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Lasting Effects of Posttraumatic Stress Disorder

Posttraumatic stress disorder (PTSD) affects about 8% of Americans at some time 
in their lives (Kessler et al. 1995). For many trauma victims, PTSD can be a life-
long problem (Saigh and Bremner 1999). The development of effective treatments 
is limited by gaps in knowledge about the underlying neurobiological mechanisms 
that mediate symptoms of PTSD. Until 12 years ago, no brain imaging studies 
had ever been performed in patients with PTSD or other stress related psychiatric 
disorders. The past decade has seen an explosion of research using brain imaging 
to assess changes in the brain in PTSD (Bremner 2005). These studies have impli-
cated the amygdala, hippocampus, and the medial prefrontal cortex (including 
the anterior cingulate) in PTSD and other stress related psychiatric disorders. 
This chapter reviews brain imaging studies in the field of PTSD, and integrates 
them with the basic science findings on the neuroscience of stress.

Neural Circuits of PTSD

PTSD is characterized by specific symptoms, including intrusive thoughts, hyperarousal, 
flashbacks, nightmares, and sleep disturbances, changes in memory and concentra-
tion, and startle responses. Symptoms of PTSD are hypothesized to represent the 
behavioral manifestation of stress-induced changes in brain structure and function. 
Stress results in acute and chronic changes in the neurochemical systems and specific 
brain regions, which result in long-term changes in brain “circuits,” involved in the 
stress response (Vermetten and Bremner 2002a, b; Bremner 2002a; Pitman 2001). 
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The brain regions that are felt to play an important role in PTSD include the 
hippocampus, the amygdala, and the medial prefrontal cortex.

Preclinical and clinical studies have shown alterations in memory function in 
PTSD patients (Elzinga and Bremner 2002), as well as changes in a circuit of brain 
areas, including the hippocampus, the amygdala, and the medial prefrontal cortex, 
that mediate alterations in memory (Bremner 2003). The hippocampus, a brain area 
involved in verbal declarative memory, is very sensitive to the effects of stress. 
Stress in animals was associated with damage to the neurons in the CA3 region of 
the hippocampus (which may be mediated by hypercortisolemia, decreased brain 
derived neurotrophic factor, and/or elevated glutamate levels) and inhibition of 
neurogenesis (Gould et al. 1998; Magarinos et al. 1996; McEwen et al. 1992; 
Nibuya et al. 1995; Sapolsky et al. 1990, 1996).

Antidepressant treatments were shown to block the effects of stress and/or 
promote neurogenesis (Nibuya et al. 1995; Malberg et al. 2000; Czeh et al. 2001; 
Santarelli et al. 2003; Lucassen et al. 2004). Animal studies have demonstrated several 
agents with potentially beneficial effects on stress-induced hippocampal damage. 
It has been found that phenytoin blocks the effects of stress on the hippocampus, prob-
ably through modulation of excitatory amino acid induced neurotoxicity.(Watanabe 
et al. 1992a) Other agents, including tianeptine, dihydroepiandosterone (DHEA), 
and fluoxetine have similar effects (Malberg et al. 2000; Czeh et al. 2001; Lucassen 
et al. 2004; Garcia 2002; D’Sa and Duman 2002; Duman et al. 1997, 2001; Duman 
2004; McEwen and Chattarji 2004). These medications may share a common 
mechanism of action through upregulation of the cAMP response element binding 
protein (CREB) that leads to regulation of the expression of specific target genes 
involved in structural modeling of the hippocampus. Such treatment effects on 
BDNF and trkB mRNA, can have long-term effects on brain structure and function. 
There is new evidence that neurogenesis is necessary for the behavioral effects of 
antidepressants (Santarelli et al. 2003; Watanabe et al. 1992b) although this continues 
to be a source of debate (Duman 2004; Henn and Vollmayr 2004).

