
Chapter 7
Topological Vulnerability Analysis

Sushil Jajodia and Steven Noel

Traditionally, network administrators rely on labor-intensive processes for tracking network con-
figurations and vulnerabilities. This requires a great deal of expertise, and is error prone because
of the complexity of networks and associated security data. The interdependencies of network
vulnerabilities make traditional point-wise vulnerability analysis inadequate. We describe a Topo-
logical Vulnerability Analysis (TVA) approach that analyzes vulnerability dependencies and shows
all possible attack paths into a network. From models of the network vulnerabilities and potential
attacker exploits, we compute attack graphs that convey the impact of individual and combined
vulnerabilities on overall security. TVA finds potential paths of vulnerability through a network,
showing exactly how attackers may penetrate a network. From this, we identify key vulnerabilities
and provide strategies for protection of critical network assets. TVA provides predictive context
for network hardening, intrusion detection deployment and alarm correlation, and optimal attack
response. Further, it employs efficient algorithms that scale well to larger networks.

7.1 Introduction

By their very nature, security concerns on networks are highly interdependent. Each machine’s
susceptibility to attack depends on the vulnerabilities of the other machines in the network. At-
tackers can combine vulnerabilities in unexpected ways, allowing them to incrementally penetrate
a network and compromise critical systems. To protect our critical infrastructure networks, we
must understand not only our individual system vulnerabilities, but also their interdependencies.

While we cannot predict the origin and timing of attacks, we can reduce their impact by know-
ing the possible attack paths through our networks. We need to transform raw security data into
roadmaps that let us proactively prepare for attacks, manage vulnerability risks, and have real-time
situational awareness. We cannot rely on manual processes and mental models. We need automated
tools to analyze and visualize vulnerability dependencies and attack paths, so we can understand
our overall security posture, providing context over the full security life cycle.

Our approach to such full-context security is called Topological Vulnerability Analysis (TVA)
[1][2]. TVA monitors the state of network assets, maintains models of network vulnerabilities and
residual risk, and combines these to produce models that convey the impact of individual and

Center for Secure Information Systems, George Mason University, Fairfax, VA 22030-4444, USA,
e-mail: {jajodia, snoel}@gmu.edu

S. Jajodia et al., (eds.), Cyber Situational Awareness, 139
Advances in Information Security 46, DOI 10.1007/978-1-4419-0140-8 7,
c© Springer Science+Business Media, LLC 2010



140 Jajodia and Noel

combined vulnerabilities on overall security posture. The central product of this tool is an attack
graph showing all possible ways an attacker can penetrate the network.

Our TVA approach provides a unique new capability, transforming raw security data into a
roadmap that lets one proactively prepare for attacks, manage vulnerability risks, and have real-
time situational awareness. It supports both offensive (e.g., penetration testing) and defensive (e.g.,
network hardening) applications. The mapping of attack paths through a network via TVA provides
a concrete understanding of how individual and combined vulnerabilities impact overall network
security. For example, we can

• Compare possible expenditures of resources to determine which will have the greatest impact
on overall security

• Determine how much a new vulnerability will impact overall security
• Determine whether risk-mitigating efforts have a significant impact on overall security
• Analyze how changes to individual machines may increase overall risk to the enterprise

We have implemented our approach as a security tool that transforms raw security data into
a model of all possible network attack paths. In developing this tool, we have met key technical
challenges, including the design of appropriate models, efficient model population, effective visual-
izations and decision support tools, and the development of scalable mathematical representations
and algorithms. The result is a working software tool that offers truly unique capabilities.

In the design of computers and networks, security is often not given adequate priority. This
is compounded by the fact that each machine’s exposure to attack depends on the vulnerabilities
of the other machines in the network. Attackers can combine vulnerabilities in unexpected ways,
allowing them to incrementally penetrate a network and compromise critical systems.

To protect critical networks, we must understand not only individual system vulnerabilities,
but also their interdependencies. TVA places vulnerabilities and their protective measures within
the context of overall network security by modeling their interdependencies via attack graphs. The
analysis of attack graphs provides alternative sets of protective measures that guarantee safety of
critical systems. Through this unique new capability, administrators are able to determine the best
sets of protective measures that should be applied in their environment.

Still, we must understand that not all attacks can be averted in advance, and there must usually
remain some residual vulnerability even after reasonable protective measures have been applied.
We then rely on the detect phase to identify actual attack instances. But the detection process needs
to be tied to residual vulnerabilities, especially ones that lie on paths to critical network resources
as discovered by TVA.

