a and b such that 0 < a < b. Let
d = gcd{b,a} and d′ = gcd{b,a−1}, and let x be an integer such that 0≤ x≤ b−1.
Then x ∈ S and b− x ∈ S if and only if

x ∈ X =
{

0,
b
d′

,2
b
d′

, . . .(d′−1)
b
d′

,
b
d

,2
b
d

, . . . ,(d−1)
b
d

}
.

Moreover, the cardinality of X is d′+d−1.

Proof. By Lemma 5.38 we know that x ∈ S and b− x ∈ S if and only if ax mod b ∈
{0,x}. By using now Lemmas 5.42 and 5.43, we know that this is equivalent to
x ∈ X .

Note that gcd{a− 1,a} = 1 and thus gcd{d′,d} = 1. If sb/d′ = tb/d for some
s, t ∈ N, then sd = td′ and since gcd{d′,d} = 1, we deduce that there exists k ∈ N
such that sd = td′ = kd′d. Hence s = kd′ and t = kd. Therefore the cardinality of X
is d′+d−1. ut

The number of gaps of S(a,b,1) can now be easily computed as we show in the
following theorem.

Theorem 5.45. Let S = S(a,b,1) for some integers a and b with 0 ≤ a < b. Then

g(S) =
b+1−gcd{a,b}−gcd{a−1,b}

2
.

Proof. Let d, d′ and X be as in Lemma 5.44. By using Proposition 5.40 and Lemma
5.44, we deduce that for the set Y = {0, . . . ,b− 1} \X , the cardinality of (Y ∩ S)
equals that of (Y \ S). Hence the cardinality of Y is 2g(S). From Lemma 5.44, we
deduce that 2g(S) = b− (d +d′−1). ut

Open Problem 5.46. How are the minimal generators of a modular numerical semi-
group characterized? More precisely, which additional condition(s) must be im-
posed in Theorem 5.35 to obtain a characterization of modular numerical semi-
groups in terms of their minimal generators?

6 Opened modular numerical semigroups

In this section we characterize those proportionally numerical semigroups that are
irreducible. The idea is extracted from [97].

Recall that a numerical semigroup of the form {0,m,→}with m a positive integer
is called a half-line. We say that a numerical semigroup S is an opened modular
numerical semigroup if it is either a half-line or S = S

(] b
a , b

a−1

[)
for some integers

a and b with 2 ≤ a < b.
Note that the half-line {0,m,→} = S([m,2m]) and thus it is a proportionally

modular numerical semigroup in view of Theorem 5.14. The semigroups of the
form S

(] b
a , b

a−1

[)
are also proportionally modular by Theorem 5.14.
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We are going to see that every irreducible proportionally modular numerical
semigroup is of this form. The idea is to compute the genus of these semigroups
by using what we already know for modular numerical semigroups. As the Frobe-
nius number for opened modular numerical semigroups is easy to compute, we can
then search which of these semigroups have the least possible number of gaps in
order to get the irreducibles.

The next result shows that opened modular numerical semigroups play the same
role in the set of proportional numerical semigroups as irreducible numerical semi-
groups do for numerical semigroups in general.

Proposition 5.47. Every proportionally modular numerical semigroup is the inter-
section of finitely many opened modular numerical semigroups.

Proof. Let S be a proportionally modular numerical semigroup. If S = N, then
clearly S is a half-line and thus opened modular. So assume that S 6= N. By Theorem
5.14, there exist rational numbers α and β with 1 < α < β such that S = S([α,β ]).
Let h ∈ G(S). If h ≥ α , in view of Lemma 5.8, there exists nh ∈ N such that nh ≥ 2
and h

nh
< α < β < h

nh−1 . Define Sh = S
(]

h
nh

, h
nh−1

[)
, which contains S. If h < α ,

set Sh = {0,h+1,→}. Observe that in this setting m(S) > h (use Lemma 5.8), and
consequently Sh contains S. Hence S ⊆

⋂
h∈G(S) Sh. If x 6∈ S, then x ∈ G(S) and by

Lemma 5.8 (or simply by the definition in the half-line case) x 6∈ Sx. This proves that⋂
h∈G(S) Sh ⊆ S, and thus both semigroups coincide. ut

In this section, a and b represent two integers such that 2 ≤ a < b, and d and d′

will denote gcd{a,b} and gcd{a−1,b}, respectively.

