
3

Chapter 1

Hello, World

Consistency is the last refuge of the unimaginative.

—Oscar Wilde

Since time immemorial, which pretty much dates back to the release of the Kernighan and Richie book on C, there
has been a tradition of opening a book on C or its descendants with a short example of how easy it is to display “Hello
World”. This book is no exception. Let’s examine the C# and C++ versions of “Hello World” side by side (see Table 1-1).

Table 1-1.  “Hello World” in C# and C++

C# C++

using System; using namespace System;

class HelloWorld

{

static void Main() void main()

{ {

Console.WriteLine(“Hello World”); Console::WriteLine(“Hello World”);

} }

}

As you can see in Table 1-1, the languages are clearly different. On the other hand, C# and C++ are like French
and Italian; although the C++ syntax may appear foreign, the meaning is clear.

Here are some things to notice:

In C#, •	 Main() is always a method of a class. In C++/CLI (Common Language Infrastructure),
main() is not a class method; it is a global function. It’s easy—just remember that global
functions have no class.

In the same way that you have a unique static member function named •	 Main() in any C#
program, you have a unique global function named main() in any C++ program. It is possible
to get around this requirement in C# and have multiple Main() methods by embedding them
in different classes. You can then tell the compiler using the /main:<type> option which class
contains the startup method. This trick does not work in standard C++ since main() must be
a global function and any versions of main() would have the same signature and clash in the
global namespace.

Chapter 1 ■ Hello, World

4

C++ uses •	 :: (colon-colon) to separate namespaces and class names and a dot (.) to access
class members; C# uses a dot for everything. C++ expects you to be more specific about what
you’re doing.

The C++/CLI •	 using statement requires the additional keyword namespace.

Note■■   In Microsoft Visual C++, the entry point can be any function as long as it meets certain restrictions
defined in the linker documentation. It can be a global function or a member function. You do this by specifying the
/entry:<function_name> linker option. Standard C++ requires a unique global function named main with an integer
return value and an optional argument list. See Section 3.61 of the C++ standard, ISO/IEC 14882:2003(E). A PDF version
of this standard can be downloaded from http://webstore.ansi.org for a small fee.

Starting the Visual Studio 2013 Console
I bet you’re just itching to give this a try. “Real programmers” use the command line, so let’s start there. We’re now
going to construct a console application.

Click Start, open the Visual Studio Tools folder as in Figure 1-1, then double-click Developer Command Prompt
for VS2013.

Figure 1-1.  Open the Visual Studio Tools folder

This spawns a new command prompt with the environment variables set to work with Visual Studio 2013. All the
Visual Studio compilers may be run from the command line, including Visual C++, Visual C#, and Visual Basic.

Retrieving the Source Files
Either pop up notepad.exe (surely your favorite editor) and start typing, or fetch the source from the Source Code
section of the Apress website. Go to www.apress.com, and search for this book using the ISBN, 978-1-4302-6706-5.

Executing HelloCpp.cpp
Navigate to the sample directory for this Chapter 1, and go to the HelloWorld subdirectory. Here is HelloCpp.cpp:
 
using namespace System;
void main()
{
 Console::WriteLine(“Hello World”);
}
 

http://webstore.ansi.org/
http://www.apress.com/

Chapter 1 ■ Hello, World

5

Enter the following command:
 
cl /nologo /clr HelloCpp.cpp
 

This command directs the C++ compiler to compile this file targeting the Common Language Runtime (CLR)
and creates a C++/CLI executable. The executable is a managed assembly that contains metadata and Common
Intermediate Language (CIL), just like C# executables. CIL is also known as MSIL on the CLR.

Let’s execute this example. First, type
 
HelloCpp
 

Next, press Enter. You should see the following: 

Hello World 

and that’s a good thing.

A Quick Tour of the Visual C++ IDE
In this section, we go over the steps for making an elementary C++/CLI project using the Visual Studio 2013 C++
Integrated Development Environment (IDE). This is very similar to creating a C# project.

