
169

Chapter 11

Expressions and Operators

Argue for your limitations, and sure enough, they’re yours.

—Richard Bach, Illusions

In this chapter, we’ll cover expressions and operators in the context of how they differ from C#. We’ll start with a
caveat: don’t assume that expression evaluation is the same in C# and C++. C# and C++/CLI have different rules that
control the evaluation of expressions, and this can surprise you if you’re writing overly complex expressions.

Here is an old C++ trick that often shows up on interview questions. It is not guaranteed to work according to the
C++ standard, but it works on all of the major C++ compilers for the x86. It is called the XOR swap, and it allows you to
swap the values of two integers without declaring an explicit temporary. The code follows:
 
using namespace System;
void main()
{
 int i=3, j=6;
 Console::WriteLine("{0}, {1}", i, j);
 i ^= j ^= i ^= j;
 Console::WriteLine("{0}, {1}", i, j);
}
 

Let’s run it:

C:\>cl /clr:pure /nologo test.cpp
C:\>test
3, 6
6, 3 

Look at the following line:
 
i ^= j ^= i ^= j;
 

As you can see, it swaps the values of i and j, because it evaluates the same as the following:
 
i ^= j;
j ^= i;
i ^= j;
 

Chapter 11 ■ Expressions and Operators

170

The first XOR swap stores the bitwise difference between i and j in i. The next line changes j by this difference,
turning it into i. The last line, in turn, changes what’s left of i into j by changing what was originally i (currently j) by
the difference (currently i) too. This relies on the following identities for exclusive OR:
 
x == y ^ (x^y)
 

It more or less breaks up x and y into two parts: the part they have in common, and the part that differs, like
taking two numbers and knowing they are equidistant from their average.

Now let’s try to do this in C#:
 
using System;
class R
{
 public static void Main()
 {
 int i=3, j=6;
 Console.WriteLine("{0}, {1}", i, j);
 i ^= j ^= i ^= j;
 Console.WriteLine("{0}, {1}", i, j);
 }
}
 

The results follow:

C:\>csc /nologo test.cs
C:\>test
3, 6
0, 3 

As you can see, this just does not work. It’s probably just a lack of parentheses, right? What if we try this?
 
i ^= (j ^= (i ^= j));
 

That won’t work either; we get the same results. The answer here is that C# and C++ evaluate expressions
differently. The rules are pretty complicated, and you don’t really need to know them that well unless your chosen
vocation is rules lawyer.

Note■■  I n this case, the C# code evaluates differently, because C# separates the evaluation of an expression with the
evaluation of a variable, in order to help optimizers. C++ evaluates expressions as parenthesized; C# is free to scan
the entire statement, preevaluate variables, and use those values to evaluate the expression. This code relies on the
interim values of i and j being updated in the middle of the expression in order to work correctly.

It’s good programming practice simply to avoid these esoteric constructs. The easy and safe way to write code
that works correctly with both languages is to subdivide the expression:
 
i ^= j;
j ^= i;
i ^= j;
 

Chapter 11 ■ Expressions and Operators

171

This sequence works correctly in both C# and C++. Ten years ago, weaving these expressions together might have
produced faster code; today’s optimizing compilers are sophisticated enough to figure out what you’re trying to do
and compensate for the expansion.

Operator Overloading
One of the most important aspects of C# and C++/CLI is the support that they offer for elevating user-defined types to
the level of built-in types; one important aspect of this is the ability to define operators to work with new types.
The examples most commonly encountered in the published literature define types for complex variables or fractions,
but that is really just the tip of the iceberg. It is also common practice to define operators to perform operations that
have absolutely nothing to do with their mathematical definitions, pushing the boundaries of our limited paradigms
and often redefining new ones.

Of course, there are limitations, which include the following:

Unary operators must remain unary; binary operators must remain binary. In other words, •	
you cannot redefine the plus sign (+) to take three arguments instead of two.

You cannot make up operators that do not exist. You cannot define a •	 /% operator, even though
it could logically be disambiguated by the grammar. You are limited to the language’s built-in
operators.

You cannot control the predefined order of evaluation, and you can’t expect complicated •	
expressions to evaluate the same way across C++/CLI and C#. As mentioned before, C# and
C++/CLI have different rules that control the evaluation of expressions.