Lemma 5.48.
{b+1,→}⊆ S

(]
b
a
,

b
a−1

[)
.

Proof. Let n be a positive integer. As a(b + n)− (a− 1)(b + n) = b + n > b, there
exists a positive integer k such that (a−1)(b+n) < kb < a(b+n). This implies that
b
a < b+n

k < b
a−1 . Lemma 5.8 ensures that b+n ∈ S

(] b
a , b

a−1

[)
. ut

Lemma 5.49. Let x be a nonnegative integer. Then

x ∈ S
([

b
a
,

b
a−1

])
and x 6∈ S

(]
b
a
,

b
a−1

[)
if and only if

x ∈
{

λ
b
d

∣∣∣∣ λ ∈ {1, . . . ,d}
}
∪
{

λ
b
d′

∣∣∣∣ λ ∈ {1, . . . ,d′}
}

.

Proof. Let T = S
([ b

a , b
a−1

])
and let S = S

(] b
a , b

a−1

[)
. By Lemma 5.8, if x ∈ T \S,

then there exists a positive integer k such that either x
k = b

a or x
k = b

a−1 . This implies
that either x is a multiple of b

d or b
d′ . As by Lemma 5.48, {b+1,→}⊆ S

(] b
a , b

a−1

[)
,

this forces x ∈ {λ
b
d | λ ∈ {1, . . . ,d}}∪{λ

b
d′ | λ ∈ {1, . . . ,d′}}.
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For the other implication, take x∈{λ
b
d |λ ∈ {1, . . . ,d}}∪{λ

b
d′ |λ ∈ {1, . . . ,d′}}.

Then either x = λ
b
d or x = λ

b
d′ . In both cases x ∈ T by Lemma 5.8. Assume that

λ
b
d ∈ S. Then again by Lemma 5.8, there exists a positive integer k such that

b
a

<
λ

b
d

k
<

b
a−1

.

And this implies that (a−1)λ < dk < aλ . As a is a multiple of d, both dk and aλ are
multiples of d. Since dk < aλ , we have that dk ≤ aλ −d. Hence (a−1)λ < aλ −d,
which leads to d < λ , in contradiction with the choice of λ . This proves that λ

b
d 6∈ S.

In a similar way it is easy to show that λ
b
d′ is not in S. ut

We have achieved enough information to compute the Frobenius number and
genus, with the help of Theorem 5.45, of an opened proportionally modular numer-
ical semigroup that is not a half-line.

Theorem 5.50. Let a and b be two integers with 2 ≤ a < b. Let d = gcd{a,b} and
d′ = gcd{a−1,b}. Then

F
(

S
(]

b
a
,

b
a−1

[))
= b and g

(
S
(]

b
a
,

b
a−1

[))
=

1
2
(b−1+d +d′).

Proof. By Lemma 5.48 and Proposition 5.49, F
(
S
(] b

a , b
a−1

[))
= b. As gcd{d,d′}=

1, λ
b
d 6= λ ′ b

d′ for any λ ∈{1, . . . ,d−1} and λ ′ ∈{1, . . . ,d′−1}. By Proposition 5.49
this implies that

g
(

S
(]

b
a
,

b
a−1

[))
= g

(
S
([

b
a
,

b
a−1

]))
+d +d′−1.

We obtain the desired formula by using Theorem 5.45. ut

Open Problem 5.51. Even though we know formulas for the Frobenius number and
genus of an opened modular numerical semigroup, a formula for the multiplicity in
terms of a and b is still unknown.

