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Introduction

Let N be the set of nonnegative integers. A numerical semigroup is a nonempty

subset S of N that is closed under addition, contains the zero element, and whose

complement in N is finite.

If n1, . . . ,ne are positive integers with gcd{n1, . . . ,ne} = 1, then the set 〈n1, . . . ,
ne〉= {λ1n1 + · · ·+λene | λ1, . . . ,λe ∈ N} is a numerical semigroup. Every numer-

ical semigroup is of this form.

The simplicity of this concept makes it possible to state problems that are easy to

understand but whose resolution is far from being trivial. This fact attracted several

mathematicians like Frobenius and Sylvester at the end of the 19th century. This

is how for instance the Frobenius problem arose, concerned with finding a formula

depending on n1, . . . ,ne for the largest integer not belonging to 〈n1, . . . ,ne〉 (see [52]

for a nice state of the art on this problem).

During the second half of the past century, numerical semigroups came back

to the scene mainly due to their applications in algebraic geometry. Valuations of

analytically unramified one-dimensional local Noetherian domains are numerical

semigroups under certain conditions, and many properties of these rings can be

characterized in terms of their associated numerical semigroups. For a field K, the

valuation of the ring K[[tn1 , . . . , tne ]] is precisely 〈n1, . . . ,ne〉. This link can be used

to construct one-dimensional Noetherian local domains with the desired properties,

and it is basically responsible for how some invariants in a numerical semigroup

have been termed. Such invariants include the multiplicity, embedding dimension,

degree of singularity, type and conductor. Some families of numerical semigroups

also were considered partly because of this connection: symmetric numerical semi-

groups, pseudo-symmetric numerical semigroups, numerical semigroups with max-

imal embedding dimension and with the Arf property, saturated numerical semi-

groups, and complete intersections, each having their counterpart in ring theory. A

good translator for these concepts between both ring and semigroup theory is [5].

It is worth mentioning that these semigroups are important not only for their ap-

plications in algebraic geometry, but also because their definitions appear in a very

natural way in the scope of numerical semigroups. One of the aims of this volume

is to show this.

J.C. Rosales, P.A. Garcı́a-Sánchez, Numerical Semigroups, 1
Developments in Mathematics 20, DOI 10.1007/978-1-4419-0160-6 1,
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2 Introduction

Recently, the study of factorizations on integral domains has moved to the set-

ting of commutative cancellative monoids (this is mainly due to the fact that addition

is not needed to study factorizations into irreducibles). Numerical semigroups are

cancellative monoids. Problems of factorizations in a monoid are closely related to

presentations of the monoid. By taking advantage of the results obtained in the past

decades for the computation of minimal presentations of a numerical semigroup,

numerical semigroups have become a nice source of examples in factorization the-

ory. This is not the only connection with number theory. Recently, the study of

certain Diophantine modular inequalities gave rise to the concept of proportionally

modular numerical semigroups, which are related with the Stern-Brocot tree, and

whose finite intersections can be realized as the positive cone of certain amenable

C∗-algebras.

Finding the set of factorizations of an element in a numerical semigroup can

be done with linear integer programming. We will also show another relation with

linear integer programming, by proving that the set of numerical semigroups with

given multiplicity is in one-to-one connection with the set of integer points in a

rational cone.

From a classic point of view, people working in semigroup theory have been

mainly concerned with characterizing families of semigroups via the properties they

fulfill. In the last chapter of this monograph, we present several characterizations of

numerical semigroups as finitely generated commutative monoids with some extra

properties.

At the end of each chapter, the reader will find a series of exercises. Some cover

concepts not included in the theory presented in the book, but whose relevance has

been highly motivated in the literature, and can be solved by using the tools pre-

sented in this monograph. Others are simply thought of as a tool to practice and to

deepen the definitions given in the chapter. There is also a series of exercises that

covers some recent results, and a reference to where they can be found is given.

Sometimes these problems are split in smaller parts so that the readers can produce

their own proofs.

Some of the proofs presented in this volume can be performed by using com-

mutative algebra tools. Our goal has been to write a self-contained monograph on

numerical semigroups that needs no auxiliary background other than basic integer

arithmetic. This is mainly why we have not taken advantage of commutative algebra

or algebraic geometry.
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Chapter 1
Notable elements

Introduction

The study of numerical semigroups is equivalent to that of nonnegative integer

solutions to a linear nonhomogeneous equation with positive integer coefficients.

Thus it is a classic problem that has been widely treated in the literature (see

[12, 13, 22, 28, 42, 101, 102]). Following this classic line, two invariants play a

role of special relevance in a numerical semigroup. These are the Frobenius num-

ber and the genus. Besides, in the literature one finds many manuscripts devoted to

the study of analytically unramified one-dimensional local domains via their value

semigroups, which turn out to be numerical semigroups (just to mention some of

them, see [5, 6, 19, 27, 32, 44, 105, 107]). Playing along this direction other invari-

ants of a numerical semigroup arise: the multiplicity, embedding dimension, degree

of singularity, conductor, Apéry sets, pseudo-Frobenius numbers and type. These

invariants have their interpretation in this context, and this is the reason why their

names may seem bizarre in the scope of monoids. In this sense the monograph [5]

serves as an extraordinary dictionary between these apparently two different parts

of Mathematics.

1 Monoids and monoid homomorphisms

Numerical semigroups live in the world of monoids. Thus we spend some time here

recalling some basic definitions and facts concerning them.

A semigroup is a pair (S,+) with S a set and + a binary operation on S that is

associative. All semigroups considered in this book are commutative (a+b = b+a
for all a,b∈ S). For this reason we will not keep repeating the adjective commutative

in what follows. Usually we will also omit the binary operation + while referring

to a commutative semigroup and will write S instead of (S,+). A subsemigroup T
of a semigroup S is a subset that is closed under the binary operation considered on

J.C. Rosales, P.A. Garcı́a-Sánchez, Numerical Semigroups, 5
Developments in Mathematics 20, DOI 10.1007/978-1-4419-0160-6 2,
c© Springer Science+Business Media, LLC 2009



6 1 Notable elements

S. Clearly, the intersection of subsemigroups of a semigroup S is again a subsemi-

group of S. Thus given A a nonempty subset of S, the smallest subsemigroup of S
containing A is the intersection of all subsemigroups of S containing A. We denote

this semigroup by 〈A〉, and call it the subsemigroup generated by A. It follows easily

that

〈A〉= {λ1a1 + · · ·+λnan | n ∈ N\{0},λ1, . . . ,λn ∈ N\{0},a1, . . . ,an ∈ A}

(where N denotes the set of nonnegative integers). We say that S is generated by

A⊆ S if S = 〈A〉. In this case, A is a system of generators of S. If A has finitely many

elements, then we say that S is finitely generated.

A semigroup M is a monoid if it has an identity element, that is, there is an

element in M, denoted by 0, such that 0+a = a+0 = a for all a ∈M (recall that we

are assuming that the semigroups in this book are commutative, whence this also

extends to monoids).

A subset N of M is a submonoid of M if it is a subsemigroup of M and 0 ∈ N.

Observe if M is a monoid, then {0} is a submonoid of M. This is called the trivial
submonoid of M. As for semigroups, the intersection of submonoids of a monoid is

again one of its submonoids. Given a monoid M and a subset A of M, the smallest

submonoid of M containing A is

〈A〉= {λ1a1 + · · ·+λnan | n ∈ N, λ1, . . . ,λn ∈ N and a1, . . . ,an ∈ A} ,

which we will call the submonoid of M generated by A. As in the semigroup case,

the set A is a system of generators of M if 〈A〉 = M, and we will also say that M
is generated by A. Accordingly, a monoid M is finitely generated if there exists a

system of generators of M with finitely many elements. Note that 〈 /0〉= {0}= 〈0〉.
Given two semigroups X and Y , a map f : X →Y is a semigroup homomorphism

if f (a+b) = f (a)+ f (b) for all a,b ∈ X . We say that f is a monomorphism, an epi-
morphism, or an isomorphism if f is injective, surjective or bijective, respectively.

Clearly, if f is an isomorphism so is its inverse f−1. Two semigroups X and Y are

said to be isomorphic if there exists an isomorphism between them. We will denote

this fact by X ∼= Y .

A map f : X → Y with X and Y monoids is a monoid homomorphism if it is a

semigroup homomorphism and f (0) = 0. The concepts of monomorphism, epimor-

phism, and isomorphism of monoids are defined as for semigroups.

2 Multiplicity and embedding dimension

The set N with the operation of addition is a monoid. In this book we are mainly

interested in the submonoids of N. We see next that they can be classified up to

isomorphism by those having finite complement in N. A submonoid of N with fi-

nite complement in N is a numerical semigroup. In this section we show that every

numerical semigroup (and thus every submonoid of N) is finitely generated, admits
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a unique minimal system of generators and its cardinality is upper bounded by the

least positive element in the monoid.

For A a nonempty subset of N, 〈A〉, the submonoid of N generated by A, is a

numerical semigroup if and only if the greatest common divisor of the elements of

A is one.

Lemma 2.1. Let A be a nonempty subset of N. Then 〈A〉 is a numerical semigroup
if and only if gcd(A) = 1.

Proof. Let d = gcd(A). Clearly, if s belongs to 〈A〉, then d | s. As 〈A〉 is a numerical

semigroup, N\ 〈A〉 is finite, and thus there exists a positive integer x such that d | x
and d | x+1. This forces d to be one.

For the converse, it suffices to prove that N\〈A〉 is finite. Since 1 = gcd(A), there

exist integers z1, . . . ,zn and a1, . . . ,an ∈ A such that z1a1 + · · ·+znan = 1. By moving

those terms with zi negative to the right-hand side, we can find i1, . . . , ik, j1, . . . , jl ∈
{1, . . . ,n} such that zi1ai1 + · · ·+ zik aik = 1− z j1a j1−·· ·− z jl a jl . Hence there exists

s ∈ 〈A〉 such that s + 1 also belongs to 〈A〉. We prove that if n ≥ (s−1)s +(s−1),
then n ∈ 〈A〉. Let q and r be integers such that n = qs + r with 0 ≤ r < s. From

n ≥ (s− 1)s +(s− 1), we deduce that q ≥ s− 1 ≥ r. It follows that n = (rs + r)+
(q− r)s = r(s+1)+(q− r)s ∈ 〈A〉. ��

Numerical semigroups classify, up to isomorphism, the set of submonoids of N.

Proposition 2.2. Let M be a nontrivial submonoid of N. Then M is isomorphic to a
numerical semigroup.

Proof. Let d = gcd(M). By Lemma 2.1, we know that S = 〈{ m
d | m ∈M

}〉 is a

numerical semigroup. The map f : M → S, f (m) = m
d is clearly a monoid isomor-

phism. ��
If A and B are subsets of integer numbers, we write A + B = {a + b | a ∈ A,b ∈

B}. Thus for a numerical semigroup S, if we write S∗ = S \ {0}, the set S∗ + S∗
corresponds with those elements in S that are the sum of two nonzero elements in S.

Lemma 2.3. Let S be a submonoid of N. Then S∗ \(S∗+S∗) is a system of generators
of S. Moreover, every system of generators of S contains S∗ \ (S∗+S∗).

Proof. Let s be an element of S∗. If s ∈ S∗ \ (S∗+S∗), then there exist x,y ∈ S∗ such

that s = x+y. We repeat this procedure for x and y, and after a finite number of steps

(x,y < s) we find s1, . . . ,sn ∈ S∗ \ (S∗+ S∗) such that s = s1 + · · ·+ sn. This proves

that S∗ \ (S∗+S∗) is a system of generators of S.

Now, let A be a system of generators of S. Take x ∈ S∗ \ (S∗+ S∗). There exist

n ∈ N \ {0}, λ1, . . . ,λn ∈ N and a1, . . . ,an ∈ A such that x = λ1a1 + · · ·+ λnan. As

x ∈ S∗+S∗, we deduce that x = ai for some i ∈ {1, . . . ,n}. ��
This property also holds for any submonoid S of Nr for any positive integer r.

The idea is that whenever s = x+y with x and y nonzero, then x is strictly less than s
with the usual partial order on Nr. And there are only finitely many elements x ∈Nr
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with x ≤ s. However the set S∗ \ (S∗+S∗) needs not be finite for r greater than one

(see Exercise 2.15). We are going to see that for r = 1 this set is always finite. To this

end we introduce what is probably the most versatile tool in numerical semigroup

theory.

Let S be a numerical semigroup and let n be one of its nonzero elements. The

Apéry set (named so in honour of [2]) of n in S is

Ap(S,n) = {s ∈ S | s−n ∈ S} .

Lemma 2.4. Let S be a numerical semigroup and let n be a nonzero element of S.
Then Ap(S,n) = {0 = w(0),w(1), . . . ,w(n−1)}, where w(i) is the least element of
S congruent with i modulo n, for all i ∈ {0, . . . ,n−1}.
Proof. It suffices to point out that for every i ∈ {1, . . . ,n− 1}, there exists k ∈ N

such that i+ kn ∈ S. ��
Example 2.5. Let S be the numerical semigroup generated by {5,7,9}. Then S =
{0,5,7,9,10,12,14,→} (the symbol → means that every integer greater than 14

belongs to the set). Hence Ap(S,5) = {0,7,9,16,18}.
Observe that the above lemma in particular implies that the cardinality of Ap(S,n)

is n. With this result, we easily deduce the following.

Lemma 2.6. Let S be a numerical semigroup and let n ∈ S\{0}. Then for all s ∈ S,
there exists a unique (k,w) ∈ N×Ap(S,n) such that

s = kn+w.

This lemma does not hold for submonoids of Nr in general. However, there are

certain families of submonoids of Nr for which a similar property holds, and this

apparently innocuous result makes it possible to translate some of the known results

for numerical results to a more general scope (see [78]).

We say that a system of generators of a numerical semigroup is a minimal system

of generators if none of its proper subsets generates the numerical semigroup.

Theorem 2.7. Every numerical semigroup admits a unique minimal system of gen-
erators. This minimal system of generators is finite.

Proof. Lemma 2.3 states that S∗ \ (S∗+ S∗) is the minimal system of generators of

S. By Lemma 2.6, we have that for any n ∈ S∗, we get that S = 〈Ap(S,n)∪{n}〉. As

Ap(S,n)∪{n} is finite, we deduce that S∗ \ (S∗+S∗) is finite. ��
As every submonoid of N is isomorphic to a numerical semigroup, this property

translates to submonoids of N.

Corollary 2.8. Let M be a submonoid of N. Then M has a unique minimal system
of generators, which in addition is finite.
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Proof. Set d = gcd(M). Then T =
{ x

d | x ∈M
}

is a submonoid of N such that

gcd(T ) = 1. In view of Lemma 2.1, this means that T is a numerical semigroup.

If A is the minimal system of generators of T , then {da | a ∈ A} is the minimal

system of generators of M. ��
Corollary 2.9. Let M be a submonoid of N generated by {0 = m1 < m2 < · · ·< mp}.
Then {m1, . . . ,mp} is a minimal system of generators of M if and only if mi+1 ∈
〈m1, . . . ,mi〉.

Let S be a numerical semigroup and let {n1 < n2 < · · · < np} be its minimal

system of generators. Then n1 is known as the multiplicity of S, denoted by m(S).
The cardinality of the minimal system of generators, p, is called the embedding
dimension of S and will be denoted by e(S).

Proposition 2.10. Let S be a numerical semigroup. Then

1) m(S) = min(S\{0}),
2) e(S)≤m(S).

Proof. Clearly the multiplicity is the least positive integer in S. The other statement

follows from the fact that {m(S)}∪Ap(S,m(S))\{0} is a system of generators of

S with cardinality m(S). ��
Observe that e(S) = 1 if and only if S = N. If m is a positive integer, then clearly

S = {0,m,→} is a numerical semigroup with multiplicity m. It is easy to check that

a minimal system of generators for S is {m,m + 1, . . . ,2m−1}. Hence e(S) = m =
m(S).

3 Frobenius number and genus

Frobenius in his lectures proposed the problem of giving a formula for the largest

integer that is not representable as a linear combination with nonnegative integer co-

efficients of a given set of positive integers whose greatest common divisor is one.

He also threw the question of determining how many positive integers do not have

such a representation. By using our terminology, the first problem is equivalent to

give a formula, in terms of the elements in a minimal system of generators of a nu-

merical semigroup S, for the greatest integer not in S. This element is usually known

as the Frobenius number of S, though in the literature it is sometimes replaced by

the conductor of S, which is the least integer x such that x+n ∈ S for all n ∈N. The

Frobenius number of S is denoted here by F(S) and it is the conductor of S minus

one. As for the second problem, the set of elements in G(S) = N\S is known as the

set of gaps of S. Its cardinality is the genus of S, g(S), which is sometimes referred

to as the degree of singularity of S.

Example 2.11. Let S = 〈5,7,9〉. We know that S = {0,5,7,9,10,12,14,→} and thus

F(S) = 13, G(S) = {1,2,3,4,6,8,11,13} and g(S) = 8.
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There is no known general formula for the Frobenius number nor for the genus

for numerical semigroups with embedding dimension greater than two (see [21]

where it is shown that no polynomial formula can be found in this setting or the

monograph [52] for a state of the art of the problem). However, if the Apéry set of

any nonzero element of the semigroup is known, then both invariants are easy to

compute.

Proposition 2.12 ([101]). Let S be a numerical semigroup and let n be a nonzero
element of S. Then

1) F(S) = (maxAp(S,n))−n,
2) g(S) = 1

n (∑w∈Ap(S,n) w)− n−1
2 .

Proof. Note that by the definition of the elements in the Apéry set, (maxAp(S,n))−
n ∈ S. If x > (maxAp(S,n))− n, then x + n > maxAp(S,n). Let w ∈ Ap(S,n) be

such that w and x + n are congruent modulo n. As w < x + n, this implies that x =
w + kn for some positive integer k, and consequently x−n = w +(k−1)n belongs

to S.

Observe that for every w ∈ Ap(S,n), if w is congruent with i modulo n and i ∈
{0, . . . ,n−1}, then there exists a nonnegative integer ki such that w = kin+ i. Thus,

by using the notation of Lemma 2.4,

Ap(S,n) = {0,w(1) = k1n+1,w(2) = k2n+2, . . . ,w(n−1) = kn−1n+n−1}.

An integer x congruent with w(i) modulo n belongs to S if and only if w(i)≤ x. Thus

g(S) = k1 + · · ·+ kn−1

=
1

n
((k1n+1)+ · · ·+(kn−1n+n−1))− n−1

2

=
1

n ∑
w∈Ap(S,n)

w− n−1

2
. ��

If S is a numerical semigroup minimally generated by 〈a,b〉, then

Ap(S,a) = {0,b,2b, . . . ,(a−1)b}

and Proposition 2.12 tells us the following result that goes back to the end of the

19th century.

Proposition 2.13 ([102]). Let a and b be positive integers with gcd(a,b) = 1.

1) F(〈a,b〉) = ab−a−b,
2) g(〈a,b〉) = ab−a−b+1

2 .

Observe that for numerical semigroups of embedding dimension two g(S) =
(F(S) + 1)/2 (and thus F(S) is always an odd integer). This is not in general the

case for higher embedding dimensions, though this property characterizes a very

interesting class of numerical semigroups as we will see later.
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If S is a numerical semigroup and s ∈ S, then F(S)− s cannot be in S. From this

we obtain that the above equality is just an inequality in general.

Lemma 2.14. Let S be a numerical semigroup. Then

g(S)≥ F(S)+1

2
.

Thus numerical semigroups for which the equality holds are numerical semi-

groups with the “least” possible number of gaps.

Remark 2.15. If one fixes a positive integer f , then it is not true in general that

there are more numerical semigroups with Frobenius number f +1 than numerical

semigroups with Frobenius number f . The following table can be found in [91]

(ns(F) stands for the number of numerical semigroups with Frobenius number F).

F ns(F) F ns(F) F ns(F)
1 1 14 103 27 16132

2 1 15 200 28 16267

3 2 16 205 29 34903

4 2 17 465 30 31822

5 5 18 405 31 70854

6 4 19 961 32 68681

7 11 20 900 33 137391

8 10 21 1828 34 140661

9 21 22 1913 35 292081

10 22 23 4096 36 270258

11 51 24 3578 37 591443

12 40 25 8273 38 582453

13 106 26 8175 39 1156012

Bras-Amorós in [10] has computed the number of numerical semigroups with

genus g for g ∈ {0, . . . ,50}, and her computations show a Fibonacci like behavior

on the number of numerical semigroups with fixed genus less than or equal to 50.

However it is still not known in general if for a fixed positive integer g there are more

numerical semigroups with genus g+1 than numerical semigroups with genus g. We

reproduce in Table 1 the results obtained by Bras-Amorós (in the table ng stands for

the number of numerical semigroups with genus g).

Lemma 2.16. Let S be a numerical semigroup generated by {n1,n2, . . . ,np}. Let
d = gcd{n1, . . . ,np−1} and set T = 〈n1/d, . . . ,np−1/d,np〉. Then

Ap(S,np) = d(Ap(T,np)).
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Table 1 Number of numerical semigroups of genus up 50.

g ng ng−1 +ng−2 (ng−1 +ng−2)/ng ng/ng−1

0 1
1 1 1
2 2 2 1 2
3 4 3 0.75 2
4 7 6 0.857143 1.75
5 12 11 0.916667 1.71429
6 23 19 0.826087 1.91667
7 39 35 0.897436 1.69565
8 67 62 0.925373 1.71795
9 118 106 0.898305 1.76119

10 204 185 0.906863 1.72881
11 343 322 0.938776 1.68137
12 592 547 0.923986 1.72595
13 1001 935 0.934066 1.69088
14 1693 1593 0.940933 1.69131
15 2857 2694 0.942947 1.68754
16 4806 4550 0.946733 1.68218
17 8045 7663 0.952517 1.67395
18 13467 12851 0.954259 1.67396
19 22464 21512 0.957621 1.66808
20 37396 35931 0.960825 1.66471
21 62194 59860 0.962472 1.66312
22 103246 99590 0.964589 1.66006
23 170963 165440 0.967695 1.65588
24 282828 274209 0.969526 1.65432
25 467224 453791 0.971249 1.65197
26 770832 750052 0.973042 1.64981
27 1270267 1238056 0.974642 1.64792
28 2091030 2041099 0.976121 1.64613
29 3437839 3361297 0.977735 1.64409
30 5646773 5528869 0.97912 1.64254
31 9266788 9084612 0.980341 1.64108
32 15195070 14913561 0.981474 1.63973
33 24896206 24461858 0.982554 1.63844
34 40761087 40091276 0.983567 1.63724
35 66687201 65657293 0.984556 1.63605
36 109032500 107448288 0.98547 1.63498
37 178158289 175719701 0.986312 1.63399
38 290939807 287190789 0.987114 1.63304
39 474851445 469098096 0.987884 1.63213
40 774614284 765791252 0.98861 1.63128
41 1262992840 1249465729 0.98929 1.63048
42 2058356522 2037607124 0.989919 1.62975
43 3353191846 3321349362 0.990504 1.62906
44 5460401576 5411548368 0.991053 1.62842
45 8888486816 8813593422 0.991574 1.62781
46 14463633648 14348888392 0.992067 1.62723
47 23527845502 23352120464 0.992531 1.62669
48 38260496374 37991479150 0.992969 1.62618
49 62200036752 61788341876 0.993381 1.6257
50 101090300128 100460533126 0.99377 1.62525
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Proof. If w∈Ap(S,np), then w∈ 〈n1, . . . ,np−1〉. Hence w/d ∈ 〈n1/d, . . . ,np−1/d〉⊆
T . If w/d−np ∈ T , then w−dnp ∈ S, which is impossible.

Now take w ∈ Ap(T,np). Then w ∈ 〈n1/d, . . . ,np−1/d〉, and thus dw ∈ 〈n1, . . . ,
np−1〉 ⊆ S. If dw− np also belongs to S, then dw− np = λ1n1 + · · ·+ λp−1np−1 +
λpnp for some λ1, . . . ,λp ∈N. Since S is a numerical semigroup gcd{n1, . . . ,np}= 1,

which implies that gcd{d,np} = 1. This leads to d|(λp + 1), because (λp + 1)np =

dw− (λ1n1 + · · ·+ λp−1np−1). But then w = λ1n1
d + · · ·+ λp−1np−1

d + λp+1

d np, with

(λp +1)/d a positive integer, contradicting that w ∈ Ap(T,np). ��
By putting Proposition 2.12 and Lemma 2.16 together, we obtain the following

property.

Proposition 2.17 ([42]). Let S be a numerical semigroup with minimal system
of generators {n1,n2, . . . ,np}. Let d = gcd{n1, . . . ,np−1} and set T = 〈n1/d, . . . ,
np−1/d,np〉. Then

1) F(S) = dF(T )+(d−1)np,

2) g(S) = dg(T )+ (d−1)(np−1)
2 .

Example 2.18. Let S = 〈20,30,17〉. As gcd{20,30} = 10, T = 〈2,3,17〉 = 〈2,3〉.
Hence F(S) = 10F(T )+9 ·17 = 10+153 = 163, and g(S) = 10g(T )+ 9·16

2 = 10+
72 = 82.

4 Pseudo-Frobenius numbers

Let S be a numerical semigroup. Following the notation introduced in [71], we say

that an integer x is a pseudo-Frobenius number if x ∈ S and x + s ∈ S for all s ∈
S \ {0}. We will denote by PF(S) the set of pseudo-Frobenius numbers of S, and

its cardinality, which deserves a name of its own, is the type of S, denoted by t(S).
From the definition it easily follows that F(S) ∈ PF(S), in fact it is the maximum of

this set.

Over the set of integers we can define the following relation: a≤S b if b−a ∈ S.

As S is a numerical semigroup, it easily follows that this relation is an order relation

(reflexive, transitive and antisymmetric). From the definition of pseudo-Frobenius

numbers, we obtain that they are the maximal elements with respect to ≤S of Z\S
(Z denotes the set of integers).

Proposition 2.19. Let S be a numerical semigroup. Then

1) PF(S) = Maximals≤S(Z\S),
2) x ∈ Z\S if and only if f − x ∈ S for some f ∈ PF(S).

This result establishes a sort of duality between minimal generators and pseudo-

Frobenius numbers of a numerical semigroup, since Minimals≤S(S\{0}) is the min-

imal system of generators of S.

A characterization in terms of the Apéry sets already appears in [32, Proposi-

tion 7].
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Proposition 2.20. Let S be a numerical semigroup and let n be a nonzero element
of S. Then

PF(S) =
{

w−n | w ∈Maximals≤S Ap(S,n)
}

.

Proof. Let x∈ PF(S). Hence x ∈ S and x+n∈ S, or in other words, x+n∈Ap(S,n).
Let w ∈ Ap(S,n) be such that x + n ≤S w. Then w− (x + n) = w− n− x ∈ S. This

means that w−n = x + s for some s ∈ S. As w−n ∈ S and x ∈ PF(S), this forces s
to be zero and thus w = x+n.

Now take w ∈ Maximals≤S Ap(S,n). Then w− n ∈ S. If w− n + s ∈ S for

some nonzero element s of S, then w + s ∈ Ap(S,n), contradicting the maximality

of w. ��
Example 2.21. Let S = 〈5,7,9〉. Then Maximals≤SAp(S,5) = {16,18}. Hence

PF(S) = {11,13}.
Example 2.22. If S is a numerical semigroup minimally generated by 〈a,b〉, then as

we have pointed out above,

Ap(S,a) = {0,b,2b, . . . ,(a−1)b}.

This implies that Maximals≤SAp(S,a) = {(a− 1)b} and PF(S) = {ab− a− b}.
Thus numerical semigroups with embedding dimension two have type one.

As the cardinality of Ap(S,n) is n and the zero element is never a maximal el-

ement, from the above proposition we obtain an upper bound for the type of a nu-

merical semigroup.

Corollary 2.23. Let S be a numerical semigroup. Then

t(S)≤m(S)−1.

Recall that the embedding dimension of a numerical semigroup does not exceed

the multiplicity of the numerical semigroup. We already know (Example 2.22) that

numerical semigroups with embedding dimension two have type one. We will see in

Chapter 9 that numerical semigroups with embedding dimension three have type one

or two. However, for embedding dimension greater than three, the type is not upper

bounded by the embedding dimension as the following example due to Backelin

shows.

Example 2.24. [32] Let S = 〈s,s + 3,s + 3n + 1,s + 3n + 2〉. For n ≥ 2, r ≥ 3n + 2

and s = r(3n+2)+3, the type of S is 2n+3.

Example 2.25. Let m be an integer greater than one. Note that for S = {0,m,→},
PF(S) = {1,2, . . . ,m− 1}. These semigroups reach the bound given in the above

corollary.

Let S be a numerical semigroup. Denote by

N(S) = {s ∈ S | s < F(S)} .
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This set fully determines S. Its cardinality is denoted by n(S). Clearly g(S)+n(S) =
F(S)+1.

We already know that if x is an integer not in S, there exists f ∈ PF(S) such that

x≤S f . Define fx = min{ f ∈ PF(S) | f − x ∈ S}. Then the map

G(S)→ PF(S)×N(S), x �→ ( fx, fx− x)

is injective, which proves the following bound.

Proposition 2.26. [32, Theorem 20] Let S be a numerical semigroup. Then

g(S)≤ t(S)n(S).

This inequality is equivalent to F(S) + 1 ≤ (t(S) + 1)n(S). Wilf in [108] con-

jectured that F(S)+ 1 ≤ e(S)n(S). For some families of numerical semigroups this

conjecture is known to be true, but the general case remains unsolved.

Example 2.27. The following picture is obtained by using the GAP package

numericalsgps ([23]). The picture represents the Apéry set of 11 in the semi-

group S ordered by the relation ≤S. We also illustrate the use of some functions

related to the elements described in this chapter.

gap> S:=NumericalSemigroup( 11, 12, 13, 32, 53 );;
gap> MinimalGeneratingSystemOfNumericalSemigroup(S);
[ 11, 12, 13, 32, 53 ]
gap> MultiplicityOfNumericalSemigroup(S);
11
gap> FrobeniusNumberOfNumericalSemigroup(S);
42
gap> GapsOfNumericalSemigroup(S);
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17,
18, 19, 20, 21, 27, 28, 29, 30, 31, 40, 41, 42 ]
gap> DrawAperyListOfNumericalSemigroup(
> AperyListOfNumericalSemigroupWRTElement(S,11));

0

1 2 1 3

2 5 2 6

3 8 3 9

5 1 5 2

5 3 3 2

gap> PseudoFrobeniusOfNumericalSemigroup(S);
[ 21, 40, 41, 42 ]
gap> SmallElementsOfNumericalSemigroup(S);
[ 0, 11, 12, 13, 22, 23, 24, 25, 26, 32, 33,
34, 35, 36, 37, 38, 39, 43 ]
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Example 2.28. And now an example of a numerical semigroup with less embedding

dimension than type.

gap> S:=NumericalSemigroup(41,152,373,407);
<Numerical semigroup with 4 generators>
gap> MinimalGeneratingSystemOfNumericalSemigroup(S);
[ 41, 152, 373, 407 ]
gap> PseudoFrobeniusOfNumericalSemigroup(S);
[ 1161, 1195, 1332, 1381, 1451, 1479, 1582 ]

Exercises

Exercise 2.1. Let S be a numerical semigroup and let x be an element of S. Prove

that S\{x} is a numerical semigroup if and only if x belongs to the minimal system

of generators of S.

Exercise 2.2. Prove that the intersection of finitely many numerical semigroups is a

numerical semigroup. Show with an example that the result does not hold for infinite

intersections.

Exercise 2.3. Let S and T be two numerical semigroups. Take m∈ S∩T with m = 0.

Prove that if Ap(S,m) = {0,u1, . . . ,um−1} and Ap(T,m) = {0,v1, . . . ,vm−1} (with

ui and vi the smallest elements congruent with i modulo m in S and T , respectively),

then Ap(S∩T,m) = {0,max{u1,v1}, . . . ,max{um−1,vm−1}}.
Exercise 2.4. Let S and T be two numerical semigroups. Prove that

a) S +T is a numerical semigroup,

b) S +T is the smallest numerical semigroup containing S∪T ,

c) if A and B are systems of generators of S and T , respectively, then A∪B is a

system of generators of S +T .

Give an example of two numerical semigroups with minimal systems of generators

A and B and such that A∪B is not the minimal system of generators of 〈A∪B〉.
Exercise 2.5. Prove that S is a numerical semigroup of type one if and only if g(S) =
F(S)+1

2 .

Exercise 2.6. Let S be a numerical semigroup other than N and assume that PF(S) =
{ f1 > f2 > · · ·> ft}.
a) Prove that S∪{ f1, . . . , fk} is a numerical semigroup for all k ∈ {1, . . . , t}.
b) Prove that if F(S) > m(S), then T = S∪{F(S)} is a numerical semigroup with

e(S)≤ e(T )≤ e(S)+1.

c) Give examples in which e(T ) = e(S) and e(S)+1 = e(T ).
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Exercise 2.7. Let a and b be two integers with 0 < b < a, and let S = 〈a,a +
1, . . . ,a + b〉. Prove that F(S) =

⌈ a−1
b

⌉
a− 1, where for q a rational number, �q�

denotes the minimum of the integers greater than or equal to q (see [33] for the

computation of other notable elements of these semigroups).

Exercise 2.8 ([8]). Let S be a numerical semigroup with positive conductor c. Let

d = max{s ∈ S | s < c}. This integer is the dominant of S.

a) Prove that the dominant of S is zero if and only if S = {0,c,→}. These numerical

semigroups are sometimes called in the literature half-lines or ordinary.

b) Assume that S has positive dominant d. For s ∈ S, define g(s) as the cardinality

of {x ∈ G(S) | x < s} (note that g(d) < g(c) = g(S)). Set

c′ = min{s ∈ S | g(s) = g(d)} , d′ = max
{

s ∈ S | s < c′
}

.

We say that S is acute if c−d ≤ c′ −d′. Prove that every numerical semigroup of

the form 〈a,a + 1, . . . ,a + b〉 that is not a half line (or equivalently, with a and b
positive integers such that b < a−1) is acute.

Exercise 2.9. Let S be a numerical semigroup and let m be a nonzero element of

S. Show that T = (m + S)∪ {0} is also a numerical semigroup with m(T ) = m,

e(T ) = m and t(T ) = m−1.

Exercise 2.10. Prove that Wilf’s conjecture holds in the following cases.

a) For every numerical semigroup of type 1.

b) For every numerical semigroup of type 2.

c) For numerical semigroups S with e(S) = m(S)−1.

Exercise 2.11 ([63]). Prove that if S is a numerical semigroup with multiplicity

three, then

S = 〈3,3g(S)−F(S),F(S)+3〉.
Exercise 2.12 ([63]). Let S be a numerical semigroup with minimal system of gen-

erators {n1 < n2 < · · ·< np}. Then we say that n2 is the ratio of S. Prove that if S is

a numerical semigroup with multiplicity four and ratio r, then

S = 〈4,r,4g(S)−F(S)− r +2,F(S)+4〉.

Exercise 2.13. Let S be a numerical semigroup. A relative ideal I of S is a subset of

Z such that I +S⊆ I and s+ I = {s+ i | i ∈ I } ⊂ S for some s ∈ S. An ideal of S is

a relative ideal of S contained in S.

a) If H and K are relative ideals of S, then prove that

H−K = {z ∈ Z | z+K ⊆ H }

is also a relative ideal of S.

b) M = S∗ is the maximal (with respect to set inclusion) ideal of S.
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c) Given a relative ideal I of S, denote by I• = S− I. Prove that

i) I ⊆ I••,
ii) I• = I•••.

d) Show that PF(S) = S\M•.

Exercise 2.14. [4] Let S be a numerical semigroup. Define

Ω = {z ∈ Z | F(S)− z ∈ S}.

i) Prove that S⊆Ω ⊆N and that Ω is a relative ideal of S. This ideal is called the

canonical ideal of S.

ii) Show that the map PF(S)→ Ω \ (Ω + M), f �→ F(S)− f is a one-to-one cor-

respondence (where M is the maximal ideal of S, Exercise 2.13). As a conse-

quence, t(S) is the cardinality of Ω \ (Ω +M).

Exercise 2.15. Let M =
{

(x,y) ∈ N2 | x > 5
} ∪ {(0,0)}. Prove that M is a sub-

monoid of N2 that is not finitely generated.

Exercise 2.16. Let S be a numerical semigroup. The enumeration of S is the only

increasing bijective map λ from N to S, that is, λ (i) corresponds with the ith element

of S. For i∈N, let νi denote the cardinality of { j ∈ N | λ (i)−λ ( j) ∈ S}. Define for

i and j two nonnegative integers,

i⊕ j = λ−1(λ (i)+λ ( j)).

Prove that

a) the semigroup S is uniquely determined by the sequence {νi}i∈N ([8]),

b) for every nonnegative integer i, νi is the number of pairs ( j,k) ∈ N2 such that

j⊕ k = i (and thus it can be determined by the set of integers j⊕ k, with j,k ∈
{0, . . . , i}, [9]).



Chapter 2
Numerical semigroups with maximal
embedding dimension

Introduction

Even though the study and relevance of maximal embedding dimension numerical

semigroups arises in a natural way among the other numerical semigroups, they

have become specially renowned due to the existing applications to commutative

algebra via their associated semigroup ring (see for instance [1, 5, 15, 16, 99, 100]).

They are a source of examples of commutative rings with some maximal proper-

ties. As we mentioned in the introduction of Chapter 1, this is partially due to the

fact that the study of some attributes of an analytically unramified one-dimensional

local domains can be performed via their value semigroups. Of particular interest

are two subclasses of maximal embedding dimension numerical semigroups, which

are those semigroups having the Arf property and saturated numerical semigroups.

These two families are related with the problem of resolution of singularities in a

curve.

Inspired by [3], Lipman in [47] introduces and motivates the study of Arf rings.

The characterization of these rings via their value semigroups yields the Arf prop-

erty for numerical semigroups. The reader can find in [5] a considerable amount

of characterizations of this property for numerical semigroups. Arf numerical semi-

groups have gained lately a particular interest due to their applications to algebraic

error correcting codes (see [18, 7] and the references given therein).

Saturated rings were introduced in three different ways by Zariski ([109]), Pham-

Teissier ([50]) and Campillo ([17]), though their definitions coincide for alge-

braically closed fields of zero characteristic. As for the Arf property, saturated nu-

merical semigroups come into the scene after a characterization of saturated rings

in terms of their value semigroups (see [26, 49]).
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1 Characterizations

Let S be a numerical semigroup. We know that its embedding dimension, e(S), is

less than or equal to its multiplicity, m(S). We say that S has maximal embedding

dimension if e(S) = m(S). In this section we give several characterizations of this

property in terms of the notable elements presented in Chapter 1.

If x is a minimal generator of S, and n ∈ S \{0,x}, then x−n does not belong to

S. This implies that x ∈ Ap(S,n).

Proposition 3.1. Let S be a numerical semigroup minimally generated by {n1 <
n2 < · · ·< ne}. Then S has maximal embedding dimension if and only if Ap(S,n1) =
{0,n2, . . . ,ne}.
Proof. As we have pointed out above, {n2, . . . ,ne} ⊆ Ap(S,n1) \ {0}. We know

that the cardinality of Ap(S,n1) is n1. Hence e = n1 if and only if {0,n2, . . . ,ne}=
Ap(S,n1). ��

As a consequence of Propositions 2.12 and 2.20 we obtain the following proper-

ties.

Corollary 3.2. Let S be a numerical semigroup minimally generated by {n1 < n2 <
· · ·< ne}.
1) If S has maximal embedding dimension, then F(S) = ne−n1.
2) S has maximal embedding dimension if and only if g(S) = 1

n1
(n2 + · · ·+ ne)−

n1−1
2 .

3) S has maximal embedding dimension if and only if t(S) = n1−1.

Example 3.3. The numerical semigroup S = 〈4,5,11〉 has F(S) = 11−4 = ne−n1,

but it does not have maximal embedding dimension.

Remark 3.4. Let S be a numerical semigroup minimally generated by {n1 < n2 <
· · ·< ne}.
1) We already know (Corollary 2.23) that t(S) ≤ m(S)−1. So the numerical semi-

groups with maximal embedding dimension are those with maximal type (in

terms of their multiplicities).

2) As by Selmer’s formula (Proposition 2.12) g(S) ≥ 1
n1

(n2 + · · ·+ ne)− n1−1
2 , nu-

merical semigroups with maximal embedding dimension can also be viewed as

those with the least possible number of holes (in terms of their minimal genera-

tors).

Given a nonzero integer n and two integers a and b, we write a ≡ b mod n to

denote that n divides a−b. We denote by b mod n the remainder of the division of

b by n. The following result characterizes those subsets of positive integers that can

be realized as Apéry sets of a numerical semigroup.
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Proposition 3.5 ([57]). Let n ∈ N \ {0} and let C = {w(0) = 0,w(1), . . . ,w(n−
1)} ⊆N be such that w(i) is congruent with i modulo n for all i ∈ {1, . . . ,n−1}. Let
S be the numerical semigroup 〈{n}∪C〉. The following conditions are equivalent.

1) Ap(S,n) = C.
2) For all i, j ∈ {1, . . . ,n−1}, w(i)+w( j)≥ w((i+ j) mod n).

Proof. Note that w(i)+ w( j) and w((i + j) mod n) are congruent modulo n for all

i, j ∈ {1, . . . ,n−1}. Hence Condition 2) is equivalent to

2′) for all i, j ∈ {1, . . . ,n−1}, there exists t ∈N such that w(i)+w( j) = tn+w((i+
j) mod n).

If Ap(S,n) = C, then by Lemma 2.6, w(i)+ w( j) = kn + c for some k ∈ N and

c ∈C. Clearly w(i)+w( j)≡ c mod n, and thus c = w((i+ j) mod n).
Now, assume that the second statement holds. Let us show that Ap(S,n)⊆C. If

s ∈ Ap(S,n) ⊂ S, then there exist c1, . . . ,ct ∈C such that s = ∑t
i=1 ci. By applying

several times Condition 2′), we get that s = kn + c, with c ∈ C and k ∈ N. As s ∈
Ap(S,n), k must be zero and consequently s = c ∈C.

In view of Lemma 2.4, the cardinality of Ap(S,n) is n. As the cardinality of C is

also n and Ap(S,n)⊆C, this forces Ap(S,n) to be equal to C. ��
As we have seen in Proposition 3.1, the Apéry sets of the multiplicity in nu-

merical semigroups with maximal embedding dimension have special shapes. This

together with the last characterization of Apéry sets yields an alternative way to dis-

tinguish numerical semigroups with maximal embedding dimension by looking at

the Apéry sets of their multiplicities.

Corollary 3.6. Let S be a numerical semigroup with multiplicity m and assume
that Ap(S,m) = {w(0) = 0,w(1), . . . ,w(m− 1)} with w(i) ≡ i mod m for all
i ∈ {1, . . . ,m− 1}. Then S has maximal embedding dimension if and only if for
all i, j ∈ {1, . . . ,m−1}, w(i)+w( j) > w((i+ j) mod m).

Proof. The necessity follows from Propositions 3.1 and 3.5.

By Lemma 2.6, we know that S = 〈m,w(1), . . . ,w(m− 1)〉. From the condition

w(i)+w( j) > w((i+ j) mod m), we deduce that {m,w(1), . . . ,w(m−1)} is a mini-

mal system of generators of S. Hence S has maximal embedding dimension. ��
Proposition 3.5 and Corollary 3.6 can be used to construct maximal embedding

numerical semigroups from an arbitrary numerical semigroup.

Corollary 3.7. Let S be a numerical semigroup and let n be a positive integer in S.
Then 〈n,w(1)+ n, . . . ,w(n−1)+ n〉 is a maximal embedding dimension numerical
semigroup, where for all i∈ {1, . . . ,n−1}, w(i) is the element in Ap(S,n) congruent
with i modulo n.

Example 3.8. Let a and b be two positive integers greater than one with gcd{a,b}=
1. We already know that Ap(〈a,b〉,a) = {0,b,2b, . . . ,(a−1)b}. By Corollary 3.7,
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〈a,a+b,a+2b, . . . ,a+(a−1)b〉

has maximal embedding dimension.

A sort of converse operation can be performed on a numerical semigroup with

maximal embedding dimension. The proof also follows from Proposition 3.5 and

Corollary 3.6.

Corollary 3.9 ([57]). Let S be a numerical semigroup with maximal embedding di-
mension and multiplicity m. For all i ∈ {1, . . . ,m−1}, write w(i) for the unique ele-
ment in Ap(S,m) congruent with i modulo m. Define T = 〈m,w(1)−m, . . . ,w(m−
1)−m〉. Then T is a numerical semigroup with Ap(T,m) = {0,w(1)−m, . . . ,w(m−
1)−m}.

From these two last results and Proposition 2.12, we obtain the following corre-

spondence.

Corollary 3.10 ([57]). There is a one to one correspondence between the set of
numerical semigroups with multiplicity m and Frobenius number f , and the set of
numerical semigroups with maximal embedding dimension, Frobenius number f +
m, multiplicity m and the rest of minimal generators greater than 2m.

Remark 3.11. If we want to construct the set of all numerical semigroups, according

to this last result, it suffices to construct those having maximal embedding dimen-

sion. In other words, maximal embedding dimension numerical semigroups can be

used to represent the whole class of numerical semigroups.

The following characterization can be deduced from [5, Proposition I.2.9]. For

an integer z and a subset A of integers, the set {z+a | a ∈ A} is denoted by z+A.

Proposition 3.12. Let S be a numerical semigroup. The following conditions are
equivalent.

1) S has maximal embedding dimension.
2) For all x,y ∈ S∗, x+ y−m(S) ∈ S.
3) −m(S)+S∗ is a numerical semigroup.

Proof. 1) implies 2). If either x−m(S)∈ S or y−m(S)∈ S, then 2) follows trivially.

So assume that both x and y are in Ap(S,m(S)). The result now follows by Corollary

3.6.

2) implies 3). Trivial.

3) implies 1). Denote by w(i) the unique element in Ap(S,m(S)) congruent with

i modulo m, 1 ≤ i ≤ m− 1. We use Corollary 3.6 again. If w(i) + w( j) = w((i +
j) mod m(S)) for some i, j ∈ {1, . . . ,m(S)−1}, then w(i)−m(S)+w( j)−m(S) =
w((i+ j) mod m(S))−2m(S) ∈ {x−m(S) | x ∈ S∗ }, contradicting that this set is a

numerical semigroup. ��
If in the last proposition we use T to denote the semigroup −m(S) + S∗, then

S = (m(S)+ T )∪{0}. From this proposition it is not hard to prove the following

characterization (see also Exercise 2.9).
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Corollary 3.13 ([63]). Let S be a numerical semigroup. Then S has maximal embed-
ding dimension if and only if there exists a numerical semigroup T and t ∈ T \{0}
such that S = (t +T )∪{0}.
Example 3.14. Let S = 〈4,5,7〉 = {0,4,5,7,→}. Then T = (9 + S) ∪ {0} =
{0,9,13,14,16,→} is a maximal embedding dimension numerical semigroup. Note

that T = 〈9,13,14,16,17,19,20,21,24〉.
Lemma 3.15. Let S and T be numerical semigroups. Let s ∈ S∗ and t ∈ T ∗. Then
(s+S)∪{0}= (t +T )∪{0} if and only if S = T and s = t.

Proof. Assume that (s + S)∪{0} = (t + T )∪{0}. Note that m((s + S)∪{0}) = s
and m((t +T )∪{0}) = t. Hence s = t. Moreover, S =−s+(s+S) =−s+(t +T ) =
−t +(t +T ) = T . The other implication is trivial. ��

If S is a numerical semigroup and s is a nonzero element of S, then s+S is an ideal

of S (see Exercise 2.13). These ideals are called principal ideals of S. Numerical

semigroups of the form (x+S)∪{0} with S a numerical semigroup and x a nonzero

element of S are called in [63] pi-semigroups (where pi is an acronym of principal

ideal). For a given numerical semigroup S define

PI(S) = {(x+S)∪{0} | x ∈ S∗ } .

If x = 1, it can be shown that F((x+S)∪{0}) = F(S)+x and that g((x+S)∪{0}) =
g(S)+x−1 (clearly, the multiplicity of (x+S)∪{0} is x; see Exercises 2.9 and 3.6).

From this it easily follows that two elements S1 and S2 in PI(S) coincide if and only

if they have the same Frobenius number, or equivalently, they have the same genus.

Proposition 3.16. The set {PI(S) | S is a numerical semigroup} is a partition of
the set of numerical semigroups with maximal embedding dimension.

Proof. Follows from Corollary 3.13 and Lemma 3.15. ��
This result is telling us that from a fixed numerical semigroup we obtain in-

finitely many maximal embedding dimension numerical semigroups, and that dif-

ferent numerical semigroups produce different maximal embedding dimension nu-

merical semigroups. All maximal embedding dimension numerical semigroups are

constructed in this way.

2 Arf numerical semigroups

A numerical semigroup S is Arf if for all x,y,z ∈ S, with x ≥ y ≥ z, x + y− z is in

S. In this section we present some characterizations of this property. For a numer-

ical semigroup we will show how to compute the least Arf numerical semigroup

containing it.

From Proposition 3.12 it follows that an Arf numerical semigroup has maximal

embedding dimension.
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Example 3.17. If m is a positive integer, then the numerical semigroup {0,m,→} is

a numerical semigroup with the Arf property. Note that the semigroup T of Example

3.14 has maximal embedding dimension, while it is not Arf, because 14+14−13 =
15 ∈ T .

Given a positive integer x in a numerical semigroup S, the numerical semigroup

(x+S)∪{0} is Arf if and only if S is Arf. This follows easily from the definition.

Proposition 3.18 ([63]). Let S be a numerical semigroup and let x ∈ S∗. Then S is
Arf if and only if S′ = (x+S)∪{0} is Arf.

In particular, S is Arf if and only if all the elements in PI(S) are Arf.

Let S be an Arf numerical semigroup. Then S has maximal embedding dimen-

sion. By Corollary 3.13 there exists a numerical semigroup S′ and x ∈ S′ \ {0} such

that S = (x+S′)∪{0}. If S = N, then S � S′. In view of Proposition 3.18, S′ is also

an Arf numerical semigroup. We can repeat this argument with S′, and obtain an

Arf numerical semigroup S′′ and y ∈ S′′ \{0} such that S′ = (y+S′′)∪{0}. As N\S
has finitely many elements, this process is finite, obtaining in this way a stationary

ascending chain of Arf numerical semigroups: S0 = S � S1 � · · · � Sn = N, with

Si = (xi+1 +Si+1)∪{0} for some xi+1 ∈ Si+1 \{0}. The following statement can be

derived from this idea.

Corollary 3.19. Let S be a proper subset of N. Then S is an Arf numerical semigroup
if and only if there exist positive integers x1, . . . ,xn such that

S = {0,x1,x1 + x2, . . . ,x1 + · · ·+ xn−1,x1 + · · ·+ xn,→}

and xi ∈ {xi+1,xi+1 + xi+2, . . . ,xi+1 + · · ·+ xn,→} for all i ∈ {1, . . . ,n}.
Proof. Necessity. Follows from the construction of the chain S = S0 � S1 � · · · �
Sn = N, with Si = (xi+1 +Si+1)∪{0} and xi+1 ∈ Si+1 \{0}.

Sufficiency. Note that

S = (x1 +(x2 +(· · ·+((xn +N)∪{0}) · · ·)∪{0}.

As N is Arf, by applying Proposition 3.18 several times, we obtain that S is Arf. ��
Example 3.20. Take x1 = 7, x2 = 4 and x3 = 2. This sequence fulfills the condition

of Corollary 3.19. Then S = {0,7,11,13,→} is a numerical semigroup with the

Arf property. In view of Proposition 3.18, (7 + S)∪{0},(11 + S)∪{0},(13 + S)∪
{0}, . . . are Arf numerical semigroups as well. Proposition 3.18 also states that T =
−7+S∗ is an Arf numerical semigroup, because so is S = (7+T )∪{0}.

Recall (see Exercise 2.2) that the intersection of finitely many numerical semi-

groups is a numerical semigroup.

Example 3.21. It can be easily seen that
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n∈N

〈n,n+1〉= {0}.

Hence the above result does not extend to the intersection of arbitrary families of

numerical semigroups.

From the definition it also follows that the intersection of finitely many Arf nu-

merical semigroups is again Arf.

Proposition 3.22. The intersection of finitely many Arf numerical semigroups is an
Arf numerical semigroup.

Let S be a numerical semigroup. Since the complement of S in N is finite, the

set of Arf numerical semigroups containing S is also finite. Proposition 3.22 ensures

that the intersection of these semigroups is again an Arf numerical semigroup (it is

actually one of them). We will denote this intersection by Arf(S) and we will refer

to it as the Arf closure of S. Observe that the Arf closure of S is the smallest (with

respect to set inclusion) Arf numerical semigroup containing S.

If X is a nonempty subset of nonnegative integers with gcd(X) = 1, then 〈X〉 is

a numerical semigroup. Any Arf numerical semigroup containing X must contain

〈X〉. So it makes sense to talk about the Arf closure of X , and define it as Arf(〈X〉).
We make an abuse of notation and will write Arf(X) to denote Arf(〈X〉).

Computing the set of numerical semigroups that contain a given numerical semi-

group can be tedious. Even more if one has to decide which are Arf among them,

and then either compute the intersection of them all or decide which is the smallest.

We now describe an alternative way introduced in [88] to compute the Arf closure

that is much more efficient.

Lemma 3.23. Let S be a submonoid of N. Then

S′ = {x+ y− z | x,y,z ∈ S,x≥ y≥ z}

is a submonoid of N and S⊆ S′.

Proof. Let x∈ S. Then x+x−x∈ S′, whence S⊆ S′. Clearly S′ ⊆N. Now take a,b∈
S′. By the definition of S′, there exist x1,x2,y1,y2,z1,z2 ∈ S, such that xi ≥ yi ≥ zi,

i ∈ {1,2}, and a = x1 + y1− z1, b = x2 + y2− z2. Hence, a + b = (x1 + x2)+ (y1 +
y2)− (z1 + z2). Clearly x1 + x2,y1 + y2,z1 + z2 ∈ S and x1 + x2 ≥ y1 + y2 ≥ z1 + z2.

This proves that a+b ∈ S′. ��
For a given submonoid S of N and n ∈ N, define Sn recurrently as follows:

• S0 = S,

• Sn+1 = (Sn)′.

We see that this becomes stationary at the Arf closure of S.

Proposition 3.24. Let S be a numerical semigroup. Then there exists k ∈N such that
Sk = Arf(S).
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Proof. By using induction on n, it can be easily proved that Sn ⊆ Arf(S) for all

n ∈ N. By Lemma 3.23, Sn ⊆ Sn+1 and S ⊆ Sn for all n ∈ N. As we pointed out

before, the number of numerical semigroups containing S is finite, whence Sk = Sk+1

for some k ∈ N. It follows that Sk is an Arf numerical semigroup. As Sk ⊆ Arf(S)
and Arf(S) is the smallest Arf numerical semigroup containing S, we conclude that

Sk = Arf(S). ��
Although this is a nice characterization, we have not yet shown how to compute

Sk. So more effort is needed to find an effective way to compute the Arf closure of

a numerical semigroup.