In addition to the hippocampus, other brain structures including the amygdale 
and prefrontal cortex have been implicated in a neural circuitry of stress. The amygdala is 
involved in memory for the emotional valence of events, and plays a critical role in 
the acquisition of fear responses (Davis 1992). The medial prefrontal cortex 
includes the anterior cingulate gyrus (Brodmann’s area 32) and the subcallosal 
gyrus (area 25), as well as orbitofrontal cortex. Lesion studies have demonstrated 
that the medial prefrontal cortex modulates emotional responsiveness through 
the inhibition of amygdala function (Morgan et al. 1993). Studies show that the 
neurons of the medial prefrontal cortex play an active role in the inhibition of fear 
responses that are mediated by the amygdala (Milad and Quirk 2002; Milad et al. 
2006). Conditioned fear responses are extinguished following repeated exposure to 
the conditioned stimulus in the absence of the unconditioned (aversive, e.g., electric 
shock) stimulus. This inhibition appears to be mediated by the medial prefrontal 
cortical inhibition of amygdala responsiveness. Animal studies also show that early 
stress is associated with a decrease in the branching of neurons in the medial 
prefrontal cortex (Radley et al. 2004).
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Changes in Brain Structure in PTSD

Studies in PTSD are consistent in the changes in cognition and brain structure. 
Multiple studies have demonstrated verbal declarative memory deficits in PTSD 
(Elzinga and Bremner 2002; Buckley et al. 2000; Brewin 2001; Golier and Yehuda 
1998). Patients with PTSD secondary to combat (Vasterling et al. 1998; Bremner 
et al. 1993; Golier et al. 1997; Yehuda et al. 1995; Uddo et al. 1993) and childhood 
abuse (Bremner et al. 1995a, 2004a) were found to have deficits in verbal declara-
tive memory function based on neuropsychological testing. Studies using a variety 
of measures (including the Wechsler Memory Scale, the visual and verbal compo-
nents of the Selective Reminding Test, the Auditory Verbal Learning Test, Paired 
Associate Recall, the California Verbal New Learning Test, and the Rivermead 
Behavioral Memory Test), found specific deficits in verbal declarative memory 
function, with a relative sparing of visual memory and IQ (Vasterling et al. 1998, 
2002; Bremner et al. 1993, 1995a; Golier et al. 1997; Yehuda et al. 1995; Uddo 
et al. 1993; Gilbertson et al. 2001; Jenkins et al. 1998; Moradi et al. 1999; Roca 
and Freeman 2001; Barrett et al. 1996; Gil et al. 1990; Sachinvala et al. 2000). 
These studies have been conducted both in patients with PTSD related to Vietnam 
combat (Vasterling et al. 1998, 2002; Bremner et al. 1993; Golier et al. 1997; 
Yehuda et al. 1995; Uddo et al. 1993; Gilbertson et al. 2001; Roca and Freeman 
2001; Barrett et al. 1996; Sachinvala et al. 2000), rape (Jenkins et al. 1998) the 
Holocaust (Golier et al. 2002, Yehuda et al. 2005a, b) adults with early childhood 
abuse (Bremner et al. 1995a), and traumatized children (Moradi et al. 1999). 
Returning Iraq soldiers were shown to have decreases in verbal memory perfor-
mance compared to their pre-deployment baselines, with greater verbal memory 
deficits in veterans with high levels of PTSD symptoms (Vasterling et al. 2006). 
These studies suggest that traumas such as early abuse with associated PTSD result 
in deficits in the verbal declarative memory.