From the formula given in Theorem 5.50 and the characterization of irreducible
numerical semigroups established in Corollary 4.5, we get the following conse-
quence.

Corollary 5.52. Let a and b be integers such that 2 ≤ a < b.

1) S
(] b

a , b
a−1

[)
is symmetric if and only if gcd{a,b}= gcd{a−1,b}= 1.

2) S
(] b

a , b
a−1

[)
is pseudo-symmetric if and only if {gcd{a,b},gcd{a− 1,b}} =

{1,2}.

Example 5.53. S
(] 7

3 , 7
3−1

[)
= 〈3,5〉 is an example of the first statement. And

S
(] 8

7 , 8
7−1

[)
= 〈3,5,7〉 illustrates the second assertion of the last corollary.
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The next result characterizes irreducible half-lines.

Lemma 5.54. Let S be an irreducible numerical semigroup. Then S is a half-line if
and only if S ∈ {N,〈2,3〉,〈3,4,5〉}.

Proof. If S is a half-line, there exists a positive integer m such that S = {0,m,→}.
Hence S = 〈m,m+1, . . . ,2m−1〉 and e(S) = m(S). As S is irreducible, by Remark
4.21 and Lemma 4.15, either S has embedding dimension two or is of the form
〈3,x+3,2x+3〉. Since S is a half-line, S must be either 〈2,3〉 or 〈3,4,5〉. ut

If S is not a half-line, then m(S) < F(S). This, with the help of Lemma 5.8, trans-
lates to the following conditions in a proportionally modular numerical semigroup.

Lemma 5.55. Let α and β be rational numbers such that 1 < α < β and let S =
S([α,β ]). If S is not a half-line, then

F(S)
F(S)−1

< α < β < F(S).

Proof. As we have mentioned above, m(S) < F(S). By Lemma 5.8, there exists a
positive integer k such that α ≤ m(S)

k ≤ β (k < m(S) because α > 1). This leads to
α ≤ m(S)

k < F(S)
k ≤ F(S)

1 . As F(S) 6∈ S, Lemma 5.8 forces F(S) to be greater than β .
Besides, β ≥ m(S)

k ≥ m(S)
m(S)−1 > F(S)

F(S)−1 . By using again that F(S) 6∈ S and Lemma 5.8,
F(S)

F(S)−1 < α . ut

We can now prove that every irreducible proportionally modular numerical semi-
group is opened modular.

Lemma 5.56. Let S be an irreducible proportionally modular numerical semigroup
that is not a half-line. Then there exists an integer k such that 2 ≤ k < F(S) and

S = S
(]

F(S)
k , F(S)

k−1

[)
.

Proof. By Theorem 5.14, there exist rational numbers α and β such that 1 < α <
β and S = S([α,β ]). From Lemmas 5.8 and 5.55 we deduce that there exists an
integer k with 2≤ k < F(S) such that F(S)

k < α < β < F(S)
k−1 . Let T = S

(]
F(S)

k , F(S)
k−1

[)
.

Theorem 5.50 ensures that F(T ) = F(S). The inequalities F(S)
k < α < β < F(S)

k−1 imply
that S ⊆ T . The irreducibility of S forces by Theorem 4.2 that S must be equal to T ,
since both have the same Frobenius number. ut

With all this information, by using Corollary 4.5 it is not hard to prove the fol-
lowing characterization of irreducible modular numerical semigroups.

Theorem 5.57. Let S be a proportionally modular numerical semigroup.

1) S is symmetric if and only if S = N, S = 〈2,3〉 or S = S
(] b

a , b
a−1

[)
for some

integers a and b with 2 ≤ a < b and gcd{a,b}= gcd{a−1,b}= 1.
2) S is pseudo-symmetric if and only if S = 〈3,4,5〉 or S = S

(] b
a , b

a−1

[)
for some

integers a and b with 2 ≤ a < b and gcd{a,b}= gcd{a−1,b}= {1,2}.
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Exercises

Exercise 5.1. Let a, b and c be positive integers with gcd{a,b} = 1. Prove that
S = 〈a,a+b,a+2b, . . . ,a+ cb〉 is a proportionally modular numerical semigroup.

