
63

Chapter 6

Data Types

The game’s afoot.

—William Shakespeare, Henry V

In this chapter, we dig deeper into the CLI type system as well as the implementation of C++/CLI in Microsoft
Visual C++ 2013. You should already have a firm base in C# classes, structures, and interfaces from your previous
programming experience, and we want to build on that knowledge to expose differences between C# and C++/CLI.

C# Types versus C++ Types
The C# language was designed specifically to target the CLR. Therefore, all of its data types map directly to CLI types.
C++/CLI not only defines data types for the CLI but also defines data types for use in native C++. All of these data
types are defined using the keywords class and struct. These keywords had a preexisting meaning in C++ before C#
was devised. In C++, class defines a native type, which can be thought of as a general collection of related fields and
methods. A C++ struct is the same as a C++ class except that the default accessibility is public for all members, and
a C++ struct inherits publicly from its base classes.

In C#, class defines a CLI reference type descended from System::Object that has a specific set of
characteristics and limitations. A C# struct defines a CLI value type that has a different set of characteristics.

For C++/CLI to implement the CLI types, new keyword combinations were added to the language. The class
qualifiers ref and value are prepended to the keywords class and struct to create the new whitespace keywords
ref class and value class. These indicate managed types as defined by the CLI. Table 6-1 illustrates the
correspondences.1

1A future version of C++/CLI may implement mixed types; a mixed type, according the C++/CLI specification, is “either a
native class or a ref class that requires object members, either by declaration or by inheritance, to be allocated on both the CLI
heap and the native heap.”

Chapter 6 ■ Data types

64

The C++ struct Keyword
Let me reiterate that the struct keyword is not used in C++/CLI to indicate either a C# class or a C# struct.
A struct in C++ is the exact same thing as a class, except that it has public, rather than private, accessibility and
inherits publicly by default. This is also true of ref struct and value struct. Other than with respect to protection
mechanisms, they are identical to ref class and value class.

A C++ struct is extremely useful. Whenever I wish to prototype a quick class or method and don’t want to
worry about protection, I use a C++ struct rather than a C++ class. I’m going to delve deeper into protection
mechanisms in Chapter 8.

Native Classes
As mentioned previously, C++/CLI also has native classes. Unlike a ref class and a value class, which map directly
to CLI defined types, a native class is an unmanaged type that does not have a CLI mapping. Native classes, elements
of classic C++, will be discussed further in Chapter 18.

Value Types and Reference Types
Value types and reference types are allocated, accessed, and copied with the same syntax; declaring these types as
either struct or class is the main difference. As shown previously, having the same syntax can lead to unintended
consequences when instances of these types are assigned. Value types are copied in their entirety, whereas only
handles to the reference type are actually copied during an assignment. In C#, except for the initial declaration where
you declare struct or class, the syntax is identical for value types and references types. C# hides the distinction
between value types and reference types from the programmer, which can be both good and bad. C++/CLI, on the
other hand, does not hide these details and distinguishes between value types and reference types. A quick review of
memory allocation during program execution is a great place to start understanding the different concepts.

Dynamic Memory Pools
During the execution of a C# program, new items are allocated in one of two places: the stack or the managed heap.
C++/CLI adds a third pool, the native heap, which will be discussed further in Chapter 18 during the discussion on
native C++.

Table 6-1. C++, C#, and CLI Type Comparision

C++ Type C# Type CLI Type Default Accessibility Stored In

ref class class reference private managed heap, stack

ref struct N/A reference public managed heap, stack

value class struct value private native heap, managed heap, stack

value struct N/A value public native heap, managed heap, stack

class N/A N/A private native heap, stack

struct N/A N/A public native heap, stack

Chapter 6 ■ Data types

65

The Managed Heap
When you call new on a C# class, the class data is allocated sequentially in a continuous block in the managed
heap. When the CLR calculates that you have no more references to an object, the object becomes a candidate for
garbage collection.

