
119

Chapter 10

Keys

As a security device, the ability of an application to use keys while keeping them safe in a
hardware device is the TPM’s greatest strength. The TPM can both generate and import
externally generated keys. It supports both asymmetric and symmetric keys. Chapter 2
covered the basic principles behind these two key types.

As a memory-constrained device, it acts as a key cache, with the application securely
swapping keys in and out as needed. This key cache operation is discussed in the “Key
Cache” section.

There are three key hierarchies under the control of different security roles, and each
can form trees of keys in a parent-child relationship. Chapter 9 covered the hierarchies
and their use cases.

Each key has individual security controls, which can include a password, an
enhanced authorization policy, restrictions on duplication to another parent or another
TPM, and limits on its use as a signing or decryption key. Keys can be both certified and
used to certify other keys. Attributes specific to keys are discussed in the “Key Types and
Attributes” section. The details of authorization common to all TPM entities, including
password and policy, are deferred to Chapters 13 and 14.

Key Commands
Following is a summary of the TPM commands most often used with keys. It isn’t a
complete list. See the TPM 2.0 specification, Part 3, for the complete command set and
API details. They’re used in the descriptions and use cases that follow, as well as in
subsequent chapters:

•	 TPM2_Create and TPM2_CreatePrimary create all key types from
templates.

•	 TPM2_Load (for wrapped private keys) and TPM2_LoadExternal
(for public keys and possibly plaintext private keys) load keys onto
the TPM.

•	 TPM2_ContextSave and TPM2_ContextLoad are used to swap keys
in and out of the TPM key cache. TPM2_FlushContext removes
a key from the TPM. TPM2_EvictControl can make a loaded key
persistent or remove a persistent ley from the TPM. These functions
and their applications are explained in detail in Chapter 18.

Chapter 10 ■ Keys

120

•	 TPM2_Unseal, TPM2_RSA_Encrypt, and TPM2_RSA_Decrypt use
encryption keys.

•	 TPM2_HMAC, TPM2_HMAC_Start, TPM2_SequenceUpdate, and
TPM2_SequenceCompete use symmetric signing keys and the
keyed-hash message authentication code (HMAC) algorithm.

•	 TPM2_Sign is a general-purpose signing command, and
TPM2_VerifySignature verifies a digital signature.

•	 TPM2_Certify, TPM2_Quote, TPM2_GetSessionAuditDigest,
and TPM_GetTime are specialized signing commands that sign
attestation structures. In particular, TPM2_Certify can be used to
have a TPM key sign another key (specifically its Name). Thus, the
TPM can be used as a certificate authority, where the issuer key
attests to the properties of the subject key.

Key Generator
Arguably, the TPM’s greatest strength is its ability to generate a cryptographic key and
protect its secret within a hardware boundary. The key generator is based on the TPM’s
own random number generator and doesn’t rely on external sources of randomness.
It thus eliminates weaknesses based on weak software random number generators or
software with an insufficient source of entropy.

Primary Keys and Seeds
TPM keys can form a hierarchy, with parent keys wrapping their children. Primary keys
are the root keys in the hierarchy. They have no parent. Chapter 9 discussed the general
concept of hierarchies and their use cases. Their specific application to keys is discussed
under “Key Hierarchy.”

This section describes, in a linear flow, the creation and destruction of primary
keys. In the narrative, the caller is some software that is provisioning the TPM, sending
commands and receiving responses, whereas the TPM is the device that processes
the commands. Provisioning software (see Chapter 19) typically performs these steps.
Although end users may use primary keys, they would not typically be creating them.

Primary keys are created with the aptly named command TPM2_CreatePrimary.
If you’re familiar with TPM 1.2, you know that it has one key equivalent to the TPM 2.0
primary key: the storage root key (SRK), which is persistently stored in the TPM.
TPM 2.0 permits an unlimited number of primary keys, which don’t need to be persistent.
Although you might think the number would be limited by the TPM persistent storage,
it’s not. Primary seeds, described shortly, permit the expansion.

There were two reasons TPM 1.2 could function with one SRK. First, it had only one
algorithm and key size for wrapping keys, RSA-2048. The design of TPM 2.0, of course,
permits multiple algorithms and key sizes. Second, TPM 1.2 has only one key hierarchy:
the storage hierarchy. TPM 2.0 has three hierarchies, each with at least one root. Chapter 9
discussed the general concept of hierarchies and their use cases.

Chapter 10 ■ Keys

121

How can a TPM with limited persistent storage have an unlimited number of root
keys? A root can’t exist outside the TPM because it has no parent to wrap its secret parts.
The answer is the primary seeds.

