
29

Chapter 3

Syntax

The pure and simple truth is rarely pure and never simple.

—Oscar Wilde

The previous chapters emphasized the similarities between C# and C++/CLI. Now we touch on the main areas where
they differ and begin to understand why. These include additional or different keywords, separators, and operators.

Keywords and Separators
In C++, the additional keyword namespace is required when using a namespace (see Table 3-1).

Table 3-1.  Namespaces in C# and C++/CLI

C# C++/CLI

using System.Threading; using namespace System::Threading;

System.Console.WriteLine("H"); System::Console::WriteLine("H");

Moreover, where C# uses dot as a general separator, C++ employs several different separators depending on
the context as well as the meanings of the items being separated. The most common of these separators are colon-
colon (::) and dot (.). The colon-colon separator, or scope resolution operator, is used to qualify identifiers with
namespaces, classes, properties, and events and to access static fields and methods. In both languages, the dot
separator, or member access operator, is used to access members of instances of classes.

The paradigms of C++, different separators in different contexts, and of C#, a single separator for all contexts, are
consistent with the overall design philosophy of each of the languages. C# favors simplicity, whereas C++ demands a
deeper level of specificity in exchange for greater flexibility.

Table 3-2 shows separator differences between C# and C++. I cover all these separators in detail as the book
progresses.

Chapter 3 ■ Syntax

30

C# and C++ define classes and structures differently. In addition to one obvious syntactic difference—C++
requires a trailing semicolon after a type definition—significant semantic differences exist. See Table 3-3 for an
example comparing classes and structures in C# and C++.

Table 3-2.  Separators in C++

Separator Name Meaning

:: colon-colon Scope resolution operator, used when the expression to the left of the :: is a
namespace, class, property, or event name and the expression to the right of the ::
is a namespace, class name, or static member of a class. With no left-expression, the
expression on the right is a global variable.

. dot Class member access operator, used when the expression to the left of the arrow is a
class object

-> arrow Class member access operator, used when the expression to the left of the arrow is a
pointer or handle to a class object

.* dot star Pointer to a member operator, used when the expression to the left of the arrow is a
class object and the expression to the right of the arrow is a pointer to a member of the
same class

->* arrow star Pointer to a member operator, used when the expression to the left of the arrow is a
pointer to a class object and the expression to the right of the arrow is a pointer to a
member of the same class

Table 3-3.  Classes and Structures in C# and C++/CLI

C# C++/CLI

class R {} ref class R {};

N/A ref struct R {};

struct V {} value class V {};

N/A value struct V {};

enum E {} enum class E {};

N/A enum struct E {};

N/A class C {};

N/A struct C{};

In C#, classes and structures are vehicles for implementing reference types and value types as defined by the CLI.
In C++, classes and structures define a type—in general, a related collection of fields and methods and subtypes.

C++/CLI introduces two class modifiers, ref and value, which provide a way to represent the CLI class types in
C++. Together with the class or struct keyword and separated by whitespace, as in ref class, they form a single
new keyword, appropriately called a whitespace keyword.

Reference types and value types are very important in .NET programming, and it’s a good idea to review these
types a bit before we continue. There are many practical differences between reference types and value types, but the
main differences relate to how they are allocated. A reference type is allocated in two parts. A reference type’s data is
allocated on the managed heap, while a separate handle to this data is allocated on the stack. A value type is allocated
automatically on the stack.

Chapter 3 ■ Syntax

31

A C# class is a reference type; so is a C# string. A C# struct and most C# built-in types, including int and char,
are value types. Value types contained in reference types, either explicitly or implicitly via boxing, become elements of
the reference type and are allocated on the managed heap.

C# class (Reference Type)
Suppose you have a C# class named Hello. Allocate an instance using
 
Hello h = new Hello();
 

From the syntax, it appears that you have created a single unified entity of type Hello. Behind the scenes there is
much more going on, as data was allocated on the stack as well as the managed heap. An instance of the Hello object
was allocated on the managed heap, and a handle to this instance was stored on the stack in the variable h.

C# struct (Value Type)
If Hello is defined as a C# struct, then a completely different operation occurs. The entire instance of Hello is
allocated on the stack, and h represents the instance of this object.

Caveat
The fact that reference types are divided between the stack and heap generates some interesting and somewhat
unintuitive results when you’re assigning values to reference types. When you assign one value type to another, you
copy the data associated with one instance of the type to another instance. When you assign one reference type to
another, you overwrite the handle to one instance with the handle of another instance. The instances themselves
remain unchanged.