	 1.	 Load Visual Studio 2013.

	 2.	 From the File menu, select New Project. My system is set up with Visual C++ as the default
language, so my New Project dialog box looks like the one shown in Figure 1-2.

Chapter 1 ■ Hello, World

6

	 3.	 Navigate to the CLR project types under Visual C++.

	 4.	 Select CLR Console Application.

	 5.	 Enter HelloWorld in the Name text box.

	 6.	 Click OK.

By default, Visual Studio 2013 creates new projects in C:\Users\%USERNAME%\Documents\Visual Studio 2013\
Projects. Feel free to change the directory and place the project elsewhere if you like. Click OK.

Understanding Projects and Solutions
The Visual C++ CLR Console Application Wizard creates a new project called HelloWorld in a solution also called
HelloWorld. What is the difference between the project and the solution?

The basic paradigm used in Visual Studio is that you create a solution, which is the container for what you are
working on. A solution can consist of several projects, which can be class libraries or executables. Each project is
language specific, though it is also possible to mix languages within a single project using custom build rules.

Figure 1-2.  Creating a new HelloWorld project and solution

Chapter 1 ■ Hello, World

7

In our case, we want a single Visual C++ project that will generate a single executable named HelloWorld.exe,
so our solution has a single project. By default, the project is created in a subdirectory, but we can change this
behavior by deselecting Create directory for solution. Later in this book, we’ll have more sophisticated solutions that
depend on several projects.

Now you should see two tiled windows: the Solution Explorer and the editor window containing HelloWorld.cpp.
It appears that Visual C++ 2013 has gone to all the trouble of writing the program for us—now isn’t that nice?

Understanding the Differences
There are a few differences between our basic HelloCpp application and the HelloWorld application created by the
Visual Studio C++ CLR Console Application Wizard, shown in Figure 1-3. The most obvious difference is that the
wizard created several additional supporting files.

Figure 1-3.  The HelloWorld application as created by the CLR Console Application Wizard

Let’s have a look at those new files.

Resources
These files outfit your application with a snappy little icon and pave the way for future application development.
Visual C++ allows you to embed resources in your binary files. They can be bitmaps, icons, strings, and other types.
For more information, consult the Visual C++ documentation.

•	 resource.h

•	 app.ico

•	 app.rc

Chapter 1 ■ Hello, World

8

Precompiled Headers
These files improve compilation speed by avoiding multiple compilations of common code:

•	 stdafx.h

•	 stdafx.cpp

One topic that surfaces again and again throughout this book is the distinction between declarations and
definitions in C++. Unlike C#, class prototypes, called declarations, may be separated from class definitions into distinct
files. This improves compilation speed, avoids circular dependencies, and provides an object-oriented abstraction
layer for complex projects. In many C++ projects, it is common that files containing just declarations, called header
files and terminated with the .h extension, are compiled as a unit at the start of every source file. If the headers are
identical across the project, the compiler ends up compiling the same chunk of code with each source file. One
optimization provided by Visual C++ is to compile the headers referenced in the stdafx.h file en masse into a binary
PCH (precompiled header) file in advance of all other compilation. This is called precompiling the headers. As long as
the headers are not modified, subsequent compilations of source files are sped up considerably as the precompiled
headers are loaded from disk as a unit rather than being recompiled individually. Two files, stdafx.h and stdafx.cpp,
are generated by Visual C++ to assist in this mechanism. For more information, consult the Visual C++ documentation.

It is possible to disable precompiled headers by changing the project properties. To modify the project settings,
right-click the HelloWorld project in the Solution Explorer. Navigate to Configuration Properties, and click the triangle
to expand the list. Then expand the triangle next to C/C++, and select Precompiled Headers. The Property Pages
window, shown in Figure 1-4, appears on the screen, which allows you to configure precompiled headers within
your application.