Each of the three persistent hierarchies has an associated primary seed: the
endorsement primary seed, the platform primary seed, and the storage primary seed.
These seeds never leave the TPM. They’re the secret inputs to key-derivation functions.
When the TPM creates a primary key, it uses a primary seed plus a public template. The
template includes all the items you would normally expect when specifying a key: the
algorithms and key size, its policy, and the type of key (signing, encryption, and so on).
The caller can also provide unique data in the template. The unique data is input in the
public key area of the template.

The key-derivation function is fixed and repeatable. For the same seed, the same
template always produces the same key. By varying the unique data in the template, the
caller can create an unlimited number of primary keys.

When the TPM creates a primary key, it remains on the TPM in volatile memory.
The caller now has two choices. A limited number of primary keys can be moved to
persistent memory using the TPM2_EvictControl command. Other keys can remain in
volatile memory.

If more primary keys are needed than can fit in persistent storage or volatile memory,
some can be flushed (from volatile storage) or moved from persistent storage and then
flushed. Because the seed is persistent, the key isn’t lost forever. If the caller knows the
template, which may be completely public, the TPM can re-create the identical key on
demand. If the key being regenerated is an RSA key, this process may take a lot of time. If
the key is an elliptic curve cryptography (ECC), AES, or HMAC key, the process of creating
a primary key is very fast. In most use cases, at least one storage primary key is made
persistent in the TPM for the storage hierarchy, to act in a manner similar to the SRK.

How would this work in practice? In TPM 1.2, there was one endorsement key and
an associated certificate signed by the TPM vendor. They resided in persistent storage,
so that when the final user got a system with a TPM on it, the user also had a certificate
stored in the TPM’s NVRAM that matched the endorsement key stored in the TPM. In
TPM 2.0, there can be many key/certificate pairs—at least one for each algorithm the
TPM implements. However, the end user may not want to consume valuable persistent
storage for keys and certificates that aren’t being used, even if they could fit.

A possible solution, which TPM vendors are expected to implement, is to have the
manufacturer use the endorsement seed to generate several endorsement primary keys
and certificates using a standard set of algorithms, each with a well-known template. One
popular key, say RSA-2048, and its certificate can be moved to persistent storage. The
vendor flushes the other keys but retains the certificates.

The TCG Infrastructure work group has defined several such templates for
endorsement primary keys. The RSA template uses RSA 2048, SHA-256, and AES-128.
The ECC template uses ECC with the NIST P256 curve, SHA-256, and AES-128. Both
use the same authorization policy, which requires knowledge of the endorsement
hierarchy password. This delegates the key authorization to the endorsement hierarchy
administrator. The unique data is empty, a trivial well-known value. The attributes (see
“Key Types and Attributes”) are fixedTPM and fixedParent true, as expected for an
endorsement key that should never be duplicated. userWithAuth and adminWithPolicy

Chapter 10 ■ Keys

122

are specified so that a policy must always be used, not a password, which is appropriate
because the TPM vendor has no way of passing a password to the end user. The key is a
restricted decrypt key: that is, a storage key.

Suppose the end user desires a different primary key. That user can flush the one that
was provisioned with the TPM and generate a new one with their algorithm of choice.

Magic happens now! Because the seed is unchanged and the user creates the
primary key using the same template, they get the exact same key that the TPM vendor
created. The user can treat the public part as an index into a TPM vendor certificate list.
That list could even be on a public server. The user retrieves the certificate and is ready to
go. This key-generation repeatability (the same seed and the same template always yield
the same key) permits the TPM vendor to generate many keys and certificates during
manufacturing, but not have to store them in the limited TPM nonvolatile storage.
The end user can regenerate them as needed.

Note that the vendor must generate all needed primary keys and vendor certificates
in advance. Because the seed is secret, the vendor would otherwise not be able to
determine that a public key value came from the vendor’s TPM.

Once a seed is changed, the primary keys can no longer be re-created, and any keys
residing in the TPM based on the old seed are flushed. This means any certificates the
vendor created also become worthless. Creating a new certificate for a TPM endorsement
key (EK) signed by the vendor would be very difficult. Because of this, changing the seed
to the endorsement hierarchy is controlled by the platform hierarchy, which in practice
means the OEM. This makes it difficult for an end user to change this seed. On the other
hand, by simply choosing a random input in the template, the end user can create their
own set of endorsement keys that are totally independent of the EKs the vendor produced.

USE CASE: MULTIPLE PRIMARY KEYS

The user has several primary storage keys that serve as the root for a key hierarchy.
They can’t all fit in persistent storage. If the user creates the keys using well-known
templates, they can be re-created as needed.

The TPM commands are as follows:

•• TPM2_NV_Read: Reads the well-known template from TPM
NV space. The TPM vendor may provision several templates
(for example, one for RSA and one for ECC) on the TPM, and
these templates match the provisioned key certificates. The
user may also have enterprise-wide templates.