Lemma 3.25. Let m,r1, . . . ,rp,n ∈ N such that gcd({m,r1, . . . ,rp}) = 1. Then

m+ 〈m,r1, . . . ,rp〉n ⊆ Arf(m,m+ r1, . . . ,m+ rp).

Proof. We use once more induction on n. For n = 0 we have to prove that m +
〈m,r1, . . . ,rp〉 ⊆Arf(m,m+r1, . . . ,m+rp). Let i, j ∈ {1, . . . , p}. Then m,m+ri,m+
r j ∈ Arf(m,m + r1, . . . ,m + rp), whence m + ri + r j = (m + ri) + (m + r j)−m ∈
Arf(m,m + r1, . . . ,m + rp). Now, for k ∈ {1, . . . , p}, m,m + ri + r j,m + rk ∈
Arf(m,m+r1, . . . ,m+rk), and therefore m+ri +r j +rk = (m+ri +r j)+(m+rk)−
m ∈ Arf(m,m+ r1, . . . ,m+ rk). By repeating this argument we obtain that for every

a,a1, . . . ,ap ∈N, we have that (a+1)m+a1r1 + · · ·+aprp ∈Arf(m,m+r1, . . . ,m+
rp), and thus m+ 〈m,r1, . . . ,rp〉 ⊆ Arf(m,m+ r1, . . . ,m+ rp).

Now assume that m + 〈m,r1, . . . ,rp〉n ⊆ Arf(m,m + r1, . . . ,m + rp) and let us

prove that m + 〈m,r1, . . . ,rp〉n+1 ⊆ Arf(m,m + r1, . . . ,m + rp). Let a ∈ m +
〈m,r1, . . . ,rp〉n+1. Then a = m + b with b ∈ 〈m,r1, . . . ,rp〉n+1. Hence there ex-

ist x,y,z ∈ 〈m,r1, . . . ,rp〉n such that x ≥ y ≥ z and x + y− z = b. In this way

a = m+b = m+x+y−z = (m+x)+(m+y)−(m+z)∈Arf(m,m+r1, . . . ,m+rp),
since by induction hypothesis m+x,m+y,m+z∈m+〈m,r1, . . . ,rp〉n⊆Arf(m,m+
r1, . . . ,m+ rp). ��

From this we can give a procedure to compute Arf closures that has an extended

Euclid’s algorithm taste.

Proposition 3.26. Let m,r1, . . . ,rp be nonnegative integers with greatest common
divisor one. Then

Arf(m,m+ r1, . . . ,m+ rp) = (m+Arf(m,r1, . . . ,rp))∪{0}.

Proof. By using Proposition 3.24 and Lemma 3.25, we obtain that (m + Arf(m,
r1, . . . ,rp))∪{0} ⊆ Arf(m,m+ r1, . . . ,m+ rp). For the other inclusion observe that

m,m + r1, . . . ,m + rp ∈ (m + Arf(m,r1, . . . ,rp))∪ {0}, which by Proposition 3.18

is an Arf numerical semigroup. It follows that Arf(m,m + r1, . . . ,m + rp) ⊆ (m +
Arf(m,r1, . . . ,rp))∪{0}. ��

The Frobenius number of the Arf closure can then be computed as follows.
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Corollary 3.27. Let m,r1, . . . ,rp be nonnegative integers with greatest common di-
visor one. Then

F(Arf(m,m+ r1, . . . ,m+ rp)) = m+F(Arf(m,r1, . . . ,rp)).

We have now all the ingredients needed to give a recursive way of calculating

the elements of the Arf closure of any subset of nonnegative integers with greatest

common divisor one. Let X ⊆ N\{0} be such that gcd(X) = 1. Define recursively

the following sequence of subsets of N:

• A1 = X ,

• An+1 = ({x−minAn | x ∈ An}\{0})∪{minAn}.
As a consequence of Euclid’s algorithm for the computation of gcd(X), we obtain

that there exists q = min{k ∈ N | 1 ∈ Ak}.
Proposition 3.28. With the above notation, we have that

Arf(X) = {0,minA1,minA1 +minA2, . . . ,minA1 + · · ·+minAq−1,→}.

Proof. Since 1 ∈ Aq, Arf(Aq) = N. Hence by Proposition 3.26, Arf(Aq−1) =
(minAq−1 +N)∪{0}. This implies

Arf(Aq−1) = {0,minAq−1,→}.

Assume as induction hypothesis that

Arf(Aq−i) = {0,minAq−i,minAq−i +minAq−i+1, . . . ,

minAq−i + · · ·+minAq−1,→}.

We must prove now that

Arf(Aq−i−1) = {0,minAq−i−1,minAq−i−1 +minAq−i, . . . ,

minAq−i−1 + · · ·+minAq−1,→}.

By Proposition 3.26, we know that Arf(Aq−i−1) = (minAq−i−1 +Arf(Aq−i))∪{0}.
By using now the induction hypothesis and Corollary 3.27, we obtain the desired

result. ��
Example 3.29 ([88]). Let us compute Arf(7,24,33).

A1 = {7,24,33}, min≤A1 = 7,

A2 = {7,17,26}, min≤A2 = 7,

A3 = {7,10,19}, min≤A3 = 7,

A4 = {7,3,12}, min≤A4 = 3,

A5 = {4,3,9}, min≤A5 = 3,

A6 = {1,3,6},
whence Arf(7,24,33) = {0,7,14,21,24,27,→}.
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3 Saturated numerical semigroups

A numerical semigroup S is saturated if the following condition holds: if s,s1, . . . ,sr ∈
S are such that si ≤ s for all i∈ {1, . . . ,r} and z1, . . . ,zr ∈Z are such that z1s1 + · · ·+
zrsr ≥ 0, then s+ z1s1 + · · ·+ zrsr ∈ S.

Example 3.30. The semigroup S = 〈7,11,13,15,16,17,19〉 appearing in Example

3.20 is an Arf semigroup but it is not saturated. Note that 7,11 ∈ S and 12 = 11 +
2×11−3×7 ∈ S.

From the definition it easily follows that every saturated numerical semigroup is

Arf, and thus it has maximal embedding dimension.

Lemma 3.31. Every saturated numerical semigroup has the Arf property.

Next we describe a characterization of this kind of semigroup that appears

in [89].

For A⊆ N and a ∈ A\{0}, set

dA(a) = gcd{x ∈ A | x≤ a} .

Lemma 3.32. Let S be a saturated numerical semigroup and let s ∈ S. Then s +
dS(s) ∈ S.

Proof. Let {s1, . . . ,sr} = {x ∈ S | x ≤ s}. By Bézout’s identity, there exist inte-

gers z1, . . . ,zr such that z1s1 + · · ·+ zrsr = dS(s). As S is saturated, we get s +
dS(s) ∈ S. ��

We are going to see that this property characterizes saturated numerical semi-

groups. First we need some previous lemmas.

Lemma 3.33. Let A be a nonempty subset of positive integers such that gcd(A) = 1

and a+dA(a) ∈ A for all a ∈ A. Then a+kdA(a) ∈ A for all k ∈N, and A∪{0} is a
numerical semigroup.

Proof. We proceed by induction on dA(a).
Note that dA(a) > 0. We show that if dA(a) = 1, then a+ k ∈ A for all k ∈ N. To

this end we use induction on k. For k = 0, the result is clear. Assume that a+ k ∈ A.

Since 0 = dA(a + k) ≤ dA(a) = 1, we have that dA(a + k) = 1. Hence a + k + 1 =
a+ k +dA(a+ k) ∈ A.

Now assume that if a′ ∈ A and dA(a′) < dA(a), then a′+kdA(a′)∈ A for all k ∈N.

Thus, suppose that dA(a)≥ 2 and let us prove that a+kdA(a)∈A for all k∈N. Since

gcd(A) = 1, there exists b ∈ A such that dA(b) = 1. If dA(a + kdA(a)) = dA(a) and

a + kdA(a) ∈ A, then a + (k + 1)dA(a) = a + kdA(a) + dA(a + kdA(a)) ∈ A. From

these two remarks, we deduce that there exists a least positive integer t such that

a+ tdA(a)∈ A and dA(a+ tdA(a)) < dA(a). As dA(a+ tdA(a)) < dA(a), by applying

the induction hypothesis, we obtain that (a + tdA(a))+ kdA(a + tdA(a)) ∈ A for all

k ∈ N. Clearly, dA(a + tdA(a)) divides dA(a), whence dA(a) = ldA(a + tdA(a)) for
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some positive integer l. Consequently, a + tdA(a)+ k
l dA(a) ∈ A for all k ∈ N, and

thus a + (t + n)dA(a) ∈ A for all n ∈ N. From the definition of t, it follows that

a+kdA(a) ∈ A for all k ∈ {0, . . . , t}. We conclude that a+kdA(a) ∈ A for all k ∈N.

Finally, let us prove that A∪{0} is a numerical semigroup. Since gcd(A) = 1, it

suffices to prove that for any a,b ∈ A, a + b ∈ A. Assume that a ≤ b. Then dA(b)
divides dA(a) and thus there exists λ ∈ N such that dA(a) = λdA(b). Note also that

dA(a) divides a, whence a = μdA(a) for some μ ∈ N. Therefore a +b = μdA(a)+
b = μλdA(b)+b, which, as we have just proven, belongs to A. ��
Proposition 3.34. Let A be a nonempty subset of N such that 0 ∈ A and gcd(A) = 1.
The following conditions are equivalent.

1) A is a saturated numerical semigroup.
2) a+dA(a) ∈ A for all a ∈ A\{0}.
3) a+ kdA(a) ∈ A for all a ∈ A\{0} and k ∈ N.

Proof. 1) implies 2). Follows from Lemma 3.32.

2) implies 3). Follows from Lemma 3.33.

3) implies 1). By Lemma 3.33, we know that A is a numerical semigroup. Let

a,a1, . . . ,ar ∈ A with ai ≤ a for all i ∈ {1, . . . ,r}, and let z1, . . . ,zr be integers such

that z1a1 + · · ·+ arzr ≥ 0. Since ai ≤ a, it follows that dA(a) divides ai for all i ∈
{1, . . . ,r}. Hence, there exists k ∈ N such that z1a1 + · · ·+ zrar = kdA(a), and thus

a+ z1a1 + · · ·+ zrar = a+ kdA(a) ∈ A. This proves that A is saturated. ��
We now focus on obtaining a similar characterization as the one given in Propo-

sition 3.18 and Corollary 3.19 for Arf numerical semigroups. As we will see in this

setting the characterization is not so generous.

Proposition 3.35 ([63]). Let S be a numerical semigroup. The following conditions
are equivalent.

1) S is saturated.
2) There exists x ∈ S∗ such that (x+S)∪{0} is a saturated numerical semigroup.

Proof. 1) implies 2). Assume that S = {0 < s1 < s2 < · · · < sn < · · ·}. We prove

that (s1 + S)∪ {0} = {0 < s1 < s1 + s1 < s1 + s2 < · · · < s1 + sn < · · ·} is satu-

rated. In view of Proposition 3.34, it suffices to show that for all n ∈ N, the ele-

ment s1 + sn + gcd{0,s1,s1 + s1, . . . ,s1 + sn} lies in (s1 + S)∪{0}. Since S is satu-

rated, sn +gcd{0,s1, . . . ,sn} ∈ S. Moreover gcd{0,s1,s1 + s1,s1 + s2, . . . ,s1 + sn}=
gcd{0,s1,s2, . . . ,sn}, whence s1 + sn + gcd{0,s1,s1 + s1, . . . ,s1 + sn} ∈ (s1 + S)∪
{0}.

2) implies 1). If S = {0 < s1 < · · · < sn < · · ·}, then (x + S)∪{0} = {0 < x <
s1 +x < · · ·< sn +x < · · ·}. Since gcd{0,x,x+s1, . . . ,x+sn}= gcd{0,x,s1, . . . ,sn},
we have that gcd{0,x,x+s1, . . . ,x+sn} divides gcd{0,s1, . . . ,sn}, namely, there ex-

ists k ∈ N such that k(gcd{0,x,x + s1, . . . ,x + sn}) = gcd{0,s1, . . . ,sn}. By Propo-

sition 3.34, if we want to prove that S is saturated, it suffices to show that sn +
gcd{0,s1, . . . ,sn} ∈ S for all n. As (x + S)∪{0} is saturated, by Proposition 3.34,

we have that x + sn + k(gcd{0,x,x + s1, . . . ,x + sn}) ∈ (x + S)∪{0} and thus sn +
gcd{0,s1, . . . ,sn} ∈ S. ��
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From the proof of this result we obtain the following consequence.

Corollary 3.36. Let S be a numerical semigroup. Then S is saturated if and only if
(m(S)+S)∪{0} is saturated.

Example 3.37. The semigroup S = 〈5,7,8,9,11〉 is a saturated numerical semi-

group. From Corollary 3.36 we have that both (5 + S)∪{0} and −5 + S∗ are satu-

rated.

Corollary 3.38. Let S be a proper subset of N. Then S is a saturated numerical
semigroup if and only if there exist positive integers x1, . . . ,xn such that

S = {0,x1,x1 + x2, . . . ,x1 + · · ·+ xn,→}

and
gcd{x1, . . . ,xk} ∈ {xk+1,xk+1 + xk+2, . . . ,xk+1 + · · ·+ xn,→}

for all k ∈ {1, . . . ,n}.
Proof. Necessity. Since S is a saturated numerical semigroup, S is also Arf, whence

by Corollary 3.19 there exist positive integers x1, . . . ,xn such that

S = {0,x1,x1 + x2, . . . ,x1 + · · ·+ xn,→}.

As S is saturated, for all k ∈ {1, . . . ,n}, (x1 + · · ·+ xk)+gcd{0,x1,x1 + x2, . . . ,x1 +
· · ·+ xk} ∈ S and since gcd{0,x1,x1 + x2, . . . ,x1 + · · ·+ xk} = gcd{x1, . . . ,xk}, we

have that (x1 + · · ·+ xk)+gcd{x1, . . . ,xk} ∈ {0,x1,x1 + x2, . . . ,x1 + · · ·+ xn,→}, or

equivalently, gcd{x1, . . . ,xk} ∈ {xk+1,xk+1 + xk+2, . . . ,xk+1 + · · ·+ xn,→}.
Sufficiency. By using Proposition 3.34, it suffices to show that (x1 + · · ·+ xk)+

gcd{0,x1,x1 +x2, . . . ,x1 + · · ·+xk} ∈ S for all k ∈ {1, . . . ,n}. As pointed out above,

this is equivalent to prove that (x1 + · · ·+ xk)+gcd(x1, . . . ,xk) ∈ S, and this follows

from the hypothesis. ��
As for Arf numerical semigroups, the intersection of finitely many saturated nu-

merical semigroups is again saturated. This follows easily from the definition.

Proposition 3.39. The intersection of finitely many saturated numerical semigroups
is a saturated numerical semigroup.

This allows us to define the saturated closure of a numerical semigroup (or of

a subset of nonnegative integers with greatest common divisor one), as we did for

Arf numerical semigroups. Given a numerical semigroup S, we denote by Sat(S) the

intersection of all saturated numerical semigroups containing S, or in other words,

the smallest (with respect to set inclusion) saturated numerical semigroup containing

S. We call this semigroup the saturated closure of S.

The saturated closure of a semigroup (or of any set of nonnegative integers with

greatest common divisor one) can be computed as follows.



Exercises 31

Proposition 3.40. Let n1 < n2 < · · ·< ne be positive integers such that gcd(n1, . . . ,
ne) = 1. For every i∈{1, . . . ,e}, set di = gcd(n1, . . . ,ni) and for all j∈{1, . . . , p−1}
define k j = max{k ∈ N | n j + kd j < n j+1}. Then

Sat(n1, . . . ,ne) = {0,n1,n1 +d1, . . . ,n1 + k1d1,n2,n2 +d2, . . . ,n2 + k2d2,

. . . ,ne−1,ne−1 +de−1, . . . ,ne−1 + ke−1de−1,ne,ne +1,→}.

Proof. Let

A = {0,n1,n1 +d1, . . . ,n1 + k1d1,n2,n2 +d2, . . . ,n2 + k2d2,

. . . ,ne−1,ne−1 +de−1, . . . ,np−1 + ke−1de−1,ne,ne +1,→}.

Clearly A is not empty, 0 ∈ A, gcd(A) = 1 and a + dA(a) ∈ A for all a ∈ A. By

Proposition 3.34, A is a saturated numerical semigroup, and as {n1, . . . ,ne} ⊂ A,

we get that Sat(n1, . . . ,ne) ⊆ A. For the other inclusion, take a ∈ A. Then there

exists i ∈ {1, . . . ,e} and k ∈ N such that a = ni + kdi (note that de = 1). Since

{n1, . . . ,ne} ⊂ Sat(n1, . . . ,ne), we have that dSat(n1,...,ne)(ni) divides di, whence there

exists l ∈ N such that di = ldSat(n1,...,ne)(ni). From Proposition 3.34, we know

that ni + tdSat(n1,...,ne)(ni) ∈ Sat(n1, . . . ,ne) for all t ∈ N and thus a = ni + kdi =
ni + kldSat(n1,...,ne)(ni) ∈ Sat(n1, . . . ,ne). ��
Example 3.41. Sat({12,20,26,35}) = {0,12,20,24,26,28,30,32,34,35,→}.

Exercises

Exercise 3.1 ([45, 87]). Let m be an integer greater than or equal to two, and let

(k1, . . . ,km−1) ∈ Nm−1. Prove that {0,k1m+1, . . . ,km−1m+m−1} is the Apéry set

of m in a numerical semigroup with multiplicity m if and only if (k1, . . . ,km−1) is a

solution to the system of inequalities

xi ≥ 1 for all i ∈ {1, . . . ,m−1},
xi + x j− xi+ j ≥ 0 for all i, j with 1≤ i≤ j ≤ m−1, i+ j ≤ m−1,
xi + x j− xi+ j−m ≥−1 for all i, j with 1≤ i≤ j ≤ m−1, i+ j > m.

Exercise 3.2 ([87]). Let m be an integer greater than or equal to two, and let

(k1, . . . ,km−1) ∈ Nm−1. Show that S = 〈m,k1m+1, . . . ,km−1m+m−1〉 is a numer-

ical semigroup with multiplicity m and maximal embedding dimension if and only

if (k1, . . . ,km−1) is a solution to the system of inequalities

xi ≥ 1 for all i ∈ {1, . . . ,m−1},
xi + x j− xi+ j ≥ 1 for all i, j with 1≤ i≤ j ≤ m−1, i+ j ≤ m−1,
xi + x j− xi+ j−m ≥ 0 for all i, j with 1≤ i≤ j ≤ m−1, i+ j > m.
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Exercise 3.3. Let m be a positive integer. Prove that the intersection of finitely many

maximal embedding dimension numerical semigroups with multiplicity m is again

a maximal embedding dimension numerical semigroup with multiplicity m.

Show with an example that the intersection of finitely many maximal embedding

dimension numerical semigroups might not have maximal embedding dimension.

Exercise 3.4. Let S be a numerical semigroup and let m be a nonzero element

of S. Denote by Ap0(S,m) = {w ∈ Ap(S,m) | w is even} and by Ap1(S,m) =
{w ∈ Ap(S,m) | w is odd}. Prove that

a) if m is even, then the cardinalities of Ap0(S,m) and Ap1(S,m) are the same and

equal to m
2 ,

b) if m is odd and Ap1(S,m) = m−1, then S is a maximal embedding dimension of

multiplicity m.

Exercise 3.5. Let S be a numerical semigroup. Show that if S has maximal embed-

ding dimension, has the Arf property or it is saturated, then so is S∪{F(S)}.
Exercise 3.6. Let S be numerical semigroup and let m ∈ S \ {0,1}. Set T = (m +
S)∪{0} (see Exercise 2.9). Prove that

a) F(T ) = F(S)+m,

b) g(T ) = g(S)+m−1.

Exercise 3.7. Let S be a numerical semigroup with maximal ideal M (see Exercise

2.13) and multiplicity m. Prove that S has maximal embedding dimension if and

only if M−M = −m + M. Show that this is also equivalent to m + M = M + M(=
{x+ y | x,y ∈M }).
Exercise 3.8. Let S be a maximal embedding dimension numerical semigroup with

minimal system of generators {n1 < n2 < · · ·< ne}. Prove that g(S)≥ ne−1
2 .

Exercise 3.9. Let S = 〈5,7,9〉. Compute the smallest (with respect to set inclusion)

maximal embedding dimension numerical semigroup with multiplicity 5 containing

S.

Exercise 3.10. Prove that {〈2,2k +1〉 | k ∈ N} is the set of all maximal embedding

dimension numerical semigroups of type 1. Which is the set of all Arf numerical

semigroups of type 1? And that of saturated numerical semigroups?

Exercise 3.11. Check that 〈4,9,10,11〉 is the smallest (with respect to set inclusion)

Arf numerical semigroup containing 〈4,9,11〉.
Exercise 3.12. Show that 〈10,14,16,18,22,27,29,31,33,35〉 is the smallest (with

respect to set inclusion) saturated numerical semigroup containing 〈10,14,27〉.
Exercise 3.13 ([8]). Prove that every Arf numerical semigroup that is not a half-line

is acute (see Exercise 2.8).



Chapter 3
Irreducible numerical semigroups

Introduction

Symmetric numerical semigroups are probably the numerical semigroups that have

been most studied in the literature. The motivation and introduction of these semi-

groups is due mainly to Kunz, who in his manuscript [44] proves that a one-

dimensional analytically irreducible Noetherian local ring is Gorenstein if and only

if its value semigroup is symmetric. Symmetric numerical semigroups always have

odd Frobenius number. The translation of this concept for numerical semigroups

with even Frobenius number motivates the definition of pseudo-symmetric numeri-

cal semigroups. In [5] it is shown that these semigroups also have their interpretation

in one-dimensional local rings, since a numerical semigroup is pseudo-symmetric if

and only if its semigroup ring is a Kunz ring.

Irreducible numerical semigroups gather both symmetric and pseudo-symmetric

numerical semigroups. This concept was introduced in [73]. Its study is clearly well

motivated from the semigroup theory point of view as the reader will see from the

definition.

1 Symmetric and pseudo-symmetric numerical semigroups

A numerical semigroup is irreducible if it cannot be expressed as the intersection of

two numerical semigroups properly containing it.

We are going to show that irreducible numerical semigroups are maximal in

the set of numerical semigroups with fixed Frobenius number. First we prove that

adding the Frobenius number to a numerical semigroup yields a numerical semi-

group. This is a particular case of a more general result that we will present later.

Lemma 4.1. Let S be a numerical semigroup other than N. Then S∪{F(S)} is again
a numerical semigroup.
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Proof. The complement of S∪{F(S)} in N is finite, because N \ S is finite. Take

a,b ∈ S∪{F(S)}. If any of them is F(S), then a + b ≥ F(S) and thus a + b ∈ S∪
{F(S)}. If both a and b are in S, then a+b ∈ S⊆ S∪{F(S)}. As 0 ∈ S∪{F(S)}, this

proves that S∪{F(S)} is a numerical semigroup. ��
Theorem 4.2 ([73]). Let S be a numerical semigroup. The following conditions are
equivalent.

1) S is irreducible.
2) S is maximal in the set of all numerical semigroups with Frobenius number F(S).
3) S is maximal in the set of all numerical semigroups that do not contain F(S).

Proof. 1) implies 2). Let T be a numerical semigroup such that S ⊆ T and F(T ) =
F(S). Then S = (S∪{F(S)})∩T . Since S is irreducible, we deduce that S = T .

2) implies 3). Let T be a numerical semigroup fulfilling that S⊆ T and F(S) /∈ T .

Then T ∪ {F(S) + 1,F(S) + 2,→} is a numerical semigroup that contains S with

Frobenius number F(S). Therefore, S = T ∪{F(S)+1,F(S)+2,→} and so S = T .

3) implies 1). Let S1 and S2 be two numerical semigroups that contain S properly.

Then, by hypothesis, F(S) ∈ S1 and F(S) ∈ S2. Hence S = S1∩S2. ��
This result is also stated in [32, Proposition 4], but using a different terminology.

We now introduce this terminology and see why both results are equivalent.

A numerical semigroup S is symmetric if it is irreducible and F(S) is odd. We say

that S is pseudo-symmetric provided that S is irreducible and F(S) is even.

Given a numerical semigroup S, if S is not irreducible, then by Theorem 4.2, there

exists an irreducible numerical semigroup T containing S with F(S) = F(T ). The

following result can be viewed as a procedure to construct this irreducible numerical

semigroup.

Lemma 4.3 ([58]). Let S be a numerical semigroup and assume that there exists

h = max{x ∈ Z\S | F(S)− x ∈ S and x = F(S)/2} .

Then S∪{h} is a numerical semigroup with Frobenius number F(S).

Proof. Clearly S∪{h} has finite complement in N, and 0 ∈ S∪{h}. Let

H = {x ∈ Z\S | F(S)− x ∈ S and x = F(S)/2} .

If x ∈ H, then F(S)− x ∈ H. From this we deduce that h > F(S)/2.

Take s ∈ S\{0}. If h+s ∈ S, from the maximality of h, F(S)−(h+s) = t ∈ S (as

h > F(S)/2, h+s = F(S)/2). Hence F(S)−h = t +s∈ S, contradicting the definition

of h.

If 2h ∈ S, then again by the maximality of h, we get that F(S)− 2h = t ∈ S. As

we have seen above, h + t ∈ S. However, h + t = F(S)− h, which cannot belong to

S. This is a contradiction. ��
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The next proposition gives characterizations for the concepts of symmetric and

pseudo-symmetric numerical semigroups. Sometimes in the literature these are cho-

sen as the definitions.

Proposition 4.4. Let S be a numerical semigroup.

1) S is symmetric if and only if F(S) is odd and x ∈ Z\S implies F(S)− x ∈ S.
2) S is pseudo-symmetric if and only if F(S) is even and x ∈ Z\S implies that either

F(S)− x ∈ S or x = F(S)/2.

Proof. We only prove the first statement, because the second follows analogously.

Necessity. If there exists x ∈ Z \ S such that F(S)− x ∈ S, then there exists the

maximum h defined in Lemma 4.3. Hence S∪{h} is a numerical semigroup with

Frobenius number F(S), contradicting the maximality of S in Theorem 4.2.

Sufficiency. In view of Theorem 4.2, it suffices to prove that S is maximal in

the set of all numerical semigroups that do not contain F(S). Let T be a numerical

semigroup with S � T . Take x ∈ T \S⊂ Z\S. Then by hypothesis F(S)−x ∈ S and

thus F(S)− x ∈ T . But this implies that F(S) = x+(F(S)− x) ∈ T . ��
From this result one easily deduces the following alternative characterization.

Corollary 4.5. Let S be a numerical semigroup.

1) S is symmetric if and only if g(S) = F(S)+1
2 .

2) S is pseudo-symmetric if and only if g(S) = F(S)+2
2 .

Remark 4.6. We know (Lemma 2.14) that if S is a numerical semigroup, then

g(S) ≥ F(S)+1
2 . As a consequence of this corollary, we have that irreducible nu-

merical semigroups are those numerical semigroups with the least possible genus

in terms of their Frobenius number.

From Proposition 2.13 and Corollary 4.5, we obtain the following consequence.

Corollary 4.7. Every numerical semigroup of embedding dimension two is symmet-
ric.

Example 4.8. The numerical semigroup 〈4,6,7〉 = {0,4,6,7,8,10,11,→} is sym-

metric, 〈3,4,5〉= {0,3,→} is pseudo-symmetric, and 〈5,7,9〉 is not irreducible.

The Apéry sets of irreducible numerical semigroups have special shapes. This

shape characterizes them as we see in the rest of this section.

Lemma 4.9. Let S be a numerical semigroup and let n be a positive integer of S. If
x,y ∈ S are such that x+ y ∈ Ap(S,n), then {x,y} ⊆ Ap(S,n).

Proof. This is an immediate consequence of the definition of Apéry set. ��
Proposition 4.10. Let S be a numerical semigroup and let n be a positive integer
of S. Let Ap(S,n) = {a0 < a1 < · · · < an−1} be the Apéry set of n in S. Then S is
symmetric if and only if ai +an−1−i = an−1 for all i ∈ {0, . . . ,n−1}.
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Proof. Necessity. By Proposition 2.12, we know that F(S) = an−1−n. As ai−n ∈ S
and S is symmetric, F(S)− (ai−n) = an−1−ai ∈ S. By Lemma 4.9, we deduce that

there exists j ∈ {0, . . . ,n−1} such that an−1 = ai +a j. Since a0 < a1 < · · ·< an−1,

j must be n−1− i.
Sufficiency. From the hypothesis, we deduce that {an−1}= Maximals≤S Ap(S,n).

By Proposition 2.20, PF(S) = {F(S)}, and thus {F(S)}= Maximals≤S(Z\S). This

in particular implies that if x ∈ Z \ S, then F(S)− x ∈ S. Besides, if F(S)/2 is an

integer, then F(S)/2 ∈ Z\S. We have just shown that this would imply that F(S)−
F(S)/2 = F(S)/2 ∈ S, a contradiction. Thus F(S) is an odd integer and Proposition

4.4 ensures that S is symmetric. ��
From the above proposition (and its proof) it can be easily seen that symmet-

ric numerical semigroups are those numerical semigroups with type one (see also

Exercise 2.5).

Corollary 4.11. Let S be a numerical semigroup. The following are equivalent.

1) S is symmetric.
2) PF(S) = {F(S)}.
3) t(S) = 1.

Proof. Observe that F(S) always belongs to PF(S). Thus Conditions 2) and 3) are

equivalent. The equivalence between Conditions 1) and 2) follows from the proof of

Proposition 4.10. ��
Thus in view of Proposition 2.20, Corollary 4.11 can also be reformulated as

follows.

Corollary 4.12. Let S be a numerical semigroup and let n be a nonzero element of
S. Then S is symmetric if and only if

Maximals≤S Ap(S,n) = {F(S)+n}.

Example 4.13. Let S = 〈4,6,7〉. Then Ap(S,4) = {0,6,7,13}. Hence

Maximals≤S Ap(S,4) = {13}

and thus PF(S) = {9}. This means that S is symmetric.

Similar characterizations can be obtained for pseudo-symmetric numerical semi-

groups, but paying special attention to
F(S)

2 .

Lemma 4.14. Let S be a pseudo-symmetric numerical semigroup and let n be a
positive integer of S. Then F(S)/2+n ∈ Ap(S,n).

Proof. Since F(S)/2 ∈ S, we only have to prove that F(S)/2+n∈ S. If this were not

the case, then by Proposition 4.4, F(S)− (F(S)/2 + n) = F(S)/2− n ∈ S. But this

leads to F(S)/2 = F(S)/2−n+n ∈ S, which is impossible. ��
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Observe that this statement is also showing that if S is pseudo-symmetric, then

F(S)/2 ∈ PF(S).

Proposition 4.15. Let S be a numerical semigroup with even Frobenius number and
let n ∈ S\{0}. Then S is pseudo-symmetric if and only if

Ap(S,n) = {a0 < a1 < · · ·< an−2 = F(S)+n}∪
{

F(S)
2

+n
}

and ai +an−2−i = an−2 for all i ∈ {0, . . . ,n−2}.
Proof. Necessity. By Lemma 4.14, (F(S)/2) + n ∈ Ap(S,n). Clearly (F(S)/2) +
n < maxAp(S,n) = F(S)+n (Proposition 2.12). If w ∈ Ap(S,n)\{(F(S)/2)+n},
then w− n /∈ S and w− n = F(S)/2. By Proposition 4.4, we have that F(S)− (w−
n) ∈ S and thus maxAp(S,n)−w = F(S)+ n−w ∈ S. By Lemma 4.9, we deduce

that maxAp(S,n)−w ∈ Ap(S,n). Furthermore maxAp(S,n)−w = (F(S)/2) + n
because otherwise we would have w = F(S)/2. The proof now follows as the proof

of Proposition 4.10.

Sufficiency. Let x be an integer such that x = F(S)/2 and x /∈ S. Let us show that

F(S)− x ∈ S. Take w ∈ Ap(S,n) such that w≡ x mod n. Then x = w− kn for some

k ∈ N\{0}. We distinguish two cases.

1) If w = (F(S)/2)+ n, then F(S)− x = F(S)− ((F(S)/2)+ n− kn) = (F(S)/2)+
(k−1)n. Besides, x = F(S)/2 leads to k = 1 and therefore k ≥ 2. Hence we can

assert that F(S)− x ∈ S.

2) If w = (F(S)/2)+n, then F(S)−x = F(S)−(w−kn) = F(S)+n−w+(k−1)n =
an−2−w+(k−1)n ∈ S, since an−2−w ∈ S by hypothesis. ��
The analogue to Corollary 4.11 for pseudo-symmetric numerical semigroups is

stated as follows. As we see with an example we cannot get a condition similar to

the third condition in that result.

Corollary 4.16. Let S be a numerical semigroup. The following conditions are
equivalent.

1) S is pseudo-symmetric.
2) PF(S) = {F(S),F(S)/2}.

Observe that in this case if t(S) = 2, we cannot ensure that PF(S) = {F(S),
F(S)/2}.
Example 4.17. Let S = 〈5,7,8〉. The set of pseudo-Frobenius numbers of S is

PF(S) = {9,11}. This semigroup has type two, but it is not pseudo-symmetric.

Example 4.18. Let S = 〈5,6,7,9〉. Then Ap(S,5) = {0,6,7,9,13} and

Maximals≤S Ap(S,5) = {9,13}.

This implies that PF(S) = {4,8}= {F(S)/2,F(S)}. Hence S is pseudo-symmetric.



38 3 Irreducible numerical semigroups

By using Proposition 2.20, we can obtain an alternative characterization in terms

of the Apéry sets.

Corollary 4.19. Let S be a numerical semigroup and let n be a nonzero element of
S. Then S is pseudo-symmetric if and only if

Maximals≤S(Ap(S,n)) =
{

F(S)
2

+n,F(S)+n
}

.

2 Irreducible numerical semigroups with arbitrary multiplicity
and embedding dimension

We will see that if S is an irreducible numerical semigroup with m(S) ≥ 4, then

e(S) ≤ m(S)− 1. The aim of this section is to show how to construct, for given m
and e integers such that 2≤ e≤m−1, a symmetric numerical semigroup with multi-

plicity m and embedding dimension e. We already know that numerical semigroups

of embedding dimension two are symmetric, thus we cannot find pseudo-symmetric

numerical semigroups with embedding dimension two. If we change the above con-

straint to 3≤ e≤m−1, then we are able to construct a pseudo-symmetric numerical

semigroup S with m(S) = m and e(S) = e.

2.1 Symmetric case

Lemma 4.20. Let S be a symmetric numerical semigroup with m(S)≥ 3. Then

e(S)≤m(S)−1.

Proof. Write Ap(S,n) = {0 = a0 < a1 < · · ·< am(S)−1}. Then by Proposition 4.10,

am(S)−1 = ai + am(S)−1−i for all i ∈ {0, . . . ,m(S)− 1}. If m(S) ≥ 3, then we can

choose i = 1, which implies that am(S)−1 is not a minimal generator. As at least

one nonzero element of Ap(S,n) is not a minimal generator, e(S) ≤ m(S)− 1 (see

Proposition 2.10). ��
Remark 4.21. As a consequence of this result and Corollary 4.7, we have that a

symmetric numerical semigroup has maximal embedding dimension if and only if

it has multiplicity two.

Next we describe a method given in [62] to obtain for fixed integers e and m, with

2≤ e≤ m−1, a symmetric numerical semigroup S with e(S) = e and m(S) = m.

We introduce two families of symmetric numerical semigroups. Each of them

will be used to produce the desired symmetric numerical semigroup depending on

the parity of the multiplicity minus the embedding dimension.
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Lemma 4.22. Let m and q be positive integers such that m≥ 2q+3 and let S be the
submonoid of (N,+) generated by

{m,m+1,qm+2q+2, . . . ,qm+(m−1)}.

Then S is a symmetric numerical semigroup with multiplicity m, embedding dimen-
sion m−2q and Frobenius number 2qm+2q+1.

Proof. Since gcd{m,m + 1} = 1, we have that S is a numerical semigroup (by

Lemma 2.1). Clearly, {m,m+1,qm+2q+2, . . . ,qm+(m−1)} is a minimal system

of generators for S and thus m(S) = m and e(S) = m−2q. It is easy to deduce that

Ap(S,m) = {0 < m+1 < 2m+2 < · · ·< qm+q < qm+2q+2 < · · ·
< qm+(m−1) < (q+1)m+q+1 < · · ·< (2q+1)m+2q+1}.

We use Proposition 4.10 to prove that S is symmetric. We must find for all w ∈
Ap(S,m) an element w′ ∈ Ap(S,m) such that w+w′ = (2q+1)m+2q+1.

• For i ∈ {0,1, . . . ,m−1−2q−2},

(qm+2q+2+ i)+(qm+m−1− i) = (2q+1)m+2q+1.

• For k ∈ {0,1,2, . . . ,q},

(km+ k)+((2q+1− k)m+2q+1− k) = (2q+1)m+2q+1.

Besides, as F(S) + m = maxAp(S,m) (Proposition 2.12), we deduce that F(S) =
2qm+2q+1. ��
Lemma 4.23. Let m and q be nonnegative integers such that m ≥ 2q + 4 and let S
be the submonoid of (N,+) generated by

{m,m+1,(q+1)m+q+2, . . . ,(q+1)m+m−q−2}.

Then S is a symmetric numerical semigroup with multiplicity m, embedding dimen-
sion m−2q−1 and Frobenius number 2(q+1)m−1.

Proof. As in Lemma 4.22, we deduce that S is a numerical semigroup with m(S) =
m and e(S) = m−2q−1.

It is easy to prove that

Ap(S,m) = {0 < m+1 < 2m+2 < · · ·
< (q+1)m+q+1 < (q+1)m+q+2 < · · ·< (q+1)m+m−q−2

< (q+2)m+m−q−1 < (q+3)m+(m−q) < · · ·< 2(q+1)m+m−1}.
Furthermore, as a consequence of the following comments, by Proposition 4.10, S
is symmetric.
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• For i ∈ {0,1, . . . ,m−2q−3},

((q+1)m+q+1+ i)+((q+1)m+m−q−2− i) = 2(q+1)m+m−1.

• For k ∈ {0,1, . . . ,q},

((q+2+ k)m+m−q−1− k)+((q− k)m+q− k) = 2(q+1)m+m−1.

As F(S)+m = max(Ap(S,m)) (see Proposition 2.12), we obtain that F(S) = 2(q+
1)m−1. ��
Theorem 4.24. Let m and e be integers such that 2 ≤ e ≤ m− 1. There exists a
symmetric numerical semigroup with multiplicity m and embedding dimension e.

Proof. If e = 2, then S = 〈m,m+1〉 is a symmetric numerical semigroup with mul-

tiplicity m and embedding dimension 2 (Corollary 4.7). Thus, in the sequel, we may

assume that e≥ 3. We distinguish two cases.

• If m− e is even, then there exists q ∈ N\{0} such that m− e = 2q. Furthermore,

e ≥ 3 implies that m ≥ m− e + 3 and therefore m ≥ 2q + 3. Lemma 4.22 en-

sures the existence of a symmetric numerical semigroup with multiplicity m and

embedding dimension e = m−2q.

• If m− e is odd, then there exists q ∈ N such that m− e = 2q + 1. The constraint

e≥ 3 implies that m≥m−e+3 and thus m≥ 2q+4. Lemma 4.23 is used now to

construct a symmetric numerical semigroup with multiplicity m and embedding

dimension e = m−2q−1. ��
Example 4.25 ([62]). The semigroup 〈12,13,44,45,46,47〉 is symmetric with mul-

tiplicity 12, embedding dimension 6 and Frobenius number 79 (q = 3).

The semigroup 〈15,16,81,82,83,84〉 is symmetric and has multiplicity 15, em-

bedding dimension 6 and Frobenius number 149 (q = 4).

2.2 Pseudo-symmetric case

We now proceed with the pseudo-symmetric case. In view of Lemma 4.14 we will

encounter slight differences with the symmetric case. The construction we explain

in this section appears in [74].

We start by proving that for multiplicity greater than or equal to four, the em-

bedding dimension of a pseudo-symmetric numerical semigroup never reaches the

multiplicity.

Lemma 4.26 ([73]). Let S be a pseudo-symmetric numerical semigroup with m(S)≥
4. Then

e(S)≤m(S)−1.
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Proof. By Proposition 2.10, e(s)≤m(S). If e(S) = m(S), then S is minimally gen-

erated by {m(S),n1, . . . ,nm(S)−1} and by Proposition 4.15, Ap(S,m(S)) is of the

form

Ap(S,m(S)) = {0 < n2 < · · ·< nm(S)−1}∪
{

n1 =
F(S)

2
+m(S)

}
.

As m(S)− 1 ≥ 3, by Proposition 4.15, we deduce that nm(S)−1− n2 ∈ S, which

contradicts the fact that {m(S),n1, . . . ,nm(S)−1} is a minimal system of generators

for S. ��
In view of this result, we must pay special attention to the case of multiplicity

less than four. Numerical semigroups with multiplicity two are symmetric (as a

consequence of Corollary 4.7). Thus we must study those with multiplicity three.

Lemma 4.27 ([73]). The following conditions are equivalent.

1) S is a pseudo-symmetric numerical semigroup with m(S) = e(S) = 3.
2) S = 〈3,x+3,2x+3〉 with x an integer not divisible by three.

Proof. 1) implies 2). If m(S) = e(S) = 3, then {3,n1,n2} is a minimal system of gen-

erators for S. From Proposition 4.4, we deduce that F(S) is even, and by Proposition

4.15 we have that

Ap(S,3) =
{

0,n1 =
F(S)

2
+3,n2 = F(S)+3

}
.

By taking x = F(S)/2 we have that n1 = x+3 and n2 = 2x+3. Since x = F(S)/2 /∈ S,

we get that x is not a multiple of 3.

2) implies 1). Clearly {3,x + 3,2x + 3} is a minimal system of generators for S,

and thus m(S) = e(S) = 3. Hence Ap(S,3) = {0,x+3,2x+3}. By Proposition 2.12,

2x+3 = F(S)+3, and consequently (F(S)/2)+3 = x+3. Proposition 4.15 asserts

that S is pseudo-symmetric. ��
By Corollary 4.7, every embedding dimension two numerical semigroup is sym-

metric. We see that for embedding dimension three, there are always pseudo-

symmetric numerical semigroups with arbitrary multiplicity.

Lemma 4.28. Let m be a positive integer greater than or equal to four. There exists
a pseudo-symmetric numerical semigroup S with F(S) even, m(S) = m and e(S) = 3.

Proof. We distinguish two cases depending on the parity of m.

1) If m is even, then m = 2q+4 for some q ∈ N. Let

S = 〈m,m+1,(q+1)m+(m−1)〉.

It is clear that m(S) = m and e(S) = 3. Under this condition

Ap(S,m) = {0,m+1,2(m+1), . . . ,(m−2)(m+1)}∪{(q+1)m+(m−1)}.
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By Proposition 2.12, F(S) = (m− 2)m− 2, which is even, and
F(S)

2 + m =
(q + 1)m + (m− 1). By Proposition 4.15 we conclude that S is an irreducible

numerical semigroup.

2) If m is odd, then m = 2q+3 for some q ∈ N\{0}. Let

S = 〈m,m+1,(q+1)m+q+2〉.

Clearly, m(S) = m and e(S) = 3. In this setting,

Ap(S,m) = {0,m+1,2(m+1), . . . ,q(m+1),(q+1)m+q+2,

(m+1)+(q+1)m+q+2, . . . ,q(m+1)+(q+1)m+q+2}
∪{(q+1)(m+1)}.

Hence, F(S) = 2(1+q+mq) is even and
F(S)

2 +m = (q+1)(m+1). By Propo-

sition 4.15, we have that S is pseudo-symmetric. ��
We now proceed as in the symmetric case by presenting two families of pseudo-

numerical semigroups that will be used depending on the parity of the desired mul-

tiplicity minus the desired embedding dimension.

Lemma 4.29. Let m,q ∈ N be such that m ≥ 2q + 5 and let S be the submonoid of
(N,+) generated by

{m,m+1,(q+1)m+q+2, . . . ,(q+1)m+m−q−3,(q+1)m+m−1}.

Then S is a pseudo-symmetric numerical semigroup with m(S) = m, e(S) = m−
2q−1 and F(S) = 2(q+1)m−2.

Proof. Since gcd{m,m + 1} = 1, we have that S is a numerical semigroup (by

Lemma 2.1). Note that m = min S \ {0} and so m(S) = m. It is straightforward

to see that

{n0 = m,n1 = m+1,n2 = (q+1)m+q+2, . . . ,

np−1 = (q+1)m+m−q−3,np = (q+1)m+m−1}

is a minimal system of generators for S and thus e(S) = m− 2q− 1. It is easy to

check that

Ap(S,m) = {0,n1,2n1, . . . ,(q+1)n1,n2, . . . ,np−1,n1 +np−1,2n1 +np−1, . . . ,

qn1 +np−1,F(S)+m = (q+1)n1 +np−1}∪{np},

and if p≥ 4, then in addition F(S)+m = ni +np−i for all i∈ {2, . . . ,�p/2�}. Hence,

F(S) = 2(q + 1)m− 2 and so
F(S)

2 + m = (q + 1)m + (m− 1) = np. By applying

Proposition 4.15, we deduce that S is pseudo-symmetric. ��
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Lemma 4.30. Let m ∈ N and q ∈ N \ {0} be such that m ≥ 2q + 4 and let S be the
submonoid of (N,+) generated by

{m,m+1,qm+2q+3, . . . ,qm+m−1,(q+1)m+q+2}.

Then S is a pseudo-symmetric numerical semigroup with m(S) = m, e(S) = m−2q
and F(S) = 2qm+2q+2.

Proof. As gcd{m,m + 1} = 1, S is a numerical semigroup (as a consequence of

Lemma 2.1). Since m = min S\{0}, we get that m(S) = m. Clearly,

{n0 = m,n1 = m+1,n2 = qm+2q+3, . . . ,

np−1 = qm+(m−1),np = (q+1)m+q+2}

is a minimal system of generators for S and so e(S) = m−2q. The reader can prove

that

Ap(S,m) = {0,n1,2n1, . . . ,qn1,n2, . . . ,np−1,np,n1 +np,2n1 +np, . . . ,

F(S)+m = qn1 +np}∪{(q+1)n1},

and F(S) + m = ni + np−i+1 for all i ∈ {2, . . . ,�(p + 1)/2�}. Then F(S) = 2qm +
2q + 2 and thus

F(S)
2 + m = (q + 1)m + q + 1 = (q + 1)n1. Proposition 4.15 asserts

that S is a pseudo-symmetric numerical semigroup. ��
Theorem 4.31. Let m and e be positive integers such that 3≤ e≤m−1. Then there
exists a pseudo-symmetric numerical semigroup with multiplicity m and embedding
dimension e.

Proof. If e = 3, then Lemma 4.28 ensures the existence of this semigroup. Thus, in

sequel, we shall assume that 4≤ e≤m−1. We distinguish two cases depending on

the parity of m− e.

1) If m− e is odd, then there exists q ∈ N such that m− e = 2q + 1. Moreover,

since e≥ 4, m≥ 2q+5. By Lemma 4.29, we deduce that there exists a pseudo-

symmetric numerical semigroup S with m(S) = m and e(S) = m−2q−1 = e.

2) If m− e is even, then there exists q ∈ N \ {0} such that m− e = 2q. As e ≥ 4,

m ≥ 2q + 4. By Lemma 4.30, we deduce that there exists a pseudo-symmetric

numerical semigroup S with m(S) = m and e(S) = m−2q = e. ��
Example 4.32 ([74]). The numerical semigroup S = 〈11,12,37,38,39,43〉 is pseudo-

symmetric with m(S) = 11, e(S) = 6 and F(S) = 64 (q = 2).

The semigroup S = 〈11,12,29,30,31,32,37〉 is a pseudo-symmetric numerical

semigroup with m(S) = 11, e(S) = 7 and F(S) = 50 (q = 2).

As for embedding dimension three,

• S = 〈6,7,17〉 is an irreducible numerical semigroup with m(S)= 6 and F(S)= 22.

• S = 〈7,8,25〉 is an irreducible numerical semigroup with m(S)= 7 and F(S)= 34.
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3 Unitary extensions of a numerical semigroup

We introduce the concept of special gap of a numerical semigroup. Its definition is

motivated by the problem of finding the set of all numerical semigroups containing

a given numerical semigroup.

Given a numerical semigroup S, denote by

SG(S) = {x ∈ PF(S) | 2x ∈ S} .

Its elements will be called the special gaps of S.

It is easy to prove that the elements of SG(S) are precisely those gaps x of S such

that S∪{x} is again a numerical semigroup.

Proposition 4.33. Let S be a numerical semigroup and let x ∈ G(S). The following
properties are equivalent:

(1) x ∈ SG(S),
(2) S∪{x} is a numerical semigroup.

Example 4.34. Let S = {0,7,→}. Then S is a numerical semigroup with PF(S) =
{1,2,3,4,5,6}, and consequently SG(S) = {4,5,6}. This implies that {0,4,7,→},
{0,5,7,→} and {0,6,→} are numerical semigroups.

If the numerical semigroup S is properly contained in a numerical semigroup

T and we take x = max(T \ S), then x + s ∈ T and x + s > x for all s ∈ S∗. Thus

x + s ∈ S. Analogously, 2x ∈ T and 2x > x, which implies that 2x ∈ S. This proves

the following result.

Lemma 4.35. Let S and T be two numerical semigroups such that S � T . Then
S∪{max(T \S)} is a numerical semigroup, or equivalently, max(T \S) ∈ SG(S).

Given a numerical semigroup S, we denote by O(S) the set of all numerical

semigroups that contain S. We will refer to O(S) as the set of oversemigroups of S.

Since the complement of S in N is finite, O(S) is finite.

Given two numerical semigroups S and T with S⊆ T , we define recursively

• S0 = S,

• Sn+1 = Sn∪{max(T \Sn)} if Sn = T , and Sn = Sn+1 otherwise.

If the cardinality of T \S is k, then

S = S0 � S1 � · · ·� Sk = T.

By using this idea we can construct the set O(S). We start setting O(S) = {S}, and

then for every element in O(S) not equal to N (observe that SG(N) is the empty set),

we attach to O(S) the numerical semigroups S∪{x} with x ranging in SG(S).
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Example 4.36 ([90]). Let S = 〈5,7,9,11〉. For this semigroup, SG(S) = {13} and

thus S∪{13}= 〈5,7,9,11,13〉 is a semigroup containing S (the only one that differs

in just one element). As SG(S∪{13}) = {6,8}, from S∪{13} we obtain two new

semigroups which are S∪ {13,6} and S∪ {13,8}. By repeating this process we

obtain O(S), which we draw below as a graph.

S = 〈5,7,9,11〉
∪{13}��

〈5,7,9,11,13〉
∪{6}

��������� ∪{8}
���������

〈5,6,7,9〉
∪{8}��

〈5,7,8,9,11〉
∪{6}

���������������������
∪{4}��

〈5,6,7,8,9〉
∪{3}��

∪{4}
����������������������� 〈4,5,7〉

∪{6}��
〈3,5,7〉

∪{4}��

〈4,5,6,7〉
∪{2} ��

∪{3}
������������������������

〈3,4,5〉
∪{2}

���������� 〈2,5〉
∪{3}

������������

N\{1}
∪{1}��

N

As a consequence of Lemma 4.35, if S is a numerical semigroup, then S is max-

imal (with respect to set inclusion) in the set of all numerical semigroups not cut-

ting SG(S). Moreover, SG(S) is the smallest set of gaps that determines S up to

maximality.

Proposition 4.37. Let S be a numerical semigroup and let {g1, . . . ,gt} ⊆ G(S). The
following conditions are equivalent.

1) S is maximal (with respect to set inclusion) in the set of all numerical semigroups
T such that T ∩{g1, . . . ,gt} is empty.

2) SG(S)⊆ {g1, . . . ,gt}.
Proof. Let x ∈ SG(S). By Proposition 4.33, S∪{x} is a numerical semigroup con-

taining S properly. Thus if Condition 1) holds, then (S∪ {x})∩ {g1, . . . ,gt} = /0.

Hence x ∈ {g1, . . . ,gt}.
The implication 2) implies 1) follows easily from Proposition 4.33 and Lemma

4.35. ��
As a corollary we find another characterization of irreducible numerical semi-

groups. By Theorem 4.2, we know that a numerical semigroup S is irreducible if

and only if it is maximal in the set of numerical semigroups that do not cut {F(S)}.
Clearly F(S) belongs to SG(S), whenever S is not equal to N.

Corollary 4.38. Let S be a numerical semigroup. Then S is irreducible if and only
if SG(S) has at most one element.
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The following two results enable us to find a generalization of the construction

proposed in Lemma 4.3 to find an irreducible oversemigroup of a given numerical

semigroup with the same Frobenius number.

Lemma 4.39. Let S be a numerical semigroup and let {g1, . . . ,gt} ⊆ G(S). The fol-
lowing conditions are equivalent.

1) S is maximal in the set of numerical semigroups T such that T ∩{g1, . . . ,gt} is
empty.

2) If x ∈ G(S), then there exist i ∈ {1, . . . , t} and k ∈ N\{0} such that gi− kx ∈ S.

Proof. 1) implies 2). Let x∈G(S). Since S � 〈S,x〉, we have that 〈S,x〉∩{g1, . . . ,gt}
is not empty. Hence there exist i ∈ {1, . . . , t}, k ∈ N \ {0} and s ∈ S such that gi =
s+ kx. This leads to gi− kx ∈ S.

2) implies 1). Let T be a numerical semigroup such that S � T . Take x ∈ T \ S.

Then S � 〈S,x〉 ⊆ T and by hypothesis there exist i and k such that gi− kx ∈ S.

Hence gi ∈ 〈S,x〉, which implies that gi ∈ T . ��
Proposition 4.40. Let S be a numerical semigroup and {g1, . . . ,gt} ⊆G(S). If there
exists

h = max{x ∈ Z\S | 2x ∈ S,gi− x ∈ S for all i ∈ {1, . . . , t}} ,

then S∪{h} is a numerical semigroup not intersecting {g1, . . . ,gt}.
Proof. By Proposition 4.33, we must prove that h ∈ SG(S). Clearly 2h ∈ S. Assume

that there exists s ∈ S \ {0} such that h + s ∈ S. Since 2(h + s) ∈ S and h < h + s,

we get that gi− (h + s) ∈ S for some i ∈ {1, . . . , t}. But this yields gi− h ∈ S, in

contradiction with the definition of h. ��
Corollary 4.41. Let S be a numerical semigroup and {g1, . . . ,gt} ⊆ G(S). The fol-
lowing conditions are equivalent.