Once attacks are detected, comprehensive capabilities are needed to react to them. TVA can
reduce the impact of attacks by providing knowledge of the possible vulnerability paths through
the network. TVA attack graphs can be used to correlate and aggregate network attack events,
across platforms as well as across the network. These attack graphs also provide the necessary
context for optimal response to attacks.

The next section shows the architecture of our TVA tool. Section 7.3 illustrates the TVA ap-
proach through a simple example. Section 7.4 describes the process for building models of the
security environment for TVA, for generating multi-step attack graphs. Section 7.5 explains the
visualization and analysis of TVA attack graphs. Section 7.6 examines scalability of TVA. Section
7.7 reviews related work, and Section 7.8 summarizes our approach.

7.2 System Architecture

Because of vulnerability interdependencies across networks, a topological attack graph approach
is needed for defense against multi-step attacks. The traditional approach that treats network data
and events in isolation without the context provided by attack graphs is clearly insufficient. TVA



7 Topological Vulnerability Analysis 141

combines vulnerabilities in ways that real attackers might do, discovering all attack paths through
a network.

Figure 7.1 shows the architecture of our software tool for TVA attack graph analysis. Net-
work Capture builds a model of the network, in terms of relevant security attributes. Vulnerability
Database represents a comprehensive repository of reported vulnerabilities, with each vulnerabil-
ity record listing the affected software (and hardware).

Fig. 7.1 Topological Vulnerability Analysis (TVA). Data from network scans and known vulner-
abilities are combined into a model of the network security environment. Multi-step attack graph
for this environment provides context for overall network security.

The Exploit Specifications encode how each vulnerability may be exploited (preconditions)
and the result of its exploitation (postconditions). Network Capture represents data collection for a
network to be defended, in terms of corresponding elements in Vulnerability Reporting and Exploit
Specifications. Together, all these inputs are used to build an Environment Model for multi-step
attack graph simulation.

In particular, the Graph Engine uses the Environment Model to simulate multi-step attacks
through the network, for a given user-defined Attack Scenario. This engine analyzes vulnerabil-
ity dependencies, matching exploit preconditions and postconditions, thus generating all possible
paths through the network for a given attack scenario. The scenario may define particular starting
and/or ending points for the attack, so that the graph is constrained to lie between them, or may be
completely unconstrained (all possible starting and ending points).

The TVA tool provides sophisticated capabilities for interactive Visual Analysis of attack graphs
[3]. It also computes Optimal Counter Measures, e.g., minimum number of network changes to
thwart the attack scenario [4]. TVA attack graphs can also support proactive planning for optimal
responses to attacks, based on known paths of residual vulnerability through the network. For



142 Jajodia and Noel

example, attack graphs can guide the placement of intrusion detection sensors to cover all attack
paths, while minimizing sensors redundancy [5].

TVA attack graphs can filter false intrusion alarms, based on known paths of residual vulner-
ability. They also provide the context for correlating isolated alarms as part of a larger multi-step
attack penetration [6]. The attack graph shows the next possible vulnerabilities that could be ex-
ploited by an attacker. This in turn supports optimal planning and response against attacks, while
minimizing effects of false alarms and attacker misdirection.

As shown in Figure 7.1, our TVA tool integrates with vulnerability scanners Nessus [7], Retina
[8], and FoundScan [9] for populating its network model. TVA processes data from the Sidewinder
firewall [10] to capture network connectivity to vulnerable host services. TVA also integrates with
host-based asset inventory technology, such as Centennial Discovery [11] and Symantec Altiris
[12].

TVA matches the network model against a database of reported vulnerabilities. There are a
number of such vulnerability databases, maintained by the government, commercial companies,
and the security community. Examples include NIST’s National Vulnerability Database (NVD)
[13], the Bugtraq security database [14], Symantec DeepSight [15], the Open Source Vulnerability
Database (OSVDB) [16], and the Common Vulnerabilities and Exposure (CVE) referencing stan-
dard [17]. We can thus leverage a storehouse of knowledge gathered by security researchers around
the world, rather than being limited to vulnerabilities detected by a single tool like Nessus.

7.3 Illustrative Example

In Figure 7.2, a network is separated from the Internet by a firewall. The network is divided into 3
subnets, with one host in each subnet: a DMZ web server, an internal client, and an internal server.
We wish to generate an attack graph showing whether an attacker can compromise the internal
server from the Internet.

The DMZ web server is running Microsoft Windows Server, with Internet Information Ser-
vices (IIS), Apache/MySQL/PHP, and Tomcat servlets. The client is running Microsoft Windows
XP, client security software, an office productivity suite, and other utilities. The internal server
is running Apache/ MySQL/PHP, the Symantec Discovery asset inventory server, and Altiris In-
ventory Solution with associated software (e.g., IIS, Microsoft SQL Server). The Altiris Agent is
deployed on each internal machine to collect asset inventory data.