•• TPM2_CreatePrimary: Specifying the template.

•• TPM2_EvictControl: Can optionally be used to make
several keys persistent. Especially for RSA keys, this saves
the time required to regenerate them. Keys can also remain
in volatile memory and be re-created after each power
cycle.

Chapter 10 ■ Keys

123

USE CASE - CUSTOM PRIMARY KEYS:

The user wishes to create a primary key using a user secret in the template rather
than using a well-known template. Again, there are more primary keys than can fit
in persistent storage. The user stores the secret in a TPM NV index, with suitable
read access control, and retrieves it when needed to re-create the primary key.

The TPM commands are as follows:

•• TPM2_NV_Write: Writes and protects a user secret.

•• TPM2_NV_Read: Reads the secret using appropriate
authorization. The secret is inserted into the key template.

•• TPM2_CreatePrimary: Specify the template, which
includes a user secret, to generate a custom primary key.

Persistence of Keys
A user calls the TPM2_EvictControl command to move a key from volatile to nonvolatile
memory so it can remain loaded (persist) though power cycles. No key needs to be made
persistent to be used. Typically, we expect that a small number of primary keys, perhaps
one per hierarchy, will be made persistent to improve performance.

Keys in the endorsement, storage, and platform hierarchies, other than primary
keys, can also be made persistent. A use case would be early in a boot cycle, when a key is
needed before a disk is available. Another use case is a limited-resource platform such as
an embedded controller, which may not have any external persistent storage.

No keys in the NULL hierarchy can be made persistent. All are voided at reboot.1

Only a limited number of keys can be persistent, but the TPM can handle an
unlimited number of keys. The application does this by using the TPM as a key cache.

Key Cache
For keys other than primary keys, the TPM serves as a key cache. That is, the
TPM2_Create command creates a key, wraps2 (encrypts) it with the parent, and returns the
wrapped key to the caller. The caller saves the key external to the TPM, perhaps on disk.
To use the key, the user must first load it into the TPM under its parent using
TPM2_Load. When finished, the caller can free memory using TPM2_FlushContext.
This is different from a primary key, which has no parent and remains in the TPM after
it’s created.

1Chapter 9 discussed the unique properties of the NULL hierarchy.
2Wrapping is a common design pattern for hardware security modules. The wrapping key is an
encryption key, sometimes called a key encrypting key or master key. The TCG calls it a storage
key. The wrapping key and the wrapped key form a parent-child relationship.

Chapter 10 ■ Keys

124

A typical hardware TPM may have five to ten key slots: memory areas where a key can
be loaded. TPM management middleware is responsible for swapping keys in and out of
the cache.

If you read Chapter 13, you may notice that the key handle isn’t included in the TPM
parameters that are authorized. Rather, the key’s Name is used. The reason is the key cache
and swapping. A platform may have a large number of application keys on disk, perhaps
identified by a user’s handle. There are many more of these handles than key slots. When
a user asks to use a key, the command includes the user’s handle. However, when the
middleware loads the key, it gets a different handle, related to the TPM key slot rather
than the user’s handle. The middleware must thus replace the user’s handle with the TPM
handle. If the authorization included the user’s handle, the substitution would cause an
authorization failure.

You may now ask, “If the handle can be replaced, then if I have two keys with the
same authorization secret, how do I know that the middleware didn’t use a different key
than the one I wanted?” This was indeed a potential problem in TPM 1.2.

TPM solves this problem by using the key’s Name, a digest of the key’s public area,
in the authorization. The middleware can replace the key handle (which was not
authorized) but can’t replace the Name (which was authorized).

The root keys (the parents) and the key cache (the children) form a tree of keys. The
TPM provides for four of these trees, each with different controlling roles. The trees are
called hierarchies.

Key Authorization
Although hardware protection of private or symmetric keys alone is a major improvement
over software-generated keys, the TPM also offers strong access control. A software key
often uses a password for access control, to protect the key. For example, the secret key
may be encrypted with a password. This protection is only as strong as the password,
and the secret key is vulnerable to an offline hammering attack. That is, once an attacker
obtains the encrypted key, extracting the key is reduced to cracking the password. The
key owner can’t prevent a high-speed attack that tries an unlimited number of passwords.
This attack can be parallelized, with many computers trying different passwords
simultaneously. The cloud has made this kind of attack very feasible.

The TPM improves on software keys in two respects. First, when the key leaves the
TPM (see the “Key Hierarchy” section), it’s wrapped (encrypted) with a strong parent key
encrypting key. The attacker now has to crack a strong key rather than a weak password.
Second, when a key is loaded in the TPM, it’s protected by what the specification
calls dictionary attack protection logic. Each time an attacker fails to crack the key’s
authorization,3 this logic logs the failure. After a configurable number of failures, the TPM
blocks further attempts for a configurable amount of time. This limits, possibly severely,
the speed at which an attacker can try passwords. The rate limiting can make even a
weak TPM key password much more time consuming to crack than a strong software key
password, where the attack isn’t rate limited. Chapter 13 describes password and HMAC
authorization in detail.