1) S is maximal in the set of all numerical semigroups whose intersection with
{g1, . . . ,gt} is empty.

2) For every x ∈ N, if x ∈ G(S) and 2x ∈ S, then gi− x ∈ S for some i ∈ {1, . . . , t}.
Proof. 1) implies 2) follows from Proposition 4.40.

For the other implication, in view of Lemma 4.39, it suffices to show that for

every x∈G(S), there exist appropriate i and k such that gi−kx∈ S. Let x∈G(S) and

set k = max{n ∈ N\{0} | nx ∈ S}. Clearly kx ∈ G(S) and 2kx ∈ S. By hypothesis

gi− kx ∈ S for some i ∈ {1, . . . , t}. ��
As a consequence of these two results, we obtain a characterization of irreducible

numerical semigroups that gathers Conditions 1) and 2) of Proposition 4.4.

Corollary 4.42. Let S be a numerical semigroup. Then S is irreducible if and only
if for all x ∈ N, x ∈ G(S) and 2x ∈ S imply F(S)− x ∈ S.

Proof. Follows from Theorem 4.2 and Corollary 4.41. ��
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Let S be the set of all numerical semigroups. For {g1, . . . ,gt} ⊂ N, define

S (g1, . . . ,gt) =
{

S′ ∈S | S′ ∩{g1, . . . ,gt}= /0
}

.

Proposition 4.40 can be used to find a maximal element in S (g1, . . . ,gt). We only

have to take as starting point S = {0,max{g1, . . . ,gt}+1,→} and define recursively

• S0 = S,

• Sn+1 = Sn∪{h(Sn)}, where h(Sn) is

max{x ∈ G(Sn) | 2x ∈ Sn,gi− x ∈ Sn for all i ∈ {1, . . . , t}} ;

if h(Sn) does not exist, then Sn is the desired semigroup (Corollary 4.41 gives

this stop condition).

Example 4.43 ([90]). We compute an element in Maximals⊆(S (5,6)).

(1) S0 = S = {0,7,→}, h(S0) = 4,

(2) S1 = {0,4,7,→}, h(S1) does not exist and thus S1 belongs to

Maximals⊆(S (5,6)).

4 Decomposition of a numerical semigroup into irreducibles

We present a procedure to compute a decomposition of a given numerical semigroup

into irreducible numerical semigroups. We will also show how to obtain “minimal”

decompositions.

Let S be a numerical semigroup. If S is not irreducible, then there exists S1 and

S2 properly containing it such that S = S1∩S2. We might wonder now if S1 or S2 are

irreducible, and in the negative write them as an intersection of two other numerical

semigroups. We can repeat several times this process, but only a finite number of

times, since every numerical semigroup appearing in this procedure properly con-

tains S and O(S) is finite.

Proposition 4.44. Every numerical semigroup can be expressed as the intersection
of finitely many irreducible numerical semigroups.

Recall that we have a procedure to construct O(S) for any numerical semigroup

S, based on the computation of the set SG(S). While performing this procedure we

can choose those over semigroups with at most one special gap, which in view of

Corollary 4.38 are those irreducible oversemigroups of S. Denote by

I (S) = {T ∈O(S) | T is irreducible} .

It follows that S =
⋂

T∈I (S) T . We can remove from this intersection those elements

that are not minimal with respect to set inclusion, and the resulting semigroup re-

mains unchanged.
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Proposition 4.45. Let S be a numerical semigroup and let

{S1, . . . ,Sn}= Minimals⊆I (S).

Then
S = S1∩·· ·∩Sn.

This decomposition does not have to be minimal (in the sense of minimal number

of irreducibles involved) as the following example shows.

Example 4.46 ([90]). Let S = 〈5,6,8〉. We compute the set Minimals⊆I (S). Since

EH(S) = {7,9}, by Proposition 4.33, S ∪ {7} and S ∪ {9} are numerical semi-

groups. As SG(S∪{7}) = {9}, S∪{7} is irreducible (Corollary 4.38), which im-

plies that it belongs to Minimals⊆(I (S)). The semigroup S∪{9} is not irreducible

(SG(S∪ {9}) = {3,4,7}). By Proposition 4.33 the sets S∪ {9,3}, S∪ {9,7} and

S∪ {9,4} are also numerical semigroups. Both S∪ {9,3} and S∪ {9,4} are irre-

ducible semigroups, and S∪ {9,7} contains the semigroup S∪ {7} (the first irre-

ducible we have found). Hence the set

Minimals⊆(I (S)) = {S∪{7},S∪{9,3},S∪{9,4}}.

Finally,

S = (S∪{7})∩ (S∪{9,4})∩ (S∪{9,3}) = (S∪{7})∩ (S∪{9,4}). ��

When looking for the least n such that S = S1 ∩ ·· · ∩ Sn, with S1, . . . ,Sn ∈
I (S), then it suffices to search among the decompositions with elements in

Minimals⊆(I (S)).

Proposition 4.47. Let S be a numerical semigroup. If S = S1∩ ·· ·∩Sn with S1, . . . ,
Sn ∈I (S), then there exists S′1, . . . ,S

′
n ∈Minimals⊆(I (S)) such that

S = S′1∩·· ·∩S′n.

Proof. For every i ∈ {1, . . . ,n}, if Si does not belong to Minimals⊆(I (S)), then

take S′i ∈Minimals⊆(I (S)) such that S′i ⊆ Si. ��
The next proposition gives a clue on which semigroups must appear in a minimal

decomposition.

Proposition 4.48. Let S be a numerical semigroup and let S1, . . . ,Sn ∈ O(S). The
following conditions are equivalent.

1) S = S1∩·· ·∩Sn.
2) For all h ∈ SG(S), there exists i ∈ {1, . . . ,n} such that h ∈ Si.

Proof. 1) implies 2). If h∈ SG(S), then h ∈ S and thus h ∈ Si for some i∈ {1, . . . ,n}.
2) implies 1). If S � S1∩·· ·∩Sn, then by Lemma 4.35, h = max((S1∩·· ·∩Sn)\S)

is in SG(S), and in all the Si, in a contradiction with the hypothesis. ��
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We can compute Minimals⊆(I (S)) = {S1, . . . ,Sn}. For every i ∈ {1, . . . ,n}, set

C(Si) = {h ∈ SG(S) | h ∈ Si } .

By Proposition 4.48 we know that

S = Si1 ∩·· ·∩Sir if and only if C(Si1)∪·· ·∪C(Sir) = SG(S).

From the above results we can obtain a method for computing a decomposition

of S as an intersection of irreducible semigroups with the least possible number of

them.

For a set Y , we use #Y to denote its cardinality.

Algorithm 4.49. Let S be a non-irreducible semigroup.

(1) Compute the set SG(S).
(2) Set I = /0 and C = {S}.
(3) For all S′ ∈C, compute (using Proposition 4.33) all the semigroups S such that

#(S \ S′) = 1. Remove S′ from C. Let B be the set formed by the semigroups

constructed in this way.

(4) Remove from B the semigroups S′ fulfilling that SG(S)⊆ S′.
(5) Remove from B the semigroups S′ such that there exists S̃ ∈ I with S̃⊆ S′.
(6) Set C = {S′ ∈ B | S′ is not irreducible}.
(7) Set I = I∪{S′ ∈ B | S′ is irreducible}.
(8) If C = /0, go to Step 3.

(9) For every S ∈ I, compute C(S).
(10) Choose {S1, . . . ,Sr} such that r is minimum fulfilling that

C(S1)∪·· ·∪C(Sr) = SG(S).

(11) Return S1, . . . ,Sr.

Next we illustrate this method with an example.

Example 4.50. We take again the semigroup S = 〈5,6,8〉. We have that SG(S) =
{7,9}. Performing the steps of the above algorithm we get (in Steps 6 and 7) that

I = {〈5,6,7,8〉} and C = {〈5,6,8,9〉}}. Since C = /0, we go back to Step 3 obtaining

that I = {〈5,6,7,8〉,〈3,5〉,〈4,5,6〉} and C = /0. Step 8 yields

C(〈5,6,7,8〉) = {9}, C(〈3,5〉) = {7}, C(〈4,5,6〉) = {7}.

The minimal decompositions of S are

S = 〈5,6,7,8〉∩ 〈3,5〉

and

S = 〈5,6,7,8〉∩ 〈4,5,6〉.
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Given a numerical semigroup we can consider two kinds of minimality in a de-

composition of this semigroup into irreducibles. The first is in terms of the cardinal-

ity, that is minimal in the sense that the least possible number of irreducibles appear

in the decomposition. The second is in terms of redundancy, that is, a decomposi-

tion is minimal if no semigroup involved is redundant (cannot be eliminated and the

intersection remains the same), or in other words, it cannot be refined into a smaller

decomposition. Both concepts do not coincide. Clearly a decomposition with the

least possible number of irreducibles involved cannot be refined. However there are

decompositions that cannot be refined with more irreducibles than other decompo-

sitions.

Example 4.51. The numerical semigroup S = 〈5,21,24,28,32〉 can be expressed as

S = 〈5,9,12,13〉∩ 〈5,11,12,13〉∩ 〈5,12,14,16〉∩ 〈5,14,16,18〉

and as

S = 〈5,7〉∩ 〈5,8〉.
Let us make the computations with the numericalsgps package.

gap> s:=NumericalSemigroup(5,21,24,28,32);
<Numerical semigroup with 5 generators>
gap> DecomposeIntoIrreducibles(s);
[ <Numerical semigroup>, <Numerical semigroup>,
<Numerical semigroup>, <Numerical semigroup> ]
gap> l:=last;;
gap> List(l,
> MinimalGeneratingSystemOfNumericalSemigroup);
[ [ 5, 9, 12, 13 ], [ 5, 11, 12, 13 ],
[ 5, 12, 14, 16 ], [ 5, 14, 16, 18 ] ]
gap> s=IntersectionOfNumericalSemigroups(
>NumericalSemigroup(5,7),NumericalSemigroup(5,8));
true
gap> s=IntersectionOfNumericalSemigroups(l[1],
> IntersectionOfNumericalSemigroups(l[2],l[3]));
false
gap> s=IntersectionOfNumericalSemigroups(l[1],
> IntersectionOfNumericalSemigroups(l[2],l[4]));
false
gap> s=IntersectionOfNumericalSemigroups(l[1],
> IntersectionOfNumericalSemigroups(l[3],l[4]));
false
gap> s=IntersectionOfNumericalSemigroups(l[2],
> IntersectionOfNumericalSemigroups(l[3],l[4]));
false
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5 Fundamental gaps of a numerical semigroup

In view of Proposition 4.37, if S is a numerical semigroup, the set SG(S) determines

S up to maximality (with respect to set inclusion). This does not mean that it deter-

mines it uniquely. There can be found numerical semigroups S and T with T = S
and SG(S) = SG(T ) (this implies that neither S⊆ T nor T ⊆ S).

Example 4.52. For S in {〈3,8,13〉,〈4,7,9〉,〈6,7,8,9,11〉}, SG(S) = {10}.
We present in this section a subset of the set of gaps of a numerical semigroup that

fully determines it. This subset was introduced in [91]. Most of the results appearing

in this section can be found there.

Let S be a numerical semigroup. We say that a set X of positive integers deter-

mines the gaps of S if S is the maximum (with respect to set inclusion) numerical

semigroup such that X ⊆ G(S).
Given X ⊆ N we denote by D(X) the set of all positive divisors of the elements

of X , that is,

D(X) = {a ∈ N | a divides some x ∈ X } .

Proposition 4.53. Let X be a finite set of positive integers. The following conditions
are equivalent.

1) The set X determines the gaps of a numerical semigroup.
2) N\D(X) is a numerical semigroup.

If these conditions hold, then X determines the gaps of the numerical semigroup
N\D(X).

Proof. 1) implies 2). Let S be the numerical semigroup whose gaps are determined

by X . Since X ⊆ G(S), we have that D(X) ⊆ G(S) and thus S ⊆ N \D(X). Take

a ∈ N \D(X). Then S′ = 〈a,max(X) + 1,→〉 is a numerical semigroup such that

X ⊆ G(S′), and from the definition of S, we have that S′ ⊆ S. Hence a ∈ S and

this proves that N\D(X) = S. In particular we obtain that N\D(X) is a numerical

semigroup.

2) implies 1). Obviously, N \D(X) is the numerical semigroup whose gaps are

determined by X . ��
Proposition 4.54. Let S be a numerical semigroup and let X be a subset of G(S).
The following conditions are equivalent.

1) X determines the gaps of S.
2) For every a ∈ N, if a ∈ G(S) and {2a,3a} ⊂ S, then a ∈ X.

Proof. If X determines the gaps of S, then by applying Proposition 4.53, we have

that S = N\D(X), and consequently G(S) = D(X). If a is an element of G(S), then

there exists x ∈ X such that a | x and thus ka = x for some k ∈ N. If in addition we

assume that {2a,3a} ⊂ S, we have that la ∈ S for every positive integer l greater

than one. Therefore k = 1 and a = x ∈ X .
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For the other implication, in view of Proposition 4.53, it suffices to prove that

S = N \D(X). By hypothesis X ⊆ G(S) and thus D(X) ⊆ G(S). Hence S ⊆ N \
D(X). If a is a nonnegative integer not belonging to S, then a ∈ G(S). Let k =
max{n ∈ N | na ∈ G(S)} (G(S) is finite, 0 ∈ G(S) and thus k ∈ N\{0}). It follows

that ka ∈ G(S) and {2ka,3ka} ⊂ S. This implies by hypothesis that ka ∈ X , and

consequently a ∈ D(X). This proves S = N\D(X). ��
This result motivates the following definition. A gap x of a numerical semigroup

S is fundamental if {2x,3x} ⊂ S (or equivalently, kx ∈ S for all k > 1). We denote

by FG(S) the set of fundamental gaps of S.

Example 4.55. Let S = 〈5,8,9〉= {0,5,8,9,10,13,→}. Then FG(S) = {7,11,12}.
With this new notation we can reformulate Proposition 4.54.

Corollary 4.56. Let S be a numerical semigroup and let X be a subset of G(S). Then
X determines the gaps of S if and only if FG(S)⊆ X.

Hence for a numerical semigroup S, FG(S) is just the smallest (with respect to

set inclusion) subset of G(S) determining the gaps of S. Two different elements of

FG(S) are not comparable with respect to the divisibility relation.

Proposition 4.57. Let X be a finite subset of N \{0}. The following conditions are
equivalent.

1) There exists a numerical semigroup S such that FG(S) = X.
2) N\D(X) is a numerical semigroup and x  |y for all x,y ∈ X such that x = y.

Proof. 1) implies 2). This implication has been already proved.

2) implies 1). If S = N \D(X) is a numerical semigroup, then X determines

its gaps. Moreover, by applying Corollary 4.56 we get that FG(S) ⊆ X . From the

hypothesis x  |y for all x,y ∈ X , x = y, it follows that for every x ∈ X , we have

that {2x,3x}∩D(X) is empty. Hence x ∈ G(S) and {2x,3x} ⊂ S. This means that

x ∈ FG(S). ��
Let S be a numerical semigroup and let x∈ SG(S). Then 3x = x+2x∈ S, because

2x∈ S by definition. Hence SG(S)⊆ FG(S). Moreover, the condition x+s∈ S for all

s ∈ S∗ implies that the elements of SG(S) are those maximal in FG(S) with respect

to the ordering ≤S.

Proposition 4.58. Let S be a numerical semigroup. Then

SG(S) = Maximals≤S FG(S).

Corollary 4.38 can be reformulated according to this information.

Corollary 4.59. Let S be a numerical semigroup. Then S is irreducible if and only
if the set Maximals≤S FG(S) has at most one element.

The set of fundamental gaps of a numerical semigroup give an alternative way to

construct the set of all its oversemigroups (see [91]).
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Exercises

Exercise 4.1 ([73]). Prove that S is a pseudo-symmetric numerical semigroup with

multiplicity four if and only if S = 〈4,x+2,x+4〉 with x an odd integer greater than

or equal to three.

Exercise 4.2 ([73]). Let S be an irreducible numerical semigroup and let n ∈ S be

greater than or equal to four. If Ap(S,n) = {0 = w0 < w1 < · · · < wn−1}, then

S′ = 〈n,w1 +n, . . . ,wn−2 +n〉 is a numerical semigroup with multiplicity n and em-

bedding dimension n−1.

Exercise 4.3 ([73]). Let S be an irreducible numerical semigroup with m(S) ≥ 5

and e(S) = m(S)− 1. Assume that {n1 < n2 < · · · < nn1−1} is a minimal system

of generators of S. Prove that S′ = 〈n1,n2 − n1, . . . ,nn1−1 − n1〉 is an irreducible

numerical semigroup.

Exercise 4.4 ([73]). Prove that there exists a one-to-one correspondence between

the set of irreducible numerical semigroups with multiplicity m ≥ 5 and Frobenius

number F , and the set of irreducible numerical semigroups S with m(S) = m, F(S) =
F +2m and with any minimal generator other than the multiplicity greater than twice

the multiplicity.

Exercise 4.5 ([32, 33]). Let a and b be integers such that 0 < a < b and let S =
〈a,a+1, . . . ,a+b〉. Prove that S is symmetric if and only if a≡ 2 mod b.

Exercise 4.6 ([70]). Let S be a numerical semigroup and let x ∈ G(S). Prove that

there exist an irreducible numerical semigroup T with S⊂ T and F(T ) = x.

Exercise 4.7 ([70]). Let S be a numerical semigroup and let { f1, . . . , fr} = { f ∈
PF(S) | f > F(S)/2}. Prove that there exist irreducible numerical semigroups

S1, . . . ,Sr such that F(Si) = fi for all i ∈ {1, . . . ,r} and S = S1∩·· ·∩Sr.

Exercise 4.8 ([71]). Prove that S can be expressed as an intersection of symmetric

numerical semigroups if and only if for all even integer x ∈ G(S) there exists a pos-

itive odd integer y such that x+y ∈ 〈S,y〉. Show that 〈4,5,6,7〉 cannot be expressed

as an intersection of symmetric numerical semigroups.

Exercise 4.9 ([71]). Show that if all the pseudo-Frobenius numbers of a numeri-

cal semigroup S are odd, then S can be expressed as an intersection of symmetric

numerical semigroups. Prove that S = 〈5,21,24,28,32〉 is the intersection of some

symmetric numerical semigroups, and that 16 ∈ PF(S).

Exercise 4.10 ([91]). For a positive integer, define D(a) as D({a}). Prove that N \
D(a) is a numerical semigroup if and only if a ∈ {1,2,3,4,6}.
Exercise 4.11 ([91]). Let S be a numerical semigroup. Show that⌈

F(S)
6

⌉
≤ #FG(S)≤

⌈
F(S)

2

⌉
.
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Exercise 4.12 ([68]). Let S be a symmetric numerical semigroup with m(S)≥ 3 and

let T = S∪{F(S)}. Prove that t(T ) = e(S) = e(T )−1.

Exercise 4.13 ([68]). Let m and t be integers such that 1 ≤ t ≤ m− 1. Show that

there exists a numerical semigroup S with t(S) = t and m(S) = m.

Exercise 4.14 ([68]). Let S be a symmetric numerical semigroup and let x be a min-

imal generator of S. Show that if x < F(S), then

{F(S),x} ⊆ PF(S\{x})⊆ {F(S),x,F(S)− x}.

Exercise 4.15 ([68]). Let m be a positive integer greater than or equal to 3. Prove

that 〈m,m + 1, . . . ,m + m−2〉 is a symmetric numerical semigroup with Frobenius

number 2m−1.

Exercise 4.16 ([68]). Prove that if e is an integer greater than or equal to 3, then

there exists a numerical semigroup with e(S) = e and t(S) = 2 (Hint: Use Exercise

4.15 with m = e+2 and remove the minimal generator 2e+2).

Exercise 4.17 ([68]). Prove that if e is an integer greater than or equal to 4, then

there exists a numerical semigroup with e(S) = e and t(S) = 3 (Hint: Use Exercise

4.15 with m = e and remove the minimal generator e).

Exercise 4.18 ([65]). Let S be a pseudo-symmetric numerical semigroup and let x
be a minimal generator of S. Show that if x < F(S), then

{F(S),x} ⊆ PF(S\{x})⊆ {F(S),x,
F(S)

2
,F(S)− x}.

Exercise 4.19 ([65]). Prove that if e is an integer greater than or equal to 4, then

there exists a numerical semigroup with e(S) = e and t(S) = 4.

Exercise 4.20. Let S be an irreducible numerical semigroup and let n be a minimal

generator of S. Prove that if F(S)−n ∈ SG(S \{n}), then (S \{n})∪{F(S)−n} is

also an irreducible numerical semigroup. (This gives a procedure to construct the

set of all irreducible numerical semigroups with given Frobenius number.)

Exercise 4.21 ([5]). Let S be a numerical semigroup. Show that S is symmetric if

and only if for every relative ideal I of S, I•• = I (see Exercise 2.13). The reader can

check that the result is also true for principal relative ideals of the form x+S with x
a positive integer.

Exercise 4.22 ([4]). Let S be a numerical semigroup and let Ω be its canonical ideal

(see Exercise 2.14). Prove that S is symmetric if and only if S = Ω .

Exercise 4.23 ([34]). Let f be a positive integer. Assume that 2 | f , 3 | f and 4 | f .

Let α and q be such that f = 3α q, with gcd{3,q}= 1 (and thus 4 | q). Then

S = 〈3α+1,
q
2

+3,3α q
4

+
q
2

+3,3α q
2

+
q
2

+3〉

is an irreducible numerical semigroup with F(S) = f .
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Exercise 4.24 ([34]). Every positive integer is the Frobenius number of an irre-

ducible numerical semigroup with at most four generators (Hint: Let f be such an

integer; if f is odd, use 〈2, f +2〉; if f is even and not a multiple of three use Lemma

4.27; if f is a multiple of two and three, and not a multiple of four, use Exercise 4.1;

finally for the rest of the cases use Exercise 4.23).

Exercise 4.25 ([8]). Prove that every irreducible numerical semigroup that is not a

half-line is acute (see Exercise 2.8).

Exercise 4.26 ([4]). Let S be a numerical semigroup, let M be its maximal ideal

(Exercise 2.13), and let Ω be its canonical ideal (Exercise 2.14). Prove that #(Ω \
(Ω +M)) = #(Ω \S)+1 if and only if M = Ω +M. A numerical semigroup fulfilling

any of these equivalent conditions is called almost symmetric.



Chapter 4
Proportionally modular numerical semigroups

Introduction

In [94] the authors introduce the concept of a modular Diophantine inequality. The

set of integer solutions of such an inequality is a numerical semigroup. In that

manuscript it is shown that the genus of these semigroups can be obtained from

the coefficients of the inequality. However, to date we still do not know formulas for

the Frobenius number or the multiplicity of the semigroup of solutions of a modular

Diophantine inequality.

Later in [92] these inequalities are slightly modified obtaining a wider class of

numerical semigroups. The new inequalities are called proportionally modular Dio-

phantine inequalities. In [95] the concept of Bézout sequence is introduced, which

became an important tool for the study of this type of numerical semigroup. These

sequences are tightly related to Farey sequences (see [40] for the definition and

properties of Farey sequences) and to the Stern-Brocot tree (see [38]).

1 Periodic subadditive functions

We introduce the concept of periodic subadditive function. We show that to every

such mapping there exists a numerical semigroup. This correspondence also goes

in the other direction; for every numerical semigroup and every nonzero element in

it, we find a periodic subadditive function associated to them. The contents of this

section can be found in [66].

Let Q+
0 denote the set of nonnegative rational numbers. A subadditive function

is a map f : N→Q+
0 such that

(1) f (0) = 0,

(2) f (x+ y)≤ f (x)+ f (y) for all x,y ∈ N.

From this definition it is easy to prove our next result, in which we see that every

subadditive function has a submonoid of N associated to it.
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Lemma 5.1. Let f : N→Q+
0 be a subadditive function. Then

M( f ) = {x ∈ N | f (x)≤ x}

is a submonoid of N.

Let m be a positive integer. The map f : N→Q+
0 has period m if f (x+m) = f (x)

for all x ∈ N. We denote by SFm the set of m-periodic subadditive functions. If

f ∈SFm, then we know that M( f ) is a submonoid of N. Clearly, for every x ∈ N

such that x ≥ max{ f (0), . . . , f (m− 1)} one has that x ∈M( f ), which implies that

N\M( f ) is finite. This proves the following lemma.

Lemma 5.2. Let m be a positive integer and let f ∈SFm. Then M( f ) is a numer-
ical semigroup.

The use of subadditive functions is inspired in the following result, which is a

direct consequence of Lemma 2.6 and Proposition 3.5.

Lemma 5.3. Let S be a numerical semigroup and let m be a nonzero element of S.
Assume that Ap(S,m) = {w(0) = 0,w(1), . . . ,w(m− 1)} with w(i) ≡ i mod m for
all i ∈ {0, . . . ,m− 1}. Define f : N→ N by f (x) = w(x mod m). Then f ∈SFm
and M( f ) = S.

If m is a positive integer and f ∈SFm, then as 0 = f (0) = f (0 + m) = f (m),
we have that f (m)≤ m, or equivalently m ∈M( f ), as expected.

Lemma 5.4. Let m be a positive integer and f ∈SFm. Then m ∈M( f ).

Let Sm be the set of numerical semigroups containing m. As a consequence of the

results given so far in this section, we obtain the following result which shows the

tight connection between numerical semigroups and periodic subadditive functions.

Theorem 5.5. Let m be a positive integer. Then

Sm = {M( f ) | f ∈SFm } .

We now introduce a family of periodic subadditive functions whose associated

semigroups will be the subject of study for the rest of this chapter.

Let a, b and c be positive integers. The map

f : N→Q+
0 , f (x) =

ax mod b
c

is a subadditive function of period b. Hence

S(a,b,c) = M( f ) =
{

x ∈ N
∣∣∣ ax mod b

c
≤ x

}
= {x ∈ N | ax mod b≤ cx}

is a numerical semigroup.
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A proportionally modular Diophantine inequality is an expression of the form

ax mod b ≤ cx, with a, b and c positive integers. The integers a, b and c are called

the factor, modulus and proportion, respectively. The semigroup S(a,b,c) is the set

of integer solutions of a proportionally modular Diophantine inequality. A numerical

semigroup of this form will be called proportionally modular.

Example 5.6. S(12,32,3) = {x ∈ N | 12x mod 32≤ 3x}= {0,3,6,→}= 〈3,7,8〉.

2 The numerical semigroup associated to an interval of rational
numbers

We observe in this section that proportionally modular numerical semigroups are

precisely the set of numerators of the fractions belonging to a bounded interval. The

results of this section also appear in [92].

Given a subset A of Q+
0 , we denote by 〈A〉, the submonoid of Q+

0 generated by

A, that is,

〈A〉= {λ1a1 + · · ·+λnan | a1, . . . ,an ∈ A and λ1, . . . ,λn ∈ N} .

Clearly S(A) = 〈A〉∩N is a submonoid of N (we use the same letter we are using for

proportionally modular numerical semigroups by reasons that will become obvious

later). We say that S(A) is the numerical semigroup associated to A.

Given two rational numbers λ < μ , we use [λ ,μ], [λ ,μ[, ]λ ,μ] and ]λ ,μ[ to de-

note the closed, right-opened, left-opened and opened intervals of rational numbers

between λ and μ .

In this section, I denotes any of these intervals with 0≤ λ < μ .

Lemma 5.7. Let x1, . . . ,xk ∈ I, then 1
k (x1 + · · ·+ xk) ∈ I.

Proof. As k(min{x1, . . . ,xk}) ≤ x1 + · · ·+ xk ≤ k(max{x1, . . . ,xk}), we have that

min{x1, . . . ,xk} ≤ x1+···+xk
k ≤max{x1, . . . ,xk}, and thus 1

k (x1 + · · ·+ xk) is in I. ��
The set S(I) coincides with the set of numerators of the fractions belonging to I.

This fact follows from the next result.

Lemma 5.8. Let x be a positive rational number. Then x ∈ 〈I〉 if and only if there
exists a positive integer k such that x

k ∈ I.

Proof. If x ∈ 〈I〉, then by definition x = λ1x1 + · · ·+ λkxk for some λ1, . . . ,λk ∈ N

and x1, . . . ,xk ∈ I. By Lemma 5.7, x
λ1+···+λk

∈ I.

If x
k ∈ I, then trivially k x

k ∈ 〈I〉. ��
We now see that every proportionally modular numerical semigroup can be re-

alized as the numerical semigroup associated to a closed interval whose ends are

determined by the factor, modulus and proportion of the semigroup.
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Lemma 5.9. Let a, b and c be positive integers with c < a. Then

S(a,b,c) = S

([
b
a
,

b
a− c

])
.

Proof. Let x∈ S(a,b,c)\{0}. Then ax mod b≤ cx. Hence there exists a nonnegative

integer k such that 0≤ ax−kb≤ cx. If k = 0, then ax≤ cx, contradicting c < a. Thus

k = 0 and b
a ≤ x

k ≤ b
a−c . By Lemma 5.8, we obtain x ∈ S

([ b
a , b

a−c

])
.

Now take x ∈ S
([ b

a , b
a−c

]) \ {0}. By Lemma 5.8 again, there exists a positive

integer k such that b
a ≤ x

k ≤ b
a−c . This implies that 0≤ ax−kb≤ cx, and consequently

ax mod b≤ cx. ��
Remark 5.10. The condition c < a might seem restrictive. However this is not the

case, because if c≥ a, then the semigroup S(a,b,c) is equal to N.

Note also that the inequality ax mod b≤ cx has the same set of integer solutions

as (a mod b)x mod b≤ cx. Hence we can, in our study of Diophantine proportionally

modular inequalities, assume that 0 < c < a < b.

Example 5.11. S(44,32,3) = S(12,32,3) = S
([

32
12 , 32

9

])
= S

([
8
3 , 32

9

])
= N∩({0}∪[

8
3 , 32

9

]∪ [ 16
3 , 64

9

]∪ [8, 32
3

]∪·· ·) = {0,3,6,→}.
Numerical semigroups associated to closed intervals are always proportionally

modular. Its factor, modulus and proportion are determined by the ends of the inter-

val. This result is a sort of converse to Lemma 5.9.

Lemma 5.12. Let a1, a2, b1 and b2 be positive integers with b1
a1

< b2
a2

. Then

S

([
b1

a1
,

b2

a2

])
= S(a1b2,b1b2,a1b2−a2b1).

Proof. Note that S
([

b1
a1

, b2
a2

])
= S

([
b1b2
a1b2

, b1b2
b1a2

])
. The proof now follows by Lem-

ma 5.9. ��
With this we can show that the numerical semigroup associated to a bounded

interval is proportionally modular.

Lemma 5.13. S(I) is a proportionally modular numerical semigroup.

Proof. As S(I) = 〈I〉 ∩N, we have that S(I) is a submonoid of N. Take α and β
in I with α < β . Then S([α,β ]) ⊆ S(I) because [α,β ] ⊆ I. By Lemma 5.12 and

Theorem 5.5, we know that S([α,β ]) is a numerical semigroup, and thus has finite

complement in N. This forces S(I) to have finite complement in N, which proves

that it is a numerical semigroup.

Let {n1, . . . ,np} be the minimal generating system of S(I). By Lemma 5.8, there

exist positive integers d1, . . . ,dp such that ni
di
∈ I for all i ∈ {1, . . . , p}. After rear-

ranging the set {n1, . . . ,np}, assume that
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n1

d1
< · · ·< np

dp
.

Then S
([

n1
d1

,
np
dp

])
⊆ S(I), and by Lemma 5.8 again, {n1, . . . ,np} ⊆ S

([
n1
d1

,
np
dp

])
.

Thus S
([

n1
d1

,
np
dp

])
= S(I). In view of Lemma 5.12, S(I) is proportionally modular.

��
With all these results we obtain the following characterization for proportionally

modular numerical semigroups, which states that the set of solutions of a propor-

tionally modular Diophantine inequality coincides with the set of numerators of all

the fractions in a bounded interval.

Theorem 5.14. Let S be a numerical semigroup. The following conditions are equiv-
alent.

1) S is proportionally modular.
2) There exist rational numbers α and β , with 0 < α < β , such that S = S([α,β ]).
3) There exists a bounded interval of positive rational numbers such that S = S(I).

3 Bézout sequences

In this section we introduce the concept of Bézout sequence. As we have mentioned

at the beginning of this chapter, this is one of the main tools used for the study of

the set of integer solutions of a proportionally modular Diophantine inequality. This

sequences and their relation with proportionally modular numerical semigroups are

the main topic of [95].

A sequence of fractions a1
b1

< a2
b2

< · · · < ap
bp

is a Bézout sequence if a1, . . . ,ap,

b1, . . . ,bp are positive integers such that ai+1bi−aibi+1 = 1 for all i∈ {1, . . . , p−1}.
We say that p is the length of the sequence, and that a1

b1
and

ap
bp

are its ends.

Bézout sequences are tightly connected with proportionally modular numerical

semigroups. The first motivation to introduce this concept is the following property.

Proposition 5.15. Let a1, b1, a2 and b2 be positive integers such that a1b2−a2b1 =
1. Then S

([
b1
a1

, b2
a2

])
= 〈b1,b2〉.

Proof. Let x∈ 〈b1,b2〉\{0}. Then x = λb1 +μb2 for some λ ,μ ∈N, not both equal

to zero. As
b1

a1
≤ λb1 + μb2

λa1 + μa2
=

x
λa1 + μa2

≤ b2

a2
,

in view of Lemma 5.8, x ∈ S
([

b1
a1

, b2
a2

])
.

From Lemma 5.12, by using that a1b2−a2b1 = 1, we know that

S

([
b1

a1
,

b2

a2

])
= S(a1b2,b1b2,1).
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If x ∈ S
([

b1
a1

, b2
a2

])
, then a1b2x mod b1b2 ≤ x, and thus b2(a1x mod b1)≤ x. Since

x =
x− (a1x mod b1)b2

b1
b1 +(a1x mod b1)b2,

for proving that x ∈ 〈b1,b2〉, it suffices to show that
x−(a1x mod b1)b2

b1
∈ Z (we al-

ready know that it is nonnegative). Or equivalently, that (a1x mod b1)b2 and x
are congruent modulo b1. Note that (a1x mod b1)b2 = a1b2x mod b1b2 = (1 +
b1a2)x mod b1b2 = x+b1a2x+ kb1b2 = x+b1(a2x+ kb2) for some integer k. ��
Remark 5.16. Assume now that a1

b1
< a2

b2
< · · · < ap

bp
is a Bézout sequence. From

Lemma 5.8 a positive integer belongs to S
([

a1
b1

,
ap
bp

])
if and only if there exists

a positive integer k such that x
k ∈

[
a1
b1

,
ap
bp

]
. Note that x

k ∈
[

a1
b1

,
ap
bp

]
if and only if

x
k ∈

[
ai
bi

,
ai+1
bi+1

]
for some i ∈ {1, . . . , p−1}. This is equivalent to x ∈ S

([
ai
bi

,
ai+1
bi+1

])
in

view of Lemma 5.8 again. Proposition 5.15 states then that x ∈ S
([

a1
b1

,
ap
bp

])
if and

only if x ∈ 〈ai,ai+1〉 for some i ∈ {1, . . . , p−1}. That is,

S

([
a1

b1
,

ap

bp

])
= 〈a1,a2〉∪ 〈a2,a3〉∪ · · ·∪ 〈ap−1,ap〉.

This also proves the following.

Corollary 5.17. Let a1
b1

< a2
b2

< · · ·< ap
bp

be a Bézout sequence. Then

S

([
a1

b1
,

ap

bp

])
= 〈a1,a2, . . . ,ap〉.

Example 5.18. Let us find the integer solutions to 50x mod 131≤ 3x. We know that

the set of solutions to this inequality is S
([

131
50 , 131

47

])
. As

131

50
<

76

29
<

21

8
<

8

3
<

11

4
<

25

9
<

39

14
<

131

47

is a Bézout sequence, we have that S
([

131
50 , 131

47

])
= 〈131,76,21,8,11,25,39〉 =

〈8,11,21,25,39〉.
In this example we have given the Bézout sequence connecting the ends of the

interval defining the semigroup of solutions to the Diophantine inequality. We will

soon learn how to construct such a sequence once we know the ends of an interval.

As another consequence of Proposition 5.15, we obtain that every numerical

semigroup with embedding dimension two is proportionally modular.

Corollary 5.19. Every numerical semigroup of embedding dimension two is pro-
portionally modular.
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Proof. Let S be a numerical semigroup of embedding dimension two. There ex-

ist two relatively prime integers a and b greater than one such that S = 〈a,b〉. By

Bézout’s identity, there exist positive integers u and v such that bu−av = 1. Propo-

sition 5.15 ensures that S = 〈a,b〉= S
([ a

u , b
v

])
. Theorem 5.14 tells us that S is pro-

portionally modular. ��
Next we will show that given two positive rational numbers, there exists a Bézout

sequence whose ends are these numbers. First, we see that the numerators and de-

nominators of the fractions belonging to an interval whose ends are rational num-

bers admit special expressions in terms of the numerators and denominators of these

ends.

Lemma 5.20. Let a1,a2,b1,b2,x and y be positive integers such that a1
b1

< a2
b2

. Then
a1
b1

< x
y < a2

b2
if and only if x

y = λa1+μa2
λb1+μb2

for some λ and μ positive integers.

Proof. Necessity. If a1
b1

< x
y < a2

b2
, then it is not difficult to show that (x,y) belongs

to the positive cone spanned by (a1,b1) and (a2,b2) (that is, to the set of pairs of

the form r(a1,b1)+ s(a2,b2) with r and s positive rational numbers). Hence there

exist positive rational numbers p1
q1

and p2
q2

such that (x,y) = p1
q1

(a1,b1)+ p2
q2

(a2,b2).
Thus q1q2x = p1q2a1 + p2q1a2 and q1q2y = p1q2b1 + p2q1b2, and consequently
x
y = q1q2x

q1q2y = p1q2a1+p2q1a2
p1q2b1+p2q1b2

.

Sufficiency. Follows from the fact that for any positive integers a,b,c and d, if
a
b < c

d , then a
b < a+c

b+d < c
d (this has already been used in Proposition 5.15). ��

The next result gives the basic step for constructing a Bézout sequence whose

ends are two given rational numbers.

Lemma 5.21. Let a1, a2, b1 and b2 be positive integers such that a1
b1

< a2
b2

and
gcd{a1,b1} = 1. Then there exist x,y ∈ N \ {0} such that a1

b1
< x

y < a2
b2

and b1x−
a1y = 1.

Proof. Observe that b1x− a1y = 1 if and only if x = 1+a1y
b1

. As gcd{a1,b1} = 1,

the equation a1y ≡ −1 mod b1 has infinitely many positive solutions. Hence x
y =

1+a1y
b1y = a1

b1
+ 1

b1y fulfills the desired inequalities for y a large-enough solution to the

equation a1y≡−1 mod b1. ��
Among all possible values arising from the preceding lemma, we fix one that

will enable us to apply induction for proving Theorem 5.23. As we will see next,

this choice will allow us to effectively construct a Bézout sequence with known

ends.

Lemma 5.22. Let a1, a2, b1 and b2 be positive integers such that a1
b1

< a2
b2

, gcd{a1,

b1}= gcd{a2,b2}= 1 and a2b1−a1b2 = d > 1. Then there exists t ∈ N, 1≤ t < d
such that gcd{ta1 +a2, tb1 +b2}= d.
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Proof. In view of Lemma 5.21, there exist x,y∈N such that a1
b1

< x
y < a2

b2
with b1x−

a1y = 1. Now, from Lemma 5.20, we have that x
y = λa1+μa2

λb1+μb2
for some λ ,μ ∈N\{0}.

As b1x−a1y = 1, we know that gcd{x,y}= 1 and thus x = λa1+μa2
gcd{λa1+μa2,λb1+μb2} and

y = λb1+μb2
gcd{λa1+μa2,λb1+μb2} . By substituting these values in b1x− a1y = 1 we deduce

that gcd{λa1 + μa2,λb1 + μb2} = μ(a2b1 − a1b2) = μd. Hence μ | λa1 + μa2

and μ | λb1 + μb2, and consequently μ | λa1 and μ | λb1. By using now that

gcd{a1,b1} = 1, we deduce that μ | λ . Let α = λ
μ ∈ N \ {0}. We have then that

d = gcd{αa1 +a2,αb1 +b2}.
Note that if d = gcd{a,b}, then d | (a− kd,b− kd) for all k,k ∈ N. By applying

this fact, we deduce that if t = α mod d, then d | gcd{ta1 + a2, tb1 + b2}. Besides,

b1
ta1+a2

d − a1
tb1+b2

d = b1a2−a1b2
d = d

d = 1. Hence gcd{ ta1+a2
d , tb1+b2

d } = 1 and thus

gcd{ta1 +a2, tb1 +b2}= d.

Since t = α mod d, obviously t < d; also t = 0, because gcd{a2,b2}= 1 = d. ��
Now we are ready to show that for every two positive rational numbers, we can

construct a Bézout sequence connecting them.

Theorem 5.23. Let a1, a2, b1 and b2 be positive integers such that a1
b1

< a2
b2

,
gcd{a1,b1} = gcd{a2,b2} = 1 and a2b1 − a1b2 = d. Then there exists a Bézout
sequence of length less than or equal to d +1 with ends a1

b1
and a2

b2
.

Proof. We proceed by induction on d. For d = 1 the result is trivial. Now assume

that the statement holds for all the integers k with 1 ≤ k < d. By Lemma 5.22, we

know that there exists a positive integer t, 1 ≤ t < d such that gcd{ta1 + a2, tb1 +
b2} = d. Let x1 = ta1+a2

d and y1 = tb1+b2
d . Since x1

y1
= ta1+a2

tb1+b2
, Lemma 5.20 asserts

that a1
b1

< x1
y1

< a2
b2

. Moreover, b1x1−a1y1 = b1
ta1+a2

d −a1
tb1+b2

d = b1a2−a1b2
d = d

d = 1

and a2y1−b2x1 = a2
tb1+b2

d −b2
ta1+a2

d = t(a2b1−a1b2)
d = td

d = t < d. By applying the

induction hypothesis to x1
y1

< a2
b2

, we deduce that there exists a Bézout sequence
x1
y1

< x2
y2

< · · ·< xs
ys

< a2
b2

with s≤ t. Hence, a1
b1

< x1
y1

< x2
y2

< · · ·< xs
ys

< a2
b2

is a Bézout

sequence of length less than or equal to t +2≤ d +1. ��
Remark 5.24. The proof of Theorem 5.23 gives an algorithmic procedure to com-

pute a Bézout sequence with known ends a1
b1

and a2
b2

. Thus we have a procedure to

compute a system of generators of S
([

a1
b1

, a2
b2

])
. We must first compute the least

positive integer t such that gcd{ta1 + a2, tb1 + b2} = d, and then repeat the proce-

dure with ( ta1+a2
d )/( tb1+b2

d ) < a2
b2

.

Example 5.25 ([95]). We start with the fractions 13/3 < 6/1. Here d = 5 and so

there exists t ∈ {1, . . . ,4} such that gcd{13t +6,3t +1}= 5. The choice t = 3 fulfills

the desired condition, whence we can place 3×13+6
3×3+1 = 9/2 between 13/3 and 6/1.

Now we proceed with 9/2 < 6/1, and obtain d = 3. In this setting gcd{1×9+6,1×
2 + 1} = 3. Thus we put 9+6

2+1 = 5
1 between 9/6 and 6/1. Finally for 5/1 < 6/1, it

holds that d = 1 and consequently the process stops. A Bézout sequence for the

given ends is
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13

3
<

9

2
<

5

1
<

6

1
.

Observe that Bézout sequences connecting two ends are not unique, since if a
b <

c
d is a Bézout sequence, then so is a

b < a+c
b+d < c

d .

4 Minimal generators of a proportionally modular numerical
semigroup

We have seen the connection between systems of generators of a proportionally

modular numerical semigroup and Bézout sequences. In this section we will try to

sharpen this connection in order to obtain the minimal system of generators of a

proportionally modular numerical semigroup. We follow the steps given in [95].

A Bézout sequence a1
b1

< a2
b2

< · · · < ap
bp

is proper if ai+hbi− aibi+h ≥ 2 for all

h ≥ 2 such that i, i + h ∈ {1, . . . , p}. Every Bézout sequence can be refined to a

proper Bézout sequence, by just removing those terms strictly between ai
bi

and
ai+h
bi+h

whenever ai+hbi−aibi+h = 1.

Example 5.26. The Bézout sequence 5
3 < 12

7 < 7
4 < 9

5 is not proper, and 5
3 < 7

4 < 9
5

is proper.

Lemma 5.27. Let a
u < b

v < c
w be a Bézout sequence. Then b = a+c

d with d = cu−aw.

Proof. The proof follows easily by taking into account that bu−av = cv−bw = 1.

��
The next result shows that the maximum of the set of numerators of a proper

Bézout sequence is always reached at one of its ends.

Lemma 5.28. Let a1
b1

< a2
b2

< · · ·< ap
bp

be a proper Bézout sequence. Then

max{a1,a2, . . . ,ap}= max{a1,ap}.

Proof. We proceed by induction on p. For p = 2, the statement is trivially true. We

assume as induction hypothesis that max{a2, . . . ,ap}= max{a2,ap}. We next show

that max{a1, . . . ,ap} = max{a1,ap}. If max{a2,ap} = ap, then the result follows

trivially. Let us assume then that max{a2,ap} = a2. If we apply Lemma 5.27 to

the Bézout sequence a1
b1

< a2
b2

< a3
b3

, then we obtain that a2 = a1+a3
a3b1−a1b3

, and as this

Bézout sequence is proper, a3b1− a1b3 ≥ 2. Hence a2 ≤ a1+a3
2 ≤ 2max{a1,a3}

2 . We

distinguish two cases depending on the value of max{a1,a3}.
• If max{a1,a3} = a3, then we deduce that a2 ≤ a3. Since max{a2, . . . ,ap} = a2,

this implies that a2 = a3. By using that a2
b2

< a3
b3

is a Bézout sequence and a2 = a3,

we obtain that a2(b2− b3) = 1, whence a2 = 1. Since a1 ≥ 1, we conclude that

max{a1, . . . ,ap}= a1.
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• If max{a1,a3}= a1, then a2 ≤ a1, and the proof follows easily. ��
As a consequence of this result, we have that the numerators of the fractions of a

proper Bézout sequence are arranged in a special way.

Proposition 5.29. Let a1
b1

< a2
b2

< · · · <
ap
bp

be a proper Bézout sequence. Then
a1, . . . ,ap is a convex sequence, that is, there exists h ∈ {1, . . . , p} such that

a1 ≥ a2 ≥ ·· · ≥ ah ≤ ah+1 ≤ ·· · ≤ ap.

Two fractions a1
b1

< a2
b2

are said to be adjacent if

a2

b2 +1
<

a1

b1
, and b1 = 1 or

a2

b2
<

a1

b1−1
.

As we will see later, this is the second condition required to obtain Bézout sequences

whose numerators represent minimal systems of generators.

First we show that 1 cannot be the numerator of a fraction in a Bézout sequence

of length two with adjacent ends.

Lemma 5.30. If a1
b1

< a2
b2

is a Bézout sequence whose ends are adjacent, then 1 ∈
{a1,a2}.
Proof. Assume that a1 = 1. Then 1 = a2b1− a1b2 = a2b1− b2. Since a2

b2+1 < 1
b1

,

we have that a2b1 < b2 +1, in contradiction with a2b1 = b2 +1.

Suppose now that a2 = 1. Observe that in this setting b1 = 1, since otherwise
a1
1 < 1

b2
and thus a1b2 < 1. Hence 1

b2
< a1

b1−1 and therefore b1−1 < a1b2. But this

is impossible because 1 = a2b1−a1b2 = b1−a1b2. ��
Proposition 5.31. If a1

b1
< a2

b2
< · · · < ap

bp
is a proper Bézout sequence whose ends

are adjacent, then {a1, . . . ,ap} is the minimal system of generators of the numerical
semigroup S = 〈a1, . . . ,ap〉.
Proof. We use induction on p. For p = 2, we know by Lemma 5.30 that a1 and a2

are integers greater than or equal to 2 with gcd{a1,a2} = 1. Thus the statement is

true for p = 2.

From Lemma 5.28, we know that max{a1, . . . ,ap} = max{a1,ap}. We distin-

guish two cases, depending on the value of max{a1,ap}.
• Assume that max{a1, . . . ,ap} = a1. Obviously a2

b2
< · · ·< ap

bp
is a proper Bézout

sequence. We prove that its ends are adjacent. Clearly
ap

bp+1 < a2
b2

. Note also that

b1 = 1, since otherwise the inequality a1
1 < a2

b2
would imply that a2 > a1, con-

tradicting that a1 = max{a1, . . . ,ap}. Since a1b2 < a2b1 and a2 ≤ a1, we have

that a1b2− a1 < a2b1− a2. Hence, if b2 = 1, we have that
ap
bp

< a1
b1−1 < a2

b2−1 .

This proves that a2
b2

< · · · < ap
bp

is a proper Bézout sequence with adjacent ends.

By using the induction hypothesis, we have that {a2, . . . ,ap} minimally gener-

ates 〈a2, . . . ,ap〉. Since a1 = max{a1, . . . ,ap}, in order to prove that {a1, . . . ,ap}
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is a minimal system of generators of 〈a1, . . . ,ap〉, it suffices to show that a1 ∈
〈a2, . . . ,ap〉. In view of Corollary 5.17 we know that 〈a2, . . . ,ap〉= S

([
a2
b2

,
ap
bp

])
.

Hence, if a1 ∈ 〈a2, . . . ,ap〉, then by Lemma 5.8 there exists a positive inte-

ger y such that a2
b2
≤ a1

y ≤
ap
bp

. This leads to a1
b1

< a1
y ≤

ap
bp

and consequently
a1

b1−1 ≤ a1
y ≤

ap
bp

, contradicting that a1
b1

and
ap
bp

are adjacent.

• Assume now that max{a1, . . . ,ap} = ap. The proof follows by arguing as in the

preceding case, but now using that in this setting a1
b1

< · · · < ap−1

bp−1
is a proper

Bézout sequence with adjacent ends. ��
We see next that the converse to this result also holds: every proportionally mod-

ular numerical semigroup is minimally generated by the numerators of a proper

Bézout sequence with adjacent ends. The key to this result is the following lemma.

Lemma 5.32. Let S be a proportionally modular numerical semigroup other than
N. Then there exist two minimal generators n1 and np of S and positive integers b1

and bp such that S = S
([

n1
b1

,
np
bp

])
. Moreover, n1

b1
and np

bp
are adjacent.

Proof. Let α and β be two positive rational numbers such that α < β and S =
S([α,β ]) (Theorem 5.14). By Lemma 5.8, we know that if n is a minimal gen-

erator of S then there exists a positive integer x such that α ≤ n
x ≤ β . Note

that gcd{n,x} = 1, since if gcd{n,x} = d = 1, then α ≤ n/d
x/d ≤ β , which would

mean that n
d is in S, contradicting that n is a minimal generator of S. Let a(n) =

max
{

x ∈ N\{0} | α ≤ n
x

}
. We are assuming that S = N, thus if ni and n j are

two distinct minimal generators of S, then ni
a(ni)

= n j
a(n j)

, because gcd{ni,a(ni)} =

gcd{n j,a(n j)}= 1, and ni
a(ni)

= n j
a(n j)

would imply that ni = n j. Hence there exists an

arrangement of the minimal generators n1, . . . ,np of S such that α ≤ n1
a(n1) < n2

a(n2) <

· · ·< np
a(np) ≤ β . For all i∈{1, . . . , p−1}, let b(ni) = min

{
x ∈ N\{0} | ni

x ≤
np

a(np)

}
.

Then there exists a permutation σ on the set {1, . . . , p−1} such that

α ≤ nσ(1)

b(nσ(1))
<

nσ(2)

b(nσ(2))
< · · ·< nσ(p−1)

b(nσ(p−1))
<

np

a(np)
≤ β .

Note that α ≤ nσ(1)
a(nσ(1))

≤ nσ(1)
b(nσ(1))

since b(nσ(1))≤ a(nσ(1)), and that
np

a(np)+1
< α due

to the maximality of a(np). Hence
np

a(np)+1
<

nσ(1)
b(nσ(1))

. Besides, it is clear from the

definition of b(nσ(1)) that if b(nσ(1)) = 1, then
np

a(np) <
nσ(1)

b(nσ(1))−1
.

In order to conclude the proof, it suffices to show that S is the numerical semi-

group T = S
([

nσ(1)
b(nσ(1))

,
np

a(np)

])
. Since [

nσ(1)
b(nσ(1))

,
np

a(np) ]⊆ [α,β ], we have that T ⊆ S.

As
nσ(1)

b(nσ(1))
<

nσ(2)
b(nσ(2))

< · · · < nσ(p−1)
b(nσ(p−1))

<
np

a(np) , by Lemma 5.8 we deduce that

{n1, . . . ,np} ⊆ T . Thus S = T . ��



68 4 Proportionally modular numerical semigroups

Proposition 5.33. Let S be a proportionally modular numerical semigroup with
e(S) = p≥ 2. Then there exist an arrangement n1, . . . ,np of the set of minimal gen-
erators of S and positive integers b1, . . . ,bp such that n1

b1
< n2

b2
< · · ·< np

bp
is a proper

Bézout sequence with adjacent ends.

Proof. By Lemma 5.32, we know that there exists n1 and np minimal generators of

S and positive integers b1 and bp such that S = S
([

n1
b1

,
np
bp

])
and the limits of this

interval are adjacent.

As we pointed out in the proof of Lemma 5.32, since n1 and np are mini-

mal generators of S and in view of Lemma 5.8, it must hold that gcd{n1,b1} =
gcd{np,bp}= 1.

If we apply Theorem 5.23 to n1
b1

<
np
bp

and refine the resulting Bézout sequence,

then we obtain a proper Bézout sequence n1
b1

< x1
y1

< · · · < xl
yl

<
np
bp

whose ends are

adjacent. From Proposition 5.31, we conclude that {n1,x1, . . . ,xl ,np} is the minimal

system of generators of S. ��
We end this section by giving an arithmetic characterization of the minimal sys-

tems of generators of a proportionally modular numerical semigroup (and thus a

characterization of these semigroups). The following easy modular computations

will be useful to establish this description. Given positive integers a and b with

gcd{a,b}= 1, by Bézout’s identity, there exist integers u and v such that au+bu = 1.

We denote by a−1 mod b the integer u mod b.

Lemma 5.34. Let n1 and n2 be two integers greater than or equal to two such that
gcd{n1,n2}= 1. Then n2(n−1

2 mod n1)−n1((−n1)−1 mod n2) = 1.

