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Chapter 2

Basic Security Concepts

This chapter provides an overview of security concepts and their application to the TPM. 
It is not important that you understand the underlying mathematics of those concepts, 
so they will not be described. Instead, the chapter discusses the behavior of the various 
cryptographic algorithms so you can understand how they are used in the TPM 2.0 
specification.

Security experts can skip this chapter. If you have less or somewhat rusty knowledge, 
you are advised to skim it to refresh your memory or learn how basic cryptographic concepts 
are used in TPMs. If you have little or no TPM knowledge, this chapter is a must read.

All the cryptographic algorithms included in TPM 2.0 are based on public 
standards that have been extensively reviewed. Creating custom algorithms that 
are cryptographically strong has generally proven to be very difficult. Many years of 
cryptanalysis must be performed before an algorithm is considered strong by the 
community, and only algorithms that have met that criteria are approved for use in the 
TPM by the Trusted Computing Group (TCG). This chapter describes three types of these 
algorithms: hash algorithms used mostly for integrity, symmetric-encryption algorithms 
used mostly for confidentiality, and asymmetric-encryption algorithms used mostly for 
digital signatures and key management. Specifically, we explore secure hash algorithms 
the Advanced Encryption Standard (AES); and two asymmetric standards,  
RSA and elliptic curve cryptography (ECC). But before considering the actual algorithms, 
you need to know what they are used to defend against.

The chapter begins with a description of the two attack classes: brute force and 
cryptanalysis. It then defines some fundamental concepts: messages, secrecy, integrity, 
authentication, and authorization, along with two higher-layer concepts, anti-replay and 
nonrepudiation. It finishes with a listing of the cryptographic algorithm classes used in 
the TPM.

For the most part, these are general security principles. They are used throughout 
the TPM design, and a description of their specific application to TPM 2.0 will be given as 
they are used throughout the book. In the few cases where the TPM uses cryptography in 
a less common way, or where the specification introduces a new cryptographic term, we 
explain it here. (The extend operation is an example of both cases: it’s a general security 
concept that has been applied in a new way in TPMs.)

Everything done in a TPM is related in some way to mitigating cryptographic attacks.



Chapter 2 ■ Basic Security Concepts

8

Cryptographic Attacks
Cryptography is all about preventing attackers from doing malicious things. Security 
systems that use cryptography are designed to prevent bad people from having their 
way with your data, impersonating you, or changing documents without being detected. 
These attackers may attempt to compromise the security of a cryptographic design in 
two basic ways: either by deeply understanding the mathematics of the algorithms and 
protocols and using that knowledge to look for and exploit a flaw in the design, or by 
using brute force.

If you use well-vetted algorithms and protocols, and use them the way they were 
designed to be used, your design will probably be immune to the first type of attacks.  
That is why you need to take care to use accepted algorithms and protocols in your design. 
In a brute-force attack, the attacker tries every possible key, input, or password, trying to 
guess the secrets used to protect the design.

Brute Force
Cryptographers don’t like to claim that anything is impossible. Rather, they say something 
is “computationally infeasible,” meaning it would take an impractical amount of time to 
attack the cryptography by trying every combination. For the Data Encryption Standard 
(DES), 2^56 possible keys could be used. This number is large: 72,057,594,037,927,936. 
Although breaking the DES algorithm might seem to be computationally infeasible, in 
1998, a machine was developed that did exactly that.1

Passwords are also often attacked using brute force—first dictionary words are tried, 
then combinations of words and numbers, and even special characters. Attackers may 
even try Klingon words or words from the Harry Potter books or The Lord of the Rings! 
RainbowCrack (www.project-rainbowcrack.com/) is a well-known program used to 
crack even fairly long passwords using brute force.

A cryptographic algorithm is well designed if the strength of the algorithm is not 
dependent on keeping the algorithm secret. The algorithm is infeasible to break if this is 
true and if it is infeasible to guess the algorithm secret, commonly called a key. Defending 
against brute force attacks is about picking key sizes so large that it is infeasible to try 
them all, or reducing the number of attacks that can be performed in a period of time.

TCG assumes that all the algorithms it approves are well designed. This may  
not be true. Because the specification is not wedded to a particular algorithm, if one is 
found to be weak at some point in the future, then instead of the specification having to 
be rewritten, just that algorithm can be removed from the list of approved algorithms.

The strength of an algorithm that is well designed is measured by its immunity to 
mathematical attacks. The strength of an implementation depends on both the type  
of algorithm and the size of the key used.