Over time, multiple object allocations and orphaned objects can cause a single large continuous block of free
memory to become fragmented into allocated memory and bubbles of unreferenced memory. A subsequent call to
the allocation mechanism might not be able to find a sufficiently large contiguous block of memory to contain the
new data, even though the total free memory in the system is larger than the desired amount. In this case, the CLR is
able to collect the garbage and rearrange memory within the managed heap. In this process, similar to defragmenting
a hard disk, in-use memory is moved to combine available memory bubbles to create larger contiguous blocks of
memory. It is called garbage collection, because available bubbles of memory are not valid data, they are effectively
“garbage,” and combining available bubbles involves essentially collecting the garbage.

The Stack
In the CLI, the other primary memory buffer used for dynamic allocation of data is the program stack. A stack is
a memory buffer that grows in a single direction and shrinks in the opposite direction. New allocations can only
be made at the top of the stack, and only the memory at the top of the stack may be freed. Allocating memory on
the stack is called pushing, and freeing memory off the stack is called popping. In computer science parlance, the
stack is a First-In, Last-Out (FILO) buffer, which means that the first data you push onto the stack is the last data
you pop off.

At first glance, using a stack seems to be overly restrictive and not as useful as you might like. In reality, a stack is
particularly useful for making function calls and essential for recursive calls. All processors today are speed optimized
for using stacks. In C# and C++, the program stack is where return addresses for procedure calls are stored as well as
value types and the handles to the reference types. Because of the way that stacks are allocated and deallocated,
stacks never become fragmented, and garbage collection is never necessary, thus the restrictive nature of a stack
realizes performance benefits.

The Native Heap
Native C++ has a third and final memory area for dynamic allocation called the native heap. Allocations on the native
heap are made using the new keyword. C++/CLI applications can use the native heap as well as the managed heap and
stack for memory allocation. We will discuss this further in Chapter 18.

Garbage Collection
Recall that when the managed heap becomes fragmented, objects must be moved around to create larger contiguous
blocks of memory in a process called garbage collection. As will be discussed further in Chapter 20, specific instances
of reference types may be excluded from garbage collection by a process known as pinning, but this can have negative
performance implications.

Let me reiterate: In-use memory is moved. This means that if you have a reference type in your program, it may
be moved without your knowledge.

When you use a reference type, it is made of two parts: the data itself, which is allocated on the managed heap,
and a handle to the data, which is allocated on the stack. We will revisit the stack in greater detail later in this chapter,
but for now, suffice it to say that the stack does not move in the same way.

Chapter 6 ■ Data types

66

When garbage collection is performed, the data in the managed heap is moved to make larger contiguous blocks
free for allocation, and at the same time, any handles that point to this data must continue to point to this data after
garbage collection is complete. If you like, you can think of handles as pointers, and visualize the pointers to the
instances of data on the managed heap being updated each time the data is moved. It does not matter how this is
actually implemented within the CLR, but if the garbage collection mechanism is working correctly, your handles will
continue to track your data after garbage collection is complete.

Initialization
As I mentioned previously, C# hides the implementation differences between reference types and value types.
Consider the following C# example:

struct V
{
}
class R
{
 static public void Main()
 {
 V v = new V();
 R r = new R();
 }
}

In this example, we have a simple value type V and a reference type R. The procedure Main() is a public static
function that allocates a V as well as an R. When you compile this example code and examine the resulting executable
using ildasm.exe, you find the following CIL within the Main() method:

.method public hidebysig static void Main() cil managed
{
 .entrypoint
 // Code size 16 (0x10)
 .maxstack 1
 .locals init (valuetype V V_0, class R V_1)
 IL_0000: nop
 IL_0001: ldloca.s V_0
 IL_0003: initobj V
 IL_0009: newobj instance void R::.ctor()
 IL_000e: stloc.1
 IL_000f: ret
} // end of method R::Main

As you can see from the CIL, the value type V is initialized with the initobj instruction, which initializes V on the
stack. initobj is used to initialize a value type when there is no constructor. The reference type R is initialized by
the newobj instruction, which calls R’s constructor, allocates R’s data on the managed heap, and returns a handle to
this data. These are extremely different operations.