Studies have also shown changes in hippocampal volume. Vietnam veterans 
with PTSD were originally shown to have 8% smaller right hippocampal volume 
based on MRI relative to controls matched for a variety of factors such as alcohol 
abuse and education (p < 0.05); smaller volume was correlated with deficits in verbal 
declarative memory function as measured with the WMS (Bremner et al. 1995b). 
A second study from our group showed a 12% reduction in the left hippocampal 
volume in 17 patients with childhood abuse-related PTSD compared to 17 case-
matched controls; this was significant after controlling for confounding factors 
(Bremner et al. 1997a). Smaller hippocampal volume was shown to be specific to 
PTSD within the anxiety disorders, and was not seen in panic disorder (Narayan 
et al. 1999). Gurvits et al. 1996 showed bilateral hippocampal volume reductions in 
combat-related PTSD compared to combat veterans without PTSD and normal con-
trols. Combat severity was correlated with volume reduction. Stein et al. 1997 found 
a 5% reduction in the left hippocampal volume. Other studies in PTSD have 
found smaller hippocampal volume and/or reductions in NAA, a marker of neuronal 
integrity (Lindauer et al. 2005, 2006, 2004a; Bremner et al. 2003a; Freeman et al. 
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1998; Gilbertson et al. 2002; Schuff et al. 2001; Villarreal et al. 2002; Shin 
et al. 2004a; Emdad et al. 2006; Mahmutyazicioglu et al. 2005; Irle et al. 2005; Li 
et al. 2006; Hedges et al. 2003). Some studies have found smaller hippocampal 
volume in PTSD subjects compared to trauma exposed non PTSD subjects 
(Bremner et al. 2003a) while others have not, finding reductions in both trauma 
exposed non PTSD and trauma exposed PTSD relative to non trauma exposed non 
PTSD subjects (Winter and Irle 2004). Studies in childhood (De Bellis et al. 1999, 
20001; Carrion et al. 2001) PTSD did not find hippocampal volume reduction, 
although reduced NAA (indicating loss of neuronal integrity) was found in the 
medial prefrontal cortex in childhood PTSD (De Bellis et al. 2000). Some studies 
of new onset or recent PTSD did not find changes in hippocampal volume (Bonne 
et al. 2001; Notestine et al. 2002), while others showed a reduction (Wignall et al. 
2004). In a recent meta-analysis, we pooled data from all of the published studies 
and found smaller hippocampal volume for both the left and the right sides, equally 
in adult men and women with chronic PTSD, and no change in children (Kitayama 
et al. 2005). Another recent meta-analysis had similar findings (Smith 2005). More 
recent studies of holocaust survivors with PTSD did not find a reduction in hip-
pocampal volume (Golier et al. 2005) although PTSD patients who developed 
PTSD in response to an initial trauma had smaller hippocampal volume compared 
to those who developed PTSD after repeated trauma, suggesting a possible vulner-
ability of smaller hippocampal volume (Yehuda et al. 2007). Several studies have 
shown that PTSD patients have deficits in hippocampal activation while performing 
a verbal declarative memory task (Bremner et al. 2003a; Shin et al. 2004a) or a 
virtual water maze task (Astur et al. 2006). Both hippocampal atrophy and 
hippocampal-based memory deficits reversed with treatment with the SSRI, parox-
etine, which has been shown to promote neurogenesis (the growth of neurons) in 
the hippocampus, in preclinical studies (Vermetten et al. 2003). We hypothesize 
that stress-induced hippocampal dysfunction may mediate many of the symptoms 
of PTSD which are related to memory dysregulation, including both explicit 
memory deficits as well as fragmentation of memory in abuse survivors. It is 
unclear at the current time whether these changes are specific to PTSD, whether 
certain common environmental events (e.g., stress) in different disorders lead to 
similar brain changes, or whether common genetic traits lead to similar outcomes.

In addition to the hippocampus, other brain structures have been implicated 
in a neural circuitry of stress, including the amygdala and the prefrontal cortex. 
The amygdala is involved in memory for the emotional valence of events, and plays 
a critical role in the acquisition of fear responses. The medial prefrontal cortex 
includes the anterior cingulate gyrus (Brodmann’s area 32) and the subcallosal gyrus 
(area 25), as well as the orbitofrontal cortex. Lesion studies have demonstrated that 
the medial prefrontal cortex modulates emotional responsiveness through the inhibi-
tion of amygdala function. Conditioned fear responses are extinguished following 
repeated exposure to the conditioned stimulus (in the absence of the unconditioned 
(aversive, e.g., electric shock) stimulus. This inhibition appears to be mediated by 
the medial prefrontal cortical inhibition of amygdala responsiveness. The insula 
plays a critical role in integrating the physiological stress response.
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Animal studies also show that early stress is associated with a decrease in the 
branching of neurons in the medial prefrontal cortex (Radley et al. 2004). Several 
studies have found smaller anterior cingulate volume based on MRI measurements 
in PTSD (Rauch et al. 2003; Yamasue et al. 2003; Woodward et al. 2006), including 
women with abuse and PTSD (Kitayama et al. 2005). One study found a reduction 
in NAA/Cr measured with MRS (Mahmutyazicioglu et al. 2005), while another 
found a decrease in gray matter density (Corbo et al. 2005). An important question 
is whether these effects are reversible with treatment. Other findings related to 
volumetrics include smaller volumes of the corpus callosum in neglected children 
(Teicher et al. 2004) and adults with PTSD (Villarreal et al. 2004). One study 
showed a smaller volume of the insula with voxel based morphometry (Chen et al. 
2006). A study in twins found smaller volume of the cavum septum pellucidum 
(May et al. 2004).