1http://en.wikipedia.org/wiki/Data_Encryption_Standard#Chronology.

http://www.project-rainbowcrack.com/
http://en.wikipedia.org/wiki/Data_Encryption_Standard#Chronology
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Calculating the Strength of Algorithms by Type
Symmetric algorithms are used for traditional encryption, where the same key is used for 
encryption and decryption. For a well-designed symmetric algorithm, the strength of the 
cryptographic algorithm should depend exponentially on the size of the key used. Thus if 
a key is only 4 bits long, there are 24 or 16 possible keys. A brute-force attacker who tried 
all 16 keys would break the encryption; but on average the attacker would have to try  
only half of them, or 8 keys, before finding the correct key. Because the numbers get  
large quickly via exponentiation, the strength of algorithms is generally quoted in bits.  
A well-designed symmetric algorithm has a strength equal to the number of bits in its key. 
In a TPM, the symmetric algorithms usually have key sizes of 128, 192, or 256 bits.

A secure hash algorithm is sort of like an algorithm that encrypts but cannot decrypt. 
This may sound non-useful, but it has a number of very interesting uses. A secure hash 
algorithm always produces the same size output, independent of the input. A wonderful 
property of a secure hash algorithm is that given the input, you always get the same output; 
but given just the output, you can’t calculate the input. The strength of such an algorithm 
can be calculated two ways:

The number of tries that would have to be attempted to guarantee •	
finding an input that produces a given hash output. For a well-
designed hash algorithm, this is assumed to be the size of the 
output in bits.

The number of tries that would have to be attempted to have a •	
50% chance of finding two inputs with exactly the same output. 
For a well-designed hash algorithm, this is half the size of the 
output in bits.2

Depending on how the secure hash is used, either can be correct; but because 
cryptographers tend to be P3 people (Paid Professional Paranoids), the latter is generally 
used for the strength of a well-designed secure hash algorithm.

Asymmetric algorithms are strange at first introduction: The encryption algorithm is 
different from the decryption algorithm, and the two use different keys, which together 
form a public and private key pair. There are two asymmetric algorithms you should 
be concerned about and that are described later in this chapter: RSA (named after its 
inventors, Rivest, Shamir, and Adleman) and Elliptic Curve Cryptography (ECC).

For asymmetric algorithms, it is difficult to calculate strength corresponding to 
a particular key size. For RSA, there are tables you can consult. Those tables say that 
2048 bits in an RSA asymmetric key corresponds to 112 bits in a symmetric key; 3,076 
bits corresponds to 128 bits; and 15,360 bits corresponds to 256 bits of key strength. For 
ECC, the strength is considered to be half the number of bits of its key’s size. Therefore, a 
256-bit ECC key is the same strength as a 128-bit symmetric key, and a 384-bit ECC key 
corresponds to a 192-bit symmetric key.

2This kind of attack is generally called a birthday attack, because of an old party trick. If there are 
23 (which is close to the square root of 365) people in a room, the chances of 2 of them having the 
same birthday is 50%. If there are substantially more people in the room, the probability rises 
accordingly. If there are 40 people, the probability is almost 90%.
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If brute-force attacks are infeasible due to a large key size, the attacker may seek to 
analyze the mathematics of the cryptographic algorithm or protocol with the hope of 
finding a shortcut.

Attacks on the Algorithm Itself
Cryptographic algorithm design is a bit of an art. The mathematics are based on how hard 
it is to solve a particular type of problem, and that difficulty in turn is based on current 
knowledge. It’s very difficult to design an algorithm against which no attacks can ever  
be mounted.

An attack on the SHA-1 hash algorithm3 was one of the motivations for moving 
from TPM 1.2 to TPM 2.0. Under normal circumstances, a brute-force birthday attack on 
SHA-1 would take about 280 calculations, with a cryptographic strength of 80. The attack, 
which was based on a weakness in the underlying mathematics, successfully reduced the 
number of calculations required for a successful attack to 263—a cryptographic strength 
of 63. TPM 1.2 used SHA-1 throughout the design. With 56-bit DES encryption defeated 
by brute-strength attacks in 1998, it was clear that 63 bits was not enough for the industry. 
For that reason, TPM 2.0 removed this dependency on the SHA-1 algorithm. To defend 
against such an attack ever happening again, the specification was made algorithm 
agile—algorithms can be added to or subtracted from the specification without requiring 
that the entire specification be rewritten.

To summarize, in order to be secure, cryptographic algorithms must not have the 
following vulnerabilities:

•	 Weaknesses in algorithms: You can avoid weak algorithms by 
using well-vetted, internationally accepted, widely reviewed 
standards.

•	 Brute-force attacks: By choosing large key sizes and by allowing 
the end user to pick the key size they wish to use, you can avoid 
this vulnerability. Today 128 bits is generally considered a safe 
value for symmetric algorithms, but some researchers and 
security agencies insist on 192 bits.

Now that you’ve seen the attacks you’re defending against, we can discuss the basic 
cryptography constructs used in the TPM specification. Let’s begin with some definitions.