The firewall blocks direct access to the internal server and client subnets from the Internet.
Thus, from the outside, network vulnerability scanners such as Nessus are unable to detect any
vulnerabilities on the internal server and client. In fact, if the firewall has network address transla-
tion (NAT) enabled, Nessus cannot even discover the existence of machines on these 2 subnets.

From the outside of the firewall, the only machine exposed is the DMZ server. In particular, the
firewall blocks all traffic except HTTP to the DMZ server’s TCP port 80. From behind the firewall,
Nessus shows a variety of vulnerabilities on the DMZ server. But from the Internet, only the web
server vulnerability is exposed. A Nessus scan from the DMZ to the internal subnets identifies any
internal vulnerabilities permitted through the firewall. In our network, MySQL traffic is permitted
between the DMZ web server and the internal server, and two exposed MySQL vulnerabilities
allow an attacker to access the internal server (from the DMZ web server).

The question is whether an attacker can compromise the internal server from the Internet. Fig-
ure 7.3 shows the resulting attack graph for this network, using a TVA model populated by Nessus
scans alone. This shows that an attacker starting on the Internet can first penetrate through the
firewall and compromise the DMZ server, exploiting a vulnerability on its web server installation.
Then, from the DMZ server, the attacker can access the internal server via exploitation of the two
vulnerabilities.

A Nessus scan from the Internet would reveal no vulnerabilities on the internal server or client,
so that there is no direct attack from the Internet to the internal machines. Because the firewall



7 Topological Vulnerability Analysis 143

Fig. 7.2 Example network. Firewall is intended to protect network from Internet attackers.

blocks traffic originating from the server subnet to the client subnet, and blocks all traffic from the
DMZ to the client subnet, there is no attack path to the client at all. That is, a Nessus scan from
the DMZ to the client reveals no vulnerabilities. In this case, a Nessus scan of the client within its
own subnet (no intervening firewalls) detects no vulnerabilities (or even open ports), because of
the client’s personal firewall (part of the security suite).

We then augment the Nessus-based model, using software inventory data from Altiris. In par-
ticular, we compare products and versions from Altiris against a vulnerability database to deter-
mine the vulnerabilities associated with each application. For Microsoft products, this correlation
process involves an extra step. We first determine how many vulnerabilities are associated with
the Microsoft product and version installed, and then compare the Microsoft patches and hotfixes
installed (collected by Altiris). This determines which Microsoft vulnerabilities are unpatched.

So, for example, while there are almost 200 vulnerabilities associated with Microsoft Windows
XP SP2, many of the older vulnerabilities are patched on the client machine. On the other hand, no
Microsoft hotfixes are applied on the client for Microsoft Office components after Office SP2. Thus
all of the dozens of vulnerabilities associated with that version of Microsoft Office are relevant to
the client.

These client-side vulnerabilities are associated with software that has no network service run-
ning. Still, these vulnerabilities represent vectors by which an attacker might obtain access to the
client machine. Significant numbers of vulnerabilities are associated with web browsers and plug-
ins. The typical scenario for these increasingly widespread vulnerabilities is that a user running
a vulnerable web browser or plug-in visits a web site with malicious content that exploits the



144 Jajodia and Noel

Fig. 7.3 Attack graph from internet attacker to internal server. The network model is populated
from Nessus vulnerability scans.

client-side vulnerability. Another important class of vulnerabilities is associated with document
processing applications, e.g., infected documents via e-mail.

Figure 7.4 shows the attack graph augmented with Altiris data. This shows that it is actually
possible to attack the client directly from the Internet, via 12 different client-side vulnerabilities.
Strictly speaking, the client needs to make an outbound connection (e.g., web site visit) to a com-
promised server. But the firewall allows this, so it is correct to model the server as the attacker and
the client as the victim. The attacker on the client can then compromise the internal server, through
a firewall hole allowing access from client to server.

This example illustrates the importance of accounting for such client-side vulnerabilities. Ser-
vices on an internal server would typically be exposed to internal clients, and may be vulnerable.
In this case, our augmented model has uncovered attack paths that would have otherwise been
undetected by a vulnerability scanner.



7 Topological Vulnerability Analysis 145

Fig. 7.4 Attack graph augmented with Altiris data. The host-based asset inventory uncovers addi-
tional client-side vulnerabilities.