3Chapters 13 and 14 discuss the details of TPM authorization.

Chapter 10 ■ Keys

125

The TPM provides many access-control mechanisms beyond a simple password.
However, it’s the hardware protection of the dictionary-attack protection logic that makes
a TPM key password resistant to attack.

Key Destruction
Sometimes a key should be destroyed. Perhaps the authorization has been exposed.
Perhaps the machine is being repurposed. Keys that are stored in software can never be
destroyed, because they may have been copied almost anywhere. But TPM keys have
parents or are primary keys.

As described in Chapter 9, there are three persistent hierarchies (endorsement,
storage, and platform) plus one volatile hierarchy (the null hierarchy). Each hierarchy has
its unique primary seed. Erasing a primary seed prevents re-creation of primary keys in
that hierarchy—obviously a drastic and rarely performed action. Erasing the primary keys
then prevents their children from being loaded in the TPM. Any key with attributes that
prove it can only exist in the TPM is then destroyed.

Key Hierarchy
A hierarchy can be thought of as having parent and child keys, or ancestors and
descendants. All parent keys are storage keys, which are encryption keys that can wrap
(encrypt) child keys. The storage key thus protects its children, offering secrecy and
integrity when the child key is stored outside the secure hardware boundary of the TPM.
These storage keys are restricted in their use. They can’t be used for general decryption,
which could then leak the child’s secrets.

The ultimate parent at the top of the hierarchy is a primary key. Children can be
storage keys, in which case they can also be parents. Children can also be non-storage
keys, in which case they’re leaf keys: children but never parents.

Key Types and Attributes
Each key has attributes, which are set at creation. They include the following:

Use, such as signing or encryption•	

Overall type, symmetric or asymmetric, and the algorithm•	

Restrictions on duplication•	

Restrictions on use•	

Chapter 10 ■ Keys

126

Symmetric and Asymmetric Keys Attributes
TPM 2.0 supports a variety of asymmetric algorithms, unlike TPM 1.2, which was fixed to
RSA. TPM 2.0 also introduces some entirely new key types.

A symmetric signing key can be used in TPM HMAC commands. TPM 2.0 can do
symmetric signing (a MAC) with a key that is never in the clear outside the TPM.

The TPM library specification includes symmetric encryption keys that can be used
for general-purpose encryption such as AES. It’s uncertain whether TPM vendors will
include these functions, due to potential export restrictions. The commands are optional
in the PC Client platform specification. Historically, TPM vendors haven’t implemented
optional TPM features.

Duplication Attributes
Duplication is the process of copying a key from one location in a hierarchy to another.
The key can become the child of another parent key. The hierarchy or parent can be
on the same or a different TPM. Primary keys can’t be duplicated; they’re fixed to one
hierarchy on one TPM.

A primary use case for duplication is key backups. If a key were locked forever to
one TPM, and the TPM or its motherboard failed, the key would be lost permanently.
A second use case is the sharing of keys among several devices. For example, a user’s
signing key may be duplicated among a laptop, tablet, and mobile phone.

TPM 1.2 has a similar process called migration. The term migration implies that a
key is moved: that is, that it would now exist at the destination location but no longer exist
at the source. This implication was incorrect. After migration, the key could exist at both
the destination and the source. For that reason, the TPM 2.0 term was changed to the
more accurate duplication.

TPM 2.0 keys have two attributes that control duplication. At one extreme, a key may
be locked to a single parent on a single TPM, and never duplicated. The opposite extreme
is a key that may be freely duplicated to another parent on the same or another TPM.

The intermediate case is a key that is locked to a parent but that can be implicitly
duplicated if the parent is moved. This case offers the possibility of duplicating an entire
branch of a tree. If the parent is duplicated, all children wrapped to that parent are
available at the destination, on down through all descendants.

The TPM specification talks of a duplication root and a duplication group. The root is
a key that can be duplicated. The duplication process acts explicitly on that key. The group
represents all descendants of that root. The entire duplication group duplicates implicitly
when the root duplicates. The children, which aren’t explicitly duplicated, remain with
their parent. However, as the parent is copied, the children are implicitly copied with it.

The controlling key attributes are defined as follows:

•	 fixedTPM: A key with this attribute set to true can’t be duplicated.
Although the name seems to permit duplicating a key from one
location in a hierarchy to another within a TPM, this isn’t the case.

•	 fixedParent: A key with this attribute set to true can’t be
duplicated to (rewrapped to) a different parent. It’s locked to
always have the same parent.