Functional Neuroimaging Studies in PTSD

Imaging studies of brain function in PTSD are consistent with dysfunction of the 
medial prefrontal cortex, the amygdala, and the hippocampus (Pitman 2001; 
Liberzon and Phan 2003; Liberzon and Martis 2006; Liberzon et al. 2003; Bremner 
1998; Bremner 2002b; Rauch et al. 2006; Cannistraro and Rauch 2003). The meth-
odology of imaging studies in PTSD is outlined in Table 1 and a summary of find-
ings by the author, and brain region in Table 2. Studies of resting blood flow or 
metabolism with PET and SPECT showed alterations at rest in the medial prefron-
tal, temporal, and dorsolateral prefrontal cortex, the cerebellum, and the amygdala 
(Bonne et al. 2003; Chung et al. 2006; Bremner et al. 1997b). Stimulation of the 
noradrenergic system with yohimbine resulted in a failure of activation in the dor-
solateral prefrontal, temporal, parietal and orbitofrontal cortex, and decreased func-
tion in the hippocampus (Bremner et al. 1997b). Exposure to traumatic reminders 
in the form of traumatic slides and/or sounds or traumatic scripts was associated 
with an increase in PTSD symptoms, decreased blood flow and/or failure of activa-
tion in the medial prefrontal cortex/anterior cingulate, including Brodmann’s area 
25, or subcallosal gyrus, area 32 and 24, as measured with PET, SPECT or fMRI 
(Britton et al. 2005; Yang et al. 2004; Bremner et al. 1999a, b; Lanius et al. 2001, 
2003; Liberzon et al. 1999; Shin et al. 1999, 1997, 2001, 2004b, 2005; Semple et al. 
2000; Lindauer et al. 2004b; Phan et al. 2006) (Fig. 1). Other findings in studies of 
traumatic reminder exposure include decreased function in the hippocampus 
(Bremner et al. 1999b), the thalamus (Lanius et al. 2001, 2003), the visual associa-
tion cortex (Lanius et al. 2003; Bremner et al. 1999b; Shin et al. 1997, 2004b), the 
parietal cortex (Bremner et al. 1999b; Shin et al. 1997, 1999; Rauch et al. 1996; 
Sakamoto et al. 2005), and the inferior frontal gyrus (Lanius et al. 2003; Bremner 
et al. 1999b; Shin et al. 1997, 1999, 2001; Rauch et al. 1996; Sakamoto et al. 2005), 
and increased function in the amygdala (Liberzon et al. 1999; Shin et al. 2004b; 
wv2001; Shin et al. 1997), and the parahippocampal gyrus (Bremner et al. 1999a, b; 
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Liberzon et al. 1999). Shin et al. 2004b found a correlation between the increased 
amygdala function and the decreased medial prefrontal function with traumatic 
reminders, indicating that a failure of inhibition of the amygdala by the medial 
prefrontal cortex could account for increased PTSD symptoms with traumatic 
reminders. Other studies found increased amygdala and parahippocampal function 
and decreased medial prefrontal function during performance of an attention task 
(Semple et al. 2000), and increased amygdala function at rest (Chung et al. 2006), 
during a working memory task (Bryant et al. 2005), during recall of traumatic words 
(Protopopescu et al. 2005), with exposure to masked fearful faces (Rauch et al. 2000; 
Armony et al. 2005), overt fearful faces (Shin et al. 2005), traumatic sounds (Liberzon 
et al. 1999; Pissiota et al. 2002), and traumatic scripts (Rauch et al. 1996).

Several studies have examined neural correlates of cognitive tasks in PTSD. 
During working memory tasks, patients showed decreased inferior frontal (Clark 
et al. 2003) and parietal function (Bryant et al. 2005; Clark et al. 2003). Retrieval 
of emotionally valenced words (Bremner et al. 2001) (e.g., “rape-mutilate”) in 
women with PTSD from early abuse resulted in decreases in blood flow in an 
extensive area which included the orbitofrontal cortex, the anterior cingulate, and 
the medial prefrontal cortex (Brodmann’s areas 25, 32, 9), the left hippocampus, 
and the fusiform gyrus/inferior temporal gyrus, with increased activation in the 
posterior cingulate, the left inferior parietal cortex, the left middle frontal gyrus, 
and the visual association and motor cortex (Bremner et al. 2003b). Another study 
found a failure of the medial prefrontal cortical/anterior cingulate activation, and 
decreased visual association and parietal cortex function in women with abuse and 
PTSD, relative to women with abuse without PTSD, during performance of the 
emotional Stroop task (i.e., naming the color of a word such as “rape”) (Bremner 
et al. 2004b). Shin et al. 2001 showed an increased posterior cingulate and parahip-
pocampal gyrus and a decreased medial prefrontal and dorsolateral prefrontal during 
an emotional “counting” Stroop paradigm with fMRI.