Proof. Since n2(n−1
2 mod n1) ≡ 1 mod n1 and n−1

2 mod n1 < n1, we have that
n2(n−1

2 mod n1)−1

n1
is an integer less than n2. Besides,

n2(n−1
2 mod n1)−n1

n2(n−1
2 mod n1)−1

n1
= 1,

which implies that n1
n2(n−1

2 mod n1)−1

n1
≡−1( mod n2). Hence

n2(n−1
2 mod n1)−1

n1
equals

(−n1)−1 mod n2. Thus n2(n−1
2 mod n1)−n1((−n1)−1 mod n2) = 1. ��

The above-mentioned characterization is stated as follows.

Theorem 5.35. A numerical semigroup S is proportionally modular if and only if
there is an arrangement n1, . . . ,np of its minimal generators such that the following
conditions hold:

1) gcd{ni,ni+1}= 1 for all i ∈ {1, . . . , p−1},
2) ni−1 +ni+1 ≡ 0 mod ni for all i ∈ {2, . . . , p−1}.



5 Modular numerical semigroups 69

Proof. Necessity. By Proposition 5.33, we know that (possibly after a rearrange-

ment of n1, . . . ,np) there exist positive integers b1, . . . ,bp such that n1
b1

< · · · < np
bp

is a Bézout sequence. Hence gcd{ni,ni+1} = 1 for all i ∈ {1, . . . , p− 1}. In view

of Lemma 5.27, we obtain that ni = ni−1+ni+1
ni+1bi−1−ni−1bi+1

for all i ∈ {2, . . . , p− 1} and

consequently ni−1 +ni−1 ≡ 0 mod ni for all i ∈ {2, . . . , p−1}.
Sufficiency. From Lemma 5.34 and Condition 2), it is not hard to see that

n1

n−1
2 mod n1

<
n2

n−1
3 mod n2

< · · ·< np−1

n−1
p mod np−1

<
np

(−np−1)−1 mod np

is a Bézout sequence. By Corollary 5.17 and Theorem 5.14, we conclude that S is a

proportionally modular numerical semigroup. ��
Example 5.36. This theorem gives a criterium to check whether or not a numerical

semigroup is proportionally modular. We illustrate it with some examples.

(1) The semigroup 〈6,8,11,13〉 is not proportionally modular, since gcd{6,8} = 1.

(2) We already know that the semigroup 〈8,11,21,25,39〉 is proportionally mod-

ular. Let us check it again by using the last theorem. In the arrangement of

the generators described in Theorem 5.35, 8 and 11 lie together (in view of

Proposition 5.29, this arrangement yields a convex sequence). It does not really

matter if we start with 8,11 or 11,8, since if an arrangement fits the conditions

of Theorem 5.35 so does its symmetry. The next generator we must place is 21.

As 21 + 11 = 32 ≡ 0 mod 8 and 21 + 8 ≡ 0 mod 11, thus 21 goes at the left

of 8. Proceeding in this way with 25 and 39, we conclude that the generators

arranged as 21,8,11,25,39 fulfill the conditions of Theorem 5.35.

(3) Let us see that 〈5,7,11〉 is not proportionally modular. The generators 5 and 7

must be neighbors in the sequence. Hence we start with 5,7. If we want to place

11, then we must check if 11+7 is a multiple of 5 or 5+11 is a multiple of 7.

None of these two conditions hold, and thus there is no possible arrangement of

5,7,11 that meets the requirements of Theorem 5.35.

5 Modular numerical semigroups

Given a, b and c positive integers, we leave open the problem of finding formulas

to compute, in terms of a, b and c, the Frobenius number, genus and multiplicity of

S(a,b,c). In this section we present the results of [94], which show that a formula

for the genus of S(a,b,1) can be given in terms of a and b.

A modular Diophantine inequality is an expression of the form ax mod b ≤ x,

with a and b positive integers. A numerical semigroup is modular if it is the set of

solutions of a modular Diophantine inequality.

Remark 5.37. 1) Every numerical semigroup of embedding dimension two is mod-

ular (see the proof of Proposition 5.15 and Corollary 5.19).
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2) There are proportionally modular numerical semigroups that are not modular (for

instance 〈3,8,10〉 as shown in [92, Example 26]; this is proposed as an exercise

at the end of this chapter).

Easy computations are enough to prove the following two results. We write them

down because we will reference them in the future.

Lemma 5.38. Let a and b be two integers such that 0≤ a < b and let x ∈ N. Then

a(b− x) mod b =
{

0, if ax mod b = 0,
b− (ax mod b), if ax mod b = 0,

Lemma 5.39. Let a and b be integers such that 0≤ a < b. Then ax mod b > x implies
that a(b− x) mod b < b− x.

As a consequence of this we obtain the following property, which shows that the

modulus of a modular numerical semigroup behaves like the Frobenius number in a

symmetric numerical semigroup.

Proposition 5.40. Let S be a modular numerical semigroup with modulus b. If x ∈
N\S, then b− x ∈ S.

As every integer greater than b belongs to S(a,b,1), in order to compute the

genus of S(a,b,1) we can focus on the interval [0,b−1]. Next we see when for x in

this interval, both x and b− x belong to S(a,b,1).

Lemma 5.41. Let S = S(a,b,1) for some integers 0≤ a < b, and let x be an integer
such that 0≤ x≤ b−1. Then x ∈ S and b− x ∈ S if and only if ax mod b ∈ {0,x}.
Proof. Necessity. Assume that ax mod b = 0. As x∈ S, we have that ax mod b≤ x. If

ax mod b < x, then by Lemma 5.38, we have that a(b−x) mod b = b−(ax mod b) >
b− x, and consequently b− x ∈ S, which contradicts the hypothesis. We conclude

that ax mod b = x.

Sufficiency. If ax mod b = 0, then clearly x ∈ S. Moreover, by Lemma 5.38, we

have that a(b− x) mod b = 0 and thus b− x is an element of S.

If ax mod b = x = 0, then again x ∈ S, and Lemma 5.38 states that a(b−
x) mod b = b− (ax mod b) = b− x, which implies that b− x ∈ S. ��

We consider both possibilities separately. Easy modular calculations characterize

them.

Lemma 5.42. Let a and b be positive integers, and let x be an integer such that
0≤ x≤ b−1. Then ax mod b = 0 if and only if x is a multiple of b

gcd{a,b} .

Lemma 5.43. Let a and b be positive integers, and let x be an integer such that
0≤ x≤ b−1. Then ax mod b = x if and only if x is a multiple of b

gcd{a−1,b} .

With this we can control the set of integers x in [0,b−1] such that x ∈ S(a,b,1)
and b− x ∈ S(a,b,1).
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Lemma 5.44. Let S = S(a,b,1) for some integers a and b such that 0 < a < b. Let
d = gcd{b,a} and d′ = gcd{b,a−1}, and let x be an integer such that 0≤ x≤ b−1.
Then x ∈ S and b− x ∈ S if and only if

x ∈ X =
{

0,
b
d′

,2
b
d′

, . . .(d′ −1)
b
d′

,
b
d

,2
b
d

, . . . ,(d−1)
b
d

}
.

Moreover, the cardinality of X is d′+d−1.

Proof. By Lemma 5.38 we know that x ∈ S and b− x ∈ S if and only if ax mod b ∈
{0,x}. By using now Lemmas 5.42 and 5.43, we know that this is equivalent to

x ∈ X .

Note that gcd{a− 1,a} = 1 and thus gcd{d′,d} = 1. If sb/d′ = tb/d for some

s, t ∈ N, then sd = td′ and since gcd{d′,d} = 1, we deduce that there exists k ∈ N

such that sd = td′ = kd′d. Hence s = kd′ and t = kd. Therefore the cardinality of X
is d′+d−1. ��

The number of gaps of S(a,b,1) can now be easily computed as we show in the

following theorem.

Theorem 5.45. Let S = S(a,b,1) for some integers a and b with 0≤ a < b. Then

g(S) =
b+1−gcd{a,b}−gcd{a−1,b}

2
.

Proof. Let d, d′ and X be as in Lemma 5.44. By using Proposition 5.40 and Lemma

5.44, we deduce that for the set Y = {0, . . . ,b− 1} \X , the cardinality of (Y ∩ S)
equals that of (Y \ S). Hence the cardinality of Y is 2g(S). From Lemma 5.44, we

deduce that 2g(S) = b− (d +d′ −1). ��
Open Problem 5.46. How are the minimal generators of a modular numerical semi-

group characterized? More precisely, which additional condition(s) must be im-

posed in Theorem 5.35 to obtain a characterization of modular numerical semi-

groups in terms of their minimal generators?

6 Opened modular numerical semigroups

In this section we characterize those proportionally numerical semigroups that are

irreducible. The idea is extracted from [97].

Recall that a numerical semigroup of the form {0,m,→}with m a positive integer

is called a half-line. We say that a numerical semigroup S is an opened modular
numerical semigroup if it is either a half-line or S = S

(] b
a , b

a−1

[)
for some integers

a and b with 2≤ a < b.

Note that the half-line {0,m,→} = S([m,2m]) and thus it is a proportionally

modular numerical semigroup in view of Theorem 5.14. The semigroups of the

form S
(] b

a , b
a−1

[)
are also proportionally modular by Theorem 5.14.
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We are going to see that every irreducible proportionally modular numerical

semigroup is of this form. The idea is to compute the genus of these semigroups

by using what we already know for modular numerical semigroups. As the Frobe-

nius number for opened modular numerical semigroups is easy to compute, we can

then search which of these semigroups have the least possible number of gaps in

order to get the irreducibles.

The next result shows that opened modular numerical semigroups play the same

role in the set of proportional numerical semigroups as irreducible numerical semi-

groups do for numerical semigroups in general.

Proposition 5.47. Every proportionally modular numerical semigroup is the inter-
section of finitely many opened modular numerical semigroups.

Proof. Let S be a proportionally modular numerical semigroup. If S = N, then

clearly S is a half-line and thus opened modular. So assume that S = N. By Theorem

5.14, there exist rational numbers α and β with 1 < α < β such that S = S([α,β ]).
Let h ∈ G(S). If h≥ α , in view of Lemma 5.8, there exists nh ∈ N such that nh ≥ 2

and h
nh

< α < β < h
nh−1 . Define Sh = S

(]
h
nh

, h
nh−1

[)
, which contains S. If h < α ,

set Sh = {0,h+1,→}. Observe that in this setting m(S) > h (use Lemma 5.8), and

consequently Sh contains S. Hence S ⊆ ⋂
h∈G(S) Sh. If x ∈ S, then x ∈ G(S) and by

Lemma 5.8 (or simply by the definition in the half-line case) x ∈ Sx. This proves that⋂
h∈G(S) Sh ⊆ S, and thus both semigroups coincide. ��
In this section, a and b represent two integers such that 2 ≤ a < b, and d and d′

will denote gcd{a,b} and gcd{a−1,b}, respectively.

Lemma 5.48.
{b+1,→}⊆ S

(]
b
a
,

b
a−1

[)
.

Proof. Let n be a positive integer. As a(b + n)− (a− 1)(b + n) = b + n > b, there

exists a positive integer k such that (a−1)(b+n) < kb < a(b+n). This implies that
b
a < b+n

k < b
a−1 . Lemma 5.8 ensures that b+n ∈ S

(] b
a , b

a−1

[)
. ��

Lemma 5.49. Let x be a nonnegative integer. Then

x ∈ S

([
b
a
,

b
a−1

])
and x ∈ S

(]
b
a
,

b
a−1

[)

if and only if

x ∈
{

λ
b
d

∣∣∣∣ λ ∈ {1, . . . ,d}
}
∪
{

λ
b
d′

∣∣∣∣ λ ∈ {1, . . . ,d′}
}

.

Proof. Let T = S
([ b

a , b
a−1

])
and let S = S

(] b
a , b

a−1

[)
. By Lemma 5.8, if x ∈ T \S,

then there exists a positive integer k such that either x
k = b

a or x
k = b

a−1 . This implies

that either x is a multiple of b
d or b

d′ . As by Lemma 5.48, {b+1,→}⊆ S
(] b

a , b
a−1

[)
,

this forces x ∈ {λ b
d | λ ∈ {1, . . . ,d}}∪{λ b

d′ | λ ∈ {1, . . . ,d′}}.
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For the other implication, take x∈{λ b
d |λ ∈ {1, . . . ,d}}∪{λ b

d′ |λ ∈ {1, . . . ,d′}}.
Then either x = λ b

d or x = λ b
d′ . In both cases x ∈ T by Lemma 5.8. Assume that

λ b
d ∈ S. Then again by Lemma 5.8, there exists a positive integer k such that

b
a

<
λ b

d
k

<
b

a−1
.

And this implies that (a−1)λ < dk < aλ . As a is a multiple of d, both dk and aλ are

multiples of d. Since dk < aλ , we have that dk≤ aλ −d. Hence (a−1)λ < aλ −d,

which leads to d < λ , in contradiction with the choice of λ . This proves that λ b
d ∈ S.

In a similar way it is easy to show that λ b
d′ is not in S. ��

We have achieved enough information to compute the Frobenius number and

genus, with the help of Theorem 5.45, of an opened proportionally modular numer-

ical semigroup that is not a half-line.

Theorem 5.50. Let a and b be two integers with 2 ≤ a < b. Let d = gcd{a,b} and
d′ = gcd{a−1,b}. Then

F

(
S

(]
b
a
,

b
a−1

[))
= b and g

(
S

(]
b
a
,

b
a−1

[))
=

1

2
(b−1+d +d′).

Proof. By Lemma 5.48 and Proposition 5.49, F
(
S
(] b

a , b
a−1

[))
= b. As gcd{d,d′}=

1, λ b
d = λ ′ b

d′ for any λ ∈{1, . . . ,d−1} and λ ′ ∈ {1, . . . ,d′−1}. By Proposition 5.49

this implies that

g

(
S

(]
b
a
,

b
a−1

[))
= g

(
S

([
b
a
,

b
a−1

]))
+d +d′ −1.

We obtain the desired formula by using Theorem 5.45. ��
Open Problem 5.51. Even though we know formulas for the Frobenius number and

genus of an opened modular numerical semigroup, a formula for the multiplicity in

terms of a and b is still unknown.

From the formula given in Theorem 5.50 and the characterization of irreducible

numerical semigroups established in Corollary 4.5, we get the following conse-

quence.

Corollary 5.52. Let a and b be integers such that 2≤ a < b.

1) S
(] b

a , b
a−1

[)
is symmetric if and only if gcd{a,b}= gcd{a−1,b}= 1.

2) S
(] b

a , b
a−1

[)
is pseudo-symmetric if and only if {gcd{a,b},gcd{a− 1,b}} =

{1,2}.
Example 5.53. S

(]
7
3 , 7

3−1

[)
= 〈3,5〉 is an example of the first statement. And

S
(]

8
7 , 8

7−1

[)
= 〈3,5,7〉 illustrates the second assertion of the last corollary.
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The next result characterizes irreducible half-lines.

Lemma 5.54. Let S be an irreducible numerical semigroup. Then S is a half-line if
and only if S ∈ {N,〈2,3〉,〈3,4,5〉}.
Proof. If S is a half-line, there exists a positive integer m such that S = {0,m,→}.
Hence S = 〈m,m+1, . . . ,2m−1〉 and e(S) = m(S). As S is irreducible, by Remark

4.21 and Lemma 4.15, either S has embedding dimension two or is of the form

〈3,x+3,2x+3〉. Since S is a half-line, S must be either 〈2,3〉 or 〈3,4,5〉. ��
If S is not a half-line, then m(S) < F(S). This, with the help of Lemma 5.8, trans-

lates to the following conditions in a proportionally modular numerical semigroup.

Lemma 5.55. Let α and β be rational numbers such that 1 < α < β and let S =
S([α,β ]). If S is not a half-line, then

F(S)
F(S)−1

< α < β < F(S).

Proof. As we have mentioned above, m(S) < F(S). By Lemma 5.8, there exists a

positive integer k such that α ≤ m(S)
k ≤ β (k < m(S) because α > 1). This leads to

α ≤ m(S)
k < F(S)

k ≤ F(S)
1 . As F(S) ∈ S, Lemma 5.8 forces F(S) to be greater than β .

Besides, β ≥ m(S)
k ≥ m(S)

m(S)−1
> F(S)

F(S)−1
. By using again that F(S) ∈ S and Lemma 5.8,

F(S)
F(S)−1

< α . ��
We can now prove that every irreducible proportionally modular numerical semi-

group is opened modular.

Lemma 5.56. Let S be an irreducible proportionally modular numerical semigroup
that is not a half-line. Then there exists an integer k such that 2 ≤ k < F(S) and

S = S
(]

F(S)
k , F(S)

k−1

[)
.

Proof. By Theorem 5.14, there exist rational numbers α and β such that 1 < α <
β and S = S([α,β ]). From Lemmas 5.8 and 5.55 we deduce that there exists an

integer k with 2≤ k < F(S) such that
F(S)

k < α < β < F(S)
k−1 . Let T = S

(]
F(S)

k , F(S)
k−1

[)
.

Theorem 5.50 ensures that F(T ) = F(S). The inequalities
F(S)

k < α < β < F(S)
k−1 imply

that S⊆ T . The irreducibility of S forces by Theorem 4.2 that S must be equal to T ,

since both have the same Frobenius number. ��
With all this information, by using Corollary 4.5 it is not hard to prove the fol-

lowing characterization of irreducible modular numerical semigroups.

Theorem 5.57. Let S be a proportionally modular numerical semigroup.

1) S is symmetric if and only if S = N, S = 〈2,3〉 or S = S
(] b

a , b
a−1

[)
for some

integers a and b with 2≤ a < b and gcd{a,b}= gcd{a−1,b}= 1.
2) S is pseudo-symmetric if and only if S = 〈3,4,5〉 or S = S

(] b
a , b

a−1

[)
for some

integers a and b with 2≤ a < b and gcd{a,b}= gcd{a−1,b}= {1,2}.
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Exercises

Exercise 5.1. Let a, b and c be positive integers with gcd{a,b} = 1. Prove that

S = 〈a,a+b,a+2b, . . . ,a+ cb〉 is a proportionally modular numerical semigroup.

Exercise 5.2. Let S be a proportionally modular numerical semigroup with minimal

system of generators {n1 < n2 < · · · < ne} and e ≥ 3. Prove that 〈n1, . . . ,ne−1〉 is

also a proportionally modular numerical semigroup.

Exercise 5.3 ([25]). Given integers a, b and c such that 0 < c < a < b, prove that

S(a,b,c) = S(b+ c−a,b,c).

Exercise 5.4 ([95]). Prove that a numerical semigroup S is proportionally modular

if and only if there is an arrangement n1, . . . ,ne of its minimal generators such that

the following conditions hold:

1) 〈ni,ni+1〉 is a numerical semigroup for all i ∈ {1, . . . ,e−1},
2) 〈ni−1,ni,ni+1〉= 〈ni−1,ni〉∪ 〈ni,ni+1〉 for all i ∈ {2, . . . ,e−1}.
(Hint: Use Theorem 5.35.) Observe that this result sharpens the contents of Remark

5.16.

Exercise 5.5. Let S = 〈7,8,9,10,12〉. Prove that S is not proportionally modular.

However S = 〈12,7〉∪ 〈7,8〉∪ 〈8,9〉∪ 〈9,10〉.
Exercise 5.6. Find two proportionally modular numerical semigroups whose inter-

section is not proportionally modular.

Exercise 5.7. Give an example of a proportionally modular numerical semigroup

S = N such that S∪{F(S)} is not proportionally modular.

Exercise 5.8 ([25]). For integers a, b and c with 0 < c < a < b, prove that

F(S(a,b,c)) = b−
⌊

ζ b
a

⌋
−1,

where ζ = min
{

k ∈ {1, . . . ,a−1} | kb mod a+
⌊ kb

a

⌋
c > (c−1)b+a− c

}
.

Exercise 5.9 ([94]). Let ax mod b≤ x be a modular Diophantine inequality (with as

usual 0 < a < b). We define its weight as w(a,b) = b−gcd{a,b}−gcd{a−1,b}.
a) Prove that if two modular Diophantine inequalities have the same set of integers

solutions, then they have the same weight.

b) Find an example showing that the converse of a) does not hold in general.

c) Prove that w(a,b) is an odd integer greater than or equal to F(S(a,b,1)).
d) Show that S(a,b,1) is symmetric if and only if w(a,b) = F(S(a,b,1)).
e) Show that S(a,b,1) is pseudo-symmetric if and only if w(a,b) = F(S(a,b,1))+1.
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Exercise 5.10 ([94]). Let a and b be integers with 0 < a < b. Prove that b ≥
F(S(a,b,1))+m(S(a,b,1)) and that the equality holds if and only if

m(S(a,b,1)) = min

{
b

gcd{a,b} ,
b

gcd{a−1,b}
}

.

Exercise 5.11 ([94]). Given integers a and b with 0 < a < b, show that

b≤ 12g(S(a,b,1))−6.

Exercise 5.12. Prove that S = 〈3,8,10〉 is a proportionally modular numerical semi-

group that is not modular.

Exercise 5.13 ([94]). Let a and b be positive integers. Prove that

a) m(S(a,ab,1)) = b,

b) F(S(a,ab,1)) =
⌈

(a−1)(b−1)
b

⌉
b−1.

Exercise 5.14 ([94]). Let a and b be integers such that 0 < a < b and b mod a = 0.

Show that

a) F(S(a,b,1)) = b−⌈ b
a

⌉
if and only if (a−1)(a− (b mod a)) < b,

b) if (a−1)(a− (b mod a)) < b, then m(S(a,b,1)) =
⌈ b

a

⌉
.



Chapter 5
The quotient of a numerical semigroup
by a positive integer

Introduction

A generalization of the linear Diophantine Frobenius problem can be stated as fol-

lows. Let n1, . . . ,np and d be positive integers with gcd{n1, . . . ,np} = 1. Find a

formula for the largest multiple of d not belonging to 〈n1, . . . ,np〉. This problem is

equivalent to the computation of the Frobenius number of the semigroup
〈n1,...,np〉

d ,

and it still remains open for p = 2.

Semigroups of the form S
d also occur in a natural way in the scope of proportion-

ally modular numerical semigroups. In [98], it is shown that a numerical semigroup

is proportionally modular if and only if it is the quotient of an embedding dimension

two numerical semigroup. This result is later sharpened in [54] where it is shown

that it suffices to take numerical semigroups generated by an integer and this integer

plus one. So far we have no general formula for the largest multiple of an integer

not belonging to 〈a,a+1〉, with a an integer greater than two.

Since numerical semigroups with embedding dimension two are symmetric, we

wondered which is the class of all numerical semigroups that are quotients of sym-

metric numerical semigroups. Surprisingly, this class covers the set of all numerical

semigroups as shown in [83]. What is more amazing is that it suffices to divide by

two. The same does not hold for pseudo-symmetric numerical semigroups, and we

need to divide by four to obtain the whole set of numerical semigroups as quotients

of pseudo-symmetric numerical semigroups (see [69]). As for other families of nu-

merical semigroups, for instance, we still do not know how to decide if a numeri-

cal semigroup is the quotient of a numerical semigroup with embedding dimension

three.

In [106] a class of numerical semigroups is presented whose elements are the

positive cones of the K0 groups of some C∗-algebras. These semigroups are intersec-

tions of quotients of embedding dimension two numerical semigroups under several

extra conditions. It turns out that this class coincides with that of finite intersections

of proportionally modular numerical semigroups (see [84]).

J.C. Rosales, P.A. Garcı́a-Sánchez, Numerical Semigroups, 77
Developments in Mathematics 20, DOI 10.1007/978-1-4419-0160-6 6,
c© Springer Science+Business Media, LLC 2009
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1 Notable elements

We describe in this section those notable elements that are easy to compute in a

quotient of a numerical semigroup by an integer (once these notable elements are

known in the original semigroup).

Let S be a numerical semigroup and let p be a positive integer. Set

S
p

= {x ∈ N | px ∈ S} .

Proposition 6.1. Let S be a numerical semigroup and let p be a positive integer.

1) S
p is a numerical semigroup.

2) S⊆ S
p .

3) S
p = N if and only if p ∈ S.

The semigroup S
p is called the quotient of S by p. Accordingly we say that S

2 is

one half of S and that S
4 is one fourth of S. We mention these two particular instances

because they will be of some relevance later in this chapter.

As we have seen in Section 5 of Chapter 3, the fundamental gaps of a numerical

semigroup determine it uniquely. Fortunately, the fundamental gaps of the quotient

of a numerical semigroup can be relatively easily calculated from the fundamental

gaps of the original semigroup. This does not hold for minimal generators; this is

why we focus on the fundamental gaps of the numerical semigroup.

Proposition 6.2 ([92]). Let S be a numerical semigroup and let d be a positive inte-
ger. Then

FG

(
S
d

)
=
{

h
d

∣∣∣ h ∈ FG(S) and h≡ 0 mod d
}

.

Proof. The integer h belongs to FG( S
d ) if and only if h ∈ S

d and kh ∈ S
d for every

integer k greater than one. This is equivalent to dh ∈ S and kdh ∈ S for any integer k
greater than one. ��
Corollary 6.3. Let S be a numerical semigroup and let d be a positive integer. Then
d ∈ FG(S) if and only if S

d = 〈2,3〉.
Proof. Observe that FG(〈2,3〉) = 1. Then use Proposition 6.2. ��
Example 6.4.

gap> S:=NumericalSemigroup(5,7,8);
<Numerical semigroup with 3 generators>
gap> FrobeniusNumberOfNumericalSemigroup(S);
11
gap> List([1..11],
> d->QuotientOfNumericalSemigroup(S,d));;
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gap> List(last,
> MinimalGeneratingSystemOfNumericalSemigroup);
[ [ 5, 7, 8 ], [ 4, 5, 6, 7 ], [ 4, 5, 6, 7 ],
[ 2, 3 ], [ 1 ], [ 2, 3 ], [ 1 ], [ 1 ], [ 2, 3 ],
[ 1 ], [ 2, 3 ] ]

As we know, one of the best ways to describe a numerical semigroup is by means

of the Apéry set of any of its nonzero elements. Note that if S is a numerical semi-

group, m ∈ S∗ and d | m, then m
d ∈ S

d . We describe Ap
( S

d , m
d

)
in terms of Ap(S,m).

Proposition 6.5. Let S be a numerical semigroup. Let m be a nonzero element of S
and let d be a divisor of m. Then

Ap

(
S
d

,
m
d

)
=
{ w

d

∣∣∣ w ∈ Ap(S,m) and w≡ 0 mod d
}

.

Proof. The idea of the proof is analogous to the proof of Proposition 6.2. ��
By now using Selmer’s formula (Proposition 2.12), we obtain the following nice

consequence.

Corollary 6.6. Let S be a numerical semigroup. Let m be a nonzero element of S and
let d be a divisor of m. Assume that Ap(S,m) = {0,k1m + 1, . . . ,km−1m + m− 1}.
Then

1) Ap
( S

d , m
d

)
= {0,kd

m
d +1, . . . ,k( m

d −1)d
m
d + m

d −1},
2) g

( S
d

)
= kd + k2d + · · ·+ k( m

d −1)d,
3) F

( S
d

)
= max{kd

m
d +1, . . . ,k( m

d −1)d
m
d + m

d −1}− m
d .

2 One half of an irreducible numerical semigroup

In this section we show (following [83]) that every numerical semigroup is one half

of infinitely many symmetric numerical semigroups. We will also prove that every

numerical semigroup is one fourth of a pseudo-symmetric numerical semigroup (by

using to this end the ideas given in [69]).

For a numerical semigroup S, set

2S = {2s | s ∈ S} .

This set is a submonoid of N. Moreover, 2〈n1, . . . ,np〉= 〈2n1, . . . ,2np〉. Recall that

if A and B are subsets of integer numbers, we write A + B = {a + b | a ∈ A,b ∈ B}
(note that in general with this notation A+A = 2A).

Theorem 6.7. Let S = 〈n1, . . . ,np〉with PF(S) = { f1, . . . , ft}. Let f be an odd integer
such that f − fi− f j ∈ S for all i, j ∈ {1, . . . , t}. Then
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T = 〈2n1,2n2, . . . ,2np, f −2 f1, . . . , f −2 ft〉

is a symmetric numerical semigroup with Frobenius number f and S = T
2 . Moreover,

T = 2S∪ ({ f −2 f1, . . . , f −2 ft}+2S).

Proof. Let i, j ∈ {1, . . . , t}. Observe that f − 2 fi + f − 2 f j = 2( f − fi− f j), which

by hypothesis belongs to 2S.

From the above remark, it easily follows that

T = 2S∪ ({ f −2 f1, . . . f −2 ft}+2S), T ∩2N = 2S. (1)

We see now that f ∈ T . If this were not the case, then as f is odd, there would

exist i ∈ {1, . . . , t} and s ∈ S such that f = f − 2 fi + 2s. But this would lead to

fi = s ∈ S, which is impossible.

Now we prove that all even integers greater than f are in T . As F(S) = max{ f1,
. . . , ft}, by hypothesis, we have that f −F(S)−F(S)∈ S and thus f ≥ 2F(S). Clearly,

every positive even integer greater than 2F(S) is in 2S. Hence, every even integer

greater than f is in 2S⊆ T .

Next we show that F(T ) = f . From the preceding paragraphs, it suffices to show

that every odd integer greater than f belongs to T . Let k ∈ N\{0}. Then f + 2k =
( f −2F(S))+2(F(S)+k). As f −2F(S) ∈ { f −2 f1, . . . , f −2 ft} and 2(F(S)+k) ∈
2S, we deduce in view of (1) that f +2k ∈ T .

In order to prove that T is symmetric, take x∈Z\T . We must show that f −x∈ T
(Proposition 4.4). We distinguish two cases depending on the parity of x.

• If x is even, then as x ∈ T , we have that x
2 ∈ S. In view of Proposition 2.19, there

exists i ∈ {1, . . . , t} such that fi− x
2 ∈ S. Thus 2 fi− x ∈ 2S. Hence from (1), we

have that f − x = ( f −2 fi)+(2 fi− x) ∈ T .

• If x is odd, then f −x is even. Thus if f −x ∈ T , by using the preceding case, we

obtain that f − ( f − x) = x ∈ T , contradicting the choice of x.

Finally, we prove that S = T
2 . If x ∈ T

2 , then 2x ∈ T . In view of (1), this means

that 2x ∈ 2S, whence x ∈ S. Conversely, if x ∈ S, then 2x ∈ 2S ⊆ T , which leads to

x ∈ T
2 . ��

Next we see as a consequence of this theorem that we can choose infinitely many

T for every semigroup S.

Corollary 6.8. Let S be a numerical semigroup. Then there exist infinitely many
symmetric numerical semigroups T such that S = T

2 .

Proof. Assume that PF(S) = { f1, . . . , ft}. Choose an odd integer f greater than or

equal to 3F(S) + 1. For i, j ∈ {1, . . . , t}, f − fi− f j ≥ 3F(S) + 1− F(S)− F(S) =
F(S)+ 1. Thus f − fi− f j ∈ S. From Theorem 6.7, we know that Tf = 2S∪ ({ f −
2 f1, . . . , f −2 ft}+2S) is a symmetric numerical semigroup with Frobenius number

f and such that S = Tf
2 . The proof now follows by observing that we can choose

infinitely many odd numbers greater than or equal to 3F(S)+1, and that for each of

them we obtain a different Tf . ��
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Now let us proceed with the pseudo-symmetric case. As a consequence of the

following result, we will see that there is not a parallelism between the symmetric

and pseudo-symmetric case.

Lemma 6.9. Let S be a numerical semigroup with even Frobenius number. Then

F

(
S
2

)
=

F(S)
2

.

Proof. Follows by Proposition 6.2, by taking into account that the Frobenius num-

ber of a numerical semigroup is the maximum of the fundamental gaps. ��
Remark 6.10. Note that if S is a numerical semigroup and T is a pseudo-symmetric

numerical semigroup with S = T
2 , then from the preceding lemma we deduce that

F(T ) = 2F(S). It is clear that there exist finitely many numerical semigroups with

Frobenius number 2F(S). Hence we cannot obtain a result similar to Corollary 6.8

for the pseudo-symmetric case.

We even have another issue that makes the pseudo-symmetric case different from

the symmetric case, as we see in the next proposition.

Proposition 6.11. Let T be a pseudo-symmetric numerical semigroup. Then T
2 is an

irreducible numerical semigroup.

Proof. Let S = T
2 and suppose that PF(S) = { f1 < · · ·< ft}. Recall that F(S) is the

maximum of the pseudo-Frobenius numbers. Hence F(S) = ft . Thus, by applying

Lemma 6.9, we get F(T ) = 2 ft .
Let i ∈ {1, . . . , t}. Then fi /∈ S and so 2 fi ∈ T . From Proposition 4.4 we have

that either 2 ft − 2 fi ∈ T or 2 fi = ft . If 2 ft − 2 fi ∈ T , then 2( ft − fi) ∈ T . Hence

ft − fi ∈ S and, in view of Proposition 2.19, we obtain ft = fi. This proves that

PF(S) ⊆
{

ft ,
ft
2

}
=

{
F(S), F(S)

2

}
. In view of Corollaries 4.11 and 4.16, we have

that S is either a symmetric or a pseudo-symmetric numerical semigroup. In both

cases, S is an irreducible numerical semigroup. ��
This in particular means that we cannot obtain that every numerical semigroup is

one half of a pseudo-symmetric numerical semigroup.

We can sharpen a bit more the preceding result in order to distinguish in which

cases one half of a pseudo-symmetric numerical semigroup is symmetric or pseudo-

symmetric.

Corollary 6.12. Let S be a pseudo-symmetric numerical semigroup. Then

1) S
2 is symmetric if and only if F(S) ≡ 0 mod 4,

2) S
2 is pseudo-symmetric if and only if F(S)≡ 0 mod 4.

Proof. This is a consequence of Lemma 6.9, Proposition 6.11 and Proposition 4.4.

��
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Now we see that every symmetric numerical semigroup is one half of a pseudo-

symmetric numerical semigroup. This together with the fact that every numerical

semigroup is one half of a symmetric semigroup will prove that any numerical semi-

group can be expressed as one fourth of infinitely many pseudo-symmetric numeri-

cal semigroups.

Lemma 6.13. Let S be a symmetric numerical semigroup. Let

A =
{

F(S)+2k
∣∣∣ k ∈

{
1, . . . ,

F(S)−1

2

}}
.

Then
T = 2S∪A∪{2F(S)+1,→}

is a pseudo-symmetric numerical semigroup with Frobenius number 2F(S) and such
that S = T

2 .

Proof. Since S is symmetric, F(S) is odd. Notice that A is the set of odd integers

belonging to the set {F(S)+2, . . . ,2F(S)−1} and that #A = F(S)−1
2 .

We start by proving that T is a numerical semigroup. In one hand it is obvi-

ous that the sum of two elements of 2S is an element of 2S and that the result

of adding any nonnegative integer to any element in {2F(S)+1,→} remains in

{2F(S)+1,→}. On the other hand the sum of elements of A is an element of

{2F(S)+1,→}. Finally the sum of an element of 2S with an element of A is an

element of A∪{2F(S)+1,→}. Notice also that since {2F(S)+1,→}⊆ T , we have

that N\T is finite.

Now let us prove that 2F(S) is the Frobenius number of T . As {2F(S)+1,→}⊆
T , we only have to show that 2F(S) ∈ T . But this holds since 2F(S) is an even

number and 2F(S) ∈ 2S.

Next we will see that T is a pseudo-symmetric numerical semigroup. In view of

Corollary 4.5 and since 2F(S) is the Frobenius number of T , it suffices to prove that

n(T ) = F(S). As S is symmetric, by Corollary 4.5 we have n(S) = F(S)+1
2 . Hence

#{x ∈ 2S | x≤ 2F(S)} = #{x ∈ S | x≤ F(S)} = n(S) = F(S)+1
2 . Therefore n(T ) =

F(S)+1
2 +#A = F(S)+1

2 + F(S)−1
2 = F(S).

Finally we prove that S = T
2 . We have x ∈ T

2 if and only if 2x ∈ T . Since the

elements of A are odd, we obtain 2x ∈ T if and only if 2x ∈ 2S∪{2F(S)+1,→}.
If 2x ∈ 2S, then trivially x ∈ S. If 2x≥ 2F(S)+1, then x≥ F(S)+1 and thus x ∈ S.

Therefore x ∈ T
2 if and only if x ∈ S. ��

As a consequence of this lemma and Corollary 6.8, we obtain the following.

Theorem 6.14. Every numerical semigroup is one fourth of infinitely many pseudo-
symmetric numerical semigroups.

We can achieve a result similar to Lemma 6.13 for pseudo-symmetric numeri-

cal semigroups. This will help us to establish a new characterization of irreducible

numerical semigroups.
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Lemma 6.15. Let S be a pseudo-symmetric numerical semigroup. Let

A =
{

F(S)+2k−1
∣∣∣ k ∈

{
1, . . . ,

F(S)
2

}}
.

Then
T = 2S∪A∪{2F(S)+1,→}

is a pseudo-symmetric numerical semigroup with Frobenius number 2F(S) and such
that S = T

2 .

Proof. Since S is pseudo-symmetric, F(S) is even. Notice that A is the set of odd

integers belonging to the set {F(S)+1, . . . ,2F(S)−1} and that #A = F(S)
2 .

The proof that T is a numerical semigroup with Frobenius number 2F(S) and that

S = T
2 is similar to the one performed in Lemma 6.13.

Let us see that T is pseudo-symmetric. In view of Corollary 4.5 and the fact that

2F(S) is the Frobenius number of T , it suffices to prove that n(T ) = F(S). Since

S is a pseudo-symmetric numerical semigroup, from Corollary 4.5 we deduce that

n(S) = F(S)
2 . Hence #{x ∈ 2S | x≤ 2F(S)} = #{x ∈ S | x≤ F(S)} = n(S) = F(S)

2 .

Therefore n(T ) = F(S)
2 +#A = F(S)

2 + F(S)
2 = F(S). ��

With all this information we get a new characterization of irreducible numerical

semigroups.

Theorem 6.16. A numerical semigroup is irreducible if and only if it is one half of
a pseudo-symmetric numerical semigroup.

3 Numerical semigroups having a Toms decomposition

Let S be a numerical semigroup. According to [106], we say that S has a Toms
decomposition if there exist q1, . . . ,qn, m1, . . . ,mn and L such that

1) gcd({qi,mi}) = gcd({L,qi}) = gcd({L,mi}) = 1 for all i ∈ {1, . . . ,n},
2) S = 1

L
⋂n

i=1〈qi,mi〉.
Let a, b and c be positive integers. We say that the monoid

〈a,b〉
c is a Toms

block if gcd({a,b}) = gcd({a,c}) = gcd({b,c}) = 1. As we are imposing the con-

dition gcd({a,b}) = 1, every Toms block is a numerical semigroup. Observe that
1
L
⋂n

i=1〈qi,mi〉=
⋂n

i=1
〈qi,mi〉

L . So a numerical semigroup admits a Toms decomposi-

tion if and only if it can be expressed as an intersection of finitely many Toms blocks

with the same denominator.

Our aim in this section is to prove that a numerical semigroup admits a Toms

decomposition if and only if it is the intersection of finitely many proportionally

modular numerical semigroups. We start by showing that the set of proportionally

modular numerical semigroups coincides with the set of quotients of embedding
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dimension two numerical semigroups. First we need to show that the numerators of

the ends of an interval of rational numbers defining a numerical semigroup can be

chosen to be coprime.

Lemma 6.17. Let a, b and c be positive integers with c < a < b. Then there exist
positive integers k and d such that S

([ b
a , b

a−c

])
= S

([ b
a , kb+1

d

])
.

Proof. Let S = S
([ b

a , b
a−c

])
. By Lemma 5.8, if x ∈ N\S, then there exists a unique

number nx ∈ N such that x
nx+1 < b

a < b
a−c < x

nx
. Since S is a numerical semigroup,

then N \ S is finite and so there exists the minimum q of the set
{

x
nx
| x ∈ N\S

}
.

Note that b
a−c < q and in consequence there exist two positive integers d,k such

that d b
a−c ≤ kb + 1 < dq. The interval inclusion [ b

a , b
a−c ] ⊆ [ b

a , kb+1
d ] implies that

S⊆ S
([ b

a , kb+1
d

])
. To show that S

([ b
a , kb+1

d

])⊆ S, take x∈ S([ b
a , kb+1

d ]). By Lemma

5.8, there exists a positive integer y such that b
a ≤ x

y ≤ kb+1
d . Since x

y < q, this implies

that x ∈ S. ��
Theorem 6.18 ([98]). Let n1,n2 and d be positive integers with n1 and n2 relatively
prime. Then 〈n1,n2〉

d is a proportionally modular numerical semigroup. Conversely,
every proportionally modular numerical semigroup can be represented in this form.

Proof. As gcd{n1,n2} = 1, there exist two positive integers u,v such that un2 −
vn1 = 1. By Lemma 5.16 and Proposition 5.21 we know that

〈n1,n2〉= {x ∈ N | un2x mod n1n2 ≤ x} ,

and it is not hard to see that

〈n1,n2〉
d

= {x ∈ N | un2dx mod n1n2 ≤ dx} ,

which shows that
〈n1,n2〉

d is a proportionally modular numerical semigroup.

Suppose now that S is a proportionally modular numerical semigroup defined by

the condition ax mod b ≤ cx. By Lemma 5.9 we know that S = S
([ b

a , b
a−c

])
. From

Lemma 6.17, we deduce that there exist positive integers a1,b1,a2, and b2 such

that a1
b1

< a2
b2

, gcd{a1,a2}= 1 and S = S
([

a1
b1

, a2
b2

])
. By Lemma 5.12, we have that

S = {x ∈ N | a2b1x mod a1a2 ≤ dx}, with d = a2b1−a1b2.

We show that S = 〈a1,a2〉
d . The condition gcd{a1,a2}= 1 implies that there exist

positive integers u,v such that a2u−a1v = 1. Hence we have that

〈a1,a2〉
d

= {x ∈ N | ua2dx mod a1a2 ≤ dx} .

To conclude the proof, we check that the inequalities a2b1x mod a1a2 ≤ dx and

ua2dx mod a1a2 ≤ dx have the same set of solutions. In order to see this, it is enough

to see that ua2d ≡ a2b1 mod a1a2. But this is clear because a2u≡ 1 mod a1 implies



3 Numerical semigroups having a Toms decomposition 85

that a2ub1≡ b1 mod a1, and so (a2b1−a1b2)u≡ b1 mod a1, that is, du≡ b1 mod a1.

Finally, by multiplying by a2 we get dua2 ≡ a2b1 mod a1a2. ��
We can extract the following consequence from the proof of this last result.

Corollary 6.19. Let a1, a2, b1 and b2 be positive integers such that a1
b1

< a2
b2

and
gcd{a1,a2}= 1. Then

S

([
a1

b1
,

a2

b2

])
=

〈a1,a2〉
a2b1−a1b2

.

Open Problem 6.20. Let n1 and n2 be two positive relatively prime integers and let

d be a positive integer.

1) Find a formula for the largest multiple of d that does not belong to 〈n1,n2〉.
2) Find a formula for the cardinality of the set of multiples of d that are not in

〈n1,n2〉.
3) Find a formula for the smallest multiple of d that belongs to 〈n1,n2〉.

The first and second problems are a generalization of the Frobenius problem

solved by Sylvester in [102] (see Proposition 2.13); they propose to find a formula

for the Frobenius number and genus of
〈n1,n2〉

d . The third problem asks about the

multiplicity of
〈n1,n2〉

d .

As a consequence of Theorem 6.18 we obtain the following property.

Proposition 6.21. Every numerical semigroup having a Toms decomposition can be
expressed as a finite intersection of proportionally modular numerical semigroups.

We will show that the converse also holds following the steps given in [84].

The key idea is contained in the following result, which is telling us that we can

slightly modify the ends of the interval defining a proportionally modular numerical

semigroup without modifying the semigroup.

Proposition 6.22. Let α and β be rational numbers with 1 < α < β . Then there exist
rational numbers α and β such that 1≤ α < α < β < β and S(]α,β [) = S([α,β ]).

Proof. Let S = S([α,β ]). We know (by Lemma 5.8) that if h ∈ G(S), then there

exists nh ∈ N such that h
nh+1 < α < β < h

nh
. The proof follows by choosing α =

max
{

h
nh+1

∣∣ h ∈ G(S)
}

and β = min
{

h
nh

∣∣ h ∈ G(S)
}

. ��

With this, we can prove that a proportionally modular numerical semigroup given

by a closed interval can be represented by infinitely many quotients of embedding

dimension two numerical semigroups.

Lemma 6.23. Let a1, a2, b1 and b2 be positive integers such that 1 < a1
b2

< a2
b2

. Then
there exist positive integers a0, b0 and N such that b0 < a0 and for every integer
x≥ N with gcd{x,a2}= 1,
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S

([
a1

b1
,

a2

b2

])
=

〈x,a2〉
a2

⌊
b0x
a0

⌋
−b2x

.

Proof. By Proposition 6.22, we deduce that there exist positive integers a0 and b0

such that 1 < a0
b0

< a1
b1

< a2
b2

, and if a0
b0
≤ x

y ≤ a1
b1

for some positive integers x and y,

then S
([

a1
b1

, a2
b2

])
= S

([
x
y ,

a2
b2

])
. Let N be the Frobenius number of S

([
a0
b0

, a1
b1

])
plus one. If x is an integer greater than or equal to N, then x ∈ S

([
a0
b0

, a1
b1

])
,

and by Lemma 5.8 there exists a positive integer y such that a0
b0
≤ x

y ≤ a1
b1

. Hence

y ≤ b0x
a0

. As y is an integer, y ≤
⌊

b0x
a0

⌋
≤ b0x

a0
. We deduce that a0

b0
≤ x/

⌊
b0x
a0

⌋
≤ a1

b1
.

Thus S
([

a1
b1

, a2
b2

])
= S

([
x/
⌊

b0x
a0

⌋
, a2

b2

])
. We now use Corollary 6.19 to conclude

the proof. ��
Among the representations given in the preceding result, we can choose infinitely

many that are Toms blocks as we see next.

Lemma 6.24. Let a1, a2, b1 and b2 be positive integers such that 1 < a1
b1

< a2
b2

and
gcd({a2,b2}) = 1. Then there exist positive integers a0, b0 and N such that b0 < a0

and for every integer k ≥ N one has that

S

([
a1

b1
,

a2

b2

])
=

〈ka0b0a2 +1, a2〉
kb0a2(b0a2−b2a0)−b2

.

Moreover, this is a Toms block.

Proof. Let S = S
([

a1
b1

, a2
b2

])
. By Lemma 6.23, we know that there exist positive

integers b0 < a0 and N such that for all x ≥ N with gcd({x,a2}) = 1, one has that

S = 〈x,a2〉
a2� b0x

a0
�−b2x

. Let k ≥ N−1
a0b0a2

. Then x = ka0b0a2 +1 is greater than or equal to N,

gcd({x,a2}) = 1, and since b0 < a0,⌊
b0x
a0

⌋
=
⌊

ka0b2
0a2

a0
+

b0

a0

⌋
= ka2b2

0.

Hence

S =
〈ka0b0a2 +1, a2〉

ka2
2b2

0−b2(ka0b0a2 +1)
=

〈ka0b0a2 +1, a2〉
ka2b0(a2b0−a0b2)−b2

.

Next we show that this representation is a Toms block.

• gcd({ka0b0a2 +1,a2}) = 1,

• gcd({ka2b0(a2b0−a0b2)−b2,a2}) = gcd({b2,a2}) = 1,

• gcd({ka0b0a2 +1,ka2
2b2

0−b2(ka0b0a2 +1)}) = gcd({ka0b0a2 +1,ka2
2b2

0}) = 1.

��
Now we see that in a family with finitely many proportionally modular numerical

semigroups given by closed intervals, we can choose the denominator of the right

ends to be the same for all the semigroups in the family.
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Lemma 6.25. For every i ∈ {1, . . . ,r}, let Si = S
([

ai,1
bi,1

,
ai,2
bi,2

])
with ai,1, ai,2, bi,1 and

bi,2 positive integers with 1 <
ai,1
bi,1

<
ai,2
bi,2

. Then there exist positive integers c1, . . . ,cr

and d such that for all i ∈ {1, . . . ,r},
• Si = S

([
ai,1
bi,1

, ci
d

])
and

• gcd{ci,d}= 1.

Proof. The sequence { kai,2+1

kbi,2
}k∈N\{0} is strictly decreasing and converges to

ai,2
bi,2

.

Thus, in view of the proof of Proposition 6.22, there exists Ni ∈ N such that if

ki ≥ Ni, we have that Si = S
([

ai,1
bi,1

,
kiai,2+1

kibi,2

])
. To conclude the proof it suffices to

choose ki = t
b2

1,2···b2
r,2

bi,2
with t large enough so that ki ≥ Ni for all i ∈ {1, . . . ,r}. ��

Theorem 6.26. A numerical semigroup has a Toms decomposition if and only if it
is the intersection of finitely many proportionally modular numerical semigroups.

Proof. We already know one implication (Proposition 6.21).

Let S be the intersection of finitely many proportionally modular numerical semi-

groups. If S = N, then N = 〈2,3〉
5 suits our needs. Otherwise, S = S1∩·· ·∩Sr for some

S1, . . . ,Sr proportionally modular numerical semigroups different from N. In view

of Theorem 5.14 and Lemma 6.25, there exist some positive integers a1, . . . ,ar,

b1, . . . ,br, c1, . . . ,cr and d such that Si = S
([

ai
bi

, ci
d

])
with gcd{ci,d} = 1 for all

i∈ {1, . . . ,r}. From Lemma 6.24, we know that there exist positive integers bi0 < ai0
and Ni ∈ N such that for all ki ≥ Ni, one obtains that

〈kiai0bi0ci +1, ci〉
kicibi0(cibi0 −ai0d)−d

is a Toms block equal to Si. Let mi = cibi0(cibi0 − ai0d). Let t = max{N1, . . . ,Nr}.
Then setting ki = t m1···mr

mi
one concludes that

S =
r⋂

i=1

〈kiai0bi0ci +1, ci〉
tm1 · · ·mr−d

is a Toms representation for S. ��
We end this section by giving some other consequences of Proposition 6.22.

Proposition 6.27. Let S be a proportionally modular numerical semigroup other
than N. Then there exists a positive integer N such that if x and y are relatively
prime integers greater than N, there exists a positive integer z such that S = 〈x,y〉

z .

Proof. By Theorem 5.14, there exist positive rational numbers α and β with 1 <
α < β such that S = S([α,β ]). Let α and β be the rational numbers whose existence

is ensured by Proposition 6.22. Let N = F(S(]α,α])∩ S([β ,β [)) + 1. For every x
and y greater than N, by Lemma 5.8, there exist positive integers u and v such that
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α < x
u ≤ α (x ∈ S(]α,α])) and β ≤ y

v < β (y ∈ S([β ,β [)). As a consequence of the

proof of Proposition 6.22, S
([ x

u , y
v

])
= S. If we choose x and y relatively prime, then

Corollary 6.19 ensures the existence of an integer z such that S = 〈x,y〉
z . ��

This result produces a surprising characterization of proportionally modular nu-

merical semigroups more restrictive than Theorem 6.18.

Corollary 6.28 ([54]). Every proportionally modular numerical semigroup is of the
form 〈a,a+1〉

d for some positive integers a and d.

Choosing a large enough, we get the following characterization of numerical

semigroups having a Toms decomposition.

Corollary 6.29 ([54]). A numerical semigroup has a Toms decomposition if and
only if there exist positive integers a, p1, . . . , pr such that

S =
〈a, a+1〉

p1
∩·· ·∩ 〈a, a+1〉

pr
.

Exercises

Exercise 6.1 ([92]). A numerical semigroup is said to be arithmetic if there exist

integers a and b with 0≤ b < a such that A = 〈a,a+1, . . . ,a+b〉.
a) Prove that x ∈ 〈a,a+1, . . . ,a+b〉 if and only x mod a≤ ⌊ x

a

⌋
b ([33]).

b) Show that if S = S
([ a

c , b
c

])
for some positive integers a, b and c, then S = 〈a,a+

1, . . . ,a+b〉/c.

c) Prove that a numerical semigroup is proportionally modular if and only if it is the

quotient of an arithmetic numerical semigroup by a positive integer.

Exercise 6.2 ([92]). Show that 〈4,6,7〉 has no Toms decomposition (Hint: Prove

first that this semigroup is irreducible).

Exercise 6.3 ([98]). Let n1, n2 and t be positive integers such that gcd{n1, tn2}= 1.

Show that 〈n1, tn2〉
td

=
〈n1,n2〉

d
.

Exercise 6.4 ([98]). Let n1 and n2 be odd relatively prime integers. Prove that

〈n1,n2〉
2

=
〈

n1,n2,
n1 +n2

2

〉
.

Exercise 6.5 ([98]). Let n1 and n2 be positive integers such that n1, n2 and 3 are

relatively prime. Prove that

a) if n1 +n2 ≡ 0 mod 3, then
〈n1,n2〉

3 = 〈n1,n2,
n1+n2

3 〉,
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b) if n1 +2n2 ≡ 0 mod 3, then
〈n1,n2〉

3 = 〈n1,n2,
n1+2n2

3 , 2n1+n2
3 〉.

Exercise 6.6 ([98]). Let n1, n2 and d be positive integers with gcd{n1,n2} = 1.

Prove that if d divides n1n2− n1− n2, then
〈n1,n2〉

d is symmetric. Show with an ex-

ample that the converse is not true.

Exercise 6.7 ([64]). Let n1 and n2 be coprime integers greater than or equal to three.

Prove that

a) if n2 is even, then F
( 〈n1,n2〉

2

)
= n1n2−2n1−n2

2 and g
( 〈n1,n2〉

2

)
= (n1−1)(n2−2)

4 ,

b) if n1 and n2 are odd, then F
( 〈n1,n2〉

2

)
= n1n2−n1−n2−min{n1,n2}

2 and g
( 〈n1,n2〉

2

)
=

(n1−1)(n2−1)
4 .

Exercise 6.8 ([64]). Let n1 and n2 be coprime integers greater than or equal to three.

Prove that

a) if n2 is even, then #FG(〈n1,n2〉) = n2(n1−1)
4 −⌈ n2

6

⌉⌈ n1−3
6

⌉
,

b) if n1 and n2 are odd, then #FG(〈n1,n2〉) = (n1−1)(n2−1)
4 −

⌈
(n2−3)

6

⌉⌈
n1−3

6

⌉
.

Exercise 6.9 ([64]). Let n1 and n2 be coprime integers greater than or equal to three.

Let S = 〈n1,n2〉
3 . Denote by F3(S) the largest multiple of 3 not belonging to S. Show

that

a) if n2 ≡ 0 mod 3, then F3(S) = n1n2−3n1−n2,

b) if n1 and n2 are congruent with 1 modulo 3, then F3(S) = n1n2 − n1 − n2 −
min{n1,n2},

c) if n1 ≡ 1 mod 3 and n2 ≡ 2 mod 3, then F3(S) = n1n2−n1−n2−min{2n1,n2},
d) if n1 and n2 are congruent with 2 modulo 3, then F(S) = n1n2−n1−n2.