Figure 1-4.  Configuration of precompiled headers from the Property Pages window

Chapter 1 ■ Hello, World

9

AssemblyInfo.cpp
The file AssemblyInfo.cpp contains all the attribute information for the assembly. This is similar to the C#-produced
AssemblyInfo.cs. This includes, but is not limited to, the copyright, version, and basic assembly description
information. The default values are fine for development, but you need to fill out some of the information before you
ship, including the Copyright Attribute. Figure 1-5 shows an excerpt from a sample AssemblyInfo.cpp.

Figure 1-5.  An excerpt from AssemblyInfo.cpp

HelloWorld.cpp
The main source file has a few significant differences as well, as Figure 1-6 shows:

The •	 main function is defined to accept a managed array of System::String, which is
equivalent to the C# Main(string[] Args). This allows you to access command-line
arguments.

The precompiled header file •	 stdafx.h is included to support the use of precompiled headers.

The literal string © “Hello World” is prepended with an •	 L to indicate a wide character string.
In native C++, strings are byte arrays by default. When compiling C++/CLI, the compiler
attempts to distinguish between wide character strings and byte arrays by context. Whether
or not you have an L in this context, a wide character System::String is created.

Chapter 1 ■ Hello, World

10

Window Layout
One of the well-designed features of Visual Studio is the ability to customize the appearance of the IDE by rearranging
windows using simple mouse movements. In this section, we learn how to dock and position windows.

Docking the Window
The Solution Explorer naturally appears on the left or right of Visual Studio, depending on which settings are chosen
by default. Luckily, custom rearrangement is easy and intuitive. Right-click on the title bar, and a pop-up window
appears as in Figure 1-7, which allows you to dock the window, dock as a tabbed document, or float on top.

Figure 1-7.  Right-clicking on the title bar reveals options for displaying the window

Figure 1-6.  HelloWorld.cpp

Now when you click and hold the title bar, you see a small compass in the frame that the cursor is hovering over,
as well as reference markers on each of the other window frames. The compass allows you to direct the placement of
the window with respect to the frame you are hovering over. Move the window over another frame, and the compass
hops to that one.

Chapter 1 ■ Hello, World

11

The Center of the Compass
The compass itself has tabs for the directions (north, south, east, and west) as well as a center box. If you release the
mouse over the center box, the window becomes tabbed within the current frame. Go ahead and drop it over the main
frame, where the documents are edited. You can see now that it shares a frame with the other main windows.

When you hover over one of the compass direction tabs, the corresponding portion of the target frame is grayed
out, so that you can preview the new window arrangement. If you drop the window in the wrong place, you can always
either tear it off or manually set it to Dockable or Floating, depending on its state.

Play around with this a bit. In Figure 1-9, you can see the Solution Window as a tabbed document in the
main window.

Figure 1-8.  Clicking and holding down the title bar reveals a compass

Chapter 1 ■ Hello, World

12

Building, Executing, and Debugging
Let’s take a quick tour of some key Visual C++ IDE commands (see Table 1-2) as we build and test HelloWorld.

Figure 1-9.  Solution Explorer as a tabbed document in the main frame

Table 1-2.  Common IDE Commands Quick Reference

C# C++ Explanation

F3 F3 Find next

F8 F4 Go to the next compilation error in the source

Shift-F8 Shift-F4 Go to the previous compilation error in the source

F5 F5 Execute with debugging

Ctrl-F5 Ctrl-F5 Execute without debugging

F6 F7 Build

F9 F9 Toggle breakpoint

F10 F10 Step over

F11 F11 Step into

Chapter 1 ■ Hello, World

13

Building the Program
Depending on our key bindings, we can use either F6 or F7 to build. If there are any errors, they appear in the Output
window at the bottom of the screen, and you can use either F8 or F4 to cycle through them.

In C++, just as in C#, multiple compilation errors are often spurious; the compiler tries to compile beyond the
first detected problem and may get lost. Often this allows you to see two or three errors and fix them all in a single
editing pass. Just as often, the extra errors are an artifact of the compiler going out to lunch based on incorrect syntax,
and fixing the first error or two may make the remainder disappear. I recommend building often.