Security Definitions
Several concepts are important for understanding the TPM architecture and 
cryptographic concepts. People often equate security solely with secrecy: the inability of 
an attacker to decode a secret message. Although secrecy is certainly important, there 
is much more to security. It’s easiest to understand these concepts by considering an 

3Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, “Finding Collisions in the Full SHA-1,”  
Advances in Cryptology–CRYPTO 2005.
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example. Because electronic business was a big motivator in the design of the TPM, the 
following example comes from e-business.

An electronic order is transmitted from a buyer to a seller. The seller and buyer may 
want to keep details (credit card numbers, for example) of the purchase secret. However, 
they may also want to ensure that the order really came from the buyer, not an attacker; 
that the order went only to the seller; that the order wasn’t altered in transit (for example, 
by changing the amount charged); and that it was sent exactly once, not blocked or sent 
multiple times. Finally, the seller may wish to verify that the buyer is permitted by their 
company to buy the item and to spend the total amount of the purchase order. All these 
aspects are the problems that cryptography and security protocols attempt to solve.

Based on this example, we can describe several commonly used security terms and 
concepts, and then explain how they can be used to provide the various aspect of security.

•	 Message: An array of bytes sent between two parties.

•	 Secrecy: A means of preventing an unauthorized observer of a 
message from determining its contents.

•	 Shared secret: A value that is known to two parties. The secret can 
be as simple as a password, or it can be an encryption key both 
parties know.

•	 Integrity: An indication that a message has not been altered 
during storage or transmission.

•	 Authentication: A means of indicating that a message can be tied 
to the creator, so the recipient can verify that only the creator 
could have sent the message.

•	 Authorization: Proof that the user is permitted to perform an 
operation.

•	 Anti-replay: A means of preventing an attacker from reusing a 
valid message.

•	 Nonrepudiation: A means of preventing the sender of a message 
from claiming that they did not send the message.

Let’s consider how each of these security concepts fits into the electronic purchase 
order example. The message is the number of items ordered and any confidential 
customer information, such as a credit card number. Integrity ensures that the order has 
not been altered in transit—for instance, from 3 items to 300 items. Authentication proves 
that the order came from the buyer. Authorization checks that the buyer is permitted 
to purchase the items on behalf of their company. Anti-replay prevents the attacker 
from sending the buyer’s message again to purchase three items multiple times. And 
nonrepudiation means the buyer can’t claim they never ordered the items.

To provide these security guarantees, designers of a security system have a toolbox 
of cryptographic functions that have been developed, analyzed, and standardized. Some 
items are fundamental mathematical building blocks, such as the SHA-256 secure hash 
algorithm or the RSA asymmetric-key encryption calculation. Other items, such as digital 
signatures, build on these fundamentals by using the RSA algorithm. These cryptographic 
functions are described next.
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Cryptographic Families
Trust us, there’s no math in this section. We won’t be describing prime number 
algorithms and elliptic curves. But it’s important to understand some cryptographic 
operations and how they relate to the basic security principles you’ve already seen.

A secure hash algorithm is used to provide integrity. It can be combined with a 
shared-secret signing key in an HMAC algorithm to ensure authentication. HMAC is in 
turn the basis for a cryptographic ticket and key-derivation functions. A shared secret 
provides secrecy when used in symmetric-key encryption. A nonce provides anti-replay 
protection. An asymmetric key used as a signing key offers nonrepudiation. The TPM also 
uses an asymmetric key for secrecy in some protocols. All these concepts are described in 
the following sections.

Secure Hash (or Digest)
Most computer science students are familiar with hashes; simple hashes are used to 
speed searches. A more advanced form of a hash is a checksum that is used to detect 
random errors in data. But cryptographers are concerned with malicious attackers trying 
to break a system, so they need a secure cryptographic hash with very specific properties.

A cryptographic hash, like its much simpler cousins, takes a message of any length 
and compresses it to a hash of fixed length. For example, a SHA-256 hash is 256 bits or  
32 bytes. For security purposes, the important properties of a secure hash are as follows:

It’s infeasible, given a message, to construct another message with •	
the same hash.

It’s infeasible to construct two messages with the same hash.•	

It’s infeasible to derive the message given its hash.•	

As an example, you can observe that even a very small change in a message causes a 
large change in the digest produced by the hash. For example, using SHA-1, the message 
“Hello” hashes to:
 
fedd18797811a4af659678ea5db618f8dc91480b
 

The message “hello” with the first character changed to lowercase hashes to:
 
aa5916ae7fd159a18b1b72ea905c757207e26689
 

The TPM 2.0 specification allows for a number of different types of hash 
algorithms—SHA-1, SHA-256, and SHA-384 are just some of them. Typically, TPMs 
implement only a few of the allowed hashes. One problem that vexed the developers for 
a long time was how to integrate multiple hash algorithms (which are used to maintain 
integrity) if one of those hash algorithms was later broken. This is harder than it sounds, 
because usually hash algorithms themselves are used to provide integrity to reports, and 
if the hash algorithm can’t be trusted, how can you trust a report of which hash algorithm 
is being used? The design that was chosen managed to avoid this problem: tags are used 
throughout the design in data elements that identify the hash algorithms used.