Our attack graphs show how hosts on a network can be exploited through multiple steps, even
when the attacker cannot access them directly. It is not directly possible to compromise the internal
server from the outside because of the policy enforced by the firewall. But TVA shows that the
attack goal can be reached indirectly, through two different attack paths. While it may be possible
for an experienced analyst to find such paths manually for a small network, for enterprise networks
an automated tool is needed.

7.4 Network Attack Modeling

In TVA, the environment model includes aspects of the network configuration relevant to attack
penetration, as well as a set of potential attacker exploits that match attributes of the configuration.
The TVA approach can apply to many different types of attack models (even non-cyber models) as
long as a common schema is employed across the model.



146 Jajodia and Noel

Typically, we model a network as machines and collections of machines into protection do-
mains. Protection domains capture the idea that the set of machines in a domain have (implicitly)
unrestricted access to one another’s vulnerable services. A machine may include attributes for mod-
eling network attack penetration, such as operating system, application programs, and connections
to vulnerable services.

A connection describes how a machine connects to potentially vulnerable services across the
network, to ports on other machines or to its own ports. This mirrors the Transmission Control
Protocol/Internet Protocol (TCP/IP) reference model, in which a layered connectivity structure
represents the various network architectures and protocols [18].

To keep pace with emerging threats, we continually monitor sources of reported vulnerabil-
ities, and add those to our database of modeled TVA exploits. We model an attacker exploit in
terms of preconditions and postconditions, for generic attacker and victim machines, which are
subsequently mapped to the target network.

The detection of a host vulnerability (e.g., via Nessus) represents a precondition for a corre-
sponding TVA modeled exploit. In reality, the vulnerability exists because of a particular combina-
tion of software components. A detected vulnerability is thus a convenient higher level abstraction,
in comparison to the combination of components that causes it. There are usually many possible
software components and configurations that can cause a particular vulnerability.

We can thus model vulnerable software components themselves in TVA. In particular, host-
based asset management solutions like Centennial Discovery and Symantec Altiris collect specific
information such as operating system, service packs, and installed software through on-host agents.
Many exploits work only with specific versions of operating systems and/or applications, and vul-
nerabilities can be removed by applying the appropriate patches.

To keep TVA exploits continually updated as new vulnerabilities are reported, we may lever-
age the component-to-vulnerability mapping information provided by Symantec DeepSight. Also,
while TVA incorporates exploits against known vulnerabilities into its analysis, it is a general mod-
eling approach that can also accommodate unknown vulnerabilities. Anything that can be described
in terms of preconditions and postconditions can be included in the model. Also, tools such as Nes-
sus generate many alerts that are merely informational, i.e., irrelevant to network penetration. We
carefully exclude these from our database of modeled exploits.

One important class of vulnerabilities detected by our approach is client applications. Client-
side vulnerabilities have a major impact on enterprise network security posture, a trend that will no
doubt continue. For example, web applications (an important source of client-side vulnerabilities)
represent about 60% of vulnerabilities documented in 2007 [19].

In our approach, the correctness of attack graphs depends on the quality of the input datasets.
The network scanning tools must have a complete and current database of detected software and/or
vulnerabilities. Standardization efforts such as Security Content Automation Protocol (SCAP) [20]
help facilitate the management of mapping data between asset inventory and vulnerabilities. Oth-
erwise, each tool may use its own naming conventions. Within SCAP, the Common Platform Enu-
meration (CPE) [21] provides standard naming of operating systems and applications, and CVE
provides mappings to CPE for vulnerable software. The OVAL Language [22] standardizes the
vulnerability assessment process and results. Adoption of such standards among tool vendors will
greatly facilitate the building of attack models for TVA.

The purpose of modeling network configuration in TVA is to support preconditions of modeled
attacker exploits. Machines are explicitly included in the model only if they offer services over the
network that can be exploited. The effects of other network devices such as routers and firewalls is
captured implicitly, in the way that connectivity is modeled at the various network layers, i.e., in
the way that they provide/restrict connectivity to vulnerable services on other machines.

For remote (versus host-based) scanners such as Nessus, Retina, and FoundScan, we can cap-
ture the implicit effects of devices such as firewalls by scanning from different network vantage
points, targeting hosts through the firewall. We can then combine multiple scans from various net-
work locations, building a complete map of connectivity to vulnerable services throughout the
network. Alternatively, we can analyze firewall rules directly, adding the resulting vulnerable con-
nections to the model, eliminating the need for scanning through firewalls.