Studies have also used declarative memory tasks as specific probes of hippocampal 
function. We measured brain activation with a paragraph encoding task in conjunc-
tion with PET O-15 water measurement of brain blood flow. Women with abuse and 
PTSD showed a failure of hippocampal activation during the memory task, relative 

Fig. 1 Hippocampal volume on MRI in PTSD. There was smaller hippocampal volume in a repre-
sentative patient with PTSD (right) relative to a non PTSD subject (left)
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to controls (Bremner et al. 2003a). Women with abuse and PTSD in this study also 
had smaller hippocampal volume measured with MRI, relative to both women with 
abuse without PTSD and non-abused non-PTSD women. The failure of hippocampal 
activation was significant after controlling differences in hippocampal volume as 
well as accuracy of encoding. Shin et al. 2004a also found a failure of hippocampal 
activation with a memory stem completion task in PTSD.

Although multiple studies have used symptom provocation with traumatic 
scripts or similar designs, little has been done in the area of fear conditioning in 
PTSD. To that end, we studied women with a history of severe childhood sexual 
abuse and the diagnosis of current PTSD (N = 8), and women without childhood 
abuse or PTSD (N = 11). All the subjects underwent positron emission tomographic 
(PET) measurement of cerebral blood flow and psychophysiology measurement of 
heart rate and skin conductance during habituation, acquisition and extinction con-
ditions on a single day, with scanning during a control condition on another day 
separated by 1 week from the active condition. During habituation the subjects 
were repeatedly exposed to a blue square on a screen (conditioned stimulus (CS)); 
during active fear acquisition, exposure to the blue square (CS) was paired with an 
electric shock to the forearm (unconditioned stimulus (UCS)); and during extinction, 
subjects were again exposed to the blue squares (CS) without shock (“active” 
extinction). On the second day, the subjects went through the same procedure with 
electric shocks delivered randomly when the blue square was not present (unpaired 
CS–UCS). Acquisition of fear was associated with increased skin conductance 
(SC) responses to CS exposure during the active versus the control conditions in all 
the subjects. There was increased SC for PTSD during the first CS–UCS presenta-
tion. Extinction of fear was associated with increased skin conductance (SC) 
responses to CS exposure during the active versus the control conditions, in all the 
subjects. When PTSD and non-PTSD subjects were examined separately, the SC 
levels were significantly elevated in non-PTSD subjects undergoing extinction of 
fear following the active compared to the control condition during session one. 
PTSD subjects showed activation of the bilateral amygdala during fear acquisition 
compared to the control condition (Fig. 2). Non-PTSD subjects showed an area of 
activation in the region of the left amygdala. When PTSD subjects and control 
subjects were directly compared, PTSD subjects showed a greater activation of the 
left amygdala during the fear conditioning condition (pairing of US and CS) rela-
tive to the random shock control than healthy women. Other areas that showed 
increased activation with fear acquisition in PTSD included the bilateral superior 
temporal gyrus (Brodmann’s Area (BA) 22), cerebellum, bilateral inferior frontal 
gyrus (BA 44, 45) and the posterior cingulate (BA) 24). Fear acquisition was 
associated with decreased function in the medial prefrontal cortex, the visual asso-
ciation cortex, and the medial temporal cortex, the inferior parietal lobule function, 
and other areas. Extinction of fear responses was associated with decreased 
function in the orbitofrontal and medial prefrontal cortex (including subcallosal 
gyrus, BA 25, and anterior cingulate BA 32), the visual association cortex, and other 
areas in the PTSD subjects, but not in the controls. Amygdala blood flow with 
fear acquisition was negatively correlated with medial prefrontal blood flow with fear 
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extinction (increased blood flow in the amygdala correlated with decreased 
blood flow in the medial prefrontal cortex) in all the subjects (r = −0.48; p < 0.05). 
Increased amygdala blood flow with fear acquisition was positively correlated 
with PTSD (r = 0.45), anxiety (r = 0.44) and dissociative (r = 0.80) symptom levels 
in PTSD (but not non-PTSD) subjects. There was a negative correlation between 
the medial prefrontal blood flow during extinction and anxiety as measured with 
the PASS during extinction in the PTSD group only which was significant after 
correction for multiple comparisons (r = −0.90; p = 0.006) (Bremner et al. 2005a). 
This study was consistent with increased amygdala function with fear acquisition, 
and decreased medial prefrontal (anterior cingulate) function during extinction in 
PTSD. This is consistent with the model of an over active amygdala and a failure 
of medial prefrontal cortex to extinguish, or shut off, the amygdala, when the acute 
threat is no longer present.