Complex Numbers, a Basic Example
Recall that we can consider a simple complex number class in C++/CLI and that complex numbers are numbers
of the form:

a + bi

where

i = -1

This helps us to lay a foundation for Chapter 15, when we revisit complex numbers using templates in the context
of numbers of the form:

()a b+ 5

This form is very useful when working with the golden ratio:

f = +
1

2
1 5()

Using the golden ratio, we can calculate the Fibonacci numbers with a nonrecursive, simple, closed form.1

1Knuth, Donald E. Art of Computer Programming, vol. 1: Fundamental Algorithms, 3rd ed. (Boston: Addison-Wesley, 1997).

Chapter 11 ■ Expressions and Operators

172

A Review of Complex Numbers
A review of the fundamental mathematical operations using complex numbers follows:2

Addition:

(a + bi) + (c + di) = (a + c) + (b+d)i

Subtraction:

(a + bi) - (c + di) = (a - c) + (b - d)i

Complex conjugation:

() ()a bi a bi+ = -

Multiplication:

(a + bi) ´ (c + di) = (ac - bd)+(ad + bc)i

Division by a scalar (real) number:

()a bi

m

a

m

b

m
i

+
= +

Division between complex numbers: Using complex conjugation, multiplication, division by
a scalar, and the following identity,

()() ()c di c di c d+ + = +2 2

we can derive division between complex numbers:

()

()

() ()

() ()

a bi

c di

a bi c di

c di c di

+
+

=
+ ´ +
+ ´ +

Note how this divide operation defers to complex conjugation as well as multiplication for calculation
of the quotient.

Simple Implementation
We implement this class by defining class data as well as the operators that act on the data. The class data is, very
simply, two doubles that correspond to the real part and the imaginary part, which is multiplied by the following:

i = -1

2�These are derived from the associative, commutative, and distributive laws of the field of complex numbers, along with the
definition of i.

Chapter 11 ■ Expressions and Operators

173

The data structure follows:
 
value struct Complex
{
 double re;
 double im;
}
 

As for the operators themselves, there are several ways to define them, depending on whether we want our
code to be Common Language Specification (CLS) compliant (we’ll revisit this later in the chapter). Essentially, our
operators are static member functions, and they return objects rather than references.

Unary Operators

CLI unary operations have the following format:
 
static type operator op (type a)
 

We’ll use the following operator in our class:

Complex conjugation:

static Complex operator ~ (Complex a);

Binary Operators

CLI binary operations have the following format:
 
static type operator op (type a, type b)
 

We’ll use these operators in our class:

Addition:

static Complex operator + (Complex a, Complex b);

Subtraction:

static Complex operator - (Complex a, Complex b);

Multiplication:

static Complex operator * (Complex a, Complex b);

Division by double:

static Complex operator / (Complex a, double b);

Division by complex:

static Complex operator / (Complex a, Complex b);

Chapter 11 ■ Expressions and Operators

174

Order Matters

Note that the code makes no assumption of commutativity; it is perfectly reasonable to define a/b to be different from
b/a, so it is also possible to implement the following line:
 
static Complex operator / (Complex a, double b)
 
in a different method from this line:
 
static Complex operator / (double a, Complex b)

The Product of Our Efforts

The completed program follows:
 
using namespace System;
value struct Complex
{
 double re;
 double im;
 Complex(double re, double im)
 {
 this->re = re;
 this->im = im;
 }
 static Complex operator + (Complex a, Complex b)
 {
 return Complex(a.re+b.re, a.im+b.im);
 }
 static Complex operator - (Complex a, Complex b)
 {
 return Complex(a.re-b.re, a.im-b.im);
 }
 static Complex operator ~ (Complex a)
 {
 return Complex(a.re, - a.im);
 }
 static Complex operator * (Complex a, Complex b)
 {
 return Complex(a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re);
 }
 static Complex operator / (Complex a, Complex b)
 {
 return a / (b.re*b.re+b.im*b.im) * ~b;
 }
 virtual String ^ ToString() override
 {
 String ^s = re.ToString();
 if(im != 0)
 {
 return s += " + " + im.ToString() + "i";
 }

Chapter 11 ■ Expressions and Operators

175

 return s;
 }
private:
 static Complex operator / (Complex a, double f)
 {
 return Complex(a.re/f, a.im/f);
 }
};
void main()
{
 Complex a(-5,10), b(3,4);
 Console::WriteLine("({0}) / ({1}) = {2}",a,b,a/b);
}
 

As you can see, the basic operators +, -, *, and / have been overloaded to operate on Complex types rather than
the subtypes they are based on, which in this case is double.