7 Topological Vulnerability Analysis 147

7.5 Analysis and Visualization

Based on a given attack scenario, the attack graph may be constrained by specific starting and
ending points. The scenario may also be less constrained, such as finding all possible attack starts
leading to one or more goals, or finding all possible paths from particular starting points. For
example, one may wish to know how a particular critical system can be compromised from all
possible starting points. Or, one may want to know all systems that could be compromised from
a particular starting point, or even from all possible starting points. Our TVA tool supports each
combination of specified/unspecified attack start/goal.

In their raw form, attack graphs can be much too complex for easy understanding. Figure 7.5
is an example of such a raw attack graph, for a network of only 20 hosts in four subnets. Computa-
tional complexity for this graph is quadratic in the number of hosts, and we compute it in a fraction
of a second. Still, it is difficult to for an analyst to understand its complexity. To help manage this,
we aggregate attack graphs, providing better situational awareness at higher levels of abstraction.
We define multiple levels of abstraction by recursively aggregating elements from one level to the
next, forming a hierarchy of abstraction levels.

Figure 7.6 illustrates our hierarchy of attack graph abstractions. From the bottom, the precondi-
tions or postconditions for an exploit are aggregated into a condition set. This provides the higher-
level viewpoint that exploits depend on one another, without showing the particular conditions that
cause the dependency.

Sets of conditions for a machine are aggregated into a machine abstraction, so that one can
consider a machine without knowing its particular conditions. Exploits, with their preconditions
and postconditions, are aggregated if they involve the same pair of attacker/victim machines. This
shows that there are exploits from one machine to another, while hiding the details about them.

Fig. 7.5 Raw attack graph. This graph is computed quickly, but cannot be quickly understood.

An important high-level abstraction in TVA is the protection domain, which represents a set
of machines that have full access to one another’s vulnerabilities. In general, connectivity can be



148 Jajodia and Noel

restricted across a network through a variety of mechanisms, such as firewalls, trust relationships,
etc. But within a protection domain, implicitly there are no connectivity limitations among ma-
chines. Thus all of a machine’s vulnerabilities are potentially exploitable from anywhere within
the protection domain.

In a raw non-aggregated form, the attack graph is fully connected within a protection domain.
Through this implicit full connectivity, we employ a much more efficient representation. The ma-
chines in a domain are listed, along with exploits against each of their vulnerabilities. Then implic-
itly, once an attacker takes control of a machine within a protection domain, he can exploit all vul-
nerabilities on machines within it. In this way, we avoid explicitly listing every n2 (fully-connected)
exploit dependency within the protection domain. Thus, within each domain, complexity is linear
in the number of hosts.

Same Exploit 
(Pre or Post)

Connected 
Subgraph

Exploit

Exploit
Set

Machine

Machine-
Exploit Set

Condition

Condition
Set

Protection
Domain

Protection
Domain Set

Same
Machine

Connected
Subgraph Machine/

Exploit
Clique

Same
Attacker/Victim
Machines

Among
Machine Set

Among
Exploit Set

Higher-Level
Abstractions

Lower-Level
Abstractions

Fig. 7.6 Levels of attack graph aggregation. Lower-level details are aggregated into progressively
summarized sets.

Figure 7.7 demonstrates the effectiveness of our graph aggregation approach. This is an attack
graph for a network of six subnets, with 150 hosts. In its raw form, this attack graph is actually
much more complex than Figure 7.5. But through our graph aggregation, the flow of the attack
paths is clear. Individual machines appear within protection domains, and are visible when a do-
main is expanded. Graph edges from one machine to another represent the set of exploits from
attacker to victim machine. Graph edges between domains are aggregated exploit sets between
domain pairs.

Our TVA software tool includes a full-featured attack graph visualization interface. In this
interface, a high-level view clearly displays attack relationships among protection domains, which



7 Topological Vulnerability Analysis 149

can be opened individually or in groups for deeper views of attack properties and relationships. In
this process, no graph information is lost; one has merely to expand a folder to acquire information
at a lower level.

A complete listing of exploits and associated details for any selected component is available
at all times. This supports in-depth analysis of exploit details, while overall topology and network
relationships are kept simple and understandable within the main graph view.

Fig. 7.7 Aggregated attack graph. This is much easier to understand overall attack flow.

Our TVA tool also emulates the hardening of machines and exploitable vulnerabilities to study
the effects of remediation and what-if scenarios. Exploring the attack graph, the analyst is often
faced with multiple options for remediation. This involves choosing a machine or set of machines
to protect (harden), or identifying specific exploits to protect against.

We display the attack graph effects that occur when a specific machine or protection domain is
hardened or when a specific exploit is neutralized. Hardened elements are maintained in a log, e.g.,
for reporting. The TVA tool also generates recommendations automatically, i.e., first layer (from
start), last layer (from goal), and minimum set that that separates start from goal.