Chapter 6 ■ Data types

67

The C++/CLI Equivalent
Let’s look at the equivalent code in C++/CLI:

value class V
{
};
ref class R
{
 static public void Main()
 {
 V v = V();
 R^ r = gcnew R();
 }
};

As you can see, gcnew is not used when v is allocated, which makes sense, because we don’t want to allocate v on
the managed heap. It is allocated on the stack, and the C++/CLI code reflects that. The CIL also reflects this, as it uses
initobj rather than newobj to instantiate v. Granted, gcnew could have been used to allocate an instance of V on the
managed heap. This operation is called boxing. We discuss boxing later in this chapter. For the sake of this example,
we want to allocate it on the stack.

We can see from this simple example that where C# attempts to hide the implementation from the user to ease
programming, C++/CLI remains loyal to the implementation and maps directly to the CIL.

Uninitialized Declarations
C# has declaration syntax for uninitialized value types but requires them to be initialized before they can be used.
Consider the following C# code:

struct V
{
 public int i;
}
class R
{
 static public void Main()
 {
 V v;
 System.Console.WriteLine(v.i);
 }
}

If you attempt to compile this, you get the following error:

h.cs(10,34): error CS0170: Use of possibly unassigned field 'i'

Chapter 6 ■ Data types

68

C# blocks you from using uninitialized memory. Similar syntax in C++/CLI produces different results:

private value class V
{
public:
 int i;
};
private ref class R
{
public:
 static void Main()
 {
 V v;
 System::Console::WriteLine(v.i);
 }
};

This seemingly similar code compiles and runs without error and produces the following result:

0

Let’s pass it through .NET Reflector to look at Main() and figure out what code the C++/CLI compiler generates.
Figure 6-1 shows .NET Reflector’s view of the code.

Figure 6-1. .NET Reflector’s view of the translation of an uninitialized declaration to C++/CLI

As you can see from the figure, C++ does in fact initialize v, and running the program produces 0 as a result of the
default initialized value of int being zero.

Chapter 6 ■ Data types

69

Initialization Variants
Let’s summarize the preceding discussion by using .NET Reflector to analyze the following code:

value struct V
{
 V(int i)
 {
 }
};
ref struct R
{
 static public void Main()
 {
 V v1;
 V v2(1);
 V v3 = V(2);
 }
};

Figure 6-2 shows what the compilers generate. Note that the variables are renamed in the IL.

Figure 6-2. Initialization of value types in C++/CLI

As you can see from the figure, all variants of V are initialized in some manner by C++.

Fields
Consider the following C# code:

using System.Collections;
class R
{
 ArrayList a = new ArrayList();
 static void Main() {}
}

Chapter 6 ■ Data types

70

Although this code seems quite normal, it does not map directly to C++/CLI. This is because the variable a
is a non-static field and needs to be initialized every time a class is instantiated. Therefore C# implicitly creates a
constructor that undertakes the responsibility of initializing the instance fields. This does not map directly to
C++/CLI, but it is easily emulated.

Let’s employ .NET Reflector to see the constructor C# generated for this snippet; Figure 6-3 shows the
constructor.

Figure 6-4. The C++/CLI version of the constructor

Figure 6-3. The implicitly generated constructor

As you can see, a constructor was generated that initializes the variable a. If we now switch to C++/CLI mode,
we can view the constructor we need to write to convert this snippet, as shown in Figure 6-4.

We can also use Instant C++ to aid translation. This is the output from the Snippet Converter:

//.h file code:

class R
{
private:
 ArrayList *a;
 static void Main();

private:
 void InitializeInstanceFields();

Chapter 6 ■ Data types

71

public:
 R()
 {
 InitializeInstanceFields();
 }
};

//.cpp file code:

void R::Main()
{
}

void R::InitializeInstanceFields()
{
 a = new ArrayList();
}

In this case, Instant C++ automatically creates an initialization function that is called by the class constructor.
Note that this version of the C++/CLI Reflector add-in does not qualify ArrayList with the namespace

System::Collections. We don’t need to use this if we have the using statement in the code, as follows:

using namespace System::Collections;

We now can use this accumulation of knowledge to craft the conversion of the C# code:

using namespace System::Collections;
ref class R
{
 ArrayList ^a;
 static void Main() {}
public:
 R()
 {
 this->a = gcnew ArrayList();
 }
}

Multiple Constructors
As you learned previously, we need to move object initialization code into the class’s constructor. What happens if the
class has more than one constructor? What does C# do?