Chapter 10 ■ Keys

127

These two boolean attributes define four combinations.

1.	 The easiest case to understand is fixedTPM true and
fixedParent false, because it isn’t permitted. A key with
fixedTPM true can’t be duplicated, whereas fixedParent false
says it can be moved to a different parent The TPM checks for
and doesn’t allow this inconsistency.

2.	 fixedTPM true and fixedParent true defines an object that
can’t be duplicated, either explicitly or implicitly.

3.	 fixedTPM false and fixedParent true indicates a key that
can’t be directly duplicated. It’s fixed to a parent. However,
if an ancestor is duplicated, this key naturally moves with it.
That is, it may be in a duplication group, but it isn’t the root
of a group.

4.	 fixedTPM false and fixedParent false indicates a key that can
be duplicated. If it’s a parent, a duplication root, its children
move with it.

The fourth case is perhaps the most interesting, because the key may be
a duplication root. For example, it permits backup of a group of keys, called a
duplication group in the specification. That is, once this parent is duplicated, all
descendants are immediately duplicated to the new location without the need to
duplicate each child individually. It also simplifies the task of tracking the location of a
key. You need only track the parent, not children with fixedParent true, which remain
with their parent.

Observe also that these children are still wrapped by their original parent. The key
being duplicated must have fixedParent false. The children can be loaded into the TPM
where their parent is loaded, regardless of where their parent was originally loaded.
fixedParent determines whether a key can be directly duplicated, not whether it can
or can’t be duplicated by implication when its parent is duplicated. In other words, the
child wasn’t duplicated through any operation involving the TPM. Once its parent is
duplicated, the child can be simply moved to the new location (for example, with a file
copy of the wrapped child key) and loaded.

A child can have more than one parent. The duplication process establishes a new
parent-child relationship but doesn’t destroy the old one.4 The key is now a child of both
the original parent and the new parent. A key can be part of more than one duplication
group if more than one of its ancestors has fixedParent false. That is, a child key in a tree
can have more than one ancestor that is a duplication root. If any root is duplicated, the
child is duplicated.

4 It’s for this reason that the TPM 1.2 term migration was changed to duplication. Migration implied
that the old parent-child relationship was severed, which isn’t true even in TPM 1.2.

Chapter 10 ■ Keys

128

The TPM puts a restriction on the relationship between parent and child. A child can
only be created with fixedTPM true if:

1.	 Its parent also has fixedTPM true (the parent can’t be explicitly
duplicated).

2.	 Its parent has fixedParent true (the parent can’t be implicitly
duplicated).

The TPM enforces this restriction back to the primary keys, which are by nature fixed
to their TPM.

Restricted Signing Key
A variation on the key attribute sign (a signing key) is the restricted attribute. The use
case for a restricted key is signing TPM attestation structures. These structures include
Platform Configuration Register (PCR) quotes, a TPM object being certified, a signature
over the TPM’s time, or a signature over an audit digest. The signature is, of course, over
a digest, but the verifier wants assurance that the digest was not simply created externally
over bogus values and delivered to the TPM for signing. For example, a quote is a
signature over a set of PCR values, but the actual signing process signs a digest.
A user could generate a digest of any PCR values and use a nonrestricted key to sign it.
The user could then claim that the signature was a quote. However, the relying party
would observe that the key was not restricted and thus not trust the claim. A restricted
key provides assurance that the signature was over a TPM generated digest.

A restricted signing key can only sign a digest produced by the TPM. This is a
generalization of the TPM 1.2 Info keys and attestation identity key (AIKs), which could
only sign a TPM internally created structure. For internal TPM data, this assurance is
easy, because the TPM created the digest from its internal data at signing time.

However, a restricted key can also sign data supplied to the TPM, as long as the
TPM performed the digest using either TPM2_SequenceComplete or TPM2_Hash.
Because the digest is later supplied to the TPM for signing, how does the TPM know that
it calculated the digest?

The answer is a ticket. When the TPM calculates the digest, it produces a ticket that
declares that the TPM itself calculated that digest. When the digest is presented to
TPM2_Sign, the ticket must accompany it. If not, the restricted key doesn’t sign.

So what? How does this restrict what can be signed? If you can digest any external
data and obtain a ticket, why would it matter where the digest was calculated?

The answer is a 4-byte magic value called TPM_GENERATED. Each of the attestation
structures—the structures the TPM constructs from internal data—begins with this magic
number. If the TPM is digesting externally supplied data, it produces a ticket only if the
data did not begin with the magic number.

The net result is that you can sign almost any externally supplied data with a
restricted key. The only data that you can’t sign is data beginning with TPM_GENERATED.
This prevents you from spoofing TPM attestation structures, which all start
with that value.

Chapter 10 ■ Keys

129

Restricted Decryption Key
A restricted decryption key is in fact a storage key. This key only decrypts data that has a
specific format, including an integrity value over the rest of the structure.