To aid user navigation, the TVA tool maintains a global overview of the entire attack graph at
all times, which can be used to pan the main graph view. The tool also has a graphical (tree) attack
dictionary of all graph elements. The various graph views are linked, so that selecting an element
in one view cause it to be selected in all view. A variety of toolbars are available for commonly
used tools. This includes a suite of interactive layout tools, with manual repositioning as well as
full-scale layout algorithms, continuously available to restructure the display.

7.6 Scalability

For computing attack graphs for larger networks, we need scalable mathematical representations
and algorithms. We assume the attacker’s control over the network increases monotonically over
time. This corresponds to the conservative assumption that once an attacker gains control of a
network resource, there is no need to relinquish it to further advance the attack.



150 Jajodia and Noel

Fig. 7.8 Attack graph visualization. Supports graph navigation with high-level overviews and de-
tail drilldowns.

Under this monotonicity, it is sufficient to represent the dependencies among exploits, rather
than explicitly enumerating every sequence of exploits [23]. The resulting exploit-dependency at-
tack graphs grow quadratically rather than exponentially [24]. In particular, worst-case complexity
for n network hosts is O(n2) By grouping hosts into protection domains, complexity is reduced
to O(n) within each domain. In terms of the database of potential attacker exploits, complexity is
O(e), for e exploits.

Figure 7.9 shows attack graph computation times for networks of various sizes. In each case, a
subnet contains 200 hosts, and each host has 5 vulnerabilities. Each subnet has incoming vulnerable
connections from 2 other subnets, and symmetrically, outgoing vulnerable connections to 2 other
subnets. This is a ring topology, in which the number of network connections grows linearly with
the number of subnets.

From one subnet to another, there are 500 connections to vulnerabilities in the victim subnet.
Thus there are 2 * 500=1,000 incoming and 2 * 500=1,000 outgoing vulnerable connections (a
grand total of 2,000) for each subnet. Computation times (total run time in seconds) are based on
increasing numbers of subnets, from 20 subnets (4,000 hosts) to 200 subnets (40,000 hosts). Run
times are for a quad-core Intel Xeon CPU at 1.86 GHz, with 4 GB RAM.

In this experiment, overall network size (number of vulnerable connections) grows linearly
with the number of subnets (and hosts). This clearly shows how graph generation time depends
proportionally on the size of the input network. This excludes any time for generating the input
model (network and exploits) itself, although this has the same worse-case complexity, and these
can be pre-computed.

Graph visual layout performance is a separate issue, and is not included in the execution times
of Figure 7.9. For example, Figure 7.10 shows a layout of the 20-subnet case (4,000 hosts) of Figure
7.9. Computing this layout only a few seconds, but computing layout for the 100-subnets case
(20,000 hosts) takes 14 minutes. But in all cases, once the initial layout is computed, performance
of user interaction (repositioning, drilldown, etc.) is immediate.

Visual layout computation is needed for a cyber view of network attack graphs. Such layout
induces spatial coordinates onto an abstract information graph. But in some situations, understand-
ing the actual physical location of attacks may be important. We can embed the attack graph in
a geo-spatial visualization, as illustrated in Figure 7.11. When spatial coordinates are given, no



7 Topological Vulnerability Analysis 151

0

8

16

24

Number of Subnets

Co
m

pu
te

 T
im

e 
(s

ec
on

ds
)

40,000
Hosts

Fig. 7.9 Computation time for attack graph generation. Network complexity grows linearly with
the number of subnets. Attack graph generation time is proportional to the size of the network.

Fig. 7.10 Attack graph layout solution. For this 20-subnet case (4,000 hosts), graph visual layout
is computed in only a few seconds.



152 Jajodia and Noel

additional graph layout computation is needed. In such cases, visualizing complex attack graphs is
much faster than for abstract cyber views.

Fig. 7.11 Geo-spatial attack graph visualization. When spatial coordinates are given, computa-
tional requirements are reduced.

7.7 Related Work

In early attack graph formalisms, algorithmic complexity is exponential [25][26][27] [28] because
paths are explicitly enumerated. Under reasonable assumptions attack graph analysis can be for-
mulated as monotonic logic, making it unnecessary to explicitly enumerate states. This leads to
polynomial rather than exponential complexity [29]. Our protection domain abstraction reduces
complexity further, to linear within each domain [30]. Complexity can be further reduced based on
host configuration regularities [31].