Exercise 5.2. Let S be a proportionally modular numerical semigroup with minimal
system of generators {n1 < n2 < · · · < ne} and e ≥ 3. Prove that 〈n1, . . . ,ne−1〉 is
also a proportionally modular numerical semigroup.

Exercise 5.3 ([25]). Given integers a, b and c such that 0 < c < a < b, prove that

S(a,b,c) = S(b+ c−a,b,c).

Exercise 5.4 ([95]). Prove that a numerical semigroup S is proportionally modular
if and only if there is an arrangement n1, . . . ,ne of its minimal generators such that
the following conditions hold:

1) 〈ni,ni+1〉 is a numerical semigroup for all i ∈ {1, . . . ,e−1},
2) 〈ni−1,ni,ni+1〉= 〈ni−1,ni〉∪ 〈ni,ni+1〉 for all i ∈ {2, . . . ,e−1}.

(Hint: Use Theorem 5.35.) Observe that this result sharpens the contents of Remark
5.16.

Exercise 5.5. Let S = 〈7,8,9,10,12〉. Prove that S is not proportionally modular.
However S = 〈12,7〉∪ 〈7,8〉∪ 〈8,9〉∪ 〈9,10〉.

Exercise 5.6. Find two proportionally modular numerical semigroups whose inter-
section is not proportionally modular.

Exercise 5.7. Give an example of a proportionally modular numerical semigroup
S 6= N such that S∪{F(S)} is not proportionally modular.

Exercise 5.8 ([25]). For integers a, b and c with 0 < c < a < b, prove that

F(S(a,b,c)) = b−
⌊

ζ b
a

⌋
−1,

where ζ = min
{

k ∈ {1, . . . ,a−1} | kb mod a+
⌊ kb

a

⌋
c > (c−1)b+a− c

}
.

Exercise 5.9 ([94]). Let ax mod b≤ x be a modular Diophantine inequality (with as
usual 0 < a < b). We define its weight as w(a,b) = b−gcd{a,b}−gcd{a−1,b}.

a) Prove that if two modular Diophantine inequalities have the same set of integers
solutions, then they have the same weight.

b) Find an example showing that the converse of a) does not hold in general.
c) Prove that w(a,b) is an odd integer greater than or equal to F(S(a,b,1)).
d) Show that S(a,b,1) is symmetric if and only if w(a,b) = F(S(a,b,1)).
e) Show that S(a,b,1) is pseudo-symmetric if and only if w(a,b) = F(S(a,b,1))+1.
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Exercise 5.10 ([94]). Let a and b be integers with 0 < a < b. Prove that b ≥
F(S(a,b,1))+m(S(a,b,1)) and that the equality holds if and only if

m(S(a,b,1)) 6= min
{

b
gcd{a,b}

,
b

gcd{a−1,b}

}
.

Exercise 5.11 ([94]). Given integers a and b with 0 < a < b, show that

b ≤ 12g(S(a,b,1))−6.

Exercise 5.12. Prove that S = 〈3,8,10〉 is a proportionally modular numerical semi-
group that is not modular.

Exercise 5.13 ([94]). Let a and b be positive integers. Prove that

a) m(S(a,ab,1)) = b,
b) F(S(a,ab,1)) =

⌈
(a−1)(b−1)

b

⌉
b−1.

Exercise 5.14 ([94]). Let a and b be integers such that 0 < a < b and b mod a 6= 0.
Show that

a) F(S(a,b,1)) = b−
⌈ b

a

⌉
if and only if (a−1)(a− (b mod a)) < b,

b) if (a−1)(a− (b mod a)) < b, then m(S(a,b,1)) =
⌈ b

a

⌉
.
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