Executing HelloWorld
The F5 key is the execute command. Because this is a console application, execution spawns a command window
that displays “Hello World” and then quickly closes, which is somewhat unsatisfying. There are several ways around
this. One approach is to create another Developer Command Prompt, navigate to the debug directory where the
executable was created, and run the program manually, as we did earlier. Another way is to add the following call to
the end of the main() function:
 
Console::ReadLine()
 

This method asks for a line of input from the user and keeps the console window open until the user presses
the Enter key.

Another set of solutions presents itself by taking advantage of the built-in Visual C++ debugger. You could either
set a breakpoint on the last line of the program using the F9 command, or you could just step through the program
line by line. Either way, you can switch to the spawned command prompt to see the output as desired.

Let’s try using the debugger.

Using the Visual C++ 2013 Debugger
The debugger is integrated into Visual Studio 2013, so initiating debugging is very simple. Entering any debugging
command launches your application under the debugger. The window layout is sure to change, as there are several
status windows that are only visible while debugging by default.

Note■■  T here are different window configurations for editing and debugging. Each configuration must be customized
separately.

The basic debugging commands are F5 (Execute with Debugging), F9 (Toggle Breakpoint), F10 (Step Over
Source Line), and F11 (Step Into Source Line).

Stepping Through the Code
A Step command executes a line of code in the program. There are two varieties of the Step command: F10 (Step Over)
and F11 (Step Into). These are similar, yet they differ when applied to a function call. F10 executes until the line after
the function call, whereas F11 stops execution at the first line of the function body. Of course, using F11 is always
dependent on whether debugging information is available for the binary the function came from. Because
debugging information for Console::WriteLine() is not distributed with Visual C++ 2013, both F10 and F11 step
over the function.

Chapter 1 ■ Hello, World

14

Press F10 to begin debugging HelloWorld with Visual C++ 2013. The title bar changes to show “HelloWorld
(Debugging)” to indicate debugging mode. In addition, a command window is spawned in a separate window. At this
point, it is blank because HelloWorld has yet to display any information.

A small yellow arrow appears on the left edge of the editor window, which indicates the current line of code that
is executing. Figure 1-10 shows that execution has stopped at this point, and the debugger awaits the next command.

Figure 1-10.  Debugging HelloWorld

The arrow indicates that we are beginning execution of the main() function, and the next line to be executed
contains the Console::WriteLine() statement.

Press F10 again. The Console::WriteLine() function call executes, and “Hello World” appears in the separate
command window.

If you dare to press F10 a couple more times, you create a nightmare on your screen. The first time, you execute
over the return function. The next time, you return from the HelloWorld code into the C/C++ Runtime, or CRT. This
module performs important tasks, including initializing your program in Windows, packaging the command-line
arguments for your program, and handling the program’s exit to Windows. Note that this code calls main() explicitly
by name, which explains why every C++ program requires a global function called main().

Completing Execution
Press F5 once to execute the remainder of the exit code and return to the editor. If HelloWorld.cpp is not visible,
you can click the tab to reveal the source again. At this point, debugging has completed, and the title bar no longer
indicates debugging.

Summary
This chapter provided you with a basic outline of how to create simple C++/CLI applications from the console and
more sophisticated applications using the IDE. I also showed you how basic debugging can be performed in Visual
C++ 2013 using the integrated debugger.

In the next chapter, we’ll see how you can call C# from a simple C++ program.

	Chapter 1: Hello, World
	Starting the Visual Studio 2013 Console
	Retrieving the Source Files
	Executing HelloCpp.cpp
	A Quick Tour of the Visual C++ IDE
	Understanding Projects and Solutions
	Understanding the Differences
	Resources
	Precompiled Headers
	AssemblyInfo.cpp
	HelloWorld.cpp

	Window Layout
	Docking the Window
	The Center of the Compass

	Building, Executing, and Debugging
	Building the Program
	Executing HelloWorld
	Using the Visual C++ 2013 Debugger
	Stepping Through the Code
	Completing Execution

	Summary