Few studies have involved imaging of receptors in the brain in PTSD. One study 
used single photon emission computed tomography (SPECT) to show a decrease in 
benzodiazepine receptor binding in the frontal cortex in Vietnam combat-related 
PTSD (Bremner et al. 2000). Another study of Gulf War-related PTSD showed a 
negative correlation between childhood trauma and right superior temporal gyrus 
benzodiazepine receptor binding (Fujita et al. 2004).

Fig. 2 Medial prefrontal dysfunction in PTSD. There was a failure of medial prefrontal activation 
in a group of combat veterans with PTSD compared to combat veterans without PTSD during 
exposure to traumatic combat related slides and sounds (yellow area in prefrontal cortex)
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In summary, these studies are consistent with dysfunction of a circuit involving the 
medial prefrontal cortex, the dorsolateral prefrontal cortex, and the hippocampus and 
the amygdala, in PTSD patients that we hypothesize underlie symptoms of PTSD.

Effects of Pharmacotherapy on Brain Function  
and Structure in PTSD

We have begun to assess the effects of pharmacotherapy on brain structure and 
function in PTSD (Bremner and Vermetten 2004). We recently assessed the effects 
of phenytoin on brain structure and function. Studies in animals show that phenytoin, 
which is used in the treatment of epilepsy and is known to modulate glutamatergic 
function, blocks the effects of stress on the hippocampus (Watanabe et al. 1992a). 
We studied nine patients with PTSD in an open label function before and after treat-
ment with phenytoin. Phenytoin resulted in a significant improvement in PTSD 
symptoms (Bremner et al. 2004c). Phenytoin also resulted in increases in both 
right hippocampal volume and right hemisphere volume (Bremner et al. 2005b). 
These findings indicate that phenytoin has an effect on PTSD symptoms as well as 
brain structure in PTSD patients. In a second study, patients with PTSD were shown 
to have an increase in hippocampal volume and memory function with paroxetine 
(Vermetten et al. 2003), and a decrease in cortisol responsiveness to a stressful 
cognitive challenge (Vermetten et al. 2006). One case report showed decreased 
inferior frontal, prefrontal, and insula blood flow measured with PET in response 
to war related sounds. These changes normalized with successful treatment with the 
SSRI fluoxetine (Fernandez et al. 2001). Another study assessed resting brain blood 
flow with SPECT Tc-99m HMPAO before and after 8 weeks of open label treatment 
with the SSRI citalopram in 11 adult patients with PTSD. The treatment resulted in 
a decrease in the left medial temporal cortex blood flow; decreased PTSD symptoms 
as measured with the CAPS were correlated with increased function in the medial 
prefrontal cortex (Seedat et al. 2003).

Summary and Conclusions

Brain imaging studies have shown that PTSD is associated with changes in brain 
function and structure. Brain areas implicated in the stress response include the 
amygdala, the hippocampus, and the prefrontal cortex. These brain areas also play 
a critical role in memory, highlighting the important interplay between memory and 
the traumatic stress response. Preclinical studies show that stress affects these brain 
areas. Furthermore, antidepressants have effects on the hippocampus that counter-
act the effects of stress. In fact, promotion of nerve growth (neurogenesis) in the 
hippocampus may be central to the efficacy of the antidepressants. Studies in 
patients with posttraumatic stress disorder (PTSD) show alterations in brain areas 
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implicated in animal studies, including the amygdala, the hippocampus, and the 
prefrontal cortex. Increased amygdala activation with acquisition of fear responses, 
and a failure of the medial prefrontal cortex to properly mediate extinction are 
hypothesized to underlie symptoms of PTSD. Treatments that are efficacious for 
PTSD show a promotion of neurogenesis in animal studies as well as a promotion 
of memory and increased hippocampal volume in PTSD. Future studies are needed 
to assess neural mechanisms in treatment response in PTSD. In addition, studies 
need to move beyond assessments of brain function and to examine areas such as 
neuroreceptor binding and changes in brain chemicals (e.g., with MRS).
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