The unary complement operator ~ from Boolean logic doesn’t intuitively correspond to any operation that you
would perform on a complex number over the real numbers. It is, therefore, an ideal candidate for satisfying our
need for a unary operator for complex conjugation, which we need to implement operator/. The compiler does not
enforce any logical paradigm beyond number of arguments and argument type. You are free to define operator* as
division and operator/ as multiplication. This, of course, is bad form unless obfuscation is your goal.

The results from a quick compile and run follow:
 

C:\>cl /clr:pure /nologo test.cpp
C:\>test
(-5 + 10i) / (3 + 4i) = 1 + 2i

Resolution of Overloads
You might also have noticed that there are two different operator/ methods for division. Both C# and C++ have built-
in rules for choosing which method to call, but these differ in surprising ways. Two methods that share the same name
yet have different parameters are called overloads. The process of determining the closest match for a given set of
parameters is called overload resolution, and I introduce it here in the context of operator/, though it will continue to
be a topic we cover in passing.

Suppose we replace the previous main() function with the following one:
 
void main()
{
 Complex a(-5,10);
 float b = 5.0f;
 Console::WriteLine("({0}) / ({1}) = {2}",a,b,a/b);
}
 

Let’s run this example:
 

C:\>cl /clr:pure /nologo test.cpp
C:\>test
(-5 + 10i) / (5) = -1 + 2i

 

Chapter 11 ■ Expressions and Operators

176

When this example is executed, the compiler needs to look up how to calculate a/b, where the variable a is of
type Complex, and the variable b is of type float.

The compiler parses a/b and begins to look for a compatible method of the form
 
operator/(Complex a,float b)
 

In the source of the program, there is no method that has this exact signature, so the compiler gathers up a list of
possible candidate methods and tries to determine the best match. In this case, the possible choices are as follows:
 
operator/(Complex a,double b)
operator/(Complex a,Complex b)
 

Neither of these is an exact match. There are well-defined rules within the C++ standard governing the resolution
of overloads, and these rules apply not only to operators but to functions in general. I don’t want to dwell too much on
this; for now, know that the intuitive choice in this case is the winner. A permitted operation is to promote (extend) the
float to a double and choose the following:
 
operator/(Complex a,double b)
 

The rules for overload resolution provide a multitiered approach to dealing with implicit and explicit conversions.
Certain conversions are favored over other conversions, and this is anything but arbitrary. At first glance, it does not
seem to be a topic fraught with danger, but consider the following: Suppose we added an implicit conversion from
double to Complex to our code. If the compiler could perform this conversion automatically, would we have to worry
about creating an infinite recursion? Since operator/(Complex, Complex) calls operator/ (Complex, double),
adding an implicit conversion from double to Complex might result in either an ambiguity or an infinite loop. In
this case, it does not because of the prioritization rules in the C++ specification, which assign a rank to each type of
conversion and prioritize them by rank. We’ll discuss implicit and explicit conversions later on in the chapter.

Just when you thought that the subject of complex numbers was getting too mathematical, brace yourself—I am
pleased to present the following mathematical diversion.

A Mathematical Diversion: Numbers Modulo Primes
Both C# and C++/CLI use the percent sign as an operator for the calculation of one number modulo a different
number. Recall that (number%p) is equal to the remainder when number is divided by p. It is easy to define a class of
numbers modulo a number p. The following is simply the set of numbers:

{0,1, . . . (p - 1)}

Now we just need to figure out how to perform operations on them.
We can easily redefine the basic operators of addition, multiplication, and subtraction by calculating the result

modulo p. Division would normally cause us to run into the use of fractions, but a result from elementary number
theory tells us that division can be defined without fractions when the modulus p is prime. For example, let’s consider
the numbers modulo 13, and suppose we’re trying to figure out what a quarter, 1 divided by 4, is. In other words, what
is the inverse of 4?

A simple calculation shows that (4 * 10) % 13 = 1, since 4*10=40=39+1, thus 1 is the remainder when 40 is
divided by 13.