Exercise 6.10 ([24]). Let S = 〈4,6,7,9〉. Prove that

a) S admits a Toms decomposition,

b) S\{6} also admits a Toms decomposition,

c) S\{9} does not admit a Toms decomposition.

Exercise 6.11. Let S be a proportionally modular numerical semigroup minimally

generated by {n1, . . . ,np}, where these generators are arranged in a way that there

exist positive integers d1, . . . ,dp such that n1
d1

< · · ·< np
dp

is a proper Bézout sequence

with adjacent edges (Proposition 5.33). Assume that h∈ {1, . . . , p} is such that n1 >
· · ·> nh < · · ·< np (Proposition 5.29).

a) Prove that for all i ∈ {1, . . . , p}, ni
di+1 < n1

d1
and if di = 0, then ni

di−1 >
np
dp

.

b) Let i ∈ {1, . . . ,h−1}. Prove that di = 1 and that S⊆ S
(]

ni
di

, ni
di−1

[)
.

c) Let i ∈ {h, . . . , p}. Prove that S⊆ S
(]

ni
di+1 , ni

di

[)
.

d) Show that for all i ∈ {1, . . . , p}, S\{ni} admits a Toms decomposition.

e) Prove that for all {i1, . . . , ik} ⊆ {1, . . . , p}, S admits a Toms decomposition.
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Exercise 6.12 ([54]). Let α and β be rational numbers with 0 < α < β . Prove that

there exist a positive rational number ε such that for all rational numbers δ with

0≤ δ < ε , the equality S([α−δ ,β +δ ]) = S([α,β ]) holds.

Exercise 6.13 ([54]). We say that two systems of proportionally modular Diophan-

tine inequalities are equivalent if they have the same set of integer solutions. Prove

that any system of proportionally modular Diophantine inequalities is equivalent to

a system of proportionally modular Diophantine inequalities in which any inequality

has the same modulus and furthermore this modulus can be chosen to be prime.



Chapter 6
Families of numerical semigroups closed under
finite intersections and adjoin of the Frobenius
number

Introduction

The concept of Frobenius variety was introduced in [67] in order to unify most of

the results appearing in [88, 89, 24, 11].

In this chapter we show that some families appearing previously in this book are

Frobenius varieties. We will introduce new varieties, as for instance, those fulfilling

a pattern and those families generated by an arbitrary set of numerical semigroups.

We also show how the numerical semigroups belonging to a Frobenius variety

can be arranged in a directed acyclic graph, and will paint part of this graph for

some known Frobenius varieties.

While working with numerical semigroups in a Frobenius variety we can repre-

sent these semigroups in the classic way by their minimal systems of generators.

By doing this we are not taking advantage of the fact that these semigroups belong

to a certain Frobenius variety. In order to avoid this, for a Frobenius variety V , we

introduce the concept of minimal V -system of generators.

1 The directed graph of the set of numerical semigroups

We see how the set of numerical semigroups can be arranged in a tree. This will

enable us to construct recursively the set of all numerical semigroups. We use this

idea later in this chapter for certain families of numerical semigroups.

A directed graph G is a pair (V,E), where V is a nonempty set whose elements

are called vertices, and E is a subset of {(v,w) ∈V ×V | v = w}. The elements of

E are called edges of G. A path connecting the vertices x and y of G is a sequence

of distinct edges of the form (v0,v1),(v1,v2), . . . ,(vn−1,vn) with v0 = x and vn = y.

A graph G is a tree if there exists a vertex r (known as the root of G) such that for

every other vertex x of G, there exists a unique path connecting x and r. If (x,y) is

J.C. Rosales, P.A. Garcı́a-Sánchez, Numerical Semigroups, 91
Developments in Mathematics 20, DOI 10.1007/978-1-4419-0160-6 7,
c© Springer Science+Business Media, LLC 2009
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an edge of a tree, then we say that x is a son of y. A vertex in a tree is a leaf if it has

no sons.

Let S be the set of numerical semigroups. We define the directed graph G (S )
as the graph whose vertices are the elements of S and (T,S) ∈S ×S is an edge

if S = T ∪{F(T )}.
Clearly, the candidate of root for G (S ) is N. The path connecting a numerical

semigroup S with N can be defined by means of the following sequence:

• S0 = S,

• Si+1 =
{

Si∪{F(Si)} if Si = N,
N otherwise.

As the complement of S in N is finite, there exists a positive integer k such that

Sk = N. Clearly

S = S0 � S1 � · · ·� Sk = N

provides a path connecting S and N in the graph G (S ). We define

Ch(S) = {S0,S1, . . . ,Sk}

and will refer to this set as the chain associated to S.

Note also that if S = T ∪ {F(T )}, then F(T ) becomes a minimal generator of

S, which in addition is greater than the Frobenius number of S. Conversely, if we

choose a minimal generator n of S, then S\{n} is a numerical semigroup, and if this

generator is greater than the Frobenius number, then F(S \ {n}) = n. With all this

information the following property is easy to prove.

Proposition 7.1. The directed graph G (S ) is a tree rooted in N. Moreover, the sons
of S ∈S are S\{x1}, . . . ,S\{xr}, with x1, . . . ,xr those minimal generators greater
than F(S).

This result can be used to recurrently construct the tree, starting in N, containing

the set of all numerical semigroups. Clearly, a leaf is a semigroup all of whose

minimal generators are smaller than the Frobenius number.

Proposition 7.2. Let S ∈S . Then S is a leaf of G (S ) if and only if it does not have
minimal generators greater than F(S).

Example 7.3. We draw three levels of G (S ).
N = 〈1〉

〈2,3〉

〈3,4,5〉
�����

〈2,5〉

�����

〈4,5,6〉
�����
〈3,5,7〉 〈3,4〉

�����
〈2,7〉

The semigroup 〈3,4〉 is a leaf. The semigroups of the form 〈2,k〉 with k > 3

always have exactly one son.
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It is also easy to prove from the definitions the following proposition.

Proposition 7.4. If (T,S) is an edge of G (S ), then

• F(T ) > F(S),
• g(T ) = g(S)+1.

With this result, we can use the recurrent construction of G (S ) to determine

all numerical semigroups with Frobenius number (or genus) less than a given

amount.

2 Frobenius varieties

Recall that the intersection of two numerical semigroups is again a numerical semi-

group (Exercise 2.2). If S is a numerical semigroup, then by Lemma 4.1, S∪{F(S)}
is also a numerical semigroup. In the rest of this chapter we will make use of these

two results without quoting them.

A Frobenius variety is a nonempty set V of numerical semigroups fulfilling the

following conditions

1) if S and T are in V , then so is S∩T ,

2) if S is in V and S = N, then S∪{F(S)} ∈V .

Clearly the set S of all numerical semigroups is a Frobenius variety. The chain

associated to a numerical semigroup is also a Frobenius variety. We review in this

section some other notable examples of Frobenius varieties.

Let A be a subset of N. The set {S ∈S | A⊆ S} is a Frobenius variety. In par-

ticular, O(S), the set of oversemigroups of S, is a Frobenius variety.

2.1 Arf numerical semigroups

Recall that a numerical semigroup S has the Arf property if for any x,y,z ∈ S with

x ≥ y ≥ z, x + y− z ∈ S. We already know (Proposition 3.22) that the set of Arf

numerical semigroups is closed under finite intersections. In order to prove that this

family is a Frobenius variety, we must prove the following result.

Lemma 7.5. Let S be an Arf numerical semigroup other than N. Then S∪{F(S)} is
also an Arf numerical semigroup.

Proof. Take x,y,z ∈ S∪{F(S)} such that x≥ y≥ z, and let us prove that x+y− z ∈
S∪{F(S)}.
• If x,y,z ∈ S, then as S is Arf, we obtain that x+ y− z ∈ S⊂ S∪{F(S)}.
• If F(S) ∈ {x,y,z}, then x+ y− z≥ F(S) and thus x+ y− z ∈ S∪{F(S)}. ��
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As we have mentioned above, this together with Proposition 3.22 proves that the

set of Arf numerical semigroups is a Frobenius variety.

Proposition 7.6. The set of Arf numerical semigroups is a Frobenius variety.

2.2 Saturated numerical semigroups

Now we see that the same holds for the set of saturated numerical semigroups. We

proceed analogously. Proposition 3.39 asserts that the intersection of finitely many

saturated numerical semigroups is again saturated (this fact follows easily from the

definition, as was already mentioned before stating Proposition 3.39). Thus once

more, proving that the family of saturated numerical semigroups is a Frobenius

variety passes through demonstrating the following lemma.

Lemma 7.7. Let S = N be a saturated numerical semigroup. Then S∪{F(S)} is also
saturated.

Proof. Let T = S∪ {F(S)}. In view of Proposition 3.34, it suffices to show that

if s ∈ T , then s + dT (s) ∈ T . If s < F(S), then s ∈ S and dS(s) = dT (s),
whence s+dT (s) = s+dS(s) ∈ S ⊂ T . If s≥ F(S), then s+dT (s)≥ F(S), and thus

s+dT (s) ∈ T . ��
Proposition 7.8. The set of saturated numerical semigroups is a Frobenius variety.

2.3 Numerical semigroups having a Toms decomposition

The set of numerical semigroups having a Toms decomposition coincides with the

set of numerical semigroups that are intersections of finitely many proportionally

modular numerical semigroups (Theorem 6.26). Clearly, this family is closed under

finite intersection. So it suffices to show that this family is also closed under the

adjoin of the Frobenius number to see that it is a Frobenius variety. Following [24],

we start proving that adding the Frobenius number to a proportionally modular nu-

merical semigroup yields a numerical semigroup that is the intersection of finitely

many proportionally modular numerical semigroups.

Lemma 7.9. Let S be a proportionally modular numerical semigroup with S = N.
Then S∪{F(S)} is the intersection of finitely many proportionally modular numeri-
cal semigroups.

Proof. Assume that S is generated by {n1, . . . ,np}. Since S is proportionally mod-

ular, S = S([α,β ]) for some real numbers α,β with 1 < α < β (Theorem 5.14).

By Lemma 5.8, for every i ∈ {1, . . . , p}, there exists di ∈ {1, . . . ,ni− 1} such that
ni
di
∈ [α,β ]. Assume that after rearranging the generators (if needed), we have that
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n1

d1
< · · ·< np

dp
.

Then

S

([
n1

d1
,

np

dp

])
⊆ S([α,β ]) = S,

and as n1, . . . ,np ∈ S([ n1
d1

,
np
dp

]) (Lemma 5.8 again), we deduce that

S = S

([
n1

d1
,

np

dp

])
.

Since F(S) ∈ S, by using Lemma 5.8 once more, there exists d ∈ N such that

F(S)
d +1

<
n1

d1
< · · ·< np

dp
<

F(S)
d

.

If d = 0, then F(S) < ni
di

, and thus F(S) < ni for all i∈ {1, . . . , p}. Hence F(S) < s for

all s ∈ S\{0}, which means that S = {0,F(S)+1,→}. In this setting S∪{F(S)}=
{0,F(S),→}= S([F(S),2F(S)]), which is proportionally modular by Theorem 5.14.

Now assume that d = 0. We prove that

S∪{F(S)}= S

([
F(S)
d +1

,
np

dp

])
∩S

([
n1

d1
,

F(S)
d

])
,

which in view of Theorem 5.14 proves that S is the intersection of proportionally

modular numerical semigroups. The inclusion

S∪{F(S)} ⊆ S

([
F(S)
d +1

,
np

dp

])
∩S

([
n1

d1
,

F(S)
d

])

is clear. Now, assume that there exists x ∈ S([F(S)
d+1 ,

np
dp

])∩S([ n1
d1

, F(S)
d ]), with x ∈ S∪

{F(S)}. Thus x < F(S) and there exist n and m positive integers such that

F(S)
d +1

≤ x
n
≤ np

dp
and

n1

d1
≤ x

m
≤ F(S)

d

(Lemma 5.8). As x
n , x

m ∈ [ n1
d1

,
np
dp

] (this would imply that x ∈ S), we have that

F(S)
d +1

≤ x
n

<
n1

d1
<

np

dp
<

x
m
≤ F(S)

d
,

which in particular implies that m < n. From the preceding inequalities we deduce

that

F(S)n≤ xd + x≤ F(S)m+ x < F(S)m+F(S) = F(S)(m+1),

and this leads to n < m+1. We conclude that m < n < m+1, which is impossible.

��
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With this result it is now easy to show the following.

Lemma 7.10. Let S be a numerical semigroup. If S = N and S is the intersection of
finitely many proportionally modular numerical semigroups, then S∪{F(S)} is also
the intersection of finitely many proportionally modular numerical semigroups.

Proof. Assume that there exist S1, . . . ,St proportionally modular numerical semi-

groups such that S = S1 ∩ ·· · ∩ St . Then S∪ {F(S)} = (S1 ∪ {F(S)})∩ ·· · ∩ (St ∪
{F(S)}). For i∈ {1, . . . , t}, if F(S)∈ Si, then Si∪{F(S)}= Si. If F(S) ∈ Si, as S⊆ Si,

this implies that F(S) = F(Si). In view of Lemma 7.9, Si∪{F(Si)} is the intersection

of finitely many proportionally modular numerical semigroups. Thus S∪{F(S)} is

also the intersection of finitely many proportionally modular numerical semigroups.

��
With the use of Theorem 6.26 the contents of this section read as follows.

Proposition 7.11. The set of numerical semigroups having a Toms decomposition is
a Frobenius variety.

2.4 Numerical semigroups defined by patterns

The idea of pattern on a numerical semigroup was introduced in [11] in order to

generalize the concept of Arf numerical semigroups. We see in this section that the

set of numerical semigroups defined by certain patterns is a Frobenius variety.

A pattern P of length n is an expression of the form a1x1 + · · ·+ anxn with

x1, . . . ,xn unknowns and a1, . . . ,an nonzero integers. We say that a semigroup S
admits the pattern P if for every s1, . . . ,sn ∈ S with s1 ≥ s2 ≥ ·· · ≥ sn, the element

a1s1 + · · ·+ ansn belongs to S. We denote by S (P) the set of all numerical semi-

groups admitting the pattern P.

Remark 7.12. The set S (x1 + x2− x3) is the set of all Arf numerical semigroups.

From the definition it is easy to see that if P is a pattern and S1, . . . ,Sr are numer-

ical semigroups admitting this pattern, then the intersection S1∩·· ·∩Sr also admits

the pattern P.

Lemma 7.13. Let P be a pattern. The set S (P) is closed under finite intersections.

We next see what are the patterns for which S (P) is also closed under the ad-

junction of F(S), or in view of the preceding lemma, for which S (P) is a Frobenius

variety. To this end, we use the results given in [11]. First we see for which patterns

the set S (P) is not empty.

Lemma 7.14. Let P = a1x1 + · · ·+ anxn be a pattern. The following conditions are
equivalent.

1) N ∈S (P).
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2) S (P) is not empty.
3) ∑n′

i=1 ai ≥ 0 for all n′ ≤ n.

Proof. Clearly 1) implies 2).
Let us prove that 2) implies 3). Assume to the contrary that there exists n′ ≤ n

such that ∑n′
i=1 ai < 0. Let S be a numerical semigroup in S (P), and let l be a

nonzero element of S. Take s1 = s2 = · · · = sn′ = l and sn′+1 = · · · = sn = 0. It is

obvious that ∑n
i=1 aisi < 0 and thus it is not in S, a contradiction.

Finally we see that 3) implies 1). We must show that if s1, . . . ,sn are nonnegative

integers such that s1 ≥ s2 ≥ ·· · ≥ sn, then a1s1 + · · ·+ ansn ∈ N. But this is clear

because a1s1 + · · ·+ansn ≥ a1sn +a2sn + · · ·+ansn = (∑n
i=1 ai)sn which is nonneg-

ative by hypothesis. ��
We say that a pattern P is admissible if S (P) is not empty. From the above

characterization it easily follows that a1 ≥ 0 if P = a1x1 + · · ·+anxn is an admissible

pattern.

Given a pattern P = a1x1 + · · ·+anxn define

P′ =
{

(a1−1)x1 +a2x2 + · · ·+anxn if a1 > 1,
a2x2 + · · ·+anxn otherwise.

The pattern P is strongly admissible if both P and P′ are admissible patterns. As

we see next for these patterns, S (P) is a Frobenius variety. In order to show that

S ∈S (P) implies S∪{F(S)} ∈S (P), we need a technical lemma.

Lemma 7.15. Let P = a1x1 + · · ·+ anxn be a strongly admissible pattern of length
n. Then for every k1 ≥ ·· · ≥ kn, it holds that a1k1 + · · ·+ankn ≥ k1.

Proof. Since P′ is admissible, we have that

P′(k1, . . . ,kn)≥ 0

(P′(k2, . . . ,kn)≥ 0, if a1 = 1), which leads to

P(k1, . . . ,kn) = k1 +P′(k1, . . . ,kn)≥ k1

(P(k1, . . . ,kn) = k1 +P′(k2, . . . ,kn)≥ k1, if a1 = 1). ��
Now it is easy to show that S (P) is closed under the adjoin of the Frobenius

number for P a strongly admissible pattern.

Lemma 7.16. Let S be in S (P) \ {N} with P a strongly admissible pattern. Then
S∪{F(S)} ∈S (P).

Proof. Assume that P has length n and let s1, . . . ,sn be elements in S∪{F(S)} such

that s1≥ ·· · ≥ sn. We wonder if P(s1, . . . ,sn)∈ S∪{F(S)}. We distinguish two cases.

• If F(S) > s1, then {s1, . . . ,sn} ⊆ S. As S ∈S (P), it follows that

P(s1, . . . ,sn) ∈ S⊂ S∪{F(S)}.
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• If F(S)≤ s1, then by Lemma 7.15, P(s1, . . . ,sn)≥ s1 ≥ F(S) and thus

P(s1, . . . ,sn) ∈ S∪{F(S)}. ��

Gathering all this information we obtain the result mentioned above.

Proposition 7.17. Let P be a strongly admissible pattern. Then S (P) is a Frobenius
variety.

Example 7.18. Note that x1 + x2 + x3− x4 is a strongly admissible pattern. Clearly

S (x1 + x2 + x3− x4) contains the set of all Arf numerical semigroups. However,

〈3,4〉 ∈S (x1 +x2 +x3−x4) and 〈3,4〉 is not Arf (it does not have maximal embed-

ding dimension).

3 Intersecting Frobenius varieties

Due to the following property we can obtain new Frobenius varieties by intersecting

those appearing in the preceding sections.

Proposition 7.19. The intersection of Frobenius varieties is a Frobenius variety.

Proof. Let {Vi}i∈I be a family of Frobenius varieties. Observe that N belongs to any

Frobenius variety. Hence
⋂

i∈I Vi is a nonempty family of numerical semigroups. If

S,S′ ∈⋂
i∈I Vi, then S,S′ ∈Vi for all i ∈ I. So we have that S∩S′ ∈Vi for all i ∈ I and

thus S∩S′ ∈ ⋂
i∈I Vi. If S ∈ ⋂

i∈I Vi and S = N, then S∪{F(S)} ∈Vi for all i ∈ I and

therefore S∪{F(S)} ∈⋂
i∈I Vi. ��

This result is not only useful to construct new Frobenius varieties from known

varieties, it also allows us to talk about the Frobenius variety generated by a family

X of numerical semigroups. We denote this variety by F (X) and define it as the

intersection of all Frobenius varieties containing X .

Given a family X of numerical semigroups, we denote by

Ch(X) =
⋃

S∈X

Ch(S).

Theorem 7.20. Let X be a nonempty family of numerical semigroups. Then F (X)
is the set of all finite intersections of elements in Ch(X).

Proof. Let

V = {S1∩·· ·∩Sn | n ∈ N\{0} and S1, . . . ,Sn ∈ Ch(X)} .

By using that F (X) is a Frobenius variety containing X , we deduce that V ⊆F (X).
We see now that F (X) ⊆ V . It suffices to prove that V is a Frobenius variety

containing X and then apply that F (X) is the smallest Frobenius variety con-

taining X . Clearly, if S,S′ ∈ V , then S∩ S′ ∈ V . Now we prove that if S ∈ V and
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S = N, then S∪{F(S)} ∈ V . Since S ∈ V , there exist S1, . . . ,Sn ∈ Ch(X) such that

S = S1 ∩ ·· · ∩ Sn. It is easy to prove that F(S) = max{F(S1), . . . ,F(Sn)}. Hence

F(Si) ≤ F(S) for all i ∈ {1, . . . ,n}. For i ∈ {1, . . . ,n}, if F(S) > F(Si), we have

Si ∪{F(S)} = Si, and if F(S) = F(Si), we have Si ∪{F(S)} = Si ∪{F(Si)}. Hence,

we obtain that for every i ∈ {1, . . . ,n}, Si ∪ {F(S)} ∈ Ch(X). From the equality

S∪{F(S)}= (S1∪{F(S)})∩·· ·∩ (Sn∪{F(S)}), we can assert that S∪{F(S)} ∈V .

��

4 Systems of generators with respect to a Frobenius variety

In all the examples of Frobenius varieties given so far, the concept of closure of a

numerical semigroup (or of a subset of nonnegative integers) can be defined as the

smallest (with respect to set inclusion) semigroup in the variety containing the given

semigroup (or subset of nonnegative integers). Since these varieties are closed under

intersections, this is the intersection of all the elements of the variety containing the

given set. From this idea one can define the concept of system of generators with

respect to the variety. These were studied for Arf semigroups in [88], for saturated

semigroups in [89], for semigroups that are the intersection of proportionally modu-

lar numerical semigroups in [24], and for numerical semigroups defined by strongly

admissible patterns in [11]. This idea was then abstracted and generalized to any

Frobenius variety in [67].

In this section, V denotes a Frobenius variety. A submonoid M of N is a V -
monoid if it can be expressed as the intersection of elements of V . From the defini-

tion it easily follows that the intersection of V -monoids is a V -monoid.

Lemma 7.21. The intersection of V -monoids is a V -monoid.

In view of this result, given a subset of nonnegative integers A, we can define the

V -monoid generated by A as the intersection of all V -monoids containing A. We

will denote this V -monoid by V (A), and we say that A is a V -system of generators
of V (A). If no proper subset of A generates this V -monoid, then we say that A is a

minimal V -system of generators.

Our aim in this section is to prove that minimal V -systems of generators are

unique and have finitely many elements.

The following properties are a direct consequence of the definitions.

Lemma 7.22.
1) Let A and B be subsets of N. If A⊆ B, then V (A)⊆ V (B).
2) For any subset A of nonnegative integers, V (A) = V (〈A〉).
3) If M is a V -monoid, then V (M) = M.

In view of these properties, we can deduce that every V -monoid admits a fi-

nite system of generators, because we can always make use of the classic minimal

system of generators of the underlying monoid (which is finite by Corollary 2.8).
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Proposition 7.23. Every V -monoid has a V -system of generators with finitely many
elements.

Minimal V -systems of generators can be characterized as in the classic sense.

Lemma 7.24. Let A ⊆ N and M = V (A). The set A is a minimal V -system of gen-
erators of M if and only if a ∈ V (A\{a}) for all a ∈ A.

Proof. If a ∈ V (A\{a}), then A⊆ V (A\{a}) and by Lemma 7.22 we obtain that

M = V (A)⊆ V (V (A\{a})) = V (A\{a})⊆ V (A) = M. Thus, M = V (A\{a}),
which implies that A is not a minimal V -system of generators of M.

Conversely, if A is not a minimal V -system of generators of M, then there exists

a proper subset B of A such that V (B) = M. Let a ∈ A \B; applying again Lemma

7.22 we have that a ∈M = V (B)⊆ V (A\{a}). Hence a ∈ V (A\{a}). ��
The proof of the fact that minimal V -systems of generators are unique relies on

the following result. If M is a submonoid of N and x ∈M, then x can be expressed

as a linear combination of those generators of M smaller than or equal to x. This ob-

servation that is obvious for submonoids of N needs to be clarified for V -monoids.

Lemma 7.25. Let A⊆ N. If x ∈ V (A), then x ∈ V ({a ∈ A | a≤ x}).
Proof. If x ∈ V ({a ∈ A | a ≤ x}), then from the definition we deduce that there

exists S∈V such that {a∈A | a≤ x}⊆ S and x ∈ S. As V is a Frobenius variety and

S ∈ V the semigroup S∪{x+1,→} is also in V (this semigroup belongs to Ch(S)).
Clearly, A⊆ S∪{x+1,→} and x ∈ S∪{x+1,→}. Hence x ∈ V (A) =

⋂
S∈V ,A⊆S S.

��
Theorem 7.26. Let V be a Frobenius variety. Let M be a V -monoid, and let A and
B be two minimal V -systems of generators of M. Then A = B.

Proof. Assume that A = {a1 < a2 < · · ·} and B = {b1 < b2 < · · ·}. If A = B, then

there exists i = minimum{k | ak = bk}. Without loss of generality we can assume

that ai < bi. By using that ai ∈M =V (A) =V (B), from Lemma 7.25 we deduce that

ai ∈ V ({b1, . . . ,bi−1}). Now by the minimality of i we know that {b1, . . . ,bi−1} =
{a1, . . . ,ai−1}. Thus ai ∈ V ({a1, . . . ,ai−1}). From Lemma 7.22 we have that ai ∈
V (A\{ai}), which is impossible in view of Lemma 7.24. ��

Summarizing we obtain that minimal V -systems of generators are finite and

unique as are classic minimal systems of generators of submonoids of N.

Corollary 7.27. Every V -monoid has a unique minimal V -system of generators
and this set is finite.

5 The directed graph of a Frobenius variety

Let V be a Frobenius variety. We present here a similar construction to the one

already presented in Section 1 to build the graph of all numerical semigroups in V .
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First we focus on the calculation of the sons of a given element in V . The result

obtained is analogous to the classic one, but substituting minimal generators by

minimal V -generators.

Proposition 7.28. Let M be a V -monoid and let x ∈ M. The set M \ {x} is a V -
monoid if and only if x belongs to the minimal V -system of generators of M.

Proof. Let A be the minimal V -system of generators of M and let x ∈ M. We see

that if M \{x} is a V -monoid, then x ∈ A. If x ∈ A, then A⊆M \{x}. Since M \{x}
is a V -monoid containing A, we have that M = V (A)⊆M \{x}, a contradiction.

Conversely, if x belongs to A, then by Theorem 7.26 we deduce that V (M \
{x}) = V (A) = M, since otherwise from M \ {x} we could find a minimal system

of generators contained in M \{x} and thus not equal to A. Hence M \{x} ⊆ V (M \
{x}) � M and consequently V (M \{x}) = M \{x}, obtaining that M \{x} is a V -

monoid. ��
Recall that if S is a numerical semigroup other than N, then F(S) becomes a

minimal generator of S∪{F(S)} greater than F(S∪{F(S)}). The same holds with

minimal V -systems of generators.

Corollary 7.29. Let S be a numerical semigroup. The following statements are
equivalent.

1) S = T ∪{F(T )} for some T ∈ V .
2) S ∈ V and the minimal V -system of generators of S contains an element greater

than F(S).

Proof. 1) implies 2). As T ∈V and since V is a Frobenius variety, S = T ∪{F(T )}∈
V . By Proposition 7.28, we deduce that F(T ) belongs to the minimal V -system of

generators of S. Furthermore, we clearly have that F(S) < F(T ).
2) implies 1). If S∈V and x is an element of the minimal V -system of generators

of S such that F(S) < x, then by Proposition 7.28 we obtain that T = S \ {x} ∈ V .

We also have that F(T ) = x and S = T ∪{x}. ��
Given a Frobenius variety V , define G (V ), the associated graph to V , in the

following way: the set of vertices of G (V ) is V and (T,S) ∈ V ×V is an edge of

G (V ) if and only if S = T ∪{F(T )}.
Given S ∈ V (S), as Ch(S)⊆ V , we deduce that there exists in G (V ) a path con-

necting S with N. By applying now Corollary 7.29 we obtain the following analogue

to Proposition 7.1.

Theorem 7.30. Let V be a Frobenius variety. The graph G (V ) is a tree with root
equal to N. Furthermore, the sons of a vertex S ∈ V are S\{x1}, . . . ,S\{xr} where
x1, . . . ,xr are the elements of the minimal V -system of generators of S which are
greater than F(S).

In the following examples, for the sake of simplicity, we will write V (x1, . . . ,xn)
instead of V ({x1, . . . ,xn}).
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Example 7.31 ([67]). Let S1 = 〈5,7,9〉= {0,5,7,9,10,12,14,→} and S2 = 〈4,6,7〉=
{0,4,6,7,8,10,→} and let V = F({S1,S2}). Its associated tree is printed below.

V (1)

V (2)

V (3)

V (4,5)

V (5,6)

				
V (4,9)







V (6,9)

����
V (5,8)






V (4)

V (8,9)

				
V (6)

����
V (5,11)

V (9,11)

����
V (8)






V (5,13)

V (11)

����
V (9,13)

����
V (5)

V (13) V (9)

V ( /0)

Example 7.32 ([88]). Let now V be the variety of Arf numerical semigroups. Part of

the associated tree of the variety is drawn below (we indicate the Frobenius number

of each of the nodes).

N = V (1),
F =−1

V (2,3),
F = 1


 ���

��

V (3,4),
F = 2

���
��

���
���

V (2,5),
F = 3

V (4,5),
F = 3

��
�� ���

��

V (3,5),
F = 4

V (2,7),
F = 5

V (5,6),
F = 4

V (4,6,7),
F = 5

V (3,7),
F = 5

V (2,9),
F = 7
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Each node has at most two sons (see [88]).

Example 7.33 ([89]). We now draw part of the tree associated to the Frobenius va-

riety V of saturated numerical semigroups.

V (1),
F =−1

V (2,3),
F = 1

�� ��

V (3,4),
F = 2

�� ��

V (2,5),
F = 3

��

V (4,5),
F = 3

�� ��

V (3,5),
F = 4

��

V (2,7),
F = 5

��

V (5,6),
F = 4

��
� ��

��

V (4,6,7),
F = 5

����
��

��
�

V (3,7),
F = 5

���
��

V (2,9),
F = 7

��
�

...
...
...

...
...

...

Every node has at most two sons, and there are no leaves (see [89]).

Example 7.34 ([11]). We now delineate part of the tree associated to the Frobenius

variety S (x1 + x2 + x3− x4) (see Exercise 7.7).

N = V (1),
F =−1

V (2,3),
F = 1

�������������

�����������

V (3,4,5),
F = 2

����
������������

����������������������
V (2,5),

F = 3

����������������������������������������

V (4,5,6,7),
F = 3

���
�� ����

�����������

V (3,5,7),
F = 4

��
��

V (3,4),
F = 5

V (2,7),
F = 5

����������������������������������������

V (5,6,7,8),
F = 4

V (4,6,7,9),
F = 5

V (4,5,7),
F = 6

V (4,5,6),
F = 7

V (3,7,8),
F = 5

V (3,5),
F = 7

V (2,9),
F = 7

In this example there are elements with more than two sons. For instance,

V (4,5,6,7〉 has four sons. The leaves in the portion of the directed acyclic graph

drawn in the figure are V (3,4), V (4,5,6) and V (3,5).
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Exercises

Exercise 7.1 ([67]). Prove that a Frobenius variety is finitely generated if and only

if it is finite.

Exercise 7.2 ([67]). Let X be a set of numerical semigroups and let V = F (X).
Choose A⊆ N. For every S ∈ X , define

A (S) =
{

S if A⊆ S,
S∪{min(A\S),→} if A ⊆ S.

Show that V (A) =
⋂

S∈X A (S).

Exercise 7.3 ([67]). Let S1 = 〈5,7,9〉 and S2 = 〈4,6,7〉. Set V = F ({S1,S2}).
Prove that V ({5,6,9}) = 〈5,6,7,8,9〉.
Exercise 7.4 ([67]). Let X be a nonempty family of numerical semigroups, V =
F (X) and A ⊆ N. If S ∈ X and A ⊆ S, define a(S,A) = min(A \ S). Show that{

a(S,A) | S ∈ X ,A ⊆ S
}

is the minimal V -system of generators of V (A).

Exercise 7.5 ([67]). Let X be a nonempty family of numerical semigroups and let

V = F (X). Prove that every minimal V -system of generators has cardinality less

than or equal to X .

Exercise 7.6 ([67]). Let S1 = 〈5,7,9〉 and S2 = 〈4,6,7〉. Set V = F ({S1,S2}).
Prove that {5,6} is the minimal V -system of generators of V ({5,6,9}).
Exercise 7.7 ([11]). Let P be the pattern x1 + x2 + x3− x4. Prove that V = S (P) is

a Frobenius variety. Show that V ({7,15}) = 〈7,15,31,47,48〉.
Exercise 7.8 ([24]). Let V be the Frobenius variety of all numerical semigroups

having a Toms decomposition. Prove that V ({4,6,7}) = 〈4,6,7,9〉.
Exercise 7.9. Let V be the Frobenius variety of all numerical semigroups with the

Arf property. Demonstrate that {7,24,33} is not a minimal V -system of generators

of V ({7,24,33}).
Exercise 7.10. Let V be the set of all numerical semigroups that are a half-line.

Prove that

a) V is a Frobenius variety,

b) every minimal V -system of generators has cardinality one.



Chapter 7
Presentations of a numerical semigroup

Introduction

Rédei in [53] shows that every congruence on Nn is finitely generated. This result

has since been known as Rédei’s theorem, and it is equivalent to the fact that ev-

ery finitely generated (commutative) monoid is finitely presented. Rédei’s proof is

long and elaborated. Many other authors have given alternative and much simpler

proofs than his (see for instance [31, 39, 41, 56]). Since numerical semigroups are

cancellative monoids, a different approach can be chosen to prove Rédei’s theorem.

And this is precisely the path we choose in this chapter.

Another way to study presentations for finitely generated monoids relies on the

following idea. Associated to a monoid M and to a ring R, one can define its

semigroup ring R[M] (see [37]). Presentations of monoids translate into binomial

ideals on the ring of polynomials over R with as many unknowns as M has gen-

erators. Hilbert’s basis theorem can be then used to derive Rédei’s theorem (see

[31, 41, 51]).

An important peculiarity of finitely generated cancellative (commutative)

monoids is that minimal presentations with respect to set inclusion have minimal

cardinality (see [93]). In this chapter we focus on the computation of a (and in fact

all) minimal presentation of a numerical semigroup. The idea comes from Rosales’

PhD thesis ([55]) and was published later in [59].

The cardinality of a minimal presentation of a numerical semigroup cannot be

bounded in terms of its embedding dimension. This follows from Bresinsky’s fam-

ily of embedding dimension four numerical semigroups, which have arbitrarily

large minimal presentations (see [14]). In this chapter we offer an upper bound

for the cardinality of a minimal presentation in terms of the multiplicity of the

semigroup.

J.C. Rosales, P.A. Garcı́a-Sánchez, Numerical Semigroups, 105
Developments in Mathematics 20, DOI 10.1007/978-1-4419-0160-6 8,
c© Springer Science+Business Media, LLC 2009
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1 Free monoids and presentations

As in other branches of algebra, a monoid can be represented via a free object in the

category of monoids modulo certain relations between the generators. To this end

we need to introduce the concept of free monoid and state the isomorphism theorem

for monoids.

Let X be a nonempty set. A binary relation on X is a subset σ of X × X . If

(a,b) ∈ σ , we write xσy and we say that x is σ -related with y. If σ is reflexive (aσa
for all a ∈ X), symmetric (aσb implies bσa) and transitive (aσb and bσc implies

aσc), then we say that σ is an equivalence binary relation. For every a ∈ X , we

define its class modulo σ called its σ -class as

[a]σ = {b ∈ X | aσb} .

The set
X
σ

= { [a]σ | a ∈ X }
is the quotient set of X by σ , and it is a partition of X .

A congruence on a monoid M is an equivalence binary relation such that for all

a,b,c ∈M, if aσb, then (a+ c)σ(b+ c).

Lemma 8.1. Let M be a monoid and σ a congruence on M. Then M
σ is a monoid

with the operation
[a]σ +[b]σ = [a+b]σ .

Proof. In order to see that + is a map, we must prove that if aσb and cσd, then

(a + c)σ(b + d). But this is an easy consequence of the fact that σ is a congru-

ence, because (a+c)σ(b+c) and (b+c)σ(b+d), and by transitivity we obtain the

desired property. The identity element is clearly [0]σ , and the operation is trivially

associative and commutative. ��
The monoid (M

σ ,+) is the quotient monoid of M modulo σ .

Let f : X → Y be a monoid homomorphism. We define the kernel congruence of

f as

ker( f ) = {(a,b) ∈ X×X | f (a) = f (b)}
(which clearly is a congruence on X because f is a homomorphism). The image of

f , defined as

im( f ) = { f (a) | a ∈ X } ,

is a submonoid of Y .

Observe that there are slight differences between the usual definitions in Abelian

groups and monoids. The condition f (0) = 0 for monoid morphisms is not imposed

for group morphisms, since it follows directly from f (0) = f (0+0) = f (0)+ f (0).
This is because in monoids we do not have a “cancellative” law (we will come back

to this concept later). The other main difference is the definition of kernel. In group

theory it is defined as the preimage of the identity element, that is, the set of elements



1 Free monoids and presentations 107

that map to the identity element. This is because in group theory f (a) = f (b) implies

f (a)− f (b) = 0, or equivalently f (a−b) = 0. Thus in order to measure how far our

morphism is from being injective, it suffices to study those elements that map to the

identity element. This of course cannot be translated to monoids in general, since

we do not have the notion of inverse. Although there are some differences, the first

theorem of isomorphy still holds.

Proposition 8.2. Let f : X → Y be a monoid homomorphism. Then

f̃ :
X

ker( f )
→ im( f ), f̃ ([a]ker( f )) = f (a)

is a monoid isomorphism.

Proof. This definition of f̃ does not depend on the choice of the representative of

[a]ker( f ), because of the meaning of ker( f ). This map is both injective and surjective,

and it is a homomorphism since f is a homomorphism. ��
The free monoid on a set X is defined as

Free(X) = {λ1x1 + · · ·+λkxk | k ∈ N,λ1, . . . ,λk ∈ N,x1, . . . ,xk ∈ X } .

Addition is defined componentwise, that is,

(λ1x1 + · · ·+λkxk)+(μ1x1 + · · ·+ μkxk) = (λ1 + μ1)x1 + · · ·+(λk + μk)xk

(some of the λi or μi can be zero). This set with this operation is a monoid. It coin-

cides with the set of maps λ : X → N with finite support (λ (x) = 0 for only finitely

many x ∈ X). In order to simplify notation we will sometimes write Free(x1, . . . ,xn)
to denote Free({x1, . . . ,xn}). Observe that Free(x1, . . . ,xn) (with xi = x j for all i = j)
is isomorphic to Nn.

If M is generated by {m1, . . . ,mk}, then the map

ϕ : Free(x1, . . . ,xk)→M, ϕ(λ1x1 + · · ·+λkxk) = λ1m1 + · · ·+λkmk

is a monoid epimorphism (assuming that xi = x j for i = j).
Note that we could have just defined ϕ as the (unique) monoid homomorphism

determined by ϕ(xi) = mi for all i ∈ {1, . . . ,k}. Hence by Proposition 8.2, M is

isomorphic to Free(x1, . . . ,xn)/ker(ϕ).

Proposition 8.3. Let M be a monoid generated by {m1, . . . ,mk}. Let X be a set with
cardinality k. Then there exists a congruence σ on Free(X) such that M is isomor-
phic to Free(X)/σ .

As a consequence of this property, every finitely generated monoid is isomorphic

to Nk/σ for some positive k and some congruence σ on Nk.

In order to achieve a finite representation of a finitely generated monoid, it still

remains to see that the congruence σ can be “finitely described.” We see next what
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we mean by this. First we introduce the concept of congruence generated by a set.

We can do this because the intersection of congruences on a monoid is a congruence,

and thus for a set X and a subset ρ of Free(X)×Free(X) we define the congruence
generated by ρ as the intersection of all congruences on Free(X) containing ρ . We

denote this congruence by Cong(ρ). We next see what are the elements in this set.

The binary relation Δ(X) = {(x,x) | x ∈ X } is known as the diagonal on X . For

a binary relation ρ on a set X , its inverse relation is the set

ρ−1 = {(b,a) | (a,b) ∈ ρ } .

Proposition 8.4. Let X be a nonempty set. Let ρ ⊆ Free(X)×Free(X). Define

ρ0 = ρ ∪ρ−1∪Δ(Free(X)),

ρ1 =
{

(v+u,w+u) | (v,w) ∈ ρ0,u ∈ Free(X)
}

.

Then Cong(ρ) is the set of pairs (v,w) ∈ Free(X)× Free(X) such that there exist
k ∈ N and v0, . . . ,vk ∈ Free(X) with v0 = v, vk = w and (vi,vi+1) ∈ ρ1 for all 0 ≤
i≤ k−1.

Proof. We first show that the set constructed in this way is a congruence. Let us call

this set σ .

(1) Since Δ(Free(X))⊆ σ , the binary relation σ is reflexive.

(2) If (v,w) ∈ σ , there exist k ∈ N and v0, . . . ,vk ∈ Free(X) such that v0 = v, vk =
w and (vi,vi+1) ∈ ρ1 for all 0 ≤ i ≤ k− 1. Since (vi,vi+1) ∈ ρ1 implies that

(vi+1,vi) ∈ ρ1, defining wi = vk−i for every 0≤ i≤ k, we obtain that (w,v) ∈ σ .

Hence σ is symmetric.

(3) If (u,v) and (v,w) are in σ , then there exists k, l ∈N and v0, . . . ,vk,w0, . . . ,wl ∈
Free(X) such that v0 = u, vk = w0 = v, wl = w and (vi,vi+1),(w j,w j+1) ∈ ρ1

for all suitable i, j. By concatenating the sequences {vi}i and {w j} j we obtain

(u,w) ∈ σ . Thus σ is transitive.

(4) Finally, let (v,w) ∈ σ and u ∈ Free(X). There exists k ∈ N and v0, . . . ,vk ∈
Free(X) such that v0 = v, vk = w and (vi,vi+1) ∈ ρ1 for all 0 ≤ i ≤ k− 1.

Defining wi = vi + u for all 0 ≤ i ≤ k we have (wi,wi+1) ∈ ρ1 and thus

(v+u,w+u) ∈ σ .

It is clear that every congruence containing ρ must contain σ and this means that σ
is the least congruence on Free(X) that contains ρ , that is, σ = Cong(ρ). ��

A congruence σ is generated by ρ if σ = Cong(ρ). We say that ρ is a system
of generators of σ . A congruence σ is finitely generated if there exists a system of

generators of σ with finitely many elements.

A presentation of a finitely generated monoid M is a congruence on Free(X),
for some finite set X , such that M ∼= Free(X)/Cong(ρ). We say that M is a finitely
presented monoid if ρ is finite.

Let X be a nonempty set and let σ be a congruence on Free(X). An element (a,b)
in σ{(0,0)} is irreducible if it cannot be expressed as (a,b) = (a1,b1) + (a2,b2)
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with (a1,b1),(a2,b2) ∈ σ \ {(0,0)}. Let Irr(σ) be the set of irreducible elements

of σ . Note that σ is a submonoid of Free(X)×Free(X), since as we have seen in

the proof of Lemma 8.1, if (a,b) and (c,d) are in σ , so is (a + c,b + d), and by

reflexivity (0,0) ∈ σ . As we see next, Irr(σ) generates σ as a monoid.

Proposition 8.5. Let X be a nonempty finite set and let σ be a congruence on
Free(X). Then σ = 〈Irr(σ)〉.
Proof. Assume that X = {x1, . . . ,xk}. We define the following order relation on

Free(X): λ1x1 + · · ·+ λkxk ≤ μ1x1 + · · ·+ μkxk if λi ≤ μi for all i ∈ {1, . . . ,k}.
Given x = λ1x1 + · · ·+ λkxk ∈ Free(X), the set of elements in Free(X) less than

or equal to x is finite (there are (λ1 + 1) · · ·(λk + 1) of them). In the same way we

can define on Free(X)× Free(X) the relation (a,b) ≤ (c,d) if a ≤ c and b ≤ d.

We write (a,b) < (c,d) if (a,b) ≤ (c,d) and (a,b) = (c,d). It follows that given

(a,b) in Free(X)×Free(X) the set of elements (c,d)∈ Free(X)×Free(X) such that

(c,d)≤ (a,b) is finite.

Let (a,b) ∈ σ . If (a,b) is not irreducible, then (a,b) = (a1,b1)+ (a′1,b
′
1), with

(a1,b1),(a′1,b
′
1) ∈ σ \ {(0,0)}. Then (a1,b1) < (a,b) and (a′1,b

′
1) < (a,b). If any

of them is not irreducible, then we can repeat the process with them. In this way

we can construct a binary tree rooted in (a,b) and every node is the sum of its two

sons. A leaf in the tree is an irreducible element of σ . Since all the elements in

the tree are smaller than (a,b) (except (a,b) itself), and the number of elements in

Free(X)×Free(X) smaller than (a,b) is finite, this tree has only finitely many nodes

and thus finitely many leaves. From the way the tree is constructed, (a,b) is the sum

of all the leaves in the tree, obtaining in this way that (a,b) ∈ 〈Irr(σ)〉. ��
A monoid M is cancellative if for any a,b,c∈M, a+c = b+c implies a = b. We

say that a congruence σ on Free(X) is cancellative if Free(X)/σ is cancellative. We

now see that, as a consequence of Dickson’s lemma, finitely generated cancellative

monoids are always finitely presented.

Lemma 8.6 (Dickson’s lemma). Let X be a nonempty set with finitely many ele-
ments. Let N be a nonempty subset of Free(X). The set M = Minimals≤(N) has
finitely many elements.

Proof. Assume that X = {x1, . . . ,xn}. We use induction on n. For n = 1, the result

follows easily from the fact that ≤ is a well order on Free(x1) = {λx1 | λ ∈ N},
because ≤ is a well order on N (every subset of N has a minimum).

Assume that the statement is true for n− 1 and let us show it for n. Choose an

element a1x1 + · · ·+anxn ∈M. For each 1≤ i≤ n and each 0≤ j ≤ ai define

Mi j = {(m1x1 + · · ·+mnxn) ∈M | mi = j}

and

Bi j = {b1x1 + · · ·+bn−1xn−1 ∈ Free(x1, . . . ,xn−1) |
b1x1 + · · ·+bi−1xi−1 + jxi +bixi+1 + · · ·+bn−1xn ∈Mi j}.
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Observe that Minimals≤(M) = M and for this reason Minimals≤(Mi j) = Mi j and

Minimals≤(Bi j) = Bi j. By induction hypothesis, Bi j must be finite. Hence, Mi j is

finite as well. Since there are finitely many sets Mi j, the set
⋃

Mi j is again finite

and nonempty. Hence it is enough to show that M ⊆ ⋃
Mi j. Take m1x1 + · · ·+mnxn

to be an element in M. There exists i ∈ {1, . . . ,n} such that mi ≤ ai (if this were

not the case, a1x1 + · · ·+ anx2 < m1x1 + · · ·+ mnxn and this is impossible, since

m1x1 + · · ·+mnxn is a minimal element of N). Hence m1x1 + · · ·+xnmn ∈Mimi . ��
Given a = a1x1 + · · ·+ anxn,b = b1x1 + · · ·+ bnxn ∈ Free(x1, . . . ,xn). If a ≤ b,

then ai ≤ bi for all i ∈ {1, . . . ,n}. Thus (b1− a1)x1 + · · ·+(bn− an)xn ∈ Free(X).
We denote this element by b−a.

Proposition 8.7. Let X be a nonempty set with finitely many elements. Let σ be a
cancellative congruence on Free(X). Then the set Irr(σ) is finite.

Proof. If we prove that

Irr(σ)⊆Minimals≤(σ \{0,0}),

then by using Dickson’s lemma the set Irr(σ) must be finite. Let (a,b) be an ele-

ment in Irr(σ). Assume that (a,b) is not a minimal element of σ \ {(0,0)}. Thus

there exists (a1,b1) ∈ Minimals≤(σ \ {0,0}) such that (a1,b1) < (a,b). Hence

(a,b) = (a1,b1) + (a2,b2) with (a2,b2) = (a− a1,b− b1) ∈ Free(X)× Free(X).
Since (a,b) = (a1 + a2,b1 + b2) ∈ σ and (b1,a1) ∈ σ , we have that (a2 + (a1 +
b1),b2 +(a1 +b1)) ∈ σ . By hypothesis, Free(X)/σ is cancellative and this implies

that from the equality

[a2 +(a1 +b1)]σ = [a2]σ +[a1 +b1]σ = [b2]σ +[a1 +b1]σ = [b2 +(a1 +b1)]σ

we obtain that [a2]σ = [b2]σ . Thus (a2,b2) ∈ σ , which means that (a,b) ∈ Irr(σ).
The contradiction comes from the assumption (a,b) ∈Minimals≤(σ \{0,0}). ��

With this we obtain the desired consequence.

Corollary 8.8. Every finitely generated cancellative monoid is finitely presented.

2 Minimal presentations of a numerical semigroup

Every numerical semigroup is a finitely generated cancellative monoid and thus it is

finitely presented. We characterize in this section those presentations of numerical

semigroups that are minimal. We will see that the concepts of minimal with respect

to set inclusion and cardinality coincide for numerical semigroups.

Let σ be a congruence on Free(x1, . . . ,xn) and let ρ be a system of generators of

σ . We say that ρ is a minimal relation if the cardinality of ρ is the least possible

among the cardinalities of systems of generators of σ . Let S be a numerical semi-

group minimally generated by {n1, . . . ,ne} and let X = {x1, . . . ,xe} with xi = x j for
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all i = j. We say that ρ is a minimal presentation if ρ is a minimal relation of the ker-

nel congruence of ϕ : Free(x1, . . . ,xe)→ S, ϕ(a1x1 + · · ·+aexe) = a1n1 + · · ·+aene.

In this section, we use σ to denote the kernel congruence of ϕ .

Given n ∈ N the set of expressions of n in S is defined as

Z(n) = ϕ−1(n) = {a1x1 + · · ·+aexe | a1n1 + · · ·+aene = n} .

For a = a1x1 + · · ·+aexe,b = b1x1 + · · ·+bexe ∈ Free(x1, . . . ,xe). Define the dot
product of a and b as

a ·b = a1b1 + · · ·+aebe.

We define the following relation on Free(x1, . . . ,xe). For a,b ∈ Free(x1, . . . ,xe),
aRb if either a = b = 0 or there exist k1, . . . ,kl ∈ Z(n) for some n ∈ S such that

k1 = a, kl = b and ki ·ki+1 = 0 for all i∈ {1, . . . , l−1}. This is an equivalence binary

relation on Free(X). The elements of Free(X)/R are called R-classes.

The concept of graph differs slightly from that of directed graph (see page 91).

We recall it now since it is of crucial importance in what follows. A (nondirected)

graph G is a pair (V,E) where V is a set whose elements are known as the vertices
of G and E is a subset of {{u,v} | u,v ∈V,u = v}. The unordered pair {u,v} will

be denoted as uv, and if it belongs to E, then we say that it is an edge of G.

A sequence of edges of the form v0v1,v1v2, . . . ,vm−1vm is known as a path of

length m connecting v0 and vm. A graph is connected if for any two vertices of the

graph, there is a path connecting them. It is well known that a connected graph with n
vertices has at least n−1 edges (see [48]). A tree is a connected graph with n vertices

and n−1 edges for some positive integer n (this is one of the many characterizations

of a tree). A subgraph of the graph G = (V,E) is a graph G′ = (V ′,E ′) such that

V ′ ⊆V and E ′ ⊆ E. It is also well known that any connected graph G with n vertices

has a subgraph with the same vertices that is a tree. This tree is called the generating
tree of G.

Let X be a nonempty set, let P = {X1, . . . ,Xr} be a partition of X and let γ be

a binary relation on X . The graph associated to γ with respect to the partition P is

Gγ = (V,E), where V = P and XiXj ∈ E with i = j if there exists x ∈ Xi and y ∈ Xj
such that (x,y) ∈ γ ∪ γ−1.

Let n ∈ N and let X1, . . . ,Xr be the R-classes contained in Z(n). If β is a binary

relation on Free(x1, . . . ,xe), we denote by

βn = β ∩ (Z(n)×Z(n))

and by Gβn the graph associated to the partition {X1, . . . ,Xr} of Z(n). As we see

next, these graphs are crucial for our characterization of minimal presentations of a

numerical semigroup.

Lemma 8.9. Let n ∈ N. If β is a binary relation on Free(x1, . . . ,xe) generating σ ,
then Gβn is connected.

Proof. Let X1, . . . ,Xr be the R-classes contained in Z(n). Let t and s be in {1, . . . ,r}
with t = s. We prove that there exists a path connecting Xt and Xs. Let k ∈ Xt and
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h ∈ Xs. As k,h ∈ Z(n), kσh. Since Cong(β ) = σ , by Proposition 8.4, there exist

b0,b1, . . . ,bl ∈ Free(x1, . . . ,xe), such that k = b0, h = bl and (bi,bi+1) ∈ β 1 for i ∈
{0, . . . , l− 1}. Hence there exist for all i ∈ {0, . . . , l− 1}, zi ∈ Free(x1, . . . ,xe) and

(xi,yi) ∈ β ∪ β−1 such that (bi,bi+1) = (xi + zi,yi + zi). If zi = 0, then biRbi+1.

And if zi = 0, then {bi,bi+1} ⊆ βn. Hence the nonordered pairs {bi,bi+1} such that

(bi,bi+1) ∈ R yield the path in Gβn connecting Xt with Xs. ��
Theorem 8.10. Let β be a binary relation on Free(x1, . . . ,xe) with xi = x j for i = j.
Then Cong(β ) = σ if and only if Gβn is connected for all n ∈ N.

Proof. The necessary condition is the preceding lemma. So let us focus on the suf-

ficiency. Observe that in order to prove that Cong(β ) = σ , it suffices to show that

for all n ∈N, if k,k′ ∈ Z(n), then (k,k′)∈Cong(β ). We use induction on n. If n = 0,

then Z(n) = {0} and trivially (0,0) ∈ Cong(β ). Hence assume as induction hypoth-

esis that the result holds for integers less than n. If n ∈ S, then Z(n) is empty and the

result follows by vacuity. Thus we can assume that n ∈ S. We distinguish two cases.

1) If kRk′, then there exist k0, . . . ,kl ∈ Z(n) such that k = k0, k′ = kl and for all

i ∈ {0, . . . , l− 1}, ki · ki+1 = 0, or equivalently, there exists t ∈ {1, . . . ,e} such

that xt ≤ ki and xt ≤ ki+1. It follows that ki− xt ,ki+1− xt ∈ Z(n− nt). By in-

duction hypothesis (ki− xt ,ki+1− xt) ∈ Cong(β ). As Cong(β ) is a congruence,

(ki,ki+1) ∈ Cong(β ) and by transitivity, this leads to (k,k′) ∈ Cong(β ).
2) If (k,k′) ∈ R, then there are at most two R-classes on Z(n). Assume that the

sequence X1, . . . ,Xr defines a path connecting X1 and Xr, where X1 is the R-class

of k and Xr that of k′. For every i ∈ {1, . . . ,r− 1}, as XiXi+1 is an edge of Gβn ,

there exists {ai,bi} ⊆ βn with ai ∈ Xi and bi ∈ Xi+1. Hence (ai,bi) ∈ Cong(β )
for all i. Moreover, by 1), both (k,a1) and (br−1,k′) belong to Cong(β ). By

transitivity, we conclude that (k,k′) ∈ Cong(β ). ��
As we already know what are the smallest connected subgraphs of a graph with

the same vertices, we can find a characterization for minimal presentations of a

numerical semigroup.