Consider the following code in C#:
 
class Hello
{
 int i;
 Hello(int number)
 {
 i=number;
 }
 static void Main()
 {
 Hello h = new Hello(1);
 Hello j = new Hello(2);
 j = h;
 System.Console.WriteLine(j.i);
 h.i = 3;
 System.Console.WriteLine(j.i);
 }
}
 

Chapter 3 ■ Syntax

32

After compiling and running this code, we get

C:\>csc /nologo test.cs
C:\>test
1
3 

In this program, we allocate two objects of type Hello on the managed heap. The handles to these classes, h
and j, are allocated on the stack. We overwrite the handle in j with the handle in h and orphan Hello(2). Hello(2)
becomes available for reclamation by the garbage collector. Both h and j now reference the Hello(1) object, and
there is no difference between accessing the member field i using h or using j.

In other words, since Hello is a reference type, h and j are handles that point to data on the managed heap. When
the assignment j=h occurs, h and j both refer to the same data. Assigning 3 to h.i also affects j.i, and displaying j.i
results in the number 3.

Contrast
On the other hand, if Hello were a value type, you would see a different result. Change the declaration of Hello from
class to struct:
 
struct Hello
{ /**/ }
 

After compiling and executing the program, we see

C:\>csc /nologo test.cs
C:\>test
1
1 

The results are different this time, because our objects are all allocated on the stack and are overwriting one another.

Lack of Locality
A local inspection of the method Main() is insufficient to determine the results of the program. You cannot determine
what result the WriteLine will generate by just looking at the surrounding code. C# requires you to refer to the
definition of Hello and discover whether Hello is a class or a struct.

This lack of locality is dangerous and goes against the C++/CLI design philosophy. In C++/CLI, the distinction
between reference types and value types is much more explicit. The programmer specifies more precisely what he or
she wants to do, which avoids confusion and ultimately makes the code more maintainable. The cost is that the syntax
is slightly more difficult.

The C++ Approach
In C++/CLI, handles are typically flagged using the handle punctuator ^. It is also called a tracking handle, because it
points to an object that may be moved around during garbage collection.

Chapter 3 ■ Syntax

33

Translating the previous code to C++/CLI, we achieve the following:
 
private ref class Hello
{
private:
 int i;
 Hello(int number)
 {
 i=number;
 }
public:
 static void Main()
 {
 Hello ^h = gcnew Hello(1);
 Hello ^j = gcnew Hello(2);
 j = h;
 System::Console::WriteLine(j->i);
 h->i = 3;
 System::Console::WriteLine(j->i);
 }
};
void main()
{
 Hello::Main();
}
 

After compiling and executing, we get

C:\>cl /nologo /clr:pure test.cpp
C:\>test
1
3 

There are a few obvious syntactic differences from the C# version. However, I’d like to start off by pointing out a
semantic difference. In C++/CLI, changing Hello from a reference type to a value type, by changing the whitespace
keyword ref class to value class, does not produce different results on compilation and execution.

Changing the type from a reference type to a value type affected where the type was allocated, but it did not
change the fact that in the previous code snippet we are treating the data as referenced data. If Hello morphs into a
value type, then the compiler generates different IL, so that h and j remain handles to the data on the managed heap,
and the result is consistent. Behind the scenes, the value types are boxed—we’ll revisit that later in Chapter 6.

Types of Member Access Operators
The other important difference between the C++ snippet and the C# snippet is that C++ handles use a different class
member access operator. The syntax is similar to that of pointers in C++, as handles may be considered a special kind
of pointer. If you are working with a handle or pointer to an object, you use the arrow member access operator (->) to
access the object’s members. If you are working with an instance of the object itself, you use the dot member access
operator (.). Although it may seem more complicated to have two different types of member access operators, one
benefit is that code like our previous example always does what you expect it to, because you are forced to be mindful
of what you’re doing as you write—and that’s a good thing.

Chapter 3 ■ Syntax

34

Keyword Differences
In this section, we go over the keyword differences between C# and C++. Most of these differences are because of the
evolution of the C++ language and the compatibility and disambiguation restrictions for adding to the C++ grammar.

Let’s begin with the foreach keyword, shown in Table 3-4.