Chapter 2 ■ Basic Security Concepts

13

In the TPM, a secure hash is a building block for other operations, such as hash-extend 
operations, HMACs, tickets, asymmetric-key digital signatures, and key-derivation 
functions, all described next.

Hash Extend
The term extend is not a common cryptographic term, but this operation is used 
throughout the TPM. An extend operation consists of the following:

1.	 Start with an existing value, A.

2.	 Concatenate another value, B (the value to be extended) to it, 
creating the message, A || B.

3.	 Hash the resulting message to create a new hash, hash(A || B).

4.	 This new hash replaces the original value, A.

The whole process can be summarized as: A ← hash (original A || B).
As an example, using SHA-1, extending the digest of the message 'abc' to an initial 

value of all zero yields this result:
 
ccd5bd41458de644ac34a2478b58ff819bef5acf
 

The extend value that results from a series of extend operations effectively records a 
history of the messages extended into it. Because of the properties of a secure hash, it is 
infeasible to back up to a previous value. Thus, once a message is extended, there is no 
“undo” to go backward—to reverse the calculation and erase past history. However, the 
actual size of the value, such as 32 bytes for the SHA-256 hash algorithm, never changes, 
no matter how many messages are extended. The fixed length of an extend value coupled 
with its ability to record a virtually unlimited history of extend operations is critical in the 
memory-constrained TPM.

Extend is used to update platform configuration register (PCR) values. A PCR is 
a TPM register holding a hash value. The values extended into the PCR can represent 
the platform state. Suppose the PCR indicates an untrusted state, but an attacker wants 
to change the PCR to a trusted value. To do this, the attacker would have to construct 
another message, starting with the current PCR value, whose resulting hash was a trusted 
value. The properties of a secure hash dictate that this is infeasible.

Extend is also used in TPM audit logs. The audit logs record TPM commands and 
responses. Because of the extend properties, an item cannot be removed from the log 
once it has been added, and the size of the log in the TPM remains constant no matter 
how many commands are audited.

In addition, extend is used in creating policies that represent how a TPM can be 
authenticated. This is described in the chapter on extended authorization.

Hashes are also used in a simpler form of authorization, which was also used in the 
TPM 1.1 and TPM 1.2, called an HMAC.
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HMAC: Message Authentication Code
An HMAC is a keyed hash. That is, it performs a secure-hash operation but mixes in a 
shared secret key, the HMAC key. Because of the properties of a secure hash, given a 
message, only a party with knowledge of the HMAC key can calculate the result. Applying 
a key to a message in this way is known as “HMACing” the message.

TPM 1.2 used HMACs throughout to prove to the TPM that the user knew a TPM 
entity’s authorization data, which was used as the HMAC key. TPM 2.0 can also authorize 
entities this way. The HMAC key is a shared secret between the TPM and the caller. As an 
example, a TPM object, such as a signing key, may have an associated authorization value 
that is known to both the TPM and an authorized user of the key. The user constructs a 
TPM command to use the object and calculates an HMAC over the command message 
using an HMAC key that is derived in part from the object’s authorization value. The TPM 
receives the command message and performs the same HMAC operation using the same 
HMAC key. If the results are the same, the TPM knows the command has not been altered 
(integrity) and that the caller knew the object’s HMAC key, which in turn means the caller 
knew the authorization value. Thus the caller was authorized.

The TPM also uses HMAC for integrity of structures that may at times be stored 
externally—in other words, proof that an attacker has not altered a value. Here, the HMAC 
key is a secret known only to the TPM, not shared with any party outside the TPM. When 
the TPM outputs a value to be stored for later use, it includes an HMAC using its secret. 
When the value is later input, the TPM verifies the HMAC to detect any external alteration 
of the value. Essentially, the HMAC key is a shared secret between the TPM and itself 
across a time interval: from the time the value is stored externally to the time the value is 
input to the TPM. One example of this use of HMACs is an authentication ticket. The TPM 
uses these tickets to prove to itself that it did an operation by producing an HMAC of a 
digest of the result of the operation, using an internal secret that only it knows.

HMACs can also be used to derive keys, using something called a key derivation 
function.