Attack graph research has largely focused on scalability, with relatively little work on aspects
of model population. Notable exceptions include [18][32][33], although these are more theoretical
frameworks than practical model population. Commercial capabilities for attack graph analysis
remain limited, especially in the area of visualization for large-scale graphs [34][35]. A review of
attack graph research circa 2005 is given in [36].

7.8 Summary

TVA shows paths of vulnerability allowing attackers to penetrate through a network. It identifies
critical vulnerabilities and provides strategies for protection of critical network assets. This allows



7 Topological Vulnerability Analysis 153

us to harden networks before attacks occur, and handle intrusion detection more effectively, and
respond appropriately to attacks.

TVA captures the network configuration, including software, their vulnerabilities, and con-
nectivity to vulnerable services. It then matches the network configuration against a database of
modeled attacker exploits for simulating multi-step attack penetration.

During simulation, the attack graph can be constrained according to user-defined attack sce-
narios. From the resulting attack graphs, TVA computes recommendations for optimal network
hardening. It also provides sophisticated visualization capabilities for interactive attack graph ex-
ploration and what-if analysis. TVA employs algorithms with worst-case quadratic complexity in
the number of network hosts.

Further, TVA attack graphs then provide the necessary context for correlating and prioritizing
intrusion alerts, based on known paths of vulnerability through the network. Overall, TVA offers
powerful capabilities for proactive network defense, transforming raw security data into actionable
intelligence.

Acknowledgements

This material is based upon work supported by Homeland Security Advanced Research Projects
Agency under the contract FA8750-05-C-0212 administered by the Air Force Research Labora-
tory/Rome; by Air Force Research Laboratory/Rome under the contract FA8750-06-C-0246; by
Federal Aviation Administration under the contract DTFAWA-08-F-GMU18; by Air Force Office
of Scientific Research under grant FA9550-07-1-0527 and FA9550-08-1-0157; and by the National
Science Foundation under grants CT-0716567, CT-0716323, and CT-0627493. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the sponsoring organizations.

References

[1] S. Jajodia, S. Noel, and B. O’Berry, “Topological Analysis of Network Attack Vulnerability,”
in Managing Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava, A.
Lazarevic (eds.), Kluwer Academic Publisher, 2005, pages 248-266.

[2] S. Jajodia, S. Noel, “Topological Vulnerability Analysis: A Powerful New Approach for Net-
work Attack Prevention, Detection, and Response,” in Algorithms, Architectures and Informa-
tion Systems Security (Indian Statistical Institute Platinum Jubilee Series), B. B. Bhattacharya,
S. Sur-Kolay, S. C. Nandy, A. Bagchi, eds., World Scientific, New Jersey, 2009, pages 285–305.

[3] S. Noel, M. Jacobs, P. Kalapa. S. Jajodia, “Multiple Coordinated Views for Network Attack
Graphs,” in IEEE Workshop on Visualization for Computer Security (VizSEC2005), Minneapo-
lis, MN, October, 2005, pages 99–106.

[4] L. Wang, S. Noel, S. Jajodia, “Minimum-Cost Network Hardening Using Attack Graphs,”
Computer Communications, 29(18), 2006, pages 3812–3824.

[5] S. Noel, S. Jajodia, “Optimal IDS Sensor Placement and Alert Prioritization Using Attack
Graphs,” Journal of Network and Systems Management, 16(3), 2008, pages 259–275.

[6] S. Noel, E. Robertson, S. Jajodia, “Correlating Intrusion Events and Building Attack Scenar-
ios through Attack Graph Distances,” in Proceedings of the 20th Annual Computer Security
Applications Conference (ACSAC), 2004, pages 350–359.

[7] R. Deraison, Nessus, http://www.nessus.org.
[8] eEye Digital Security, Retina Network Security Scanner, http://www.eeye.com/

html/Products/Retina/index.html.

http://www.nessus.org
http://www.eeye.com/html/Products/Retina/index.html
http://www.eeye.com/html/Products/Retina/index.html


154 Jajodia and Noel

[9] Foundstone, FoundScan Frequently Asked Questions, http://www.foundstone.com/
us/index.asp.

[10] Secure Computing, Sidewinder Firewall Device, http://www.securecomputing.
com/.

[11] Centennial Software, Discovery Asset Management, http://www.
centennial-software.com/.