Only these keys can be used as parents to create or load child objects or to activate
a credential. These operations place restrictions on the result of the decryption. For
example, loading doesn’t return the result of the decryption.

An unrestricted key can perform a general-purpose decryption on any supplied data
and return the result. If it were permitted to be used as a storage key, it could decrypt and
return the private key of a child. If it could be used on sealed data, it would return the data
without checking the unseal authorization.

Context Management vs. Loading
Loading a key involves supplying the wrapped (encrypted) key and specifying a loaded
parent. The TPM parent key unwraps (decrypts) the child key and holds it in a volatile
key slot.

Context management involves context-saving a loaded key off the TPM and then
context-loading it onto the TPM at a later time. When the key is saved, it’s wrapped with
a symmetric key derived from a hierarchy secret, called a hierarchy proof. Upon load, it’s
unwrapped with the same key. A context-saved key has no parent, but it’s connected to a
hierarchy.

Why use one or the other? In TPM 1.2, context management was important, because
child keys were always wrapped with a parent RSA key. The load operation required a
time-consuming RSA decryption. Context-saved keys were wrapped with a symmetric
key and thus were much faster. In TPM 2.0, child keys are wrapped with the symmetric
key of the parent, even if the parent is itself an asymmetric key. All storage keys have a
symmetric secret. Thus, reloading a key using its parent should be as fast as a context load
and of course eliminates the context save.

So why ever use context management to load a key? The use case for context-
loading keys is when the parent isn’t loaded. The key could be a descendent deep
down a hierarchy. Loading it could require loading a long chain of ancestors. A parent
authorization may require an inconvenient password prompt. A parent authorization
may be impossible if, for example, its policy requires a PCR state that has passed.

Specifically, suppose a key is four layers of parent down from a primary key. The
first child is loaded under its parent. That parent is no longer needed and can be flushed
from the TPM’s key cache. Now the next child is loaded, and the process repeats four
times until the final leaf key is reached. Once the leaf key is loaded, all its ancestors can be
flushed. However, if the leaf key is flushed, the entire process must repeat. The alternative
is to context-save the leaf key. Then it can be context-loaded independent of its ancestors.
Chapter 18 explains this process in detail.

Chapter 10 ■ Keys

130

NULL Hierarchy
In addition to the three persistent hierarchies, the TPM has a NULL hierarchy.5 This
hierarchy has its own unique seed, and both primary and descendent keys can exist in
this hierarchy. However, neither the seed nor primary keys can be persistent. A new seed
is created on each TPM reset. Thus, keys in this hierarchy are ephemeral: they’re erased
on a reset.

Certification
The TPM can of course act as a certificate authority. In fact, even before you consider
unique TPM features such as PCR, authorization policies, audit, and hierarchies, it’s
valuable simply as a hardware key store. The private signing key is protected by the
hardware and a wide range of authorization options, but it can be easily backed up. This
widely available and very inexpensive part offers far better protection than a software key.

A third-party certificate authority can also sign a X.509 certificate for a TPM key.
For decryption keys, there is a complication due to a typical CA requirement for proof of
possession. The certificate requestor must provide evidence to a CA that it possesses the
private key. This is typically done by self signing the certificate signing request (CSR).6

For decryption keys, the TPM can’t simply sign the CSR, because these keys are
restricted to decryption and can’t sign. The TPM has a workaround (see “Activating a
Credential” in Chapter 9), but this requires a nonstandard CA.

Less obvious is that the TPM can certify data located on the device. The TPM offers
several commands to support this feature.

TPM2_Certify asserts that an object with a Name is loaded on the TPM. Because the
name cryptographically represents the object’s public area, a relying party can be assured
that the object has an associated private part. The Name also incorporates the key’s
attributes, including whether it’s restricted, fixed to a parent or fixed to a TPM, and the
authorization policy.

USE CASE: CERTIFYING A TPM QUOTE KEY

A signing key is used for attestation: for example, to quote (sign) a set of PCR values.
The quote is far more useful if the relying party verifying the quote is assured that
the signing key is restricted to the TPM, and therefore that the PCR values were
actually on the TPM. The party first uses TPM2_Certify to get a certificate over the
quote key’s public area.

Naturally, the certifying key itself requires a certificate. Eventually, a useful certificate
chain leads back to a root. Chapter 19 explains how TPM key certificates are
provisioned and how these chains can be validated back to a trusted root key.

5Chapter 9 discusses the NULL hierarchy.
6See, for example the PKCS #10 standard in IETF RFC 2986.