Chapter 11 ■ Expressions and Operators

177

Let’s use the compiler to prove this:
 
using namespace System;
void main()
{
 Console::WriteLine("4 * 10 = {0} (13)", 4*10%13);
}
 

When we compile and execute this, we have the following:
 

C:\>cl /nologo /clr:pure test.cpp
C:\>test
4 * 10 = 1 (13)

 
10 is the inverse of 4. If we divide both sides by 4, we get the following:

1

4
10º modulo 13

because

4 10 1 13 3 1´ = + ´ º

Likewise, all nonzero numbers modulo 13 have an inverse in the same way. To find it, we have to use another
result from number theory. It turns out, that for every two numbers a and b, there exist numbers x and y such that

ax by a b+ = gcd (,)

If one of the numbers is a prime, and the other is not a multiple of this prime, then the greatest common divisor
(gcd) of these two numbers is 1, and we have the following:

ax py+ =1

Since any multiple of p is 0 by definition, we get

py pº 0 modulo

Read the preceding expression as follows: py is congruent to 0 modulo p, since py has remainder 0 when divided
by p. Combining these facts, we conclude that there exists a number x such that

ax pº1 modulo

Chapter 11 ■ Expressions and Operators

178

In other words, we just need to find the number x, and we have our inverse! I won’t bore you with any more
details or derivations, but there is an extended version of the Euclidean algorithm that will do this for you.3 It’s in the
following code; note that ExtendedEuclid() is implemented as a global function, not a class method, and it takes
references to integers as some of its parameters:
 
using namespace System;
void ExtendedEuclid(int a, int b, int %d, int %x, int %y)
{
 if(b==0)
 {
 d=a;
 x=1;
 y=0;
 }
 else
 {
 ExtendedEuclid(b,a%b, d, y, x);
 y-= (a/b)*x;
 }
}
value struct F13
{
 unsigned Value;
 initonly static unsigned P = 13;
 F13(unsigned Val)
 {
 Value = Val % P;
 }
 static F13 operator * (F13 arg1, F13 arg2)
 {
 return F13((arg1.Value * arg2.Value) % P);
 }
 static F13 operator + (F13 arg1, F13 arg2)
 {
 return F13((arg1.Value + arg2.Value) % P);
 }
 static F13 operator - (F13 arg1, F13 arg2)
 {
 return F13((arg1.Value - arg2.Value) % P);
 }
 static F13 operator - (F13 arg1)
 {
 return F13((P - arg1.Value) % P);
 }

3Cormen, Thomas H. Introduction to Algorithms, 2nd ed. (Cambridge, MA: MIT Press, 2001).

Chapter 11 ■ Expressions and Operators

179

 static F13 operator / (F13 arg1, F13 arg2)
 {
 int d, x, y;
 ExtendedEuclid(arg2.Value,P,d,x,y);
 return arg1*F13(x*d);
 }
 virtual String ^ ToString() override
 {
 Value = (Value+P) % P;
 String ^s = Value.ToString();
 return s;
 }
};
void main()
{
 F13 a(6), b(9), c(4), d(10);
 Console::WriteLine("{0} * {1} is {2}", a, b, a*b);
 Console::WriteLine("{0} / {1} is {2}", a, b, a/b);
 Console::WriteLine("{0} * {1} is {2}", c, d, c*d);
}
 

And here are the results:
 

C:\>cl /clr:pure /nologo test.cpp
C:\>test
6 * 9 is 2
6 / 9 is 5
4 * 10 is 1

Implicit and Explicit Conversions of Built-in Types
Both C# and C++/CLI support defining implicit and explicit conversions between types. This is the user-defined
type equivalent of promoting a float to a double or a short to an int. Implicit conversions are the conversions that
the compiler can apply automatically, where explicit conversions require a cast operator. Let’s talk a little bit about
conversions between built-in types.

Conversion Differences Between C# and C++
Unfortunately, the implicit conversions over the built-in types differ between C++ and C#. C++ is historically
notoriously lax in preventing conversions that risk data loss. Consider the following example:
 
using namespace System;
void main()
{
 long l=65537;
 short s=0;
 s=l;
 l=s;
 Console::WriteLine(l);
}
 

Chapter 11 ■ Expressions and Operators

180

Now let’s give this a try:
 

C:\>cl /clr:pure /nologo test.cpp
C:\>test
1

 
In this case, the compiler implicitly converted between short and long, and vice versa, without a warning as to

the possible loss of data. If we raise the warning level to 3, we get the following output:
 

C:\>cl /clr:pure /nologo /W3 test.cpp
test.cpp(6) : warning C4244: '=' : conversion from 'long' to 'short', possible loss
of data

 
Now that’s more like it!
Suppose we change the long to an int and compile at warning level 3. The data loss remains:

 

C:\>cl /clr:pure /nologo /W3 test.cpp
C:\>test
1

 
At best, that’s an annoyance. At worst, it’s a recall-class bug. Luckily, if we boost the warning level to level 4,

we get the following:
 

C:\>cl /clr:pure /nologo /W4 test.cpp
test.cpp
test.cpp(6) : warning C4244: '=' : conversion from 'int' to 'short', possible loss
of data

 
The only problem with level-4 warnings is that they are considered more advisory than diagnostic, and

sometimes come up as spurious or noisy warnings. The lesson learned is that you need to be careful. The C++
compiler isn’t watching your back as much as the C# compiler in this area, and as I’ve recommended before, when
you’re developing your code, turn on /W4 warnings every now and then.

Signed/Unsigned Mismatches
The C++/CLI compiler does have the ability to warn if you attempt to assign a signed value to an unsigned variable
and vice versa. It is disabled by default, but can be enabled using the /Wall compiler option, which enables all
warnings that are disabled by default in the compilation.

For example, consider the following:
 
void main()
{
 unsigned u=0;
 int i=0;
 i=u;
}
 

Chapter 11 ■ Expressions and Operators

181

After compiling, we get
 

C:\>cl /Wall /nologo test.cpp
test.cpp(5) : warning C4365: '=' : conversion from 'unsigned int' to 'int',
signed/unsigned mismatch

Integer Conversion Tables
Let’s go over some of the built-in conversions in C++ and C#. Use the following list of abbreviations as a key to
interpret the integer conversion tables (Table 11-1 to Table 11-5):

ex: Explicit

im: Implicit, no warning

i2: Implicit, warning level 2

i3: Implicit, warning level 3

i4: Implicit, warning level 4

ia: Implicit, warning /Wall only (to indicate signed/unsigned mismatch)

X: No conversion needed

Let’s first look at the integer types in Table 11-1.

Table 11-1.  C++/CLI Conversion Table for a Sampling of Built-in Integer Types

C++ From

To From
short

From
int

From
long

From
long long

From
unsigned int

From unsigned
long long

To short X i4 i3 i3 i4 i3

To int im X im i3 ia i3

To long im im X i3 ia i3

To long long im im im X im ia

To unsigned int ia ia ia i3 X i3

To unsigned
long long

ia ia ia ia ia X

Let’s look at the C# table for the integer types in Table 11-2.

Chapter 11 ■ Expressions and Operators

182

Remember when you read these tables that you must take into account that long means a different thing in C#
than in C++. In C++/CLI, both long and int are aliases for System::Int32, and long long is used for System::Int64,
whereas C# achieves it by using long. Table 11-3 is an excerpt from the type table included in Chapter 6.

Table 11-2.  C# Conversion Table for a Sampling of Built-in Integer Types

C++ From

To From
short

From
int

From
long

From
uint

From
ulong

To short X ex ex ex ex

To int im X ex ex ex

To long im im X im ex

To uint ex ex ex X im

To ulong ex ex ex im X

Table 11-3.  A Partial Type Table

C# C++/CLI Size Type Signed Marshal Example

short short 2 Int16 Yes No –1

ushort unsigned short 2 UInt16 No No 3u

int int 4 Int32 Yes No –1l

uint unsigned int 4 UInt32 No No 3ul

long long long 8 Int64 Yes No 3ll

ulong unsigned long long 8 UInt64 No No 3ull

float float 4 Single Yes No 4.0f

double double 8 Double Yes No 3.0

Now let’s look at the conversion tables. You may notice in the C# table that there is no possible loss of data. I’m
a C++ advocate, but I must admit that I prefer the C# implementation in this area. Notice also that C++/CLI also
considers implicit every conversion that C# considers implicit but still reports a signed/unsigned mismatch when
extending from unsigned int to long.

The good news is that, when we look at these tables, we discover that C++/CLI has a way to get the same warning
levels you’ve come to expect in C#. It’s unintuitive but simple—don’t use int.

In C++/CLI, int and long both map to System::Int32, and unsigned int and unsigned long both map to
System::UInt32, but they are treated differently for warning purposes by the C++ compiler. Much of the reason for
this is historical; short and long were initially defined as the minimum and maximum integer sizes supported by
the target architecture. The type int was defined as the most efficient size for the target architecture. Over time,
implementations found that this sort of floating definition made porting programs between platforms problematic.
This led to the current implementation on .NET which fixes short at 16 bits, and int and long at 32 bits. The type long
long was added to the language for 64 bits for .NET.