Corollary 8.11. Let S be a numerical semigroup. A subset β of σ is a minimal
presentation of S if and only if the cardinality of βn equals the number of R-classes
in Z(n) minus one and Gβn is connected for all n ∈ S.

Remark 8.12. Observe that if β is a minimal presentation for S, then Gβn is a gener-

ating tree of Gσn for all n ∈ N.

In order to obtain a minimal relation for σ (equivalently, a minimal presentation

for S), it suffices to focus on those n ∈ S for which the number of R-classes in Z(n)
is greater than or equal to two. If X1, . . . ,Xr are these R-classes, we construct a tree

Tn whose vertices are X1, . . . ,Xr. For every XiXj edge of Tn, take ai ∈ Xi and bi ∈ Xj.

Define βn as the set of all (ai,bi) built in this way. Set βn = /0 if there are less than

two R-classes in Z(n). Then β =
⋃

n∈S βn is a minimal relation of σ .

Recall that we have defined a minimal relation of σ as a generating system with

minimal cardinality. The above result also implies that the concept of minimal gen-

erating system of σ with respect to cardinality and inclusion coincide. This does not
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hold for monoids in general (monoids for which these two concepts are the same

are studied in [93]).

Corollary 8.13. The concept of minimal presentation with respect to cardinality and
set inclusion coincide for any numerical semigroup. In particular, all minimal pre-
sentations have the same cardinality.

3 Computing minimal presentations

We present a method described in [59] to compute a minimal presentation of a nu-

merical semigroup. In this section, S = 〈n1, . . . ,ne〉 and σ are as in the preceding

section.

For every n ∈ S, define the graph Gn = (Vn,En) with

Vn = {ni | n−ni ∈ S}

and

En =
{

nin j | n− (ni +n j) ∈ S, i = j
}

.

We will refer to this graph as the graph associated to n in S. We are going to relate

these graphs with the ones appearing in the last section.

A connected component of a graph G is a maximal connected subgraph of G. If

G is connected, then it has only a connected component. We next describe the con-

nected components of the graph associated to an element in a numerical semigroup.

Let n be an element of S. If X1, . . . ,Xr are the R-classes of Z(n), for all i ∈
{1, . . . ,r} define

Ai =
{

n j | x j ≤ x for some x ∈ Xi
}

.

These sets contain the set of vertices of the different connected components of

Gn. To prove this, we first must show that {A1, . . . ,Ar} is a partition of Vn.

Lemma 8.14. The set {A1, . . . ,Ar} is a partition of Vn.

Proof. If n j ∈Vn, then n−n j ∈ S. Take a ∈ Z(n−n j). Then a+ x j ∈ Z(n) and thus

there exists i ∈ {1, . . . ,r} such that a + x j ∈ Xi. Hence n j ∈ Ai. This proves that

Vn ⊆ A1∪·· ·∪Ar, and consequently Vn = A1∪·· ·∪Ar.

Now assume that nk ∈ Ai∩A j with i = j. Then there exists x∈ Xi and y∈ Xj such

that xk ≤ x and xk ≤ y. This implies that x · y = 0 and consequently xRy. But this is

impossible because Xi and Xj are different R-classes. This proves that {A1, . . . ,Ar}
is a partition of Vn. ��

Now we show that there is no edge in Gn connecting a vertex in Ai with a vertex

in A j when i = j.

Lemma 8.15. If nk ∈ Ai and nl ∈ A j with i = j, then nknl ∈ En.
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Proof. Observe that by Lemma 8.14, k cannot be equal to l. Assume to the contrary

that nknl ∈ En. Then n− (nk +nl) ∈ S. Take a ∈ Z(n− (nk +nl)). Then a+xk +xl ∈
Z(n). From nk ∈ Ai and nl ∈ A j we deduce that there exists y ∈ Xi with xk ≤ y and

z ∈ Xj with xl ≤ z. This leads to y · (a+ xk + xl) = 0 and (a+ xk + xl) · z = 0, which

implies that yRz, contradicting that Xi and Xj are different R-classes. ��
And finally we prove that any two vertices in the same As are connected with a

path in Gn.

Lemma 8.16. If nk,nl ∈ As, with l = k, then there is a path in Gn with vertices in As
joining nk with nl .

Proof. By definition, there exist a,b ∈ Xs such that xl ≤ a and xk ≤ b. As aRb, there

exist a sequence a0, . . . ,ar of elements in Xs such that a0 = a, ar = b and ai ·ai+1 = 0

for all i ∈ {0, . . . ,r−1}. We proceed by induction on r.

If r = 1 (the case r = 0 makes no sense since k = l), then a · b = 0. Thus there

exists m ∈ {1, . . . ,e} such that xm ≤ a and xm ≤ b. It follows that xl + xm ≤ a and

xm +xk ≤ b. And this implies that n−(nl +nm)∈ S and n−(nm +nk)∈ S. This gives

the path joining nl and nk (note that it may happen that either nm = nl or nm = nk,

but not both). Observe that from the definition of As, nl , nm and nk belong to As.

Now assume that r > 1 and as induction hypothesis that the result holds for all

sequences of length less than r. As k = l, there exists m ∈ {0, . . . ,r− 1} and j = l
such that xl ≤ am, x j ≤ am, x j ≤ am+1 and xl ≤ am+1. Choose m to be minimum

fulfilling this condition. From xl ≤ am and x j ≤ am, we deduce that nln j ∈ En, and as

am ∈ Xs, both nl and nl are in As. If j = k, then we are done. Otherwise, the induction

hypothesis applied to am+1, . . . ,ar ensures the existence of a path connecting n j and

nk in Gn with vertices in As. Adding at the beginning of this path the edge nln j, we

conclude the proof. ��
With all this information it is easy to see that the sets of vertices of the different

connected components of Gn are A1, . . . ,Ar. Thus the number of connected compo-

nents of Gn equals the number of R-classes in Z(n).

Theorem 8.17. Let S be a numerical semigroup and let n be a nonzero element of
S. The number of connected components of Gn equals the number of R-classes in
Z(n).

Proof. Let X1, . . . ,Xr be the different R-classes in Z(n). For every i ∈ {1, . . . ,r},
define the subgraph Gi

n = (V i
n,E

i
n) of Gn as follows. Set V i

n = Ai and Ei
n = {nini ∈

En | ni,n j ∈ Ai }. From Lemmas 8.14, 8.15 and 8.16 we deduce that these are the

connected components of G. ��
Remark 8.18. From these results we deduce that to obtain a (in fact any) minimal

presentation of S, we only have to find those n∈ S for which Gn is not connected. Let

n be such that Gn is not connected and let G1
n, . . . ,G

r
n be its connected components.

Choose now for every i ∈ {1, . . . ,r} a vertex nki ∈V i
n and an element αi ∈ Z(n) such

that xki ≤ αi. Then [α1]R, . . . , [αr]R are the different R-classes of Z(n). If we define

ρn = {(α2,α1), . . . ,(αr,α1)}, then Gρn is a tree. Hence, by Corollary 8.11, ρ is a

minimal presentation of S.
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From this we deduce that if we want to compute a minimal presentation by using

this idea, we must find the elements in a numerical semigroup whose associated

graph is not connected. The following property makes this search possible.

Proposition 8.19. If Gn is not connected, then n = w+n j with w ∈ Ap(S,n1)\{0}
and j ∈ {2, . . . ,e}.
Proof. If n−n1 ∈ S, then n = w ∈Ap(S,n1)\{0}. Since Gn is not connected, there

exist ni,n j ∈Vn with i = j≥ 2 such that nin j ∈En. This implies that n = (n−n j)+n j,

and clearly n−n j ∈Ap(S,n1)\{0} (n = n j because n−ni ∈ S and {n1, . . . ,ne} is a

minimal generating system of S).

Now assume that n− n1 ∈ S. As Gn is not connected, there exists ni ∈ Vn with

i > 1, such that n− (n1 +ni) ∈ S (n1ni ∈ En). As n−ni ∈ S and n−ni−n1 ∈ S, we

have that n− ni ∈ Ap(S,n1) \ {0} (again n− ni = 0 because n− n1 ∈ S). We can

write n = (n−ni)+ni. ��
Remark 8.20. Note that this proposition gives a finite set in which are contained the

elements n ∈ S such that Gn is not connected. If we apply to this set the procedure

described in Remark 8.18, we have an algorithmic procedure to compute a minimal

presentation of a numerical semigroup.

Example 8.21 ([80]). Let

S = 〈5,7,9,11〉.
As

S = {0,5,7,9,10,11,12,14,15,16,17,18, . . .},
Ap(S,5) = {0,7,9,11,18}.

Now we calculate (Ap(S,5)\{0})+{7,9,11} obtaining

{14,16,18,20,22,25,27,29}.

Hence, we look at the graphs Gn, with n in the set (Ap(S,5)\{0})+{7,9,11}.
We find an expression of 14 in which 5 is involved: 14 = 1 × 5 + 1 × 9;

and another in which 7 is used 14 = 2× 7. We proceed analogously with 16, 18,

20 and 22.

Graph Connected components Relations

G14 {5,9},{7} (x1 + x3,2x2)
G16 {5,11},{7,9} (x1 + x4,x2 + x3)
G18 {7,11},{9} (x2 + x4,2x3)
G20 {5},{9,11} (4x1,x3 + x4)
G22 {5,7},{11} (3x1 + x2,2x4)
G25 {5,7,9,11}
G27 {5,7,9,11}
G29 {5,7,9,11}
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Therefore a minimal presentation of S is

ρ = {(x1 + x3,2x2),(x1 + x4,x2 + x3),(x2 + x4,2x3),(4x1,x3 + x4),(3x1 + x2,2x4)}.

Example 8.22. Let S = 〈n1,n2〉 with gcd{n1,n2} = 1. Then a minimal presentation

for S is {(n2x1,n1x2)}. The Apéry set of n1 in S is

Ap(S,n1) = {0,n2,2n2, . . . ,(n1−1)n2}.

The only n for which Gn is not connected is n = n1n2 = (n1−1)n2 +n2.

Example 8.23. Assume now that S is minimally generated by {n1,n2,n3}. For every

r ∈ {1,2,3}, define

cr = min{k ∈ N\{0} | knr ∈ 〈ns,nt〉,{r,s, t}= {1,2,3}} .

For n ∈ {c1n1,c2n2,c3n3}, the graph Gn is not connected, and these are the only

elements in S fulfilling this condition. We distinguish three cases.

1) If c1n1 = c2n2 = c3n3, then

{(c1x1,c2x2),(c1x1,c3x3)}

is a minimal presentation for S.

2) Assume now that c1n1 = c2n2 = c3n3 (we omit the other similar cases). If c1n1 =
λn2 + μn3 with λ ,μ ∈ N, then

{(c1x1,λx2 + μx3),(c2x2,c3x3)}

is a minimal presentation for S.

3) If the cardinality of {c1n1,c2n2,c3n3} is three, then suppose that

c1n1 = r12n2 + r13n3,
c2n2 = r21n1 + r23n3,
c3n3 = r31n1 + r32n2,

for some nonnegative integers ri j. Then

{(c1x1,r12x2 + r13x3),(c2x2,r21x1 + r23x3),(c3x3,r31x1 + r32x2)}

is a minimal presentation of S.

Note that 〈6,10,15〉, 〈4,6,7〉 and 〈5,6,7〉 are examples of 1), 2) and 3), respectively.

We show how we can compute the presentations of these examples by using GAP.

gap> MinimalPresentationOfNumericalSemigroup(
>NumericalSemigroup(6,10,15));
[ [ [ 5, 0, 0 ], [ 0, 3, 0 ] ], [ [ 5, 0, 0 ],
[ 0, 0, 2 ] ] ]
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gap> GraphAssociatedToElementInNumericalSemigroup(30,
> NumericalSemigroup(6,10,15));
[ [ 6, 10, 15 ], [ [ ] ] ]

gap> MinimalPresentationOfNumericalSemigroup(
>NumericalSemigroup(4,6,7));
[ [ [ 3, 0, 0 ], [ 0, 2, 0 ] ], [ [ 2, 1, 0 ],
[ 0, 0, 2 ] ] ]

gap> GraphAssociatedToElementInNumericalSemigroup(12,
> NumericalSemigroup(4,6,7));
[ [ 4, 6 ], [ [ ] ] ]

gap> MinimalPresentationOfNumericalSemigroup(
>NumericalSemigroup(5,6,7));
[ [ [ 1, 0, 1 ], [ 0, 2, 0 ] ], [ [ 4, 0, 0 ],
[ 0, 1, 2 ] ], [ [ 3, 1, 0 ], [ 0, 0, 3 ] ] ]

gap> GraphAssociatedToElementInNumericalSemigroup(12,
> NumericalSemigroup(5,6,7));
[ [ 5, 6, 7 ], [ [ 5, 7 ] ] ]

The output of the minimal presentation command is a list of pairs, each one contain-

ing a list of coefficients, by using the isomorphism N3 ∼= Free(x1,x2,x3). As for the

graphs, the output is a list whose first element is the list of vertices and the second

the list of edges of the graph.

4 An upper bound for the cardinality of a minimal presentation

We assume, unless otherwise stated, that S is minimally generated by {n1, . . . ,ne}.
In this section we are concerned with upper bounding the cardinality of a minimal

presentation for S. In order to find this bound we must deepen in the study of those

elements n in S for which Gn is not connected. The bound given here is sharp,

in the sense that it is reached by a large family of numerical semigroups: those

with maximal embedding dimension (however this does not mean that better bounds

can be given; see the exercises at the end of this chapter and the references given

there). In fact, this characterizes numerical semigroups with maximal embedding

dimension.

Lemma 8.24. Let n be an element in S with nonconnected Gn. Then there exists
nk ∈ {n2, . . . ,ne} and w ∈ Ap(S,n1)∩·· ·∩Ap(S,nk−1) such that

1) n = w+nk ∈ Ap(S,n1)∩·· ·∩Ap(S,nk−1),
2) w′+nk ∈ Ap(S,n1)∩·· ·∩Ap(S,nk−1), for all w′ ∈ S\{w} such that w′ ≤S w.
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Proof. Let i = min
{

j ∈ {1, . . . ,e} | n j ∈Vn
}

. As Gn is not connected, we can also

find k the minimum of j ∈ {1, . . . ,e} such that ni and n j are in different connected

components of Gn.

1) Since nk ∈Vn, w = n−nk ∈ S. Assume that w−n j ∈ S for some j ∈ {1, . . . ,k−
1}. Then n jnk ∈ En and thus n j and nk are in the same connected component.

This in particular means that n j and ni are in different connected components.

The minimality of k ensures that k ≤ j, a contradiction. Hence n = w + nk with

w ∈ Ap(S,n1)∩ ·· · ∩Ap(S,nk−1). As i < k, we have that n ∈ Ap(S,n1)∩ ·· · ∩
Ap(S,nk−1).

2) As w−w′ ∈ S \{0}, there exists l ∈ {1, . . . ,e} such that w−w′ −nl ∈ S. Hence

n− (nk +nl) ∈ S, which implies that nk and nl are in the same connected compo-

nent of Gn. If w′+nk ∈Ap(S,n1)∩·· ·∩Ap(S,nk−1), then there exists j < k such

that w′+nk−n j ∈ S. This leads to (w′+nk)−n j +(w−w′ −nl) = n−(n j +nl)∈
S, which implies that n j and nk are in the same connected component of nk, con-

tradicting the minimality of k. ��
For k ∈ {2, . . . ,e}, define Dk as the set of w ∈ Ap(S,n1)∩ ·· ·∩Ap(S,nk−1) ful-

filling Conditions 1) and 2) of Lemma 8.24.

Lemma 8.25. The cardinality of any minimal presentation of S is less than or equal
to the sum of the cardinalities of the sets D2, . . . ,De.

Proof. Denote by D =
⋃̇e

k=1Dk the disjoint union of the sets Dk. We will re-

fer to its elements as (w,k) pointing out in this way that w ∈ Dk. Let ρ be

a minimal presentation of S such that if (a,b) ∈ ρ , n = ϕ(a) = ϕ(b) and i =
min

{
j ∈ {1, . . . ,e} | n j ∈Vn

}
, then xi≤ a (a presentation of this form exists in view

of Remark 8.18). Define q : ρ → D, in the following way. If (a,b) ∈ ρ and ϕ(a) =
n(= ϕ(b)), then a belongs to an R-class Xi and b belongs to a different R-class Xj
of Z(n). From the way ρ is constructed, k = min

{
l ∈ {1, . . . ,e} | nl ∈ A j

}
> 1. De-

fine g((a,b)) = (n−nk,k). As in the proof of Lemma 8.24, from the minimality of

k, we can deduce that w = n−nk ∈ Ap(S,n1)∩ ·· ·∩Ap(S,nk−1) and that it fulfills

Conditions 1) and 2) of Lemma 8.24. From the way ρ is constructed, it follows that

g is injective. Thus the cardinality of ρ is less than or equal to that of D. By Corol-

lary 8.13, all minimal presentations have the same cardinality, and this concludes

the proof. ��
Thus the natural step to give is finding an upper bound for the cardinalities of the

sets D1, . . . ,De.

Theorem 8.26. Let S be a numerical semigroup minimally generated by {n1, . . . ,ne}.
The cardinality of any minimal presentation for S is less than or equal to

(2n1− e+1)(e−2)
2

+1.

Proof. Define ce = min{k ∈ N\{0} | kne ∈ 〈n1, . . . ,ne−1〉}. Clearly De = {(ce−
1)ne} and thus it has just one element. Besides,
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Dk ⊆ (Ap(S,n1)∩·· ·∩Ap(S,nk−1))\{0}.

As the cardinality of Ap(S,n1) is n1 (Lemma 2.4), and n2, . . . ,nk−1 ∈Ap(S,n1) but

they do not belong to Ap(S,n1)∩ ·· · ∩Ap(S,nk−1), we have that the cardinality

of Dk is less than or equal to n1− (k− 1). The sum of the cardinalities of the sets

D2, . . . ,De is then bounded by 1+∑e−1
k=2(n1− k +1) = 1+ (2n1−e+1)(e−2)

2 . ��
By Proposition 2.10, e is less than or equal to n1. We use this to give a weaker

version of the above bound.

Corollary 8.27. Let S be a numerical semigroup. The cardinality of any minimal
presentation of S is less than or equal to

m(S)(m(S)−1)
2

.

Proof. By Theorem 8.26, we know that the cardinality of any minimal presentation

of S is less than or equal to
(2m(S)−e(S)+1)(e(S)−2)

2 +1. Observe that

(2m(S)− e(S)+1)(e(S)−2)
2

+1≤ m(S)(m(S)−1)
2

if and only if (m(S)− e(S))(m(S)− e(S)+3)≥ 0. This last equality holds since by

Proposition 2.10, e(S)≤m(S). ��
Recall that a numerical semigroup S is said to have maximal embedding dimen-

sion if e(S) = m(S). One should expect a simpler result for this class of numerical

semigroups. In fact, as we will see next, numerical semigroups having maximal em-

bedding dimension can be characterized as those for which the bound in Corollary

8.27 is reached, and thus with respect to the multiplicity they are those numerical

semigroups with the largest possible presentations.

Lemma 8.28. Let S be a numerical semigroup. If the cardinality of a minimal pre-
sentation of S is m(S)(m(S)−1)

2 , then S has maximal embedding dimension.

Proof. From the proof of Corollary 8.27 it easily follows that if the cardinality of a

minimal presentation of S is
m(S)(m(S)−1)

2 , then (m(S)−e(S))(m(S)−e(S)+3) = 0.

Then either e(S) = m(S) or e(S) = m(S)+3. This last possibility cannot hold since

e(S)≤m(S) in view of Proposition 2.10. ��
This proves one direction of the above-mentioned characterization. Let us pro-

ceed with the other implication.

Lemma 8.29. Let S be a maximal embedding dimension numerical semigroup. Then
the cardinality of any of its minimal presentations is m(S)(m(S)−1)

2 .

Proof. Set m = m(S). As S has maximal embedding dimension, S is minimally gen-

erated by {m,n1, . . . ,nm−1} for some positive integers n1, . . . ,nm−1 and Ap(S,m) =
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{0,n1, . . . ,nm−1} (see Proposition 3.1). By particularizing Proposition 8.19 to this

setting, we have that if n is an element in S for which Gn is not connected, then

n = ni +n j for some i, j ∈ {1, . . . ,m−1}. We distinguish two cases.

1) If i = j, then n = 2ni. Observe that 2ni ∈ Ap(S,m), which in particular implies

that n−m ∈ S. Hence ni is the only vertex of a connected component, and m
belongs to a different connected component.

2) If i = j, then n = ni +n j. Again ni +n j ∈Ap(S,m), and thus m is not in the same

connected component containing ni and n j (a component which is just the edge

nin j).

In view of 1) and 2), if Gn is not connected, then m ∈ Vn. Take nk to be a vertex of

Gn that is not in the same connected component of m. Then n−nk ∈ Ap(S,m), that

is, n = nk + nl for some l ∈ {1, . . . ,m− 1}. This proves that Gn is not connected if

and only if n = ni + n j for some i, j ∈ {1, . . . ,m−1}. Moreover, m is in a different

connected component of ni and n j. Hence the cardinality of a minimal presenta-

tion coincides with the cardinality of the set {{i, j} | i, j ∈ {1, . . . ,m−1}}, which

is equal to
m(m−1)

2 . ��
Theorem 8.30. A numerical semigroup S has maximal embedding dimension if and
only if the cardinality of any of its minimal presentations is m(S)(m(S)−1)

2 .

Exercises

Exercise 8.1 ([79]). Prove that the cardinality of a minimal presentation of 〈7,8,
10,19〉 is 7.

Exercise 8.2 ([4]). Show that 〈19,23,29,31,37〉 is symmetric and that any minimal

presentation for it has cardinality 13.

Exercise 8.3 ([57]). Let S be a numerical semigroup minimally generated by {n1 <
· · · < ne} with F(S) > m(S). Let T = S∪{F(S)}. Assume that {n1, . . . ,ne,F(S)} is

a minimal system of generators of T . Let n ∈ S. Denote by ncc(S,n) (respectively

ncc(T,n)) the number of connected components of the graph associated to n in S
(respectively T ). Prove that the following assertions are equivalent.

a) ncc(S,n) < ncc(T,n).
b) n ∈ {F(S)+n1, . . . ,F(S)+ne,2F(S)}.
c) ncc(T,n) = ncc(S,n)+1.

Prove also that the following are equivalent.

a) ncc(T,n) < ncc(S,n).
b) n = F(S) + n1 + ni with i ∈ {2, . . . ,e} and such that n1 and ni are in different

connected components of the graph associated to n in S.

c) ncc(S,n) = ncc(T,n)+1.
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Exercise 8.4 ([57]). Let S be a numerical semigroup minimally generated by {n1 <
· · · < ne} with F(S) > m(S). Let T = S∪{F(S)}. Assume that {n1, . . . ,ne,F(S)} is

not a minimal system of generator of T . By using the same notation as in Exercise

8.3, prove that the following assertions are equivalent.

a) ncc(S,n) < ncc(T,n).
b) n ∈ {F(S)+n2, . . . ,F(S)+ne−1,2F(S)}.
c) ncc(T,n) = ncc(S,n)+1.

Prove also that the following are equivalent.

a) ncc(T,n) < ncc(S,n).
b) n ∈ {ne +n2, . . . ,ne +ne−1,2ne}.
c) ncc(S,n) = ncc(T,n)+1.

Exercise 8.5 ([57]). Let S be a numerical semigroup with F(S) > m(S). Set T =
S∪{F(S)}. Assume that s and t are the cardinality of minimal presentations of S
and T , respectively. Prove that

a) if e(T ) = e(S)+1, then s+2≤ t ≤ s+ e(S)+1,

b) if e(T ) = e(S), then s = t.

Exercise 8.6 ([57]). Prove that if S is a numerical semigroup and ρ is a minimal

presentation of S, then

#ρ ≤ m(S)(m(S)−1)
2

−2(m(S)− e(S)).

(Hint: Consider the set of semigroups in Ch(S) = {S0 = S,S1, . . . ,Sk = N}. For

some m∈ {1, . . . ,k}, Sm = {0,m(S),→}, which is a maximal embedding dimension

numerical semigroup. Then use the preceding exercise.)

Exercise 8.7 ([79]). Let S be a numerical semigroup with e(S) = m(S)− 1 and let

ρ be a minimal presentation for S. Show that

(m(S)−1)(m(S)−2)
2

−1≤ #ρ ≤ (m(S)−1)(m(S)−2)
2

.

Exercise 8.8 ([79]). Let S be a symmetric numerical semigroup with e(S)∈{m(S)−
1,m(S)−2,m(S)−3} and let ρ be a minimal presentation for S. Prove that

#ρ =
e(S)(e(S)−1)

2
−1.

Exercise 8.9 ([73]). Let S be an irreducible numerical semigroup with embedding

dimension greater than four. Prove that the cardinality of any minimal presentation

of S is less than or equal to

(m(S)−2)(m(S)−1)
2

− (m(S)− e(S)).
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Exercise 8.10 ([33]). Let a and b be integers with 1 ≤ b < a. Assume that ρ is a

minimal presentation of 〈a,a+1, . . . ,a+b〉. Prove that

#ρ =
b(b−1)

2
+b− ((a−1) mod b).

Exercise 8.11. Let σ be the congruence on N generated by {(1,2)}. Prove that σ is

not finitely generated as a submonoid of N×N.

Exercise 8.12. Let S be a numerical semigroup minimally generated by {n1, . . . ,ne}.
A factorization of n ∈ S is an element a = a1x1 + · · ·+ aexe of Z(n). The length of

a is |a|= a1 + · · ·+an. A finitely generated monoid is half-factorial if for every el-

ement in the monoid, all its factorizations have the same length. Prove that the only

half-factorial numerical semigroup is N.

Exercise 8.13 ([20]). Let S be a numerical semigroup minimally generated by

{n1, . . . ,ne} and let n ∈ S. Let a,b ∈ Z(n), with a = a1x1 + · · ·+ aexe and b =
b1x1 + · · ·+bexe. The greatest common divisor of a and b is defined as

gcd{a,b}= (min{a1,b1})x1 + · · ·+(min{ae,be})xe.

The distance between a and b is

dist(a,b) = max{|a−gcd{a,b}|, |b−gcd{a,b}|}

(see [36, Proposition 1.2.5] for a list of basic properties concerning the distance).

Given a positive integer N, an N-chain of factorizations from a to b is a sequence

z0, . . . ,zk ∈ Z(n) such that z0 = a, zk = b and dist(zi,zi+1)≤N for all i. The catenary
degree of n, cd(n), is the minimal N ∈ N∪{∞} such that for any two factorizations

a,b ∈ Z(n), there is an N-chain from a to b. Let ρ be a minimal presentation. Prove

that cd(n)≤max{max{|a|, |b|} | (a,b) ∈ ρ }.



Chapter 8
The gluing of numerical semigroups

Introduction

If K[V ] is the ring of coordinates of a variety V , then V is said to be a complete

intersection if its defining ideal is generated by the least possible number of polyno-

mials. In the special case K[V ] is taken to be a semigroup ring K[S], the generators

of its defining ideal can be chosen to be binomials whose exponents correspond to

a presentation of the monoid S (see [41]). In this way the concept of complete in-

tersection translates to finitely generated monoids as those having the least possible

number of relations in their minimal presentations.

The concept of gluing of numerical semigroups was introduced in Rosales’ PhD

thesis ([55]) in order to prove that a numerical semigroup is a complete intersection

if and only if it is the gluing of two complete intersection numerical semigroups,

rewriting in this way Delorme’s characterization of complete intersection numerical

semigroups ([27]). Later the definition of gluing is generalized for affine semigroups

(finitely generated submonoids of Nn) in [60]. These results were then used in [77]

to generalize the characterization of complete intersection numerical semigroups to

submonoids of N2, N3 and any simplicial affine semigroup. Finally, in [30] the idea

of gluing is used to prove that an affine semigroup is a complete intersection if and

only if it is the gluing of two complete intersection affine semigroups.

Complete intersection numerical semigroups are symmetric, and thus they pro-

vide examples of one-dimensional Gorenstein local domains via their semigroup

rings. This is why some authors have given procedures to construct complete inter-

section numerical semigroups. Bertin and Carbonne in [6] introduce a subclass of

complete intersection numerical semigroups which they call free semigroups (this

has nothing to do with the concept of categorical freeness, since the only free nu-

merical semigroup in this sense is N). These semigroups have later been used by

other authors to produce examples of one-dimensional Gorenstein local domains

with a given multiplicity and embedding dimension (see [107]), and also algebraic

codes (see [43]).

J.C. Rosales, P.A. Garcı́a-Sánchez, Numerical Semigroups, 123
Developments in Mathematics 20, DOI 10.1007/978-1-4419-0160-6 9,
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1 The concept of gluing

The idea of gluing is the following. A set of positive integers A, which is usually

taken as the set of generators of a monoid, is the gluing of A1 and A2 if {A1,A2}
is a partition of A and the monoid generated by A admits a presentation in which

some relators only involve generators in A1, other relators only involve generators

in A2 and there is only one element in this presentation relating elements in A1 with

elements in A2. In order to formalize this definition we need to recall and introduce

some notation.

Let A = {m1, . . . ,mr} be a subset of positive integers. Let X = {x1, . . . ,xr}. Let

ϕ : Free(X)→ N the monoid homomorphism

ϕ(a1x1 + . . .+arxr) = a1m1 + · · ·+armr.

Denote by σ the kernel congruence of ϕ , that is, aσb if and only if ϕ(a) = ϕ(b).
For B⊆ A, set XB = {xi | mi ∈ B}. Then Free(XB)⊆ Free(X). We define ϕB and σB
accordingly. Note that σB ⊆ σ .

With this notation it is now easy to express the concept of gluing. Let {A1,A2}
be a partition of A. We say that A is the gluing of A1 and A2 if there exists a system

of generators ρ of σ such that ρ = ρ1 ∪ ρ2 ∪ {(a,b)} with ρ1 ⊆ σA1
, ρ2 ⊆ σA2

,

0 = a ∈ Free(XA1
) and 0 = b ∈ Free(XA2

).
The Apéry set of an element with respect to a set of integers can be defined in

the following way. If C is a subset of N and x ∈ 〈C〉 \{0} denote by

Ap(C,x) = {x ∈ 〈C〉 | s− x ∈ 〈C〉} .

Clearly, if y ∈ 〈C〉, then there exists a unique (s,k) ∈ Ap(C,x)×N such that y =
s+ kx (compare with Lemma 2.6).

The following technical lemma will be helpful to control 〈A1〉∩ 〈A2〉 in order to

give a characterization of gluing.

Lemma 9.1. Let ρ = ρ1 ∪ρ2 ∪{(a,b)} be a system of generators of σ , with ρ1 ⊆
σA1

, ρ2 ⊆ σA2
, 0 = a ∈ Free(XA1

) and 0 = b ∈ Free(XA2
). Let s1, t1 ∈Ap(A1,ϕ(a)),

s2, t2 ∈ Ap(A2,ϕ(a)) and k ∈ N such that s1 + s2 = kϕ(a) + t1 + t2. Then k = 0,
s1 = t1 and s2 = t2.

Proof. Assume for the sake of simplicity and without loss of generality that A1 =
{m1, . . . ,mh} and A2 = {mh+1, . . . ,mr}. Observe that 0 = ϕ(a) = ϕ(b)∈ 〈A1〉∩〈A2〉.
Thus, ϕ(a) = a1m1 + · · ·+ ahmh = ah+1mh+1 + · · ·+ armr for some a1, . . . ,ar ∈
N. As s1, t1 ∈ 〈A1〉 and s2, t2 ∈ 〈A2〉, there exist d1, . . . ,dr,b1, . . . ,br ∈ N such that

s1 = d1m1 + · · ·+ dhmh, t1 = b1m1 + · · ·+ bhmh, s2 = dh+1mh+1 + · · ·+ drmr and

t2 = bh+1mh+1 + · · ·+brmr.

By hypothesis s1 + s2 = kϕ(a)+ t1 + t2. Then

(d1x1 + · · ·+drxr)σ((ka1 +b1)x1 + · · ·+(kah +bh)xh +bh+1xh+1 + · · ·+brxr).
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Since ρ is a system of generators of σ , by Proposition 8.4, there exist v0, . . . ,vt ∈
Free(X) such that

• v0 = d1x1 + · · ·+drxr,

• vt = (ka1 +b1)x1 + · · ·+(kah +bh)xh +bh+1xh+1 + · · ·+brxr and

• (vi,vi+1) ∈ ρ1 for all i ∈ {0, . . . , t−1}.
We prove by induction on i that if vi = vi1x1 + · · ·+ vir xr, for some vi1 , . . . ,vir ∈ N,

then s1 = vi1m1 + · · ·+ vih mh and s2 = vih+1
mh+1 + · · ·+ vrmir .

The result is clear for i = 0. Assume that the result holds for i and let us prove

it for i + 1. As (vi,vi+1) ∈ ρ1, there exist (u,v) ∈ ρ ∪ ρ−1 ∪Δ(Free(X)) and w =
w1x1 + · · ·+ wrxr ∈ Free(X) such that (vi,vi+1) = (u + w,v + w) (see Proposition

8.4). We distinguish five cases.

1) If (u,v) ∈ Δ(Free(X)), then the result is true, because in this setting vi = vi+1.

2) If (u,v) = (a,b), then as vi = u+w = a+w, s1 = vi1m1 + · · ·+ vihmh = ϕ(a)+
w1m1 + · · ·+ wrmr. However this implies that s1 ∈ Ap(A1,ϕ(a)), contradicting

one of the hypotheses. Thus this case cannot occur.

3) The same stands for (u,v) = (b,a).
4) If (u,v) ∈ ρ1 ∪ρ−1

1 , then there exist c1, . . . ,ch,e1, . . . ,eh ∈ N such that (u,v) =
(c1x1 + · · ·+ chxh,e1x1 + · · ·+ ehxh). Hence

vi = (c1 +w1)x1 + · · ·+(ch +wh)xh +wh+1xh+1 + · · ·+wrxr

and

vi+1 = (e1 +w1)x1 + · · ·+(eh +wh)xh +wh+1xh+1 + · · ·+wrxr.

As (u,v)∈σ , we have that c1m1 +· · ·+crmr = e1m1 +· · ·+ermr. Thus vi+11
m1 +

· · ·+ vi+1hmh = vi1m1 + · · ·+ vihmh = s1 and vi+1h+1
mh+1 + · · ·+ vi+1r mr =

vih+1
mh+1 + · · ·+ vir mr = s2.

5) The case (u,v) ∈ ρ2∪ρ−1
2 is analogous to the preceding case.

As vt = (ka1 + b1)x1 + · · ·+ (kah + bh)xh + bh+1xh+1 + · · ·+ brxr, we obtain that

s1 = (ka1 + b1)m1 + · · ·+(kah + bh)mh and s2 = bh+1mh+1 + · · ·+ brmr. It is clear

that k = 0 because s1 ∈ Ap(A1,ϕ(a)) and ϕ(a) = a1m1 + · · ·+ahmh. Hence k = 0,

s1 = t1 and s2 = t2. ��
The concept of gluing can be characterized in several ways. We collect here some

of the given in [55]. These will enable us to define the gluing of two numerical

semigroups and control the notable elements as well as the presentation of the gluing

from the original semigroups.

Theorem 9.2. Let A be a subset of positive integers. Let {A1,A2} be a partition of
A. The following assertions are equivalent.

1) A is the gluing of A1 and A2.
2) If d1 = gcd(A1) and d2 = gcd(A2), then lcm{d1,d2} ∈ 〈A1〉 ∩ 〈A2〉 (where lcm

stands for least common multiple).
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3) There exists d ∈ 〈A1〉∩ 〈A2〉, d = 0, such that the correspondence

f : Ap(A1,d)×Ap(A2,d)→ Ap(A,d), f (s1,s2) = s1 + s2

is a bijective map.
4) There exists (a,b) ∈ σ with 0 = a ∈ Free(XA1

) and 0 = b ∈ Free(XA2
) such that

ρ1∪ρ2∪{(a,b)} is a system of generators of σ , for every ρ1 and ρ2 systems of
generators of σA1

and σA2
, respectively.

Proof. 1) implies 2). Let d = ϕ(a). As (a,b) ∈ σ , 0 = a ∈ Free(XA1
) and 0 =

b ∈ Free(XA2
), we deduce that d ∈ 〈A1〉 ∩ 〈A2〉 and d = 0. We prove that d =

lcm{d1,d2}. Since d ∈ 〈A1〉 ∩ 〈A2〉, d is a multiple of d1 and d2. Hence d is

a multiple of lcm{d1,d2}. By using Bézout’s identity, we can easily derive that

there exist yi,zi ∈ 〈Ai〉 for i ∈ {1,2} such that lcm{d1,d2} = y1 − z1 = y2 − z2.

Hence there exist k1, l1,k2, l2 ∈ N, s1, t1 ∈ Ap(A1,d) and s2, t2 ∈ Ap(A2,d) such

that yi = kid + si and zi = lid + ti for i ∈ {1,2}. By using that y1− z1 = y2− z2,

we obtain that (k1 + l2)d + s1 + t2 = (k2 + l1)d + t1 + s2. Assume without loss of

generality that k1 + l2 ≤ k2 + l1. Then s1 + t2 = (k2 + l1− k1− l2)d + t1 + s2. By

Lemma 9.1, we have that s1 = t1 and that s2 = t2. Hence lcm{d1,d2} = y1− z1 =
k1d + s1− l1d− t1 = (k1− l1)d. This proves that lcm{d1,d2} is a multiple of d and

consequently d = lcm{d1,d2}.
2) implies 3). Let d = lcm{d1,d2}. We first prove that if (s1,s2) ∈ Ap(A1,d)×

Ap(A2,d), then s1 +s2 ∈Ap(A,d). As s1 +s2 ∈ 〈A〉, there exists (s,k)∈Ap(A,d)×
N such that s1 + s2 = kd + s. Since s ∈ 〈A〉, there exists nonnegative integers

b1, . . . ,br such that s = b1m1 + . . .+ brmr. It follows that t1 = b1m1 + · · ·+ bhmh ∈
Ap(A1,d) and that t2 = bh+1mh+1 + · · ·+ brmr ∈ Ap(A2,d). Then s1 + s2 = kd +
t1 + t2. Hence s1− t1 = kd + s2− t2. Observe that s1− t1 is a multiple of d1 and

kd + s2− t2 is a multiple of d2. Consequently, s1− t1 = kd + s2− t2 = zd for some

integer z. As both s1 and t1 belong to Ap(A1,d), this equality forces z to be zero.

Thus kd +s2 = t2, and this again forces k to be zero, since otherwise t2 ∈Ap(A2,d).
This proves that s = s1 + s2 ∈ Ap(A,d).

Now let us show that f is injective. Assume that f (s1,s2) = f (t1, t2). Then s1−
t1 = s2−t2. Arguing as above, there exists an integer z such that s1−t1 = s2−t2 = zd.

And again this forces z to be zero, which leads to s1 = t1 and s2 = t2.

Finally take s = b1m1 + · · ·+ brmr ∈ Ap(A,d). Then setting s1 = b1m1 + · · ·+
bhmh and s2 = bh+1mh+1 + · · ·+brmr, we have that (s1,s2)∈Ap(A1,d)×Ap(A2,d)
and f (s1,s2) = s.

3) implies 4). As d ∈ 〈A1〉∩〈A2〉, there exist a1, . . . ,ar ∈N such that d = a1m1 +
· · ·+ahmh = ah+1mh+1 + · · ·+armr. Let ρ1 and ρ2 be systems of generators of σA1

and σA2
, respectively. Let a = a1x1 + · · ·+ahxh and b = ah+1xh+1 + · · ·+arxr. Then

0 = a ∈ Free(XA1
), 0 = b ∈ Free(XA2

) and ϕ(a) = ϕ(b) = d. Hence (a,b) ∈ σ .

We prove that ρ = ρ1 ∪ ρ2 ∪ {(a,b)} is a system of generators of σ . As ρ ⊆ σ ,

Cong(ρ) ⊆ σ . Take (b1x1 + · · ·+ brxr,c1x1 + · · ·+ crxr) ∈ σ . Since b1m1 + · · ·+
bhmh ∈ 〈A1〉, there exists (s1,k1) ∈ Ap(A1,d)×N such that b1m1 + · · ·+ bhmh =
k1d + s1. Arguing analogously, there exist (t1, l1) ∈ Ap(A1,d) and (s2,k2),(t2, l2) ∈
Ap(A2,d) such that bh+1mh+1 + · · ·+ brmr = k2d + s2, c1m1 + · · ·+ chmh = l1d +
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t1 and ch+1mh+1 + · · ·+ crmr = l2d + t2. From b1m1 + · · ·+ brmr = c1m1 + · · ·+
crmr, it follows that (k1 + k2)d + s1 + s2 = (l1 + l2)d + t1 + t2. We deduce that k1 +
k2 = l1 + l2, because s1 + s2, t1 + t2 ∈ Ap(S,d). Hence s1 + s2 = t1 + t2. By using

now that f is injective, s1 = t1 and s2 = t2. Let g1, . . . ,gr ∈ N be such that s1 =
t1 = g1m1 + · · ·+ ghmh and s2 = t2 = gh+1mh+1 + · · ·+ grmr. Then (b1x1 + · · ·+
bhxh,(k1a1 +g1)x1 + · · ·+(k1ah +gh)xh)∈ σA1

(because b1m1 + · · ·+bhmh = k1d +
s1), and thus (b1x1 + · · ·+bhxh,(k1a1 +g1)x1 + · · ·+(k1ah +gh)xh) ∈ Cong(ρ1)⊆
Cong(ρ). Analogously, (bh+1xh+1 + · · ·+brxr,(k2ah+1 +gh+1)xh+1 + · · ·+(k2ar +
gr)xr) ∈ Cong(ρ2) ⊆ Cong(ρ). Taking into account that Cong(ρ) is a congruence,

(b1x1 + · · ·+brxr,(k1a1 +g1)x1 + · · ·+(k1ah +gh)xh +(k2ah+1 +gh+1)xh+1 + · · ·+
(k2ar +gr)xr)∈Cong(ρ). In the same way, we obtain that (c1x1 + · · ·+crxr,(l1a1 +
g1)x1 + · · ·+(l1ah +gh)xh +(l2ah+1 +gh+1)xh+1 + · · ·+(l2ar +gr)xr) ∈ Cong(ρ).

Let ζ = Cong({(a,b)}). As k1 + k2 = l1 + l2, (k1a + k2b)ζ (k1 + k2)bζ (l1 +
l2)bζ l1a + l2b. Hence (k1a + k2b, l1a + l2b) ∈ Cong({(a,b)}) ⊆ Cong(ρ). We can

then conclude that (b1x1 + · · ·+brxr,c1x1 + · · ·+ crxr) ∈ Cong(ρ).
4) implies 1). Trivial. ��
This theorem can be used sometimes to compute presentations of numerical

semigroups as the following example shows.

Example 9.3. Let S be the numerical semigroup (minimally) generated by A =
{85,187,221,60,80,90}. Let A1 = {85,187,221} and A2 = {60,80,90}. Then

gcd(A1) = 17, gcd(A2) = 10 and lcm{10,17} = 170 ∈ 〈A1〉∩ 〈A2〉. Hence A is the

gluing of A1 and A2. The monoid 〈A1〉 is isomorphic to 〈A1/17〉 = 〈5,11,13〉. A

system of generators for σA1
is {(7x1,2x2 +x3),(3x2,4x1 +x3),(2x3,3x1 +x2)} (see

Example 8.23). Furthermore, 〈A2〉∼= 〈A2/10〉= 〈6,8,9〉. A minimal presentation for

σA2
is {(4x4,3x5),(3x4,2x6)} (again by Example 8.23). Moreover, 170 = 2×85 =

80 + 90, whence we can choose (a,b) = (2x1,x5 + x6) and obtain by the preceding

theorem that

ρ = {(7x1,2x2 + x3),(3x2,4x1 + x3),(2x3,3x1 + x2),
(4x4,3x5),(3x4,2x6),(2x1,x5 + x6)}

is a presentation for S.

2 Complete intersection numerical semigroups

In this section we give a lower bound for the cardinality of a presentation of a numer-

ical semigroup. Then we will characterize those numerical semigroups for which

this bound is reached. Recall that we already know an upper bound for the cardi-

nality of a minimal presentation of a numerical semigroup, and that this bound was

reached for (and only for) numerical semigroups with maximal embedding dimen-

sion (see Section 4 of Chapter 7).
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We assume that S is a numerical semigroup minimally generated by A = {n1, . . . ,
ne} and that X = {x1, . . . ,xe}. As in the preceding section ϕ : Free(X)→N denotes

the monoid morphism defined as ϕ(a1x1 + · · ·+aexe) = a1n1 + · · ·+aene, and σ is

its kernel congruence. Let ρ be a system of generators of σ .

Given B a nonempty proper subset of A, denote by

μ(B) = min{x ∈ 〈B〉 | x−a ∈ S for some a ∈ A\B} .

This minimum always exist.

For s ∈ S, recall that XB = {xi ∈ X | ni ∈ B}. Define

ZB(s) = Z(s)∩Free(XB).

The following lemma ensures the existence of certain elements in a minimal

presentation of any numerical semigroup.

Lemma 9.4. Let B be a nonempty proper subset of A. Then there exist eB(μ(B)) ∈
ZB(μ(B)) and e(μ(B)) ∈ Z(μ(B))\ZB(μ(B)) such that (eB(μ(B)),e(μ(B))) ∈ ρ ∪
ρ−1.

Proof. Assume for the sake of simplicity (and without loss of generality) that B =
{n1, . . . ,nr} and that μ(B)−nr+1 ∈ S. There exist a1, . . . ,ar,b1, . . . ,be ∈N such that

μ(B) = a1n1 + · · ·+arnr = b1n1 + · · ·+bene with br+1 = 0. Write a = a1x1 + · · ·+
arxr and b = b1x1 + · · ·+bexe.

Let d = d1x1 + · · ·+ drxr ∈ ZB(μ(B)). Let us see that if c = c1x1 + · · ·+ cexe ∈
Z(μ(B)) is such that d · c = 0, then cr+1 = · · · = ce = 0. Assume to the contrary

that ck = 0 for some k greater than r. As d · c = 0, there exist i ∈ {1, . . . ,r} such

that ci = 0 = di. This implies μ(B)− ni ∈ 〈B〉, and also that μ(B)− (ni + nk) ∈ S,

contradicting the minimality of μ(B). It easily follows that

• if c1x1 + . . .+ cexe is in the R-class of a, then cr+1 = · · ·= ce = 0;

• thus, the elements a and b are in different R-classes of Z(μ(B)) (because br+1 =
0).

By using that ρ is a minimal system of generators of σ , the proof is a consequence

of Lemma 8.9. ��
Recurrently define the pair (Pm,γm), with Pm a partition of A and γm a subset of

ρ , as follows

• P1 = {{n1}, . . . ,{ne}} and γ1 = /0.

• once defined Pm = {B1, . . . ,Bt} and γm,

– if there exists (eBi(n),eB j(n)) ∈ ρ with n ∈ N and i, j ∈ {1, . . . , t}, i = j, then

set

Pm+1 = (Pm \{Bi,B j})∪{Bi∪B j},
γm+1 = γm∪{(eBi(n),eB j(n))},
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– otherwise, set Pm+1 = Pm and γm+1 = γm.

Let us study some of the properties of these pairs. They will be used to find the

lower bound for the cardinality of a minimal presentation of a numerical semigroup,

and later to understand the structure of those numerical semigroups reaching this

bound.

Lemma 9.5. Under the standing hypothesis and notation.

1) #γm = e−#Pm,
2) if Pm = {B1, . . . ,Bt}, then γm ⊆ σB1

∪·· ·∪σBt ,
3) if #ρ ≤ e−1 and #Pm ≥ 2, then #Pm+1 = #Pm−1.

Proof. 1) and 2) follow directly from the definition. As for 3), if Pm = {B1, . . . ,
Bt}, by Lemma 9.4, we know that there exists ξ = {(eB1

(μ(B1)),e(μ(B1))), . . . ,
(eBt (μ(Bt)),e(μ(Bt)))⊆ ρ∪ρ−1. Let β be the set obtained by replacing (a,b) with

(b,a) in ρ whenever (a,b) ∈ ρ . Then γm∪β ⊆ ρ . As γm ⊆ σB1
∪ ·· ·∪σBt and β ∩

(σB1
∪·· ·∪σBt ) is empty, we have that #γm +#β ≤ #ρ . We are assuming that #ρ ≤

e−1, which leads to e−t +#β ≤ e−1, and consequently #β ≤ t−1. We deduce then

that there exist i, j ∈ {1, . . . , t}, i = j such that (eBi(μ(Bi)),eB j(μ(B j))) ∈ β ⊆ ρ .

Hence #Pm+1 ≤ #Pm−1. ��
The lower bound can now be established.

Theorem 9.6. Let S be a numerical semigroup. Then the cardinality of a minimal
presentation for S is greater than or equal to e(S)−1.

Proof. Let {n1, . . . ,ne} be a minimal generating system of S and let ρ be a minimal

presentation for S. Assume to the contrary that #ρ < e− 1. From Lemma 9.5 we

deduce that #Pe = 1 and that #γe = e− 1. As γe ⊆ ρ , this forces e− 1 ≤ #ρ , a

contradiction. ��
A numerical semigroup is a complete intersection if the cardinality of any of its

minimal presentations equals its embedding dimension minus one.

Example 9.7. Observe that N is a complete intersection. Its multiplicity minus one

is zero, and this is precisely the cardinality of any minimal presentation for N.

If n1 and n2 are integers greater than one such that gcd{n1,n2}= 1, then a min-

imal presentation for 〈n1,n2〉 is {(n2x1,n1x2)} (see Example 8.22). Thus 〈n1,n2〉 is

a complete intersection.

From Example 8.23, we deduce that complete intersection numerical semigroups

of embedding dimension three 〈n1,n2,n3〉 are those fulfilling that #{c1n1,c2n2,
c3n3} ≤ 2.

3 Gluing of numerical semigroups

We translate the concept of gluing to numerical semigroups and prove that complete

intersection numerical semigroups are always a gluing of two complete intersection
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numerical semigroups. As a consequence of this, we will see that every complete

intersection numerical semigroup is symmetric.

Let S1 and S2 be two numerical semigroups minimally generated by {n1, . . . ,nr}
and {nr+1, . . . ,ne}, respectively. Let λ ∈ S1\{n1, . . . ,nr} and μ ∈ S2\{nr+1, . . . ,ne}
be such that gcd{λ ,μ}= 1. We say that

S = 〈μn1, . . . ,μnr,λnr+1, . . . ,λne〉

is a gluing of S1 and S2. We now see the connection between this concept and that

of gluing of subsets of nonnegative integers.

Lemma 9.8. Under the standing hypothesis,

1) S is a numerical semigroup with minimal system of generators
{μn1, . . . ,μnr,λnr+1, . . . ,λne},

2) {μn1, . . . ,μnr,λnr+1, . . . ,λne} is the gluing of {μn1, . . . ,μnr} and
{λnr+1, . . . ,λne}.

Proof.
1) It is clear that gcd{μn1, . . . ,μnr,λnr+1, . . . ,λne}= gcd{μ,λ}= 1 and thus S is

a numerical semigroup. Assume that μn1 = a2μn2 + · · ·+arμnr +ar+1λnr+1 +
· · ·+ aeλne. Then ar+1λnr+1 + · · ·+ aeλne is a multiple of λ μ . Hence μn1 =
a2μn2 + · · ·+ arμnr + λ μk for some nonnegative integer k. This leads to n1 =
a2n2 + · · ·+ arnr + λk. But this is impossible because λ ∈ S1 and n1 is a mini-

mal generator of S1. In the same way we prove that the rest of the elements in

{μn1, . . . ,μnr,λnr+1, . . . ,λne} are minimal generators of S.

2) In view of Theorem 9.2, it suffices to prove that

λ μ ∈ 〈μn1, . . . ,μnr〉∩ 〈λnr+1, . . . ,λne〉.

This follows easily from the choice of λ and μ . ��
Now that we have the connection with these two concepts, with the help of The-

orem 9.2 it is not hard to prove that a gluing of complete intersections yields a

complete intersection numerical semigroup.

Proposition 9.9. A gluing of two complete intersections is a complete intersection.

Proof. Let S1 and S2 be complete intersection numerical semigroups, and let S be

a gluing of S1 and S2. By Lemma 9.8, we know that e(S) = e(S1)+ e(S2). Let ρ1

and ρ2 be minimal presentations for S1 and S2, respectively. Then #ρi = e(Si)− 1

for i ∈ {1,2}. By using Lemma 9.8 and Theorem 9.2, we obtain that S admits a

presentation of the form ρ = ρ1∪ρ2∪{(a,b)}. Hence #ρ = #ρ1 +#ρ2 +1 = e(S1)−
1 + e(S2)− 1 + 1 = e(S)− 1. By using now Theorem 9.6 and Corollary 8.13, we

deduce that S is a complete intersection. ��
The converse is also true, as we prove next.
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Theorem 9.10. A numerical semigroup other than N is a complete intersection if
and only if it is a gluing of two complete intersection numerical semigroups.

Proof. Sufficiency is Proposition 9.9, so we focus on the necessary condition. Let

S be a complete intersection numerical semigroup with minimal system of gener-

ators A = {n1, . . . ,ne}. We know that S admits a presentation ρ with #ρ = e− 1.