Consider the following C# snippet:

class R
{
 class R1 {}
 R1 rA = new R1();
 R(int i) {}
 R() {}
 static void Main() {}
}

Chapter 6 ■ Data types

72

In this case, rA needs to be initialized once for each object, and two different constructors are available.
See Figure 6-5 to look at these constructors using .NET Reflector.

Figure 6-5. Class initialization with multiple constructors

As you can see from the figure, C# copies the initialization code to both constructors independently.

Static Initialization
Let’s now consider a broader example that builds on the previous examples by using both static and normal
initializations. Consider the following C# code:

class R
{
 class R1
 {
 }
 struct V1
 {
 }
 V1 vA = new V1();
 R1 rA = new R1();
 V1 vB;
 R1 rB;
 static V1 vC = new V1();
 static R1 rC = new R1();
 R()
 {
 vB = new V1();
 rB = new R1();
 }

Chapter 6 ■ Data types

73

 static public void Main()
 {
 R r = new R();
 }
}

Even though this class already has a constructor, C# still moves initializations around for the CIL to operate
correctly. We can employ .NET Reflector to discover which initializations were moved during compilation, which
guides us on how to make an equivalent C++/CLI program. Figure 6-6 shows the members of class R as displayed in
.NET Reflector.

Figure 6-6. Class R in .NET Reflector

As you can see, not only does R have a constructor, which is represented as .ctor, it also has a static constructor,
which is represented as .cctor.

Static Constructors
A constructor, more verbosely called an instance constructor, is called each time an instance of a class is created.
A static constructor, also known as a class constructor or a type initializer, is called only once, before any instances of
the class are created. It is used for one-time initialization of data common to all instances.

Now let’s get back to examining the code and peek at the constructor and static constructor. Both of these
constructors are relocation targets of the C# compiler. The instance constructor gets all instance initializations, and
the static constructor gets all static initializations. First let’s examine the constructor shown in Figure 6-7.

Chapter 6 ■ Data types

74

Similar to what you learned previously, the initializations for vA and rA are moved to the constructor. No surprises
there. How about the static constructor shown in Figure 6-8?

Figure 6-8. Class R’s static constructor

Figure 6-7. Class R’s constructor

Similar to the move of vA and rA, vC and rC are moved to the static constructor. This makes sense as well,
because if regular initializations are moved to the constructor, then static initializations should be moved to the static
constructor. C++/CLI moves the static initializations to the static constructor automatically, so we can let the compiler
create it implicitly. C++/CLI can do this, because there is at most one static constructor in a class, though there may be
multiple instance constructors in a class.

Now we can construct the final C++/CLI code and finish this aspect of the topic of initialization:

ref class R
{
 ref class R1
 {
 };

Chapter 6 ■ Data types

75

 value class V1
 {
 };
 V1 vA;
 R1 ^rA;
 V1 vB;
 R1 ^rB;
 static V1 vC = V1();
 static R1 ^rC = gcnew R1();
 R()
 {
 vA = V1();
 rA = gcnew R1();
 vB = V1();
 rB = gcnew R1();
 }
public:
 static void Main()
 {
 R ^r = gcnew R();
 }
};

Alternatively, in C++/CLI, vC and rC could be initialized using an explicit static constructor as follows:

private:
 static R()
 {
 vC = V1();
 rC = gcnew R1();
 }

The static constructor is executed before any instantiations of the class R are performed. Consider the following
application:

using namespace System;
ref struct R
{
 static R()
 {
 Console::WriteLine('Static Constructor');
 }
 R()
 {
 Console::WriteLine('Constructor');
 }
};

Chapter 6 ■ Data types

76

int main()
{
 R ^r;
 Console::WriteLine('in main()');
 r = gcnew R();
}

This program has the following output:

Static Constructor
in main()
Constructor

This output shows that the static constructor for R was called before any R objects were instantiated.

Boxing
Because there are two major categories of types in .NET, value and reference, it is not surprising that we occasionally
need to perform some type of conversion between them.

Oftentimes, we need to pass a value type to a method that requires a reference type. This task is potentially
daunting, as value types are stored on the stack, whereas reference types are stored on the managed heap. Java has
wrapper classes to solve this kind of problem; the CLR provides boxing.