KDF: Key Derivation Function
A manufacturer might want to ship a TPM with certificates for multiple key sizes for 
multiple algorithms. But a TPM has a limited amount of space to store these keys. Further, 
many TPM protocols require more than one secret. For example, one secret may be 
required to symmetrically encrypt a message, and a second may be used to HMAC the 
result. In order to reduce the cost of manufacturing a TPM, the TPM has the ability to 
create multiple keys from a single secret. This secret is called a seed, and the algorithm 
used to derive multiple secrets from this seed is called a key derivation function (KDF). 
The TPM can use KDFs to derive both symmetric and asymmetric keys.

Because, as explained earlier, encryption doesn’t provide integrity, the usual pattern 
is to encrypt with a symmetric key and then HMAC with an HMAC key. The question 
that arises is, “Does this mean there must be two shared secrets?” Not usually. The 
design pattern is to share one secret, a seed. From this one seed, a KDF is used to derive a 
symmetric encryption key and an HMAC key.

The TPM uses an HMAC as a KDF based on an algorithm specified by NIST in 
Special Publication 800-108. In a typical case, it HMACs some varying data using the seed 



Chapter 2 ■ Basic Security Concepts

15

as the HMAC key to derive the keys. The varying data always includes a string of bytes 
describing the application of the keys. This ensures that, when the same seed is used for 
different applications, different keys are used. This satisfies a basic crypto rule: never use 
the same key for two different applications. The other data also includes values unique 
to the operation. If you need two keys with the same description, you must use different 
unique values to guarantee that unique keys are created.

Authentication or Authorization Ticket
A ticket is a data structure that contains an HMAC that was calculated over some data. 
The ticket allows the TPM to validate at a later time that some operation was performed 
by the TPM. The HMAC asserts that some operation has been previously performed 
correctly and need not be performed again. In practice, the data is often not the actual 
message, which may be too large to fit in the ticket, but a digest of the message. The TPM 
uses tickets when it splits cryptographic operations into multiple operations with respect 
to time. Here, the HMAC key used to generate the HMAC is not a shared secret, but a 
secret known only to the TPM.

For example, the TPM uses a ticket when it calculates a hash over a message that it 
will later sign. It produces a ticket that says, “I calculated this hash and I assert that it is a 
hash that I will sign.” It signs the ticket by producing an HMAC using a secret only the TPM 
knows. Later, the HMAC is presented along with the ticket. The ticket is verified using the 
same secret HMAC key. Because only the TPM knows the HMAC key, it knows the ticket 
was produced by the TPM (authenticity) and that it has not been altered (integrity).

The TPM can do something similar when storing data outside the TPM. It can 
encrypt that data with a secret only it knows and then decrypt it again when loading it 
back inside the TPM. In this case, a symmetric key is used for encryption.

Symmetric-Encryption Key
A symmetric-encryption key is a key used with a symmetric-encryption algorithm. 
Symmetric algorithms use the same key for both encryption and decryption. (An HMAC 
key is also a symmetric key, but it’s used for signing, not encryption.)

A typical symmetric-key algorithm is the Advanced Encryption Standard (AES). 
Other algorithms are supported by the specification, including Camellia and SM4; but 
because they all work pretty much the same, all of this book’s examples use AES. The 
TPM uses symmetric-key encryption in three different ways:

•	 Keeping TPM data secret from all observers: The symmetric key 
isn’t shared outside the TPM. It’s generated by and known only to 
the TPM. For example, when a key is cached (offloaded) from the 
TPM in order to free memory for other TPM operations, the TPM 
encrypts the key using symmetric encryption. This symmetric key 
is known only to the TPM.

•	 Encrypting communications to and from the TPM: Here, the 
symmetric key is generated based on a secret agreed on by the 
sender and the TPM. Then parameters are passed to the TPM 
encrypted, and the results are returned encrypted from the TPM 
to the user.
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•	 Using the TPM as a cryptographic coprocessor: Because the TPM 
knows how to encrypt things using symmetric keys, you can use 
the TPM to do that. You can load a key into the TPM and then ask 
the TPM to encrypt data with that key. TPMs usually aren’t very 
fast at doing this, so this is typically only done for a small amount 
of data, but it can prevent an application programmer from 
having to use a cryptographic library for some programs. When 
specified as optional by the platform-specific TPM specifications, 
it’s likely that TPM vendors and/or platform manufacturers 
will exclude symmetric encryption and decryption commands, 
because a hardware device that can do bulk symmetric-key 
operations can be subject to export (or perhaps import) 
restrictions or licensing.

Symmetric-key encryption is a little more complicated than just picking an algorithm 
and a key. You also need to select a mode of encryption. Different modes are used in 
different protocols.

Symmetric-Key Modes
Typical symmetric-key encryption algorithms like AES work on blocks of data. Two problems 
must be solved when using block-mode encryption:

If blocks are simply encrypted with the key, the same block will •	
always produce the same result. This is called electronic codebook 
(ECB) mode. If a bitmap picture is encrypted using ECB, all that 
happens is that the colors are changed.4 Obviously this isn’t useful 
if the data being encrypted is large.