For other target architectures, int is either implemented as a short or a long, making the issuance of warnings
problematic. The unofficial programming practice was to use int when you didn’t really care about conversion
problems and needed fast, efficient code; if the data itself called for it, you’d use short or long. This practice still
applies today in .NET: use short and long over int, and the compiler will do its part and issue warnings.

Now let’s have a look at floating point conversions.

Chapter 11 ■ Expressions and Operators

183

Floating Point Conversion Tables
Let’s examine some cross conversions in C++ in Table 11-4.

Table 11-4.  C++ Conversion Table for Floating Point Types and for a Sampling of Integer Types

C++ From

To From int From float From double

To int X i2 i2

To float i2 X i3

To double im im X

Table 11-5.  C# Conversion Table for Floating Point Types and for a Sampling of Integer Types

C++ From

To From int From float From double

To int X ex ex

To float im X ex

To double im im X

Let’s examine some cross conversions in C# in Table 11-5.

One interesting thing to note about the floating point conversion tables is that C++ issues a level 2 warning when
promoting an int to a float but not when promoting an int to a double. Consider the following snippet:
 
using namespace System;
void main()
{
 int i0 = int::MaxValue;
 int i;
 float f;
 double d;
 f = i0;
 i = f;
 Console::WriteLine("int {0}, to float {1}, back to int {2}", i0, f, i);
 d = i0;
 i = d;
 Console::WriteLine("int {0}, to double {1}, back to int {2}", i0, d, i);
}
 

Chapter 11 ■ Expressions and Operators

184

In this example, we take the maximum positive integer and convert it to a float and back, with loss of data.
Even though int and float are both 4 bytes long, float uses some of those bits to store exponent and sign
information, so it is not able to store the integer information with full precision. If you take a similar round-trip using
double, there is no data loss. Thus, the warning is correct:
 

C:\>cl /clr:pure /nologo /W4 test.cpp
test.cpp(8) : warning C4244: '=' : conversion from 'int' to 'float', possible loss
of data
test.cpp(9) : warning C4244: '=' : conversion from 'float' to 'int', possible loss
of data
test.cpp(12) : warning C4244: '=' : conversion from 'double' to 'int', possible loss
of data
C:\>test
int 2147483647, to float 2.147484E+09, back to int -2147483648
int 2147483647, to double 2147483647, back to int 2147483647

 
You might think there is a problem with the C# compiler, as it allows the conversion from int to float without

warning about possible loss of data. However, C# requires the conversion back to int from float to have an explicit
conversion or cast, so you can argue that a warning on the outbound direction is extraneous. The C# code follows:
 
using System;
class R
{
 public static void Main()
 {
 int i0 = int.MaxValue;
 int i;
 float f;
 double d;
 f = i0;
 i = (int)f;
 Console.WriteLine("int {0}, to float {1}, back to int {2}", i0, f, i);
 d = i0;
 i = (int)d;
 Console.WriteLine("int {0}, to double {1}, back to int {2}", i0, d, i);
 }
}
 

The results for the C# version follow:
 

C:\>csc /nologo test.cs
C:\>test
int 2147483647, to float 2.147484E+09, back to int -2147483648
int 2147483647, to double 2147483647, back to int 2147483647

 
Note that the C# version required explicit conversions in order to compile.

Chapter 11 ■ Expressions and Operators

185

User-Defined Conversions
In the same way that the compiler defines implicit and explicit conversions between built-in types, users can define
implicit and explicit conversions between user-defined types. In C#, you use the implicit and explicit keywords.
In C++/CLI, conversions are implicit by default, and you use the explicit keyword to specify an explicit conversion.

Implicit Conversions
In our Complex class, we used a private helper function to define division of a complex number by a double. Why not
expose this? Beyond that, why not allow users to multiply a complex number by a double or a double by a complex
number?