The process of couching a value type as a reference type is called boxing. Boxing returns a System::Object^ that
references a copy of the value data and can be used to refer to the data while allocated on the managed heap. Boxing is
generally automatic and implicit.

The inverse operation, retrieving the original value type from the boxed object is called unboxing. Unlike boxing,
unboxing must be done explicitly. This is intuitive, because all value types become a single boxed object, so the CLR
knows exactly what to do. On the other hand, given a boxed object, the CLR cannot determine which value type is
contained therein without an explicit cast.

Method Boxing
Many CLR methods accept reference types as parameters. For example, Console::WriteLine() accepts either a
built-in type or a reference type as parameter.

Example of Boxing and Unboxing
Consider the following example of boxing and unboxing. In this sample, we take a value type V, box it into an
Object, and send it to Console::WriteLine() as an Object. Next, we unbox it explicitly to a V and send it to
Console::WriteLine() again, which boxes it implicitly. Therefore, the following example contains both implicit and
explicit boxing, as well as explicit unboxing:

using namespace System;
value struct V {};
ref struct R

Chapter 6 ■ Data types

77

{
 static void Main()
 {
 V v;
 Object ^o = v;
 Console::WriteLine(o);
 v = (V) o;
 Console::WriteLine(v);
 }
};

int main()
{
 R::Main();
}

The results of this program follow:

V
V

Delving into the IL, we can see the CIL boxing operations:

.method public hidebysig static void Main() cil managed
{
 // Code Size: 47 byte(s)
 .maxstack 1
 .locals (
 V v1, //this is ldloc.0
 object obj1) //this is ldloc.1
 L_0000: ldnull // 0
 L_0001: stloc.1 // obj1 = 0
 L_0002: ldloca.s v1 //
 L_0004: initobj V // v1 = V()
 L_000a: ldloc.0 // get v1
 L_000b: box V // box it (explicit)
 L_0010: stloc.1 // obj1 = boxed(v1)
 L_0011: ldloc.1 // get obj1
 L_0012: call void [mscorlib]System.Console::WriteLine(object)
 L_0017: ldloc.1 // get obj1
 L_0018: unbox V // unbox obj1 of type V
 L_001d: ldobj V // get V
 L_0022: stloc.0 // v1 = unboxed
 L_0023: ldloc.0 // get v1
 L_0024: box V // box it (implicit)
 L_0029: call void [mscorlib]System.Console::WriteLine(object)
 L_002e: ret
}

You don’t need to be an expert in CIL to see what is going on here, especially since I have annotated the
individual instructions.

Chapter 6 ■ Data types

78

Unboxing Dangers
Because unboxing is explicit, there is the danger of a programmer unboxing an object to the wrong type, which
generally causes the CLR to throw an exception. Consider the following example:

using namespace System;
using namespace System::Collections;
ref struct R
{
 static void Main()
 {
 ArrayList^ a = gcnew ArrayList();
 int i=3;
 double d=4.0;
 a->Add(i);
 a->Add(d);
 for each(int j in a)
 {
 Console::WriteLine(j);
 }
 }
};
void main() { R::Main();}

In this example, we implicitly box an int and a double by adding them to an ArrayList(). The for each loop
unboxes these values into an int, causing an exception when the double is unboxed. The results to the screen follow:

Unhandled Exception: System.InvalidCastException: Specified cast is not valid.
 at R.Main()
 at mainCRTStartup(String[] arguments)

Safe Unboxing
In C#, you can fix the preceding code by using the keyword is as follows:

using System;
using System.Collections;
class R
{
 public static void Main()
 {
 ArrayList a = new ArrayList();
 int i = 3;
 double d = 4.0;
 a.Add(i);
 a.Add(d);
 foreach(Object o in a)

Chapter 6 ■ Data types

79

 {
 if(o is int)
 {
 int i1 = (int)o;
 Console.WriteLine(i1);
 }
 else
 {
 double d1 = (double)o;
 Console.WriteLine(d1);
 }
 }
 }
}

In this code, you can see the check to see whether the object is a boxed int (o is int). To perform the same trick
in C++/CLI, you use dynamic_cast<>() as follows:

using namespace System;
using namespace System::Collections;
ref struct R
{
 static void Main()
 {
 ArrayList^ a = gcnew ArrayList();
 int i=3;
 double d=4.0;
 a->Add(i);
 a->Add(d);
 for each(Object ^o in a)
 {
 if(dynamic_cast<int^>(o) != nullptr)
 {
 int i1=(int)o;
 Console::WriteLine(i1);
 }
 else
 {
 double d1=(double)o;
 Console::WriteLine(d1);
 }
 }
 }
};
void main() { R::Main();}

The casting operators are revisited in more detail in Chapter 16.