To counter this, the TPM supports several other modes: 
cipher-block chaining (CBC), cipher-feedback (CFB), output-
feedback (OFB), and counter (CTR). All these modes have the 
property that if the same block is encrypted more than once in 
the same message, the result is different each time.

Some modes, like CBC, require that the output be an exact •	
multiple of the block size of the underlying algorithm. If the 
input isn’t a multiple of the block size (which is usually 128 bits 
or 16 bytes), it is padded to make this true. When this input is 
encrypted, the output is larger than the initial data by the size of 
the padding. For applications where the output can be a different 
size than the input (such as offloading a key), this isn’t a problem; 
but it’s inappropriate when the input and output must be the 
same size (such as when you’re encrypting a TPM command).

4http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation.

http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
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In this second case, you can use CFB or CTR mode. In CFB 
mode, a symmetric key encrypts an initialization vector, with 
the result being used as the initialization vector for the next 
block. In CTR mode, the symmetric key is used to encrypt 
incrementing counter values. In both modes, the resulting 
byte stream is XORed with the input to produce the output. 
As many bytes of the stream as necessary are used, and extra 
bytes are discarded, so the output is the same size as the input.

A property of CFB and CTR modes (actually a property of XOR) is that flipping a bit 
in the encrypted stream flips exactly the same bit in the decrypted stream. The attacker 
may not know the message but can certainly alter it. An attacker can flip a bit in a message 
encrypted using CBC mode as well, but more bits will change in the decrypted data.

This leads to an important (and often missed) point. Encryption provides secrecy, 
but it does not provide integrity or authenticity. To ensure those latter properties, the 
TPM uses an HMAC on the encrypted data. It does not depend on the decrypted data 
“looking funny” to detect alteration. Indeed, by calculating the HMAC of the encrypted 
message first, the TPM will not even attempt to decrypt it unless it is first determined that 
the message’s integrity is intact and that it is authentic.

Additionally, encryption does not provide evidence that the message was produced 
recently. That is done with a nonce.

Nonce
A nonce is a number that is used only once in a cryptographic operation. It provides 
protection against a replay attack. In order to guarantee that a message hasn’t been 
replayed, the recipient generates the nonce and sends it to the sender. The sender includes 
that nonce in the message. Because the sender presumably has no way of knowing what 
nonce the recipient will choose, they can’t replay a message that was prepared earlier. But 
of course, you must take care that a previously prepared message can’t just be minimally 
modified. When sending commands to a TPM and receiving the results back, nonces 
provide proof to the user that the results of the command were sent by the TPM.

In a typical TPM use, the nonce is included in the calculation of the HMAC of a 
command message. After an operation using the message is complete, the TPM changes 
the nonce. If the caller attempts to replay the message which had an HMAC that used the 
previous nonce, the TPM will attempt to verify the HMAC of the replayed message using 
the new nonce, and this verification will fail.

For many applications, a nonce can simply be a number that increments at each use 
and is large enough to never wrap around. However, this would require the TPM to keep 
track of the last-used value. Instead, the TPM takes advantage of its random-number 
generator. It uses random numbers as its nonces, and it uses large enough values (for 
example, 20 bytes) that the odds of a repeat are nil.
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Asymmetric Keys
Asymmetric keys are used by asymmetric algorithms for digital identities and key 
management. They are actually a key pair: a private key known only to one party and 
a public key known to everyone. Asymmetric keys make use of mathematical one-way 
functions. These functions have the property that calculating the public key from the 
private key is relatively easy computationally, but calculating the private key from  
the public key is computationally infeasible.

You all have window seats in The Restaurant at the End of the Universe

—Mullen 2011

If the owner of the private key uses it to encrypt some data (and the key is large 
enough), everyone can use the public key to decrypt the data, but everyone will know that 
only the holder of the private key could have encrypted that data. This is called signing 
the data. There are some complications to using this securely—the data that is signed 
should be in a particular format called a signing scheme, but the TPM ensures sure that 
the correct format is used.

If someone wants to share data (usually a symmetric key) with the owner of a private 
key in a secure way, they can provide the data to the owner by encrypting it with the 
owner’s public key. Then they can be certain that only the owner will be able to recover 
the shared data by using the owner’s private key. This is done in different ways depending 
on the type of asymmetric algorithm, but we skip these deep mathematical details here.

RSA Asymmetric-Key Algorithm
RSA is a well-known asymmetric-key algorithm. It uses the factoring of large numbers 
into large primes as its one-way function. RSA has an interesting property: If the private 
key is first applied to a message and then the public key is applied to the result, the 
original message is obtained. Alternatively, if the public key is applied to a message and 
then the private key is applied to the result, again the original message is obtained.