From Lemma 9.5, we deduce that Pe = {A}, Pe−1 = {A1,A2} and that ρ = γe =
γe−1∪{(eA1

(μ(A1)),eA2
(μ(A2)))}, with γe−1 ⊆ σA1

∪σA2
. Then A is the gluing of

A1 and A2. Assume (after rearranging the elements in A if necessary) that A1 =
{n1, . . . ,nr} and A2 = {nr+1, . . . ,ne}. Let d1 = gcd(A1) and d2 = gcd(A2). Define

S1 = 〈 n1
d1

, . . . , nr
d1
〉 and S2 = 〈 nr+1

d2
, . . . , ne

d2
〉. Clearly { n1

d1
, . . . , nr

d1
} and { nr+1

d2
, . . . , ne

d2
}

are minimal systems of generators of S1 and S2, respectively. As A is the gluing

of A1 and A2, by Theorem 9.2, d1d2 = lcm{d1,d2} ∈ 〈n1, . . . ,nr〉 ∩ 〈nr+1, . . . ,ne〉.
Hence d2 ∈ S1 and d1 ∈ S2. Assume that d2 = ni

d1
for some i ∈ {1, . . . ,r}. Then

d1d2 = ni ∈ 〈nr+1, . . . ,ne〉, contradicting that A is a minimal system of generators of

S. This proves that d2 ∈ {n1, . . . ,nr}. That d1 ∈ {nr+1, . . . ,ne} follows analogously.

Hence S is the gluing of S1 and S2. Let us prove that S1 and S2 are complete intersec-

tions. Clearly, ρi = σAi ∩ρ is a presentation of Si, i ∈ {1,2}. As #ρ1 + #ρ2 = e−2

and by Theorem 9.6, #ρ1 ≥ r−1 and #ρ2 ≥ e− r−1, we conclude that #ρ1 = r−1

and that #ρ2 = e− r−1. This proves that S1 and S2 are complete intersections. ��
We end this section proving that every complete intersection numerical semi-

group is symmetric. This is a consequence of the following result that shows that

the symmetry is preserved under gluing.

Proposition 9.11. A gluing of symmetric numerical semigroups is symmetric.

Proof. Let S1 and S2 be numerical semigroups with minimal systems of generators

{n1, . . . ,nr} and {nr+1, . . . ,ne}, respectively. Let λ ∈ S1 \{n1, . . . ,nr} and μ ∈ S2 \
{nr+1, . . . ,ne} be such that gcd{λ ,μ} = 1. Let S = 〈μn1, . . . ,μnr,λnr+1, . . . ,λne〉.
By Lemma 9.8, {μn1, . . . ,μnr,λnr+1, . . . ,λne} is the gluing of {μn1, . . . ,μnr} and

{λnr+1, . . . ,λne}. By Theorem 9.2 we deduce that

Ap(S,λ μ) = {s1 + s2 | s1 ∈ Ap(A1,λ μ),s2 ∈ Ap(A2,λ μ)} .

Hence

Ap(S,λ μ) = {λw1 + μw2 | w1 ∈ Ap(S1,λ ),w2 ∈ Ap(S2,μ)} .

The result now follows from Proposition 4.10. ��
Corollary 9.12. Every numerical semigroup that is a complete intersection is sym-
metric.
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4 Free numerical semigroups

In this section we introduce the family of numerical semigroups given by Bertin and

Carbonne in [6]. The semigroups in this family are complete intersections. Their

definition and characterization rely on the following constants.

Let S be a numerical semigroup minimally generated by {n1, . . . ,ne}. For every

i ∈ {2, . . . ,e}, define:

1) di = gcd{n1, . . . ,ni−1},
2) ci = min{k ∈ N\{0} | kni is a multiple of di },
3) c∗i = min{k ∈ N\{0} | kni ∈ 〈n1, . . . ,ni−1〉},
4) ci = min{k ∈ N\{0} | kni ∈ 〈n1, . . . ,ni−1,ni+1, . . . ,ne〉}.

We study how these constants are related.

Lemma 9.13. Under the standing hypothesis.

1) ci ≤ c∗i for all i ∈ {2, . . . ,e},
2) ci ≤ c∗i for all i ∈ {2, . . . ,e},
3) ci = di

di+1
for all i ∈ {2, . . . ,e} (and de+1 = 1),

4) n1 = c2 · · ·ce.

Proof. 1) and 2) follow directly from the definition. As for 3), note that cini =
lcm{ni,di}. Since lcm{ni,di} = nidi

gcd{ni,di} = nidi
di+1

, we obtain that ci = di
di+1

. Finally,

4) follows directly applying 3) and the fact that d2 = n1 and de+1 = 1. ��
The constants ci can be used to express uniquely any integer as a linear combi-

nation of n1, . . . ,ne.

Lemma 9.14. Under the standing hypothesis. Every integer z can be written unique-
ly as z = λ1n1 + λ2n2 + · · ·+ λene, with λ1 ∈ Z and λi ∈ {0, . . . ,ci − 1} for all
i ∈ {2, . . . , p}.
Proof. As gcd{n1, . . . ,ne} = 1, there exist integers μ1, . . . ,μe such that z = μ1n1 +
· · ·+ μene. By using the division algorithm, there exist integers q and λe such that

μe = qce + λe with 0 ≤ λe < ce. Hence z = μ1n1 + · · ·+ μe−1ne−1 + qcene + λene.

By substituting cene with its expression in terms of n1, . . . ,ne−1 (via Bézout’s iden-

tity), we get z = γ1n1 + · · ·+ γe−1ne−1 + λene with γ1, . . . ,γe−1 integers. We repeat

the operation with the coefficient of ne−1 up to that of n2, obtaining the desired

expression.

Now let us prove that this expression is unique. Assume that z = λ1n1 + · · ·+
λene = μ1n1 + · · ·+μene with λ1, . . . ,λe,μ1, . . . ,μe integers such that λi,μi ∈ {0, . . . ,
ci − 1} for all i ∈ {2, . . . , p}. Let j be the largest integer in {1, . . . ,e} such that

λ j = μ j. Note that j must be greater than one, since λ1n1 = μ1n1 forces λ1 to be

equal to μ1. Assume without loss of generality that λ j ≥ μ j. Then (λ j − μ j)n j =
(μ1−λ1)n1 + · · ·+(μ j−1−λ j−1)n j−1, which is a multiple of d j. As 0≤ λ j−μ j <
c j, from the minimality of c j we deduce that λ j = μ j, a contradiction. ��
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The semigroups we are looking for are those for which the relations given in

Lemma 9.13 become extreme.

Proposition 9.15. Under the standing hypothesis, the following are equivalent.

1) n1 = c∗2 · · ·c∗e .
2) Ap(S,n1) = {λ2n2 + · · ·+λene | λi ∈ {0, . . . ,c∗i −1} for all i ∈ {2, . . . ,e}}.
3) F(S)+n1 = (c∗2−1)n2 + · · ·+(c∗e−1)ne.
4) ci = c∗i for all i ∈ {2, . . . ,e}.
5) ci = ci for all i ∈ {2, . . . ,e}.
6) ci = ci = c∗i for all i ∈ {2, . . . ,e}.
Proof. 1) implies 2). By using the argument of the division algorithm used in

Lemma 9.14 but now with c∗i instead of ci, we obtain that every element w of

Ap(S,n1) admits an expression of the form w = λ2n2 + · · ·+ λene with λi ∈
{0, . . . ,c∗i −1}. Hence

Ap(S,n1)⊆ {λ2n2 + · · ·+λene | λi ∈ {0, . . . ,c∗i −1} for all i ∈ {2, . . . ,e}} .

The cardinality of this latter set is less than or equal to c∗2 · · ·c∗e . Since by hypothesis

c∗2 · · ·c∗e = n1 and by Lemma 2.4, Ap(S,n1) = n1, we obtain the desired equality.

2) implies 3). Follows from Proposition 2.12, which asserts that F(S) + n1 =
maxAp(S,n1).

3) implies 4). Arguing as in Lemma 9.14, we can express cini as cini = λ1n1 +
· · ·+λi−1ni−1 with λ1, . . . ,λi−1 integers such that 0≤ λ j < c j for all j ∈ {2, . . . , i−
1}. Since ci ≤ c∗i , if we prove that λ1 ∈N, then c∗i = ci. Assume to the contrary that

λ1 < 0. Then λ2n2 + · · ·+λi−1ni−1 = cini +(−λ1)n1. This implies that λ2n2 + · · ·+
λi−1ni−1 ∈ Ap(S,n1) and consequently (c∗2− 1)n2 + · · ·+ (c∗e − 1)ne ∈ Ap(S,n1).
This, in view of Proposition 2.12, contradicts 3).

4) implies 5). By definition, ce = c∗e . Thus ce = ce. Assume that c j+1 = c j+1,

. . ., ce = ce and let us prove that c j = c j. From the definition of c∗i , by using once

more the division algorithm procedure, we deduce that c jn j can be expressed as

c jn j = a1n1 + · · ·+a j−1n j−1 +a j+1n j + · · ·+aene with a1, . . . ,a j−1,a j+1, . . . ,ae ∈N

and a j+k < c∗j+k for all j + k ∈ { j + 1, . . . ,e}. Since ce = c∗e , we have that ae must

be zero, since otherwise aene =−a1n1 + · · ·+(−a j−1)n j−1 +c jn j +(−a j+1)n j+1 +
· · ·+(−ae−1)ne−1, which is a multiple of de and ae < ce. By repeating this argument,

we obtain that a j+1 = · · ·= ae = 0. Hence c j = c∗j and consequently c j = c j.

5) implies 6). Let us see that ci = c∗i for all i ∈ {2, . . . ,e}. Clearly ce = c∗e . Now

assume that c j+1 = c∗j+1, . . . ,ce = c∗e and let us prove that c j = c∗j . In this setting,

c j+k = c j+k = c∗j+k for all j +k ∈ { j +1, . . . ,e}. Thus we can repeat the steps of the

preceding implication.

6) implies 1). This is a direct consequence of Lemma 9.13. ��
A numerical semigroup S is free (not to be confused with the notion of free

monoid) if there is an arrangement of its set of minimal generators {n1, . . . ,ne}
fulfilling any of the conditions of the last proposition. As mentioned above, free

semigroups are complete intersections. This follows easily from the next property.
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Theorem 9.16. Let S be a numerical semigroup other than N. Then S is free if and
only if S is a gluing of a free numerical semigroup with embedding dimension e(S)−
1 and N.

Proof. Necessity. Let {n1, . . . ,ne} be a minimal system of generators arranged so

that it fulfills the conditions of Proposition 9.15. We prove that S is a gluing of T =
〈 n1

de
, . . . ,

ne−1
de
〉 and N = 〈1〉 (recall that de = gcd{n1, . . . ,ne−1}). As gcd{ne,de}= 1,

de = ce, which by hypothesis equals ce ≥ 2. Thus

dene ∈ 〈n1, . . . ,ne−1〉 \{n1, . . . ,ne−1}.

Hence ne ∈ T \{ n1
de

, . . . ,
ne−1

de
}. Since {n1, . . . ,ne}= {de

n1
de

, . . . ,de
ne−1

de
,ne ·1}, we de-

duce that S is the gluing of T and N. Now we prove that T is free. Define

ĉ∗i = min

{
k ∈ N\{0}

∣∣∣ k
ni

de
∈
〈

n1

de
, . . . ,

ni−1

de

〉}
.

For i ∈ {2, . . . ,e−1}, clearly ĉ∗i = c∗i . As de = c∗e , ĉ∗e = de. Since S is free, we know

that n1 = c∗2 · · ·c∗e , whence n1
de

= ĉ∗2 · · · ĉ∗e−1. This proves that T is free in view of

Proposition 9.15.

Sufficiency. Assume that S is a gluing of T , minimally generated by {m1, . . . ,
me−1}, and N = 〈1〉. Then there exists a minimal system of generators of S of the

form {n1, . . . ,ne}= {dm1, . . . ,dme−1,ne ·1} for some d ∈N\{1} and some ne ∈ T \
{m1, . . . ,me−1}. Moreover, dne ∈ 〈dm1, . . .dme−1〉∩〈ne〉. Define c∗i and ĉ∗i as above.

Observe that any element in 〈n1, . . . ,ne−1〉 is a multiple of d and that gcd{d,ne}= 1.

This implies that c∗e = d. Moreover, c∗i = ĉ∗i for all i ∈ {2, . . . ,e− 1}. As T is free,

m1 = ĉ∗2 · · · ĉ∗e−1. Hence dm1 = n1 = c∗2 · · ·c∗e−1c∗e . This proves that S is free because

it fulfills one of the conditions of Proposition 9.15. ��
By using induction and that N is a complete intersection, together with Theorem

9.10, one easily proves the following consequence of this characterization.

Corollary 9.17. Every free numerical semigroup is a complete intersection.

As another consequence we get an explicit description of the shape of a minimal

presentation for a free numerical semigroup.

Corollary 9.18. Let S be a numerical semigroup for the arrangement of its minimal
set of generators {n1, . . . ,ne}. Assume that c∗i ni = ai1n1 + · · ·+ aii−1

ni−1 for some
ai1 , . . . ,aii−1

∈ N. Then{
(c∗i xi,ai1x1 + · · ·+aii−1

xi−1) | i ∈ {2, . . . ,e}}
is a minimal presentation of S.

Proof. Follows by induction by using Theorem 9.16, Lemma 9.9 and the definition

of gluing. ��
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Moreover, free numerical semigroups can be characterized as those having a min-

imal presentation with the stair shape of the presentation given in this last corollary.

Corollary 9.19. Let S be a numerical semigroup. The following are equivalent.

1) S is free for the arrangement of its minimal generators {n1, . . . ,ne}.
2) S admits a minimal presentation of the form{

(aixi,ai1x1 + · · ·+aii−1
xi−1) | i ∈ {2, . . . ,e}} .

Proof. 1) implies 2). This is a consequence of Corollary 9.18.

2) implies 1). We use induction on e. For e = 1 or e = 2 the result is true.

Assume that the result holds for e− 1. From the hypothesis, we deduce that

{n1, . . . ,np} is a gluing of {n1, . . . ,ne−1} and {ne}. By induction hypothesis, and

setting d = gcd{n1, . . . ,ne−1}, we deduce that T = 〈 n1
d , . . . ,

ne−1
d 〉 is free. Finally, by

using Theorem 9.16 we deduce that S is free. ��
Example 9.20. Let S be a numerical semigroup minimally generated by {n1,n2,n3}.
If the cardinality of {c1n1,c2n2,c3n3} is less than three, then by the above corollary

and Example 8.23, S is free.

Exercises

Exercise 9.1. Let S be a numerical semigroup with embedding dimension greater

than two. Assume that every two minimal generators of S are coprime. Prove that S
is not a complete intersection.

Exercise 9.2. Prove that for every integer e greater than one, there exists a complete

intersection numerical semigroup with embedding dimension e.

Exercise 9.3. Let S be a symmetric numerical semigroup with e(S) ∈ {m(S)−
1,m(S)−2,m(S)−3}. Prove that S is a complete intersection if and only if e(S) = 3

(see Exercise 8.8).

Exercise 9.4. Find a numerical semigroup with embedding dimension 6 and such

that the cardinality of any of its minimal presentations is 7.

Exercise 9.5. Show with an example that the gluing of two free numerical semi-

groups needs not to be free.

Exercise 9.6. Let S be a numerical semigroup with maximal embedding dimension.

Prove that S is a complete intersection if and only if e(S) ∈ {1,2}.
Exercise 9.7 ([33]). Let a and b be integers with 1 ≤ b < a and let S = 〈a,a +
1, . . . ,a + b〉. Prove that S is a complete intersection if and only if b = 1, or b = 2

and a is even.
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Exercise 9.8 ([72]). Let x1, . . . ,xp,y1, . . . ,yp be integers greater than one with

gcd{y1 · · ·yi,xi}= 1 for all i ∈ {1, . . . , p}.

Prove that

S =
〈
x1 · · ·xp,y1x2 · · ·xp, . . . ,y1 · · ·yp−1xp,y1 · · ·yp

〉
is a free semigroup with e(S) = p+1.

Exercise 9.9 ([72]). Let x1, . . . ,xp,y1, . . . ,yp be integers greater than one with

gcd{xi,x j}= 1 for i = j and gcd{xi,yi}= 1 for all i ∈ {1, . . . , p}.

Let M = x1 · · ·xp. Prove that

S =
〈

M,
y1

x1
M, . . . ,

yp

xp
M
〉

is a free semigroup with e(S) = p+1.

Exercise 9.10 ([72]). Let a and b be integers greater than one with gcd{a,b} = 1.

Prove that for every positive integer p,

S =
〈
ap,ap +b,ap +ab, . . . ,ap +ap−1b

〉
is a free semigroup with e(S) = p+1.

Exercise 9.11. Let S be a numerical semigroup. Define S(k) as the set of elements in

S that can be expressed as sums of k nonzero elements of S. Prove that S(k)∪{0} is

a numerical semigroup.

Exercise 9.12 ([86]). A numerical semigroup S minimally generated by {n1 < · · ·<
ne} is telescopic if it is free for the arrangement of generators n1, . . . ,ne. Let

ϕ : Free(x1, . . . ,xe)→ S, ϕ(a1x1 + · · ·+aexe) = a1n1 + · · ·+aene.

Prove that if S is telescopic, then the map ϕ defines a one to one correspondence

between the set

{a1x1 + · · ·+aexe | a1 + · · ·+ae ≥ k,0≤ ai < ci, i ∈ {2, . . . ,k}}

and S(k).



Chapter 9
Numerical semigroups with embedding
dimension three

Introduction

Herzog in [41] proves that for embedding dimension three numerical semigroups,

the concepts of symmetric and complete intersection coincide. Hence with the help

of Proposition 2.17 and what we know about embedding dimension two numeri-

cal semigroups, a formula for the Frobenius number and the genus of a symmetric

numerical semigroup with embedding dimension three can easily be found.

As for the pseudo-symmetric case, an expression for the Frobenius number of a

numerical semigroup of embedding dimension three can be given in terms of the

generators (and consequently also a formula for the genus in view of Corollary 4.5).

This formula is presented by the authors in [82].

The general case is not that simple. There is no algebraic formula in terms

of the minimal generators ([21]). However, an analytic formula is given in [29].

The algebraic formulas known so far for the Frobenius number of a numeri-

cal semigroup minimally generated by 〈n1,n2,n3〉 depend on the constants ci =
min{x ∈ N\{0} | xni ∈ 〈{n1,n2,n3}\{ni}} and how cini is expressed in terms of

the other two generators (see [13, 42]). In [81] the authors make an extensive study

of these semigroups.

1 Numerical semigroups with Apéry sets of unique expression

We start this chapter by reviewing some results appearing in [61] for a special class

of numerical semigroups. These properties will be used later for embedding dimen-

sion three numerical semigroups.

Let S be a numerical semigroup minimally generated by {n1 < · · · < ne},
and let X = {x1, . . . ,xe}. As usual let ϕ : Free(X) → S be the map defined by

ϕ(λ1x1 + · · ·+λexe) = λ1n1 + · · ·+λene with kernel congruence σ . Recall that the

set of expressions of n ∈ N is defined as Z(n) = ϕ−1(n). We say that n ∈ S has

J.C. Rosales, P.A. Garcı́a-Sánchez, Numerical Semigroups, 137
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unique expression if the set Z(n) has only one element. We say that S is a numerical

semigroup with Apéry set of unique expression if every element in Ap(S,n1) has

unique expression.

We see that minimal presentations for semigroups with Apéry set of unique ex-

pression are relatively easy to control. Define

J(S) = {λ2x2 + · · ·+λexe | λ2n2 + · · ·+λene ∈ Ap(S,n1)} .

Recall that by Dickson’s lemma (Lemma 8.6) the set of minimal elements of J(S)
with respect to the ordering≤ is finite. Assume that {a1, . . . ,at}= Minimals≤(J(S)).
For all i ∈ {1, . . . , t}, as ϕ(ai) ∈Ap(S,n1), there exists bi ∈ Z(ϕ(ai)) such that x1 ≤
bi. For i ∈ {1, . . . , t}, write

ai = ai2x2 + · · ·+aie xe, bi = bi1x1 + · · ·+biexe

(note that bi1 = 0).

These elements can be used to compute a minimal presentation for S, if S has

Apéry set of unique expression. First we see what are the R-classes of ai.

Lemma 10.1. Under the standing hypothesis, if S is a numerical semigroup with
Apéry set of unique expression, then for all i ∈ {1, . . . , t}, the R-class of Z(ϕ(ai))
containing ai has just one element, that is, [ai]R = {ai}.
Proof. Let n = ϕ(ai). Assume to the contrary that there exists c ∈ Z(n), c = ai,

such that ai · c = 0. Then there exists j ∈ {1, . . . ,e} such that x j ≤ ai and x j ≤ c. As

x1 ≤ ai, this implies that j ≥ 2. By the minimality of ai, the element ai− x j ∈ J(S),
or in other words, ϕ(ai− x j) ∈ Ap(S,n1). But then ϕ(ai− x j) admits at least two

different expressions, say ai− x j and c− x j, contradicting that S has Apéry set of

unique expression. ��
Theorem 10.2. Let S be a numerical semigroup with Apéry set of unique expression.
Let {a1, . . . ,at}= Minimals≤J(S) and let b1, . . . ,bt be such that x1 ≤ bi and ϕ(ai) =
ϕ(bi) for all i ∈ {1, . . . , t}. Then

{(a1,b1), . . . ,(at ,bt)}

is a minimal presentation of S.

Proof. Let ρ = {(a1,b1), . . . ,(at ,bt)}. In order to see that ρ is a minimal presenta-

tion of S, we see that it can be obtained by following the construction given in Re-

mark 8.12. By definition, ρ ⊂ σ , and thus ρ =
⋃

n∈S\{0}ρ∩(Z(n)×Z(n)). From the

preceding lemma, we deduce that ai and bi are in different R-classes of Z(ϕ(ai)).
Hence if n ∈ S is such that Z(n) has a unique R-class, then ρ ∩ (Z(n)×Z(n)) is

empty.

Assume that n is an element in S such that the R-classes of Z(n) are X1, . . . ,Xr,

with r ≥ 2. As S has Apéry set with unique expression and r ≥ 2, we have that

n ∈ Ap(S,n1). Hence there exists at least an element b ∈ Z(n) such that x1 ≤ b.
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Assume without loss of generality that X1 contains all the elements in Z(n) that are

greater than x1 (with respect to≤). In order to conclude the proof, it suffices to prove

that if a ∈ Xi, with i ≥ 2, then a ∈ {a1, . . . ,at}. Since a ∈ A1, a = λ2x2 + · · ·+ λexe
for some λ2, . . . ,λe ∈N. We already know that n ∈Ap(S,n1), and consequently a ∈
J(S). Moreover, let j ∈ {2, . . . ,e} be such that λ j = 0. If n−n j = λ2n2 + · · ·+(λ j−
1)n j + · · ·+λene ∈Ap(S,n1), then n−(n j +n1)∈ S, which contradicts Lemma 8.15.

Hence λ2n2 + · · ·+ (λ j − 1)n j + · · ·+ λene ∈ Ap(S,n1), which means that λ2x2 +
· · ·+(λ j−1)x j + · · ·+λexe ∈ J(S). This proves that a ∈Minimals≤J(S). ��

We now characterize numerical semigroups with Apéry set of unique expression

that are symmetric. These numerical semigroups turn out to be free.

Recall that a numerical semigroup S is symmetric if and only if Maximals≤S

Ap(S,m(S)) = {F(S)+m(S)} (see Corollary 4.12). Different expressions of an el-

ement w in Ap(S,m(S)) translate to different expressions of any w′ ∈ Ap(S,m(S))
such that w≤S w′. Hence a numerical semigroup has Apéry set of unique expression

if and only if the elements in Maximals≤S(Ap(S,m(S))) have unique expressions.

By Corollary 4.12, a symmetric numerical semigroup has Apéry set of unique ex-

pression if and only if the element F(S)+m(S) is of unique expression.

Lemma 10.3. Let S be a symmetric numerical semigroup. Then S has Apéry set of
unique expression if and only if F(S)+m(S) has unique expression.

We prove now that free and symmetric properties coincide for numerical semi-

groups with Apéry set of unique expression.

Proposition 10.4. Let S be a numerical semigroup with Apéry set of unique expres-
sion. Then S is symmetric if and only if it is free.

Proof. We already know that if S is free, then it is a complete intersection (Corollary

9.17), and thus it is symmetric (Corollary 9.12).

Now assume that S is symmetric and that {n1, . . . ,ne} is a minimal system of

generators of S. Suppose that n1 = min{n1, . . . ,ne}. For every j ∈ {1, . . . ,e}, de-

fine ci = min
{

k ∈ N\{0} | kn j ∈ 〈n1, . . . ,n j−1,n j+1, . . . ,ne〉
}

. Assume that c jn j =
λ j1n1 + · · ·+λ jene for some λ j1 , . . . ,λ je ∈ N and λ j j = 0. Then, as S has Apéry set

of unique expression, c jn j ∈ Ap(S,n1), and thus we can take λ j1 to be nonzero.

Moreover, from the minimality of c j, we deduce that (c j−1)n j ∈Ap(S,n1). As S is

symmetric, we know that {F(S) + n1} = Maximals≤S Ap(S,n1) (Corollary 4.12).

Hence for all j ∈ {2, . . . ,e}, there exists s j ∈ Ap(S,n1) such that F(S) + n1 =
(c j−1)n j +s j. As F(S)+n1 has unique expression and c jn j ∈Ap(S,n1), we deduce

that F(S)+n1 = (c2−1)n2 + · · ·+(ce−1)ne. Note that this also proves that

Ap(S,n1) =
{

λ2n2 + · · ·+λene | λi ∈ {0, . . . ,c j−1} for all j ∈ {2, . . . ,e}} .

From the equality

(c2−1)n2 + · · ·+(ce−1)ne = (λ21
+ · · ·+λe1

)n1

+(λ22
+ · · ·+λe2

−1)n2 + · · ·+(λ2e + · · ·+λee −1)ne,
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by using that λ21
+ · · ·+λe1

= 0 and that F(S)+n1 ∈Ap(S,n1), it follows that some

of the coefficients in the right-hand side cannot be nonnegative integers. Then there

exists j ∈ {2, . . . ,e} such that λ2 j + · · ·+λe j = 0. As λ2 j , . . . ,λe j ∈ N, we have that

λ2 j = · · · = λe j = 0. Assume without loss of generality that j = e. By iterating the

process we obtain that

c2n2 = λ21
n1,

c3n3 = λ31
n1 +λ32

n2,
. . .

cene = λe1
n1 + · · ·+λee−1

ne−1.

This shows that c j = c∗j for all j ∈ {2, . . . , p}, and as F(S)+n1 = (c2−1)n2 + · · ·+
(ce−1)ne, we also have that

Ap(S,n1) =
{

λ2n2 + · · ·+λene | λi ∈ {0, . . . ,c∗j −1} for all j ∈ {2, . . . ,e}} .

This proves, by using Proposition 9.15, that S is free. ��
For embedding dimension three numerical semigroups a bit more is achieved,

since we now prove that the complete intersection, symmetric and free properties

coincide in this scope.

Corollary 10.5. Let S be a numerical semigroup with embedding dimension three.
The following are equivalent.

1) S is a complete intersection.
2) S is symmetric.
3) S is free.

Proof. We know by Example 9.20 and by Corollary 9.17 that for numerical semi-

groups of embedding dimension three, it is equivalent to be free and a complete

intersection. We also know that every complete intersection is symmetric (Corol-

lary 9.12). So it suffices to prove that if S is symmetric, then it is free. Let S be a

symmetric numerical semigroup minimally generated by {n1 < n2 < n3}. If S has

Apéry set of unique expression, then by the preceding proposition, we are done.

Hence assume that there exists w ∈ Ap(S,n1) and λ2,λ3,μ2,μ3 ∈ N such that w =
λ2n2 + λ3n3 = μ2n2 + μ3n3, with (λ2,λ3) = (μ2,μ3). Assume without loss of gen-

erality that λ2 > μ2. Then (λ2−μ2)n2 = (μ3−λ3)n3 ∈Ap(S,n1). Let γ1,γ3 ∈N be

such that c2n2 = γ1n1 + γ3n3, with as usual c2 = min{k ∈ N\{0} | kn2 ∈ 〈n1,n3〉}.
Then by definition, c2 ≤ (λ2− μ2). Let k2 = c2− (λ2− μ2). We have that c2n2 =
(λ2− μ2 + k2)n2 = k2n2 +(μ3−λ3)n3. From the minimality of c2 we deduce that

k2 = 0. This proves that c2 = λ2 − μ2, and in the same way we can show that

c3 = μ3−λ3. Thus c2n2 = c3n3. By Example 9.20 we have that S is free. ��
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2 Irreducible numerical semigroups with embedding dimension
three

We already know that symmetric numerical semigroups with embedding dimen-

sion three are free, and thus they must be a gluing of a numerical semigroup with

embedding dimension two and N. Hence we are going to be able to describe the

generators of these semigroups, and also we can give explicit expressions of their

Frobenius numbers and genus. Pseudo-symmetric numerical semigroups of em-

bedding dimension three cannot be a gluing as happens with the symmetric case.

However, by using some tricks we will be able to parameterize the minimal gener-

ators of this family of numerical semigroups and will also find closed expressions

for the Frobenius number and genus of these semigroups.

2.1 The symmetric case

We already know that symmetric numerical semigroups with embedding dimension

three are free and a gluing of a numerical semigroup of embedding dimension two

and N. This can be used to give an explicit description of the minimal generators of

a semigroup of this kind.

Theorem 10.6. Let m1 and m2 be two relatively prime integers greater than one. Let
a, b and c be nonnegative integers with a≥ 2, b+c≥ 2 and gcd{a,bm1 +cm2}= 1.
Then S = 〈am1,am2,bm1 + cm2〉 is a symmetric numerical semigroup with embed-
ding dimension three. Moreover, every embedding dimension three symmetric nu-
merical semigroup is of this form.

Proof. Since gcd{am1,am2,bm1 + cm2} = gcd{a,bm1 + cm2} = 1, we have that S
is a numerical semigroup.

We now prove that {am1,am2,bm1 + cm2} is a minimal system of generators.

The elements of 〈am1,am2〉 are multiples of a, and consequently bm1 + cm2 cannot

belong to this monoid. If am1 ∈ 〈am2,bm1 + cm2〉, then am1 = λam2 + μ(bm1 +
cm2) for some λ ,μ ∈N. This implies that a divides μ , since gcd{a,bm1 +cm2}= 1.

Hence m1 = λm2 + μ
a (bm1 +cm2). Assume that μ = 0. If b = 0, then b = 1 and c = 0,

contradicting b+ c≥ 2. If b = 0, then m1 = (λ + μc
a )m2, contradicting that m1 and

m2 are relatively prime. Hence μ = 0, and then m1 = λm2, which again contradicts

that m1 and m2 are relatively prime. This proves that am1 ∈ 〈am2,bm1 + cm2〉. In

the same way it can be shown that am2 ∈ 〈am1,bm1 + cm2〉.
Finally, observe that S is a gluing of 〈m1,m2〉 and N. Thus it is a gluing of two

symmetric numerical semigroups (〈m1,m2〉 is symmetric by Corollary 4.7, and N is

trivially symmetric). Proposition 9.11 ensures that S is symmetric.

Assume now that S is an embedding dimension three symmetric numerical semi-

group. By Corollary 10.5, we know that S is free. Assume that it is free for the

arrangement {n1,n2,n3} of its minimal generators. By Proposition 9.15, we have
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that c3n3 ∈ 〈n1,n2〉, and by Lemma 9.13, we have that c3 = gcd{n1,n2}. Let b and c
be nonnegative integers such that c3n3 = bn1 + cn2. Note that b+ c≥ 2 and c3 ≥ 2,

since otherwise {n1,n2,n3}would not be a minimal system of generators. By setting

a = c3, m1 = n1
a and m2 = n2

a , we obtain the desired result. ��
Remark 10.7. Assume that a,b,c,m1 and m2 are as in Theorem 10.6. From Proposi-

tion 2.17, it follows that F(〈am1,am2,bm1 +cm2〉) = aF(〈m1,m2〉)+(a−1)(bm1 +
cm2). Hence

F(〈am1,bm2,bm1 + cm2〉) = a(m1m2−m1−m2)+(a−1)(bm1 + cm2).

2.2 The pseudo-symmetric case

In this section we study pseudo-symmetric numerical semigroups with embedding

dimension three. These semigroups have been characterized in [82], where an ex-

plicit description of the Apéry sets of their multiplicities and the Frobenius num-

ber is also presented. We will recall here some of the results appearing in that

manuscript.

In this section, S denotes a numerical semigroup minimally generated by {n1,n2,
n3}. Define as usual for i ∈ {1,2,3},

ci = min{k ∈ N\{0} | kni ∈ 〈{n1,n2,n3}\{ni}〉} .

Lemma 10.8. If ani = bn j +nk with {ni,n j,nk}= {n1,n2,n3}, a,b ∈ N and b < c j,
then a = ci.

Proof. Let q,r ∈N be such that a = qci +r with 0≤ r < ci. From the definition of ci,

there exists λ ,μ ∈N such that cini = λn j + μnk. As ani = bn j +nk, we deduce that

qλn j +qμnk + rni = bn j +nk. If μ = 0, then qλn j + rni = bn j +nk. By assumption

{n1,n2,n3} is the minimal system of generators of S, which implies that b > qλ .

Hence rni = (b− qλ )n j + nk, and as r < ci, this contradicts the definition of ci.

Thus μ = 0. If q = 0, then we get the same contradiction. Hence qμ > 0 and bn j =
qλn j +(qμ−1)nk + rni, which leads to b≥ qλ and (b−qλ )n j = (qμ−1)nk + rni.

By hypothesis b < c j, and consequently b− qλ = 0. This implies that r = 0 and

qμ = 1. This yields μ = q = 1. We conclude that a = ci. ��
Recall (Corollary 4.19) that S = 〈n1,n2,n3〉 is pseudo-symmetric if and only if

Maximals≤S(Ap(S,n1)) = {F(S) + n1,
F(S)

2 + n1}. We are going to see what these

two elements are. First we focus on
F(S)

2 +n1, discarding a possible value that leads

to the symmetric case. The results we obtain are enounced for n1 but can analo-

gously be obtained for n2 and n3.

Lemma 10.9. If F(S)+n1 = (c2−1)n2 +(c3−1)n3, then S is symmetric.
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Proof. Assume that c2n2 ∈Ap(S,n1). Then c2n2 = an3 for some a ∈N. This forces

a to be equal to c3 (see the argument in the proof of Corollary 10.5). In view of

Example 8.23, this implies that S is a complete intersection and thus it is symmetric

(Corollary 9.12 or 10.5). Therefore we next assume that neither c2n2 nor c3n3 belong

to Ap(S,n1). In this setting, if w ∈ Ap(S,n1), then w = an2 + bn3 with a,b ∈ N,

a < c2 and b < c3. By hypothesis F(S)+n1 = (c2−1)n2 +(c3−1)n3. Hence w≤S
F(S)+n1. This proves that S is symmetric by Corollary 4.12. ��

There are two possible values for
F(S)

2 +n1 as we see next.

Lemma 10.10. If S is pseudo-symmetric, then F(S)
2 +n1 ∈ {(c2−1)n2,(c3−1)n3}.

Proof. Since S is pseudo-symmetric, arguing as in the proof of Lemma 10.9, we

have that neither c2n2 nor c3n3 belong to Ap(S,n1). Assume that
F(S)

2 +n1 ∈ {(c2−
1)n2,(c3 − 1)n3}. From the definition of c2, it follows that (c2 − 1)n2 − n1 ∈ S.

Then by Proposition 4.4, F(S)− ((c2−1)n2−n1) = F(S)+n1− (c2−1)n2 ∈ S. As

c2n2,c3n3 ∈ Ap(S,n1) and F(S)+ n1 ∈ Ap(S,n1), we have that F(S)+ n1 = (c2−
1)n2 +bn3 with b < c3. By using now the definition of c3, we have that (c3−1)n3 ∈
Ap(S,n1), and since (c3−1)n3 = F(S)

2 +n1, Proposition 4.4 asserts that F(S)+n1−
(c3− 1)n3 ∈ S. Arguing as above, there exists a ∈ N such that F(S) + n1 = (c3−
1)n3 +an2 with a < c2. Hence an2 +(c3−1)n3 = (c2−1)n2 +bn3, a≤ c2−1 and

b ≤ c3− 1. By using again the definitions of c2 and c3, we deduce that a = c2− 1

and b = c3− 1. Therefore F(S) + n1 = (c2− 1)n2 + (c3− 1)n3, which in view of

Lemma 10.9, contradicts the fact that S is pseudo-symmetric. ��
This, as we see next, provides us with an explicit description of the Apéry set

of any of the minimal generators in a pseudo-symmetric numerical semigroup with

embedding dimension three. In particular, in view of Proposition 2.12, this descrip-

tion is telling us what F(S)+n1 is.

Lemma 10.11. If S is pseudo-symmetric and F(S)
2 +n1 = (c2−1)n2, then

Ap(S,n1) = {an2 +bn3 | 0≤ a≤ c2−2, 0≤ b≤ c3−1}∪{(c2−1)n2}.

Proof. We already know that c3n3 ∈Ap(S,n1) (see the proof of Lemma 10.9). From

Corollary 4.19, we deduce that if a,b ∈ N and an2 +bn3 ∈ Ap(S,n1)\{F(S)
2 +n1},

then a ≤ c2− 2 and b ≤ c3− 1. In order to conclude the proof, it suffices to show

that F(S) + n1 = (c2− 2)n2 + (c3− 1)n3. As (c2− 2)n2,(c3− 1)n3 ∈ Ap(S,n1) \
{F(S)

2 +n1}, by Corollary 4.19, we obtain that F(S)+n1 = (c3−1)n3 +an2 = (c2−
2)n2 + bn3 for some a,b ∈ N with a ≤ c2− 2 and b ≤ c3− 1. From the equality

(c3−1)n3 +an2 = (c2−2)n2 +bn3, we deduce that a = c2−2 and b = c3−1. ��
The parameters in Example 8.23 can be explicitly computed in the pseudo-

symmetric case.

Lemma 10.12. If S is pseudo-symmetric and F(S)
2 +n1 = (c2−1)n2, then
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1) c1n1 = (c2−1)n2 +n3,
2) c2n2 = (c3−1)n3 +n1,
3) c3n3 = (c1−1)n1 +n2.

Proof. By Corollary 4.19, we have that (c2−1)n2 ∈Maximals≤S(Ap(S,n1)). Hence

(c2 − 1)n2 + n3 ∈ Ap(S,n1). Thus there exist a,b,c ∈ N with a = 0 such that

(c2 − 1)n2 + n3 = an1 + bn2 + cn3. Since by Lemma 10.11, (c2 − 2)n2 + n3 ∈
Ap(S,n1), we obtain that c = 0 and b = 0. Therefore an1 = (c2− 1)n2 + n3. By

using Lemma 10.8, we deduce that a = c1. This proves 1).

As
F(S)

2 + n3 = F(S)
2 + n1 = (c2− 1)n2, in view of Lemma 10.10, we obtain that

F(S)
2 +n3 = (c1−1)n1. Arguing as above, we can deduce that c3n3 = (c1−1)n1 +n2.

Finally,
F(S)

2 +n2 = (c3−1)n3 and c2n2 = (c3−1)n3 +n1. ��
These values of the ri j’s characterize in fact the pseudo-symmetric property as

we see in the following result.

Proposition 10.13. Let S be a numerical semigroup with embedding dimension
three. Then S is pseudo-symmetric if and only if for some rearrangement of its gen-
erators {n1,n2,n3} we have that c1n1 = (c2−1)n2 +n3, c2n2 = (c3−1)n3 +n1 and
c3n3 = (c1−1)n1 +n2.

Proof. Necessity. This is a consequence of Lemmas 10.10 and 10.12.

Sufficiency. In view of Example 8.23, case 3),

ρ = {(c1x1,(c2−1)x2 + x3),(c2x2,x1 +(c3−1)x3),(c3x3,(c1−1)x1 + x2)}

is a minimal presentation for S. By using Proposition 8.4, we deduce that the element

(c3−1)n3 +(c2−2)n2 is of unique expression. This in particular implies that (c3−
1)n3 +(c2−2)n2 ∈Ap(S,n1). By using the same argument, (c2−1)n2 also belongs

to Ap(S,n1). Observe also that (c2− 1)n2 + n2 = (c3− 1)n3 + n1 ∈ Ap(S,n1) and

that (c2− 1)n2 + n3 = c1n1 ∈ Ap(S,n1) (and clearly (c2− 1)n2 + n1 ∈ Ap(S,n1)).
Hence (c2−1)n2 ∈Maximals≤S(Ap(S,n1)). The same stands for (c3−1)n3 +(c2−
2)n2. Now let an2 + bn3, with a,b ∈ N, be an element of Ap(S,n1). Since c3n3 =
(c1 − 1)n1 + n2, we have that b < c3; and c2n2 = (c3 − 1)n3 + n1 forces a < c2.

Finally, the equality c1n1 = (c2− 1)n2 + n3 implies that if a = c2− 1, then b must

be zero. This proves that Maximals≤S(Ap(S,n1)) = {(c2−1)n2,(c2−2)n2 +(c3−
1)n3}. In view of Corollary 4.19, in order to show that S is pseudo-symmetric, it

suffices to show that 2((c2−1)n2−n1) = (c3−1)n3 +(c2−2)n2−n1. This equality

holds if and only if (2c2− 2)n2 = (c3− 1)n3 +(c2− 2)n2 + n1. As (2c2− 2)n2 =
(c2−2)n2 + c2n2 = (c2−2)n2 +(c3−1)n3 +n1, we get the desired equality. ��

As a consequence of this, we obtain that the minimal generators of an embedding

dimension three pseudo-symmetric numerical semigroup are pairwise coprime, in

contrast with what happens in the symmetric case (Theorem 10.6).

Corollary 10.14. If S is a pseudo-symmetric numerical semigroup with embedding
dimension three, then its minimal generators are pairwise relatively prime.
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Proof. As S is a numerical semigroup gcd({n1,n2,n3}) = 1. By Proposition 10.13,

n3 = c1n1− (c2− 1)n2, and thus gcd({n1,n2}) = gcd({n1,n2,n3}) = 1. The same

stands for gcd({n1,n3}) and gcd({n2,n3}) in view of the rest of the equalities ap-

pearing in Proposition 10.13. ��
By counting the elements in the Apéry sets of the minimal generators in an em-

bedding dimension three pseudo-symmetric numerical semigroup, we obtain an in-

teresting consequence.

Corollary 10.15. Let S be a pseudo-symmetric numerical semigroup with embed-
ding dimension three. Then there exist a,b,c ∈ N\{0,1} such that

{c(b−1)+1,(c−1)a+1,b(a−1)+1}

is the minimal system of generators of S.

Proof. Let {n1,n2,n3} be the minimal system of generators of S. Since #Ap(S,n1) =
n1, in view of Lemma 10.11, we deduce that n1 = c3(c2−1)+ 1. In the same way

we can obtain that n2 = c1(c3−1)+1 and that n3 = c2(c1−1)+1. ��
This property characterizes pseudo-symmetric numerical semigroups with em-

bedding dimension three. It also provides us with a parameterization of the minimal

generators of this kind of numerical semigroups.

Proposition 10.16. Let a,b,c ∈ N\{0,1} be such that gcd(c(b−1)+1,(c−1)a+
1) = 1. Then

S = 〈c(b−1)+1,(c−1)a+1,b(a−1)+1〉
is a pseudo-symmetric numerical semigroup with embedding dimension three and
such that

F(S) = 2(a−1)(b−1)(c−1)−2.

Proof. Let n1 = c(b− 1) + 1, n2 = (c− 1)a + 1 and n3 = b(a− 1) + 1. Since

gcd(n1,n2) = 1, the monoid S is a numerical semigroup. The reader can check

that an1 = (b−1)n2 + n3, bn2 = (c−1)n3 + n1 and cn3 = (a−1)n1 + n2. Observe

that gcd{n1,n2} = gcd{n2,n3} = gcd{n1,n3} = 1. If we prove now that c1 = a,

c2 = b and c3 = c, then {n1,n2,n3} is a minimal system of generators of S and

by Proposition 10.13 we are done. Assume that there exists x ∈ N with 0 < x < a
and xn1 = yn2 + zn3 for some y,z ∈ N. As n1 = bn2 − (c− 1)n3, we have that

xn1 = xbn2−x(c−1)n3. Hence yn2 +zn3 = xbn2−x(c−1)n3 and thus (xb−y)n2 =
(z + x(c−1))n3. Since gcd{n2,n3} = 1, this last equality implies that xb− y = kn3

for some positive integer k (xb− y = 0, because otherwise z = −x(c−1), which is

impossible). Hence xb ≥ n3 and consequently (a− 1)b ≥ n3, in contradiction with

n3 = (a−1)b+1. This proves that a = c1. Analogously one obtains that c2 = b and

c3 = c.

From Lemma 10.11 and Proposition 2.12, F(S)+ n1 = (c3− 1)n3 +(c2− 2)n2,

and so F(S) is equal to (c− 1)(b(a− 1)+ 1)+ (b− 2)(a(c− 1)+ 1)− (c(b− 1)+
1) = 2(a−1)(b−1)(c−1)−2. ��
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By gathering all this information together we obtain the following closed formu-

las for the ci’s and the Frobenius number.

Theorem 10.17. Let S be a numerical semigroup with embedding dimension three
minimally generated by {n1,n2,n3}. Then S is pseudo-symmetric if and only if for
some rearrangement of {n1,n2,n3},
{ (n1−n2 +n3)+

√
(n1 +n2 +n3)2−4(n1n2 +n1n3 +n2n3−n1n2n3)

2n1
,

(n1 +n2−n3)+
√

(n1 +n2 +n3)2−4(n1n2 +n1n3 +n2n3−n1n2n3)
2n2

,

(−n1 +n2 +n3)+
√

(n1 +n2 +n3)2−4(n1n2 +n1n3 +n2n3−n1n2n3)
2n3

}
⊂ N.

If this is the case, then

F(S) =−(n1 +n2 +n3)+
√

(n1 +n2 +n3)2−4(n1n2 +n1n3 +n2n3−n1n2n3),

and

c1 = (n1−n2+n3)+
√

(n1+n2+n3)2−4(n1n2+n1n3+n2n3−n1n2n3)
2n1

,

c2 = (n1+n2−n3)+
√

(n1+n2+n3)2−4(n1n2+n1n3+n2n3−n1n2n3)
2n2

,

c3 = (−n1+n2+n3)+
√

(n1+n2+n3)2−4(n1n2+n1n3+n2n3−n1n2n3)
2n3

.

Proof. Consider the system of equations⎧⎨
⎩

n1 = c(b−1)+1,
n2 = (c−1)a+1,
n3 = b(a−1)+1,

with unknowns a,b,c. Set

Δ = (n1 +n2 +n3)2−4(n1n2 +n1n3 +n2n3−n1n2n3).

The solutions of the above system are

(a,b,c) =

(
(n1−n2 +n3)−

√
Δ

2n1
,

(n1 +n2−n3)−
√

Δ
2n2

,
(−n1 +n2 +n3)−

√
Δ

2n3

)

and

(a,b,c) =

(
(n1−n2 +n3)+

√
Δ

2n1
,

(n1 +n2−n3)+
√

Δ
2n2

,
(−n1 +n2 +n3)+

√
Δ

2n3

)
.
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Observe that

√
Δ =

√
(−n1 +n2 +n3)2 +4(n1−1)n2n3 > −n1 +n2 +n3,√

Δ =
√

(n1−n2 +n3)2 +4n1(n2−1)n3 > n1−n2 +n3,√
Δ =

√
(n1 +n2−n3)2 +4n1n2(n3−1) > n1 +n2−n3.

Hence all these solutions are real numbers and the only positive solution is the sec-

ond choice of a,b,c.

Sufficiency. If {a,b,c} are integers, then by Theorem 10.16 we have that S is

pseudo-symmetric (observe that a,b,c ≥ 2, since n1,n2,n3 = 1). The reader can

check that the formula given by F(S) is obtained by applying that F(S) = 2(a−
1)(b−1)(c−1)−2.

Necessity. If S is pseudo-symmetric, then by Corollary 10.15, the above system

of equations has a nonnegative integer solution. ��

3 Pseudo-Frobenius numbers and genus of an embedding
dimension three numerical semigroup

In this section, we assume that S is a numerical semigroup minimally generated

by {n1,n2,n3}, and that every two minimal generators are relatively prime. This

assumption is not restrictive for the computation of the Frobenius number, pseudo-

Frobenius numbers and genus of S. This is due to Proposition 2.17 (for the Frobenius

number and genus), and to Lemma 2.16 and Proposition 2.20 (for the computation

of the pseudo-Frobenius numbers).

The results of this section are extracted from [81]. As usual define for i ∈
{1,2,3},

ci = min{k ∈ N\{0} | kni ∈ 〈{n1,n2,n3}\{ni}〉} .

Hence by using the same notation as in Example 8.23, there exist nonnegative inte-

gers r12,r13,r21,r23,r31,r32 ∈ N such that

c1n1 = r12n2 + r13n3,
c2n2 = r21n1 + r23n3,
c3n3 = r31n1 + r32n2.

We now give some of the properties of these integers and show their relevance in

the computations we want to perform in this section.

First we show that under the standing hypothesis, no ri j can be zero.

Lemma 10.18. r12,r13,r21,r23,r31 and r32 are positive integers.

Proof. Assume that r13 = 0. Then c1n1 = r12n2. Since gcd{n1,n2}= 1 and by def-

inition c1 ≤ n2, we have that c1 = n2. Besides, as gcd{n1,n2} = 1, we know that

there exists x ∈ {1, . . . ,n2−1} such that xn1 ≡ n3 mod n2. Hence xn1 = n3 + zn2 for

some integer z. As {n1,n2,n3} is a minimal system of generators of S, z ∈ N and
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consequently c1 ≤ x < n2, in contradiction with c1 = n2. Analogously, one proves

that the rest of the ri j are all positive. ��
Next, we prove that the ci’s are determined by the ri j’s.

Lemma 10.19. For every {i, j,k}= {1,2,3},

ci = r ji + rki.

Proof. Note that (r13 + r23)n3 = (c1− r21)n1 +(c2− r12)n2, whence r13 + r23 ≥ c3.

In a similar way we obtain that r21 + r31 ≥ c1 and r12 + r32 ≥ c2. Besides, c1n1 +
c2n2 + c3n3 = (r21 + r31)n1 +(r12 + r32)n2 +(r13 + r23)n3 and consequently c1 =
r21 + r31, c2 = r12 + r32 and c3 = r13 + r23. ��

With this we can describe the maximal elements (with respect to≤S) of the Apéry

set of any of the minimal generators. This is of interest to us because by Proposition

2.20 it gives a formula for the pseudo-Frobenius numbers and type of S.

Lemma 10.20. For every {i, j,k}= {1,2,3},

Maximals≤S(Ap(S,ni)) = {(c j−1)n j +(rik−1)nk,(ck−1)nk +(ri j−1)n j}.

Proof. We prove the statement for i = 1. The rest of the cases follow analogously.

We first show that (c3−1)n3 +(r12−1)n2 ∈ Ap(S,n1). Assume to the contrary

that (c3−1)n3 +(r12−1)n2 = a1n1 +a2n2 +a3n3 for some a1,a2,a3 ∈N with a1 =
0. From the minimality of c3 and c2 (which is greater than r12 by Lemma 10.19),

we have that a3 < c3−1 and a2 < r12−1. We deduce that a1n1 = (c3−1−a3)n3 +
(r12− 1− a2)n2 with c3− 1− a3,r12− 1− a2 ∈ N and consequently a1 ≥ c1. Let

q ∈N\{0} and 0≤ r < c1 be such that a1 = qc1 + r. Then (c3−1−a3)n3 +(r12−
1−a2)n2 = rn1 +qr12n2 +qr13n3. Thus (c3−1−a3−qr13)n3 = rn1 +(qr12−r12 +
1 + a2)n2 with r ∈ N and qr12− r12 + 1 + a2 ∈ N \ {0}, in contradiction with the

definition of c3.

In a similar way it follows that (c2−1)n2 +(r13−1)n3 ∈ Ap(S,n1).
Take now an2 + bn3 ∈ Ap(S,n1). We show that either (a,b) ≤ (r12− 1,c3− 1)

or (a,b) ≤ (c2− 1,r13− 1). In view of Lemma 10.18, we deduce that a < c2 and

b < c3. If (a,b) ≤ (r12− 1,c3− 1), then a ≥ r12. Let us prove that in this setting

b < r13. Assume to the contrary that b≥ r13. Then an2 +bn3 = r12n2 + r13n3 +(a−
r12)n2 + (b− r13)n3 = c1n1 + (a− r12)n2 + (b− r13)n3, contradicting that an2 +
bn3 ∈ Ap(S,n1). Hence (a,b)≤ (c2−1,r13−1). ��

From Proposition 2.20 we obtain the following.

Proposition 10.21. S has type two.

In particular this implies [32, Theorem 14]. Moreover, with this we also recover

[32, Theorem 11].

Corollary 10.22. A numerical semigroup with embedding dimension three has at
most type two.
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Proof. Let S be a numerical semigroup minimally generated by {n1,n2,n3}. If the

three minimal generators are pairwise relatively prime, then the above proposition

tells us that the semigroup has type two. Otherwise, two of the minimal generators

have greatest common divisor d = 1 (not the three of them because S is a numer-

ical semigroup). From the reduction given in Lemma 2.16, we have that either the

semigroup T in that lemma has embedding dimension two or embedding dimension

three. The type of T equals the type of S. In the first case T has type one (Corollaries

4.7 and 4.11), and in the second S has type two. ��
Recall that the ci’s are determined by the ri j’s: By counting the elements in

Ap(S,ni) as we did in Corollary 10.15, we can express the minimal generators in

terms of the ri j’s.

Lemma 10.23.
n1 = r12r13 + r12r23 + r13r32,
n2 = r13r21 + r21r23 + r23r31,
n3 = r12r31 + r21r32 + r31r32.

Proof. We know by Lemma 2.4 that #Ap(S,n) = n for all n∈ S\{0}. Note that from

the minimality of c2 and c3, if a2n2 +a3n3 = b2n2 +b3n3 with ai,bi ∈ {0, . . . ,ci−1},
then (a2,a3) = (b2,b3). Hence by Lemma 10.20, we deduce that

#Ap(S,n1) = #
{
(a,b) ∈ N2

∣∣ (a,b)≤ (r12−1,c3−1) or (a,b)≤ (c2−1,r13−1)
}

= r12c3 + c2r13− r12r13.

Hence n1 = r12c3 + c2r13 − r12r13, and by Lemma 10.19, n1 = r12r13 + r12r23 +
r32r13.

The corresponding equalities for n2 and n3 follow analogously. ��
We go for the converse. By choosing ri j random and positive, we obtain an em-

bedding dimension three numerical semigroup.

Lemma 10.24. Let a12,a13,a21,a23,a31,a32 be positive integers and let

m1 = a12a13 +a12a23 +a13a32,
m2 = a13a21 +a21a23 +a23a31,
m3 = a12a31 +a21a32 +a31a32.

For every {i, j,k}= {1,2,3},
1) (a ji +aki)mi = ai jm j +aikmk,
2) if gcd{mi,m j}= 1, then mk ∈ 〈mi,m j〉.
Proof. 1) It is easy to check.