Chapter 6 ■ Data types

80

Constructor Forwarding
C# has a special syntax that allows you to defer initialization of objects between constructors. This is called constructor
forwarding, or delegating constructors, and is now supported in the current version of C++/CLI. Here is a C# example
of constructor forwarding:

class R
{
 R(int i) {}
 R() : this(5) {}
 public static void Main() {}
}

Here is an example in C++/CLI, using slightly different syntax:

ref struct R
{
 int value;
 R(int i)
 {
 value = i;
 }
 R() : R(5)
 {
 }
};
void main()
{
 R^ r = gcnew R();
 System::Console::WriteLine(r->value);
}

Running this example displays the number 5.
In this example, the R() constructor forwards construction to the R(int) constructor and continues construction

in the R() method.
Now beware, the following attempt is misguided:

ref struct R
{
 R(int i)
 {
 }
 R()
 {
 R(5);
 }
};
void main()
{
 R^ r = gcnew R();
}

Chapter 6 ■ Data types

81

This code does not work for the following reason: when the R() constructor calls R(5), it does not instruct the
compiler to forward construction to the R(int) constructor. Rather, it creates a temporary copy of R, initialized with 0,
which is discarded upon exit from the method. Figure 6-9 shows the R() constructor using .NET Reflector.

Figure 6-9. A failed attempt at constructor forwarding in C++/CLI

As you can see, the compiler creates a temporary of type R with a 5 as an initialization parameter, which does not
accomplish the same thing as C# constructor forwarding.

C# Partial Classes
C# allows the definition of a single class to span multiple files using the partial keyword. C++/CLI has no direct
analogue, as it supports a different paradigm. As alluded to previously, C++ allows you to place a class declaration in a
single header file and implement the class members in multiple C++ files, but this has nothing to do with the concept
of partial classes.

Reference Types on the Stack
A less-often-used feature of C++/CLI is the ability to declare and use a reference type as if it were a stack variable like
a value class. This is strictly syntactic sugar and is not needed for standard C++/CLI programming. Even though the
memory is still physically allocated on the managed heap, the compiler makes the object observe the semantics of an
object allocated on the stack.

Basic Types
Let’s look at Table 6-2, which contains the built-in C# types, to see how they map to C++/CLI.

Chapter 6 ■ Data types

82

Basic Type Differences
One important thing to note is that some of the common C# types have no analogue in C++/CLI or are slightly
different in C++/CLI and require some level of marshaling for conversion.

Missing Keywords
The string, object, and decimal keywords in C# have no corresponding built-in type in C++/CLI. Does this mean we
can’t use these types in C++? Not at all. In fact, because both C# and C++/CLI target the CLI, we can always resort to
specifying the CLI target type by name and using that instead.

Marshaling Required
What is marshaling? In general, a marshaler is a program that translates or packages data between two programs.
A marshaler may be required in a number of circumstances where two programs cannot operate seamlessly on a
single instance of data. The C++/CLI types wchar_t and bool have marshaling attributes attached to them in the
metadata for proper consumption from C# and other .NET languages. Attributes will be discussed in greater detail
in Chapter 20. Until then, let’s look at some marshaling attributes in the metadata.