Thus, RSA can be used for both encryption and digital signatures. In encryption and 
decryption, the public key is used to encrypt data, and the private key is used to decrypt 
data. For digital signatures, the private key is used to digitally sign, and the public key is 
used to verify signatures.

RSA for Key Encryption

To encrypt using the asymmetric keys, you apply the recipient’s public key, which is known 
to you because it’s public, to the message. The holder of the private key can apply their key to 
recover the message. It is secret from everyone else because the private key is, well, private.

In practice, messages are not typically encrypted directly with an asymmetric key. The 
data size is limited, based on the size of the key. Breaking up the message into smaller pieces 
is possible but impractical because asymmetric-key operations are typically very slow.

The usual pattern is to encrypt a symmetric key with the asymmetric public key, 
send the encrypted symmetric key to the recipient, and then encrypt the message with 
that symmetric key. The recipient decrypts the symmetric key using their private key and 
then decrypts the message with the much faster symmetric-key algorithm.
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RSA for Digital Signatures

A digital signature is similar to an HMAC but has additional properties. To create an 
asymmetric-key digital signature, the signer applies their private key to a message. The 
verifier applies the public key to the signature to recover and verify the message.

A digital signature permits the recipient to know that a message has integrity and is 
authentic, qualities that an HMAC also possesses. An asymmetric-key digital signature 
goes further:

Because the verification key is public, multiple parties can verify •	
the signature. With an HMAC, the verification key is a shared secret, 
and only a holder of the shared secret can verify the message.

Because a private key is used to generate the signature, only the •	
sender (the holder of the private key) could have generated the 
signature, and the recipient can prove it to a third party. With 
an HMAC, a shared secret is used, and both the sender and the 
recipient know the shared secret. The recipient can verify that 
the signature was generated by the sender, but the recipient can’t 
prove this to a third party, because, for all the third party knows, 
the recipient could also have generated the signature.

As with asymmetric-key encryption, the digital signature isn’t typically applied 
directly to the message, because the message would be limited based on the key size.

The usual pattern is to digest the message and apply the private key to the smaller 
digest. The verifier applies the public key to the signature to recover the signed digest 
and compares that digest to one calculated from the message. This works because it is 
infeasible for an attacker to construct a second message with the same digest.

RSA is not the only asymmetric-key algorithm. Elliptic curve cryptography (ECC) is 
gaining popularity and is included in the latest specification.

ECC Asymmetric-Key Algorithm
ECC is another type of asymmetric mathematics that is used for cryptography. Unlike 
RSA, which uses an easily understood mathematical operation—factoring a product 
of two large primes—ECC uses more difficult mathematical concepts based on elliptic 
curves over a finite field. We will not describe the mathematics but instead describe how 
it is used. Just like every other asymmetric algorithm, ECC has a private and public key 
pair. The public key can be used to verify something signed with the private key, and the 
private key can be used to decrypt data that was encrypted using the public key.

For equivalent strength, ECC keys are much smaller than RSA keys. The strength of 
an ECC key is half the key size, so a 256-bit ECC key has 128 bits of strength. A similarly 
strong RSA key is 3,076 bits long. Smaller key sizes use fewer resources and perform faster. 
For encryption, a procedure known as Elliptic Curve Diffie-Hellman (ECDH) is used with 
ECC. For signing, Elliptic Curve Digital Signature Algorithm (ECDSA) is used.
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ECDH Asymmetric-Key Algorithm to Use Elliptic Curves to 
Pass Keys

When using ECC to encrypt/decrypt asymmetrically, you use the ECDH algorithm. The 
main difference between ECC and RSA for encryption/decryption is that the process 
of using an ECDH key takes two steps, whereas RSA takes only one. When encrypting a 
symmetric key with a TPM-based RSA key, you use the TPM RSA’s public key to encrypt it. 
When encrypting a symmetric key with a TPM-based ECDH key, two steps are required: 
Generate (in software) another ECDH key; and then use the private key of the newly 
generated ECDH key and the public portion of the TPM ECDH key to generate a new 
ephemeral random number, which is input to a KDF to generate a symmetric key. To put 
this more succinctly, with RSA you can supply the symmetric key to be encrypted, but 
with ECDH the process generates the symmetric key.

To recover the symmetric key, the public portion of the software-generated ECDH 
key is given to the TPM. It uses it together with the private portion of its own ECDH key 
to regenerate the ephemeral random number, which it inputs into a KDF internally to 
regenerate the symmetric key.

ECDSA Asymmetric-Key Algorithm to Use Elliptic Curves  
for Signatures

ECDSA is used as an algorithm with ECC to produce signatures. Just as with RSA, in 
ECDSA the private key is used to sign and the public key is used to verify the signature. 
The main difference (other than the mathematical steps used) is that when using an  
ECC key, because it’s much smaller than an RSA key, you have to ensure that the hash 
of the message you’re signing isn’t too big. The ECDSA signature signs only n bits of 
the hash, where n is the size of the key. (This is also true of RSA; but RSA keys sizes are 
typically >=1,024 bits and hash sizes top out at 512 bits, so this is never a problem.)