We could write specific overloads for each of these operations, or we could define an implicit operator that
converts a double to a Complex. Here it is, in C++/CLI syntax; it is a static member function that takes a double
parameter:
 
static operator Complex(double re)
{
 return Complex(re,0);
}
 

Now users can perform all of the basic mathematical operations on complex numbers and doubles. Here is a new
version of main() that uses this implicit operator:
 
void main()
{
 Complex a(-5,10), b(3,4);
 double c(3.5);
 Console::WriteLine("({0}) / ({1}) = {2}",a,b,a/b);
 Console::WriteLine("({0}) * ({1}) = {2}",a,c,a*c);
 Console::WriteLine("({0}) / ({1}) = {2}",c,a,c/a);
}
 

After compiling and running, we get the following:
 

C:\>cl /clr:pure /nologo test.cpp
C:\>test
(-5 + 10i) / (3 + 4i) = 1 + 2i
(-5 + 10i) * (3.5) = -17.5 + 35i
(3.5) / (-5 + 10i) = -0.14 + -0.28i

 
That’s a lot of power for a little bit of work. What about going the other direction, from a Complex to a double?

Explicit Conversions
Going from a Complex to a double is going to involve some data loss, so this should not be an implicit conversion.
What might this mean? Should we project the complex number onto the real line, and just return the real part of the
complex number? Should we return the magnitude of the complex number? Should a conversion to double even
exist? It’s really up to us to decide which way to go.

Chapter 11 ■ Expressions and Operators

186

Personally, I am drawn to the idea of using magnitude:

| |a bi a b+ = +2 2

The explicit conversion looks the same as the implicit conversion, except for the explicit keyword:
 
static explicit operator double(Complex c)
{
 return Math::Sqrt(c.re*c.re + c.im * c.im);
}
 

Just for neatness, we can replace the following code:
 
static Complex operator / (Complex a, Complex b)
{
 return a / (b.re*b.re+b.im*b.im) * ~b;
}
 
with
 
static Complex operator / (Complex a, Complex b)
{
 return a / ((double)b * (double)b) * ~b;
}
 

This gives us the following finished program; note that operator/(Complex, double) is no longer private:
 
using namespace System;
value struct Complex
{
 double re;
 double im;
 Complex(double re, double im)
 {
 this->re = re;
 this->im = im;
 }
 static Complex operator + (Complex a, Complex b)
 {
 return Complex(a.re+b.re, a.im+b.im);
 }
 static Complex operator - (Complex a, Complex b)
 {
 return Complex(a.re-b.re, a.im-b.im);
 }
 static Complex operator ~ (Complex a)
 {
 return Complex(a.re, - a.im);
 }

Chapter 11 ■ Expressions and Operators

187

 static Complex operator * (Complex a, Complex b)
 {
 return Complex(a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re);
 }
 virtual String ^ ToString() override
 {
 String ^s = re.ToString();
 if(im != 0)
 {
 return s += " + " + im.ToString() + "i";
 }
 return s;
 }
 static Complex operator / (Complex a, Complex b)
 {
 return a / ((double)b * (double)b) * ~b;
 }
 static operator Complex(double re)
 {
 return Complex(re,0);
 }
 static explicit operator double(Complex c)
 {
 return Math::Sqrt(c.re*c.re + c.im * c.im);
 }
 static Complex operator / (Complex a, double f)
 {
 return Complex(a.re/f, a.im/f);
 }
};
void main()
{
 Complex a(-5,10), b(3,4);
 double c(3.5);
 Console::WriteLine("({0}) / ({1}) = {2}",a,b,a/b);
 Console::WriteLine("({0}) * ({1}) = {2}",a,c,a*c);
 Console::WriteLine("({0}) / ({1}) = {2}",c,a,c/a);
}

CLS-Compliant Operators
There are several ways to define the operators in C++, depending on your intentions and goals. In this case, the goal
is to create a CLS-compliant application. The Common Language Specification (CLS) defines how code may be made
compatible with multiple CLI languages. Therefore, it is best to adopt this paradigm when writing programs that link
with C# or other .NET languages. An operator is said to be CLS-compliant when all of the following criteria are met:

The operator is listed in the CLS-compliant tables, as stated in the CLS.•	

The operator is a static member of a reference or value class.•	

Parameters and return values of the operator function are not passed or returned by any •	
pointer, reference, or handle.