Table 3-4.  foreach in C# and for each in C++/CLI

C# C++/CLI

foreach for each

Table 3-5.  Examples of foreach in C# and for each in C++/CLI

C# C++/CLI

using System; using namespace System;

using System.Collections; using namespace System::Collections;

class R ref class R

{ {

public:

 static void Main() static void Main()

 { {

 ArrayList list = new ArrayList(0); ArrayList ^list = gcnew ArrayList(0);

 list.Add("hello"); list->Add("hello");

 list.Add("world"); list->Add("world");

 foreach (Object o in list) for each (Object ^o in list)

 { {

 Console.WriteLine(o); Console::WriteLine(o);

 } }

 } }

} };

void main()

{

 R::Main();

}

In C++/CLI, the keyword for each has a space, and the usage differs slightly from foreach in C#. The converted
code appears in Table 3-5.

Chapter 3 ■ Syntax

35

Review
Let’s review what you’ve seen so far. Differences between C# and C++/CLI include the following:

The additional keyword •	 namespace is used.

Namespaces are separated by colon-colon (•	 ::) instead of a dot (.).

•	 ref class is used instead of class.

The punctuator •	 ^ is used to declare handles.

An arrow (•	 ->) is used as a handle member access operator, not a dot (.).

•	 for each contains a space.

The class definition ends with a semicolon (•	 ;).

C++/CLI begins programs with a global function named •	 main().

Now let’s continue on; you can see that C++/CLI uses the keyword nullptr instead of null in Table 3-6.

Table 3-6.  null and nullptr

C# C++/CLI

null nullptr

These keywords are used as shown in Table 3-7.

Table 3-7.  Usage of null and nullptr

C# C++/CLI

class R ref class R

{ {

 static void Main() static void Main()

 { {

 R r = null; R ^r = nullptr;

 } }

} };

There are significant differences between switch and goto in C# and C++, as introduced in Table 3-8.

Table 3-8.  switch, case, and goto in C# and C++

C# C++

Does not allow case statements to fall through Allows case statements to fall through

goto case_statement N/A

goto label goto label

switch(string s) N/A

Chapter 3 ■ Syntax

36

In C#, if a break or goto is missing from a nonempty case statement, the compiler issues an error. In C++,
execution is said to fall through from a case to the case below it and continue with the next case.

Both languages support a goto keyword to a user-defined label. C# allows an explicit goto to a case statement.
There is no C++ equivalent, and the reason is largely historical. In C, a switch/case/break construct was not so much
a formal fork as a macro replacement for goto. The cases are not distinct blocks, but rather labels that act as switch
targets. C switches were modeled after assembly language jump tables. C++ retains its heritage. C# attempts to employ
a more formal abstraction, where the cases are truly distinct and disconnected entities, so C# naturally does not
support fall through. Both abstractions have their respective advantages and disadvantages.

The C# construct switch(string) is not supported in C++. In C++, you must expand your switch statement
using if and else. See Table 3-9 for example uses of switch in goto and fall through cases in C# and C++.

Table 3-9.  Usage of switch in C# and C++

C# C++

// switch on a System.String and goto case // equivalent to switch on a System::String

string s="1"; System::String ^s="1";

switch(s) if(s=="1")

{ {

 case "1": }

 goto case "2"; else if(s=="2")

 case "2": {

 break; }

}

// fall through case not available // fall through case

int i,j=0;

switch(i)

{

 case 1:

 j++;

// no break, so case 1 falls into case 2

 case 2:

 break;

}

Chapter 3 ■ Syntax

37

Although they both are implemented using System::Array, C++/CLI uses a pseudo-template syntax for their
declaration. Managed arrays will be explained in further detail in Chapter 7. Pseudo-template syntax is consistent with
the way extensions have been added to the C++ language in the past, such as for the cast operators (see Chapter 16).

In both C# and C++, you can attach modifiers to function arguments. C# and C++/CLI pass parameter arrays,
reference parameters, and out parameters differently, as shown in Table 3-11.

Table 3-10.  Managed Arrays in C# and C++/CLI

C# C++/CLI

reftype [] array<reftype^>^

valuetype [] array<valuetype>^

class R ref class R {};

{

 static void Main() void main()

 { {

 R[] n = new R[5]; array<R^> ^n = gcnew array<R^>(5);

 int[] m = {1, 2, 3, 4}; array<int> ^m = {1, 2, 3, 4};

 m[3]=0; m[3]=0;

 } }

}

Arrays and Functions
Managed arrays are declared differently in C++/CLI (see Table 3-10).