Whereas with RSA you can typically sign a message with any hash algorithm, with 
ECC you typically use a hash algorithm that matches the size of the key: SHA-256 for  
ECC-256 and SHA-384 for ECC-384. If you used SHA-512 (which produces 512-bit hashes) 
with an ECC-384 key, ECDSA would sign only the first 384 bits of the hash. You can sign 
smaller hashes without any problem, of course, so an ECC 384-bit key could be used to 
sign SHA-384, SHA-256, or SHA-1 (160 bits) hashes.

One problem with all signing protocols is that the recipient of the signature needs to 
be assured that the public key they use to verify the signature really belongs to the owner 
of the private key who signed it. This is handled with public key certificates.

Public Key Certification
Certification is part of an asymmetric-key protocol and solves the following problem: 
How do you trust the public key? After all, it accomplishes nothing to verify a digital 
signature with a public key if you don’t know whose public key you’re using. Secrecy 
won’t be preserved if you encrypt a message with the attacker’s public key. Establishing 
trust in a TPM public key includes knowing that the key really came from whom it was 
supposed to come from—in this case, a TPM.
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The solution is to create a digital certificate. A certificate includes the public part 
of the key being certified plus attributes of that key. The certificate is then signed by a 
certificate authority (CA) key. It’s possible that the CA public key is in turn certified by 
another CA key, forming a hierarchy (a certificate chain). At some point, this certificate 
chain terminates at a root certificate. The root public key must be conveyed to a verifier 
out of band and is declared trusted without cryptographic proof.

The X.509 standard5 describes a widely used certificate format. The TPM, as a 
limited-resource device, neither creates nor consumes X.509 certificates. The TCG 
Infrastructure work group does specify some X.509 certificate formats, and the TPM 
typically stores them. This storage is simply for provisioning convenience, pairing a 
certificate with its key, not to achieve any security goal.

In the TPM space, there are several certification processes:

The TPM vendor and platform manufacturer may provision the •	
TPM with TPM vendor and platform endorsement keys (EKs) 
and corresponding certificates before shipment to the end user. 
The TPM vendor certificate asserts, “This endorsement key is 
resident on an authentic TPM manufactured by me.” The platform 
manufacturer certificate asserts, “This key is resident on a TPM 
that is part of my platform, and this platform supports certain 
TPM features.” These certificates typically use X.509 format.

If the TPM keys (and their corresponding certificates) just •	
described exist as signing keys, they can be used to certify other 
keys as being resident on the TPM and having certain properties. 
The TPM 2.0 specification provides commands to create 
certificates. These TPM-generated certificates do not use X.509, 
which is too complex for the limited on-chip resources of the TPM.

Essentially, digital certificates rest on the integrity of the CA. The CA is considered to 
be a neutral party that can be trusted by two parties: the parties that create the certificates 
and those that use them. A CA’s functioning is similar to an escrow agent that mediates 
fund transfers in a real-estate transaction. If the CA is worthy of trust, all is good. If not,  
all bets are off.

When a TPM manufacturer produces a certificate for a TPM, the manufacturer faces 
a quandary. What algorithm should be used for the key? The manufacturer doesn’t know 
if the end user will want RSA-2048, ECC2-56, ECC-384, or some other algorithm. And it 
also needs to know what hash algorithm and symmetric algorithm should be used in the 
creation of the key. To solve this problem, the TPM is designed to allow the creation of 
many keys derived from a single large random number, using a key-derivation function, 
as described earlier. You see in the chapter on hierarchies how this is used to provide 
many certificates for multiple algorithms without using up space in the TPM.

5www.ietf.org/rfc/rfc2459.txt.

http://www.ietf.org/rfc/rfc2459.txt
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Summary
By examining a sample use case, you’ve seen all the major security operations and 
concepts that are used in the rest of the book to explain the creation and use of the 
TPM. This isn’t surprising, because the TPM was designed with use cases in mind, 
and one of the major ones was e-commerce. By starting with the attacks cryptographic 
operations need to defend against, you saw why cryptographic algorithms are chosen 
from well-vetted internationally recognized algorithms and how key strengths are 
chosen. You reviewed the concepts of confidentiality, integrity, electronic identity, and 
nonrepudiation and how they relate to the standard classes of algorithms: symmetric, 
asymmetric, hash, and HMAC. Finally, you learned about some specific new features in 
the TPM specification that use those algorithms: extend, tickets, and certificates. You’re 
ready to consider all the use cases the TPM was design to solve.
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