Table 6-2. Mapping Basic C# Types to C++/CLI

C# C++/CLI Bytes .NET Type Signed Marshal Example

sbyte char 1 SByte Yes No –1, 'A'

byte unsigned char 1 Byte No No 3u, 0xff

short short 2 Int16 Yes No –1

ushort unsigned short 2 UInt16 No No 3u

int int or long 4 Int32 Yes No –1l

uint unsigned int or 4 UInt32 No No 3u, 3ul

unsigned long

long long long 8 Int64 Yes No –1ll

ulong unsigned long long 8 UInt64 No No 3ull

single float 4 Single Yes No 4.0f

double double 8 Double Yes No 3.0

string System::String^ N/A String N/A No "A"

object System::Object^ N/A Object N/A No N/A

decimal System:Decimal 16 Decimal Yes No N/A

char wchar_t 2 Char No Yes L'A'

bool bool 1 Boolean N/A Yes true

Chapter 6 ■ Data types

83

Consider the CIL for the following simple C++/CLI method. Note that Hello() takes a wchar_t as a parameter
and returns a bool; both of these types are marshaled:

ref class R
{
 bool Hello(wchar_t ch)
 {
 return true;
 }
};

Figure 6-10 shows the C# view of the Hello() method using .NET Reflector.

Figure 6-11. C++/CLI view of Hello()

As you can see, the MarshalAs(UnmanagedType.U1) return attribute is added to the bool return value, and
MarshalAs(UnmanagedType.U2) is added to the char value (which corresponds to the wchar_t).

The UnmanagedType enum is a member of System::Runtime::InteropServices and indicates the kind of data
being marshaled. If you want to see how the type is defined, you can find the definition in mscorlib.dll using .NET
Reflector. You will discover that U1 is 4 and U2 is 6 not that it really matters! Now let’s look at the C++/CLI version of
Hello() using .NET Reflector shown in Figure 6-11.

Figure 6-10. C# view of Hello()

Chapter 6 ■ Data types

84

Wait—where has the marshaling gone? Well, when we wrote the C++/CLI add-in, we realized that use of a
wchar_t or a bool always emits a MarshalAs attribute, so these attributes are suppressed from the output. On the other
hand, if you wanted to communicate something nonstandard, like marshaling a short as an unmanaged bool, as in
the following:

using namespace System::Runtime::InteropServices;
ref class R
{
 [returnvalue: MarshalAs(UnmanagedType::Bool)]short Hello(wchar_t ch)
 {
 return (short)true;
 }
};

then the C++/CLI .NET Reflector add-in would not suppress the marshal attributes, because they differ from the
default. We can see this in Figure 6-12.

Figure 6-12. C++/CLI Hello() with special marshaling

As you can see from the screenshot, the special marshaling we have added for our short conversion to
unmanaged bool displays clearly in .NET Reflector.

Table 6-3 lists the various strengths and weaknesses of the C++ class types.

Table 6-3. Feature Limitations by Class Type

Feature Native Class Ref Class Value Class Interface

Assignment operator X X

Class modifier X X X

Copy constructor X X

Delegate definitions X X X X

Default constructor X X

Destructor X X

Events X X X

Finalizer X

(continued)

Chapter 6 ■ Data types

85

Feature Native Class Ref Class Value Class Interface

Function modifiers X X X X

initonly field X X X

Literal field X X X

Member of delegate type X X

Override specifier X X X

Parameter arrays X X X X

Properties X X X

Reserved member names X X X X

Static constructor X X X

Static operators X X X X

Table 6-3. (continued)

Summary
That concludes our introduction to classes and class types.

If you didn’t understand everything in this chapter, that’s okay—go on to the next one. You see, the goal of this
chapter is not to drill in the details about the type system but to expose you to a little bit more of what is going on
behind the scenes. We will continue this strategy as the book unfolds and come back to the important concepts again
and again.

Next let’s look at that all-important basic data structure, the array.

	Chapter 6: Data Types
	C# Types versus C++ Types
	The C++ struct Keyword
	Native Classes

	Value Types and Reference Types
	Dynamic Memory Pools
	The Managed Heap
	The Stack
	The Native Heap

	Garbage Collection
	Initialization
	The C++/CLI Equivalent
	Uninitialized Declarations
	Initialization Variants
	Fields
	Multiple Constructors
	Static Initialization
	Static Constructors

	Boxing
	Method Boxing
	Example of Boxing and Unboxing
	Unboxing Dangers
	Safe Unboxing

	Constructor Forwarding
	C# Partial Classes
	Reference Types on the Stack
	Basic Types
	Basic Type Differences
	Missing Keywords
	Marshaling Required

	Summary