Chapter 10 ■ Keys

131

USE CASE: CREATING A CERTIFICATE CHAIN

A signing key is located deep in a key hierarchy. A relying party wants to be
assured that all keys in the chain back to a primary key are suitably protected, that
all encryption algorithms and key sizes are of sufficient strength. The party uses
TPM2_Certify to get a certificate chain that cryptographically signs the public areas
of all keys in the chain.

TPM2_Certify signs the entire public area, including a key’s policy. This leads to
other use cases.

USE CASE: ASSURING THAT A KEY’S AUTHORIZATION
REQUIRES A DIGITAL SIGNATURE

A relying party wants assurance that only a restricted role can use a signing key,
indicated by a signature with a particular authorizing key. It uses TPM2_Certify to
certify a key. It then validates that the policy includes a TPM2_PolicySigned with
the public key corresponding to that role.

In this case, the policy need not have a policyRef parameter. The digital signature
is over the challenge but not over any additional information specific to the signer.

USE CASE: ASSURING THAT A KEY’S AUTHORIZATION
REQUIRES A BIOMETRIC

A relying party can validate that a signing key’s policy includes a fingerprint
authorization, indicated by a TPM2_PolicySigned with the fingerprint reader’s
public key and a policyRef parameter referring to a particular user identity.

This case is a variation of the previous case. The fingerprint reader signs not only
the challenge but also a policyRef. The digital signature proves both possession
of the private key and that the correct user’s finger was supplied.7

TPM2_NV_Certify serves a similar purpose for an NV defined index. It certifies that
the data at an NV index is indeed on the TPM. See Chapter 11 for details on the NV index
options.

7Chapter 14 discusses the details of policies—in particular, the variations of the TPM2_
PolicySigned command.

Chapter 10 ■ Keys

132

USE CASE: ASSURANCE OF NV DATA

An application is using an NV index as a counter or bit map together with a policy
for a signing key. The index is used to revoke key usage: for example, when a count
is reached or when a bit is set in a bit map. The application wants certainty that the
NV index has been updated and uses TPM_NV_Certify to get a signature over the
NV data.

USE CASE: QUOTE EQUIVALENT FOR AN NV EXTEND INDEX

An application is using a hybrid index as an extend index to effectively create a new
PCR that is authorized, under control of the application. (Using a hybrid extend index
as a PCR is explained in Chapter 11.) The explicit quote command only reports
the standard PCR values. The application can use TPM_NV_Certify to sign the
equivalent of a quote.

As with TPM2_Certify, TPM2_NV_Certify signs the NV index policy. The relying party
can validate the NV index access policy before entrusting the NV index value in another
policy.

Keys Unraveled
TPM keys have many layers of nested structures. For reference, here are several structures
unrolled down to primitive types.

The following is a typical RSA key:
 
TPM2B_PUBLIC
 
size UINT16
publicArea TPMT_PUBLIC
 type TPMI_ALG_PUBLIC = TPM_ALG_RSA
 nameAlg TPMI_ALG_HASH = TPM_ALG_SHA256
 objectAttributes TPMA_OBJECT
 authPolicy TPM2B_DIGEST
 size UINT16
 buffer BYTE
 parameters TPMU_PUBLIC_PARMS
 rsaDetail TPMS_RSA_PARMS = TPM_ALG_RSA
 symmetric TPMT_SYM_DEF_OBJECT
 For AES example
 Algorithm TPMI_ALG_SYM_OBJECT
 keyBits TPMU_SYM_KEY_BITS->TPMI_AES_KEY_BITS

Chapter 10 ■ Keys

133

 mode TPMU_SYM_MODE->TPMI_ALG_SYM_MODE
 details TPMU_SYM_DETAILS
 scheme TPMT_RSA_SCHEME
 scheme TPMI_ALG_RSA_SCHEME = e.g., TPM_ALG_OAEP
 details TPMU_ASYM_SCHEME = e.g., TPMS_SCHEME_OAEP
 keyBits TPMI_RSA_KEY_BITS = e.g. 2048
 exponent UINT32 = default 2^16 + 1
 unique TPMU_PUBLIC_ID->TPM2B_PUBLIC_KEY_RSA
 size UINT16
 buffer BYTE
 
TPMT_SENSITIVE
 
sensitiveType TPMI_ALG_PUBLIC = TPM_ALG_RSA
authValue TPM2B_AUTH (TPM2B_DIGEST)
seedValue TPM2B_DIGEST
sensitive TPMU_SENSITIVE_COMPOSITE,TPM2B_PRIVATE_KEY_RSA
 size UINT16
 buffer BYTE
 

This is a typical HMAC key:
 