2) Let us prove that if gcd{m1,m2}= 1, then m3 ∈ 〈m1,m2〉. The other cases follow

by symmetry. Assume that m3 ∈ 〈m1,m2〉, then m3 = λm1 +μm2 for some λ ,μ ∈
N. By 1), we know that (a21 +a31)m1 = a12m2 +a13m3. Hence a13m3 = (a21 +
a31)m1− a12m2. Thus, a13(λm1 + μm2) = (a21 + a31)m1− a12m2 and (a13μ +
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a12)m2 = (a21 +a31−a13λ )m1. By using that gcd{m1,m2}= 1, we deduce that

a21 +a31−a13λ = km2 for some k ∈N\{0}. In particular a21 +a31 ≥ km2 ≥m2,

in contradiction with m2 = (a21 +a31)a23 +a13a21, because ai j > 0 for all i, j and

consequently a21 +a31 < m2. ��
Given a sequence of integers x1, . . . ,xp we say that it is strongly positive if xi > 0

for all i ∈ {1, . . . , p}.
Theorem 10.25. Let m1, m2 and m3 be positive integers such that gcd{mi,m j}= 1

for i = j. Then the system of equations

m1 = x12x13 + x12x23 + x13x32,
m2 = x13x21 + x21x23 + x23x31,
m3 = x12x31 + x21x32 + x31x32,

has a strongly positive integer solution if and only if {m1,m2,m3} is a minimal
system of generators of 〈m1,m2,m3〉.

Moreover, if such a solution exists, then it is unique.

Proof. Necessity. Follows from Lemma 10.24.

Sufficiency. This is a consequence of Lemmas 10.18 and 10.23.

Now let us prove the uniqueness of the solution. For ni = mi, i ∈ {1,2,3}, we

know in view of Lemmas 10.18 and 10.23 that (x12,x13,x21,x23,x31,x32) = (r12,r13,
r21,r23,r31,r32) is a strongly positive integer solution. Assume that (a12,a13,a21,
a23,a31,a32) is another strongly positive integer solution of the above system of

equations. Then we must have that ai j < ri j for some i, j. Without loss of generality

we can assume that a12 < r12. Then c1n1 = r12n2 + r13n3 = (a12 +λ )n2 + r13n3 for

some λ ∈ N\{0}. By 1) in Lemma 10.24 we deduce that a12n2 = (a21 + a31)n1−
a13n3 and that a21 + a31 ≥ c1. Hence c1n1 = (a21 + a31)n1− a13n3 + λn2 + r13n3.

Thus, (a13− r13)n3 = (a21 +a31−c1)n1 +λn2 and consequently a13 > c3. As n1 =
a12a13 +a12a23 +a13a32 = a13(a12 +a32)+a12a23 and since by 1) in Lemma 10.24,

a12 + a32 ≥ c2, we obtain that n1 > c3c2 + a12a23 > c3c2. However, n1 = r12(r13 +
r23)+ r13r32 = c2c3− r23r32 which is smaller than c3c2, a contradiction. ��

In view of this, a three embedding dimension numerical semigroup, with pairwise

coprime minimal generators, is encoded by the constants ri j’s. We arrange these

constants in what we call a 0-matrix.

A 0-matrix is a matrix A of the form

A =

⎛
⎝ 0 a12 a13

a21 0 a23

a31 a32 0

⎞
⎠

where a12,a13,a21,a23,a31,a32 are positive integers such that gcd{Ai,A j}= 1, with

A1 = a12a13 +a12a23 +a13a32,
A2 = a13a21 +a21a23 +a23a31,
A3 = a12a31 +a21a32 +a31a32.
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Theorem 10.26. If A =

⎛
⎝ 0 a12 a13

a21 0 a23

a31 a32 0

⎞
⎠ is a 0-matrix, then 〈A1,A2,A3〉 is a numer-

ical semigroup with embedding dimension 3 and whose generators are pairwise
relatively prime. Moreover,

(a ji +aki)Ai = ai jA j +aikAk

and
a ji +aki = min

{
x ∈ N\{0} | xAi ∈ 〈A j,Ak〉

}
.

Conversely, if S is a numerical semigroup with embedding dimension 3 and
whose generators are pairwise relatively prime, then there exists a 0-matrix A such
that S = 〈A1,A2,A3〉.
Proof. As a consequence of Theorem 10.25, we have that 〈A1,A2,A3〉 is a numerical

semigroup with embedding dimension 3. In view of Lemma 10.24, we have that

(a ji + aki)Ai = ai jA j + aikAk. From Lemmas 10.19 and 10.23 and Theorem 10.25,

we deduce that a ji +aki = min
{

x ∈ N\{0} | xAi ∈ 〈A j,Ak〉
}

.

Assume now that S is a numerical semigroup with minimal system of generators

{n1,n2,n3} such that gcd{ni,n j} = 1 for i = j. Then by Lemma 10.23, we know

that A =

⎛
⎝ 0 r12 r13

r21 0 r23

r31 r32 0

⎞
⎠ is a 0-matrix fulfilling that S = 〈A1,A2,A3〉. ��

Example 10.27 ([81]). A =

⎛
⎝ 0 1 2

1 0 1

4 1 0

⎞
⎠ is a 0-matrix with A1 = 5, A2 = 7 and A3 = 9.

Hence 〈5,7,9〉 is a numerical semigroup with embedding dimension 3. Moreover,

5×5 = 1×7+2×9,
2×7 = 1×5+1×9,
3×9 = 4×5+1×7.

Example 10.28 ([81]). A =

⎛
⎝0 1 3

6 0 5

3 11 0

⎞
⎠ is a 0-matrix with A1 = 41, A2 = 63 and

A3 = 102. Hence 〈41,63,102〉 is a numerical semigroup with embedding dimension

3. Moreover,
9×41 = 1×63+3×102,
12×63 = 6×41+5×102,
8×102 = 3×41+11×63.

As a consequence of the above theorem, Lemma 10.20 and Proposition 2.20, we

obtain the following explicit description of the pseudo-Frobenius numbers.
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Corollary 10.29. Let A =

⎛
⎝ 0 a12 a13

a21 0 a23

a31 a32 0

⎞
⎠ be a 0-matrix and let S = 〈A1,A2,A3〉.

Then PF(S) = {g1,g2}, where

1) g1 =−a12a13−a12a23−a12a31−a13a21−a13a32−a21a23−a21a32−a23a31−
a31a32 +a12a13a21 +a12a21a23 +a12a13a31 +2a12a23a31 +a13a21a32 +
a21a23a32 +a13a31a32 +a23a31a32,

2) g2 =−a12a13−a12a23−a12a31−a13a21−a13a32−a21a23−a21a32−a23a31−
a31a32 +a12a13a21 +a12a21a23 +a12a13a31 +a12a23a31 +2a13a21a32 +
a21a23a32 +a13a31a32 +a23a31a32.

This can be reformulated as follows in terms of the minimal generators and the

ci’s.

Theorem 10.30. Let S be minimally generated by {n1,n2,n3} with gcd{ni,n j} = 1

for all i, j ∈ {1,2,3}, with i = j. Then

Δ =
√

(c1n1 + c2n2 + c3n3)2−4(c1n1c2n2 + c1n1c3n3 + c2n2c3n3−n1n2n3)

is a positive integer and

PF(S) =
{

1

2
((c1−2)n1 +(c2−2)n2 +(c3−2)n3 +Δ) ,

1

2
((c1−2)n1 +(c2−2)n2 +(c3−2)n3−Δ)

}
.

In particular,

F(S) =
1

2
((c1−2)n1 +(c2−2)n2 +(c3−2)n3 +Δ).

Proof. By using the definitions of the ci’s and ri j’s, together with Lemma 10.23 and

Corollary 10.29, one can deduce that (r23n3− r32n2)2 = (c1n1 + c2n2 + c3n3)2−
4(c1n1c2n2 + c1n1c3n3 + c2n2c3n3−n1n2n3). Hence Δ is a positive integer.

From Lemma 10.20 and Proposition 2.20 (with Ap(S,n2)), we deduce that

PF(S) = {c1n1 + r23n3− (n1 +n2 +n3),c3n3 + r21n1− (n1 +n2 +n3)}.

Recall that c3n3 = r31n1 + r32n2, whence c3n3 + r21n1 = (r31 + r21)n1 + r32n2. By

Lemma 10.19, this equals to c1n2 + r32n2. Hence

PF(S) = {c1n1 + r23n3− (n1 +n2 +n3),c1n1 + r32n2− (n1 +n2 +n3)}.

We can reformulate this as

PF(S) = {c1n1 +max{r23n3,r32n2}− (n1 +n2 +n3),
c1n1 +min{r23n3,r32n2}− (n1 +n2 +n3)}
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By taking into account now that for any a,b ∈ N, we have that

max{a,b}=
(a+b)+

√
(a−b)2

2
, min{a,b}=

(a+b)−
√

(a−b)2

2
,

we obtain that PF(S) = {c1n1 + (r23n3 + r32n2 + Δ)/2− (n1 + n2 + n3),c1n1 +
(r23n3 + r32n2−Δ)/2− (n1 +n2 +n3)}= {(c1n1 + r12n2 + r13n3 + r23n3 + r32n2 +
Δ)/2− (n1 + n2 + n3),(c1n1 + r12n2 + r13n3 + r23n3 + r32n2−Δ)/2− (n1 + n2 +
n3)}= {(c1n1 +c2n2 +c3n3 +Δ)/2− (n1 +n2 +n3),(c1n1 +c2n2 +c3n3−Δ)/2−
(n1 +n2 +n3)}. ��

Observe that from the proof of this result, we also deduce that F(S) = c1n1 +
max{r23n3,r32n2}−(n1 +n2 +n3), which is the well known formula given by John-

son in [42, Theorem 4] (compare also with the expression given in [13]).

By using Selmer’s formula for the genus of a numerical semigroup (Proposition

2.12) we obtain the following consequence.

Theorem 10.31. Let S be minimally generated by {n1,n2,n3} with gcd{ni,n j} = 1

for all i, j ∈ {1,2,3}, with i = j.

g(S) =
1

2
((c1−1)n1 +(c2−1)n2 +(c3−1)n3− c1c2c3 +1).

Proof. From the proof of Lemma 10.23, we know that

Ap(S,n1) =
{

an2 +bn3

∣∣ (a,b)≤ (r12−1,c3−1) or (a,b)≤ (c2−1,r13−1)
}

.

By Proposition 2.12,

g(S) =
1

n1
∑

w∈Ap(S,n1)
w− n1−1

2
.

An easy computation yields the desired result. ��
By combining this result with Theorem 10.26 we obtain the following.

Corollary 10.32. Let A =

⎛
⎝ 0 a12 a13

a21 0 a23

a31 a32 0

⎞
⎠ be a 0-matrix and let S = 〈A1,A2,A3〉.

Then

g(S) =
1

2
(1−a12a13−a12a23−a12a31−a13a21

−a13a32−a21a23−a21a32−a23a31−a31a32

+a12a13a21 +a12a21a23 +a12a13a31 +2a12a23a31

+2a13a21a32 +a13a31a32 +a21a23a32 +a23a31a32).
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Exercises

Exercise 10.1. Prove that 〈10,19,28,42〉 is a free numerical semigroup that does

not have an Apéry set of unique expression.

Exercise 10.2. Prove that any maximal embedding dimension numerical semigroup

has Apéry sets of unique expression.

Exercise 10.3. Let S be a numerical semigroup with minimal system of generators

{n1 < n2 < · · ·< ne}. For every i∈ {1, . . . ,e}, set ci = min{k ∈N\{0} | kni ∈ 〈{n1,
. . . ,ne}\{ni}〉}. We say that S is simple if n1 = (c2−1)+ · · ·+(ce−1). Prove that

a) 〈4,5,7〉 is simple,

b) if S is simple, then Ap(S,n1) = {0,n2, . . . ,(c2−1)n2, . . . ,ne, . . . ,(ce−1)ne},
c) if S is simple, then it has Apéry sets of unique expression,

d) if S is simple and n ∈ S, then the graph associated to n in S, Gn, is connected if

and only if n = ni + n j for some i, j ∈ {1, . . . ,e} with i = j or n = cini for some

i ∈ {1, . . . ,e}.
Exercise 10.4. Let a be a positive integer. Prove that if a is even, then S = 〈a,a +
1,a+2〉 is not pseudo-symmetric. For which values of a is S pseudo-symmetric?

Exercise 10.5. Let S be a symmetric numerical semigroup with embedding dimen-

sion three. Prove that there is an arrangement n1,n2,n3 of its minimal generators so

that

a) dn3 ∈ 〈n1,n2〉, with d = gcd{n1,n2},
b) F(S) = n1n2

d −n1−n2− (d−1)n3.

Exercise 10.6 ([95]). Let S be a proportionally modular symmetric numerical semi-

group with embedding dimension three. Prove that there is an arrangement of its

minimal generators n1,n2,n3 such that

F(S) =
n1n2n3−n1n2−n2n2

n1 +n3
.

(Hint: Prove that d = gcd(n1,n3) = n1+n3
n2

and use the preceding exercise.)

Exercise 10.7 ([96]). Let n1, n2 and n3 be positive integers with gcd{n1,n2} = 1,

and let u be a positive integer such that un2≡ 1 mod n1. Set m = m(S(un2n3,n1n2,n3)).
Prove that mn3 is the least multiple of n3 belonging to 〈n1,n2〉.
Exercise 10.8 ([34]). Prove that if S is an irreducible numerical semigroup with

embedding dimension less than or equal to three, then F(S) = 12 (Hint: Compute

the set of irreducible numerical semigroup with Frobenius number 12; there are only

two).

Exercise 10.9 ([104]). Let a, b and c be integers greater than one with gcd{a,b}=
gcd{a,c}= gcd{b,c}= 1. Let n be an integer greater than or equal to three. Prove

that the numerical semigroup
〈an,bn〉

c is not minimally generated by {an,cn−1,bn}.
Exercise 10.10 ([81]). Every positive integer is the Frobenius number of a numeri-

cal semigroup with at most three generators (compare with Exercise 4.24).



Chapter 10
The structure of a numerical semigroup

Introduction

The aim of this chapter is to study which properties a monoid must fulfill in order

to be isomorphic to a numerical semigroup. Levin shows in [46] that if S is finitely

generated, Archimedean and without idempotents, then S is multiple joined. By

using this as starting point, we will show that a monoid is isomorphic to a numerical

semigroup if and only if it is finitely generated, quasi-Archimedean, torsion free

and with only one idempotent. We will also relate this characterization with other

interesting properties in semigroup theory such as weak cancellativity, being free of

units, and being hereditarily finitely generated.

In [76] the concept of N-monoid is presented, and generalizing the results given

by Tamura in [103], one can construct all N-monoids up to isomorphism. In this

chapter we also place numerical semigroups in the scope of N-monoids.

1 Levin’s theorem

An element x in a semigroup S is Archimedean if for all y ∈ S there exists a positive

integer k and z ∈ S such that kx = y + z. We say that S is Archimedean if all its

elements are Archimedean.

We say that an element x in a semigroup is idempotent if 2x = x.

A semigroup S is multiple joined if for all x,y ∈ S, there exist positive in-

tegers p and q such that px = qy. Clearly, every multiple joined semigroup is

Archimedean. Our next goal is to prove a result given by Levin, which states that

every Archimedean finitely generated semigroup without idempotents is multiple

joined.

Since in this section we deal with semigroups, we need to translate some of the

concepts already introduced in this book to the more general scope of semigroups.
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The following result will be used several times in this chapter. On an Archimedean

semigroup without idempotents some nice properties hold.

Lemma 11.1. Let S be an Archimedean semigroup without idempotents. Then

1) if a,b ∈ S, then a = a+b,
2) if b ∈ S, then

⋂
n∈N\{0}(nb+S) is empty.

Proof. Assume to the contrary that a = a+b for some a,b∈ S. As S is Archimedean,

there exist a positive integer k and c ∈ S such that kb = a + c. Hence (k + 1)b =
a+ c+b = a+ c = kb. It follows that (k +h)b = kb for all h ∈ N, and in particular

2kb = kb, contradicting that S has no idempotents.

Assume now that there exists b ∈ S and a ∈ ⋂
n∈N\{0}(nb + S). Again, as S is

Archimedean, there exist a positive integer k and c ∈ S such that kb = a + c. Since

a∈ kb+S, there exists d ∈ S such that a = kb+d. Hence a = a+c+d, contradicting

1). ��
As in a monoid, we can define on a semigroup S the binary relation ≤S, but we

have to modify it slightly so that it becomes reflexive. For a,b ∈ S, we write a≤S b
if either a = b or b = a + c for some c ∈ S. Observe that the condition a = b was

not needed for monoids, since they have an identity element. Recall that for any

numerical semigroup, the relation≤S is an order relation. We next see that the same

holds for any Archimedean semigroup without idempotents.

Lemma 11.2. Let S be an Archimedean semigroup without idempotents. Then

1) ≤S is an order relation,
2) Minimals≤S S is contained in any system of generators of S.

Proof. As pointed out above, reflexivity follows directly from the definition. Anti-

symmetry follows from Lemma 11.1, and the transitivity holds because S is a semi-

group.

Now let M = Minimals≤S(S), and let A be a system of generators of S. Let m∈M.

Then m = a1 + · · ·+an for some a1, . . . ,an ∈A. Hence a1≤S m. From the minimality

of m, it follows that a1 = m. ��
Recall that for a numerical semigroup S, the set Minimals≤S(S\{0}) is the min-

imal system of generators of S. Note also that S \{0} is itself a semigroup and that

for all a,b∈ S\{0}, a≤S b if and only if a≤S\{0} b. Clearly, S\{0} is Archimedean

and has no idempotents (the only idempotent of S is 0).

We will write a <S b whenever a≤S b and a = b.

Lemma 11.3. Let S be an Archimedean finitely generated semigroup without idem-
potents. Then

1) there are no sequences {an}n∈N ⊆ S such that ai+1 <S ai for all i ∈ N,
2) S = 〈Minimals≤S(S)〉.
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Proof. Assume to the contrary that {an}n∈N is a sequence of elements in S and

that an = an+1 + xn+1 for some xn+1 ∈ S and for all n ∈ N. Then for every k ∈ N,

a0 = ak + x1 + · · ·+ xk.

Let {s1, . . . ,st} be a system of generators of S. Then x1 + · · ·+xk = pk1
s1 + · · ·+

pkt st for some pk1
, . . . , pkt ∈N. For all j∈{1, . . . , t}, let R j = limk→∞ pk j and assume

that there exists R = max{R1, . . . ,Rt} < ∞. Observe that the sequence {pk j}k≥1
is

nondecreasing. Hence the finiteness of R implies that the set {x1 + · · ·+ xk}k≥1 is

finite. Thus there exist positive integers k and h such that x1 + · · ·+ xk = x1 + · · ·+
xk + xk+1 + · · ·+ xk+h, contradicting Lemma 11.1. Hence there exists j such that

R j = ∞. It follows that a0 = a j + y1 = 2a j + y2 = · · · = na j + yn = · · · for some

{y1,y2, . . . ,yn, . . .} ⊆ S. This implies that a0 ∈ ⋂
n≥1(na j + S), contradicting once

more Lemma 11.1.

Condition 2) follows as in the second part of Proposition 8.5. The proof is left to

the reader. ��
Let S be a semigroup. A congruence on S is an equivalence binary relation com-

patible with the binary operation on S. As with monoids, if S is a semigroup and σ
is a congruence on S, then the quotient set S/σ is a semigroup, called the quotient
semigroup of S by σ .

Given a semigroup S and b ∈ S define the binary relation σb on S as follows:

xσby if x+nb = y+mb for some n,m ∈ N\{0}.

In order to simplify notation we will write [a] for the σb-class of a in S. This binary

relation has some nice properties.

Lemma 11.4. Let S be a semigroup and let b be an element of S. Then

1) σb is a congruence on S,
2) [b] is the identity element of S/σb,
3) [b] is a subsemigroup of S,
4) if b is an Archimedean element of S, then S

σb
is a group.

Proof. For every x ∈ S, x + b = x + b, and thus σb is reflexive. If x + nb = y + mb,

then y + mb = x + nb, whence σb is symmetric. Transitivity follows from the fact

that if x+nb = y+mb and y+kb = z+ lb, then x+(n+k)b = z+(m+ l)b. Finally, if

x+nb = y+mb, then (x+z)+nb = (y+z)+mb for all x,y,z∈ S and n,m∈N\{0}.
As x+b+b = x+2b, we have that [x]+ [b] = [x+b] = [x], which means that [b]

is the identity element in the quotient semigroup S
σb

.

If x,y ∈ [b], then x + nb = mb and y + kb = lb for some positive integers n, m, k
and l. Hence x+y+(n+k)b = (m+ l)b, and thus x+y ∈ [b]. This proves that [b] is

a subsemigroup of S.

Assume now that b is an Archimedean element of S. Let x ∈ S. Then there exists

y∈ S and a positive integer k such that kb = x+y. Hence [x]+[y] = [kb] = [b], which

proves that [y] is the inverse of [x]. ��
We can still sharpen these properties for Archimedean finitely generated semi-

groups without idempotents.
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Lemma 11.5. Let S be an Archimedean finitely generated semigroup without idem-
potents, and let b ∈ S. Set Ib = S\ (b+S). Then

1) if [a] ∈ S
σb

, then [a]∩ Ib is not empty,
2) the set Ib has finitely many elements,
3) S

σb
is a finite group,

4) if x ∈ b + S, there exists px ∈ Ib and a positive integer kx such that x = px + kxb
(and thus b and px are in the same σb-class).

Proof. Let a∈ S. If a∈ b+S, then a = b+x1 for some x1 ∈ S. In particular, [a] = [x1].
If x1 ∈ b + S, then we are done. Otherwise, x1 = b + x2, for some x2 ∈ S. Once we

have defined xi, if xi ∈ b + S, then set xi+1 = xi, otherwise xi = b + xi+1 for some

xi ∈ S. By Lemma 11.1, xi+1 = xi+1 +b, and thus xi = xi+1 if and only if xi ∈ b+S.

In this way a sequence a ≥S x1 ≥S x2 ≥S · · · of elements in [a], which in view of

Lemma 11.3 must be stationary. Thus there exist i such that xi = xi+1, which as we

have pointed out above means that xi ∈ (b +S)∩ [a]. This proves 1). Note also that

in this setting a = ib+ xi, which also proves 4).

Assume now that Ib has infinitely many elements and let {an}n∈N ⊆ Ib with ai =
a j for i = j. By Lemma 11.3, S = 〈Minimals≤S(S)〉, and by Lemma 11.2, we know

that Minimals≤S(S) must have finitely many elements because S is finitely gener-

ated. Let Minimals≤S(S) = {a1, . . . ,at}. There exists for all i ∈ N, λi1 , . . . ,λit ∈ N

such that xi = λi1a1 + · · ·+ λit at . As the sequence {xn}n∈N is infinite, there exists

i ∈ {1, . . . , t} such that {λki}k∈N is not bounded. Since S is Archimedean, there ex-

ists a positive integer l and x ∈ S such that lai = b + x. Choose k big enough such

that λki > l. Then xk = λk1
a1 + · · ·+λkiai + · · ·+λkt at = b+ y for some y ∈ S, con-

tradicting that xk ∈ Ib. In this way we have shown that Condition 2) is true.

From 1) and 2) we have that S/σb is finite. From Lemma 11.4 we deduce that it

is a finite group. ��
These were the tools needed to prove Levin’s theorem.

Theorem 11.6 ([46]). Let S be an Archimedean finitely generated semigroup with-
out idempotents. Then S is multiple joined.

Proof. Let x,y,b ∈ S. From Lemma 11.5, the semigroup S/σb is a finite group

and by Lemma 11.4, [b] is its identity element. Hence there exist positive inte-

gers such that n[x] = [b] = m[y]. This in particular implies that {nx,my} ⊆ [b].
Now let {p1, . . . , pr} = Ib ∩ [b] (this set is finite by Lemma 11.5). Then there

exist positive integers n1, . . . ,nr,k1, . . . ,kr such that p1 + n1b = k1b, p2 + n2b =
k2b, . . . , pr +nrb = krb. Lemma 11.1 forces ni to be less than ki for all i∈ {1, . . . ,r}.
As S does not have idempotents, by Lemma 11.1, we deduce that the elements in

the sequence {knx}k≥1 are all different. Since Ib is finite, there exists u ∈ N \ {0}
such that unx ∈ Ib, or equivalently, unx ∈ b + S. By Lemma 11.5, there exists

i ∈ {1, . . . ,r} and a positive integer t such that unx = pi + tb. Note that if t ≤ ni,

then kunx + sb = kpi + knib = pi +(k−1)(pi +nib)+nib = pi +((k−1)ki +ni)b,

and now (k−1)ki +ni > ni for k positive. Thus we can also assume that t > ni. Hence

unx = pi +nib+(t−ni)b = kib+(t−ni)b = αb for some α ∈N\{0}. Analogously,

we can find v,β ∈ N\{0} such that vmy = βb. Thus βunx = αvmy. ��
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2 Structure theorem

Our aim in this section is to prove Theorem 11.18, which characterizes those mon-

oids that are isomorphic to a numerical semigroup. On the way to this result some

interesting properties of numerical semigroups will show up.

Observe that if on a monoid M, the identity element 0 ∈M is Archimedean, then

for every x ∈ M there exist a positive integer k and y ∈ M such that k0 = x + y.

Hence 0 = x+ y and thus x has inverse y. This in particular implies that if a monoid

is Archimedean, then it is a group. Clearly, the converse is also true, because for

a and b in a group G, 1a = b +(−b + a) (recall that we are omitting the adjective

commutative).

Lemma 11.7. A monoid is Archimedean if and only if it is a group.

Recall that if S is a numerical semigroup, then S \ {0} is Archimedean, and 0

is trivially not Archimedean. These are the monoids we are interested in, since

Archimedean monoids are groups as observed above. Let A be a monoid. We say

that A is quasi-Archimedean if 0 is not an Archimedean and the rest of the elements

in A are Archimedean. Hence every numerical semigroup is quasi-Archimedean.

Note that {0} is not quasi-Archimedean, since 0 in {0} is Archimedean. Thus any

quasi-Archimedean monoid is nontrivial.

An element a in a monoid A is a unit if there exist b ∈ A such that a + b = 0. A

monoid is free of units if its only unit is the identity element. It is easy to prove the

following result.

Lemma 11.8. Let A be a monoid free of units. Then A \ {0} is a semigroup. More-
over, if A is finitely generated as a monoid, then so is A\{0} as a semigroup.

Quasi-Archimedean monoids are free of units as we see in the following result

(as occurs with numerical semigroups).

Lemma 11.9. Every quasi-Archimedean monoid is free of units.

Proof. Let A be a quasi-Archimedean monoid. Assume that there exist a,b∈A\{0}
such that a+b = 0. Let c be an element of A. As a = 0, it is Archimedean, and there

exist a positive integer k and d ∈ A such that ka = c + d. Hence k0 = ka + kb =
c+d + kb, which proves that 0 is Archimedean, contradicting the hypothesis. ��

As a consequence of Lemma 11.1, we obtain the following result.

Lemma 11.10. Let S be an Archimedean semigroup without idempotents. Let a ∈ S
and k1,k2 ∈ N\{0} be such that k1a = k2a. Then k1 = k2.

A semigroup S is torsion free if for any positive integer k and a,b ∈ S such that

ka = kb, then a = b. With this we close the first list of properties that characterize

those monoids isomorphic to a numerical semigroup.

Proposition 11.11. Let A be a monoid. The following conditions are equivalent.
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1) A is isomorphic to a numerical semigroup.
2) A is finitely generated, quasi-Archimedean, torsion free and with only one idem-

potent.

Proof. 1) implies 2). We have already mentioned that a numerical semigroup is

quasi-Archimedean. Clearly, it is also torsion free, and its only idempotent is 0. By

Theorem 2.7 it is finitely generated.

2) implies 1). Let {m1, . . . ,me} be a system of generators of A \ {0} as a semi-

group (Lemma 11.8), and thus it is a system of generators of A with mi = 0 for all i∈
{1, . . . ,e}. Observe that A\{0} is Archimedean and has no idempotents. By Levin’s

theorem (Theorem 11.6) we know that A \ {0} is multiple joined. Hence there ex-

ist positive integers a2, . . . ,ae,b2, . . . ,be such that a2m1 = b2m2, . . . ,aem1 = beme.

Let M = b2 ·b3 · · ·be and let S = 〈M, M
b2

a2,
M
b3

a3, . . . ,
M
be

ae〉 ⊆ N. As every nontrivial

submonoid of N is isomorphic to a numerical semigroup (Proposition 2.2), we only

have to show that A is isomorphic to S. Define

f : A→ S, f (λ1m1 + · · ·+λeme) = λ1M +λ2
M
b2

a2 + · · ·+λe
M
be

ae.

• Let us see that f is a map, that is, if λ1m1 + · · ·+ λeme = μ1m1 + · · ·+ μeme,

then λ1M + λ2
M
b2

a2 + · · ·+ λe
M
be

ae = μ1M + μ2
M
b2

a2 + · · ·+ μe
M
be

ae. Note that

(λ1M + λ2
M
b2

a2 + · · ·+ λe
M
be

ae)m1 = λ1Mm1 + λ2
M
b2

a2m1 + · · ·+ λe
M
be

aem1 =
M(λ1m1 + · · ·+ λeme). Analogously, one shows that (μ1M + μ2

M
b2

a2 + · · ·+
μe

M
be

ae)m1 = M(μ1m1 + · · ·+μeme). By Lemma 11.10, as (λ1M+λ2
M
b2

a2 + · · ·+
λe

M
be

ae)m1 = (μ1M+μ2
M
b2

a2 + · · ·+μe
M
be

ae)m1, we deduce that λ1M+λ2
M
b2

a2 +
· · ·+λe

M
be

ae = μ1M + μ2
M
b2

a2 + · · ·+ μe
M
be

ae.

• Let us prove that it is injective. If f (λ1m1 + · · ·+λeme) = f (μ1m1 + · · ·+ μeme),
then f (λ1m1 + · · ·+λeme)m1 = f (μ1m1 + · · ·+ μeme)m1. Arguing as in the pre-

ceding paragraph, we get that M(λ1m1 + · · ·+ λeme) = M(μ1m1 + · · ·+ μeme).
As A is torsion free, we get that λ1m1 + · · ·+λeme = μ1m1 + · · ·+ μeme.

• The map f is surjective by definition and it is clearly a monoid morphism.

Hence f is a monoid isomorphism. ��
Recall that we used that every numerical semigroup is cancellative in order to

show that it was finitely presented. We will try to include this property in the list

of conditions we must impose to a monoid so that it is isomorphic to a numerical

semigroup.

The identity element is always an idempotent of any monoid. If the monoid is

cancellative, this is the only idempotent.

Lemma 11.12. The only idempotent of a cancellative monoid is its identity element.

Proof. Let A be a cancellative monoid. Let x be an idempotent of A. Hence 2x = x,

and thus x+ x+0 = x+0. By cancelling in both sides x, we get that x = 0. ��
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As a consequence of this result and Proposition 11.11, we obtain an alternative

characterization of monoids isomorphic to numerical semigroups.

Proposition 11.13. A monoid is isomorphic to a numerical semigroup if and only if
it is finitely generated, quasi-Archimedean, cancellative and torsion free.

These conditions can be slightly modified and still get the same result. In partic-

ular, we are going to perturb the cancellative property, and substitute it by a lighter

condition.

We say that a monoid A is weakly cancellative if given x,y ∈ A such that x +
a = y + a for all a ∈ A \ {0}, one gets that x = y. Every cancellative monoid is

weakly cancellative. The converse does not hold in general, though under certain

circumstances it does.

Lemma 11.14. Let A be a quasi-Archimedean weakly cancellative finitely generated
monoid. Then A is cancellative.

Proof. Let {m1, . . . ,me} be a system of generators of A such that si = 0 for all

i ∈ {1, . . . ,e} (if si = 0 for some i, then it is not needed in the system of generators

and thus we can remove it). Assume that there exist s, t,x ∈ A such that s+x = t +x
and s = t. As A is quasi-Archimedean, for all i ∈ {1, . . . ,e} there exist a positive

integer ki and yi ∈ A such that kimi = x + yi. Hence, s + (a1m1 + · · ·+ aeme) =
t +(a1m1 + · · ·+aeme), forces (a1, . . . ,ae)≤ (k1, . . . ,ke). Thus the set

M = Maximals≤{(a1, . . . ,ae) ∈ Ne |
s+(a1m1 + · · ·+aeme) = t +(a1m1 + · · ·+aeme)}

is finite. If (d1, . . . ,de) ∈M, then s+(d1m1 + · · ·+deme) = t +(d1m1 + · · ·+deme)
and s+(d1m1 + · · ·+deme)+mi = t +(d1m1 + · · ·+deme)+mi for all i∈ {1, . . . ,e}.
This implies that s +(d1m1 + · · ·+ deme)+ a = t +(d1m1 + · · ·+ deme)+ a for all

a∈ A\{0}. By using now that A is weakly cancellative, we deduce that s+(d1m1 +
· · ·+deme) = t +(d1m1 + · · ·+deme), contradicting that (d1, . . . ,de) ∈M. ��

As a consequence of this result and Proposition 11.13, we deduce a new charac-

terization for the monoids that are isomorphic to a numerical semigroup.

Proposition 11.15. A monoid is isomorphic to a numerical semigroup if and only if
it is finitely generated, quasi-Archimedean, weakly cancellative and torsion free.

We still can modify the conditions imposed in the preceding propositions. Ob-

serve that any submonoid S of a numerical semigroup is a submonoid of N and

thus it is finitely generated (Corollary 2.8). This property does not hold for mon-

oids in general (see Exercise 2.15). A monoid fulfilling that any of its submonoids

is finitely generated is a hereditarily finitely generated monoid. Thus any numerical

semigroup is hereditarily finitely generated.

Lemma 11.16. Let A be a nontrivial monoid that is hereditarily finitely generated,
cancellative, torsion free and free of units. Then A is quasi-Archimedean.
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Proof. As A is free of units, 0 is not Archimedean (see the paragraph preceding

Lemma 11.7). Let x ∈ A \ {0} (we are assuming that A = {0}) and let y ∈ A. The

set H = {ax+by | a,b ∈ N\{0}}∪{0} is a submonoid of A, and thus it must be

finitely generated.

First we show that all the elements in X = {ax+ y | a ∈ N\{0}} are different.

Assume to the contrary that there exist a,b ∈ N\{0}, with for instance a < b, such

that ax + y = bx + y. As A is cancellative, this yields (b− a)x = 0 = (b− a)0,

and x = 0, contradicting that A is torsion free. In particular this implies that

{ax+ y | a ∈ N\{0}} must be infinite. By using that H is finitely generated and

that all the elements in X are different, we deduce that there exist an equality of the

form ax+ y = cx+dy with d > 1. By using again that A is cancellative, we get that

ax = cx +(d− 1)y. If c ≥ a, we obtain that (c− a)x +(d− 1)y = 0, contradicting

either that A is free of units (if c−a > 0) or that it is torsion free (if c = a; note that

d > 1). Hence c < a and consequently (a− c)x = (d−2)y+ y. This proves that x is

Archimedean. ��
This, together with Proposition 11.13 yields another characterization of those

monoids that are isomorphic to a numerical semigroup.

Proposition 11.17. A nontrivial monoid is isomorphic to a numerical semigroup if
and only if it is hereditarily finitely generated, cancellative, torsion free and free of
units.

By gathering all these characterizations, we obtain the following.

Theorem 11.18. Let A be a monoid. The following conditions are equivalent.

1) A is isomorphic to a numerical semigroup.
2) A is finitely generated, quasi-Archimedean, torsion free and with only one idem-

potent.
3) A is finitely generated, quasi-Archimedean, cancellative and torsion free.
4) A is finitely generated, quasi-Archimedean, weakly cancellative and torsion free.
5) A is hereditarily finitely generated, cancellative, torsion free and free of units.

3 N-monoids

We now relate numerical semigroups with a concept that has been well studied in

the semigroup literature.

Let S be a cancellative monoid. Define on S×S the following binary relation:

(a,b)∼ (c,d) if a+d = b+ c.

Note the similarity of this definition with that of the congruence used on a domain

to define its quotient field.

Proposition 11.19. Let S be a cancellative monoid and let ∼ be defined as above.
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1) The relation ∼ is a congruence.
2) (S×S)/∼ is a group.
3) S is isomorphic to a submonoid of (S×S)/∼.

Proof. Condition 1) is straightforward to prove. Clearly [(0,0)] is the identity el-

ement of the monoid (S×S)/ ∼. For [(a,b)] ∈ (S×S)/ ∼, [(a,b)] + [(b,a)] =
[(a+b,a+b)] = [(0,0)]. Hence every element has an inverse. This proves 2).

Define i : S → (S×S)/ ∼, i(a) = [(a,0)]. It is easy to see that i is a monoid

homomorphism. If i(a) = i(b), then [(a,0)] = [(b,0)], or equivalently, (a,0)∼ (b,0).
By definition this means that a+0 = b+0. Thus a = b, and i is injective. This shows

3) because S and im(i) are isomorphic monoids. ��
We will denote the group (S×S)/ ∼ by Q(S) and will call it the quotient group

of S.

Lemma 11.20. If two cancellative monoids are isomorphic, then so are their quo-
tient groups.

Proof. Let f : S→ T be a monoid isomorphism between the monoids S and T . Let

Q(S) and Q(T ) be the quotient groups of S and T , respectively. Recall that the map

i : T → Q(T ), t �→ [(t,0)] embeds T as a submonoid of Q(T ). Define g : Q(S)→
Q(T ) by g([(s1,s2)]) = i( f (s1))− i( f (s2)). Note that g([(s1,s2)]) = [( f (s1), f (s2))].
As [(s1,s2)] = [(r1,r2)] if and only if s1 + r2 = s2 + r1, and as f is a monoid iso-

morphism, this holds if and only if f (s1)+ f (r2) = f (s2)+ f (r1), or equivalently,

[( f (s1), f (s2))] = [( f (r1), f (r2))]. This proves that g is a map and it is injective.

Clearly, g is surjective because f is surjective. Finally g([(s1,s2)] + [(r1,r2)]) =
g([(s1 +r1,s2 +r2)]) = [( f (s1 +r1), f (s2 +r2))]. By using that f is a monoid homo-

morphism, this equals [( f (s1)+ f (r1), f (s2)+ f (r2))] = g([(s1,s2)])+g([(r1,r2)]).
��

As a consequence of Proposition 11.19 we obtain a nice characterization of can-

cellative monoids.

Corollary 11.21. A monoid is cancellative if and only if it is isomorphic to a sub-
monoid of a group.

An N-monoid is a cancellative monoid that is not a group and with at least an

Archimedean element. Next, we see how we can construct the set of all N-monoids.

This construction relies on the choice of a group and a map I fulfilling certain con-

ditions.

In this section and unless otherwise stated, G is a group and I : G×G→ N is a

map such that

P.1) I(g1,g2) = I(g2,g1) for all g1,g2 ∈ G,

P.2) I(g1,g2)+ I(g1 +g2,g3) = I(g2,g3)+ I(g1,g2 +g3) for all g1,g2,g3 ∈ G,

P.3) I(0,0) = 0.

These conditions will make sense soon, because this map behaves like a carry

operation. Next we see that I(0,g) = 0 for all g ∈ G.
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Lemma 11.22. I(0,g) = 0 for all g ∈ G.

Proof. Use P.2) with g1 = g2 = 0 and g3 = g. Then I(0,0) + I(0,g) = I(0,g) +
I(0,g). Hence I(0,g) = I(0,0), which is 0 by P.3). ��

If M is a monoid contained in a group H (and thus it is cancellative), then the set

{a−b | a,b ∈M } is a subgroup of H. The map

M×M
∼ → {a−b | a,b ∈M } , [(a,b)] �→ a−b

is a group isomorphism (note that a−b = c−d if and only if a+d = b+ c, which

means that [(a,b)] = [(c,d)]). So we will sometimes identify Q(M) with this set.

Proposition 11.23. The set Z×G is a group with the binary operation

(z1,g1)+I (z2,g2) = (z1 + z2 + I(g1,g2),g1 +g2).

Moreover, (N×G,+I) is a monoid and (Z×G,+I) is its quotient group.

Proof. By using P.1), P.2) and P.3), it is easy to see that +I is associative and com-

mutative, and also that (0,0) is the identity element in view of Lemma 11.22. More-

over, (z,g)+I (−z−I(g,−g),−g) = (0,0), and consequently (Z×G,+I) is a group.

Clearly N×G is closed under +I and (0,0) ∈ N×G. Thus it is a submonoid of

(Z×G,+I).
Now take (z,g)∈Z×G and let a,b∈N be such that a−b = z. Note that (a,0)+I

(−a,0) = (0,0). Hence (b,g)−I (a,0) = (b,g) +I (−a,0) = (b− a + I(0,g),g)
which by Lemma 11.22 equals (b− a,g) = (z,g). This implies that (Z×G,+I)
is the quotient group of (N×G,+I). ��

The following result is similar to Lemma 11.9.

Lemma 11.24. Let S be a monoid. Assume that S has a unit that is Archimedean.
Then S is a group.

Proof. Let u be a unit of S that is Archimedean. Assume that v ∈ S is such that

u+ v = 0. Let s ∈ S. As u is Archimedean, there exist a positive integer k and t ∈ S
such that ku = s+ t. Hence 0 = k0 = k(u+v) = ku+kv = s+ t +kv, which implies

that t + kv is the inverse of s. ��
If S is a cancellative monoid, then by Corollary 11.21, S is a submonoid of some

group G. Let a∈ S. Then it makes sense to write−a when we refer to the inverse of a
in G. Note also that if a+b = c for some a,b,c∈ S, then we can write a = c−b∈ S.

In particular, if a is a unit of S, then we can denote by −a its inverse.

Given (a,g) ∈ Z×G and n ∈ N, we will write for sake of simplicity n(a,g) for

(a,g)+I · · ·+I (a,g) (n times). If n is a negative integer, n(a,g) represents the inverse

of (−n)(a,g) in (Z×G,+I).
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Theorem 11.25. Let G be a group and let I : G×G → N be a map fulfilling con-
ditions P.1), P.2) and P.3). Then (N×G,+I) is an N-monoid. Moreover, every N-
monoid is of this form.

Proof. As (N×G,+I) is a submonoid of the group (Z×G,+I) (Proposition 11.23),

we have that (N×G,+I) is cancellative. Let us see that it is not a group. And for this,

we show that (1,0) has no inverse. If (1,0)+I (n,g) = (0,0) for some (n,g)∈N×G,

then (n + 1 + I(0,g),g) = (n + 1,g) = (0,0), which is impossible. Moreover, let

us see that (1,0) is an Archimedean element. By induction, it easily follows that

k(1,0) = (k,0), for any nonnegative integer k. Let (n,g) ∈ N×G. Then (n,g) +I
(0,−g) = (n + I(g,−g),0) = (n + I(g,−g))(1,0). This proves that (N×G,+I) is

an N-monoid.

Let S be an N-monoid, and let b be an Archimedean element of S. Define σb as

in page 157. By Lemma 11.4, S/σb is a group. This group will play the role of G in

our representation of S as (N×G,+I).
Let x ∈ S. As b is an Archimedean element, there exist k ∈ N \ {0} and y ∈

S such that kb = x + y. Assume that there exist l > k such that x− lb ∈ S. Then

(kb− x) + (x− lb) = (k− l)b ∈ S. And as l > k, (l− k)b also belongs to S. Thus

b + (k− l)b + (l − k− 1)b = 0, which implies that b is a unit of S. By Lemma

11.24, S is a group, contradicting that S is an N-monoid. Thus implies that the set

{n ∈ N | x−nb ∈ S} is finite. Hence it has a maximum, which we will denote by

kx.

We now prove that if xσby, then x+kyb = y+kxb. If xσby, then by Lemma 11.4,

(x + kyb)σb(y + kxb). By definition, there exist positive integers k and l such that

x+kyb+kb = y+kxb+ lb. If l > k, then x−(kx + l−k)b = y−kyb∈ S, contradicting

the maximality of kx. Analogously k cannot be greater than l, and consequently k = l.
By using that S is cancellative, we obtain that x+ kyb = y+ kxb.

In particular, the above paragraph implies that θ : S
σb
→ S, defined by θ([x]) =

x− kxb, is a map. Note that im(θ) = {s ∈ S | s−b ∈ S} (compare this with the

definition of Apéry set of an element in a numerical semigroup).

We see next that for any s ∈ S, there exists a unique (k,x) ∈ N× im(θ) such that

s = kb+ x (compare with Lemma 2.6). Clearly, s = ksb+(s− ksb), and this proves

the existence. For the uniqueness, assume that kb+x = lb+y for some k, l ∈N and

x,y ∈ im(θ). If l > k, then x− (l− k)b ∈ S, contradicting that x ∈ im(θ). A similar

contradiction occurs if l < k, whence k = l and as S is cancellative x = y.

Note that if x,y ∈ S, then (x + y)− (kx + ky)b ∈ S, which implies that kx+y ≥
kx + ky. Also, if [x] = [x′] and [y] = [y′] in S/σb, then as shown above, x + kx′b =
x′+ kxb, y+ ky′b = y′+ kyb and (x + y)+ kx′+y′b = (x′+ y′)+ kx+yb. It follows that

kx+y− kx− ky = kx′+y′ − kx′ − ky′ . Hence we can define the map I : S
σb
× S

σb
→ N

as I([x], [y]) = kx+y− kx− ky. Let us show that I fulfills Conditions P.1), P.2) and

P.3). The first condition follows trivially, and the second after an easy computation.

Observe that k0 = 0, since otherwise b would be a unit which we already know is

impossible. From this remark we easily obtain P.3).

Finally let us prove that S is isomorphic to (N× S
σb

,+I). The isomorphism is

defined by s �→ (k, [x]), with (k,x) the unique element in N× im(s) such that s =
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x+kb. As [x] = [s] and k = ks, this map can also be written as s �→ (ks, [s]). By using

this, it is easy to show that this map is a monoid isomorphism. ��
From the definition, it follows that every numerical semigroup is an N-monoid.

Now that we know how to construct all N-monoids, we focus on those that are

isomorphic to a numerical semigroup. That is, we see which conditions G and I
must fulfill so that (N×G,+I) is isomorphic to a numerical semigroup. First we see

that G must be cyclic and with finitely many elements.

Proposition 11.26. Let G be a group and let I be a map fulfilling P.1), P.2) and
P.3). If (N×G,+I) is isomorphic to a numerical semigroup, then G is a finite cyclic
group.

Proof. Note that the quotient group of a numerical semigroup is (isomorphic to) Z.

Hence if (N×G,+I) is isomorphic to a numerical semigroup, in view of Lemma

11.20 and Proposition 11.23, (Z×G,+I) is isomorphic to Z. As Z is cyclic, then

so is (Z×G,+I). Let (a,α) be a generator of (Z×G,+I). Then for every g ∈ G,

there exists k ∈ Z such that (0,g) = k(a,α). Hence g = kα . This proves that G is

generated by α and thus it is cyclic.

By Theorem 11.18, we know that (N×G,+I) is hereditarily finitely generated.

Let H = {(a,g) | a ∈ N\{0},g ∈ G}∪ {(0,0)}. Then H is a submonoid of (N×
G,+I) and every system of generators of H must contain the set {(1,g) | g ∈ G}.
This forces G to be finite. ��
Lemma 11.27. Let G be a finite group. Then the monoid (N×G,+I) is finitely gen-
erated.

Proof. Note that (a,g) = a(1,0)+I (0,g). Hence the set {(0,g) | g ∈ G}∪{(1,0)}
is a system of generators of (N×G,+I). ��

Next we see the condition I must fulfill so that (N×G,+I) is free of units.

Lemma 11.28. The monoid (N×G,+I) is free of units if and only if I(g,−g) = 0

for all g ∈ G\{0}.
Proof. If g is an element in G\{0} such that I(g,−g) = 0, then (0,g)+I (0,−g) =
(0,0). This implies that (0,g) is a nonzero unit and thus (N×G,+I) is not free of

units.

If (a,g),(b,h)∈N×G are such that (a,g)+I (b,h) = (0,0), then a+b+I(g,h) =
0 and g+h = 0. As a, b and I(g,h) are nonnegative integers, this implies that a = b =
I(g,h) = 0. Note that h =−g. By hypothesis this implies that g = 0 and consequently

(a,g) = (0,0). ��
The quasi-Archimedean property is ensured when G is finite and (N×G,+I) is

free of units.

Lemma 11.29. If G is finite and (N×G,+I) is free of units, then (N ×G,+I) is
quasi-Archimedean.
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Proof. Recall that (1,0) is an Archimedean element of (N×G,+I) (see the proof

of Theorem 11.25). Note also that if a, b and c are elements in a monoid such that

a = b+ c, and b is Archimedean, then so is a.

For every (a,g) ∈ N×G \ {(0,0)}, (a,g) = a(1,0) +I (0,g). Hence if a = 0,

then (a,g) is Archimedean. Thus assume that a = 0 (and consequently g = 0). As

G is finite, there exist a positive integer such that kg = 0. Hence −g = (k− 1)g.

Note that k(0,g) = (0,g)+I (k−1)(0,g) = (0,g)+I (b,−g) = (b+ I(g,−g),0) for

some nonnegative integer b. By Lemma 11.27, we know that I(g,−g) = 0 and thus

k(0,g) = (1,0)+I (c,0) for some nonnegative integer c. This implies that k(0,g) is

Archimedean. Therefore (0,g) is Archimedean. ��
Let G be a finite group. The order of an element g ∈ G is defined by o(g) =

min{k ∈ N\{0} | kg = 0}. Recall that if kg = 0 for some positive integer k, then

k≡ 0 mod o(g) (just divide k by o(g) and let r be the remainder of the division; then

rg = 0 and the minimality of o(g) forces r to be zero).

Lemma 11.30. Let G be a finite group. Then (Z×G,+I) is torsion free if and only
if ∑o(g)−1

i=1 I(g, ig) ≡ 0 mod o(g) for all g ∈ G\{0}.

Proof. Let g ∈ G\{0}. If ∑o(g)−1
i=1 I(g, ig) = o(g)a for some a ∈ N, then

o(g)(−a,g) = (−o(g)a+
o(g)−1

∑
i=1

I(g, ig),o(g)g) = (0,0),

which implies that (Z×G,+I) is not torsion free.

Assume that (Z×G,+I) is not torsion free. Then there exist (z,g) ∈ Z×G \
{(0,0)} and a positive integer k such that k(z,g) = (0,0). This implies that g = 0,

since k(z,0) = (kz,0) which is nonzero for z = 0. Hence(
kz+

o(g)−1

∑
i=1

I(g, ig),kg

)
= (0,0).

This leads to kg = 0 and thus there exist l ∈ N\{0} such that k = o(g)l. Rewriting

the first coordinate of the above equality, we get

o(g)lz+
o(g)l−1

∑
i=1

I(g, ig) = 0.

So

o(g)l = l
o(g)−1

∑
i=1

I(g, ig) = 0

and consequently
o(g)−1

∑
i=1

I(g, ig)≡ 0 mod o(g). ��
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Note that every submonoid of a torsion free group is torsion free. Thus by The-

orem 11.18, with this last lemma we already have all the ingredients to describe

the conditions we should impose on I and G so that (N×G,+I) is isomorphic to a

numerical semigroup.

Theorem 11.31. Let G be a finite cyclic group and let I : G×G → N be a map
fulfilling

P.1) I(g1,g2) = I(g2,g1) for all g1,g2 ∈ G,
P.2) I(g1,g2)+ I(g1 +g2,g3) = I(g2,g3)+ I(g1,g2 +g3) for all g1,g2,g3 ∈ G,
P.3) I(0,0) = 0,
P.4) I(g,−g) = 0 for all g ∈ G\{0},
P.5) ∑o(g)−1

i=1 I(g, ig) ≡ 0 mod o(g) for all g ∈ G\{0}.
Then (N×G,+I) is isomorphic to a numerical semigroup. Moreover, every numer-
ical semigroup is isomorphic to a monoid of this form.

Proof. We know by Theorem 11.25 that (N×G,+I) is an N-monoid. Hence it is

cancellative. Lemma 11.27 tells us that it is finitely generated. As a consequence

of Lemmas 11.28 and 11.29, this monoid is quasi-Archimedean. Lemma 11.30 as-

serts that it is torsion free. Hence by Theorem 11.18 it is isomorphic to a numerical

semigroup.

Every numerical semigroup S is an N-monoid and by Theorem 11.25 there exist

a group G and I fulfilling P.1), P.2) and P.3) such that S is isomorphic to (N×G,+I).
By Proposition 11.26, G is cyclic with finitely many elements. Lemmas 11.28 and

11.29 ensure that Conditions P.4) and P.5) hold. ��

Exercises

Exercise 11.1 ([80]). Let S be a finitely generated monoid. Prove that S is cancella-

tive and torsion free if and only if it is isomorphic to a submonoid of (Zk,+) for

some positive integer k. (Hint: As S is finitely generated, S is isomorphic to Nn/σ
for some congruence σ over N. The set {a−b | (a,b) ∈ σ } is a subgroup of Zn,

and the columns of its defining equations generate a submonoid isomorphic to S.)

Exercise 11.2 ([80]). Let S be a finitely generated monoid. Prove that S is cancella-

tive, torsion free and free of units if and only if it is isomorphic to a submonoid of

(Nk,+) for some positive integer k.

Exercise 11.3 ([80]). Let S be the monoid{
(x,y) ∈ Z2

∣∣ x > 0
}∪{(0,y) ∈ Z2

∣∣ y≥ 0
}

.

Prove that S is cancellative, torsion free and free of units. Show that there is no k ∈N

such that S is isomorphic to a submonoid of Nk.
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Exercise 11.4. Let S = ((1,1)+N2)∪{(0,0)}. Prove that S is quasi-Archimedean,

torsion free, cancellative, free of units, with only one idempotent, and it is not iso-

morphic to any numerical semigroup.

Exercise 11.5. Let S be a finitely generated submonoid of Nk for some positive

integer k. Prove that S is isomorphic to a numerical semigroup if and only if it is

quasi-Archimedean (that is, numerical semigroups are the only quasi-Archimedean

affine semigroups).

Exercise 11.6. Let S be a nontrivial submonoid of Nk for some positive integer k.

Prove that S is isomorphic to a numerical semigroup if and only if it is hereditarily

finitely generated.

Exercise 11.7. Find a finitely generated monoid and a submonoid of this monoid

that it is not finitely generated.

Exercise 11.8 ([75]). Let X = {x1, . . . ,xn} and let σ be a congruence over Free(X).
Prove that

Free(X)
σ is hereditarily finitely generated if and only if for all i, j ∈

{1, . . . ,n} with i = j, there exists an element in σ \Δ(Free(X)) of the form

(ai j xi +(bi j +1)x j,ci j xi + x j).

Exercise 11.9. Find a cancellative, free of units, hereditarily finitely generated mon-

oid that is not torsion free.

Exercise 11.10. Let X be a set and let P(X) be the set of subsets of X . Prove that

(P(X),∩) is a torsion free monoid that in general is not cancellative.

Exercise 11.11 ([80]). Prove that every finitely generated monoid is the union of

finitely many Archimedean semigroups. (Hint: For x,y ∈ S define xNy if there ex-

ist z ∈ S and n ∈ N such that nx = y + z. This is an equivalence relation and its

equivalence classes are the Archimedean semigroups we are looking for.)
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