Chapter 11 ■ Expressions and Operators

188

Let’s examine the CLS-compliant unary operators in Table 11-6.4

Table 11-7.  CLS-Compliant Binary Operators

Operator Name Function Name C# C++

operator+ Addition Yes Yes

operator& BitwiseAnd Yes Yes

operator| BitwiseOr Yes Yes

operator, Comma Yes Yes

operator-- Decrement Yes Yes

operator/ Division Yes Yes

operator== Equality Yes Yes

operator^ ExclusiveOr Yes Yes

operator> GreaterThan Yes Yes

operator>= GreaterThanOrEqual Yes Yes

operator++ Increment Yes Yes

operator!= Inequality Yes Yes

operator<< LeftShift Yes Yes

operator< LessThan Yes Yes

operator<= LessThanOrEqual Yes Yes

operator&& LogicalAnd No Yes

Table 11-6.  CLS-Compliant Unary Operators

Operator Name Function Name C# C++

operator& AddressOf No Yes

operator! LogicalNot Yes Yes

operator~ OnesComplement Yes Yes

operator* PointerDereference No Yes

operator- UnaryNegation Yes Yes

operator+ UnaryPlus Yes Yes

operator true true Yes No

operator false false Yes No

Let’s examine the CLS-compliant binary operators in Table 11-7.

4These tables are from the C++/CLI Language Specification.

(continued)

Chapter 11 ■ Expressions and Operators

189

Most of these operators are fairly self-explanatory. Only a few merit special mention:

•	 operator* can either be Multiply or PointerDereference, depending on whether it is a
binary or unary operator.

•	 operator& can either be BitwiseAnd or AddressOf, depending on whether it is a binary or
unary operator.

Both •	 operator&& and operator|| can be overloaded in C++/CLI. These cannot be
overloaded in C#.

•	 operator true and operator false are not implemented in C++.

operator true and operator false
operator true and operator false are used in the following C# code, which cannot be written similarly in C++/CLI:
 
using System;
class R
{
 int value;
 R(int V)
 {
 value = V;
 }
 public static bool operator true (R r)
 {
 return r.value!=0;
 }
 public static bool operator false (R r)
 {
 return r.value==0;
 }
 public void Test(String name)
 {
 if(this)
 {
 Console.WriteLine("{0} is true", name);
 }

Operator Name Function Name C# C++

operator|| LogicalOr No Yes

operator% Modulus Yes Yes

operator* Multiply Yes Yes

operator>> RightShift Yes Yes

operator- Subtraction Yes Yes

Table 11-7.  (continued)

Chapter 11 ■ Expressions and Operators

190

 else
 {
 Console.WriteLine("{0} is false", name);
 }
 }
 public static void Main()
 {
 R r3 = new R(3);
 r3.Test("r3");
 R r0 = new R(0);
 r0.Test("r0");
 }
}
 

If you compile and run this in C#, you get the following results:

C:\>csc /nologo test.cs
C:\>test
r3 is true
r0 is false 

There is a nice workaround in C++ using an implicit conversion to bool:
 
using namespace System;
ref class R
{
private:
 int value;
 R(int V)
 {
 value = V;
 }
public:
 static operator bool(R^ r)
 {
 return r->value != 0;
 }
 void Test(String^ name)
 {
 if(this)
 {
 Console::WriteLine("{0} is true", name);
 }
 else
 {
 Console::WriteLine("{0} is false", name);
 }
 }

Chapter 11 ■ Expressions and Operators

191

 static void Main()
 {
 R ^r3 = gcnew R(3);
 r3->Test("r3");
 R ^r0 = gcnew R(0);
 r0->Test("r0");
 }
};
void main()
{
 R::Main();
}

Other Operators
C++ allows you to overload the assignment operators, function calls (operator()), and indices (operator[]) in a
manner that is not CLS compliant.

Summary
Having a good feel for expressions and operators is essential in object-oriented programming. They allow you to
extend your classes and work with them as if they were built-in types.

In the next chapter, we’ll complete our tour of basic C++ by filling in some of the details that have not been
covered in any of the broad categories of previous chapters. After that, you will be well prepared to go into greater
depth and detail in the chapters that follow.

	Chapter 11: Expressions and Operators
	Operator Overloading
	Complex Numbers, a Basic Example
	A Review of Complex Numbers
	Simple Implementation
	Unary Operators
	Binary Operators
	Order Matters
	The Product of Our Efforts

	Resolution of Overloads

	A Mathematical Diversion: Numbers Modulo Primes
	Implicit and Explicit Conversions of Built-in Types
	Conversion Differences Between C# and C++
	Signed/Unsigned Mismatches
	Integer Conversion Tables
	Floating Point Conversion Tables

	User-Defined Conversions
	Implicit Conversions
	Explicit Conversions

	CLS-Compliant Operators
	operator true and operator false
	Other Operators

	Summary