TPM2B_PUBLIC
 
size UINT16
publicArea TPMT_PUBLIC
 type TPMI_ALG_PUBLIC = TPM_ALG_KEYEDHASH
 nameAlg TPMI_ALG_HASH = TPM_ALG_SHA256
 objectAttributes TPMA_OBJECT -> UINT32
 authPolicy TPM2B_DIGEST
 size UINT16
 buffer BYTE
 parameters TPMU_PUBLIC_PARMS
 keyedHashDetail TPMS_KEYEDHASH_PARMS
 scheme TPMT_KEYEDHASH_SCHEME
 scheme TPM_ALG_HMAC
 details TPMU_SCHEME_KEYEDHASH
 hmac TPMS_SCHEME_HMAC
 hashAlg TPMI_ALG_HASH = TPM_ALG_SHA256
 unique TPMU_PUBLIC_ID
 keyedHash TPM2B_DIGEST
 size UINT16
 buffer BYTE
 

Chapter 10 ■ Keys

134

TPMT_SENSITIVE
 
 sensitiveType TPMI_ALG_PUBLIC = TPM_ALG_KEYEDHASH
 authValue TPM2B_AUTH
 size UINT16
 buffer BYTE
 seedValue TPM2B_DIGEST
 size UINT16
 buffer BYTE
 sensitive TPMU_SENSITIVE_COMPOSITE
 bits TPM2B_SENSITIVE_DATA
 size UINT16
 buffer BYTE
 

And this is a typical ECC key:
 
TPM2B_PUBLIC
 
size UINT16
publicArea TPMT_PUBLIC
 type TPMI_ALG_PUBLIC = TPM_ALG_ECC
 nameAlg TPMI_ALG_HASH = TPM_ALG_SHA256
 objectAttributes TPMA_OBJECT
 authPolicy TPM2B_DIGEST
 size UINT16
 buffer BYTE
 parameters TPMU_PUBLIC_PARMS
 eccDetail TPMS_ECC_PARMS
 symmetric TPMT_SYM_DEF_OBJECT
 For AES example
 Algorithm TPMI_ALG_SYM_OBJECT = TPM_ALG_AES
 keyBits TPMU_SYM_KEY_BITS->TPMI_AES_KEY_BITS
 mode TPMU_SYM_MODE->TPMI_ALG_SYM_MODE = TPM_ALG_CBC
 details TPMU_SYM_DETAILS
 scheme TPMT_ECC_SCHEME
 scheme TPMI_ALG_ECC_SCHEME = TPM_ALG_ECDSA
 details TPMU_SIG_SCHEME
 ecdsa TPMS_SCHEME_ECDSA
 TPMS_SCHEME_SIGHASH
 hashAlg TPMI_ALG_HASH = TPM_ALG_SHA256
 curveID TPMI_ECC_CURVE = TPM_ECC_NIST_P256
 kdf TPMT_KDF_SCHEME
 scheme TPMI_ALG_KDF = TPM_ALG_NULL
 details TPMU_KDF_SCHEME
 unique TPMU_PUBLIC_ID
 ecc TPMS_ECC_POINT
 x TPM2B_ECC_PARAMETER

Chapter 10 ■ Keys

135

 size UINT16
 buffer BYTE
 y TPM2B_ECC_PARAMETER
 size UINT16
 buffer BYTE
 
TPMT_SENSITIVE
 
sensitiveType TPMI_ALG_PUBLIC = TPM_ALG_ECC
authValue TPM2B_AUTH
 TPM2B_DIGEST
 Size UINT16
 Buffer BYTE
seedValue TPM2B_DIGEST
 size UINT16
 buffer BYTE
sensitive TPMU_SENSITIVE_COMPOSITE
 ecc TPM2B_ECC_PARAMETER
 size UINT16
 buffer BYTE

Summary
A primary use of a TPM is as a hardware security module to safely store keys. The TPM
stores keys on one of four hierarchies. Each hierarchy has primary (root) parent keys and
trees of child keys. A parent is an encryption key, and a parent key wraps (encrypts) child
keys before they leave the TPM secure boundary.

Keys can be duplicated (wrapped with a different parent), and all children are
duplicated when the parent is duplicated. Duplication is subject to restrictions. Some
keys are fixed to the TPM; they can’t be duplicated. Some are fixed to their parent and so
can only be duplicated when the parent is duplicated.

Keys can have use restrictions as well. They can be specified as only signing or only
decryption keys, and they can be restricted to only signing or decrypting certain data.
Finally, keys can be certified by other TPM keys, and a relying party can validate the
public key, the key’s attributes, and even its policy.

	Chapter 10: Keys
	Key Commands
	Key Generator
	Primary Keys and Seeds
	Persistence of Keys
	Key Cache
	Key Authorization
	Key Destruction
	Key Hierarchy
	Key Types and Attributes
	Symmetric and Asymmetric Keys Attributes
	Duplication Attributes
	Restricted Signing Key
	Restricted Decryption Key

	Context Management vs. Loading
	NULL Hierarchy
	Certification
	Keys Unraveled
	Summary