Table 3-11.  Function Argument Modifiers

C# C++/CLI

params T[] ... array<T> ^

ref %

out [System::Runtime::InteropServices::Out] %

We will revisit these later.

The Conversion Operators
The operations performed by the C# operators is and as may be performed by the C++ pseudo-template casting
operators static_cast<>() and dynamic_cast<>() (see Table 3-12).

Chapter 3 ■ Syntax

38

Conversion operators will be explained in further detail in Chapter 16.

Memory Allocation
The new operator indicates allocation on the native heap in C++. The gcnew operator was added in C++/CLI to indicate
allocation on the managed heap. C# also uses the new operator to allocate value types on the stack. In C++, this is
unnecessary, as the C++ syntax for allocating instances of user-defined value types is identical to the syntax for
built-in types such as int. See Table 3-13 for a list of keywords used in allocation on the managed heap.

Table 3-13.  Allocation on the Managed Heap in C# and C++/CLI

C# C++/CLI

new (reference types) gcnew

new (value types) No operator is necessary

Table 3-12.  C# and C++/CLI Conversion Operators

C# C++/CLI

as dynamic_cast<>()

as static_cast<>()

is (dynamic_cast<>()!=nullptr)

A short example of memory allocation on both the native and managed heaps in C++/CLI follows:
 
value struct V {}; //value type
ref struct R {}; //reference type
struct N {}; //native type
void main()
{
 N n;
 N *pN = new N();
 R ^r = gcnew R();
 V v;
}
 

Memory allocation will be discussed in further detail in Chapter 6.

Accessibility and Visibility
The accessibility and visibility keywords are similar, but the syntax is different. The keyword differences are listed in
Table 3-14, and the syntactic differences will be explained in detail in Chapter 8.

Chapter 3 ■ Syntax

39

Properties, Events, and Delegates
In Chapter 10, we will discuss properties, events, and delegates, but see Table 3-15 for an introduction.

Table 3-14.  Basic Protection Mechanisms

Type Attributes C# C++/CLI

Public public public:

NotPublic private private:

Assembly internal internal:

Family protected protected:

FamilyOrAssembly internal protected protected public:

FamilyAndAssembly N/A protected private:

Table 3-15.  Simple Example of a Property in C# and C++/CLI

C# C++/CLI

class R ref class R

{ {

private:

 private int V; int V;

public:

 public int Value property int Value

 { {

 get int get()

 { {

 return V; return V;

 } }

 set void set(int newV)

 { {

 V = value; V = newV;

 } }

 } }

} };

Chapter 3 ■ Syntax

40

Generics
In Chapters 14 through 16, you will learn about generics and templates, but see Table 3-16 for an introduction.

Table 3-16.  Simple Example of a Generic in C# and C++/CLI

C# C++/CLI

public class R<T> generic <typename T> public ref class R

{ {

private:

 private T m_data; T m_data;

public:

 public R(T data) R(T data)

 { {

 m_data = data; m_data = data;

 System.Console.WriteLine(m_data); System::Console::WriteLine(m_data);

 } }

} };

public class R1

{

 static void Main() int main()

 { {

 R<int> r = new R<int>(3); R<int> ^r = gcnew R<int>(3);

 } }

}

Built-in Types
C# and C++/CLI map to the CLI types with different keywords, and the C++/CLI mappings are consistent with native
C++ to the extent possible. See Table 3-17 for an introduction before we go into greater detail in Chapter 6.

Chapter 3 ■ Syntax

41

Summary
Although the sheer volume of differences between C# and C++ may seem daunting at first, after a while a pattern
emerges. Each language is intelligently designed and internally consistent, and C++ syntax will become intuitive quite
soon. In the next chapter, we will apply what we’re learning by converting a C# program to C++/CLI line by line.

Table 3-17.  Built-in Types

C# C++/CLI

byte char

sbyte signed char

short short

ushort unsigned short

int int, long

uint unsigned int, unsigned long

long long long

ulong unsigned long long

single float

double double

string System::String^

object System::Object^

decimal System:Decimal

char wchar_t

bool bool

	Chapter 3: Syntax
	Keywords and Separators
	C# class (Reference Type)
	C# struct (Value Type)
	Caveat
	Contrast

	Lack of Locality
	Review

	The C++ Approach
	Types of Member Access Operators
	Keyword Differences
	Arrays and Functions
	The Conversion Operators
	Memory Allocation
	Accessibility and Visibility

	Properties, Events, and Delegates
	Generics
	Built-in Types

	Summary