[12] Symantec, Altiris, http://www.altiris.com/.
[13] NIST, National Vulnerability Database (NVD), http://nvd.nist.gov/.
[14] Security Focus, Bugtraq Vulnerabilities, http://www.securityfocus.com/

vulnerabilities.
[15] Symantec Corporation, Symantec DeepSight Threat Management System, https://tms.

symantec.com/Default.aspx.
[16] Open Source Vulnerability Database, http://osvdb.org/.
[17] MITRE Corporation, CVE - Common Vulnerabilities and Exposures, http://cve.

mitre.org/.
[18] R. Ritchey, B. O’Berry, S. Noel, “Representing TCP/IP Connectivity for Topological Anal-

ysis of Network Security,” in Proceedings of the 18th Annual Computer Security Applications
Conference (ACSAC), 2002, pages 156–165.

[19] D. Turner, M. Fossi, E. Johnson, T. Mack, J. Blackbird, S. Entwisle, M. K. Low, D. McKin-
ney, C. Wueest, Symantec Global Internet Security Threat Report Trends, 2008.

[20] NIST, Security Content Automation Protocol (SCAP), http://nvd.nist.gov/scap.
cfm.

[21] MITRE, Common Platform Enumeration (CPE), http://cpe.mitre.org/.
[22] MITRE, Oval Language, http://oval.mitre.org/.
[23] P. Ammann, D. Wijesekera, S. Kaushik, “Scalable, Graph-Based Network Vulnerability

Analysis,” in Proceedings of the 9th ACM Conference on Computer and Communications Se-
curity, Washington, DC, pages 217–224.

[24] S. Noel, J. Jajodia, “Understanding Complex Network Attack Graphs through Clustered Ad-
jacency Matrices,” in Proceedings of the 21st Annual Computer Security Applications Confer-
ence (ACSAC), 2005, pages 160–169.

[25] D. Zerkle, K. Levitt, “Netkuang: A Multi-Host Configuration Vulnerability Checker,” in Pro-
ceedings of the 6th USENIX Unix Security Symposium, 1996.

[26] R. Ritchey, P. Ammann, “Using Model Checking to Analyze Network Vulnerabilities,” in
Proceedings of the IEEE Symposium on Security and Privacy, 2000.

[27] L. Swiler, C. Phillips, D. Ellis, S. Chakerian, “Computer-Attack Graph Generation Tool,” in
Proceedings of the DARPA Information Survivability Conference & Exposition II, 2001.

[28] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. Wing, “Automated Generation and Analysis
of Attack Graphs,” in Proceedings of the IEEE Symposium on Security and Privacy, Oakland,
CA.

[29] R. Lippmann, K. Ingols, C. Scott, K. Piwowarski, K. Kratkiewicz, M. Artz, R. Cunning-
ham, “Validating and Restoring Defense in Depth Using Attack Graphs,” in Proceedings of the
MILCOM Military Communications Conference, 2006.

[30] S. Noel, S. Jajodia, “Managing Attack Graph Complexity through Visual Hierarchical Ag-
gregation,” in Proceedings of the ACM CCS Workshop on Visualization and Data Mining for
Computer Security Fairfax, Virginia.

[31] W. Li, An Approach to Graph-Based Modeling of Network Exploitations, PhD dissertation,
Department of Computer Science, Mississippi State University, 2005.

[32] F. Cuppens, R. Ortalo, “LAMBDA: A Language to Model a Database for Detection of At-
tacks,” in 3rd International Workshop on Recent Advances in Intrusion Detection, 2000.

[33] S. Templeton, K. Levitt, “A Requires/Provides Model for Computer Attacks,” in New Secu-
rity Paradigms Workshop, 2000.

[34] Skybox Security, http://www.skyboxsecurity.com/.
[35] RedSeal Systems, http://www.redseal.net/.
[36] R. Lippmann, K. Ingols, An Annotated Review of Past Papers on Attack Graphs, Lincoln

Laboratory, Technical Report ESC-TR-2005-054, 2005.

http://www.foundstone.com/us/index.asp
http://www.foundstone.com/us/index.asp
http://www.securecomputing.com/
http://www.securecomputing.com/
http://www.centennial-software.com/
http://www.centennial-software.com/
http://www.altiris.com/
http://nvd.nist.gov/
http://www.securityfocus.com/vulnerabilities
http://www.securityfocus.com/vulnerabilities
https://tms.symantec.com/Default.aspx
https://tms.symantec.com/Default.aspx
http://osvdb.org/
http://cve.mitre.org/
http://cve.mitre.org/
http://nvd.nist.gov/scap.cfm
http://nvd.nist.gov/scap.cfm
http://cpe.mitre.org/
http://oval.mitre.org/

	Topological Vulnerability Analysis
	Sushil Jajodia and Steven Noel
	Introduction
	System Architecture
	Illustrative Example
	Network Attack Modeling
	Analysis and Visualization
	Scalability
	Related Work
	Summary
	References





